1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass munges the code in the input function to better prepare it for 10 // SelectionDAG-based code generation. This works around limitations in it's 11 // basic-block-at-a-time approach. It should eventually be removed. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/InstructionSimplify.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ProfileSummaryInfo.h" 31 #include "llvm/Analysis/TargetLibraryInfo.h" 32 #include "llvm/Analysis/TargetTransformInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/SelectionDAGNodes.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/CodeGen/ValueTypes.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/IR/Argument.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GetElementPtrTypeIterator.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InlineAsm.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/IntrinsicsAArch64.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/IR/MDBuilder.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/PatternMatch.h" 68 #include "llvm/IR/Statepoint.h" 69 #include "llvm/IR/Type.h" 70 #include "llvm/IR/Use.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/IR/ValueMap.h" 75 #include "llvm/InitializePasses.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/BlockFrequency.h" 78 #include "llvm/Support/BranchProbability.h" 79 #include "llvm/Support/Casting.h" 80 #include "llvm/Support/CommandLine.h" 81 #include "llvm/Support/Compiler.h" 82 #include "llvm/Support/Debug.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/MachineValueType.h" 85 #include "llvm/Support/MathExtras.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include "llvm/Target/TargetMachine.h" 88 #include "llvm/Target/TargetOptions.h" 89 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 90 #include "llvm/Transforms/Utils/BypassSlowDivision.h" 91 #include "llvm/Transforms/Utils/Local.h" 92 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 93 #include "llvm/Transforms/Utils/SizeOpts.h" 94 #include <algorithm> 95 #include <cassert> 96 #include <cstdint> 97 #include <iterator> 98 #include <limits> 99 #include <memory> 100 #include <utility> 101 #include <vector> 102 103 using namespace llvm; 104 using namespace llvm::PatternMatch; 105 106 #define DEBUG_TYPE "codegenprepare" 107 108 STATISTIC(NumBlocksElim, "Number of blocks eliminated"); 109 STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); 110 STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); 111 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " 112 "sunken Cmps"); 113 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " 114 "of sunken Casts"); 115 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " 116 "computations were sunk"); 117 STATISTIC(NumMemoryInstsPhiCreated, 118 "Number of phis created when address " 119 "computations were sunk to memory instructions"); 120 STATISTIC(NumMemoryInstsSelectCreated, 121 "Number of select created when address " 122 "computations were sunk to memory instructions"); 123 STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); 124 STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); 125 STATISTIC(NumAndsAdded, 126 "Number of and mask instructions added to form ext loads"); 127 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); 128 STATISTIC(NumRetsDup, "Number of return instructions duplicated"); 129 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); 130 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); 131 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); 132 133 static cl::opt<bool> DisableBranchOpts( 134 "disable-cgp-branch-opts", cl::Hidden, cl::init(false), 135 cl::desc("Disable branch optimizations in CodeGenPrepare")); 136 137 static cl::opt<bool> 138 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), 139 cl::desc("Disable GC optimizations in CodeGenPrepare")); 140 141 static cl::opt<bool> DisableSelectToBranch( 142 "disable-cgp-select2branch", cl::Hidden, cl::init(false), 143 cl::desc("Disable select to branch conversion.")); 144 145 static cl::opt<bool> AddrSinkUsingGEPs( 146 "addr-sink-using-gep", cl::Hidden, cl::init(true), 147 cl::desc("Address sinking in CGP using GEPs.")); 148 149 static cl::opt<bool> EnableAndCmpSinking( 150 "enable-andcmp-sinking", cl::Hidden, cl::init(true), 151 cl::desc("Enable sinkinig and/cmp into branches.")); 152 153 static cl::opt<bool> DisableStoreExtract( 154 "disable-cgp-store-extract", cl::Hidden, cl::init(false), 155 cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); 156 157 static cl::opt<bool> StressStoreExtract( 158 "stress-cgp-store-extract", cl::Hidden, cl::init(false), 159 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); 160 161 static cl::opt<bool> DisableExtLdPromotion( 162 "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 163 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " 164 "CodeGenPrepare")); 165 166 static cl::opt<bool> StressExtLdPromotion( 167 "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), 168 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " 169 "optimization in CodeGenPrepare")); 170 171 static cl::opt<bool> DisablePreheaderProtect( 172 "disable-preheader-prot", cl::Hidden, cl::init(false), 173 cl::desc("Disable protection against removing loop preheaders")); 174 175 static cl::opt<bool> ProfileGuidedSectionPrefix( 176 "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, 177 cl::desc("Use profile info to add section prefix for hot/cold functions")); 178 179 static cl::opt<bool> ProfileUnknownInSpecialSection( 180 "profile-unknown-in-special-section", cl::Hidden, cl::init(false), 181 cl::ZeroOrMore, 182 cl::desc("In profiling mode like sampleFDO, if a function doesn't have " 183 "profile, we cannot tell the function is cold for sure because " 184 "it may be a function newly added without ever being sampled. " 185 "With the flag enabled, compiler can put such profile unknown " 186 "functions into a special section, so runtime system can choose " 187 "to handle it in a different way than .text section, to save " 188 "RAM for example. ")); 189 190 static cl::opt<unsigned> FreqRatioToSkipMerge( 191 "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), 192 cl::desc("Skip merging empty blocks if (frequency of empty block) / " 193 "(frequency of destination block) is greater than this ratio")); 194 195 static cl::opt<bool> ForceSplitStore( 196 "force-split-store", cl::Hidden, cl::init(false), 197 cl::desc("Force store splitting no matter what the target query says.")); 198 199 static cl::opt<bool> 200 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, 201 cl::desc("Enable merging of redundant sexts when one is dominating" 202 " the other."), cl::init(true)); 203 204 static cl::opt<bool> DisableComplexAddrModes( 205 "disable-complex-addr-modes", cl::Hidden, cl::init(false), 206 cl::desc("Disables combining addressing modes with different parts " 207 "in optimizeMemoryInst.")); 208 209 static cl::opt<bool> 210 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), 211 cl::desc("Allow creation of Phis in Address sinking.")); 212 213 static cl::opt<bool> 214 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), 215 cl::desc("Allow creation of selects in Address sinking.")); 216 217 static cl::opt<bool> AddrSinkCombineBaseReg( 218 "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), 219 cl::desc("Allow combining of BaseReg field in Address sinking.")); 220 221 static cl::opt<bool> AddrSinkCombineBaseGV( 222 "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), 223 cl::desc("Allow combining of BaseGV field in Address sinking.")); 224 225 static cl::opt<bool> AddrSinkCombineBaseOffs( 226 "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), 227 cl::desc("Allow combining of BaseOffs field in Address sinking.")); 228 229 static cl::opt<bool> AddrSinkCombineScaledReg( 230 "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), 231 cl::desc("Allow combining of ScaledReg field in Address sinking.")); 232 233 static cl::opt<bool> 234 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, 235 cl::init(true), 236 cl::desc("Enable splitting large offset of GEP.")); 237 238 static cl::opt<bool> EnableICMP_EQToICMP_ST( 239 "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), 240 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); 241 242 static cl::opt<bool> 243 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), 244 cl::desc("Enable BFI update verification for " 245 "CodeGenPrepare.")); 246 247 static cl::opt<bool> OptimizePhiTypes( 248 "cgp-optimize-phi-types", cl::Hidden, cl::init(false), 249 cl::desc("Enable converting phi types in CodeGenPrepare")); 250 251 namespace { 252 253 enum ExtType { 254 ZeroExtension, // Zero extension has been seen. 255 SignExtension, // Sign extension has been seen. 256 BothExtension // This extension type is used if we saw sext after 257 // ZeroExtension had been set, or if we saw zext after 258 // SignExtension had been set. It makes the type 259 // information of a promoted instruction invalid. 260 }; 261 262 using SetOfInstrs = SmallPtrSet<Instruction *, 16>; 263 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; 264 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; 265 using SExts = SmallVector<Instruction *, 16>; 266 using ValueToSExts = DenseMap<Value *, SExts>; 267 268 class TypePromotionTransaction; 269 270 class CodeGenPrepare : public FunctionPass { 271 const TargetMachine *TM = nullptr; 272 const TargetSubtargetInfo *SubtargetInfo; 273 const TargetLowering *TLI = nullptr; 274 const TargetRegisterInfo *TRI; 275 const TargetTransformInfo *TTI = nullptr; 276 const TargetLibraryInfo *TLInfo; 277 const LoopInfo *LI; 278 std::unique_ptr<BlockFrequencyInfo> BFI; 279 std::unique_ptr<BranchProbabilityInfo> BPI; 280 ProfileSummaryInfo *PSI; 281 282 /// As we scan instructions optimizing them, this is the next instruction 283 /// to optimize. Transforms that can invalidate this should update it. 284 BasicBlock::iterator CurInstIterator; 285 286 /// Keeps track of non-local addresses that have been sunk into a block. 287 /// This allows us to avoid inserting duplicate code for blocks with 288 /// multiple load/stores of the same address. The usage of WeakTrackingVH 289 /// enables SunkAddrs to be treated as a cache whose entries can be 290 /// invalidated if a sunken address computation has been erased. 291 ValueMap<Value*, WeakTrackingVH> SunkAddrs; 292 293 /// Keeps track of all instructions inserted for the current function. 294 SetOfInstrs InsertedInsts; 295 296 /// Keeps track of the type of the related instruction before their 297 /// promotion for the current function. 298 InstrToOrigTy PromotedInsts; 299 300 /// Keep track of instructions removed during promotion. 301 SetOfInstrs RemovedInsts; 302 303 /// Keep track of sext chains based on their initial value. 304 DenseMap<Value *, Instruction *> SeenChainsForSExt; 305 306 /// Keep track of GEPs accessing the same data structures such as structs or 307 /// arrays that are candidates to be split later because of their large 308 /// size. 309 MapVector< 310 AssertingVH<Value>, 311 SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> 312 LargeOffsetGEPMap; 313 314 /// Keep track of new GEP base after splitting the GEPs having large offset. 315 SmallSet<AssertingVH<Value>, 2> NewGEPBases; 316 317 /// Map serial numbers to Large offset GEPs. 318 DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; 319 320 /// Keep track of SExt promoted. 321 ValueToSExts ValToSExtendedUses; 322 323 /// True if the function has the OptSize attribute. 324 bool OptSize; 325 326 /// DataLayout for the Function being processed. 327 const DataLayout *DL = nullptr; 328 329 /// Building the dominator tree can be expensive, so we only build it 330 /// lazily and update it when required. 331 std::unique_ptr<DominatorTree> DT; 332 333 public: 334 static char ID; // Pass identification, replacement for typeid 335 336 CodeGenPrepare() : FunctionPass(ID) { 337 initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); 338 } 339 340 bool runOnFunction(Function &F) override; 341 342 StringRef getPassName() const override { return "CodeGen Prepare"; } 343 344 void getAnalysisUsage(AnalysisUsage &AU) const override { 345 // FIXME: When we can selectively preserve passes, preserve the domtree. 346 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 347 AU.addRequired<TargetLibraryInfoWrapperPass>(); 348 AU.addRequired<TargetPassConfig>(); 349 AU.addRequired<TargetTransformInfoWrapperPass>(); 350 AU.addRequired<LoopInfoWrapperPass>(); 351 } 352 353 private: 354 template <typename F> 355 void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { 356 // Substituting can cause recursive simplifications, which can invalidate 357 // our iterator. Use a WeakTrackingVH to hold onto it in case this 358 // happens. 359 Value *CurValue = &*CurInstIterator; 360 WeakTrackingVH IterHandle(CurValue); 361 362 f(); 363 364 // If the iterator instruction was recursively deleted, start over at the 365 // start of the block. 366 if (IterHandle != CurValue) { 367 CurInstIterator = BB->begin(); 368 SunkAddrs.clear(); 369 } 370 } 371 372 // Get the DominatorTree, building if necessary. 373 DominatorTree &getDT(Function &F) { 374 if (!DT) 375 DT = std::make_unique<DominatorTree>(F); 376 return *DT; 377 } 378 379 void removeAllAssertingVHReferences(Value *V); 380 bool eliminateFallThrough(Function &F); 381 bool eliminateMostlyEmptyBlocks(Function &F); 382 BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); 383 bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; 384 void eliminateMostlyEmptyBlock(BasicBlock *BB); 385 bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, 386 bool isPreheader); 387 bool makeBitReverse(Instruction &I); 388 bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); 389 bool optimizeInst(Instruction *I, bool &ModifiedDT); 390 bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 391 Type *AccessTy, unsigned AddrSpace); 392 bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); 393 bool optimizeInlineAsmInst(CallInst *CS); 394 bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); 395 bool optimizeExt(Instruction *&I); 396 bool optimizeExtUses(Instruction *I); 397 bool optimizeLoadExt(LoadInst *Load); 398 bool optimizeShiftInst(BinaryOperator *BO); 399 bool optimizeFunnelShift(IntrinsicInst *Fsh); 400 bool optimizeSelectInst(SelectInst *SI); 401 bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); 402 bool optimizeSwitchInst(SwitchInst *SI); 403 bool optimizeExtractElementInst(Instruction *Inst); 404 bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); 405 bool fixupDbgValue(Instruction *I); 406 bool placeDbgValues(Function &F); 407 bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, 408 LoadInst *&LI, Instruction *&Inst, bool HasPromoted); 409 bool tryToPromoteExts(TypePromotionTransaction &TPT, 410 const SmallVectorImpl<Instruction *> &Exts, 411 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 412 unsigned CreatedInstsCost = 0); 413 bool mergeSExts(Function &F); 414 bool splitLargeGEPOffsets(); 415 bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, 416 SmallPtrSetImpl<Instruction *> &DeletedInstrs); 417 bool optimizePhiTypes(Function &F); 418 bool performAddressTypePromotion( 419 Instruction *&Inst, 420 bool AllowPromotionWithoutCommonHeader, 421 bool HasPromoted, TypePromotionTransaction &TPT, 422 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); 423 bool splitBranchCondition(Function &F, bool &ModifiedDT); 424 bool simplifyOffsetableRelocate(GCStatepointInst &I); 425 426 bool tryToSinkFreeOperands(Instruction *I); 427 bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, 428 Value *Arg1, CmpInst *Cmp, 429 Intrinsic::ID IID); 430 bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); 431 bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 432 bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); 433 void verifyBFIUpdates(Function &F); 434 }; 435 436 } // end anonymous namespace 437 438 char CodeGenPrepare::ID = 0; 439 440 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, 441 "Optimize for code generation", false, false) 442 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 443 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 444 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 445 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 446 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 447 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, 448 "Optimize for code generation", false, false) 449 450 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } 451 452 bool CodeGenPrepare::runOnFunction(Function &F) { 453 if (skipFunction(F)) 454 return false; 455 456 DL = &F.getParent()->getDataLayout(); 457 458 bool EverMadeChange = false; 459 // Clear per function information. 460 InsertedInsts.clear(); 461 PromotedInsts.clear(); 462 463 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 464 SubtargetInfo = TM->getSubtargetImpl(F); 465 TLI = SubtargetInfo->getTargetLowering(); 466 TRI = SubtargetInfo->getRegisterInfo(); 467 TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 468 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 469 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 470 BPI.reset(new BranchProbabilityInfo(F, *LI)); 471 BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); 472 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 473 OptSize = F.hasOptSize(); 474 if (ProfileGuidedSectionPrefix) { 475 // The hot attribute overwrites profile count based hotness while profile 476 // counts based hotness overwrite the cold attribute. 477 // This is a conservative behabvior. 478 if (F.hasFnAttribute(Attribute::Hot) || 479 PSI->isFunctionHotInCallGraph(&F, *BFI)) 480 F.setSectionPrefix("hot"); 481 // If PSI shows this function is not hot, we will placed the function 482 // into unlikely section if (1) PSI shows this is a cold function, or 483 // (2) the function has a attribute of cold. 484 else if (PSI->isFunctionColdInCallGraph(&F, *BFI) || 485 F.hasFnAttribute(Attribute::Cold)) 486 F.setSectionPrefix("unlikely"); 487 else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && 488 PSI->isFunctionHotnessUnknown(F)) 489 F.setSectionPrefix("unknown"); 490 } 491 492 /// This optimization identifies DIV instructions that can be 493 /// profitably bypassed and carried out with a shorter, faster divide. 494 if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { 495 const DenseMap<unsigned int, unsigned int> &BypassWidths = 496 TLI->getBypassSlowDivWidths(); 497 BasicBlock* BB = &*F.begin(); 498 while (BB != nullptr) { 499 // bypassSlowDivision may create new BBs, but we don't want to reapply the 500 // optimization to those blocks. 501 BasicBlock* Next = BB->getNextNode(); 502 // F.hasOptSize is already checked in the outer if statement. 503 if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 504 EverMadeChange |= bypassSlowDivision(BB, BypassWidths); 505 BB = Next; 506 } 507 } 508 509 // Eliminate blocks that contain only PHI nodes and an 510 // unconditional branch. 511 EverMadeChange |= eliminateMostlyEmptyBlocks(F); 512 513 bool ModifiedDT = false; 514 if (!DisableBranchOpts) 515 EverMadeChange |= splitBranchCondition(F, ModifiedDT); 516 517 // Split some critical edges where one of the sources is an indirect branch, 518 // to help generate sane code for PHIs involving such edges. 519 EverMadeChange |= SplitIndirectBrCriticalEdges(F); 520 521 bool MadeChange = true; 522 while (MadeChange) { 523 MadeChange = false; 524 DT.reset(); 525 for (Function::iterator I = F.begin(); I != F.end(); ) { 526 BasicBlock *BB = &*I++; 527 bool ModifiedDTOnIteration = false; 528 MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); 529 530 // Restart BB iteration if the dominator tree of the Function was changed 531 if (ModifiedDTOnIteration) 532 break; 533 } 534 if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) 535 MadeChange |= mergeSExts(F); 536 if (!LargeOffsetGEPMap.empty()) 537 MadeChange |= splitLargeGEPOffsets(); 538 MadeChange |= optimizePhiTypes(F); 539 540 if (MadeChange) 541 eliminateFallThrough(F); 542 543 // Really free removed instructions during promotion. 544 for (Instruction *I : RemovedInsts) 545 I->deleteValue(); 546 547 EverMadeChange |= MadeChange; 548 SeenChainsForSExt.clear(); 549 ValToSExtendedUses.clear(); 550 RemovedInsts.clear(); 551 LargeOffsetGEPMap.clear(); 552 LargeOffsetGEPID.clear(); 553 } 554 555 NewGEPBases.clear(); 556 SunkAddrs.clear(); 557 558 if (!DisableBranchOpts) { 559 MadeChange = false; 560 // Use a set vector to get deterministic iteration order. The order the 561 // blocks are removed may affect whether or not PHI nodes in successors 562 // are removed. 563 SmallSetVector<BasicBlock*, 8> WorkList; 564 for (BasicBlock &BB : F) { 565 SmallVector<BasicBlock *, 2> Successors(successors(&BB)); 566 MadeChange |= ConstantFoldTerminator(&BB, true); 567 if (!MadeChange) continue; 568 569 for (BasicBlock *Succ : Successors) 570 if (pred_empty(Succ)) 571 WorkList.insert(Succ); 572 } 573 574 // Delete the dead blocks and any of their dead successors. 575 MadeChange |= !WorkList.empty(); 576 while (!WorkList.empty()) { 577 BasicBlock *BB = WorkList.pop_back_val(); 578 SmallVector<BasicBlock*, 2> Successors(successors(BB)); 579 580 DeleteDeadBlock(BB); 581 582 for (BasicBlock *Succ : Successors) 583 if (pred_empty(Succ)) 584 WorkList.insert(Succ); 585 } 586 587 // Merge pairs of basic blocks with unconditional branches, connected by 588 // a single edge. 589 if (EverMadeChange || MadeChange) 590 MadeChange |= eliminateFallThrough(F); 591 592 EverMadeChange |= MadeChange; 593 } 594 595 if (!DisableGCOpts) { 596 SmallVector<GCStatepointInst *, 2> Statepoints; 597 for (BasicBlock &BB : F) 598 for (Instruction &I : BB) 599 if (auto *SP = dyn_cast<GCStatepointInst>(&I)) 600 Statepoints.push_back(SP); 601 for (auto &I : Statepoints) 602 EverMadeChange |= simplifyOffsetableRelocate(*I); 603 } 604 605 // Do this last to clean up use-before-def scenarios introduced by other 606 // preparatory transforms. 607 EverMadeChange |= placeDbgValues(F); 608 609 #ifndef NDEBUG 610 if (VerifyBFIUpdates) 611 verifyBFIUpdates(F); 612 #endif 613 614 return EverMadeChange; 615 } 616 617 /// An instruction is about to be deleted, so remove all references to it in our 618 /// GEP-tracking data strcutures. 619 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) { 620 LargeOffsetGEPMap.erase(V); 621 NewGEPBases.erase(V); 622 623 auto GEP = dyn_cast<GetElementPtrInst>(V); 624 if (!GEP) 625 return; 626 627 LargeOffsetGEPID.erase(GEP); 628 629 auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand()); 630 if (VecI == LargeOffsetGEPMap.end()) 631 return; 632 633 auto &GEPVector = VecI->second; 634 const auto &I = 635 llvm::find_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; }); 636 if (I == GEPVector.end()) 637 return; 638 639 GEPVector.erase(I); 640 if (GEPVector.empty()) 641 LargeOffsetGEPMap.erase(VecI); 642 } 643 644 // Verify BFI has been updated correctly by recomputing BFI and comparing them. 645 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) { 646 DominatorTree NewDT(F); 647 LoopInfo NewLI(NewDT); 648 BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); 649 BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); 650 NewBFI.verifyMatch(*BFI); 651 } 652 653 /// Merge basic blocks which are connected by a single edge, where one of the 654 /// basic blocks has a single successor pointing to the other basic block, 655 /// which has a single predecessor. 656 bool CodeGenPrepare::eliminateFallThrough(Function &F) { 657 bool Changed = false; 658 // Scan all of the blocks in the function, except for the entry block. 659 // Use a temporary array to avoid iterator being invalidated when 660 // deleting blocks. 661 SmallVector<WeakTrackingVH, 16> Blocks; 662 for (auto &Block : llvm::drop_begin(F)) 663 Blocks.push_back(&Block); 664 665 SmallSet<WeakTrackingVH, 16> Preds; 666 for (auto &Block : Blocks) { 667 auto *BB = cast_or_null<BasicBlock>(Block); 668 if (!BB) 669 continue; 670 // If the destination block has a single pred, then this is a trivial 671 // edge, just collapse it. 672 BasicBlock *SinglePred = BB->getSinglePredecessor(); 673 674 // Don't merge if BB's address is taken. 675 if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; 676 677 BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); 678 if (Term && !Term->isConditional()) { 679 Changed = true; 680 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); 681 682 // Merge BB into SinglePred and delete it. 683 MergeBlockIntoPredecessor(BB); 684 Preds.insert(SinglePred); 685 } 686 } 687 688 // (Repeatedly) merging blocks into their predecessors can create redundant 689 // debug intrinsics. 690 for (auto &Pred : Preds) 691 if (auto *BB = cast_or_null<BasicBlock>(Pred)) 692 RemoveRedundantDbgInstrs(BB); 693 694 return Changed; 695 } 696 697 /// Find a destination block from BB if BB is mergeable empty block. 698 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { 699 // If this block doesn't end with an uncond branch, ignore it. 700 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 701 if (!BI || !BI->isUnconditional()) 702 return nullptr; 703 704 // If the instruction before the branch (skipping debug info) isn't a phi 705 // node, then other stuff is happening here. 706 BasicBlock::iterator BBI = BI->getIterator(); 707 if (BBI != BB->begin()) { 708 --BBI; 709 while (isa<DbgInfoIntrinsic>(BBI)) { 710 if (BBI == BB->begin()) 711 break; 712 --BBI; 713 } 714 if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) 715 return nullptr; 716 } 717 718 // Do not break infinite loops. 719 BasicBlock *DestBB = BI->getSuccessor(0); 720 if (DestBB == BB) 721 return nullptr; 722 723 if (!canMergeBlocks(BB, DestBB)) 724 DestBB = nullptr; 725 726 return DestBB; 727 } 728 729 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an 730 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split 731 /// edges in ways that are non-optimal for isel. Start by eliminating these 732 /// blocks so we can split them the way we want them. 733 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { 734 SmallPtrSet<BasicBlock *, 16> Preheaders; 735 SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); 736 while (!LoopList.empty()) { 737 Loop *L = LoopList.pop_back_val(); 738 llvm::append_range(LoopList, *L); 739 if (BasicBlock *Preheader = L->getLoopPreheader()) 740 Preheaders.insert(Preheader); 741 } 742 743 bool MadeChange = false; 744 // Copy blocks into a temporary array to avoid iterator invalidation issues 745 // as we remove them. 746 // Note that this intentionally skips the entry block. 747 SmallVector<WeakTrackingVH, 16> Blocks; 748 for (auto &Block : llvm::drop_begin(F)) 749 Blocks.push_back(&Block); 750 751 for (auto &Block : Blocks) { 752 BasicBlock *BB = cast_or_null<BasicBlock>(Block); 753 if (!BB) 754 continue; 755 BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); 756 if (!DestBB || 757 !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) 758 continue; 759 760 eliminateMostlyEmptyBlock(BB); 761 MadeChange = true; 762 } 763 return MadeChange; 764 } 765 766 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, 767 BasicBlock *DestBB, 768 bool isPreheader) { 769 // Do not delete loop preheaders if doing so would create a critical edge. 770 // Loop preheaders can be good locations to spill registers. If the 771 // preheader is deleted and we create a critical edge, registers may be 772 // spilled in the loop body instead. 773 if (!DisablePreheaderProtect && isPreheader && 774 !(BB->getSinglePredecessor() && 775 BB->getSinglePredecessor()->getSingleSuccessor())) 776 return false; 777 778 // Skip merging if the block's successor is also a successor to any callbr 779 // that leads to this block. 780 // FIXME: Is this really needed? Is this a correctness issue? 781 for (BasicBlock *Pred : predecessors(BB)) { 782 if (auto *CBI = dyn_cast<CallBrInst>((Pred)->getTerminator())) 783 for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) 784 if (DestBB == CBI->getSuccessor(i)) 785 return false; 786 } 787 788 // Try to skip merging if the unique predecessor of BB is terminated by a 789 // switch or indirect branch instruction, and BB is used as an incoming block 790 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to 791 // add COPY instructions in the predecessor of BB instead of BB (if it is not 792 // merged). Note that the critical edge created by merging such blocks wont be 793 // split in MachineSink because the jump table is not analyzable. By keeping 794 // such empty block (BB), ISel will place COPY instructions in BB, not in the 795 // predecessor of BB. 796 BasicBlock *Pred = BB->getUniquePredecessor(); 797 if (!Pred || 798 !(isa<SwitchInst>(Pred->getTerminator()) || 799 isa<IndirectBrInst>(Pred->getTerminator()))) 800 return true; 801 802 if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) 803 return true; 804 805 // We use a simple cost heuristic which determine skipping merging is 806 // profitable if the cost of skipping merging is less than the cost of 807 // merging : Cost(skipping merging) < Cost(merging BB), where the 808 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and 809 // the Cost(merging BB) is Freq(Pred) * Cost(Copy). 810 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : 811 // Freq(Pred) / Freq(BB) > 2. 812 // Note that if there are multiple empty blocks sharing the same incoming 813 // value for the PHIs in the DestBB, we consider them together. In such 814 // case, Cost(merging BB) will be the sum of their frequencies. 815 816 if (!isa<PHINode>(DestBB->begin())) 817 return true; 818 819 SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; 820 821 // Find all other incoming blocks from which incoming values of all PHIs in 822 // DestBB are the same as the ones from BB. 823 for (BasicBlock *DestBBPred : predecessors(DestBB)) { 824 if (DestBBPred == BB) 825 continue; 826 827 if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { 828 return DestPN.getIncomingValueForBlock(BB) == 829 DestPN.getIncomingValueForBlock(DestBBPred); 830 })) 831 SameIncomingValueBBs.insert(DestBBPred); 832 } 833 834 // See if all BB's incoming values are same as the value from Pred. In this 835 // case, no reason to skip merging because COPYs are expected to be place in 836 // Pred already. 837 if (SameIncomingValueBBs.count(Pred)) 838 return true; 839 840 BlockFrequency PredFreq = BFI->getBlockFreq(Pred); 841 BlockFrequency BBFreq = BFI->getBlockFreq(BB); 842 843 for (auto *SameValueBB : SameIncomingValueBBs) 844 if (SameValueBB->getUniquePredecessor() == Pred && 845 DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) 846 BBFreq += BFI->getBlockFreq(SameValueBB); 847 848 return PredFreq.getFrequency() <= 849 BBFreq.getFrequency() * FreqRatioToSkipMerge; 850 } 851 852 /// Return true if we can merge BB into DestBB if there is a single 853 /// unconditional branch between them, and BB contains no other non-phi 854 /// instructions. 855 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, 856 const BasicBlock *DestBB) const { 857 // We only want to eliminate blocks whose phi nodes are used by phi nodes in 858 // the successor. If there are more complex condition (e.g. preheaders), 859 // don't mess around with them. 860 for (const PHINode &PN : BB->phis()) { 861 for (const User *U : PN.users()) { 862 const Instruction *UI = cast<Instruction>(U); 863 if (UI->getParent() != DestBB || !isa<PHINode>(UI)) 864 return false; 865 // If User is inside DestBB block and it is a PHINode then check 866 // incoming value. If incoming value is not from BB then this is 867 // a complex condition (e.g. preheaders) we want to avoid here. 868 if (UI->getParent() == DestBB) { 869 if (const PHINode *UPN = dyn_cast<PHINode>(UI)) 870 for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { 871 Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); 872 if (Insn && Insn->getParent() == BB && 873 Insn->getParent() != UPN->getIncomingBlock(I)) 874 return false; 875 } 876 } 877 } 878 } 879 880 // If BB and DestBB contain any common predecessors, then the phi nodes in BB 881 // and DestBB may have conflicting incoming values for the block. If so, we 882 // can't merge the block. 883 const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); 884 if (!DestBBPN) return true; // no conflict. 885 886 // Collect the preds of BB. 887 SmallPtrSet<const BasicBlock*, 16> BBPreds; 888 if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 889 // It is faster to get preds from a PHI than with pred_iterator. 890 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 891 BBPreds.insert(BBPN->getIncomingBlock(i)); 892 } else { 893 BBPreds.insert(pred_begin(BB), pred_end(BB)); 894 } 895 896 // Walk the preds of DestBB. 897 for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { 898 BasicBlock *Pred = DestBBPN->getIncomingBlock(i); 899 if (BBPreds.count(Pred)) { // Common predecessor? 900 for (const PHINode &PN : DestBB->phis()) { 901 const Value *V1 = PN.getIncomingValueForBlock(Pred); 902 const Value *V2 = PN.getIncomingValueForBlock(BB); 903 904 // If V2 is a phi node in BB, look up what the mapped value will be. 905 if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) 906 if (V2PN->getParent() == BB) 907 V2 = V2PN->getIncomingValueForBlock(Pred); 908 909 // If there is a conflict, bail out. 910 if (V1 != V2) return false; 911 } 912 } 913 } 914 915 return true; 916 } 917 918 /// Eliminate a basic block that has only phi's and an unconditional branch in 919 /// it. 920 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { 921 BranchInst *BI = cast<BranchInst>(BB->getTerminator()); 922 BasicBlock *DestBB = BI->getSuccessor(0); 923 924 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" 925 << *BB << *DestBB); 926 927 // If the destination block has a single pred, then this is a trivial edge, 928 // just collapse it. 929 if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { 930 if (SinglePred != DestBB) { 931 assert(SinglePred == BB && 932 "Single predecessor not the same as predecessor"); 933 // Merge DestBB into SinglePred/BB and delete it. 934 MergeBlockIntoPredecessor(DestBB); 935 // Note: BB(=SinglePred) will not be deleted on this path. 936 // DestBB(=its single successor) is the one that was deleted. 937 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); 938 return; 939 } 940 } 941 942 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB 943 // to handle the new incoming edges it is about to have. 944 for (PHINode &PN : DestBB->phis()) { 945 // Remove the incoming value for BB, and remember it. 946 Value *InVal = PN.removeIncomingValue(BB, false); 947 948 // Two options: either the InVal is a phi node defined in BB or it is some 949 // value that dominates BB. 950 PHINode *InValPhi = dyn_cast<PHINode>(InVal); 951 if (InValPhi && InValPhi->getParent() == BB) { 952 // Add all of the input values of the input PHI as inputs of this phi. 953 for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) 954 PN.addIncoming(InValPhi->getIncomingValue(i), 955 InValPhi->getIncomingBlock(i)); 956 } else { 957 // Otherwise, add one instance of the dominating value for each edge that 958 // we will be adding. 959 if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { 960 for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) 961 PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); 962 } else { 963 for (BasicBlock *Pred : predecessors(BB)) 964 PN.addIncoming(InVal, Pred); 965 } 966 } 967 } 968 969 // The PHIs are now updated, change everything that refers to BB to use 970 // DestBB and remove BB. 971 BB->replaceAllUsesWith(DestBB); 972 BB->eraseFromParent(); 973 ++NumBlocksElim; 974 975 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); 976 } 977 978 // Computes a map of base pointer relocation instructions to corresponding 979 // derived pointer relocation instructions given a vector of all relocate calls 980 static void computeBaseDerivedRelocateMap( 981 const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, 982 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> 983 &RelocateInstMap) { 984 // Collect information in two maps: one primarily for locating the base object 985 // while filling the second map; the second map is the final structure holding 986 // a mapping between Base and corresponding Derived relocate calls 987 DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; 988 for (auto *ThisRelocate : AllRelocateCalls) { 989 auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), 990 ThisRelocate->getDerivedPtrIndex()); 991 RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); 992 } 993 for (auto &Item : RelocateIdxMap) { 994 std::pair<unsigned, unsigned> Key = Item.first; 995 if (Key.first == Key.second) 996 // Base relocation: nothing to insert 997 continue; 998 999 GCRelocateInst *I = Item.second; 1000 auto BaseKey = std::make_pair(Key.first, Key.first); 1001 1002 // We're iterating over RelocateIdxMap so we cannot modify it. 1003 auto MaybeBase = RelocateIdxMap.find(BaseKey); 1004 if (MaybeBase == RelocateIdxMap.end()) 1005 // TODO: We might want to insert a new base object relocate and gep off 1006 // that, if there are enough derived object relocates. 1007 continue; 1008 1009 RelocateInstMap[MaybeBase->second].push_back(I); 1010 } 1011 } 1012 1013 // Accepts a GEP and extracts the operands into a vector provided they're all 1014 // small integer constants 1015 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, 1016 SmallVectorImpl<Value *> &OffsetV) { 1017 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 1018 // Only accept small constant integer operands 1019 auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); 1020 if (!Op || Op->getZExtValue() > 20) 1021 return false; 1022 } 1023 1024 for (unsigned i = 1; i < GEP->getNumOperands(); i++) 1025 OffsetV.push_back(GEP->getOperand(i)); 1026 return true; 1027 } 1028 1029 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to 1030 // replace, computes a replacement, and affects it. 1031 static bool 1032 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, 1033 const SmallVectorImpl<GCRelocateInst *> &Targets) { 1034 bool MadeChange = false; 1035 // We must ensure the relocation of derived pointer is defined after 1036 // relocation of base pointer. If we find a relocation corresponding to base 1037 // defined earlier than relocation of base then we move relocation of base 1038 // right before found relocation. We consider only relocation in the same 1039 // basic block as relocation of base. Relocations from other basic block will 1040 // be skipped by optimization and we do not care about them. 1041 for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); 1042 &*R != RelocatedBase; ++R) 1043 if (auto *RI = dyn_cast<GCRelocateInst>(R)) 1044 if (RI->getStatepoint() == RelocatedBase->getStatepoint()) 1045 if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { 1046 RelocatedBase->moveBefore(RI); 1047 break; 1048 } 1049 1050 for (GCRelocateInst *ToReplace : Targets) { 1051 assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && 1052 "Not relocating a derived object of the original base object"); 1053 if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { 1054 // A duplicate relocate call. TODO: coalesce duplicates. 1055 continue; 1056 } 1057 1058 if (RelocatedBase->getParent() != ToReplace->getParent()) { 1059 // Base and derived relocates are in different basic blocks. 1060 // In this case transform is only valid when base dominates derived 1061 // relocate. However it would be too expensive to check dominance 1062 // for each such relocate, so we skip the whole transformation. 1063 continue; 1064 } 1065 1066 Value *Base = ToReplace->getBasePtr(); 1067 auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); 1068 if (!Derived || Derived->getPointerOperand() != Base) 1069 continue; 1070 1071 SmallVector<Value *, 2> OffsetV; 1072 if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) 1073 continue; 1074 1075 // Create a Builder and replace the target callsite with a gep 1076 assert(RelocatedBase->getNextNode() && 1077 "Should always have one since it's not a terminator"); 1078 1079 // Insert after RelocatedBase 1080 IRBuilder<> Builder(RelocatedBase->getNextNode()); 1081 Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); 1082 1083 // If gc_relocate does not match the actual type, cast it to the right type. 1084 // In theory, there must be a bitcast after gc_relocate if the type does not 1085 // match, and we should reuse it to get the derived pointer. But it could be 1086 // cases like this: 1087 // bb1: 1088 // ... 1089 // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1090 // br label %merge 1091 // 1092 // bb2: 1093 // ... 1094 // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) 1095 // br label %merge 1096 // 1097 // merge: 1098 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] 1099 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* 1100 // 1101 // In this case, we can not find the bitcast any more. So we insert a new bitcast 1102 // no matter there is already one or not. In this way, we can handle all cases, and 1103 // the extra bitcast should be optimized away in later passes. 1104 Value *ActualRelocatedBase = RelocatedBase; 1105 if (RelocatedBase->getType() != Base->getType()) { 1106 ActualRelocatedBase = 1107 Builder.CreateBitCast(RelocatedBase, Base->getType()); 1108 } 1109 Value *Replacement = Builder.CreateGEP( 1110 Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); 1111 Replacement->takeName(ToReplace); 1112 // If the newly generated derived pointer's type does not match the original derived 1113 // pointer's type, cast the new derived pointer to match it. Same reasoning as above. 1114 Value *ActualReplacement = Replacement; 1115 if (Replacement->getType() != ToReplace->getType()) { 1116 ActualReplacement = 1117 Builder.CreateBitCast(Replacement, ToReplace->getType()); 1118 } 1119 ToReplace->replaceAllUsesWith(ActualReplacement); 1120 ToReplace->eraseFromParent(); 1121 1122 MadeChange = true; 1123 } 1124 return MadeChange; 1125 } 1126 1127 // Turns this: 1128 // 1129 // %base = ... 1130 // %ptr = gep %base + 15 1131 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1132 // %base' = relocate(%tok, i32 4, i32 4) 1133 // %ptr' = relocate(%tok, i32 4, i32 5) 1134 // %val = load %ptr' 1135 // 1136 // into this: 1137 // 1138 // %base = ... 1139 // %ptr = gep %base + 15 1140 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) 1141 // %base' = gc.relocate(%tok, i32 4, i32 4) 1142 // %ptr' = gep %base' + 15 1143 // %val = load %ptr' 1144 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { 1145 bool MadeChange = false; 1146 SmallVector<GCRelocateInst *, 2> AllRelocateCalls; 1147 for (auto *U : I.users()) 1148 if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) 1149 // Collect all the relocate calls associated with a statepoint 1150 AllRelocateCalls.push_back(Relocate); 1151 1152 // We need at least one base pointer relocation + one derived pointer 1153 // relocation to mangle 1154 if (AllRelocateCalls.size() < 2) 1155 return false; 1156 1157 // RelocateInstMap is a mapping from the base relocate instruction to the 1158 // corresponding derived relocate instructions 1159 DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; 1160 computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); 1161 if (RelocateInstMap.empty()) 1162 return false; 1163 1164 for (auto &Item : RelocateInstMap) 1165 // Item.first is the RelocatedBase to offset against 1166 // Item.second is the vector of Targets to replace 1167 MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); 1168 return MadeChange; 1169 } 1170 1171 /// Sink the specified cast instruction into its user blocks. 1172 static bool SinkCast(CastInst *CI) { 1173 BasicBlock *DefBB = CI->getParent(); 1174 1175 /// InsertedCasts - Only insert a cast in each block once. 1176 DenseMap<BasicBlock*, CastInst*> InsertedCasts; 1177 1178 bool MadeChange = false; 1179 for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); 1180 UI != E; ) { 1181 Use &TheUse = UI.getUse(); 1182 Instruction *User = cast<Instruction>(*UI); 1183 1184 // Figure out which BB this cast is used in. For PHI's this is the 1185 // appropriate predecessor block. 1186 BasicBlock *UserBB = User->getParent(); 1187 if (PHINode *PN = dyn_cast<PHINode>(User)) { 1188 UserBB = PN->getIncomingBlock(TheUse); 1189 } 1190 1191 // Preincrement use iterator so we don't invalidate it. 1192 ++UI; 1193 1194 // The first insertion point of a block containing an EH pad is after the 1195 // pad. If the pad is the user, we cannot sink the cast past the pad. 1196 if (User->isEHPad()) 1197 continue; 1198 1199 // If the block selected to receive the cast is an EH pad that does not 1200 // allow non-PHI instructions before the terminator, we can't sink the 1201 // cast. 1202 if (UserBB->getTerminator()->isEHPad()) 1203 continue; 1204 1205 // If this user is in the same block as the cast, don't change the cast. 1206 if (UserBB == DefBB) continue; 1207 1208 // If we have already inserted a cast into this block, use it. 1209 CastInst *&InsertedCast = InsertedCasts[UserBB]; 1210 1211 if (!InsertedCast) { 1212 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1213 assert(InsertPt != UserBB->end()); 1214 InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), 1215 CI->getType(), "", &*InsertPt); 1216 InsertedCast->setDebugLoc(CI->getDebugLoc()); 1217 } 1218 1219 // Replace a use of the cast with a use of the new cast. 1220 TheUse = InsertedCast; 1221 MadeChange = true; 1222 ++NumCastUses; 1223 } 1224 1225 // If we removed all uses, nuke the cast. 1226 if (CI->use_empty()) { 1227 salvageDebugInfo(*CI); 1228 CI->eraseFromParent(); 1229 MadeChange = true; 1230 } 1231 1232 return MadeChange; 1233 } 1234 1235 /// If the specified cast instruction is a noop copy (e.g. it's casting from 1236 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to 1237 /// reduce the number of virtual registers that must be created and coalesced. 1238 /// 1239 /// Return true if any changes are made. 1240 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, 1241 const DataLayout &DL) { 1242 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition 1243 // than sinking only nop casts, but is helpful on some platforms. 1244 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { 1245 if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), 1246 ASC->getDestAddressSpace())) 1247 return false; 1248 } 1249 1250 // If this is a noop copy, 1251 EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); 1252 EVT DstVT = TLI.getValueType(DL, CI->getType()); 1253 1254 // This is an fp<->int conversion? 1255 if (SrcVT.isInteger() != DstVT.isInteger()) 1256 return false; 1257 1258 // If this is an extension, it will be a zero or sign extension, which 1259 // isn't a noop. 1260 if (SrcVT.bitsLT(DstVT)) return false; 1261 1262 // If these values will be promoted, find out what they will be promoted 1263 // to. This helps us consider truncates on PPC as noop copies when they 1264 // are. 1265 if (TLI.getTypeAction(CI->getContext(), SrcVT) == 1266 TargetLowering::TypePromoteInteger) 1267 SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); 1268 if (TLI.getTypeAction(CI->getContext(), DstVT) == 1269 TargetLowering::TypePromoteInteger) 1270 DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); 1271 1272 // If, after promotion, these are the same types, this is a noop copy. 1273 if (SrcVT != DstVT) 1274 return false; 1275 1276 return SinkCast(CI); 1277 } 1278 1279 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, 1280 Value *Arg0, Value *Arg1, 1281 CmpInst *Cmp, 1282 Intrinsic::ID IID) { 1283 auto isIVIncrement = [this, &Cmp](BinaryOperator *BO) { 1284 auto *PN = dyn_cast<PHINode>(BO->getOperand(0)); 1285 if (!PN) 1286 return false; 1287 const Loop *L = LI->getLoopFor(BO->getParent()); 1288 if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch()) 1289 return false; 1290 const BasicBlock *Latch = L->getLoopLatch(); 1291 if (PN->getIncomingValueForBlock(Latch) != BO) 1292 return false; 1293 if (auto *Step = dyn_cast<Instruction>(BO->getOperand(1))) 1294 if (L->contains(Step->getParent())) 1295 return false; 1296 // IV increment may have other users than the IV. We do not want to make 1297 // dominance queries to analyze the legality of moving it towards the cmp, 1298 // so just check that there is no other users. 1299 if (!BO->hasOneUse()) 1300 return false; 1301 // Do not risk on moving increment into a child loop. 1302 if (LI->getLoopFor(Cmp->getParent()) != L) 1303 return false; 1304 // Ultimately, the insertion point must dominate latch. This should be a 1305 // cheap check because no CFG changes & dom tree recomputation happens 1306 // during the transform. 1307 Function *F = BO->getParent()->getParent(); 1308 return getDT(*F).dominates(Cmp->getParent(), Latch); 1309 }; 1310 if (BO->getParent() != Cmp->getParent() && !isIVIncrement(BO)) { 1311 // We used to use a dominator tree here to allow multi-block optimization. 1312 // But that was problematic because: 1313 // 1. It could cause a perf regression by hoisting the math op into the 1314 // critical path. 1315 // 2. It could cause a perf regression by creating a value that was live 1316 // across multiple blocks and increasing register pressure. 1317 // 3. Use of a dominator tree could cause large compile-time regression. 1318 // This is because we recompute the DT on every change in the main CGP 1319 // run-loop. The recomputing is probably unnecessary in many cases, so if 1320 // that was fixed, using a DT here would be ok. 1321 // 1322 // There is one important particular case we still want to handle: if BO is 1323 // the IV increment. Important properties that make it profitable: 1324 // - We can speculate IV increment anywhere in the loop (as long as the 1325 // indvar Phi is its only user); 1326 // - Upon computing Cmp, we effectively compute something equivalent to the 1327 // IV increment (despite it loops differently in the IR). So moving it up 1328 // to the cmp point does not really increase register pressure. 1329 return false; 1330 } 1331 1332 // We allow matching the canonical IR (add X, C) back to (usubo X, -C). 1333 if (BO->getOpcode() == Instruction::Add && 1334 IID == Intrinsic::usub_with_overflow) { 1335 assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); 1336 Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); 1337 } 1338 1339 // Insert at the first instruction of the pair. 1340 Instruction *InsertPt = nullptr; 1341 for (Instruction &Iter : *Cmp->getParent()) { 1342 // If BO is an XOR, it is not guaranteed that it comes after both inputs to 1343 // the overflow intrinsic are defined. 1344 if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { 1345 InsertPt = &Iter; 1346 break; 1347 } 1348 } 1349 assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); 1350 1351 IRBuilder<> Builder(InsertPt); 1352 Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); 1353 if (BO->getOpcode() != Instruction::Xor) { 1354 Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); 1355 BO->replaceAllUsesWith(Math); 1356 } else 1357 assert(BO->hasOneUse() && 1358 "Patterns with XOr should use the BO only in the compare"); 1359 Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); 1360 Cmp->replaceAllUsesWith(OV); 1361 Cmp->eraseFromParent(); 1362 BO->eraseFromParent(); 1363 return true; 1364 } 1365 1366 /// Match special-case patterns that check for unsigned add overflow. 1367 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, 1368 BinaryOperator *&Add) { 1369 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) 1370 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) 1371 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1372 1373 // We are not expecting non-canonical/degenerate code. Just bail out. 1374 if (isa<Constant>(A)) 1375 return false; 1376 1377 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1378 if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) 1379 B = ConstantInt::get(B->getType(), 1); 1380 else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) 1381 B = ConstantInt::get(B->getType(), -1); 1382 else 1383 return false; 1384 1385 // Check the users of the variable operand of the compare looking for an add 1386 // with the adjusted constant. 1387 for (User *U : A->users()) { 1388 if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { 1389 Add = cast<BinaryOperator>(U); 1390 return true; 1391 } 1392 } 1393 return false; 1394 } 1395 1396 /// Try to combine the compare into a call to the llvm.uadd.with.overflow 1397 /// intrinsic. Return true if any changes were made. 1398 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, 1399 bool &ModifiedDT) { 1400 Value *A, *B; 1401 BinaryOperator *Add; 1402 if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { 1403 if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) 1404 return false; 1405 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. 1406 A = Add->getOperand(0); 1407 B = Add->getOperand(1); 1408 } 1409 1410 if (!TLI->shouldFormOverflowOp(ISD::UADDO, 1411 TLI->getValueType(*DL, Add->getType()), 1412 Add->hasNUsesOrMore(2))) 1413 return false; 1414 1415 // We don't want to move around uses of condition values this late, so we 1416 // check if it is legal to create the call to the intrinsic in the basic 1417 // block containing the icmp. 1418 if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) 1419 return false; 1420 1421 if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, 1422 Intrinsic::uadd_with_overflow)) 1423 return false; 1424 1425 // Reset callers - do not crash by iterating over a dead instruction. 1426 ModifiedDT = true; 1427 return true; 1428 } 1429 1430 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, 1431 bool &ModifiedDT) { 1432 // We are not expecting non-canonical/degenerate code. Just bail out. 1433 Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); 1434 if (isa<Constant>(A) && isa<Constant>(B)) 1435 return false; 1436 1437 // Convert (A u> B) to (A u< B) to simplify pattern matching. 1438 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1439 if (Pred == ICmpInst::ICMP_UGT) { 1440 std::swap(A, B); 1441 Pred = ICmpInst::ICMP_ULT; 1442 } 1443 // Convert special-case: (A == 0) is the same as (A u< 1). 1444 if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { 1445 B = ConstantInt::get(B->getType(), 1); 1446 Pred = ICmpInst::ICMP_ULT; 1447 } 1448 // Convert special-case: (A != 0) is the same as (0 u< A). 1449 if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { 1450 std::swap(A, B); 1451 Pred = ICmpInst::ICMP_ULT; 1452 } 1453 if (Pred != ICmpInst::ICMP_ULT) 1454 return false; 1455 1456 // Walk the users of a variable operand of a compare looking for a subtract or 1457 // add with that same operand. Also match the 2nd operand of the compare to 1458 // the add/sub, but that may be a negated constant operand of an add. 1459 Value *CmpVariableOperand = isa<Constant>(A) ? B : A; 1460 BinaryOperator *Sub = nullptr; 1461 for (User *U : CmpVariableOperand->users()) { 1462 // A - B, A u< B --> usubo(A, B) 1463 if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { 1464 Sub = cast<BinaryOperator>(U); 1465 break; 1466 } 1467 1468 // A + (-C), A u< C (canonicalized form of (sub A, C)) 1469 const APInt *CmpC, *AddC; 1470 if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && 1471 match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { 1472 Sub = cast<BinaryOperator>(U); 1473 break; 1474 } 1475 } 1476 if (!Sub) 1477 return false; 1478 1479 if (!TLI->shouldFormOverflowOp(ISD::USUBO, 1480 TLI->getValueType(*DL, Sub->getType()), 1481 Sub->hasNUsesOrMore(2))) 1482 return false; 1483 1484 if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), 1485 Cmp, Intrinsic::usub_with_overflow)) 1486 return false; 1487 1488 // Reset callers - do not crash by iterating over a dead instruction. 1489 ModifiedDT = true; 1490 return true; 1491 } 1492 1493 /// Sink the given CmpInst into user blocks to reduce the number of virtual 1494 /// registers that must be created and coalesced. This is a clear win except on 1495 /// targets with multiple condition code registers (PowerPC), where it might 1496 /// lose; some adjustment may be wanted there. 1497 /// 1498 /// Return true if any changes are made. 1499 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { 1500 if (TLI.hasMultipleConditionRegisters()) 1501 return false; 1502 1503 // Avoid sinking soft-FP comparisons, since this can move them into a loop. 1504 if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) 1505 return false; 1506 1507 // Only insert a cmp in each block once. 1508 DenseMap<BasicBlock*, CmpInst*> InsertedCmps; 1509 1510 bool MadeChange = false; 1511 for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); 1512 UI != E; ) { 1513 Use &TheUse = UI.getUse(); 1514 Instruction *User = cast<Instruction>(*UI); 1515 1516 // Preincrement use iterator so we don't invalidate it. 1517 ++UI; 1518 1519 // Don't bother for PHI nodes. 1520 if (isa<PHINode>(User)) 1521 continue; 1522 1523 // Figure out which BB this cmp is used in. 1524 BasicBlock *UserBB = User->getParent(); 1525 BasicBlock *DefBB = Cmp->getParent(); 1526 1527 // If this user is in the same block as the cmp, don't change the cmp. 1528 if (UserBB == DefBB) continue; 1529 1530 // If we have already inserted a cmp into this block, use it. 1531 CmpInst *&InsertedCmp = InsertedCmps[UserBB]; 1532 1533 if (!InsertedCmp) { 1534 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1535 assert(InsertPt != UserBB->end()); 1536 InsertedCmp = 1537 CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), 1538 Cmp->getOperand(0), Cmp->getOperand(1), "", 1539 &*InsertPt); 1540 // Propagate the debug info. 1541 InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); 1542 } 1543 1544 // Replace a use of the cmp with a use of the new cmp. 1545 TheUse = InsertedCmp; 1546 MadeChange = true; 1547 ++NumCmpUses; 1548 } 1549 1550 // If we removed all uses, nuke the cmp. 1551 if (Cmp->use_empty()) { 1552 Cmp->eraseFromParent(); 1553 MadeChange = true; 1554 } 1555 1556 return MadeChange; 1557 } 1558 1559 /// For pattern like: 1560 /// 1561 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) 1562 /// ... 1563 /// DomBB: 1564 /// ... 1565 /// br DomCond, TrueBB, CmpBB 1566 /// CmpBB: (with DomBB being the single predecessor) 1567 /// ... 1568 /// Cmp = icmp eq CmpOp0, CmpOp1 1569 /// ... 1570 /// 1571 /// It would use two comparison on targets that lowering of icmp sgt/slt is 1572 /// different from lowering of icmp eq (PowerPC). This function try to convert 1573 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. 1574 /// After that, DomCond and Cmp can use the same comparison so reduce one 1575 /// comparison. 1576 /// 1577 /// Return true if any changes are made. 1578 static bool foldICmpWithDominatingICmp(CmpInst *Cmp, 1579 const TargetLowering &TLI) { 1580 if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) 1581 return false; 1582 1583 ICmpInst::Predicate Pred = Cmp->getPredicate(); 1584 if (Pred != ICmpInst::ICMP_EQ) 1585 return false; 1586 1587 // If icmp eq has users other than BranchInst and SelectInst, converting it to 1588 // icmp slt/sgt would introduce more redundant LLVM IR. 1589 for (User *U : Cmp->users()) { 1590 if (isa<BranchInst>(U)) 1591 continue; 1592 if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) 1593 continue; 1594 return false; 1595 } 1596 1597 // This is a cheap/incomplete check for dominance - just match a single 1598 // predecessor with a conditional branch. 1599 BasicBlock *CmpBB = Cmp->getParent(); 1600 BasicBlock *DomBB = CmpBB->getSinglePredecessor(); 1601 if (!DomBB) 1602 return false; 1603 1604 // We want to ensure that the only way control gets to the comparison of 1605 // interest is that a less/greater than comparison on the same operands is 1606 // false. 1607 Value *DomCond; 1608 BasicBlock *TrueBB, *FalseBB; 1609 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) 1610 return false; 1611 if (CmpBB != FalseBB) 1612 return false; 1613 1614 Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); 1615 ICmpInst::Predicate DomPred; 1616 if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) 1617 return false; 1618 if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) 1619 return false; 1620 1621 // Convert the equality comparison to the opposite of the dominating 1622 // comparison and swap the direction for all branch/select users. 1623 // We have conceptually converted: 1624 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; 1625 // to 1626 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; 1627 // And similarly for branches. 1628 for (User *U : Cmp->users()) { 1629 if (auto *BI = dyn_cast<BranchInst>(U)) { 1630 assert(BI->isConditional() && "Must be conditional"); 1631 BI->swapSuccessors(); 1632 continue; 1633 } 1634 if (auto *SI = dyn_cast<SelectInst>(U)) { 1635 // Swap operands 1636 SI->swapValues(); 1637 SI->swapProfMetadata(); 1638 continue; 1639 } 1640 llvm_unreachable("Must be a branch or a select"); 1641 } 1642 Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); 1643 return true; 1644 } 1645 1646 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { 1647 if (sinkCmpExpression(Cmp, *TLI)) 1648 return true; 1649 1650 if (combineToUAddWithOverflow(Cmp, ModifiedDT)) 1651 return true; 1652 1653 if (combineToUSubWithOverflow(Cmp, ModifiedDT)) 1654 return true; 1655 1656 if (foldICmpWithDominatingICmp(Cmp, *TLI)) 1657 return true; 1658 1659 return false; 1660 } 1661 1662 /// Duplicate and sink the given 'and' instruction into user blocks where it is 1663 /// used in a compare to allow isel to generate better code for targets where 1664 /// this operation can be combined. 1665 /// 1666 /// Return true if any changes are made. 1667 static bool sinkAndCmp0Expression(Instruction *AndI, 1668 const TargetLowering &TLI, 1669 SetOfInstrs &InsertedInsts) { 1670 // Double-check that we're not trying to optimize an instruction that was 1671 // already optimized by some other part of this pass. 1672 assert(!InsertedInsts.count(AndI) && 1673 "Attempting to optimize already optimized and instruction"); 1674 (void) InsertedInsts; 1675 1676 // Nothing to do for single use in same basic block. 1677 if (AndI->hasOneUse() && 1678 AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) 1679 return false; 1680 1681 // Try to avoid cases where sinking/duplicating is likely to increase register 1682 // pressure. 1683 if (!isa<ConstantInt>(AndI->getOperand(0)) && 1684 !isa<ConstantInt>(AndI->getOperand(1)) && 1685 AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) 1686 return false; 1687 1688 for (auto *U : AndI->users()) { 1689 Instruction *User = cast<Instruction>(U); 1690 1691 // Only sink 'and' feeding icmp with 0. 1692 if (!isa<ICmpInst>(User)) 1693 return false; 1694 1695 auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); 1696 if (!CmpC || !CmpC->isZero()) 1697 return false; 1698 } 1699 1700 if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) 1701 return false; 1702 1703 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); 1704 LLVM_DEBUG(AndI->getParent()->dump()); 1705 1706 // Push the 'and' into the same block as the icmp 0. There should only be 1707 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any 1708 // others, so we don't need to keep track of which BBs we insert into. 1709 for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); 1710 UI != E; ) { 1711 Use &TheUse = UI.getUse(); 1712 Instruction *User = cast<Instruction>(*UI); 1713 1714 // Preincrement use iterator so we don't invalidate it. 1715 ++UI; 1716 1717 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); 1718 1719 // Keep the 'and' in the same place if the use is already in the same block. 1720 Instruction *InsertPt = 1721 User->getParent() == AndI->getParent() ? AndI : User; 1722 Instruction *InsertedAnd = 1723 BinaryOperator::Create(Instruction::And, AndI->getOperand(0), 1724 AndI->getOperand(1), "", InsertPt); 1725 // Propagate the debug info. 1726 InsertedAnd->setDebugLoc(AndI->getDebugLoc()); 1727 1728 // Replace a use of the 'and' with a use of the new 'and'. 1729 TheUse = InsertedAnd; 1730 ++NumAndUses; 1731 LLVM_DEBUG(User->getParent()->dump()); 1732 } 1733 1734 // We removed all uses, nuke the and. 1735 AndI->eraseFromParent(); 1736 return true; 1737 } 1738 1739 /// Check if the candidates could be combined with a shift instruction, which 1740 /// includes: 1741 /// 1. Truncate instruction 1742 /// 2. And instruction and the imm is a mask of the low bits: 1743 /// imm & (imm+1) == 0 1744 static bool isExtractBitsCandidateUse(Instruction *User) { 1745 if (!isa<TruncInst>(User)) { 1746 if (User->getOpcode() != Instruction::And || 1747 !isa<ConstantInt>(User->getOperand(1))) 1748 return false; 1749 1750 const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); 1751 1752 if ((Cimm & (Cimm + 1)).getBoolValue()) 1753 return false; 1754 } 1755 return true; 1756 } 1757 1758 /// Sink both shift and truncate instruction to the use of truncate's BB. 1759 static bool 1760 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, 1761 DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, 1762 const TargetLowering &TLI, const DataLayout &DL) { 1763 BasicBlock *UserBB = User->getParent(); 1764 DenseMap<BasicBlock *, CastInst *> InsertedTruncs; 1765 auto *TruncI = cast<TruncInst>(User); 1766 bool MadeChange = false; 1767 1768 for (Value::user_iterator TruncUI = TruncI->user_begin(), 1769 TruncE = TruncI->user_end(); 1770 TruncUI != TruncE;) { 1771 1772 Use &TruncTheUse = TruncUI.getUse(); 1773 Instruction *TruncUser = cast<Instruction>(*TruncUI); 1774 // Preincrement use iterator so we don't invalidate it. 1775 1776 ++TruncUI; 1777 1778 int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); 1779 if (!ISDOpcode) 1780 continue; 1781 1782 // If the use is actually a legal node, there will not be an 1783 // implicit truncate. 1784 // FIXME: always querying the result type is just an 1785 // approximation; some nodes' legality is determined by the 1786 // operand or other means. There's no good way to find out though. 1787 if (TLI.isOperationLegalOrCustom( 1788 ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) 1789 continue; 1790 1791 // Don't bother for PHI nodes. 1792 if (isa<PHINode>(TruncUser)) 1793 continue; 1794 1795 BasicBlock *TruncUserBB = TruncUser->getParent(); 1796 1797 if (UserBB == TruncUserBB) 1798 continue; 1799 1800 BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; 1801 CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; 1802 1803 if (!InsertedShift && !InsertedTrunc) { 1804 BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); 1805 assert(InsertPt != TruncUserBB->end()); 1806 // Sink the shift 1807 if (ShiftI->getOpcode() == Instruction::AShr) 1808 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1809 "", &*InsertPt); 1810 else 1811 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1812 "", &*InsertPt); 1813 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1814 1815 // Sink the trunc 1816 BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); 1817 TruncInsertPt++; 1818 assert(TruncInsertPt != TruncUserBB->end()); 1819 1820 InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, 1821 TruncI->getType(), "", &*TruncInsertPt); 1822 InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); 1823 1824 MadeChange = true; 1825 1826 TruncTheUse = InsertedTrunc; 1827 } 1828 } 1829 return MadeChange; 1830 } 1831 1832 /// Sink the shift *right* instruction into user blocks if the uses could 1833 /// potentially be combined with this shift instruction and generate BitExtract 1834 /// instruction. It will only be applied if the architecture supports BitExtract 1835 /// instruction. Here is an example: 1836 /// BB1: 1837 /// %x.extract.shift = lshr i64 %arg1, 32 1838 /// BB2: 1839 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16 1840 /// ==> 1841 /// 1842 /// BB2: 1843 /// %x.extract.shift.1 = lshr i64 %arg1, 32 1844 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 1845 /// 1846 /// CodeGen will recognize the pattern in BB2 and generate BitExtract 1847 /// instruction. 1848 /// Return true if any changes are made. 1849 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, 1850 const TargetLowering &TLI, 1851 const DataLayout &DL) { 1852 BasicBlock *DefBB = ShiftI->getParent(); 1853 1854 /// Only insert instructions in each block once. 1855 DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; 1856 1857 bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); 1858 1859 bool MadeChange = false; 1860 for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); 1861 UI != E;) { 1862 Use &TheUse = UI.getUse(); 1863 Instruction *User = cast<Instruction>(*UI); 1864 // Preincrement use iterator so we don't invalidate it. 1865 ++UI; 1866 1867 // Don't bother for PHI nodes. 1868 if (isa<PHINode>(User)) 1869 continue; 1870 1871 if (!isExtractBitsCandidateUse(User)) 1872 continue; 1873 1874 BasicBlock *UserBB = User->getParent(); 1875 1876 if (UserBB == DefBB) { 1877 // If the shift and truncate instruction are in the same BB. The use of 1878 // the truncate(TruncUse) may still introduce another truncate if not 1879 // legal. In this case, we would like to sink both shift and truncate 1880 // instruction to the BB of TruncUse. 1881 // for example: 1882 // BB1: 1883 // i64 shift.result = lshr i64 opnd, imm 1884 // trunc.result = trunc shift.result to i16 1885 // 1886 // BB2: 1887 // ----> We will have an implicit truncate here if the architecture does 1888 // not have i16 compare. 1889 // cmp i16 trunc.result, opnd2 1890 // 1891 if (isa<TruncInst>(User) && shiftIsLegal 1892 // If the type of the truncate is legal, no truncate will be 1893 // introduced in other basic blocks. 1894 && 1895 (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) 1896 MadeChange = 1897 SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); 1898 1899 continue; 1900 } 1901 // If we have already inserted a shift into this block, use it. 1902 BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; 1903 1904 if (!InsertedShift) { 1905 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 1906 assert(InsertPt != UserBB->end()); 1907 1908 if (ShiftI->getOpcode() == Instruction::AShr) 1909 InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, 1910 "", &*InsertPt); 1911 else 1912 InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, 1913 "", &*InsertPt); 1914 InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); 1915 1916 MadeChange = true; 1917 } 1918 1919 // Replace a use of the shift with a use of the new shift. 1920 TheUse = InsertedShift; 1921 } 1922 1923 // If we removed all uses, or there are none, nuke the shift. 1924 if (ShiftI->use_empty()) { 1925 salvageDebugInfo(*ShiftI); 1926 ShiftI->eraseFromParent(); 1927 MadeChange = true; 1928 } 1929 1930 return MadeChange; 1931 } 1932 1933 /// If counting leading or trailing zeros is an expensive operation and a zero 1934 /// input is defined, add a check for zero to avoid calling the intrinsic. 1935 /// 1936 /// We want to transform: 1937 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) 1938 /// 1939 /// into: 1940 /// entry: 1941 /// %cmpz = icmp eq i64 %A, 0 1942 /// br i1 %cmpz, label %cond.end, label %cond.false 1943 /// cond.false: 1944 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) 1945 /// br label %cond.end 1946 /// cond.end: 1947 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] 1948 /// 1949 /// If the transform is performed, return true and set ModifiedDT to true. 1950 static bool despeculateCountZeros(IntrinsicInst *CountZeros, 1951 const TargetLowering *TLI, 1952 const DataLayout *DL, 1953 bool &ModifiedDT) { 1954 // If a zero input is undefined, it doesn't make sense to despeculate that. 1955 if (match(CountZeros->getOperand(1), m_One())) 1956 return false; 1957 1958 // If it's cheap to speculate, there's nothing to do. 1959 auto IntrinsicID = CountZeros->getIntrinsicID(); 1960 if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || 1961 (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) 1962 return false; 1963 1964 // Only handle legal scalar cases. Anything else requires too much work. 1965 Type *Ty = CountZeros->getType(); 1966 unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); 1967 if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) 1968 return false; 1969 1970 // The intrinsic will be sunk behind a compare against zero and branch. 1971 BasicBlock *StartBlock = CountZeros->getParent(); 1972 BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); 1973 1974 // Create another block after the count zero intrinsic. A PHI will be added 1975 // in this block to select the result of the intrinsic or the bit-width 1976 // constant if the input to the intrinsic is zero. 1977 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); 1978 BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); 1979 1980 // Set up a builder to create a compare, conditional branch, and PHI. 1981 IRBuilder<> Builder(CountZeros->getContext()); 1982 Builder.SetInsertPoint(StartBlock->getTerminator()); 1983 Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); 1984 1985 // Replace the unconditional branch that was created by the first split with 1986 // a compare against zero and a conditional branch. 1987 Value *Zero = Constant::getNullValue(Ty); 1988 Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); 1989 Builder.CreateCondBr(Cmp, EndBlock, CallBlock); 1990 StartBlock->getTerminator()->eraseFromParent(); 1991 1992 // Create a PHI in the end block to select either the output of the intrinsic 1993 // or the bit width of the operand. 1994 Builder.SetInsertPoint(&EndBlock->front()); 1995 PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); 1996 CountZeros->replaceAllUsesWith(PN); 1997 Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); 1998 PN->addIncoming(BitWidth, StartBlock); 1999 PN->addIncoming(CountZeros, CallBlock); 2000 2001 // We are explicitly handling the zero case, so we can set the intrinsic's 2002 // undefined zero argument to 'true'. This will also prevent reprocessing the 2003 // intrinsic; we only despeculate when a zero input is defined. 2004 CountZeros->setArgOperand(1, Builder.getTrue()); 2005 ModifiedDT = true; 2006 return true; 2007 } 2008 2009 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { 2010 BasicBlock *BB = CI->getParent(); 2011 2012 // Lower inline assembly if we can. 2013 // If we found an inline asm expession, and if the target knows how to 2014 // lower it to normal LLVM code, do so now. 2015 if (CI->isInlineAsm()) { 2016 if (TLI->ExpandInlineAsm(CI)) { 2017 // Avoid invalidating the iterator. 2018 CurInstIterator = BB->begin(); 2019 // Avoid processing instructions out of order, which could cause 2020 // reuse before a value is defined. 2021 SunkAddrs.clear(); 2022 return true; 2023 } 2024 // Sink address computing for memory operands into the block. 2025 if (optimizeInlineAsmInst(CI)) 2026 return true; 2027 } 2028 2029 // Align the pointer arguments to this call if the target thinks it's a good 2030 // idea 2031 unsigned MinSize, PrefAlign; 2032 if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { 2033 for (auto &Arg : CI->arg_operands()) { 2034 // We want to align both objects whose address is used directly and 2035 // objects whose address is used in casts and GEPs, though it only makes 2036 // sense for GEPs if the offset is a multiple of the desired alignment and 2037 // if size - offset meets the size threshold. 2038 if (!Arg->getType()->isPointerTy()) 2039 continue; 2040 APInt Offset(DL->getIndexSizeInBits( 2041 cast<PointerType>(Arg->getType())->getAddressSpace()), 2042 0); 2043 Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); 2044 uint64_t Offset2 = Offset.getLimitedValue(); 2045 if ((Offset2 & (PrefAlign-1)) != 0) 2046 continue; 2047 AllocaInst *AI; 2048 if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && 2049 DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) 2050 AI->setAlignment(Align(PrefAlign)); 2051 // Global variables can only be aligned if they are defined in this 2052 // object (i.e. they are uniquely initialized in this object), and 2053 // over-aligning global variables that have an explicit section is 2054 // forbidden. 2055 GlobalVariable *GV; 2056 if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && 2057 GV->getPointerAlignment(*DL) < PrefAlign && 2058 DL->getTypeAllocSize(GV->getValueType()) >= 2059 MinSize + Offset2) 2060 GV->setAlignment(MaybeAlign(PrefAlign)); 2061 } 2062 // If this is a memcpy (or similar) then we may be able to improve the 2063 // alignment 2064 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { 2065 Align DestAlign = getKnownAlignment(MI->getDest(), *DL); 2066 MaybeAlign MIDestAlign = MI->getDestAlign(); 2067 if (!MIDestAlign || DestAlign > *MIDestAlign) 2068 MI->setDestAlignment(DestAlign); 2069 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { 2070 MaybeAlign MTISrcAlign = MTI->getSourceAlign(); 2071 Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); 2072 if (!MTISrcAlign || SrcAlign > *MTISrcAlign) 2073 MTI->setSourceAlignment(SrcAlign); 2074 } 2075 } 2076 } 2077 2078 // If we have a cold call site, try to sink addressing computation into the 2079 // cold block. This interacts with our handling for loads and stores to 2080 // ensure that we can fold all uses of a potential addressing computation 2081 // into their uses. TODO: generalize this to work over profiling data 2082 if (CI->hasFnAttr(Attribute::Cold) && 2083 !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) 2084 for (auto &Arg : CI->arg_operands()) { 2085 if (!Arg->getType()->isPointerTy()) 2086 continue; 2087 unsigned AS = Arg->getType()->getPointerAddressSpace(); 2088 return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); 2089 } 2090 2091 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 2092 if (II) { 2093 switch (II->getIntrinsicID()) { 2094 default: break; 2095 case Intrinsic::assume: { 2096 Value *Operand = II->getOperand(0); 2097 II->eraseFromParent(); 2098 // Prune the operand, it's most likely dead. 2099 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2100 RecursivelyDeleteTriviallyDeadInstructions( 2101 Operand, TLInfo, nullptr, 2102 [&](Value *V) { removeAllAssertingVHReferences(V); }); 2103 }); 2104 return true; 2105 } 2106 2107 case Intrinsic::experimental_widenable_condition: { 2108 // Give up on future widening oppurtunties so that we can fold away dead 2109 // paths and merge blocks before going into block-local instruction 2110 // selection. 2111 if (II->use_empty()) { 2112 II->eraseFromParent(); 2113 return true; 2114 } 2115 Constant *RetVal = ConstantInt::getTrue(II->getContext()); 2116 resetIteratorIfInvalidatedWhileCalling(BB, [&]() { 2117 replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); 2118 }); 2119 return true; 2120 } 2121 case Intrinsic::objectsize: 2122 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 2123 case Intrinsic::is_constant: 2124 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 2125 case Intrinsic::aarch64_stlxr: 2126 case Intrinsic::aarch64_stxr: { 2127 ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); 2128 if (!ExtVal || !ExtVal->hasOneUse() || 2129 ExtVal->getParent() == CI->getParent()) 2130 return false; 2131 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. 2132 ExtVal->moveBefore(CI); 2133 // Mark this instruction as "inserted by CGP", so that other 2134 // optimizations don't touch it. 2135 InsertedInsts.insert(ExtVal); 2136 return true; 2137 } 2138 2139 case Intrinsic::launder_invariant_group: 2140 case Intrinsic::strip_invariant_group: { 2141 Value *ArgVal = II->getArgOperand(0); 2142 auto it = LargeOffsetGEPMap.find(II); 2143 if (it != LargeOffsetGEPMap.end()) { 2144 // Merge entries in LargeOffsetGEPMap to reflect the RAUW. 2145 // Make sure not to have to deal with iterator invalidation 2146 // after possibly adding ArgVal to LargeOffsetGEPMap. 2147 auto GEPs = std::move(it->second); 2148 LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); 2149 LargeOffsetGEPMap.erase(II); 2150 } 2151 2152 II->replaceAllUsesWith(ArgVal); 2153 II->eraseFromParent(); 2154 return true; 2155 } 2156 case Intrinsic::cttz: 2157 case Intrinsic::ctlz: 2158 // If counting zeros is expensive, try to avoid it. 2159 return despeculateCountZeros(II, TLI, DL, ModifiedDT); 2160 case Intrinsic::fshl: 2161 case Intrinsic::fshr: 2162 return optimizeFunnelShift(II); 2163 case Intrinsic::dbg_value: 2164 return fixupDbgValue(II); 2165 case Intrinsic::vscale: { 2166 // If datalayout has no special restrictions on vector data layout, 2167 // replace `llvm.vscale` by an equivalent constant expression 2168 // to benefit from cheap constant propagation. 2169 Type *ScalableVectorTy = 2170 VectorType::get(Type::getInt8Ty(II->getContext()), 1, true); 2171 if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) { 2172 auto *Null = Constant::getNullValue(ScalableVectorTy->getPointerTo()); 2173 auto *One = ConstantInt::getSigned(II->getType(), 1); 2174 auto *CGep = 2175 ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One); 2176 II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType())); 2177 II->eraseFromParent(); 2178 return true; 2179 } 2180 break; 2181 } 2182 case Intrinsic::masked_gather: 2183 return optimizeGatherScatterInst(II, II->getArgOperand(0)); 2184 case Intrinsic::masked_scatter: 2185 return optimizeGatherScatterInst(II, II->getArgOperand(1)); 2186 } 2187 2188 SmallVector<Value *, 2> PtrOps; 2189 Type *AccessTy; 2190 if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) 2191 while (!PtrOps.empty()) { 2192 Value *PtrVal = PtrOps.pop_back_val(); 2193 unsigned AS = PtrVal->getType()->getPointerAddressSpace(); 2194 if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) 2195 return true; 2196 } 2197 } 2198 2199 // From here on out we're working with named functions. 2200 if (!CI->getCalledFunction()) return false; 2201 2202 // Lower all default uses of _chk calls. This is very similar 2203 // to what InstCombineCalls does, but here we are only lowering calls 2204 // to fortified library functions (e.g. __memcpy_chk) that have the default 2205 // "don't know" as the objectsize. Anything else should be left alone. 2206 FortifiedLibCallSimplifier Simplifier(TLInfo, true); 2207 IRBuilder<> Builder(CI); 2208 if (Value *V = Simplifier.optimizeCall(CI, Builder)) { 2209 CI->replaceAllUsesWith(V); 2210 CI->eraseFromParent(); 2211 return true; 2212 } 2213 2214 return false; 2215 } 2216 2217 /// Look for opportunities to duplicate return instructions to the predecessor 2218 /// to enable tail call optimizations. The case it is currently looking for is: 2219 /// @code 2220 /// bb0: 2221 /// %tmp0 = tail call i32 @f0() 2222 /// br label %return 2223 /// bb1: 2224 /// %tmp1 = tail call i32 @f1() 2225 /// br label %return 2226 /// bb2: 2227 /// %tmp2 = tail call i32 @f2() 2228 /// br label %return 2229 /// return: 2230 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] 2231 /// ret i32 %retval 2232 /// @endcode 2233 /// 2234 /// => 2235 /// 2236 /// @code 2237 /// bb0: 2238 /// %tmp0 = tail call i32 @f0() 2239 /// ret i32 %tmp0 2240 /// bb1: 2241 /// %tmp1 = tail call i32 @f1() 2242 /// ret i32 %tmp1 2243 /// bb2: 2244 /// %tmp2 = tail call i32 @f2() 2245 /// ret i32 %tmp2 2246 /// @endcode 2247 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { 2248 ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); 2249 if (!RetI) 2250 return false; 2251 2252 PHINode *PN = nullptr; 2253 ExtractValueInst *EVI = nullptr; 2254 BitCastInst *BCI = nullptr; 2255 Value *V = RetI->getReturnValue(); 2256 if (V) { 2257 BCI = dyn_cast<BitCastInst>(V); 2258 if (BCI) 2259 V = BCI->getOperand(0); 2260 2261 EVI = dyn_cast<ExtractValueInst>(V); 2262 if (EVI) { 2263 V = EVI->getOperand(0); 2264 if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; })) 2265 return false; 2266 } 2267 2268 PN = dyn_cast<PHINode>(V); 2269 if (!PN) 2270 return false; 2271 } 2272 2273 if (PN && PN->getParent() != BB) 2274 return false; 2275 2276 auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) { 2277 const BitCastInst *BC = dyn_cast<BitCastInst>(Inst); 2278 if (BC && BC->hasOneUse()) 2279 Inst = BC->user_back(); 2280 2281 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) 2282 return II->getIntrinsicID() == Intrinsic::lifetime_end; 2283 return false; 2284 }; 2285 2286 // Make sure there are no instructions between the first instruction 2287 // and return. 2288 const Instruction *BI = BB->getFirstNonPHI(); 2289 // Skip over debug and the bitcast. 2290 while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI || 2291 isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI)) 2292 BI = BI->getNextNode(); 2293 if (BI != RetI) 2294 return false; 2295 2296 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail 2297 /// call. 2298 const Function *F = BB->getParent(); 2299 SmallVector<BasicBlock*, 4> TailCallBBs; 2300 if (PN) { 2301 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { 2302 // Look through bitcasts. 2303 Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); 2304 CallInst *CI = dyn_cast<CallInst>(IncomingVal); 2305 BasicBlock *PredBB = PN->getIncomingBlock(I); 2306 // Make sure the phi value is indeed produced by the tail call. 2307 if (CI && CI->hasOneUse() && CI->getParent() == PredBB && 2308 TLI->mayBeEmittedAsTailCall(CI) && 2309 attributesPermitTailCall(F, CI, RetI, *TLI)) 2310 TailCallBBs.push_back(PredBB); 2311 } 2312 } else { 2313 SmallPtrSet<BasicBlock*, 4> VisitedBBs; 2314 for (BasicBlock *Pred : predecessors(BB)) { 2315 if (!VisitedBBs.insert(Pred).second) 2316 continue; 2317 if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) { 2318 CallInst *CI = dyn_cast<CallInst>(I); 2319 if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && 2320 attributesPermitTailCall(F, CI, RetI, *TLI)) 2321 TailCallBBs.push_back(Pred); 2322 } 2323 } 2324 } 2325 2326 bool Changed = false; 2327 for (auto const &TailCallBB : TailCallBBs) { 2328 // Make sure the call instruction is followed by an unconditional branch to 2329 // the return block. 2330 BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); 2331 if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) 2332 continue; 2333 2334 // Duplicate the return into TailCallBB. 2335 (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); 2336 assert(!VerifyBFIUpdates || 2337 BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)); 2338 BFI->setBlockFreq( 2339 BB, 2340 (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency()); 2341 ModifiedDT = Changed = true; 2342 ++NumRetsDup; 2343 } 2344 2345 // If we eliminated all predecessors of the block, delete the block now. 2346 if (Changed && !BB->hasAddressTaken() && pred_empty(BB)) 2347 BB->eraseFromParent(); 2348 2349 return Changed; 2350 } 2351 2352 //===----------------------------------------------------------------------===// 2353 // Memory Optimization 2354 //===----------------------------------------------------------------------===// 2355 2356 namespace { 2357 2358 /// This is an extended version of TargetLowering::AddrMode 2359 /// which holds actual Value*'s for register values. 2360 struct ExtAddrMode : public TargetLowering::AddrMode { 2361 Value *BaseReg = nullptr; 2362 Value *ScaledReg = nullptr; 2363 Value *OriginalValue = nullptr; 2364 bool InBounds = true; 2365 2366 enum FieldName { 2367 NoField = 0x00, 2368 BaseRegField = 0x01, 2369 BaseGVField = 0x02, 2370 BaseOffsField = 0x04, 2371 ScaledRegField = 0x08, 2372 ScaleField = 0x10, 2373 MultipleFields = 0xff 2374 }; 2375 2376 2377 ExtAddrMode() = default; 2378 2379 void print(raw_ostream &OS) const; 2380 void dump() const; 2381 2382 FieldName compare(const ExtAddrMode &other) { 2383 // First check that the types are the same on each field, as differing types 2384 // is something we can't cope with later on. 2385 if (BaseReg && other.BaseReg && 2386 BaseReg->getType() != other.BaseReg->getType()) 2387 return MultipleFields; 2388 if (BaseGV && other.BaseGV && 2389 BaseGV->getType() != other.BaseGV->getType()) 2390 return MultipleFields; 2391 if (ScaledReg && other.ScaledReg && 2392 ScaledReg->getType() != other.ScaledReg->getType()) 2393 return MultipleFields; 2394 2395 // Conservatively reject 'inbounds' mismatches. 2396 if (InBounds != other.InBounds) 2397 return MultipleFields; 2398 2399 // Check each field to see if it differs. 2400 unsigned Result = NoField; 2401 if (BaseReg != other.BaseReg) 2402 Result |= BaseRegField; 2403 if (BaseGV != other.BaseGV) 2404 Result |= BaseGVField; 2405 if (BaseOffs != other.BaseOffs) 2406 Result |= BaseOffsField; 2407 if (ScaledReg != other.ScaledReg) 2408 Result |= ScaledRegField; 2409 // Don't count 0 as being a different scale, because that actually means 2410 // unscaled (which will already be counted by having no ScaledReg). 2411 if (Scale && other.Scale && Scale != other.Scale) 2412 Result |= ScaleField; 2413 2414 if (countPopulation(Result) > 1) 2415 return MultipleFields; 2416 else 2417 return static_cast<FieldName>(Result); 2418 } 2419 2420 // An AddrMode is trivial if it involves no calculation i.e. it is just a base 2421 // with no offset. 2422 bool isTrivial() { 2423 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is 2424 // trivial if at most one of these terms is nonzero, except that BaseGV and 2425 // BaseReg both being zero actually means a null pointer value, which we 2426 // consider to be 'non-zero' here. 2427 return !BaseOffs && !Scale && !(BaseGV && BaseReg); 2428 } 2429 2430 Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { 2431 switch (Field) { 2432 default: 2433 return nullptr; 2434 case BaseRegField: 2435 return BaseReg; 2436 case BaseGVField: 2437 return BaseGV; 2438 case ScaledRegField: 2439 return ScaledReg; 2440 case BaseOffsField: 2441 return ConstantInt::get(IntPtrTy, BaseOffs); 2442 } 2443 } 2444 2445 void SetCombinedField(FieldName Field, Value *V, 2446 const SmallVectorImpl<ExtAddrMode> &AddrModes) { 2447 switch (Field) { 2448 default: 2449 llvm_unreachable("Unhandled fields are expected to be rejected earlier"); 2450 break; 2451 case ExtAddrMode::BaseRegField: 2452 BaseReg = V; 2453 break; 2454 case ExtAddrMode::BaseGVField: 2455 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes 2456 // in the BaseReg field. 2457 assert(BaseReg == nullptr); 2458 BaseReg = V; 2459 BaseGV = nullptr; 2460 break; 2461 case ExtAddrMode::ScaledRegField: 2462 ScaledReg = V; 2463 // If we have a mix of scaled and unscaled addrmodes then we want scale 2464 // to be the scale and not zero. 2465 if (!Scale) 2466 for (const ExtAddrMode &AM : AddrModes) 2467 if (AM.Scale) { 2468 Scale = AM.Scale; 2469 break; 2470 } 2471 break; 2472 case ExtAddrMode::BaseOffsField: 2473 // The offset is no longer a constant, so it goes in ScaledReg with a 2474 // scale of 1. 2475 assert(ScaledReg == nullptr); 2476 ScaledReg = V; 2477 Scale = 1; 2478 BaseOffs = 0; 2479 break; 2480 } 2481 } 2482 }; 2483 2484 } // end anonymous namespace 2485 2486 #ifndef NDEBUG 2487 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { 2488 AM.print(OS); 2489 return OS; 2490 } 2491 #endif 2492 2493 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 2494 void ExtAddrMode::print(raw_ostream &OS) const { 2495 bool NeedPlus = false; 2496 OS << "["; 2497 if (InBounds) 2498 OS << "inbounds "; 2499 if (BaseGV) { 2500 OS << (NeedPlus ? " + " : "") 2501 << "GV:"; 2502 BaseGV->printAsOperand(OS, /*PrintType=*/false); 2503 NeedPlus = true; 2504 } 2505 2506 if (BaseOffs) { 2507 OS << (NeedPlus ? " + " : "") 2508 << BaseOffs; 2509 NeedPlus = true; 2510 } 2511 2512 if (BaseReg) { 2513 OS << (NeedPlus ? " + " : "") 2514 << "Base:"; 2515 BaseReg->printAsOperand(OS, /*PrintType=*/false); 2516 NeedPlus = true; 2517 } 2518 if (Scale) { 2519 OS << (NeedPlus ? " + " : "") 2520 << Scale << "*"; 2521 ScaledReg->printAsOperand(OS, /*PrintType=*/false); 2522 } 2523 2524 OS << ']'; 2525 } 2526 2527 LLVM_DUMP_METHOD void ExtAddrMode::dump() const { 2528 print(dbgs()); 2529 dbgs() << '\n'; 2530 } 2531 #endif 2532 2533 namespace { 2534 2535 /// This class provides transaction based operation on the IR. 2536 /// Every change made through this class is recorded in the internal state and 2537 /// can be undone (rollback) until commit is called. 2538 /// CGP does not check if instructions could be speculatively executed when 2539 /// moved. Preserving the original location would pessimize the debugging 2540 /// experience, as well as negatively impact the quality of sample PGO. 2541 class TypePromotionTransaction { 2542 /// This represents the common interface of the individual transaction. 2543 /// Each class implements the logic for doing one specific modification on 2544 /// the IR via the TypePromotionTransaction. 2545 class TypePromotionAction { 2546 protected: 2547 /// The Instruction modified. 2548 Instruction *Inst; 2549 2550 public: 2551 /// Constructor of the action. 2552 /// The constructor performs the related action on the IR. 2553 TypePromotionAction(Instruction *Inst) : Inst(Inst) {} 2554 2555 virtual ~TypePromotionAction() = default; 2556 2557 /// Undo the modification done by this action. 2558 /// When this method is called, the IR must be in the same state as it was 2559 /// before this action was applied. 2560 /// \pre Undoing the action works if and only if the IR is in the exact same 2561 /// state as it was directly after this action was applied. 2562 virtual void undo() = 0; 2563 2564 /// Advocate every change made by this action. 2565 /// When the results on the IR of the action are to be kept, it is important 2566 /// to call this function, otherwise hidden information may be kept forever. 2567 virtual void commit() { 2568 // Nothing to be done, this action is not doing anything. 2569 } 2570 }; 2571 2572 /// Utility to remember the position of an instruction. 2573 class InsertionHandler { 2574 /// Position of an instruction. 2575 /// Either an instruction: 2576 /// - Is the first in a basic block: BB is used. 2577 /// - Has a previous instruction: PrevInst is used. 2578 union { 2579 Instruction *PrevInst; 2580 BasicBlock *BB; 2581 } Point; 2582 2583 /// Remember whether or not the instruction had a previous instruction. 2584 bool HasPrevInstruction; 2585 2586 public: 2587 /// Record the position of \p Inst. 2588 InsertionHandler(Instruction *Inst) { 2589 BasicBlock::iterator It = Inst->getIterator(); 2590 HasPrevInstruction = (It != (Inst->getParent()->begin())); 2591 if (HasPrevInstruction) 2592 Point.PrevInst = &*--It; 2593 else 2594 Point.BB = Inst->getParent(); 2595 } 2596 2597 /// Insert \p Inst at the recorded position. 2598 void insert(Instruction *Inst) { 2599 if (HasPrevInstruction) { 2600 if (Inst->getParent()) 2601 Inst->removeFromParent(); 2602 Inst->insertAfter(Point.PrevInst); 2603 } else { 2604 Instruction *Position = &*Point.BB->getFirstInsertionPt(); 2605 if (Inst->getParent()) 2606 Inst->moveBefore(Position); 2607 else 2608 Inst->insertBefore(Position); 2609 } 2610 } 2611 }; 2612 2613 /// Move an instruction before another. 2614 class InstructionMoveBefore : public TypePromotionAction { 2615 /// Original position of the instruction. 2616 InsertionHandler Position; 2617 2618 public: 2619 /// Move \p Inst before \p Before. 2620 InstructionMoveBefore(Instruction *Inst, Instruction *Before) 2621 : TypePromotionAction(Inst), Position(Inst) { 2622 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before 2623 << "\n"); 2624 Inst->moveBefore(Before); 2625 } 2626 2627 /// Move the instruction back to its original position. 2628 void undo() override { 2629 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); 2630 Position.insert(Inst); 2631 } 2632 }; 2633 2634 /// Set the operand of an instruction with a new value. 2635 class OperandSetter : public TypePromotionAction { 2636 /// Original operand of the instruction. 2637 Value *Origin; 2638 2639 /// Index of the modified instruction. 2640 unsigned Idx; 2641 2642 public: 2643 /// Set \p Idx operand of \p Inst with \p NewVal. 2644 OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) 2645 : TypePromotionAction(Inst), Idx(Idx) { 2646 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" 2647 << "for:" << *Inst << "\n" 2648 << "with:" << *NewVal << "\n"); 2649 Origin = Inst->getOperand(Idx); 2650 Inst->setOperand(Idx, NewVal); 2651 } 2652 2653 /// Restore the original value of the instruction. 2654 void undo() override { 2655 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" 2656 << "for: " << *Inst << "\n" 2657 << "with: " << *Origin << "\n"); 2658 Inst->setOperand(Idx, Origin); 2659 } 2660 }; 2661 2662 /// Hide the operands of an instruction. 2663 /// Do as if this instruction was not using any of its operands. 2664 class OperandsHider : public TypePromotionAction { 2665 /// The list of original operands. 2666 SmallVector<Value *, 4> OriginalValues; 2667 2668 public: 2669 /// Remove \p Inst from the uses of the operands of \p Inst. 2670 OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { 2671 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); 2672 unsigned NumOpnds = Inst->getNumOperands(); 2673 OriginalValues.reserve(NumOpnds); 2674 for (unsigned It = 0; It < NumOpnds; ++It) { 2675 // Save the current operand. 2676 Value *Val = Inst->getOperand(It); 2677 OriginalValues.push_back(Val); 2678 // Set a dummy one. 2679 // We could use OperandSetter here, but that would imply an overhead 2680 // that we are not willing to pay. 2681 Inst->setOperand(It, UndefValue::get(Val->getType())); 2682 } 2683 } 2684 2685 /// Restore the original list of uses. 2686 void undo() override { 2687 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); 2688 for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) 2689 Inst->setOperand(It, OriginalValues[It]); 2690 } 2691 }; 2692 2693 /// Build a truncate instruction. 2694 class TruncBuilder : public TypePromotionAction { 2695 Value *Val; 2696 2697 public: 2698 /// Build a truncate instruction of \p Opnd producing a \p Ty 2699 /// result. 2700 /// trunc Opnd to Ty. 2701 TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { 2702 IRBuilder<> Builder(Opnd); 2703 Builder.SetCurrentDebugLocation(DebugLoc()); 2704 Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); 2705 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); 2706 } 2707 2708 /// Get the built value. 2709 Value *getBuiltValue() { return Val; } 2710 2711 /// Remove the built instruction. 2712 void undo() override { 2713 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); 2714 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2715 IVal->eraseFromParent(); 2716 } 2717 }; 2718 2719 /// Build a sign extension instruction. 2720 class SExtBuilder : public TypePromotionAction { 2721 Value *Val; 2722 2723 public: 2724 /// Build a sign extension instruction of \p Opnd producing a \p Ty 2725 /// result. 2726 /// sext Opnd to Ty. 2727 SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2728 : TypePromotionAction(InsertPt) { 2729 IRBuilder<> Builder(InsertPt); 2730 Val = Builder.CreateSExt(Opnd, Ty, "promoted"); 2731 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); 2732 } 2733 2734 /// Get the built value. 2735 Value *getBuiltValue() { return Val; } 2736 2737 /// Remove the built instruction. 2738 void undo() override { 2739 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); 2740 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2741 IVal->eraseFromParent(); 2742 } 2743 }; 2744 2745 /// Build a zero extension instruction. 2746 class ZExtBuilder : public TypePromotionAction { 2747 Value *Val; 2748 2749 public: 2750 /// Build a zero extension instruction of \p Opnd producing a \p Ty 2751 /// result. 2752 /// zext Opnd to Ty. 2753 ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) 2754 : TypePromotionAction(InsertPt) { 2755 IRBuilder<> Builder(InsertPt); 2756 Builder.SetCurrentDebugLocation(DebugLoc()); 2757 Val = Builder.CreateZExt(Opnd, Ty, "promoted"); 2758 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); 2759 } 2760 2761 /// Get the built value. 2762 Value *getBuiltValue() { return Val; } 2763 2764 /// Remove the built instruction. 2765 void undo() override { 2766 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); 2767 if (Instruction *IVal = dyn_cast<Instruction>(Val)) 2768 IVal->eraseFromParent(); 2769 } 2770 }; 2771 2772 /// Mutate an instruction to another type. 2773 class TypeMutator : public TypePromotionAction { 2774 /// Record the original type. 2775 Type *OrigTy; 2776 2777 public: 2778 /// Mutate the type of \p Inst into \p NewTy. 2779 TypeMutator(Instruction *Inst, Type *NewTy) 2780 : TypePromotionAction(Inst), OrigTy(Inst->getType()) { 2781 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy 2782 << "\n"); 2783 Inst->mutateType(NewTy); 2784 } 2785 2786 /// Mutate the instruction back to its original type. 2787 void undo() override { 2788 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy 2789 << "\n"); 2790 Inst->mutateType(OrigTy); 2791 } 2792 }; 2793 2794 /// Replace the uses of an instruction by another instruction. 2795 class UsesReplacer : public TypePromotionAction { 2796 /// Helper structure to keep track of the replaced uses. 2797 struct InstructionAndIdx { 2798 /// The instruction using the instruction. 2799 Instruction *Inst; 2800 2801 /// The index where this instruction is used for Inst. 2802 unsigned Idx; 2803 2804 InstructionAndIdx(Instruction *Inst, unsigned Idx) 2805 : Inst(Inst), Idx(Idx) {} 2806 }; 2807 2808 /// Keep track of the original uses (pair Instruction, Index). 2809 SmallVector<InstructionAndIdx, 4> OriginalUses; 2810 /// Keep track of the debug users. 2811 SmallVector<DbgValueInst *, 1> DbgValues; 2812 2813 using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; 2814 2815 public: 2816 /// Replace all the use of \p Inst by \p New. 2817 UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { 2818 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New 2819 << "\n"); 2820 // Record the original uses. 2821 for (Use &U : Inst->uses()) { 2822 Instruction *UserI = cast<Instruction>(U.getUser()); 2823 OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); 2824 } 2825 // Record the debug uses separately. They are not in the instruction's 2826 // use list, but they are replaced by RAUW. 2827 findDbgValues(DbgValues, Inst); 2828 2829 // Now, we can replace the uses. 2830 Inst->replaceAllUsesWith(New); 2831 } 2832 2833 /// Reassign the original uses of Inst to Inst. 2834 void undo() override { 2835 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); 2836 for (InstructionAndIdx &Use : OriginalUses) 2837 Use.Inst->setOperand(Use.Idx, Inst); 2838 // RAUW has replaced all original uses with references to the new value, 2839 // including the debug uses. Since we are undoing the replacements, 2840 // the original debug uses must also be reinstated to maintain the 2841 // correctness and utility of debug value instructions. 2842 for (auto *DVI: DbgValues) { 2843 LLVMContext &Ctx = Inst->getType()->getContext(); 2844 auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); 2845 DVI->setOperand(0, MV); 2846 } 2847 } 2848 }; 2849 2850 /// Remove an instruction from the IR. 2851 class InstructionRemover : public TypePromotionAction { 2852 /// Original position of the instruction. 2853 InsertionHandler Inserter; 2854 2855 /// Helper structure to hide all the link to the instruction. In other 2856 /// words, this helps to do as if the instruction was removed. 2857 OperandsHider Hider; 2858 2859 /// Keep track of the uses replaced, if any. 2860 UsesReplacer *Replacer = nullptr; 2861 2862 /// Keep track of instructions removed. 2863 SetOfInstrs &RemovedInsts; 2864 2865 public: 2866 /// Remove all reference of \p Inst and optionally replace all its 2867 /// uses with New. 2868 /// \p RemovedInsts Keep track of the instructions removed by this Action. 2869 /// \pre If !Inst->use_empty(), then New != nullptr 2870 InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, 2871 Value *New = nullptr) 2872 : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), 2873 RemovedInsts(RemovedInsts) { 2874 if (New) 2875 Replacer = new UsesReplacer(Inst, New); 2876 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); 2877 RemovedInsts.insert(Inst); 2878 /// The instructions removed here will be freed after completing 2879 /// optimizeBlock() for all blocks as we need to keep track of the 2880 /// removed instructions during promotion. 2881 Inst->removeFromParent(); 2882 } 2883 2884 ~InstructionRemover() override { delete Replacer; } 2885 2886 /// Resurrect the instruction and reassign it to the proper uses if 2887 /// new value was provided when build this action. 2888 void undo() override { 2889 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); 2890 Inserter.insert(Inst); 2891 if (Replacer) 2892 Replacer->undo(); 2893 Hider.undo(); 2894 RemovedInsts.erase(Inst); 2895 } 2896 }; 2897 2898 public: 2899 /// Restoration point. 2900 /// The restoration point is a pointer to an action instead of an iterator 2901 /// because the iterator may be invalidated but not the pointer. 2902 using ConstRestorationPt = const TypePromotionAction *; 2903 2904 TypePromotionTransaction(SetOfInstrs &RemovedInsts) 2905 : RemovedInsts(RemovedInsts) {} 2906 2907 /// Advocate every changes made in that transaction. Return true if any change 2908 /// happen. 2909 bool commit(); 2910 2911 /// Undo all the changes made after the given point. 2912 void rollback(ConstRestorationPt Point); 2913 2914 /// Get the current restoration point. 2915 ConstRestorationPt getRestorationPoint() const; 2916 2917 /// \name API for IR modification with state keeping to support rollback. 2918 /// @{ 2919 /// Same as Instruction::setOperand. 2920 void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); 2921 2922 /// Same as Instruction::eraseFromParent. 2923 void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); 2924 2925 /// Same as Value::replaceAllUsesWith. 2926 void replaceAllUsesWith(Instruction *Inst, Value *New); 2927 2928 /// Same as Value::mutateType. 2929 void mutateType(Instruction *Inst, Type *NewTy); 2930 2931 /// Same as IRBuilder::createTrunc. 2932 Value *createTrunc(Instruction *Opnd, Type *Ty); 2933 2934 /// Same as IRBuilder::createSExt. 2935 Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); 2936 2937 /// Same as IRBuilder::createZExt. 2938 Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); 2939 2940 /// Same as Instruction::moveBefore. 2941 void moveBefore(Instruction *Inst, Instruction *Before); 2942 /// @} 2943 2944 private: 2945 /// The ordered list of actions made so far. 2946 SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; 2947 2948 using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; 2949 2950 SetOfInstrs &RemovedInsts; 2951 }; 2952 2953 } // end anonymous namespace 2954 2955 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, 2956 Value *NewVal) { 2957 Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( 2958 Inst, Idx, NewVal)); 2959 } 2960 2961 void TypePromotionTransaction::eraseInstruction(Instruction *Inst, 2962 Value *NewVal) { 2963 Actions.push_back( 2964 std::make_unique<TypePromotionTransaction::InstructionRemover>( 2965 Inst, RemovedInsts, NewVal)); 2966 } 2967 2968 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, 2969 Value *New) { 2970 Actions.push_back( 2971 std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); 2972 } 2973 2974 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { 2975 Actions.push_back( 2976 std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); 2977 } 2978 2979 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, 2980 Type *Ty) { 2981 std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); 2982 Value *Val = Ptr->getBuiltValue(); 2983 Actions.push_back(std::move(Ptr)); 2984 return Val; 2985 } 2986 2987 Value *TypePromotionTransaction::createSExt(Instruction *Inst, 2988 Value *Opnd, Type *Ty) { 2989 std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); 2990 Value *Val = Ptr->getBuiltValue(); 2991 Actions.push_back(std::move(Ptr)); 2992 return Val; 2993 } 2994 2995 Value *TypePromotionTransaction::createZExt(Instruction *Inst, 2996 Value *Opnd, Type *Ty) { 2997 std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); 2998 Value *Val = Ptr->getBuiltValue(); 2999 Actions.push_back(std::move(Ptr)); 3000 return Val; 3001 } 3002 3003 void TypePromotionTransaction::moveBefore(Instruction *Inst, 3004 Instruction *Before) { 3005 Actions.push_back( 3006 std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( 3007 Inst, Before)); 3008 } 3009 3010 TypePromotionTransaction::ConstRestorationPt 3011 TypePromotionTransaction::getRestorationPoint() const { 3012 return !Actions.empty() ? Actions.back().get() : nullptr; 3013 } 3014 3015 bool TypePromotionTransaction::commit() { 3016 for (std::unique_ptr<TypePromotionAction> &Action : Actions) 3017 Action->commit(); 3018 bool Modified = !Actions.empty(); 3019 Actions.clear(); 3020 return Modified; 3021 } 3022 3023 void TypePromotionTransaction::rollback( 3024 TypePromotionTransaction::ConstRestorationPt Point) { 3025 while (!Actions.empty() && Point != Actions.back().get()) { 3026 std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); 3027 Curr->undo(); 3028 } 3029 } 3030 3031 namespace { 3032 3033 /// A helper class for matching addressing modes. 3034 /// 3035 /// This encapsulates the logic for matching the target-legal addressing modes. 3036 class AddressingModeMatcher { 3037 SmallVectorImpl<Instruction*> &AddrModeInsts; 3038 const TargetLowering &TLI; 3039 const TargetRegisterInfo &TRI; 3040 const DataLayout &DL; 3041 3042 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and 3043 /// the memory instruction that we're computing this address for. 3044 Type *AccessTy; 3045 unsigned AddrSpace; 3046 Instruction *MemoryInst; 3047 3048 /// This is the addressing mode that we're building up. This is 3049 /// part of the return value of this addressing mode matching stuff. 3050 ExtAddrMode &AddrMode; 3051 3052 /// The instructions inserted by other CodeGenPrepare optimizations. 3053 const SetOfInstrs &InsertedInsts; 3054 3055 /// A map from the instructions to their type before promotion. 3056 InstrToOrigTy &PromotedInsts; 3057 3058 /// The ongoing transaction where every action should be registered. 3059 TypePromotionTransaction &TPT; 3060 3061 // A GEP which has too large offset to be folded into the addressing mode. 3062 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; 3063 3064 /// This is set to true when we should not do profitability checks. 3065 /// When true, IsProfitableToFoldIntoAddressingMode always returns true. 3066 bool IgnoreProfitability; 3067 3068 /// True if we are optimizing for size. 3069 bool OptSize; 3070 3071 ProfileSummaryInfo *PSI; 3072 BlockFrequencyInfo *BFI; 3073 3074 AddressingModeMatcher( 3075 SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, 3076 const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, 3077 ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, 3078 InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, 3079 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3080 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) 3081 : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), 3082 DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), 3083 MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), 3084 PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP), 3085 OptSize(OptSize), PSI(PSI), BFI(BFI) { 3086 IgnoreProfitability = false; 3087 } 3088 3089 public: 3090 /// Find the maximal addressing mode that a load/store of V can fold, 3091 /// give an access type of AccessTy. This returns a list of involved 3092 /// instructions in AddrModeInsts. 3093 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare 3094 /// optimizations. 3095 /// \p PromotedInsts maps the instructions to their type before promotion. 3096 /// \p The ongoing transaction where every action should be registered. 3097 static ExtAddrMode 3098 Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, 3099 SmallVectorImpl<Instruction *> &AddrModeInsts, 3100 const TargetLowering &TLI, const TargetRegisterInfo &TRI, 3101 const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, 3102 TypePromotionTransaction &TPT, 3103 std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, 3104 bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { 3105 ExtAddrMode Result; 3106 3107 bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, 3108 MemoryInst, Result, InsertedInsts, 3109 PromotedInsts, TPT, LargeOffsetGEP, 3110 OptSize, PSI, BFI) 3111 .matchAddr(V, 0); 3112 (void)Success; assert(Success && "Couldn't select *anything*?"); 3113 return Result; 3114 } 3115 3116 private: 3117 bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); 3118 bool matchAddr(Value *Addr, unsigned Depth); 3119 bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, 3120 bool *MovedAway = nullptr); 3121 bool isProfitableToFoldIntoAddressingMode(Instruction *I, 3122 ExtAddrMode &AMBefore, 3123 ExtAddrMode &AMAfter); 3124 bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); 3125 bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, 3126 Value *PromotedOperand) const; 3127 }; 3128 3129 class PhiNodeSet; 3130 3131 /// An iterator for PhiNodeSet. 3132 class PhiNodeSetIterator { 3133 PhiNodeSet * const Set; 3134 size_t CurrentIndex = 0; 3135 3136 public: 3137 /// The constructor. Start should point to either a valid element, or be equal 3138 /// to the size of the underlying SmallVector of the PhiNodeSet. 3139 PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); 3140 PHINode * operator*() const; 3141 PhiNodeSetIterator& operator++(); 3142 bool operator==(const PhiNodeSetIterator &RHS) const; 3143 bool operator!=(const PhiNodeSetIterator &RHS) const; 3144 }; 3145 3146 /// Keeps a set of PHINodes. 3147 /// 3148 /// This is a minimal set implementation for a specific use case: 3149 /// It is very fast when there are very few elements, but also provides good 3150 /// performance when there are many. It is similar to SmallPtrSet, but also 3151 /// provides iteration by insertion order, which is deterministic and stable 3152 /// across runs. It is also similar to SmallSetVector, but provides removing 3153 /// elements in O(1) time. This is achieved by not actually removing the element 3154 /// from the underlying vector, so comes at the cost of using more memory, but 3155 /// that is fine, since PhiNodeSets are used as short lived objects. 3156 class PhiNodeSet { 3157 friend class PhiNodeSetIterator; 3158 3159 using MapType = SmallDenseMap<PHINode *, size_t, 32>; 3160 using iterator = PhiNodeSetIterator; 3161 3162 /// Keeps the elements in the order of their insertion in the underlying 3163 /// vector. To achieve constant time removal, it never deletes any element. 3164 SmallVector<PHINode *, 32> NodeList; 3165 3166 /// Keeps the elements in the underlying set implementation. This (and not the 3167 /// NodeList defined above) is the source of truth on whether an element 3168 /// is actually in the collection. 3169 MapType NodeMap; 3170 3171 /// Points to the first valid (not deleted) element when the set is not empty 3172 /// and the value is not zero. Equals to the size of the underlying vector 3173 /// when the set is empty. When the value is 0, as in the beginning, the 3174 /// first element may or may not be valid. 3175 size_t FirstValidElement = 0; 3176 3177 public: 3178 /// Inserts a new element to the collection. 3179 /// \returns true if the element is actually added, i.e. was not in the 3180 /// collection before the operation. 3181 bool insert(PHINode *Ptr) { 3182 if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { 3183 NodeList.push_back(Ptr); 3184 return true; 3185 } 3186 return false; 3187 } 3188 3189 /// Removes the element from the collection. 3190 /// \returns whether the element is actually removed, i.e. was in the 3191 /// collection before the operation. 3192 bool erase(PHINode *Ptr) { 3193 if (NodeMap.erase(Ptr)) { 3194 SkipRemovedElements(FirstValidElement); 3195 return true; 3196 } 3197 return false; 3198 } 3199 3200 /// Removes all elements and clears the collection. 3201 void clear() { 3202 NodeMap.clear(); 3203 NodeList.clear(); 3204 FirstValidElement = 0; 3205 } 3206 3207 /// \returns an iterator that will iterate the elements in the order of 3208 /// insertion. 3209 iterator begin() { 3210 if (FirstValidElement == 0) 3211 SkipRemovedElements(FirstValidElement); 3212 return PhiNodeSetIterator(this, FirstValidElement); 3213 } 3214 3215 /// \returns an iterator that points to the end of the collection. 3216 iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } 3217 3218 /// Returns the number of elements in the collection. 3219 size_t size() const { 3220 return NodeMap.size(); 3221 } 3222 3223 /// \returns 1 if the given element is in the collection, and 0 if otherwise. 3224 size_t count(PHINode *Ptr) const { 3225 return NodeMap.count(Ptr); 3226 } 3227 3228 private: 3229 /// Updates the CurrentIndex so that it will point to a valid element. 3230 /// 3231 /// If the element of NodeList at CurrentIndex is valid, it does not 3232 /// change it. If there are no more valid elements, it updates CurrentIndex 3233 /// to point to the end of the NodeList. 3234 void SkipRemovedElements(size_t &CurrentIndex) { 3235 while (CurrentIndex < NodeList.size()) { 3236 auto it = NodeMap.find(NodeList[CurrentIndex]); 3237 // If the element has been deleted and added again later, NodeMap will 3238 // point to a different index, so CurrentIndex will still be invalid. 3239 if (it != NodeMap.end() && it->second == CurrentIndex) 3240 break; 3241 ++CurrentIndex; 3242 } 3243 } 3244 }; 3245 3246 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) 3247 : Set(Set), CurrentIndex(Start) {} 3248 3249 PHINode * PhiNodeSetIterator::operator*() const { 3250 assert(CurrentIndex < Set->NodeList.size() && 3251 "PhiNodeSet access out of range"); 3252 return Set->NodeList[CurrentIndex]; 3253 } 3254 3255 PhiNodeSetIterator& PhiNodeSetIterator::operator++() { 3256 assert(CurrentIndex < Set->NodeList.size() && 3257 "PhiNodeSet access out of range"); 3258 ++CurrentIndex; 3259 Set->SkipRemovedElements(CurrentIndex); 3260 return *this; 3261 } 3262 3263 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { 3264 return CurrentIndex == RHS.CurrentIndex; 3265 } 3266 3267 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { 3268 return !((*this) == RHS); 3269 } 3270 3271 /// Keep track of simplification of Phi nodes. 3272 /// Accept the set of all phi nodes and erase phi node from this set 3273 /// if it is simplified. 3274 class SimplificationTracker { 3275 DenseMap<Value *, Value *> Storage; 3276 const SimplifyQuery &SQ; 3277 // Tracks newly created Phi nodes. The elements are iterated by insertion 3278 // order. 3279 PhiNodeSet AllPhiNodes; 3280 // Tracks newly created Select nodes. 3281 SmallPtrSet<SelectInst *, 32> AllSelectNodes; 3282 3283 public: 3284 SimplificationTracker(const SimplifyQuery &sq) 3285 : SQ(sq) {} 3286 3287 Value *Get(Value *V) { 3288 do { 3289 auto SV = Storage.find(V); 3290 if (SV == Storage.end()) 3291 return V; 3292 V = SV->second; 3293 } while (true); 3294 } 3295 3296 Value *Simplify(Value *Val) { 3297 SmallVector<Value *, 32> WorkList; 3298 SmallPtrSet<Value *, 32> Visited; 3299 WorkList.push_back(Val); 3300 while (!WorkList.empty()) { 3301 auto *P = WorkList.pop_back_val(); 3302 if (!Visited.insert(P).second) 3303 continue; 3304 if (auto *PI = dyn_cast<Instruction>(P)) 3305 if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { 3306 for (auto *U : PI->users()) 3307 WorkList.push_back(cast<Value>(U)); 3308 Put(PI, V); 3309 PI->replaceAllUsesWith(V); 3310 if (auto *PHI = dyn_cast<PHINode>(PI)) 3311 AllPhiNodes.erase(PHI); 3312 if (auto *Select = dyn_cast<SelectInst>(PI)) 3313 AllSelectNodes.erase(Select); 3314 PI->eraseFromParent(); 3315 } 3316 } 3317 return Get(Val); 3318 } 3319 3320 void Put(Value *From, Value *To) { 3321 Storage.insert({ From, To }); 3322 } 3323 3324 void ReplacePhi(PHINode *From, PHINode *To) { 3325 Value* OldReplacement = Get(From); 3326 while (OldReplacement != From) { 3327 From = To; 3328 To = dyn_cast<PHINode>(OldReplacement); 3329 OldReplacement = Get(From); 3330 } 3331 assert(To && Get(To) == To && "Replacement PHI node is already replaced."); 3332 Put(From, To); 3333 From->replaceAllUsesWith(To); 3334 AllPhiNodes.erase(From); 3335 From->eraseFromParent(); 3336 } 3337 3338 PhiNodeSet& newPhiNodes() { return AllPhiNodes; } 3339 3340 void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } 3341 3342 void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } 3343 3344 unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } 3345 3346 unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } 3347 3348 void destroyNewNodes(Type *CommonType) { 3349 // For safe erasing, replace the uses with dummy value first. 3350 auto *Dummy = UndefValue::get(CommonType); 3351 for (auto *I : AllPhiNodes) { 3352 I->replaceAllUsesWith(Dummy); 3353 I->eraseFromParent(); 3354 } 3355 AllPhiNodes.clear(); 3356 for (auto *I : AllSelectNodes) { 3357 I->replaceAllUsesWith(Dummy); 3358 I->eraseFromParent(); 3359 } 3360 AllSelectNodes.clear(); 3361 } 3362 }; 3363 3364 /// A helper class for combining addressing modes. 3365 class AddressingModeCombiner { 3366 typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; 3367 typedef std::pair<PHINode *, PHINode *> PHIPair; 3368 3369 private: 3370 /// The addressing modes we've collected. 3371 SmallVector<ExtAddrMode, 16> AddrModes; 3372 3373 /// The field in which the AddrModes differ, when we have more than one. 3374 ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; 3375 3376 /// Are the AddrModes that we have all just equal to their original values? 3377 bool AllAddrModesTrivial = true; 3378 3379 /// Common Type for all different fields in addressing modes. 3380 Type *CommonType; 3381 3382 /// SimplifyQuery for simplifyInstruction utility. 3383 const SimplifyQuery &SQ; 3384 3385 /// Original Address. 3386 Value *Original; 3387 3388 public: 3389 AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) 3390 : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} 3391 3392 /// Get the combined AddrMode 3393 const ExtAddrMode &getAddrMode() const { 3394 return AddrModes[0]; 3395 } 3396 3397 /// Add a new AddrMode if it's compatible with the AddrModes we already 3398 /// have. 3399 /// \return True iff we succeeded in doing so. 3400 bool addNewAddrMode(ExtAddrMode &NewAddrMode) { 3401 // Take note of if we have any non-trivial AddrModes, as we need to detect 3402 // when all AddrModes are trivial as then we would introduce a phi or select 3403 // which just duplicates what's already there. 3404 AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); 3405 3406 // If this is the first addrmode then everything is fine. 3407 if (AddrModes.empty()) { 3408 AddrModes.emplace_back(NewAddrMode); 3409 return true; 3410 } 3411 3412 // Figure out how different this is from the other address modes, which we 3413 // can do just by comparing against the first one given that we only care 3414 // about the cumulative difference. 3415 ExtAddrMode::FieldName ThisDifferentField = 3416 AddrModes[0].compare(NewAddrMode); 3417 if (DifferentField == ExtAddrMode::NoField) 3418 DifferentField = ThisDifferentField; 3419 else if (DifferentField != ThisDifferentField) 3420 DifferentField = ExtAddrMode::MultipleFields; 3421 3422 // If NewAddrMode differs in more than one dimension we cannot handle it. 3423 bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; 3424 3425 // If Scale Field is different then we reject. 3426 CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; 3427 3428 // We also must reject the case when base offset is different and 3429 // scale reg is not null, we cannot handle this case due to merge of 3430 // different offsets will be used as ScaleReg. 3431 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || 3432 !NewAddrMode.ScaledReg); 3433 3434 // We also must reject the case when GV is different and BaseReg installed 3435 // due to we want to use base reg as a merge of GV values. 3436 CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || 3437 !NewAddrMode.HasBaseReg); 3438 3439 // Even if NewAddMode is the same we still need to collect it due to 3440 // original value is different. And later we will need all original values 3441 // as anchors during finding the common Phi node. 3442 if (CanHandle) 3443 AddrModes.emplace_back(NewAddrMode); 3444 else 3445 AddrModes.clear(); 3446 3447 return CanHandle; 3448 } 3449 3450 /// Combine the addressing modes we've collected into a single 3451 /// addressing mode. 3452 /// \return True iff we successfully combined them or we only had one so 3453 /// didn't need to combine them anyway. 3454 bool combineAddrModes() { 3455 // If we have no AddrModes then they can't be combined. 3456 if (AddrModes.size() == 0) 3457 return false; 3458 3459 // A single AddrMode can trivially be combined. 3460 if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) 3461 return true; 3462 3463 // If the AddrModes we collected are all just equal to the value they are 3464 // derived from then combining them wouldn't do anything useful. 3465 if (AllAddrModesTrivial) 3466 return false; 3467 3468 if (!addrModeCombiningAllowed()) 3469 return false; 3470 3471 // Build a map between <original value, basic block where we saw it> to 3472 // value of base register. 3473 // Bail out if there is no common type. 3474 FoldAddrToValueMapping Map; 3475 if (!initializeMap(Map)) 3476 return false; 3477 3478 Value *CommonValue = findCommon(Map); 3479 if (CommonValue) 3480 AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); 3481 return CommonValue != nullptr; 3482 } 3483 3484 private: 3485 /// Initialize Map with anchor values. For address seen 3486 /// we set the value of different field saw in this address. 3487 /// At the same time we find a common type for different field we will 3488 /// use to create new Phi/Select nodes. Keep it in CommonType field. 3489 /// Return false if there is no common type found. 3490 bool initializeMap(FoldAddrToValueMapping &Map) { 3491 // Keep track of keys where the value is null. We will need to replace it 3492 // with constant null when we know the common type. 3493 SmallVector<Value *, 2> NullValue; 3494 Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); 3495 for (auto &AM : AddrModes) { 3496 Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); 3497 if (DV) { 3498 auto *Type = DV->getType(); 3499 if (CommonType && CommonType != Type) 3500 return false; 3501 CommonType = Type; 3502 Map[AM.OriginalValue] = DV; 3503 } else { 3504 NullValue.push_back(AM.OriginalValue); 3505 } 3506 } 3507 assert(CommonType && "At least one non-null value must be!"); 3508 for (auto *V : NullValue) 3509 Map[V] = Constant::getNullValue(CommonType); 3510 return true; 3511 } 3512 3513 /// We have mapping between value A and other value B where B was a field in 3514 /// addressing mode represented by A. Also we have an original value C 3515 /// representing an address we start with. Traversing from C through phi and 3516 /// selects we ended up with A's in a map. This utility function tries to find 3517 /// a value V which is a field in addressing mode C and traversing through phi 3518 /// nodes and selects we will end up in corresponded values B in a map. 3519 /// The utility will create a new Phi/Selects if needed. 3520 // The simple example looks as follows: 3521 // BB1: 3522 // p1 = b1 + 40 3523 // br cond BB2, BB3 3524 // BB2: 3525 // p2 = b2 + 40 3526 // br BB3 3527 // BB3: 3528 // p = phi [p1, BB1], [p2, BB2] 3529 // v = load p 3530 // Map is 3531 // p1 -> b1 3532 // p2 -> b2 3533 // Request is 3534 // p -> ? 3535 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. 3536 Value *findCommon(FoldAddrToValueMapping &Map) { 3537 // Tracks the simplification of newly created phi nodes. The reason we use 3538 // this mapping is because we will add new created Phi nodes in AddrToBase. 3539 // Simplification of Phi nodes is recursive, so some Phi node may 3540 // be simplified after we added it to AddrToBase. In reality this 3541 // simplification is possible only if original phi/selects were not 3542 // simplified yet. 3543 // Using this mapping we can find the current value in AddrToBase. 3544 SimplificationTracker ST(SQ); 3545 3546 // First step, DFS to create PHI nodes for all intermediate blocks. 3547 // Also fill traverse order for the second step. 3548 SmallVector<Value *, 32> TraverseOrder; 3549 InsertPlaceholders(Map, TraverseOrder, ST); 3550 3551 // Second Step, fill new nodes by merged values and simplify if possible. 3552 FillPlaceholders(Map, TraverseOrder, ST); 3553 3554 if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { 3555 ST.destroyNewNodes(CommonType); 3556 return nullptr; 3557 } 3558 3559 // Now we'd like to match New Phi nodes to existed ones. 3560 unsigned PhiNotMatchedCount = 0; 3561 if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { 3562 ST.destroyNewNodes(CommonType); 3563 return nullptr; 3564 } 3565 3566 auto *Result = ST.Get(Map.find(Original)->second); 3567 if (Result) { 3568 NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; 3569 NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); 3570 } 3571 return Result; 3572 } 3573 3574 /// Try to match PHI node to Candidate. 3575 /// Matcher tracks the matched Phi nodes. 3576 bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, 3577 SmallSetVector<PHIPair, 8> &Matcher, 3578 PhiNodeSet &PhiNodesToMatch) { 3579 SmallVector<PHIPair, 8> WorkList; 3580 Matcher.insert({ PHI, Candidate }); 3581 SmallSet<PHINode *, 8> MatchedPHIs; 3582 MatchedPHIs.insert(PHI); 3583 WorkList.push_back({ PHI, Candidate }); 3584 SmallSet<PHIPair, 8> Visited; 3585 while (!WorkList.empty()) { 3586 auto Item = WorkList.pop_back_val(); 3587 if (!Visited.insert(Item).second) 3588 continue; 3589 // We iterate over all incoming values to Phi to compare them. 3590 // If values are different and both of them Phi and the first one is a 3591 // Phi we added (subject to match) and both of them is in the same basic 3592 // block then we can match our pair if values match. So we state that 3593 // these values match and add it to work list to verify that. 3594 for (auto B : Item.first->blocks()) { 3595 Value *FirstValue = Item.first->getIncomingValueForBlock(B); 3596 Value *SecondValue = Item.second->getIncomingValueForBlock(B); 3597 if (FirstValue == SecondValue) 3598 continue; 3599 3600 PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); 3601 PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); 3602 3603 // One of them is not Phi or 3604 // The first one is not Phi node from the set we'd like to match or 3605 // Phi nodes from different basic blocks then 3606 // we will not be able to match. 3607 if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || 3608 FirstPhi->getParent() != SecondPhi->getParent()) 3609 return false; 3610 3611 // If we already matched them then continue. 3612 if (Matcher.count({ FirstPhi, SecondPhi })) 3613 continue; 3614 // So the values are different and does not match. So we need them to 3615 // match. (But we register no more than one match per PHI node, so that 3616 // we won't later try to replace them twice.) 3617 if (MatchedPHIs.insert(FirstPhi).second) 3618 Matcher.insert({ FirstPhi, SecondPhi }); 3619 // But me must check it. 3620 WorkList.push_back({ FirstPhi, SecondPhi }); 3621 } 3622 } 3623 return true; 3624 } 3625 3626 /// For the given set of PHI nodes (in the SimplificationTracker) try 3627 /// to find their equivalents. 3628 /// Returns false if this matching fails and creation of new Phi is disabled. 3629 bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, 3630 unsigned &PhiNotMatchedCount) { 3631 // Matched and PhiNodesToMatch iterate their elements in a deterministic 3632 // order, so the replacements (ReplacePhi) are also done in a deterministic 3633 // order. 3634 SmallSetVector<PHIPair, 8> Matched; 3635 SmallPtrSet<PHINode *, 8> WillNotMatch; 3636 PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); 3637 while (PhiNodesToMatch.size()) { 3638 PHINode *PHI = *PhiNodesToMatch.begin(); 3639 3640 // Add us, if no Phi nodes in the basic block we do not match. 3641 WillNotMatch.clear(); 3642 WillNotMatch.insert(PHI); 3643 3644 // Traverse all Phis until we found equivalent or fail to do that. 3645 bool IsMatched = false; 3646 for (auto &P : PHI->getParent()->phis()) { 3647 if (&P == PHI) 3648 continue; 3649 if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) 3650 break; 3651 // If it does not match, collect all Phi nodes from matcher. 3652 // if we end up with no match, them all these Phi nodes will not match 3653 // later. 3654 for (auto M : Matched) 3655 WillNotMatch.insert(M.first); 3656 Matched.clear(); 3657 } 3658 if (IsMatched) { 3659 // Replace all matched values and erase them. 3660 for (auto MV : Matched) 3661 ST.ReplacePhi(MV.first, MV.second); 3662 Matched.clear(); 3663 continue; 3664 } 3665 // If we are not allowed to create new nodes then bail out. 3666 if (!AllowNewPhiNodes) 3667 return false; 3668 // Just remove all seen values in matcher. They will not match anything. 3669 PhiNotMatchedCount += WillNotMatch.size(); 3670 for (auto *P : WillNotMatch) 3671 PhiNodesToMatch.erase(P); 3672 } 3673 return true; 3674 } 3675 /// Fill the placeholders with values from predecessors and simplify them. 3676 void FillPlaceholders(FoldAddrToValueMapping &Map, 3677 SmallVectorImpl<Value *> &TraverseOrder, 3678 SimplificationTracker &ST) { 3679 while (!TraverseOrder.empty()) { 3680 Value *Current = TraverseOrder.pop_back_val(); 3681 assert(Map.find(Current) != Map.end() && "No node to fill!!!"); 3682 Value *V = Map[Current]; 3683 3684 if (SelectInst *Select = dyn_cast<SelectInst>(V)) { 3685 // CurrentValue also must be Select. 3686 auto *CurrentSelect = cast<SelectInst>(Current); 3687 auto *TrueValue = CurrentSelect->getTrueValue(); 3688 assert(Map.find(TrueValue) != Map.end() && "No True Value!"); 3689 Select->setTrueValue(ST.Get(Map[TrueValue])); 3690 auto *FalseValue = CurrentSelect->getFalseValue(); 3691 assert(Map.find(FalseValue) != Map.end() && "No False Value!"); 3692 Select->setFalseValue(ST.Get(Map[FalseValue])); 3693 } else { 3694 // Must be a Phi node then. 3695 auto *PHI = cast<PHINode>(V); 3696 // Fill the Phi node with values from predecessors. 3697 for (auto *B : predecessors(PHI->getParent())) { 3698 Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); 3699 assert(Map.find(PV) != Map.end() && "No predecessor Value!"); 3700 PHI->addIncoming(ST.Get(Map[PV]), B); 3701 } 3702 } 3703 Map[Current] = ST.Simplify(V); 3704 } 3705 } 3706 3707 /// Starting from original value recursively iterates over def-use chain up to 3708 /// known ending values represented in a map. For each traversed phi/select 3709 /// inserts a placeholder Phi or Select. 3710 /// Reports all new created Phi/Select nodes by adding them to set. 3711 /// Also reports and order in what values have been traversed. 3712 void InsertPlaceholders(FoldAddrToValueMapping &Map, 3713 SmallVectorImpl<Value *> &TraverseOrder, 3714 SimplificationTracker &ST) { 3715 SmallVector<Value *, 32> Worklist; 3716 assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && 3717 "Address must be a Phi or Select node"); 3718 auto *Dummy = UndefValue::get(CommonType); 3719 Worklist.push_back(Original); 3720 while (!Worklist.empty()) { 3721 Value *Current = Worklist.pop_back_val(); 3722 // if it is already visited or it is an ending value then skip it. 3723 if (Map.find(Current) != Map.end()) 3724 continue; 3725 TraverseOrder.push_back(Current); 3726 3727 // CurrentValue must be a Phi node or select. All others must be covered 3728 // by anchors. 3729 if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { 3730 // Is it OK to get metadata from OrigSelect?! 3731 // Create a Select placeholder with dummy value. 3732 SelectInst *Select = SelectInst::Create( 3733 CurrentSelect->getCondition(), Dummy, Dummy, 3734 CurrentSelect->getName(), CurrentSelect, CurrentSelect); 3735 Map[Current] = Select; 3736 ST.insertNewSelect(Select); 3737 // We are interested in True and False values. 3738 Worklist.push_back(CurrentSelect->getTrueValue()); 3739 Worklist.push_back(CurrentSelect->getFalseValue()); 3740 } else { 3741 // It must be a Phi node then. 3742 PHINode *CurrentPhi = cast<PHINode>(Current); 3743 unsigned PredCount = CurrentPhi->getNumIncomingValues(); 3744 PHINode *PHI = 3745 PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); 3746 Map[Current] = PHI; 3747 ST.insertNewPhi(PHI); 3748 append_range(Worklist, CurrentPhi->incoming_values()); 3749 } 3750 } 3751 } 3752 3753 bool addrModeCombiningAllowed() { 3754 if (DisableComplexAddrModes) 3755 return false; 3756 switch (DifferentField) { 3757 default: 3758 return false; 3759 case ExtAddrMode::BaseRegField: 3760 return AddrSinkCombineBaseReg; 3761 case ExtAddrMode::BaseGVField: 3762 return AddrSinkCombineBaseGV; 3763 case ExtAddrMode::BaseOffsField: 3764 return AddrSinkCombineBaseOffs; 3765 case ExtAddrMode::ScaledRegField: 3766 return AddrSinkCombineScaledReg; 3767 } 3768 } 3769 }; 3770 } // end anonymous namespace 3771 3772 /// Try adding ScaleReg*Scale to the current addressing mode. 3773 /// Return true and update AddrMode if this addr mode is legal for the target, 3774 /// false if not. 3775 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, 3776 unsigned Depth) { 3777 // If Scale is 1, then this is the same as adding ScaleReg to the addressing 3778 // mode. Just process that directly. 3779 if (Scale == 1) 3780 return matchAddr(ScaleReg, Depth); 3781 3782 // If the scale is 0, it takes nothing to add this. 3783 if (Scale == 0) 3784 return true; 3785 3786 // If we already have a scale of this value, we can add to it, otherwise, we 3787 // need an available scale field. 3788 if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) 3789 return false; 3790 3791 ExtAddrMode TestAddrMode = AddrMode; 3792 3793 // Add scale to turn X*4+X*3 -> X*7. This could also do things like 3794 // [A+B + A*7] -> [B+A*8]. 3795 TestAddrMode.Scale += Scale; 3796 TestAddrMode.ScaledReg = ScaleReg; 3797 3798 // If the new address isn't legal, bail out. 3799 if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) 3800 return false; 3801 3802 // It was legal, so commit it. 3803 AddrMode = TestAddrMode; 3804 3805 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now 3806 // to see if ScaleReg is actually X+C. If so, we can turn this into adding 3807 // X*Scale + C*Scale to addr mode. 3808 ConstantInt *CI = nullptr; Value *AddLHS = nullptr; 3809 if (isa<Instruction>(ScaleReg) && // not a constant expr. 3810 match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) && 3811 CI->getValue().isSignedIntN(64)) { 3812 TestAddrMode.InBounds = false; 3813 TestAddrMode.ScaledReg = AddLHS; 3814 TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale; 3815 3816 // If this addressing mode is legal, commit it and remember that we folded 3817 // this instruction. 3818 if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { 3819 AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); 3820 AddrMode = TestAddrMode; 3821 return true; 3822 } 3823 } 3824 3825 // Otherwise, not (x+c)*scale, just return what we have. 3826 return true; 3827 } 3828 3829 /// This is a little filter, which returns true if an addressing computation 3830 /// involving I might be folded into a load/store accessing it. 3831 /// This doesn't need to be perfect, but needs to accept at least 3832 /// the set of instructions that MatchOperationAddr can. 3833 static bool MightBeFoldableInst(Instruction *I) { 3834 switch (I->getOpcode()) { 3835 case Instruction::BitCast: 3836 case Instruction::AddrSpaceCast: 3837 // Don't touch identity bitcasts. 3838 if (I->getType() == I->getOperand(0)->getType()) 3839 return false; 3840 return I->getType()->isIntOrPtrTy(); 3841 case Instruction::PtrToInt: 3842 // PtrToInt is always a noop, as we know that the int type is pointer sized. 3843 return true; 3844 case Instruction::IntToPtr: 3845 // We know the input is intptr_t, so this is foldable. 3846 return true; 3847 case Instruction::Add: 3848 return true; 3849 case Instruction::Mul: 3850 case Instruction::Shl: 3851 // Can only handle X*C and X << C. 3852 return isa<ConstantInt>(I->getOperand(1)); 3853 case Instruction::GetElementPtr: 3854 return true; 3855 default: 3856 return false; 3857 } 3858 } 3859 3860 /// Check whether or not \p Val is a legal instruction for \p TLI. 3861 /// \note \p Val is assumed to be the product of some type promotion. 3862 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed 3863 /// to be legal, as the non-promoted value would have had the same state. 3864 static bool isPromotedInstructionLegal(const TargetLowering &TLI, 3865 const DataLayout &DL, Value *Val) { 3866 Instruction *PromotedInst = dyn_cast<Instruction>(Val); 3867 if (!PromotedInst) 3868 return false; 3869 int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); 3870 // If the ISDOpcode is undefined, it was undefined before the promotion. 3871 if (!ISDOpcode) 3872 return true; 3873 // Otherwise, check if the promoted instruction is legal or not. 3874 return TLI.isOperationLegalOrCustom( 3875 ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); 3876 } 3877 3878 namespace { 3879 3880 /// Hepler class to perform type promotion. 3881 class TypePromotionHelper { 3882 /// Utility function to add a promoted instruction \p ExtOpnd to 3883 /// \p PromotedInsts and record the type of extension we have seen. 3884 static void addPromotedInst(InstrToOrigTy &PromotedInsts, 3885 Instruction *ExtOpnd, 3886 bool IsSExt) { 3887 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3888 InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); 3889 if (It != PromotedInsts.end()) { 3890 // If the new extension is same as original, the information in 3891 // PromotedInsts[ExtOpnd] is still correct. 3892 if (It->second.getInt() == ExtTy) 3893 return; 3894 3895 // Now the new extension is different from old extension, we make 3896 // the type information invalid by setting extension type to 3897 // BothExtension. 3898 ExtTy = BothExtension; 3899 } 3900 PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); 3901 } 3902 3903 /// Utility function to query the original type of instruction \p Opnd 3904 /// with a matched extension type. If the extension doesn't match, we 3905 /// cannot use the information we had on the original type. 3906 /// BothExtension doesn't match any extension type. 3907 static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, 3908 Instruction *Opnd, 3909 bool IsSExt) { 3910 ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; 3911 InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); 3912 if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) 3913 return It->second.getPointer(); 3914 return nullptr; 3915 } 3916 3917 /// Utility function to check whether or not a sign or zero extension 3918 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by 3919 /// either using the operands of \p Inst or promoting \p Inst. 3920 /// The type of the extension is defined by \p IsSExt. 3921 /// In other words, check if: 3922 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. 3923 /// #1 Promotion applies: 3924 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). 3925 /// #2 Operand reuses: 3926 /// ext opnd1 to ConsideredExtType. 3927 /// \p PromotedInsts maps the instructions to their type before promotion. 3928 static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, 3929 const InstrToOrigTy &PromotedInsts, bool IsSExt); 3930 3931 /// Utility function to determine if \p OpIdx should be promoted when 3932 /// promoting \p Inst. 3933 static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { 3934 return !(isa<SelectInst>(Inst) && OpIdx == 0); 3935 } 3936 3937 /// Utility function to promote the operand of \p Ext when this 3938 /// operand is a promotable trunc or sext or zext. 3939 /// \p PromotedInsts maps the instructions to their type before promotion. 3940 /// \p CreatedInstsCost[out] contains the cost of all instructions 3941 /// created to promote the operand of Ext. 3942 /// Newly added extensions are inserted in \p Exts. 3943 /// Newly added truncates are inserted in \p Truncs. 3944 /// Should never be called directly. 3945 /// \return The promoted value which is used instead of Ext. 3946 static Value *promoteOperandForTruncAndAnyExt( 3947 Instruction *Ext, TypePromotionTransaction &TPT, 3948 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3949 SmallVectorImpl<Instruction *> *Exts, 3950 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); 3951 3952 /// Utility function to promote the operand of \p Ext when this 3953 /// operand is promotable and is not a supported trunc or sext. 3954 /// \p PromotedInsts maps the instructions to their type before promotion. 3955 /// \p CreatedInstsCost[out] contains the cost of all the instructions 3956 /// created to promote the operand of Ext. 3957 /// Newly added extensions are inserted in \p Exts. 3958 /// Newly added truncates are inserted in \p Truncs. 3959 /// Should never be called directly. 3960 /// \return The promoted value which is used instead of Ext. 3961 static Value *promoteOperandForOther(Instruction *Ext, 3962 TypePromotionTransaction &TPT, 3963 InstrToOrigTy &PromotedInsts, 3964 unsigned &CreatedInstsCost, 3965 SmallVectorImpl<Instruction *> *Exts, 3966 SmallVectorImpl<Instruction *> *Truncs, 3967 const TargetLowering &TLI, bool IsSExt); 3968 3969 /// \see promoteOperandForOther. 3970 static Value *signExtendOperandForOther( 3971 Instruction *Ext, TypePromotionTransaction &TPT, 3972 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3973 SmallVectorImpl<Instruction *> *Exts, 3974 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3975 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3976 Exts, Truncs, TLI, true); 3977 } 3978 3979 /// \see promoteOperandForOther. 3980 static Value *zeroExtendOperandForOther( 3981 Instruction *Ext, TypePromotionTransaction &TPT, 3982 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 3983 SmallVectorImpl<Instruction *> *Exts, 3984 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 3985 return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, 3986 Exts, Truncs, TLI, false); 3987 } 3988 3989 public: 3990 /// Type for the utility function that promotes the operand of Ext. 3991 using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, 3992 InstrToOrigTy &PromotedInsts, 3993 unsigned &CreatedInstsCost, 3994 SmallVectorImpl<Instruction *> *Exts, 3995 SmallVectorImpl<Instruction *> *Truncs, 3996 const TargetLowering &TLI); 3997 3998 /// Given a sign/zero extend instruction \p Ext, return the appropriate 3999 /// action to promote the operand of \p Ext instead of using Ext. 4000 /// \return NULL if no promotable action is possible with the current 4001 /// sign extension. 4002 /// \p InsertedInsts keeps track of all the instructions inserted by the 4003 /// other CodeGenPrepare optimizations. This information is important 4004 /// because we do not want to promote these instructions as CodeGenPrepare 4005 /// will reinsert them later. Thus creating an infinite loop: create/remove. 4006 /// \p PromotedInsts maps the instructions to their type before promotion. 4007 static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, 4008 const TargetLowering &TLI, 4009 const InstrToOrigTy &PromotedInsts); 4010 }; 4011 4012 } // end anonymous namespace 4013 4014 bool TypePromotionHelper::canGetThrough(const Instruction *Inst, 4015 Type *ConsideredExtType, 4016 const InstrToOrigTy &PromotedInsts, 4017 bool IsSExt) { 4018 // The promotion helper does not know how to deal with vector types yet. 4019 // To be able to fix that, we would need to fix the places where we 4020 // statically extend, e.g., constants and such. 4021 if (Inst->getType()->isVectorTy()) 4022 return false; 4023 4024 // We can always get through zext. 4025 if (isa<ZExtInst>(Inst)) 4026 return true; 4027 4028 // sext(sext) is ok too. 4029 if (IsSExt && isa<SExtInst>(Inst)) 4030 return true; 4031 4032 // We can get through binary operator, if it is legal. In other words, the 4033 // binary operator must have a nuw or nsw flag. 4034 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); 4035 if (isa_and_nonnull<OverflowingBinaryOperator>(BinOp) && 4036 ((!IsSExt && BinOp->hasNoUnsignedWrap()) || 4037 (IsSExt && BinOp->hasNoSignedWrap()))) 4038 return true; 4039 4040 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) 4041 if ((Inst->getOpcode() == Instruction::And || 4042 Inst->getOpcode() == Instruction::Or)) 4043 return true; 4044 4045 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) 4046 if (Inst->getOpcode() == Instruction::Xor) { 4047 const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); 4048 // Make sure it is not a NOT. 4049 if (Cst && !Cst->getValue().isAllOnesValue()) 4050 return true; 4051 } 4052 4053 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) 4054 // It may change a poisoned value into a regular value, like 4055 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 4056 // poisoned value regular value 4057 // It should be OK since undef covers valid value. 4058 if (Inst->getOpcode() == Instruction::LShr && !IsSExt) 4059 return true; 4060 4061 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) 4062 // It may change a poisoned value into a regular value, like 4063 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 4064 // poisoned value regular value 4065 // It should be OK since undef covers valid value. 4066 if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { 4067 const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); 4068 if (ExtInst->hasOneUse()) { 4069 const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); 4070 if (AndInst && AndInst->getOpcode() == Instruction::And) { 4071 const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); 4072 if (Cst && 4073 Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) 4074 return true; 4075 } 4076 } 4077 } 4078 4079 // Check if we can do the following simplification. 4080 // ext(trunc(opnd)) --> ext(opnd) 4081 if (!isa<TruncInst>(Inst)) 4082 return false; 4083 4084 Value *OpndVal = Inst->getOperand(0); 4085 // Check if we can use this operand in the extension. 4086 // If the type is larger than the result type of the extension, we cannot. 4087 if (!OpndVal->getType()->isIntegerTy() || 4088 OpndVal->getType()->getIntegerBitWidth() > 4089 ConsideredExtType->getIntegerBitWidth()) 4090 return false; 4091 4092 // If the operand of the truncate is not an instruction, we will not have 4093 // any information on the dropped bits. 4094 // (Actually we could for constant but it is not worth the extra logic). 4095 Instruction *Opnd = dyn_cast<Instruction>(OpndVal); 4096 if (!Opnd) 4097 return false; 4098 4099 // Check if the source of the type is narrow enough. 4100 // I.e., check that trunc just drops extended bits of the same kind of 4101 // the extension. 4102 // #1 get the type of the operand and check the kind of the extended bits. 4103 const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); 4104 if (OpndType) 4105 ; 4106 else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) 4107 OpndType = Opnd->getOperand(0)->getType(); 4108 else 4109 return false; 4110 4111 // #2 check that the truncate just drops extended bits. 4112 return Inst->getType()->getIntegerBitWidth() >= 4113 OpndType->getIntegerBitWidth(); 4114 } 4115 4116 TypePromotionHelper::Action TypePromotionHelper::getAction( 4117 Instruction *Ext, const SetOfInstrs &InsertedInsts, 4118 const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { 4119 assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && 4120 "Unexpected instruction type"); 4121 Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); 4122 Type *ExtTy = Ext->getType(); 4123 bool IsSExt = isa<SExtInst>(Ext); 4124 // If the operand of the extension is not an instruction, we cannot 4125 // get through. 4126 // If it, check we can get through. 4127 if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) 4128 return nullptr; 4129 4130 // Do not promote if the operand has been added by codegenprepare. 4131 // Otherwise, it means we are undoing an optimization that is likely to be 4132 // redone, thus causing potential infinite loop. 4133 if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) 4134 return nullptr; 4135 4136 // SExt or Trunc instructions. 4137 // Return the related handler. 4138 if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || 4139 isa<ZExtInst>(ExtOpnd)) 4140 return promoteOperandForTruncAndAnyExt; 4141 4142 // Regular instruction. 4143 // Abort early if we will have to insert non-free instructions. 4144 if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) 4145 return nullptr; 4146 return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; 4147 } 4148 4149 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( 4150 Instruction *SExt, TypePromotionTransaction &TPT, 4151 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4152 SmallVectorImpl<Instruction *> *Exts, 4153 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { 4154 // By construction, the operand of SExt is an instruction. Otherwise we cannot 4155 // get through it and this method should not be called. 4156 Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); 4157 Value *ExtVal = SExt; 4158 bool HasMergedNonFreeExt = false; 4159 if (isa<ZExtInst>(SExtOpnd)) { 4160 // Replace s|zext(zext(opnd)) 4161 // => zext(opnd). 4162 HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); 4163 Value *ZExt = 4164 TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); 4165 TPT.replaceAllUsesWith(SExt, ZExt); 4166 TPT.eraseInstruction(SExt); 4167 ExtVal = ZExt; 4168 } else { 4169 // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) 4170 // => z|sext(opnd). 4171 TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); 4172 } 4173 CreatedInstsCost = 0; 4174 4175 // Remove dead code. 4176 if (SExtOpnd->use_empty()) 4177 TPT.eraseInstruction(SExtOpnd); 4178 4179 // Check if the extension is still needed. 4180 Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); 4181 if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { 4182 if (ExtInst) { 4183 if (Exts) 4184 Exts->push_back(ExtInst); 4185 CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; 4186 } 4187 return ExtVal; 4188 } 4189 4190 // At this point we have: ext ty opnd to ty. 4191 // Reassign the uses of ExtInst to the opnd and remove ExtInst. 4192 Value *NextVal = ExtInst->getOperand(0); 4193 TPT.eraseInstruction(ExtInst, NextVal); 4194 return NextVal; 4195 } 4196 4197 Value *TypePromotionHelper::promoteOperandForOther( 4198 Instruction *Ext, TypePromotionTransaction &TPT, 4199 InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, 4200 SmallVectorImpl<Instruction *> *Exts, 4201 SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, 4202 bool IsSExt) { 4203 // By construction, the operand of Ext is an instruction. Otherwise we cannot 4204 // get through it and this method should not be called. 4205 Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); 4206 CreatedInstsCost = 0; 4207 if (!ExtOpnd->hasOneUse()) { 4208 // ExtOpnd will be promoted. 4209 // All its uses, but Ext, will need to use a truncated value of the 4210 // promoted version. 4211 // Create the truncate now. 4212 Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); 4213 if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { 4214 // Insert it just after the definition. 4215 ITrunc->moveAfter(ExtOpnd); 4216 if (Truncs) 4217 Truncs->push_back(ITrunc); 4218 } 4219 4220 TPT.replaceAllUsesWith(ExtOpnd, Trunc); 4221 // Restore the operand of Ext (which has been replaced by the previous call 4222 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. 4223 TPT.setOperand(Ext, 0, ExtOpnd); 4224 } 4225 4226 // Get through the Instruction: 4227 // 1. Update its type. 4228 // 2. Replace the uses of Ext by Inst. 4229 // 3. Extend each operand that needs to be extended. 4230 4231 // Remember the original type of the instruction before promotion. 4232 // This is useful to know that the high bits are sign extended bits. 4233 addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); 4234 // Step #1. 4235 TPT.mutateType(ExtOpnd, Ext->getType()); 4236 // Step #2. 4237 TPT.replaceAllUsesWith(Ext, ExtOpnd); 4238 // Step #3. 4239 Instruction *ExtForOpnd = Ext; 4240 4241 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); 4242 for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; 4243 ++OpIdx) { 4244 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); 4245 if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || 4246 !shouldExtOperand(ExtOpnd, OpIdx)) { 4247 LLVM_DEBUG(dbgs() << "No need to propagate\n"); 4248 continue; 4249 } 4250 // Check if we can statically extend the operand. 4251 Value *Opnd = ExtOpnd->getOperand(OpIdx); 4252 if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { 4253 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4254 unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); 4255 APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) 4256 : Cst->getValue().zext(BitWidth); 4257 TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); 4258 continue; 4259 } 4260 // UndefValue are typed, so we have to statically sign extend them. 4261 if (isa<UndefValue>(Opnd)) { 4262 LLVM_DEBUG(dbgs() << "Statically extend\n"); 4263 TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); 4264 continue; 4265 } 4266 4267 // Otherwise we have to explicitly sign extend the operand. 4268 // Check if Ext was reused to extend an operand. 4269 if (!ExtForOpnd) { 4270 // If yes, create a new one. 4271 LLVM_DEBUG(dbgs() << "More operands to ext\n"); 4272 Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) 4273 : TPT.createZExt(Ext, Opnd, Ext->getType()); 4274 if (!isa<Instruction>(ValForExtOpnd)) { 4275 TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); 4276 continue; 4277 } 4278 ExtForOpnd = cast<Instruction>(ValForExtOpnd); 4279 } 4280 if (Exts) 4281 Exts->push_back(ExtForOpnd); 4282 TPT.setOperand(ExtForOpnd, 0, Opnd); 4283 4284 // Move the sign extension before the insertion point. 4285 TPT.moveBefore(ExtForOpnd, ExtOpnd); 4286 TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); 4287 CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); 4288 // If more sext are required, new instructions will have to be created. 4289 ExtForOpnd = nullptr; 4290 } 4291 if (ExtForOpnd == Ext) { 4292 LLVM_DEBUG(dbgs() << "Extension is useless now\n"); 4293 TPT.eraseInstruction(Ext); 4294 } 4295 return ExtOpnd; 4296 } 4297 4298 /// Check whether or not promoting an instruction to a wider type is profitable. 4299 /// \p NewCost gives the cost of extension instructions created by the 4300 /// promotion. 4301 /// \p OldCost gives the cost of extension instructions before the promotion 4302 /// plus the number of instructions that have been 4303 /// matched in the addressing mode the promotion. 4304 /// \p PromotedOperand is the value that has been promoted. 4305 /// \return True if the promotion is profitable, false otherwise. 4306 bool AddressingModeMatcher::isPromotionProfitable( 4307 unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { 4308 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost 4309 << '\n'); 4310 // The cost of the new extensions is greater than the cost of the 4311 // old extension plus what we folded. 4312 // This is not profitable. 4313 if (NewCost > OldCost) 4314 return false; 4315 if (NewCost < OldCost) 4316 return true; 4317 // The promotion is neutral but it may help folding the sign extension in 4318 // loads for instance. 4319 // Check that we did not create an illegal instruction. 4320 return isPromotedInstructionLegal(TLI, DL, PromotedOperand); 4321 } 4322 4323 /// Given an instruction or constant expr, see if we can fold the operation 4324 /// into the addressing mode. If so, update the addressing mode and return 4325 /// true, otherwise return false without modifying AddrMode. 4326 /// If \p MovedAway is not NULL, it contains the information of whether or 4327 /// not AddrInst has to be folded into the addressing mode on success. 4328 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing 4329 /// because it has been moved away. 4330 /// Thus AddrInst must not be added in the matched instructions. 4331 /// This state can happen when AddrInst is a sext, since it may be moved away. 4332 /// Therefore, AddrInst may not be valid when MovedAway is true and it must 4333 /// not be referenced anymore. 4334 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, 4335 unsigned Depth, 4336 bool *MovedAway) { 4337 // Avoid exponential behavior on extremely deep expression trees. 4338 if (Depth >= 5) return false; 4339 4340 // By default, all matched instructions stay in place. 4341 if (MovedAway) 4342 *MovedAway = false; 4343 4344 switch (Opcode) { 4345 case Instruction::PtrToInt: 4346 // PtrToInt is always a noop, as we know that the int type is pointer sized. 4347 return matchAddr(AddrInst->getOperand(0), Depth); 4348 case Instruction::IntToPtr: { 4349 auto AS = AddrInst->getType()->getPointerAddressSpace(); 4350 auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); 4351 // This inttoptr is a no-op if the integer type is pointer sized. 4352 if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) 4353 return matchAddr(AddrInst->getOperand(0), Depth); 4354 return false; 4355 } 4356 case Instruction::BitCast: 4357 // BitCast is always a noop, and we can handle it as long as it is 4358 // int->int or pointer->pointer (we don't want int<->fp or something). 4359 if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && 4360 // Don't touch identity bitcasts. These were probably put here by LSR, 4361 // and we don't want to mess around with them. Assume it knows what it 4362 // is doing. 4363 AddrInst->getOperand(0)->getType() != AddrInst->getType()) 4364 return matchAddr(AddrInst->getOperand(0), Depth); 4365 return false; 4366 case Instruction::AddrSpaceCast: { 4367 unsigned SrcAS 4368 = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); 4369 unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); 4370 if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS)) 4371 return matchAddr(AddrInst->getOperand(0), Depth); 4372 return false; 4373 } 4374 case Instruction::Add: { 4375 // Check to see if we can merge in the RHS then the LHS. If so, we win. 4376 ExtAddrMode BackupAddrMode = AddrMode; 4377 unsigned OldSize = AddrModeInsts.size(); 4378 // Start a transaction at this point. 4379 // The LHS may match but not the RHS. 4380 // Therefore, we need a higher level restoration point to undo partially 4381 // matched operation. 4382 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4383 TPT.getRestorationPoint(); 4384 4385 AddrMode.InBounds = false; 4386 if (matchAddr(AddrInst->getOperand(1), Depth+1) && 4387 matchAddr(AddrInst->getOperand(0), Depth+1)) 4388 return true; 4389 4390 // Restore the old addr mode info. 4391 AddrMode = BackupAddrMode; 4392 AddrModeInsts.resize(OldSize); 4393 TPT.rollback(LastKnownGood); 4394 4395 // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. 4396 if (matchAddr(AddrInst->getOperand(0), Depth+1) && 4397 matchAddr(AddrInst->getOperand(1), Depth+1)) 4398 return true; 4399 4400 // Otherwise we definitely can't merge the ADD in. 4401 AddrMode = BackupAddrMode; 4402 AddrModeInsts.resize(OldSize); 4403 TPT.rollback(LastKnownGood); 4404 break; 4405 } 4406 //case Instruction::Or: 4407 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. 4408 //break; 4409 case Instruction::Mul: 4410 case Instruction::Shl: { 4411 // Can only handle X*C and X << C. 4412 AddrMode.InBounds = false; 4413 ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); 4414 if (!RHS || RHS->getBitWidth() > 64) 4415 return false; 4416 int64_t Scale = RHS->getSExtValue(); 4417 if (Opcode == Instruction::Shl) 4418 Scale = 1LL << Scale; 4419 4420 return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); 4421 } 4422 case Instruction::GetElementPtr: { 4423 // Scan the GEP. We check it if it contains constant offsets and at most 4424 // one variable offset. 4425 int VariableOperand = -1; 4426 unsigned VariableScale = 0; 4427 4428 int64_t ConstantOffset = 0; 4429 gep_type_iterator GTI = gep_type_begin(AddrInst); 4430 for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { 4431 if (StructType *STy = GTI.getStructTypeOrNull()) { 4432 const StructLayout *SL = DL.getStructLayout(STy); 4433 unsigned Idx = 4434 cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); 4435 ConstantOffset += SL->getElementOffset(Idx); 4436 } else { 4437 TypeSize TS = DL.getTypeAllocSize(GTI.getIndexedType()); 4438 if (TS.isNonZero()) { 4439 // The optimisations below currently only work for fixed offsets. 4440 if (TS.isScalable()) 4441 return false; 4442 int64_t TypeSize = TS.getFixedSize(); 4443 if (ConstantInt *CI = 4444 dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { 4445 const APInt &CVal = CI->getValue(); 4446 if (CVal.getMinSignedBits() <= 64) { 4447 ConstantOffset += CVal.getSExtValue() * TypeSize; 4448 continue; 4449 } 4450 } 4451 // We only allow one variable index at the moment. 4452 if (VariableOperand != -1) 4453 return false; 4454 4455 // Remember the variable index. 4456 VariableOperand = i; 4457 VariableScale = TypeSize; 4458 } 4459 } 4460 } 4461 4462 // A common case is for the GEP to only do a constant offset. In this case, 4463 // just add it to the disp field and check validity. 4464 if (VariableOperand == -1) { 4465 AddrMode.BaseOffs += ConstantOffset; 4466 if (ConstantOffset == 0 || 4467 TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { 4468 // Check to see if we can fold the base pointer in too. 4469 if (matchAddr(AddrInst->getOperand(0), Depth+1)) { 4470 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4471 AddrMode.InBounds = false; 4472 return true; 4473 } 4474 } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && 4475 TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && 4476 ConstantOffset > 0) { 4477 // Record GEPs with non-zero offsets as candidates for splitting in the 4478 // event that the offset cannot fit into the r+i addressing mode. 4479 // Simple and common case that only one GEP is used in calculating the 4480 // address for the memory access. 4481 Value *Base = AddrInst->getOperand(0); 4482 auto *BaseI = dyn_cast<Instruction>(Base); 4483 auto *GEP = cast<GetElementPtrInst>(AddrInst); 4484 if (isa<Argument>(Base) || isa<GlobalValue>(Base) || 4485 (BaseI && !isa<CastInst>(BaseI) && 4486 !isa<GetElementPtrInst>(BaseI))) { 4487 // Make sure the parent block allows inserting non-PHI instructions 4488 // before the terminator. 4489 BasicBlock *Parent = 4490 BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); 4491 if (!Parent->getTerminator()->isEHPad()) 4492 LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); 4493 } 4494 } 4495 AddrMode.BaseOffs -= ConstantOffset; 4496 return false; 4497 } 4498 4499 // Save the valid addressing mode in case we can't match. 4500 ExtAddrMode BackupAddrMode = AddrMode; 4501 unsigned OldSize = AddrModeInsts.size(); 4502 4503 // See if the scale and offset amount is valid for this target. 4504 AddrMode.BaseOffs += ConstantOffset; 4505 if (!cast<GEPOperator>(AddrInst)->isInBounds()) 4506 AddrMode.InBounds = false; 4507 4508 // Match the base operand of the GEP. 4509 if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { 4510 // If it couldn't be matched, just stuff the value in a register. 4511 if (AddrMode.HasBaseReg) { 4512 AddrMode = BackupAddrMode; 4513 AddrModeInsts.resize(OldSize); 4514 return false; 4515 } 4516 AddrMode.HasBaseReg = true; 4517 AddrMode.BaseReg = AddrInst->getOperand(0); 4518 } 4519 4520 // Match the remaining variable portion of the GEP. 4521 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, 4522 Depth)) { 4523 // If it couldn't be matched, try stuffing the base into a register 4524 // instead of matching it, and retrying the match of the scale. 4525 AddrMode = BackupAddrMode; 4526 AddrModeInsts.resize(OldSize); 4527 if (AddrMode.HasBaseReg) 4528 return false; 4529 AddrMode.HasBaseReg = true; 4530 AddrMode.BaseReg = AddrInst->getOperand(0); 4531 AddrMode.BaseOffs += ConstantOffset; 4532 if (!matchScaledValue(AddrInst->getOperand(VariableOperand), 4533 VariableScale, Depth)) { 4534 // If even that didn't work, bail. 4535 AddrMode = BackupAddrMode; 4536 AddrModeInsts.resize(OldSize); 4537 return false; 4538 } 4539 } 4540 4541 return true; 4542 } 4543 case Instruction::SExt: 4544 case Instruction::ZExt: { 4545 Instruction *Ext = dyn_cast<Instruction>(AddrInst); 4546 if (!Ext) 4547 return false; 4548 4549 // Try to move this ext out of the way of the addressing mode. 4550 // Ask for a method for doing so. 4551 TypePromotionHelper::Action TPH = 4552 TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); 4553 if (!TPH) 4554 return false; 4555 4556 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4557 TPT.getRestorationPoint(); 4558 unsigned CreatedInstsCost = 0; 4559 unsigned ExtCost = !TLI.isExtFree(Ext); 4560 Value *PromotedOperand = 4561 TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); 4562 // SExt has been moved away. 4563 // Thus either it will be rematched later in the recursive calls or it is 4564 // gone. Anyway, we must not fold it into the addressing mode at this point. 4565 // E.g., 4566 // op = add opnd, 1 4567 // idx = ext op 4568 // addr = gep base, idx 4569 // is now: 4570 // promotedOpnd = ext opnd <- no match here 4571 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) 4572 // addr = gep base, op <- match 4573 if (MovedAway) 4574 *MovedAway = true; 4575 4576 assert(PromotedOperand && 4577 "TypePromotionHelper should have filtered out those cases"); 4578 4579 ExtAddrMode BackupAddrMode = AddrMode; 4580 unsigned OldSize = AddrModeInsts.size(); 4581 4582 if (!matchAddr(PromotedOperand, Depth) || 4583 // The total of the new cost is equal to the cost of the created 4584 // instructions. 4585 // The total of the old cost is equal to the cost of the extension plus 4586 // what we have saved in the addressing mode. 4587 !isPromotionProfitable(CreatedInstsCost, 4588 ExtCost + (AddrModeInsts.size() - OldSize), 4589 PromotedOperand)) { 4590 AddrMode = BackupAddrMode; 4591 AddrModeInsts.resize(OldSize); 4592 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); 4593 TPT.rollback(LastKnownGood); 4594 return false; 4595 } 4596 return true; 4597 } 4598 } 4599 return false; 4600 } 4601 4602 /// If we can, try to add the value of 'Addr' into the current addressing mode. 4603 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode 4604 /// unmodified. This assumes that Addr is either a pointer type or intptr_t 4605 /// for the target. 4606 /// 4607 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { 4608 // Start a transaction at this point that we will rollback if the matching 4609 // fails. 4610 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4611 TPT.getRestorationPoint(); 4612 if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { 4613 if (CI->getValue().isSignedIntN(64)) { 4614 // Fold in immediates if legal for the target. 4615 AddrMode.BaseOffs += CI->getSExtValue(); 4616 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4617 return true; 4618 AddrMode.BaseOffs -= CI->getSExtValue(); 4619 } 4620 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { 4621 // If this is a global variable, try to fold it into the addressing mode. 4622 if (!AddrMode.BaseGV) { 4623 AddrMode.BaseGV = GV; 4624 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4625 return true; 4626 AddrMode.BaseGV = nullptr; 4627 } 4628 } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { 4629 ExtAddrMode BackupAddrMode = AddrMode; 4630 unsigned OldSize = AddrModeInsts.size(); 4631 4632 // Check to see if it is possible to fold this operation. 4633 bool MovedAway = false; 4634 if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { 4635 // This instruction may have been moved away. If so, there is nothing 4636 // to check here. 4637 if (MovedAway) 4638 return true; 4639 // Okay, it's possible to fold this. Check to see if it is actually 4640 // *profitable* to do so. We use a simple cost model to avoid increasing 4641 // register pressure too much. 4642 if (I->hasOneUse() || 4643 isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { 4644 AddrModeInsts.push_back(I); 4645 return true; 4646 } 4647 4648 // It isn't profitable to do this, roll back. 4649 //cerr << "NOT FOLDING: " << *I; 4650 AddrMode = BackupAddrMode; 4651 AddrModeInsts.resize(OldSize); 4652 TPT.rollback(LastKnownGood); 4653 } 4654 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { 4655 if (matchOperationAddr(CE, CE->getOpcode(), Depth)) 4656 return true; 4657 TPT.rollback(LastKnownGood); 4658 } else if (isa<ConstantPointerNull>(Addr)) { 4659 // Null pointer gets folded without affecting the addressing mode. 4660 return true; 4661 } 4662 4663 // Worse case, the target should support [reg] addressing modes. :) 4664 if (!AddrMode.HasBaseReg) { 4665 AddrMode.HasBaseReg = true; 4666 AddrMode.BaseReg = Addr; 4667 // Still check for legality in case the target supports [imm] but not [i+r]. 4668 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4669 return true; 4670 AddrMode.HasBaseReg = false; 4671 AddrMode.BaseReg = nullptr; 4672 } 4673 4674 // If the base register is already taken, see if we can do [r+r]. 4675 if (AddrMode.Scale == 0) { 4676 AddrMode.Scale = 1; 4677 AddrMode.ScaledReg = Addr; 4678 if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) 4679 return true; 4680 AddrMode.Scale = 0; 4681 AddrMode.ScaledReg = nullptr; 4682 } 4683 // Couldn't match. 4684 TPT.rollback(LastKnownGood); 4685 return false; 4686 } 4687 4688 /// Check to see if all uses of OpVal by the specified inline asm call are due 4689 /// to memory operands. If so, return true, otherwise return false. 4690 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, 4691 const TargetLowering &TLI, 4692 const TargetRegisterInfo &TRI) { 4693 const Function *F = CI->getFunction(); 4694 TargetLowering::AsmOperandInfoVector TargetConstraints = 4695 TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI); 4696 4697 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 4698 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 4699 4700 // Compute the constraint code and ConstraintType to use. 4701 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 4702 4703 // If this asm operand is our Value*, and if it isn't an indirect memory 4704 // operand, we can't fold it! 4705 if (OpInfo.CallOperandVal == OpVal && 4706 (OpInfo.ConstraintType != TargetLowering::C_Memory || 4707 !OpInfo.isIndirect)) 4708 return false; 4709 } 4710 4711 return true; 4712 } 4713 4714 // Max number of memory uses to look at before aborting the search to conserve 4715 // compile time. 4716 static constexpr int MaxMemoryUsesToScan = 20; 4717 4718 /// Recursively walk all the uses of I until we find a memory use. 4719 /// If we find an obviously non-foldable instruction, return true. 4720 /// Add the ultimately found memory instructions to MemoryUses. 4721 static bool FindAllMemoryUses( 4722 Instruction *I, 4723 SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, 4724 SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, 4725 const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, 4726 BlockFrequencyInfo *BFI, int SeenInsts = 0) { 4727 // If we already considered this instruction, we're done. 4728 if (!ConsideredInsts.insert(I).second) 4729 return false; 4730 4731 // If this is an obviously unfoldable instruction, bail out. 4732 if (!MightBeFoldableInst(I)) 4733 return true; 4734 4735 // Loop over all the uses, recursively processing them. 4736 for (Use &U : I->uses()) { 4737 // Conservatively return true if we're seeing a large number or a deep chain 4738 // of users. This avoids excessive compilation times in pathological cases. 4739 if (SeenInsts++ >= MaxMemoryUsesToScan) 4740 return true; 4741 4742 Instruction *UserI = cast<Instruction>(U.getUser()); 4743 if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { 4744 MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); 4745 continue; 4746 } 4747 4748 if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { 4749 unsigned opNo = U.getOperandNo(); 4750 if (opNo != StoreInst::getPointerOperandIndex()) 4751 return true; // Storing addr, not into addr. 4752 MemoryUses.push_back(std::make_pair(SI, opNo)); 4753 continue; 4754 } 4755 4756 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { 4757 unsigned opNo = U.getOperandNo(); 4758 if (opNo != AtomicRMWInst::getPointerOperandIndex()) 4759 return true; // Storing addr, not into addr. 4760 MemoryUses.push_back(std::make_pair(RMW, opNo)); 4761 continue; 4762 } 4763 4764 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { 4765 unsigned opNo = U.getOperandNo(); 4766 if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) 4767 return true; // Storing addr, not into addr. 4768 MemoryUses.push_back(std::make_pair(CmpX, opNo)); 4769 continue; 4770 } 4771 4772 if (CallInst *CI = dyn_cast<CallInst>(UserI)) { 4773 if (CI->hasFnAttr(Attribute::Cold)) { 4774 // If this is a cold call, we can sink the addressing calculation into 4775 // the cold path. See optimizeCallInst 4776 bool OptForSize = OptSize || 4777 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); 4778 if (!OptForSize) 4779 continue; 4780 } 4781 4782 InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); 4783 if (!IA) return true; 4784 4785 // If this is a memory operand, we're cool, otherwise bail out. 4786 if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) 4787 return true; 4788 continue; 4789 } 4790 4791 if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4792 PSI, BFI, SeenInsts)) 4793 return true; 4794 } 4795 4796 return false; 4797 } 4798 4799 /// Return true if Val is already known to be live at the use site that we're 4800 /// folding it into. If so, there is no cost to include it in the addressing 4801 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the 4802 /// instruction already. 4803 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, 4804 Value *KnownLive2) { 4805 // If Val is either of the known-live values, we know it is live! 4806 if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) 4807 return true; 4808 4809 // All values other than instructions and arguments (e.g. constants) are live. 4810 if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; 4811 4812 // If Val is a constant sized alloca in the entry block, it is live, this is 4813 // true because it is just a reference to the stack/frame pointer, which is 4814 // live for the whole function. 4815 if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) 4816 if (AI->isStaticAlloca()) 4817 return true; 4818 4819 // Check to see if this value is already used in the memory instruction's 4820 // block. If so, it's already live into the block at the very least, so we 4821 // can reasonably fold it. 4822 return Val->isUsedInBasicBlock(MemoryInst->getParent()); 4823 } 4824 4825 /// It is possible for the addressing mode of the machine to fold the specified 4826 /// instruction into a load or store that ultimately uses it. 4827 /// However, the specified instruction has multiple uses. 4828 /// Given this, it may actually increase register pressure to fold it 4829 /// into the load. For example, consider this code: 4830 /// 4831 /// X = ... 4832 /// Y = X+1 4833 /// use(Y) -> nonload/store 4834 /// Z = Y+1 4835 /// load Z 4836 /// 4837 /// In this case, Y has multiple uses, and can be folded into the load of Z 4838 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to 4839 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one 4840 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the 4841 /// number of computations either. 4842 /// 4843 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If 4844 /// X was live across 'load Z' for other reasons, we actually *would* want to 4845 /// fold the addressing mode in the Z case. This would make Y die earlier. 4846 bool AddressingModeMatcher:: 4847 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, 4848 ExtAddrMode &AMAfter) { 4849 if (IgnoreProfitability) return true; 4850 4851 // AMBefore is the addressing mode before this instruction was folded into it, 4852 // and AMAfter is the addressing mode after the instruction was folded. Get 4853 // the set of registers referenced by AMAfter and subtract out those 4854 // referenced by AMBefore: this is the set of values which folding in this 4855 // address extends the lifetime of. 4856 // 4857 // Note that there are only two potential values being referenced here, 4858 // BaseReg and ScaleReg (global addresses are always available, as are any 4859 // folded immediates). 4860 Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; 4861 4862 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their 4863 // lifetime wasn't extended by adding this instruction. 4864 if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4865 BaseReg = nullptr; 4866 if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) 4867 ScaledReg = nullptr; 4868 4869 // If folding this instruction (and it's subexprs) didn't extend any live 4870 // ranges, we're ok with it. 4871 if (!BaseReg && !ScaledReg) 4872 return true; 4873 4874 // If all uses of this instruction can have the address mode sunk into them, 4875 // we can remove the addressing mode and effectively trade one live register 4876 // for another (at worst.) In this context, folding an addressing mode into 4877 // the use is just a particularly nice way of sinking it. 4878 SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; 4879 SmallPtrSet<Instruction*, 16> ConsideredInsts; 4880 if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, 4881 PSI, BFI)) 4882 return false; // Has a non-memory, non-foldable use! 4883 4884 // Now that we know that all uses of this instruction are part of a chain of 4885 // computation involving only operations that could theoretically be folded 4886 // into a memory use, loop over each of these memory operation uses and see 4887 // if they could *actually* fold the instruction. The assumption is that 4888 // addressing modes are cheap and that duplicating the computation involved 4889 // many times is worthwhile, even on a fastpath. For sinking candidates 4890 // (i.e. cold call sites), this serves as a way to prevent excessive code 4891 // growth since most architectures have some reasonable small and fast way to 4892 // compute an effective address. (i.e LEA on x86) 4893 SmallVector<Instruction*, 32> MatchedAddrModeInsts; 4894 for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { 4895 Instruction *User = MemoryUses[i].first; 4896 unsigned OpNo = MemoryUses[i].second; 4897 4898 // Get the access type of this use. If the use isn't a pointer, we don't 4899 // know what it accesses. 4900 Value *Address = User->getOperand(OpNo); 4901 PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); 4902 if (!AddrTy) 4903 return false; 4904 Type *AddressAccessTy = AddrTy->getElementType(); 4905 unsigned AS = AddrTy->getAddressSpace(); 4906 4907 // Do a match against the root of this address, ignoring profitability. This 4908 // will tell us if the addressing mode for the memory operation will 4909 // *actually* cover the shared instruction. 4910 ExtAddrMode Result; 4911 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 4912 0); 4913 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4914 TPT.getRestorationPoint(); 4915 AddressingModeMatcher Matcher( 4916 MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, 4917 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, BFI); 4918 Matcher.IgnoreProfitability = true; 4919 bool Success = Matcher.matchAddr(Address, 0); 4920 (void)Success; assert(Success && "Couldn't select *anything*?"); 4921 4922 // The match was to check the profitability, the changes made are not 4923 // part of the original matcher. Therefore, they should be dropped 4924 // otherwise the original matcher will not present the right state. 4925 TPT.rollback(LastKnownGood); 4926 4927 // If the match didn't cover I, then it won't be shared by it. 4928 if (!is_contained(MatchedAddrModeInsts, I)) 4929 return false; 4930 4931 MatchedAddrModeInsts.clear(); 4932 } 4933 4934 return true; 4935 } 4936 4937 /// Return true if the specified values are defined in a 4938 /// different basic block than BB. 4939 static bool IsNonLocalValue(Value *V, BasicBlock *BB) { 4940 if (Instruction *I = dyn_cast<Instruction>(V)) 4941 return I->getParent() != BB; 4942 return false; 4943 } 4944 4945 /// Sink addressing mode computation immediate before MemoryInst if doing so 4946 /// can be done without increasing register pressure. The need for the 4947 /// register pressure constraint means this can end up being an all or nothing 4948 /// decision for all uses of the same addressing computation. 4949 /// 4950 /// Load and Store Instructions often have addressing modes that can do 4951 /// significant amounts of computation. As such, instruction selection will try 4952 /// to get the load or store to do as much computation as possible for the 4953 /// program. The problem is that isel can only see within a single block. As 4954 /// such, we sink as much legal addressing mode work into the block as possible. 4955 /// 4956 /// This method is used to optimize both load/store and inline asms with memory 4957 /// operands. It's also used to sink addressing computations feeding into cold 4958 /// call sites into their (cold) basic block. 4959 /// 4960 /// The motivation for handling sinking into cold blocks is that doing so can 4961 /// both enable other address mode sinking (by satisfying the register pressure 4962 /// constraint above), and reduce register pressure globally (by removing the 4963 /// addressing mode computation from the fast path entirely.). 4964 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, 4965 Type *AccessTy, unsigned AddrSpace) { 4966 Value *Repl = Addr; 4967 4968 // Try to collapse single-value PHI nodes. This is necessary to undo 4969 // unprofitable PRE transformations. 4970 SmallVector<Value*, 8> worklist; 4971 SmallPtrSet<Value*, 16> Visited; 4972 worklist.push_back(Addr); 4973 4974 // Use a worklist to iteratively look through PHI and select nodes, and 4975 // ensure that the addressing mode obtained from the non-PHI/select roots of 4976 // the graph are compatible. 4977 bool PhiOrSelectSeen = false; 4978 SmallVector<Instruction*, 16> AddrModeInsts; 4979 const SimplifyQuery SQ(*DL, TLInfo); 4980 AddressingModeCombiner AddrModes(SQ, Addr); 4981 TypePromotionTransaction TPT(RemovedInsts); 4982 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 4983 TPT.getRestorationPoint(); 4984 while (!worklist.empty()) { 4985 Value *V = worklist.back(); 4986 worklist.pop_back(); 4987 4988 // We allow traversing cyclic Phi nodes. 4989 // In case of success after this loop we ensure that traversing through 4990 // Phi nodes ends up with all cases to compute address of the form 4991 // BaseGV + Base + Scale * Index + Offset 4992 // where Scale and Offset are constans and BaseGV, Base and Index 4993 // are exactly the same Values in all cases. 4994 // It means that BaseGV, Scale and Offset dominate our memory instruction 4995 // and have the same value as they had in address computation represented 4996 // as Phi. So we can safely sink address computation to memory instruction. 4997 if (!Visited.insert(V).second) 4998 continue; 4999 5000 // For a PHI node, push all of its incoming values. 5001 if (PHINode *P = dyn_cast<PHINode>(V)) { 5002 append_range(worklist, P->incoming_values()); 5003 PhiOrSelectSeen = true; 5004 continue; 5005 } 5006 // Similar for select. 5007 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 5008 worklist.push_back(SI->getFalseValue()); 5009 worklist.push_back(SI->getTrueValue()); 5010 PhiOrSelectSeen = true; 5011 continue; 5012 } 5013 5014 // For non-PHIs, determine the addressing mode being computed. Note that 5015 // the result may differ depending on what other uses our candidate 5016 // addressing instructions might have. 5017 AddrModeInsts.clear(); 5018 std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, 5019 0); 5020 ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( 5021 V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, 5022 InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, 5023 BFI.get()); 5024 5025 GetElementPtrInst *GEP = LargeOffsetGEP.first; 5026 if (GEP && !NewGEPBases.count(GEP)) { 5027 // If splitting the underlying data structure can reduce the offset of a 5028 // GEP, collect the GEP. Skip the GEPs that are the new bases of 5029 // previously split data structures. 5030 LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); 5031 if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) 5032 LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); 5033 } 5034 5035 NewAddrMode.OriginalValue = V; 5036 if (!AddrModes.addNewAddrMode(NewAddrMode)) 5037 break; 5038 } 5039 5040 // Try to combine the AddrModes we've collected. If we couldn't collect any, 5041 // or we have multiple but either couldn't combine them or combining them 5042 // wouldn't do anything useful, bail out now. 5043 if (!AddrModes.combineAddrModes()) { 5044 TPT.rollback(LastKnownGood); 5045 return false; 5046 } 5047 bool Modified = TPT.commit(); 5048 5049 // Get the combined AddrMode (or the only AddrMode, if we only had one). 5050 ExtAddrMode AddrMode = AddrModes.getAddrMode(); 5051 5052 // If all the instructions matched are already in this BB, don't do anything. 5053 // If we saw a Phi node then it is not local definitely, and if we saw a select 5054 // then we want to push the address calculation past it even if it's already 5055 // in this BB. 5056 if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { 5057 return IsNonLocalValue(V, MemoryInst->getParent()); 5058 })) { 5059 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode 5060 << "\n"); 5061 return Modified; 5062 } 5063 5064 // Insert this computation right after this user. Since our caller is 5065 // scanning from the top of the BB to the bottom, reuse of the expr are 5066 // guaranteed to happen later. 5067 IRBuilder<> Builder(MemoryInst); 5068 5069 // Now that we determined the addressing expression we want to use and know 5070 // that we have to sink it into this block. Check to see if we have already 5071 // done this for some other load/store instr in this block. If so, reuse 5072 // the computation. Before attempting reuse, check if the address is valid 5073 // as it may have been erased. 5074 5075 WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; 5076 5077 Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 5078 if (SunkAddr) { 5079 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode 5080 << " for " << *MemoryInst << "\n"); 5081 if (SunkAddr->getType() != Addr->getType()) 5082 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5083 } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && 5084 SubtargetInfo->addrSinkUsingGEPs())) { 5085 // By default, we use the GEP-based method when AA is used later. This 5086 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. 5087 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5088 << " for " << *MemoryInst << "\n"); 5089 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5090 Value *ResultPtr = nullptr, *ResultIndex = nullptr; 5091 5092 // First, find the pointer. 5093 if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { 5094 ResultPtr = AddrMode.BaseReg; 5095 AddrMode.BaseReg = nullptr; 5096 } 5097 5098 if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { 5099 // We can't add more than one pointer together, nor can we scale a 5100 // pointer (both of which seem meaningless). 5101 if (ResultPtr || AddrMode.Scale != 1) 5102 return Modified; 5103 5104 ResultPtr = AddrMode.ScaledReg; 5105 AddrMode.Scale = 0; 5106 } 5107 5108 // It is only safe to sign extend the BaseReg if we know that the math 5109 // required to create it did not overflow before we extend it. Since 5110 // the original IR value was tossed in favor of a constant back when 5111 // the AddrMode was created we need to bail out gracefully if widths 5112 // do not match instead of extending it. 5113 // 5114 // (See below for code to add the scale.) 5115 if (AddrMode.Scale) { 5116 Type *ScaledRegTy = AddrMode.ScaledReg->getType(); 5117 if (cast<IntegerType>(IntPtrTy)->getBitWidth() > 5118 cast<IntegerType>(ScaledRegTy)->getBitWidth()) 5119 return Modified; 5120 } 5121 5122 if (AddrMode.BaseGV) { 5123 if (ResultPtr) 5124 return Modified; 5125 5126 ResultPtr = AddrMode.BaseGV; 5127 } 5128 5129 // If the real base value actually came from an inttoptr, then the matcher 5130 // will look through it and provide only the integer value. In that case, 5131 // use it here. 5132 if (!DL->isNonIntegralPointerType(Addr->getType())) { 5133 if (!ResultPtr && AddrMode.BaseReg) { 5134 ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), 5135 "sunkaddr"); 5136 AddrMode.BaseReg = nullptr; 5137 } else if (!ResultPtr && AddrMode.Scale == 1) { 5138 ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), 5139 "sunkaddr"); 5140 AddrMode.Scale = 0; 5141 } 5142 } 5143 5144 if (!ResultPtr && 5145 !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { 5146 SunkAddr = Constant::getNullValue(Addr->getType()); 5147 } else if (!ResultPtr) { 5148 return Modified; 5149 } else { 5150 Type *I8PtrTy = 5151 Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); 5152 Type *I8Ty = Builder.getInt8Ty(); 5153 5154 // Start with the base register. Do this first so that subsequent address 5155 // matching finds it last, which will prevent it from trying to match it 5156 // as the scaled value in case it happens to be a mul. That would be 5157 // problematic if we've sunk a different mul for the scale, because then 5158 // we'd end up sinking both muls. 5159 if (AddrMode.BaseReg) { 5160 Value *V = AddrMode.BaseReg; 5161 if (V->getType() != IntPtrTy) 5162 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5163 5164 ResultIndex = V; 5165 } 5166 5167 // Add the scale value. 5168 if (AddrMode.Scale) { 5169 Value *V = AddrMode.ScaledReg; 5170 if (V->getType() == IntPtrTy) { 5171 // done. 5172 } else { 5173 assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < 5174 cast<IntegerType>(V->getType())->getBitWidth() && 5175 "We can't transform if ScaledReg is too narrow"); 5176 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5177 } 5178 5179 if (AddrMode.Scale != 1) 5180 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5181 "sunkaddr"); 5182 if (ResultIndex) 5183 ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); 5184 else 5185 ResultIndex = V; 5186 } 5187 5188 // Add in the Base Offset if present. 5189 if (AddrMode.BaseOffs) { 5190 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5191 if (ResultIndex) { 5192 // We need to add this separately from the scale above to help with 5193 // SDAG consecutive load/store merging. 5194 if (ResultPtr->getType() != I8PtrTy) 5195 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5196 ResultPtr = 5197 AddrMode.InBounds 5198 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5199 "sunkaddr") 5200 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5201 } 5202 5203 ResultIndex = V; 5204 } 5205 5206 if (!ResultIndex) { 5207 SunkAddr = ResultPtr; 5208 } else { 5209 if (ResultPtr->getType() != I8PtrTy) 5210 ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); 5211 SunkAddr = 5212 AddrMode.InBounds 5213 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, 5214 "sunkaddr") 5215 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); 5216 } 5217 5218 if (SunkAddr->getType() != Addr->getType()) 5219 SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); 5220 } 5221 } else { 5222 // We'd require a ptrtoint/inttoptr down the line, which we can't do for 5223 // non-integral pointers, so in that case bail out now. 5224 Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; 5225 Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; 5226 PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); 5227 PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); 5228 if (DL->isNonIntegralPointerType(Addr->getType()) || 5229 (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || 5230 (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || 5231 (AddrMode.BaseGV && 5232 DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) 5233 return Modified; 5234 5235 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode 5236 << " for " << *MemoryInst << "\n"); 5237 Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); 5238 Value *Result = nullptr; 5239 5240 // Start with the base register. Do this first so that subsequent address 5241 // matching finds it last, which will prevent it from trying to match it 5242 // as the scaled value in case it happens to be a mul. That would be 5243 // problematic if we've sunk a different mul for the scale, because then 5244 // we'd end up sinking both muls. 5245 if (AddrMode.BaseReg) { 5246 Value *V = AddrMode.BaseReg; 5247 if (V->getType()->isPointerTy()) 5248 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5249 if (V->getType() != IntPtrTy) 5250 V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); 5251 Result = V; 5252 } 5253 5254 // Add the scale value. 5255 if (AddrMode.Scale) { 5256 Value *V = AddrMode.ScaledReg; 5257 if (V->getType() == IntPtrTy) { 5258 // done. 5259 } else if (V->getType()->isPointerTy()) { 5260 V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); 5261 } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < 5262 cast<IntegerType>(V->getType())->getBitWidth()) { 5263 V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); 5264 } else { 5265 // It is only safe to sign extend the BaseReg if we know that the math 5266 // required to create it did not overflow before we extend it. Since 5267 // the original IR value was tossed in favor of a constant back when 5268 // the AddrMode was created we need to bail out gracefully if widths 5269 // do not match instead of extending it. 5270 Instruction *I = dyn_cast_or_null<Instruction>(Result); 5271 if (I && (Result != AddrMode.BaseReg)) 5272 I->eraseFromParent(); 5273 return Modified; 5274 } 5275 if (AddrMode.Scale != 1) 5276 V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), 5277 "sunkaddr"); 5278 if (Result) 5279 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5280 else 5281 Result = V; 5282 } 5283 5284 // Add in the BaseGV if present. 5285 if (AddrMode.BaseGV) { 5286 Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); 5287 if (Result) 5288 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5289 else 5290 Result = V; 5291 } 5292 5293 // Add in the Base Offset if present. 5294 if (AddrMode.BaseOffs) { 5295 Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); 5296 if (Result) 5297 Result = Builder.CreateAdd(Result, V, "sunkaddr"); 5298 else 5299 Result = V; 5300 } 5301 5302 if (!Result) 5303 SunkAddr = Constant::getNullValue(Addr->getType()); 5304 else 5305 SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); 5306 } 5307 5308 MemoryInst->replaceUsesOfWith(Repl, SunkAddr); 5309 // Store the newly computed address into the cache. In the case we reused a 5310 // value, this should be idempotent. 5311 SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); 5312 5313 // If we have no uses, recursively delete the value and all dead instructions 5314 // using it. 5315 if (Repl->use_empty()) { 5316 resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() { 5317 RecursivelyDeleteTriviallyDeadInstructions( 5318 Repl, TLInfo, nullptr, 5319 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5320 }); 5321 } 5322 ++NumMemoryInsts; 5323 return true; 5324 } 5325 5326 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find 5327 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can 5328 /// only handle a 2 operand GEP in the same basic block or a splat constant 5329 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector 5330 /// index. 5331 /// 5332 /// If the existing GEP has a vector base pointer that is splat, we can look 5333 /// through the splat to find the scalar pointer. If we can't find a scalar 5334 /// pointer there's nothing we can do. 5335 /// 5336 /// If we have a GEP with more than 2 indices where the middle indices are all 5337 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands. 5338 /// 5339 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP 5340 /// followed by a GEP with an all zeroes vector index. This will enable 5341 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a 5342 /// zero index. 5343 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, 5344 Value *Ptr) { 5345 Value *NewAddr; 5346 5347 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 5348 // Don't optimize GEPs that don't have indices. 5349 if (!GEP->hasIndices()) 5350 return false; 5351 5352 // If the GEP and the gather/scatter aren't in the same BB, don't optimize. 5353 // FIXME: We should support this by sinking the GEP. 5354 if (MemoryInst->getParent() != GEP->getParent()) 5355 return false; 5356 5357 SmallVector<Value *, 2> Ops(GEP->operands()); 5358 5359 bool RewriteGEP = false; 5360 5361 if (Ops[0]->getType()->isVectorTy()) { 5362 Ops[0] = getSplatValue(Ops[0]); 5363 if (!Ops[0]) 5364 return false; 5365 RewriteGEP = true; 5366 } 5367 5368 unsigned FinalIndex = Ops.size() - 1; 5369 5370 // Ensure all but the last index is 0. 5371 // FIXME: This isn't strictly required. All that's required is that they are 5372 // all scalars or splats. 5373 for (unsigned i = 1; i < FinalIndex; ++i) { 5374 auto *C = dyn_cast<Constant>(Ops[i]); 5375 if (!C) 5376 return false; 5377 if (isa<VectorType>(C->getType())) 5378 C = C->getSplatValue(); 5379 auto *CI = dyn_cast_or_null<ConstantInt>(C); 5380 if (!CI || !CI->isZero()) 5381 return false; 5382 // Scalarize the index if needed. 5383 Ops[i] = CI; 5384 } 5385 5386 // Try to scalarize the final index. 5387 if (Ops[FinalIndex]->getType()->isVectorTy()) { 5388 if (Value *V = getSplatValue(Ops[FinalIndex])) { 5389 auto *C = dyn_cast<ConstantInt>(V); 5390 // Don't scalarize all zeros vector. 5391 if (!C || !C->isZero()) { 5392 Ops[FinalIndex] = V; 5393 RewriteGEP = true; 5394 } 5395 } 5396 } 5397 5398 // If we made any changes or the we have extra operands, we need to generate 5399 // new instructions. 5400 if (!RewriteGEP && Ops.size() == 2) 5401 return false; 5402 5403 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5404 5405 IRBuilder<> Builder(MemoryInst); 5406 5407 Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); 5408 5409 // If the final index isn't a vector, emit a scalar GEP containing all ops 5410 // and a vector GEP with all zeroes final index. 5411 if (!Ops[FinalIndex]->getType()->isVectorTy()) { 5412 NewAddr = Builder.CreateGEP(Ops[0], makeArrayRef(Ops).drop_front()); 5413 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5414 NewAddr = Builder.CreateGEP(NewAddr, Constant::getNullValue(IndexTy)); 5415 } else { 5416 Value *Base = Ops[0]; 5417 Value *Index = Ops[FinalIndex]; 5418 5419 // Create a scalar GEP if there are more than 2 operands. 5420 if (Ops.size() != 2) { 5421 // Replace the last index with 0. 5422 Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy); 5423 Base = Builder.CreateGEP(Base, makeArrayRef(Ops).drop_front()); 5424 } 5425 5426 // Now create the GEP with scalar pointer and vector index. 5427 NewAddr = Builder.CreateGEP(Base, Index); 5428 } 5429 } else if (!isa<Constant>(Ptr)) { 5430 // Not a GEP, maybe its a splat and we can create a GEP to enable 5431 // SelectionDAGBuilder to use it as a uniform base. 5432 Value *V = getSplatValue(Ptr); 5433 if (!V) 5434 return false; 5435 5436 auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 5437 5438 IRBuilder<> Builder(MemoryInst); 5439 5440 // Emit a vector GEP with a scalar pointer and all 0s vector index. 5441 Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType()); 5442 auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts); 5443 NewAddr = Builder.CreateGEP(V, Constant::getNullValue(IndexTy)); 5444 } else { 5445 // Constant, SelectionDAGBuilder knows to check if its a splat. 5446 return false; 5447 } 5448 5449 MemoryInst->replaceUsesOfWith(Ptr, NewAddr); 5450 5451 // If we have no uses, recursively delete the value and all dead instructions 5452 // using it. 5453 if (Ptr->use_empty()) 5454 RecursivelyDeleteTriviallyDeadInstructions( 5455 Ptr, TLInfo, nullptr, 5456 [&](Value *V) { removeAllAssertingVHReferences(V); }); 5457 5458 return true; 5459 } 5460 5461 /// If there are any memory operands, use OptimizeMemoryInst to sink their 5462 /// address computing into the block when possible / profitable. 5463 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { 5464 bool MadeChange = false; 5465 5466 const TargetRegisterInfo *TRI = 5467 TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); 5468 TargetLowering::AsmOperandInfoVector TargetConstraints = 5469 TLI->ParseConstraints(*DL, TRI, *CS); 5470 unsigned ArgNo = 0; 5471 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5472 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 5473 5474 // Compute the constraint code and ConstraintType to use. 5475 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 5476 5477 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5478 OpInfo.isIndirect) { 5479 Value *OpVal = CS->getArgOperand(ArgNo++); 5480 MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); 5481 } else if (OpInfo.Type == InlineAsm::isInput) 5482 ArgNo++; 5483 } 5484 5485 return MadeChange; 5486 } 5487 5488 /// Check if all the uses of \p Val are equivalent (or free) zero or 5489 /// sign extensions. 5490 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { 5491 assert(!Val->use_empty() && "Input must have at least one use"); 5492 const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); 5493 bool IsSExt = isa<SExtInst>(FirstUser); 5494 Type *ExtTy = FirstUser->getType(); 5495 for (const User *U : Val->users()) { 5496 const Instruction *UI = cast<Instruction>(U); 5497 if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) 5498 return false; 5499 Type *CurTy = UI->getType(); 5500 // Same input and output types: Same instruction after CSE. 5501 if (CurTy == ExtTy) 5502 continue; 5503 5504 // If IsSExt is true, we are in this situation: 5505 // a = Val 5506 // b = sext ty1 a to ty2 5507 // c = sext ty1 a to ty3 5508 // Assuming ty2 is shorter than ty3, this could be turned into: 5509 // a = Val 5510 // b = sext ty1 a to ty2 5511 // c = sext ty2 b to ty3 5512 // However, the last sext is not free. 5513 if (IsSExt) 5514 return false; 5515 5516 // This is a ZExt, maybe this is free to extend from one type to another. 5517 // In that case, we would not account for a different use. 5518 Type *NarrowTy; 5519 Type *LargeTy; 5520 if (ExtTy->getScalarType()->getIntegerBitWidth() > 5521 CurTy->getScalarType()->getIntegerBitWidth()) { 5522 NarrowTy = CurTy; 5523 LargeTy = ExtTy; 5524 } else { 5525 NarrowTy = ExtTy; 5526 LargeTy = CurTy; 5527 } 5528 5529 if (!TLI.isZExtFree(NarrowTy, LargeTy)) 5530 return false; 5531 } 5532 // All uses are the same or can be derived from one another for free. 5533 return true; 5534 } 5535 5536 /// Try to speculatively promote extensions in \p Exts and continue 5537 /// promoting through newly promoted operands recursively as far as doing so is 5538 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. 5539 /// When some promotion happened, \p TPT contains the proper state to revert 5540 /// them. 5541 /// 5542 /// \return true if some promotion happened, false otherwise. 5543 bool CodeGenPrepare::tryToPromoteExts( 5544 TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, 5545 SmallVectorImpl<Instruction *> &ProfitablyMovedExts, 5546 unsigned CreatedInstsCost) { 5547 bool Promoted = false; 5548 5549 // Iterate over all the extensions to try to promote them. 5550 for (auto *I : Exts) { 5551 // Early check if we directly have ext(load). 5552 if (isa<LoadInst>(I->getOperand(0))) { 5553 ProfitablyMovedExts.push_back(I); 5554 continue; 5555 } 5556 5557 // Check whether or not we want to do any promotion. The reason we have 5558 // this check inside the for loop is to catch the case where an extension 5559 // is directly fed by a load because in such case the extension can be moved 5560 // up without any promotion on its operands. 5561 if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) 5562 return false; 5563 5564 // Get the action to perform the promotion. 5565 TypePromotionHelper::Action TPH = 5566 TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); 5567 // Check if we can promote. 5568 if (!TPH) { 5569 // Save the current extension as we cannot move up through its operand. 5570 ProfitablyMovedExts.push_back(I); 5571 continue; 5572 } 5573 5574 // Save the current state. 5575 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 5576 TPT.getRestorationPoint(); 5577 SmallVector<Instruction *, 4> NewExts; 5578 unsigned NewCreatedInstsCost = 0; 5579 unsigned ExtCost = !TLI->isExtFree(I); 5580 // Promote. 5581 Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, 5582 &NewExts, nullptr, *TLI); 5583 assert(PromotedVal && 5584 "TypePromotionHelper should have filtered out those cases"); 5585 5586 // We would be able to merge only one extension in a load. 5587 // Therefore, if we have more than 1 new extension we heuristically 5588 // cut this search path, because it means we degrade the code quality. 5589 // With exactly 2, the transformation is neutral, because we will merge 5590 // one extension but leave one. However, we optimistically keep going, 5591 // because the new extension may be removed too. 5592 long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; 5593 // FIXME: It would be possible to propagate a negative value instead of 5594 // conservatively ceiling it to 0. 5595 TotalCreatedInstsCost = 5596 std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); 5597 if (!StressExtLdPromotion && 5598 (TotalCreatedInstsCost > 1 || 5599 !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { 5600 // This promotion is not profitable, rollback to the previous state, and 5601 // save the current extension in ProfitablyMovedExts as the latest 5602 // speculative promotion turned out to be unprofitable. 5603 TPT.rollback(LastKnownGood); 5604 ProfitablyMovedExts.push_back(I); 5605 continue; 5606 } 5607 // Continue promoting NewExts as far as doing so is profitable. 5608 SmallVector<Instruction *, 2> NewlyMovedExts; 5609 (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); 5610 bool NewPromoted = false; 5611 for (auto *ExtInst : NewlyMovedExts) { 5612 Instruction *MovedExt = cast<Instruction>(ExtInst); 5613 Value *ExtOperand = MovedExt->getOperand(0); 5614 // If we have reached to a load, we need this extra profitability check 5615 // as it could potentially be merged into an ext(load). 5616 if (isa<LoadInst>(ExtOperand) && 5617 !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || 5618 (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) 5619 continue; 5620 5621 ProfitablyMovedExts.push_back(MovedExt); 5622 NewPromoted = true; 5623 } 5624 5625 // If none of speculative promotions for NewExts is profitable, rollback 5626 // and save the current extension (I) as the last profitable extension. 5627 if (!NewPromoted) { 5628 TPT.rollback(LastKnownGood); 5629 ProfitablyMovedExts.push_back(I); 5630 continue; 5631 } 5632 // The promotion is profitable. 5633 Promoted = true; 5634 } 5635 return Promoted; 5636 } 5637 5638 /// Merging redundant sexts when one is dominating the other. 5639 bool CodeGenPrepare::mergeSExts(Function &F) { 5640 bool Changed = false; 5641 for (auto &Entry : ValToSExtendedUses) { 5642 SExts &Insts = Entry.second; 5643 SExts CurPts; 5644 for (Instruction *Inst : Insts) { 5645 if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || 5646 Inst->getOperand(0) != Entry.first) 5647 continue; 5648 bool inserted = false; 5649 for (auto &Pt : CurPts) { 5650 if (getDT(F).dominates(Inst, Pt)) { 5651 Pt->replaceAllUsesWith(Inst); 5652 RemovedInsts.insert(Pt); 5653 Pt->removeFromParent(); 5654 Pt = Inst; 5655 inserted = true; 5656 Changed = true; 5657 break; 5658 } 5659 if (!getDT(F).dominates(Pt, Inst)) 5660 // Give up if we need to merge in a common dominator as the 5661 // experiments show it is not profitable. 5662 continue; 5663 Inst->replaceAllUsesWith(Pt); 5664 RemovedInsts.insert(Inst); 5665 Inst->removeFromParent(); 5666 inserted = true; 5667 Changed = true; 5668 break; 5669 } 5670 if (!inserted) 5671 CurPts.push_back(Inst); 5672 } 5673 } 5674 return Changed; 5675 } 5676 5677 // Splitting large data structures so that the GEPs accessing them can have 5678 // smaller offsets so that they can be sunk to the same blocks as their users. 5679 // For example, a large struct starting from %base is split into two parts 5680 // where the second part starts from %new_base. 5681 // 5682 // Before: 5683 // BB0: 5684 // %base = 5685 // 5686 // BB1: 5687 // %gep0 = gep %base, off0 5688 // %gep1 = gep %base, off1 5689 // %gep2 = gep %base, off2 5690 // 5691 // BB2: 5692 // %load1 = load %gep0 5693 // %load2 = load %gep1 5694 // %load3 = load %gep2 5695 // 5696 // After: 5697 // BB0: 5698 // %base = 5699 // %new_base = gep %base, off0 5700 // 5701 // BB1: 5702 // %new_gep0 = %new_base 5703 // %new_gep1 = gep %new_base, off1 - off0 5704 // %new_gep2 = gep %new_base, off2 - off0 5705 // 5706 // BB2: 5707 // %load1 = load i32, i32* %new_gep0 5708 // %load2 = load i32, i32* %new_gep1 5709 // %load3 = load i32, i32* %new_gep2 5710 // 5711 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because 5712 // their offsets are smaller enough to fit into the addressing mode. 5713 bool CodeGenPrepare::splitLargeGEPOffsets() { 5714 bool Changed = false; 5715 for (auto &Entry : LargeOffsetGEPMap) { 5716 Value *OldBase = Entry.first; 5717 SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> 5718 &LargeOffsetGEPs = Entry.second; 5719 auto compareGEPOffset = 5720 [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, 5721 const std::pair<GetElementPtrInst *, int64_t> &RHS) { 5722 if (LHS.first == RHS.first) 5723 return false; 5724 if (LHS.second != RHS.second) 5725 return LHS.second < RHS.second; 5726 return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; 5727 }; 5728 // Sorting all the GEPs of the same data structures based on the offsets. 5729 llvm::sort(LargeOffsetGEPs, compareGEPOffset); 5730 LargeOffsetGEPs.erase( 5731 std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), 5732 LargeOffsetGEPs.end()); 5733 // Skip if all the GEPs have the same offsets. 5734 if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) 5735 continue; 5736 GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; 5737 int64_t BaseOffset = LargeOffsetGEPs.begin()->second; 5738 Value *NewBaseGEP = nullptr; 5739 5740 auto *LargeOffsetGEP = LargeOffsetGEPs.begin(); 5741 while (LargeOffsetGEP != LargeOffsetGEPs.end()) { 5742 GetElementPtrInst *GEP = LargeOffsetGEP->first; 5743 int64_t Offset = LargeOffsetGEP->second; 5744 if (Offset != BaseOffset) { 5745 TargetLowering::AddrMode AddrMode; 5746 AddrMode.BaseOffs = Offset - BaseOffset; 5747 // The result type of the GEP might not be the type of the memory 5748 // access. 5749 if (!TLI->isLegalAddressingMode(*DL, AddrMode, 5750 GEP->getResultElementType(), 5751 GEP->getAddressSpace())) { 5752 // We need to create a new base if the offset to the current base is 5753 // too large to fit into the addressing mode. So, a very large struct 5754 // may be split into several parts. 5755 BaseGEP = GEP; 5756 BaseOffset = Offset; 5757 NewBaseGEP = nullptr; 5758 } 5759 } 5760 5761 // Generate a new GEP to replace the current one. 5762 LLVMContext &Ctx = GEP->getContext(); 5763 Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); 5764 Type *I8PtrTy = 5765 Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); 5766 Type *I8Ty = Type::getInt8Ty(Ctx); 5767 5768 if (!NewBaseGEP) { 5769 // Create a new base if we don't have one yet. Find the insertion 5770 // pointer for the new base first. 5771 BasicBlock::iterator NewBaseInsertPt; 5772 BasicBlock *NewBaseInsertBB; 5773 if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { 5774 // If the base of the struct is an instruction, the new base will be 5775 // inserted close to it. 5776 NewBaseInsertBB = BaseI->getParent(); 5777 if (isa<PHINode>(BaseI)) 5778 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5779 else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { 5780 NewBaseInsertBB = 5781 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); 5782 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5783 } else 5784 NewBaseInsertPt = std::next(BaseI->getIterator()); 5785 } else { 5786 // If the current base is an argument or global value, the new base 5787 // will be inserted to the entry block. 5788 NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); 5789 NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); 5790 } 5791 IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); 5792 // Create a new base. 5793 Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); 5794 NewBaseGEP = OldBase; 5795 if (NewBaseGEP->getType() != I8PtrTy) 5796 NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); 5797 NewBaseGEP = 5798 NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); 5799 NewGEPBases.insert(NewBaseGEP); 5800 } 5801 5802 IRBuilder<> Builder(GEP); 5803 Value *NewGEP = NewBaseGEP; 5804 if (Offset == BaseOffset) { 5805 if (GEP->getType() != I8PtrTy) 5806 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5807 } else { 5808 // Calculate the new offset for the new GEP. 5809 Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); 5810 NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); 5811 5812 if (GEP->getType() != I8PtrTy) 5813 NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); 5814 } 5815 GEP->replaceAllUsesWith(NewGEP); 5816 LargeOffsetGEPID.erase(GEP); 5817 LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); 5818 GEP->eraseFromParent(); 5819 Changed = true; 5820 } 5821 } 5822 return Changed; 5823 } 5824 5825 bool CodeGenPrepare::optimizePhiType( 5826 PHINode *I, SmallPtrSetImpl<PHINode *> &Visited, 5827 SmallPtrSetImpl<Instruction *> &DeletedInstrs) { 5828 // We are looking for a collection on interconnected phi nodes that together 5829 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts 5830 // are of the same type. Convert the whole set of nodes to the type of the 5831 // bitcast. 5832 Type *PhiTy = I->getType(); 5833 Type *ConvertTy = nullptr; 5834 if (Visited.count(I) || 5835 (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy())) 5836 return false; 5837 5838 SmallVector<Instruction *, 4> Worklist; 5839 Worklist.push_back(cast<Instruction>(I)); 5840 SmallPtrSet<PHINode *, 4> PhiNodes; 5841 PhiNodes.insert(I); 5842 Visited.insert(I); 5843 SmallPtrSet<Instruction *, 4> Defs; 5844 SmallPtrSet<Instruction *, 4> Uses; 5845 // This works by adding extra bitcasts between load/stores and removing 5846 // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi)) 5847 // we can get in the situation where we remove a bitcast in one iteration 5848 // just to add it again in the next. We need to ensure that at least one 5849 // bitcast we remove are anchored to something that will not change back. 5850 bool AnyAnchored = false; 5851 5852 while (!Worklist.empty()) { 5853 Instruction *II = Worklist.pop_back_val(); 5854 5855 if (auto *Phi = dyn_cast<PHINode>(II)) { 5856 // Handle Defs, which might also be PHI's 5857 for (Value *V : Phi->incoming_values()) { 5858 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 5859 if (!PhiNodes.count(OpPhi)) { 5860 if (Visited.count(OpPhi)) 5861 return false; 5862 PhiNodes.insert(OpPhi); 5863 Visited.insert(OpPhi); 5864 Worklist.push_back(OpPhi); 5865 } 5866 } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) { 5867 if (!OpLoad->isSimple()) 5868 return false; 5869 if (!Defs.count(OpLoad)) { 5870 Defs.insert(OpLoad); 5871 Worklist.push_back(OpLoad); 5872 } 5873 } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) { 5874 if (!Defs.count(OpEx)) { 5875 Defs.insert(OpEx); 5876 Worklist.push_back(OpEx); 5877 } 5878 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 5879 if (!ConvertTy) 5880 ConvertTy = OpBC->getOperand(0)->getType(); 5881 if (OpBC->getOperand(0)->getType() != ConvertTy) 5882 return false; 5883 if (!Defs.count(OpBC)) { 5884 Defs.insert(OpBC); 5885 Worklist.push_back(OpBC); 5886 AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) && 5887 !isa<ExtractElementInst>(OpBC->getOperand(0)); 5888 } 5889 } else if (!isa<UndefValue>(V)) { 5890 return false; 5891 } 5892 } 5893 } 5894 5895 // Handle uses which might also be phi's 5896 for (User *V : II->users()) { 5897 if (auto *OpPhi = dyn_cast<PHINode>(V)) { 5898 if (!PhiNodes.count(OpPhi)) { 5899 if (Visited.count(OpPhi)) 5900 return false; 5901 PhiNodes.insert(OpPhi); 5902 Visited.insert(OpPhi); 5903 Worklist.push_back(OpPhi); 5904 } 5905 } else if (auto *OpStore = dyn_cast<StoreInst>(V)) { 5906 if (!OpStore->isSimple() || OpStore->getOperand(0) != II) 5907 return false; 5908 Uses.insert(OpStore); 5909 } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { 5910 if (!ConvertTy) 5911 ConvertTy = OpBC->getType(); 5912 if (OpBC->getType() != ConvertTy) 5913 return false; 5914 Uses.insert(OpBC); 5915 AnyAnchored |= 5916 any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); }); 5917 } else { 5918 return false; 5919 } 5920 } 5921 } 5922 5923 if (!ConvertTy || !AnyAnchored || !TLI->shouldConvertPhiType(PhiTy, ConvertTy)) 5924 return false; 5925 5926 LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to " 5927 << *ConvertTy << "\n"); 5928 5929 // Create all the new phi nodes of the new type, and bitcast any loads to the 5930 // correct type. 5931 ValueToValueMap ValMap; 5932 ValMap[UndefValue::get(PhiTy)] = UndefValue::get(ConvertTy); 5933 for (Instruction *D : Defs) { 5934 if (isa<BitCastInst>(D)) { 5935 ValMap[D] = D->getOperand(0); 5936 DeletedInstrs.insert(D); 5937 } else { 5938 ValMap[D] = 5939 new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode()); 5940 } 5941 } 5942 for (PHINode *Phi : PhiNodes) 5943 ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(), 5944 Phi->getName() + ".tc", Phi); 5945 // Pipe together all the PhiNodes. 5946 for (PHINode *Phi : PhiNodes) { 5947 PHINode *NewPhi = cast<PHINode>(ValMap[Phi]); 5948 for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++) 5949 NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)], 5950 Phi->getIncomingBlock(i)); 5951 Visited.insert(NewPhi); 5952 } 5953 // And finally pipe up the stores and bitcasts 5954 for (Instruction *U : Uses) { 5955 if (isa<BitCastInst>(U)) { 5956 DeletedInstrs.insert(U); 5957 U->replaceAllUsesWith(ValMap[U->getOperand(0)]); 5958 } else { 5959 U->setOperand(0, 5960 new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U)); 5961 } 5962 } 5963 5964 // Save the removed phis to be deleted later. 5965 for (PHINode *Phi : PhiNodes) 5966 DeletedInstrs.insert(Phi); 5967 return true; 5968 } 5969 5970 bool CodeGenPrepare::optimizePhiTypes(Function &F) { 5971 if (!OptimizePhiTypes) 5972 return false; 5973 5974 bool Changed = false; 5975 SmallPtrSet<PHINode *, 4> Visited; 5976 SmallPtrSet<Instruction *, 4> DeletedInstrs; 5977 5978 // Attempt to optimize all the phis in the functions to the correct type. 5979 for (auto &BB : F) 5980 for (auto &Phi : BB.phis()) 5981 Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs); 5982 5983 // Remove any old phi's that have been converted. 5984 for (auto *I : DeletedInstrs) { 5985 I->replaceAllUsesWith(UndefValue::get(I->getType())); 5986 I->eraseFromParent(); 5987 } 5988 5989 return Changed; 5990 } 5991 5992 /// Return true, if an ext(load) can be formed from an extension in 5993 /// \p MovedExts. 5994 bool CodeGenPrepare::canFormExtLd( 5995 const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, 5996 Instruction *&Inst, bool HasPromoted) { 5997 for (auto *MovedExtInst : MovedExts) { 5998 if (isa<LoadInst>(MovedExtInst->getOperand(0))) { 5999 LI = cast<LoadInst>(MovedExtInst->getOperand(0)); 6000 Inst = MovedExtInst; 6001 break; 6002 } 6003 } 6004 if (!LI) 6005 return false; 6006 6007 // If they're already in the same block, there's nothing to do. 6008 // Make the cheap checks first if we did not promote. 6009 // If we promoted, we need to check if it is indeed profitable. 6010 if (!HasPromoted && LI->getParent() == Inst->getParent()) 6011 return false; 6012 6013 return TLI->isExtLoad(LI, Inst, *DL); 6014 } 6015 6016 /// Move a zext or sext fed by a load into the same basic block as the load, 6017 /// unless conditions are unfavorable. This allows SelectionDAG to fold the 6018 /// extend into the load. 6019 /// 6020 /// E.g., 6021 /// \code 6022 /// %ld = load i32* %addr 6023 /// %add = add nuw i32 %ld, 4 6024 /// %zext = zext i32 %add to i64 6025 // \endcode 6026 /// => 6027 /// \code 6028 /// %ld = load i32* %addr 6029 /// %zext = zext i32 %ld to i64 6030 /// %add = add nuw i64 %zext, 4 6031 /// \encode 6032 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which 6033 /// allow us to match zext(load i32*) to i64. 6034 /// 6035 /// Also, try to promote the computations used to obtain a sign extended 6036 /// value used into memory accesses. 6037 /// E.g., 6038 /// \code 6039 /// a = add nsw i32 b, 3 6040 /// d = sext i32 a to i64 6041 /// e = getelementptr ..., i64 d 6042 /// \endcode 6043 /// => 6044 /// \code 6045 /// f = sext i32 b to i64 6046 /// a = add nsw i64 f, 3 6047 /// e = getelementptr ..., i64 a 6048 /// \endcode 6049 /// 6050 /// \p Inst[in/out] the extension may be modified during the process if some 6051 /// promotions apply. 6052 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { 6053 bool AllowPromotionWithoutCommonHeader = false; 6054 /// See if it is an interesting sext operations for the address type 6055 /// promotion before trying to promote it, e.g., the ones with the right 6056 /// type and used in memory accesses. 6057 bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( 6058 *Inst, AllowPromotionWithoutCommonHeader); 6059 TypePromotionTransaction TPT(RemovedInsts); 6060 TypePromotionTransaction::ConstRestorationPt LastKnownGood = 6061 TPT.getRestorationPoint(); 6062 SmallVector<Instruction *, 1> Exts; 6063 SmallVector<Instruction *, 2> SpeculativelyMovedExts; 6064 Exts.push_back(Inst); 6065 6066 bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); 6067 6068 // Look for a load being extended. 6069 LoadInst *LI = nullptr; 6070 Instruction *ExtFedByLoad; 6071 6072 // Try to promote a chain of computation if it allows to form an extended 6073 // load. 6074 if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { 6075 assert(LI && ExtFedByLoad && "Expect a valid load and extension"); 6076 TPT.commit(); 6077 // Move the extend into the same block as the load. 6078 ExtFedByLoad->moveAfter(LI); 6079 ++NumExtsMoved; 6080 Inst = ExtFedByLoad; 6081 return true; 6082 } 6083 6084 // Continue promoting SExts if known as considerable depending on targets. 6085 if (ATPConsiderable && 6086 performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, 6087 HasPromoted, TPT, SpeculativelyMovedExts)) 6088 return true; 6089 6090 TPT.rollback(LastKnownGood); 6091 return false; 6092 } 6093 6094 // Perform address type promotion if doing so is profitable. 6095 // If AllowPromotionWithoutCommonHeader == false, we should find other sext 6096 // instructions that sign extended the same initial value. However, if 6097 // AllowPromotionWithoutCommonHeader == true, we expect promoting the 6098 // extension is just profitable. 6099 bool CodeGenPrepare::performAddressTypePromotion( 6100 Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, 6101 bool HasPromoted, TypePromotionTransaction &TPT, 6102 SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { 6103 bool Promoted = false; 6104 SmallPtrSet<Instruction *, 1> UnhandledExts; 6105 bool AllSeenFirst = true; 6106 for (auto *I : SpeculativelyMovedExts) { 6107 Value *HeadOfChain = I->getOperand(0); 6108 DenseMap<Value *, Instruction *>::iterator AlreadySeen = 6109 SeenChainsForSExt.find(HeadOfChain); 6110 // If there is an unhandled SExt which has the same header, try to promote 6111 // it as well. 6112 if (AlreadySeen != SeenChainsForSExt.end()) { 6113 if (AlreadySeen->second != nullptr) 6114 UnhandledExts.insert(AlreadySeen->second); 6115 AllSeenFirst = false; 6116 } 6117 } 6118 6119 if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && 6120 SpeculativelyMovedExts.size() == 1)) { 6121 TPT.commit(); 6122 if (HasPromoted) 6123 Promoted = true; 6124 for (auto *I : SpeculativelyMovedExts) { 6125 Value *HeadOfChain = I->getOperand(0); 6126 SeenChainsForSExt[HeadOfChain] = nullptr; 6127 ValToSExtendedUses[HeadOfChain].push_back(I); 6128 } 6129 // Update Inst as promotion happen. 6130 Inst = SpeculativelyMovedExts.pop_back_val(); 6131 } else { 6132 // This is the first chain visited from the header, keep the current chain 6133 // as unhandled. Defer to promote this until we encounter another SExt 6134 // chain derived from the same header. 6135 for (auto *I : SpeculativelyMovedExts) { 6136 Value *HeadOfChain = I->getOperand(0); 6137 SeenChainsForSExt[HeadOfChain] = Inst; 6138 } 6139 return false; 6140 } 6141 6142 if (!AllSeenFirst && !UnhandledExts.empty()) 6143 for (auto *VisitedSExt : UnhandledExts) { 6144 if (RemovedInsts.count(VisitedSExt)) 6145 continue; 6146 TypePromotionTransaction TPT(RemovedInsts); 6147 SmallVector<Instruction *, 1> Exts; 6148 SmallVector<Instruction *, 2> Chains; 6149 Exts.push_back(VisitedSExt); 6150 bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); 6151 TPT.commit(); 6152 if (HasPromoted) 6153 Promoted = true; 6154 for (auto *I : Chains) { 6155 Value *HeadOfChain = I->getOperand(0); 6156 // Mark this as handled. 6157 SeenChainsForSExt[HeadOfChain] = nullptr; 6158 ValToSExtendedUses[HeadOfChain].push_back(I); 6159 } 6160 } 6161 return Promoted; 6162 } 6163 6164 bool CodeGenPrepare::optimizeExtUses(Instruction *I) { 6165 BasicBlock *DefBB = I->getParent(); 6166 6167 // If the result of a {s|z}ext and its source are both live out, rewrite all 6168 // other uses of the source with result of extension. 6169 Value *Src = I->getOperand(0); 6170 if (Src->hasOneUse()) 6171 return false; 6172 6173 // Only do this xform if truncating is free. 6174 if (!TLI->isTruncateFree(I->getType(), Src->getType())) 6175 return false; 6176 6177 // Only safe to perform the optimization if the source is also defined in 6178 // this block. 6179 if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) 6180 return false; 6181 6182 bool DefIsLiveOut = false; 6183 for (User *U : I->users()) { 6184 Instruction *UI = cast<Instruction>(U); 6185 6186 // Figure out which BB this ext is used in. 6187 BasicBlock *UserBB = UI->getParent(); 6188 if (UserBB == DefBB) continue; 6189 DefIsLiveOut = true; 6190 break; 6191 } 6192 if (!DefIsLiveOut) 6193 return false; 6194 6195 // Make sure none of the uses are PHI nodes. 6196 for (User *U : Src->users()) { 6197 Instruction *UI = cast<Instruction>(U); 6198 BasicBlock *UserBB = UI->getParent(); 6199 if (UserBB == DefBB) continue; 6200 // Be conservative. We don't want this xform to end up introducing 6201 // reloads just before load / store instructions. 6202 if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) 6203 return false; 6204 } 6205 6206 // InsertedTruncs - Only insert one trunc in each block once. 6207 DenseMap<BasicBlock*, Instruction*> InsertedTruncs; 6208 6209 bool MadeChange = false; 6210 for (Use &U : Src->uses()) { 6211 Instruction *User = cast<Instruction>(U.getUser()); 6212 6213 // Figure out which BB this ext is used in. 6214 BasicBlock *UserBB = User->getParent(); 6215 if (UserBB == DefBB) continue; 6216 6217 // Both src and def are live in this block. Rewrite the use. 6218 Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; 6219 6220 if (!InsertedTrunc) { 6221 BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); 6222 assert(InsertPt != UserBB->end()); 6223 InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); 6224 InsertedInsts.insert(InsertedTrunc); 6225 } 6226 6227 // Replace a use of the {s|z}ext source with a use of the result. 6228 U = InsertedTrunc; 6229 ++NumExtUses; 6230 MadeChange = true; 6231 } 6232 6233 return MadeChange; 6234 } 6235 6236 // Find loads whose uses only use some of the loaded value's bits. Add an "and" 6237 // just after the load if the target can fold this into one extload instruction, 6238 // with the hope of eliminating some of the other later "and" instructions using 6239 // the loaded value. "and"s that are made trivially redundant by the insertion 6240 // of the new "and" are removed by this function, while others (e.g. those whose 6241 // path from the load goes through a phi) are left for isel to potentially 6242 // remove. 6243 // 6244 // For example: 6245 // 6246 // b0: 6247 // x = load i32 6248 // ... 6249 // b1: 6250 // y = and x, 0xff 6251 // z = use y 6252 // 6253 // becomes: 6254 // 6255 // b0: 6256 // x = load i32 6257 // x' = and x, 0xff 6258 // ... 6259 // b1: 6260 // z = use x' 6261 // 6262 // whereas: 6263 // 6264 // b0: 6265 // x1 = load i32 6266 // ... 6267 // b1: 6268 // x2 = load i32 6269 // ... 6270 // b2: 6271 // x = phi x1, x2 6272 // y = and x, 0xff 6273 // 6274 // becomes (after a call to optimizeLoadExt for each load): 6275 // 6276 // b0: 6277 // x1 = load i32 6278 // x1' = and x1, 0xff 6279 // ... 6280 // b1: 6281 // x2 = load i32 6282 // x2' = and x2, 0xff 6283 // ... 6284 // b2: 6285 // x = phi x1', x2' 6286 // y = and x, 0xff 6287 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { 6288 if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) 6289 return false; 6290 6291 // Skip loads we've already transformed. 6292 if (Load->hasOneUse() && 6293 InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) 6294 return false; 6295 6296 // Look at all uses of Load, looking through phis, to determine how many bits 6297 // of the loaded value are needed. 6298 SmallVector<Instruction *, 8> WorkList; 6299 SmallPtrSet<Instruction *, 16> Visited; 6300 SmallVector<Instruction *, 8> AndsToMaybeRemove; 6301 for (auto *U : Load->users()) 6302 WorkList.push_back(cast<Instruction>(U)); 6303 6304 EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); 6305 unsigned BitWidth = LoadResultVT.getSizeInBits(); 6306 APInt DemandBits(BitWidth, 0); 6307 APInt WidestAndBits(BitWidth, 0); 6308 6309 while (!WorkList.empty()) { 6310 Instruction *I = WorkList.back(); 6311 WorkList.pop_back(); 6312 6313 // Break use-def graph loops. 6314 if (!Visited.insert(I).second) 6315 continue; 6316 6317 // For a PHI node, push all of its users. 6318 if (auto *Phi = dyn_cast<PHINode>(I)) { 6319 for (auto *U : Phi->users()) 6320 WorkList.push_back(cast<Instruction>(U)); 6321 continue; 6322 } 6323 6324 switch (I->getOpcode()) { 6325 case Instruction::And: { 6326 auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); 6327 if (!AndC) 6328 return false; 6329 APInt AndBits = AndC->getValue(); 6330 DemandBits |= AndBits; 6331 // Keep track of the widest and mask we see. 6332 if (AndBits.ugt(WidestAndBits)) 6333 WidestAndBits = AndBits; 6334 if (AndBits == WidestAndBits && I->getOperand(0) == Load) 6335 AndsToMaybeRemove.push_back(I); 6336 break; 6337 } 6338 6339 case Instruction::Shl: { 6340 auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); 6341 if (!ShlC) 6342 return false; 6343 uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); 6344 DemandBits.setLowBits(BitWidth - ShiftAmt); 6345 break; 6346 } 6347 6348 case Instruction::Trunc: { 6349 EVT TruncVT = TLI->getValueType(*DL, I->getType()); 6350 unsigned TruncBitWidth = TruncVT.getSizeInBits(); 6351 DemandBits.setLowBits(TruncBitWidth); 6352 break; 6353 } 6354 6355 default: 6356 return false; 6357 } 6358 } 6359 6360 uint32_t ActiveBits = DemandBits.getActiveBits(); 6361 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the 6362 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, 6363 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but 6364 // (and (load x) 1) is not matched as a single instruction, rather as a LDR 6365 // followed by an AND. 6366 // TODO: Look into removing this restriction by fixing backends to either 6367 // return false for isLoadExtLegal for i1 or have them select this pattern to 6368 // a single instruction. 6369 // 6370 // Also avoid hoisting if we didn't see any ands with the exact DemandBits 6371 // mask, since these are the only ands that will be removed by isel. 6372 if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || 6373 WidestAndBits != DemandBits) 6374 return false; 6375 6376 LLVMContext &Ctx = Load->getType()->getContext(); 6377 Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); 6378 EVT TruncVT = TLI->getValueType(*DL, TruncTy); 6379 6380 // Reject cases that won't be matched as extloads. 6381 if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || 6382 !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) 6383 return false; 6384 6385 IRBuilder<> Builder(Load->getNextNode()); 6386 auto *NewAnd = cast<Instruction>( 6387 Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); 6388 // Mark this instruction as "inserted by CGP", so that other 6389 // optimizations don't touch it. 6390 InsertedInsts.insert(NewAnd); 6391 6392 // Replace all uses of load with new and (except for the use of load in the 6393 // new and itself). 6394 Load->replaceAllUsesWith(NewAnd); 6395 NewAnd->setOperand(0, Load); 6396 6397 // Remove any and instructions that are now redundant. 6398 for (auto *And : AndsToMaybeRemove) 6399 // Check that the and mask is the same as the one we decided to put on the 6400 // new and. 6401 if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { 6402 And->replaceAllUsesWith(NewAnd); 6403 if (&*CurInstIterator == And) 6404 CurInstIterator = std::next(And->getIterator()); 6405 And->eraseFromParent(); 6406 ++NumAndUses; 6407 } 6408 6409 ++NumAndsAdded; 6410 return true; 6411 } 6412 6413 /// Check if V (an operand of a select instruction) is an expensive instruction 6414 /// that is only used once. 6415 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { 6416 auto *I = dyn_cast<Instruction>(V); 6417 // If it's safe to speculatively execute, then it should not have side 6418 // effects; therefore, it's safe to sink and possibly *not* execute. 6419 return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && 6420 TTI->getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency) >= 6421 TargetTransformInfo::TCC_Expensive; 6422 } 6423 6424 /// Returns true if a SelectInst should be turned into an explicit branch. 6425 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, 6426 const TargetLowering *TLI, 6427 SelectInst *SI) { 6428 // If even a predictable select is cheap, then a branch can't be cheaper. 6429 if (!TLI->isPredictableSelectExpensive()) 6430 return false; 6431 6432 // FIXME: This should use the same heuristics as IfConversion to determine 6433 // whether a select is better represented as a branch. 6434 6435 // If metadata tells us that the select condition is obviously predictable, 6436 // then we want to replace the select with a branch. 6437 uint64_t TrueWeight, FalseWeight; 6438 if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { 6439 uint64_t Max = std::max(TrueWeight, FalseWeight); 6440 uint64_t Sum = TrueWeight + FalseWeight; 6441 if (Sum != 0) { 6442 auto Probability = BranchProbability::getBranchProbability(Max, Sum); 6443 if (Probability > TLI->getPredictableBranchThreshold()) 6444 return true; 6445 } 6446 } 6447 6448 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 6449 6450 // If a branch is predictable, an out-of-order CPU can avoid blocking on its 6451 // comparison condition. If the compare has more than one use, there's 6452 // probably another cmov or setcc around, so it's not worth emitting a branch. 6453 if (!Cmp || !Cmp->hasOneUse()) 6454 return false; 6455 6456 // If either operand of the select is expensive and only needed on one side 6457 // of the select, we should form a branch. 6458 if (sinkSelectOperand(TTI, SI->getTrueValue()) || 6459 sinkSelectOperand(TTI, SI->getFalseValue())) 6460 return true; 6461 6462 return false; 6463 } 6464 6465 /// If \p isTrue is true, return the true value of \p SI, otherwise return 6466 /// false value of \p SI. If the true/false value of \p SI is defined by any 6467 /// select instructions in \p Selects, look through the defining select 6468 /// instruction until the true/false value is not defined in \p Selects. 6469 static Value *getTrueOrFalseValue( 6470 SelectInst *SI, bool isTrue, 6471 const SmallPtrSet<const Instruction *, 2> &Selects) { 6472 Value *V = nullptr; 6473 6474 for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); 6475 DefSI = dyn_cast<SelectInst>(V)) { 6476 assert(DefSI->getCondition() == SI->getCondition() && 6477 "The condition of DefSI does not match with SI"); 6478 V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); 6479 } 6480 6481 assert(V && "Failed to get select true/false value"); 6482 return V; 6483 } 6484 6485 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { 6486 assert(Shift->isShift() && "Expected a shift"); 6487 6488 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than 6489 // general vector shifts, and (3) the shift amount is a select-of-splatted 6490 // values, hoist the shifts before the select: 6491 // shift Op0, (select Cond, TVal, FVal) --> 6492 // select Cond, (shift Op0, TVal), (shift Op0, FVal) 6493 // 6494 // This is inverting a generic IR transform when we know that the cost of a 6495 // general vector shift is more than the cost of 2 shift-by-scalars. 6496 // We can't do this effectively in SDAG because we may not be able to 6497 // determine if the select operands are splats from within a basic block. 6498 Type *Ty = Shift->getType(); 6499 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6500 return false; 6501 Value *Cond, *TVal, *FVal; 6502 if (!match(Shift->getOperand(1), 6503 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6504 return false; 6505 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6506 return false; 6507 6508 IRBuilder<> Builder(Shift); 6509 BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); 6510 Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); 6511 Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); 6512 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6513 Shift->replaceAllUsesWith(NewSel); 6514 Shift->eraseFromParent(); 6515 return true; 6516 } 6517 6518 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) { 6519 Intrinsic::ID Opcode = Fsh->getIntrinsicID(); 6520 assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && 6521 "Expected a funnel shift"); 6522 6523 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper 6524 // than general vector shifts, and (3) the shift amount is select-of-splatted 6525 // values, hoist the funnel shifts before the select: 6526 // fsh Op0, Op1, (select Cond, TVal, FVal) --> 6527 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal) 6528 // 6529 // This is inverting a generic IR transform when we know that the cost of a 6530 // general vector shift is more than the cost of 2 shift-by-scalars. 6531 // We can't do this effectively in SDAG because we may not be able to 6532 // determine if the select operands are splats from within a basic block. 6533 Type *Ty = Fsh->getType(); 6534 if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) 6535 return false; 6536 Value *Cond, *TVal, *FVal; 6537 if (!match(Fsh->getOperand(2), 6538 m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) 6539 return false; 6540 if (!isSplatValue(TVal) || !isSplatValue(FVal)) 6541 return false; 6542 6543 IRBuilder<> Builder(Fsh); 6544 Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1); 6545 Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, TVal }); 6546 Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, FVal }); 6547 Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); 6548 Fsh->replaceAllUsesWith(NewSel); 6549 Fsh->eraseFromParent(); 6550 return true; 6551 } 6552 6553 /// If we have a SelectInst that will likely profit from branch prediction, 6554 /// turn it into a branch. 6555 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { 6556 if (DisableSelectToBranch) 6557 return false; 6558 6559 // Find all consecutive select instructions that share the same condition. 6560 SmallVector<SelectInst *, 2> ASI; 6561 ASI.push_back(SI); 6562 for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); 6563 It != SI->getParent()->end(); ++It) { 6564 SelectInst *I = dyn_cast<SelectInst>(&*It); 6565 if (I && SI->getCondition() == I->getCondition()) { 6566 ASI.push_back(I); 6567 } else { 6568 break; 6569 } 6570 } 6571 6572 SelectInst *LastSI = ASI.back(); 6573 // Increment the current iterator to skip all the rest of select instructions 6574 // because they will be either "not lowered" or "all lowered" to branch. 6575 CurInstIterator = std::next(LastSI->getIterator()); 6576 6577 bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); 6578 6579 // Can we convert the 'select' to CF ? 6580 if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) 6581 return false; 6582 6583 TargetLowering::SelectSupportKind SelectKind; 6584 if (VectorCond) 6585 SelectKind = TargetLowering::VectorMaskSelect; 6586 else if (SI->getType()->isVectorTy()) 6587 SelectKind = TargetLowering::ScalarCondVectorVal; 6588 else 6589 SelectKind = TargetLowering::ScalarValSelect; 6590 6591 if (TLI->isSelectSupported(SelectKind) && 6592 (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize || 6593 llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()))) 6594 return false; 6595 6596 // The DominatorTree needs to be rebuilt by any consumers after this 6597 // transformation. We simply reset here rather than setting the ModifiedDT 6598 // flag to avoid restarting the function walk in runOnFunction for each 6599 // select optimized. 6600 DT.reset(); 6601 6602 // Transform a sequence like this: 6603 // start: 6604 // %cmp = cmp uge i32 %a, %b 6605 // %sel = select i1 %cmp, i32 %c, i32 %d 6606 // 6607 // Into: 6608 // start: 6609 // %cmp = cmp uge i32 %a, %b 6610 // %cmp.frozen = freeze %cmp 6611 // br i1 %cmp.frozen, label %select.true, label %select.false 6612 // select.true: 6613 // br label %select.end 6614 // select.false: 6615 // br label %select.end 6616 // select.end: 6617 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] 6618 // 6619 // %cmp should be frozen, otherwise it may introduce undefined behavior. 6620 // In addition, we may sink instructions that produce %c or %d from 6621 // the entry block into the destination(s) of the new branch. 6622 // If the true or false blocks do not contain a sunken instruction, that 6623 // block and its branch may be optimized away. In that case, one side of the 6624 // first branch will point directly to select.end, and the corresponding PHI 6625 // predecessor block will be the start block. 6626 6627 // First, we split the block containing the select into 2 blocks. 6628 BasicBlock *StartBlock = SI->getParent(); 6629 BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); 6630 BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); 6631 BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); 6632 6633 // Delete the unconditional branch that was just created by the split. 6634 StartBlock->getTerminator()->eraseFromParent(); 6635 6636 // These are the new basic blocks for the conditional branch. 6637 // At least one will become an actual new basic block. 6638 BasicBlock *TrueBlock = nullptr; 6639 BasicBlock *FalseBlock = nullptr; 6640 BranchInst *TrueBranch = nullptr; 6641 BranchInst *FalseBranch = nullptr; 6642 6643 // Sink expensive instructions into the conditional blocks to avoid executing 6644 // them speculatively. 6645 for (SelectInst *SI : ASI) { 6646 if (sinkSelectOperand(TTI, SI->getTrueValue())) { 6647 if (TrueBlock == nullptr) { 6648 TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", 6649 EndBlock->getParent(), EndBlock); 6650 TrueBranch = BranchInst::Create(EndBlock, TrueBlock); 6651 TrueBranch->setDebugLoc(SI->getDebugLoc()); 6652 } 6653 auto *TrueInst = cast<Instruction>(SI->getTrueValue()); 6654 TrueInst->moveBefore(TrueBranch); 6655 } 6656 if (sinkSelectOperand(TTI, SI->getFalseValue())) { 6657 if (FalseBlock == nullptr) { 6658 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", 6659 EndBlock->getParent(), EndBlock); 6660 FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6661 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6662 } 6663 auto *FalseInst = cast<Instruction>(SI->getFalseValue()); 6664 FalseInst->moveBefore(FalseBranch); 6665 } 6666 } 6667 6668 // If there was nothing to sink, then arbitrarily choose the 'false' side 6669 // for a new input value to the PHI. 6670 if (TrueBlock == FalseBlock) { 6671 assert(TrueBlock == nullptr && 6672 "Unexpected basic block transform while optimizing select"); 6673 6674 FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", 6675 EndBlock->getParent(), EndBlock); 6676 auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); 6677 FalseBranch->setDebugLoc(SI->getDebugLoc()); 6678 } 6679 6680 // Insert the real conditional branch based on the original condition. 6681 // If we did not create a new block for one of the 'true' or 'false' paths 6682 // of the condition, it means that side of the branch goes to the end block 6683 // directly and the path originates from the start block from the point of 6684 // view of the new PHI. 6685 BasicBlock *TT, *FT; 6686 if (TrueBlock == nullptr) { 6687 TT = EndBlock; 6688 FT = FalseBlock; 6689 TrueBlock = StartBlock; 6690 } else if (FalseBlock == nullptr) { 6691 TT = TrueBlock; 6692 FT = EndBlock; 6693 FalseBlock = StartBlock; 6694 } else { 6695 TT = TrueBlock; 6696 FT = FalseBlock; 6697 } 6698 IRBuilder<> IB(SI); 6699 auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); 6700 IB.CreateCondBr(CondFr, TT, FT, SI); 6701 6702 SmallPtrSet<const Instruction *, 2> INS; 6703 INS.insert(ASI.begin(), ASI.end()); 6704 // Use reverse iterator because later select may use the value of the 6705 // earlier select, and we need to propagate value through earlier select 6706 // to get the PHI operand. 6707 for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { 6708 SelectInst *SI = *It; 6709 // The select itself is replaced with a PHI Node. 6710 PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); 6711 PN->takeName(SI); 6712 PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); 6713 PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); 6714 PN->setDebugLoc(SI->getDebugLoc()); 6715 6716 SI->replaceAllUsesWith(PN); 6717 SI->eraseFromParent(); 6718 INS.erase(SI); 6719 ++NumSelectsExpanded; 6720 } 6721 6722 // Instruct OptimizeBlock to skip to the next block. 6723 CurInstIterator = StartBlock->end(); 6724 return true; 6725 } 6726 6727 /// Some targets only accept certain types for splat inputs. For example a VDUP 6728 /// in MVE takes a GPR (integer) register, and the instruction that incorporate 6729 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register. 6730 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { 6731 // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only 6732 if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), 6733 m_Undef(), m_ZeroMask()))) 6734 return false; 6735 Type *NewType = TLI->shouldConvertSplatType(SVI); 6736 if (!NewType) 6737 return false; 6738 6739 auto *SVIVecType = cast<FixedVectorType>(SVI->getType()); 6740 assert(!NewType->isVectorTy() && "Expected a scalar type!"); 6741 assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && 6742 "Expected a type of the same size!"); 6743 auto *NewVecType = 6744 FixedVectorType::get(NewType, SVIVecType->getNumElements()); 6745 6746 // Create a bitcast (shuffle (insert (bitcast(..)))) 6747 IRBuilder<> Builder(SVI->getContext()); 6748 Builder.SetInsertPoint(SVI); 6749 Value *BC1 = Builder.CreateBitCast( 6750 cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType); 6751 Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1); 6752 Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType); 6753 6754 SVI->replaceAllUsesWith(BC2); 6755 RecursivelyDeleteTriviallyDeadInstructions( 6756 SVI, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); 6757 6758 // Also hoist the bitcast up to its operand if it they are not in the same 6759 // block. 6760 if (auto *BCI = dyn_cast<Instruction>(BC1)) 6761 if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0))) 6762 if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) && 6763 !Op->isTerminator() && !Op->isEHPad()) 6764 BCI->moveAfter(Op); 6765 6766 return true; 6767 } 6768 6769 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { 6770 // If the operands of I can be folded into a target instruction together with 6771 // I, duplicate and sink them. 6772 SmallVector<Use *, 4> OpsToSink; 6773 if (!TLI->shouldSinkOperands(I, OpsToSink)) 6774 return false; 6775 6776 // OpsToSink can contain multiple uses in a use chain (e.g. 6777 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating 6778 // uses must come first, so we process the ops in reverse order so as to not 6779 // create invalid IR. 6780 BasicBlock *TargetBB = I->getParent(); 6781 bool Changed = false; 6782 SmallVector<Use *, 4> ToReplace; 6783 for (Use *U : reverse(OpsToSink)) { 6784 auto *UI = cast<Instruction>(U->get()); 6785 if (UI->getParent() == TargetBB || isa<PHINode>(UI)) 6786 continue; 6787 ToReplace.push_back(U); 6788 } 6789 6790 SetVector<Instruction *> MaybeDead; 6791 DenseMap<Instruction *, Instruction *> NewInstructions; 6792 Instruction *InsertPoint = I; 6793 for (Use *U : ToReplace) { 6794 auto *UI = cast<Instruction>(U->get()); 6795 Instruction *NI = UI->clone(); 6796 NewInstructions[UI] = NI; 6797 MaybeDead.insert(UI); 6798 LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); 6799 NI->insertBefore(InsertPoint); 6800 InsertPoint = NI; 6801 InsertedInsts.insert(NI); 6802 6803 // Update the use for the new instruction, making sure that we update the 6804 // sunk instruction uses, if it is part of a chain that has already been 6805 // sunk. 6806 Instruction *OldI = cast<Instruction>(U->getUser()); 6807 if (NewInstructions.count(OldI)) 6808 NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); 6809 else 6810 U->set(NI); 6811 Changed = true; 6812 } 6813 6814 // Remove instructions that are dead after sinking. 6815 for (auto *I : MaybeDead) { 6816 if (!I->hasNUsesOrMore(1)) { 6817 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); 6818 I->eraseFromParent(); 6819 } 6820 } 6821 6822 return Changed; 6823 } 6824 6825 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { 6826 Value *Cond = SI->getCondition(); 6827 Type *OldType = Cond->getType(); 6828 LLVMContext &Context = Cond->getContext(); 6829 MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); 6830 unsigned RegWidth = RegType.getSizeInBits(); 6831 6832 if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) 6833 return false; 6834 6835 // If the register width is greater than the type width, expand the condition 6836 // of the switch instruction and each case constant to the width of the 6837 // register. By widening the type of the switch condition, subsequent 6838 // comparisons (for case comparisons) will not need to be extended to the 6839 // preferred register width, so we will potentially eliminate N-1 extends, 6840 // where N is the number of cases in the switch. 6841 auto *NewType = Type::getIntNTy(Context, RegWidth); 6842 6843 // Zero-extend the switch condition and case constants unless the switch 6844 // condition is a function argument that is already being sign-extended. 6845 // In that case, we can avoid an unnecessary mask/extension by sign-extending 6846 // everything instead. 6847 Instruction::CastOps ExtType = Instruction::ZExt; 6848 if (auto *Arg = dyn_cast<Argument>(Cond)) 6849 if (Arg->hasSExtAttr()) 6850 ExtType = Instruction::SExt; 6851 6852 auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); 6853 ExtInst->insertBefore(SI); 6854 ExtInst->setDebugLoc(SI->getDebugLoc()); 6855 SI->setCondition(ExtInst); 6856 for (auto Case : SI->cases()) { 6857 APInt NarrowConst = Case.getCaseValue()->getValue(); 6858 APInt WideConst = (ExtType == Instruction::ZExt) ? 6859 NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); 6860 Case.setValue(ConstantInt::get(Context, WideConst)); 6861 } 6862 6863 return true; 6864 } 6865 6866 6867 namespace { 6868 6869 /// Helper class to promote a scalar operation to a vector one. 6870 /// This class is used to move downward extractelement transition. 6871 /// E.g., 6872 /// a = vector_op <2 x i32> 6873 /// b = extractelement <2 x i32> a, i32 0 6874 /// c = scalar_op b 6875 /// store c 6876 /// 6877 /// => 6878 /// a = vector_op <2 x i32> 6879 /// c = vector_op a (equivalent to scalar_op on the related lane) 6880 /// * d = extractelement <2 x i32> c, i32 0 6881 /// * store d 6882 /// Assuming both extractelement and store can be combine, we get rid of the 6883 /// transition. 6884 class VectorPromoteHelper { 6885 /// DataLayout associated with the current module. 6886 const DataLayout &DL; 6887 6888 /// Used to perform some checks on the legality of vector operations. 6889 const TargetLowering &TLI; 6890 6891 /// Used to estimated the cost of the promoted chain. 6892 const TargetTransformInfo &TTI; 6893 6894 /// The transition being moved downwards. 6895 Instruction *Transition; 6896 6897 /// The sequence of instructions to be promoted. 6898 SmallVector<Instruction *, 4> InstsToBePromoted; 6899 6900 /// Cost of combining a store and an extract. 6901 unsigned StoreExtractCombineCost; 6902 6903 /// Instruction that will be combined with the transition. 6904 Instruction *CombineInst = nullptr; 6905 6906 /// The instruction that represents the current end of the transition. 6907 /// Since we are faking the promotion until we reach the end of the chain 6908 /// of computation, we need a way to get the current end of the transition. 6909 Instruction *getEndOfTransition() const { 6910 if (InstsToBePromoted.empty()) 6911 return Transition; 6912 return InstsToBePromoted.back(); 6913 } 6914 6915 /// Return the index of the original value in the transition. 6916 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, 6917 /// c, is at index 0. 6918 unsigned getTransitionOriginalValueIdx() const { 6919 assert(isa<ExtractElementInst>(Transition) && 6920 "Other kind of transitions are not supported yet"); 6921 return 0; 6922 } 6923 6924 /// Return the index of the index in the transition. 6925 /// E.g., for "extractelement <2 x i32> c, i32 0" the index 6926 /// is at index 1. 6927 unsigned getTransitionIdx() const { 6928 assert(isa<ExtractElementInst>(Transition) && 6929 "Other kind of transitions are not supported yet"); 6930 return 1; 6931 } 6932 6933 /// Get the type of the transition. 6934 /// This is the type of the original value. 6935 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the 6936 /// transition is <2 x i32>. 6937 Type *getTransitionType() const { 6938 return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); 6939 } 6940 6941 /// Promote \p ToBePromoted by moving \p Def downward through. 6942 /// I.e., we have the following sequence: 6943 /// Def = Transition <ty1> a to <ty2> 6944 /// b = ToBePromoted <ty2> Def, ... 6945 /// => 6946 /// b = ToBePromoted <ty1> a, ... 6947 /// Def = Transition <ty1> ToBePromoted to <ty2> 6948 void promoteImpl(Instruction *ToBePromoted); 6949 6950 /// Check whether or not it is profitable to promote all the 6951 /// instructions enqueued to be promoted. 6952 bool isProfitableToPromote() { 6953 Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); 6954 unsigned Index = isa<ConstantInt>(ValIdx) 6955 ? cast<ConstantInt>(ValIdx)->getZExtValue() 6956 : -1; 6957 Type *PromotedType = getTransitionType(); 6958 6959 StoreInst *ST = cast<StoreInst>(CombineInst); 6960 unsigned AS = ST->getPointerAddressSpace(); 6961 // Check if this store is supported. 6962 if (!TLI.allowsMisalignedMemoryAccesses( 6963 TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, 6964 ST->getAlign())) { 6965 // If this is not supported, there is no way we can combine 6966 // the extract with the store. 6967 return false; 6968 } 6969 6970 // The scalar chain of computation has to pay for the transition 6971 // scalar to vector. 6972 // The vector chain has to account for the combining cost. 6973 uint64_t ScalarCost = 6974 TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); 6975 uint64_t VectorCost = StoreExtractCombineCost; 6976 enum TargetTransformInfo::TargetCostKind CostKind = 6977 TargetTransformInfo::TCK_RecipThroughput; 6978 for (const auto &Inst : InstsToBePromoted) { 6979 // Compute the cost. 6980 // By construction, all instructions being promoted are arithmetic ones. 6981 // Moreover, one argument is a constant that can be viewed as a splat 6982 // constant. 6983 Value *Arg0 = Inst->getOperand(0); 6984 bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || 6985 isa<ConstantFP>(Arg0); 6986 TargetTransformInfo::OperandValueKind Arg0OVK = 6987 IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6988 : TargetTransformInfo::OK_AnyValue; 6989 TargetTransformInfo::OperandValueKind Arg1OVK = 6990 !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue 6991 : TargetTransformInfo::OK_AnyValue; 6992 ScalarCost += TTI.getArithmeticInstrCost( 6993 Inst->getOpcode(), Inst->getType(), CostKind, Arg0OVK, Arg1OVK); 6994 VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, 6995 CostKind, 6996 Arg0OVK, Arg1OVK); 6997 } 6998 LLVM_DEBUG( 6999 dbgs() << "Estimated cost of computation to be promoted:\nScalar: " 7000 << ScalarCost << "\nVector: " << VectorCost << '\n'); 7001 return ScalarCost > VectorCost; 7002 } 7003 7004 /// Generate a constant vector with \p Val with the same 7005 /// number of elements as the transition. 7006 /// \p UseSplat defines whether or not \p Val should be replicated 7007 /// across the whole vector. 7008 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, 7009 /// otherwise we generate a vector with as many undef as possible: 7010 /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only 7011 /// used at the index of the extract. 7012 Value *getConstantVector(Constant *Val, bool UseSplat) const { 7013 unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); 7014 if (!UseSplat) { 7015 // If we cannot determine where the constant must be, we have to 7016 // use a splat constant. 7017 Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); 7018 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) 7019 ExtractIdx = CstVal->getSExtValue(); 7020 else 7021 UseSplat = true; 7022 } 7023 7024 ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); 7025 if (UseSplat) 7026 return ConstantVector::getSplat(EC, Val); 7027 7028 if (!EC.isScalable()) { 7029 SmallVector<Constant *, 4> ConstVec; 7030 UndefValue *UndefVal = UndefValue::get(Val->getType()); 7031 for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) { 7032 if (Idx == ExtractIdx) 7033 ConstVec.push_back(Val); 7034 else 7035 ConstVec.push_back(UndefVal); 7036 } 7037 return ConstantVector::get(ConstVec); 7038 } else 7039 llvm_unreachable( 7040 "Generate scalable vector for non-splat is unimplemented"); 7041 } 7042 7043 /// Check if promoting to a vector type an operand at \p OperandIdx 7044 /// in \p Use can trigger undefined behavior. 7045 static bool canCauseUndefinedBehavior(const Instruction *Use, 7046 unsigned OperandIdx) { 7047 // This is not safe to introduce undef when the operand is on 7048 // the right hand side of a division-like instruction. 7049 if (OperandIdx != 1) 7050 return false; 7051 switch (Use->getOpcode()) { 7052 default: 7053 return false; 7054 case Instruction::SDiv: 7055 case Instruction::UDiv: 7056 case Instruction::SRem: 7057 case Instruction::URem: 7058 return true; 7059 case Instruction::FDiv: 7060 case Instruction::FRem: 7061 return !Use->hasNoNaNs(); 7062 } 7063 llvm_unreachable(nullptr); 7064 } 7065 7066 public: 7067 VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, 7068 const TargetTransformInfo &TTI, Instruction *Transition, 7069 unsigned CombineCost) 7070 : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), 7071 StoreExtractCombineCost(CombineCost) { 7072 assert(Transition && "Do not know how to promote null"); 7073 } 7074 7075 /// Check if we can promote \p ToBePromoted to \p Type. 7076 bool canPromote(const Instruction *ToBePromoted) const { 7077 // We could support CastInst too. 7078 return isa<BinaryOperator>(ToBePromoted); 7079 } 7080 7081 /// Check if it is profitable to promote \p ToBePromoted 7082 /// by moving downward the transition through. 7083 bool shouldPromote(const Instruction *ToBePromoted) const { 7084 // Promote only if all the operands can be statically expanded. 7085 // Indeed, we do not want to introduce any new kind of transitions. 7086 for (const Use &U : ToBePromoted->operands()) { 7087 const Value *Val = U.get(); 7088 if (Val == getEndOfTransition()) { 7089 // If the use is a division and the transition is on the rhs, 7090 // we cannot promote the operation, otherwise we may create a 7091 // division by zero. 7092 if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) 7093 return false; 7094 continue; 7095 } 7096 if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && 7097 !isa<ConstantFP>(Val)) 7098 return false; 7099 } 7100 // Check that the resulting operation is legal. 7101 int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); 7102 if (!ISDOpcode) 7103 return false; 7104 return StressStoreExtract || 7105 TLI.isOperationLegalOrCustom( 7106 ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); 7107 } 7108 7109 /// Check whether or not \p Use can be combined 7110 /// with the transition. 7111 /// I.e., is it possible to do Use(Transition) => AnotherUse? 7112 bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } 7113 7114 /// Record \p ToBePromoted as part of the chain to be promoted. 7115 void enqueueForPromotion(Instruction *ToBePromoted) { 7116 InstsToBePromoted.push_back(ToBePromoted); 7117 } 7118 7119 /// Set the instruction that will be combined with the transition. 7120 void recordCombineInstruction(Instruction *ToBeCombined) { 7121 assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); 7122 CombineInst = ToBeCombined; 7123 } 7124 7125 /// Promote all the instructions enqueued for promotion if it is 7126 /// is profitable. 7127 /// \return True if the promotion happened, false otherwise. 7128 bool promote() { 7129 // Check if there is something to promote. 7130 // Right now, if we do not have anything to combine with, 7131 // we assume the promotion is not profitable. 7132 if (InstsToBePromoted.empty() || !CombineInst) 7133 return false; 7134 7135 // Check cost. 7136 if (!StressStoreExtract && !isProfitableToPromote()) 7137 return false; 7138 7139 // Promote. 7140 for (auto &ToBePromoted : InstsToBePromoted) 7141 promoteImpl(ToBePromoted); 7142 InstsToBePromoted.clear(); 7143 return true; 7144 } 7145 }; 7146 7147 } // end anonymous namespace 7148 7149 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { 7150 // At this point, we know that all the operands of ToBePromoted but Def 7151 // can be statically promoted. 7152 // For Def, we need to use its parameter in ToBePromoted: 7153 // b = ToBePromoted ty1 a 7154 // Def = Transition ty1 b to ty2 7155 // Move the transition down. 7156 // 1. Replace all uses of the promoted operation by the transition. 7157 // = ... b => = ... Def. 7158 assert(ToBePromoted->getType() == Transition->getType() && 7159 "The type of the result of the transition does not match " 7160 "the final type"); 7161 ToBePromoted->replaceAllUsesWith(Transition); 7162 // 2. Update the type of the uses. 7163 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. 7164 Type *TransitionTy = getTransitionType(); 7165 ToBePromoted->mutateType(TransitionTy); 7166 // 3. Update all the operands of the promoted operation with promoted 7167 // operands. 7168 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. 7169 for (Use &U : ToBePromoted->operands()) { 7170 Value *Val = U.get(); 7171 Value *NewVal = nullptr; 7172 if (Val == Transition) 7173 NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); 7174 else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || 7175 isa<ConstantFP>(Val)) { 7176 // Use a splat constant if it is not safe to use undef. 7177 NewVal = getConstantVector( 7178 cast<Constant>(Val), 7179 isa<UndefValue>(Val) || 7180 canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); 7181 } else 7182 llvm_unreachable("Did you modified shouldPromote and forgot to update " 7183 "this?"); 7184 ToBePromoted->setOperand(U.getOperandNo(), NewVal); 7185 } 7186 Transition->moveAfter(ToBePromoted); 7187 Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); 7188 } 7189 7190 /// Some targets can do store(extractelement) with one instruction. 7191 /// Try to push the extractelement towards the stores when the target 7192 /// has this feature and this is profitable. 7193 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { 7194 unsigned CombineCost = std::numeric_limits<unsigned>::max(); 7195 if (DisableStoreExtract || 7196 (!StressStoreExtract && 7197 !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), 7198 Inst->getOperand(1), CombineCost))) 7199 return false; 7200 7201 // At this point we know that Inst is a vector to scalar transition. 7202 // Try to move it down the def-use chain, until: 7203 // - We can combine the transition with its single use 7204 // => we got rid of the transition. 7205 // - We escape the current basic block 7206 // => we would need to check that we are moving it at a cheaper place and 7207 // we do not do that for now. 7208 BasicBlock *Parent = Inst->getParent(); 7209 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); 7210 VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); 7211 // If the transition has more than one use, assume this is not going to be 7212 // beneficial. 7213 while (Inst->hasOneUse()) { 7214 Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); 7215 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); 7216 7217 if (ToBePromoted->getParent() != Parent) { 7218 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" 7219 << ToBePromoted->getParent()->getName() 7220 << ") than the transition (" << Parent->getName() 7221 << ").\n"); 7222 return false; 7223 } 7224 7225 if (VPH.canCombine(ToBePromoted)) { 7226 LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' 7227 << "will be combined with: " << *ToBePromoted << '\n'); 7228 VPH.recordCombineInstruction(ToBePromoted); 7229 bool Changed = VPH.promote(); 7230 NumStoreExtractExposed += Changed; 7231 return Changed; 7232 } 7233 7234 LLVM_DEBUG(dbgs() << "Try promoting.\n"); 7235 if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) 7236 return false; 7237 7238 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); 7239 7240 VPH.enqueueForPromotion(ToBePromoted); 7241 Inst = ToBePromoted; 7242 } 7243 return false; 7244 } 7245 7246 /// For the instruction sequence of store below, F and I values 7247 /// are bundled together as an i64 value before being stored into memory. 7248 /// Sometimes it is more efficient to generate separate stores for F and I, 7249 /// which can remove the bitwise instructions or sink them to colder places. 7250 /// 7251 /// (store (or (zext (bitcast F to i32) to i64), 7252 /// (shl (zext I to i64), 32)), addr) --> 7253 /// (store F, addr) and (store I, addr+4) 7254 /// 7255 /// Similarly, splitting for other merged store can also be beneficial, like: 7256 /// For pair of {i32, i32}, i64 store --> two i32 stores. 7257 /// For pair of {i32, i16}, i64 store --> two i32 stores. 7258 /// For pair of {i16, i16}, i32 store --> two i16 stores. 7259 /// For pair of {i16, i8}, i32 store --> two i16 stores. 7260 /// For pair of {i8, i8}, i16 store --> two i8 stores. 7261 /// 7262 /// We allow each target to determine specifically which kind of splitting is 7263 /// supported. 7264 /// 7265 /// The store patterns are commonly seen from the simple code snippet below 7266 /// if only std::make_pair(...) is sroa transformed before inlined into hoo. 7267 /// void goo(const std::pair<int, float> &); 7268 /// hoo() { 7269 /// ... 7270 /// goo(std::make_pair(tmp, ftmp)); 7271 /// ... 7272 /// } 7273 /// 7274 /// Although we already have similar splitting in DAG Combine, we duplicate 7275 /// it in CodeGenPrepare to catch the case in which pattern is across 7276 /// multiple BBs. The logic in DAG Combine is kept to catch case generated 7277 /// during code expansion. 7278 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, 7279 const TargetLowering &TLI) { 7280 // Handle simple but common cases only. 7281 Type *StoreType = SI.getValueOperand()->getType(); 7282 7283 // The code below assumes shifting a value by <number of bits>, 7284 // whereas scalable vectors would have to be shifted by 7285 // <2log(vscale) + number of bits> in order to store the 7286 // low/high parts. Bailing out for now. 7287 if (isa<ScalableVectorType>(StoreType)) 7288 return false; 7289 7290 if (!DL.typeSizeEqualsStoreSize(StoreType) || 7291 DL.getTypeSizeInBits(StoreType) == 0) 7292 return false; 7293 7294 unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; 7295 Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); 7296 if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) 7297 return false; 7298 7299 // Don't split the store if it is volatile. 7300 if (SI.isVolatile()) 7301 return false; 7302 7303 // Match the following patterns: 7304 // (store (or (zext LValue to i64), 7305 // (shl (zext HValue to i64), 32)), HalfValBitSize) 7306 // or 7307 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) 7308 // (zext LValue to i64), 7309 // Expect both operands of OR and the first operand of SHL have only 7310 // one use. 7311 Value *LValue, *HValue; 7312 if (!match(SI.getValueOperand(), 7313 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), 7314 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), 7315 m_SpecificInt(HalfValBitSize)))))) 7316 return false; 7317 7318 // Check LValue and HValue are int with size less or equal than 32. 7319 if (!LValue->getType()->isIntegerTy() || 7320 DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || 7321 !HValue->getType()->isIntegerTy() || 7322 DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) 7323 return false; 7324 7325 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast 7326 // as the input of target query. 7327 auto *LBC = dyn_cast<BitCastInst>(LValue); 7328 auto *HBC = dyn_cast<BitCastInst>(HValue); 7329 EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) 7330 : EVT::getEVT(LValue->getType()); 7331 EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) 7332 : EVT::getEVT(HValue->getType()); 7333 if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) 7334 return false; 7335 7336 // Start to split store. 7337 IRBuilder<> Builder(SI.getContext()); 7338 Builder.SetInsertPoint(&SI); 7339 7340 // If LValue/HValue is a bitcast in another BB, create a new one in current 7341 // BB so it may be merged with the splitted stores by dag combiner. 7342 if (LBC && LBC->getParent() != SI.getParent()) 7343 LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); 7344 if (HBC && HBC->getParent() != SI.getParent()) 7345 HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); 7346 7347 bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); 7348 auto CreateSplitStore = [&](Value *V, bool Upper) { 7349 V = Builder.CreateZExtOrBitCast(V, SplitStoreType); 7350 Value *Addr = Builder.CreateBitCast( 7351 SI.getOperand(1), 7352 SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); 7353 Align Alignment = SI.getAlign(); 7354 const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); 7355 if (IsOffsetStore) { 7356 Addr = Builder.CreateGEP( 7357 SplitStoreType, Addr, 7358 ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); 7359 7360 // When splitting the store in half, naturally one half will retain the 7361 // alignment of the original wider store, regardless of whether it was 7362 // over-aligned or not, while the other will require adjustment. 7363 Alignment = commonAlignment(Alignment, HalfValBitSize / 8); 7364 } 7365 Builder.CreateAlignedStore(V, Addr, Alignment); 7366 }; 7367 7368 CreateSplitStore(LValue, false); 7369 CreateSplitStore(HValue, true); 7370 7371 // Delete the old store. 7372 SI.eraseFromParent(); 7373 return true; 7374 } 7375 7376 // Return true if the GEP has two operands, the first operand is of a sequential 7377 // type, and the second operand is a constant. 7378 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { 7379 gep_type_iterator I = gep_type_begin(*GEP); 7380 return GEP->getNumOperands() == 2 && 7381 I.isSequential() && 7382 isa<ConstantInt>(GEP->getOperand(1)); 7383 } 7384 7385 // Try unmerging GEPs to reduce liveness interference (register pressure) across 7386 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, 7387 // reducing liveness interference across those edges benefits global register 7388 // allocation. Currently handles only certain cases. 7389 // 7390 // For example, unmerge %GEPI and %UGEPI as below. 7391 // 7392 // ---------- BEFORE ---------- 7393 // SrcBlock: 7394 // ... 7395 // %GEPIOp = ... 7396 // ... 7397 // %GEPI = gep %GEPIOp, Idx 7398 // ... 7399 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] 7400 // (* %GEPI is alive on the indirectbr edges due to other uses ahead) 7401 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by 7402 // %UGEPI) 7403 // 7404 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) 7405 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) 7406 // ... 7407 // 7408 // DstBi: 7409 // ... 7410 // %UGEPI = gep %GEPIOp, UIdx 7411 // ... 7412 // --------------------------- 7413 // 7414 // ---------- AFTER ---------- 7415 // SrcBlock: 7416 // ... (same as above) 7417 // (* %GEPI is still alive on the indirectbr edges) 7418 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the 7419 // unmerging) 7420 // ... 7421 // 7422 // DstBi: 7423 // ... 7424 // %UGEPI = gep %GEPI, (UIdx-Idx) 7425 // ... 7426 // --------------------------- 7427 // 7428 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is 7429 // no longer alive on them. 7430 // 7431 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging 7432 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as 7433 // not to disable further simplications and optimizations as a result of GEP 7434 // merging. 7435 // 7436 // Note this unmerging may increase the length of the data flow critical path 7437 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff 7438 // between the register pressure and the length of data-flow critical 7439 // path. Restricting this to the uncommon IndirectBr case would minimize the 7440 // impact of potentially longer critical path, if any, and the impact on compile 7441 // time. 7442 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, 7443 const TargetTransformInfo *TTI) { 7444 BasicBlock *SrcBlock = GEPI->getParent(); 7445 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common 7446 // (non-IndirectBr) cases exit early here. 7447 if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) 7448 return false; 7449 // Check that GEPI is a simple gep with a single constant index. 7450 if (!GEPSequentialConstIndexed(GEPI)) 7451 return false; 7452 ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); 7453 // Check that GEPI is a cheap one. 7454 if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(), 7455 TargetTransformInfo::TCK_SizeAndLatency) 7456 > TargetTransformInfo::TCC_Basic) 7457 return false; 7458 Value *GEPIOp = GEPI->getOperand(0); 7459 // Check that GEPIOp is an instruction that's also defined in SrcBlock. 7460 if (!isa<Instruction>(GEPIOp)) 7461 return false; 7462 auto *GEPIOpI = cast<Instruction>(GEPIOp); 7463 if (GEPIOpI->getParent() != SrcBlock) 7464 return false; 7465 // Check that GEP is used outside the block, meaning it's alive on the 7466 // IndirectBr edge(s). 7467 if (find_if(GEPI->users(), [&](User *Usr) { 7468 if (auto *I = dyn_cast<Instruction>(Usr)) { 7469 if (I->getParent() != SrcBlock) { 7470 return true; 7471 } 7472 } 7473 return false; 7474 }) == GEPI->users().end()) 7475 return false; 7476 // The second elements of the GEP chains to be unmerged. 7477 std::vector<GetElementPtrInst *> UGEPIs; 7478 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive 7479 // on IndirectBr edges. 7480 for (User *Usr : GEPIOp->users()) { 7481 if (Usr == GEPI) continue; 7482 // Check if Usr is an Instruction. If not, give up. 7483 if (!isa<Instruction>(Usr)) 7484 return false; 7485 auto *UI = cast<Instruction>(Usr); 7486 // Check if Usr in the same block as GEPIOp, which is fine, skip. 7487 if (UI->getParent() == SrcBlock) 7488 continue; 7489 // Check if Usr is a GEP. If not, give up. 7490 if (!isa<GetElementPtrInst>(Usr)) 7491 return false; 7492 auto *UGEPI = cast<GetElementPtrInst>(Usr); 7493 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is 7494 // the pointer operand to it. If so, record it in the vector. If not, give 7495 // up. 7496 if (!GEPSequentialConstIndexed(UGEPI)) 7497 return false; 7498 if (UGEPI->getOperand(0) != GEPIOp) 7499 return false; 7500 if (GEPIIdx->getType() != 7501 cast<ConstantInt>(UGEPI->getOperand(1))->getType()) 7502 return false; 7503 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7504 if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(), 7505 TargetTransformInfo::TCK_SizeAndLatency) 7506 > TargetTransformInfo::TCC_Basic) 7507 return false; 7508 UGEPIs.push_back(UGEPI); 7509 } 7510 if (UGEPIs.size() == 0) 7511 return false; 7512 // Check the materializing cost of (Uidx-Idx). 7513 for (GetElementPtrInst *UGEPI : UGEPIs) { 7514 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7515 APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); 7516 unsigned ImmCost = 7517 TTI->getIntImmCost(NewIdx, GEPIIdx->getType(), 7518 TargetTransformInfo::TCK_SizeAndLatency); 7519 if (ImmCost > TargetTransformInfo::TCC_Basic) 7520 return false; 7521 } 7522 // Now unmerge between GEPI and UGEPIs. 7523 for (GetElementPtrInst *UGEPI : UGEPIs) { 7524 UGEPI->setOperand(0, GEPI); 7525 ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); 7526 Constant *NewUGEPIIdx = 7527 ConstantInt::get(GEPIIdx->getType(), 7528 UGEPIIdx->getValue() - GEPIIdx->getValue()); 7529 UGEPI->setOperand(1, NewUGEPIIdx); 7530 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not 7531 // inbounds to avoid UB. 7532 if (!GEPI->isInBounds()) { 7533 UGEPI->setIsInBounds(false); 7534 } 7535 } 7536 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not 7537 // alive on IndirectBr edges). 7538 assert(find_if(GEPIOp->users(), [&](User *Usr) { 7539 return cast<Instruction>(Usr)->getParent() != SrcBlock; 7540 }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); 7541 return true; 7542 } 7543 7544 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { 7545 // Bail out if we inserted the instruction to prevent optimizations from 7546 // stepping on each other's toes. 7547 if (InsertedInsts.count(I)) 7548 return false; 7549 7550 // TODO: Move into the switch on opcode below here. 7551 if (PHINode *P = dyn_cast<PHINode>(I)) { 7552 // It is possible for very late stage optimizations (such as SimplifyCFG) 7553 // to introduce PHI nodes too late to be cleaned up. If we detect such a 7554 // trivial PHI, go ahead and zap it here. 7555 if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { 7556 LargeOffsetGEPMap.erase(P); 7557 P->replaceAllUsesWith(V); 7558 P->eraseFromParent(); 7559 ++NumPHIsElim; 7560 return true; 7561 } 7562 return false; 7563 } 7564 7565 if (CastInst *CI = dyn_cast<CastInst>(I)) { 7566 // If the source of the cast is a constant, then this should have 7567 // already been constant folded. The only reason NOT to constant fold 7568 // it is if something (e.g. LSR) was careful to place the constant 7569 // evaluation in a block other than then one that uses it (e.g. to hoist 7570 // the address of globals out of a loop). If this is the case, we don't 7571 // want to forward-subst the cast. 7572 if (isa<Constant>(CI->getOperand(0))) 7573 return false; 7574 7575 if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) 7576 return true; 7577 7578 if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { 7579 /// Sink a zext or sext into its user blocks if the target type doesn't 7580 /// fit in one register 7581 if (TLI->getTypeAction(CI->getContext(), 7582 TLI->getValueType(*DL, CI->getType())) == 7583 TargetLowering::TypeExpandInteger) { 7584 return SinkCast(CI); 7585 } else { 7586 bool MadeChange = optimizeExt(I); 7587 return MadeChange | optimizeExtUses(I); 7588 } 7589 } 7590 return false; 7591 } 7592 7593 if (auto *Cmp = dyn_cast<CmpInst>(I)) 7594 if (optimizeCmp(Cmp, ModifiedDT)) 7595 return true; 7596 7597 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7598 LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7599 bool Modified = optimizeLoadExt(LI); 7600 unsigned AS = LI->getPointerAddressSpace(); 7601 Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); 7602 return Modified; 7603 } 7604 7605 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 7606 if (splitMergedValStore(*SI, *DL, *TLI)) 7607 return true; 7608 SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); 7609 unsigned AS = SI->getPointerAddressSpace(); 7610 return optimizeMemoryInst(I, SI->getOperand(1), 7611 SI->getOperand(0)->getType(), AS); 7612 } 7613 7614 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 7615 unsigned AS = RMW->getPointerAddressSpace(); 7616 return optimizeMemoryInst(I, RMW->getPointerOperand(), 7617 RMW->getType(), AS); 7618 } 7619 7620 if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { 7621 unsigned AS = CmpX->getPointerAddressSpace(); 7622 return optimizeMemoryInst(I, CmpX->getPointerOperand(), 7623 CmpX->getCompareOperand()->getType(), AS); 7624 } 7625 7626 BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); 7627 7628 if (BinOp && (BinOp->getOpcode() == Instruction::And) && EnableAndCmpSinking) 7629 return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); 7630 7631 // TODO: Move this into the switch on opcode - it handles shifts already. 7632 if (BinOp && (BinOp->getOpcode() == Instruction::AShr || 7633 BinOp->getOpcode() == Instruction::LShr)) { 7634 ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); 7635 if (CI && TLI->hasExtractBitsInsn()) 7636 if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) 7637 return true; 7638 } 7639 7640 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { 7641 if (GEPI->hasAllZeroIndices()) { 7642 /// The GEP operand must be a pointer, so must its result -> BitCast 7643 Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), 7644 GEPI->getName(), GEPI); 7645 NC->setDebugLoc(GEPI->getDebugLoc()); 7646 GEPI->replaceAllUsesWith(NC); 7647 GEPI->eraseFromParent(); 7648 ++NumGEPsElim; 7649 optimizeInst(NC, ModifiedDT); 7650 return true; 7651 } 7652 if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { 7653 return true; 7654 } 7655 return false; 7656 } 7657 7658 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 7659 // freeze(icmp a, const)) -> icmp (freeze a), const 7660 // This helps generate efficient conditional jumps. 7661 Instruction *CmpI = nullptr; 7662 if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) 7663 CmpI = II; 7664 else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) 7665 CmpI = F->getFastMathFlags().none() ? F : nullptr; 7666 7667 if (CmpI && CmpI->hasOneUse()) { 7668 auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); 7669 bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || 7670 isa<ConstantPointerNull>(Op0); 7671 bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || 7672 isa<ConstantPointerNull>(Op1); 7673 if (Const0 || Const1) { 7674 if (!Const0 || !Const1) { 7675 auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI); 7676 F->takeName(FI); 7677 CmpI->setOperand(Const0 ? 1 : 0, F); 7678 } 7679 FI->replaceAllUsesWith(CmpI); 7680 FI->eraseFromParent(); 7681 return true; 7682 } 7683 } 7684 return false; 7685 } 7686 7687 if (tryToSinkFreeOperands(I)) 7688 return true; 7689 7690 switch (I->getOpcode()) { 7691 case Instruction::Shl: 7692 case Instruction::LShr: 7693 case Instruction::AShr: 7694 return optimizeShiftInst(cast<BinaryOperator>(I)); 7695 case Instruction::Call: 7696 return optimizeCallInst(cast<CallInst>(I), ModifiedDT); 7697 case Instruction::Select: 7698 return optimizeSelectInst(cast<SelectInst>(I)); 7699 case Instruction::ShuffleVector: 7700 return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); 7701 case Instruction::Switch: 7702 return optimizeSwitchInst(cast<SwitchInst>(I)); 7703 case Instruction::ExtractElement: 7704 return optimizeExtractElementInst(cast<ExtractElementInst>(I)); 7705 } 7706 7707 return false; 7708 } 7709 7710 /// Given an OR instruction, check to see if this is a bitreverse 7711 /// idiom. If so, insert the new intrinsic and return true. 7712 bool CodeGenPrepare::makeBitReverse(Instruction &I) { 7713 if (!I.getType()->isIntegerTy() || 7714 !TLI->isOperationLegalOrCustom(ISD::BITREVERSE, 7715 TLI->getValueType(*DL, I.getType(), true))) 7716 return false; 7717 7718 SmallVector<Instruction*, 4> Insts; 7719 if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) 7720 return false; 7721 Instruction *LastInst = Insts.back(); 7722 I.replaceAllUsesWith(LastInst); 7723 RecursivelyDeleteTriviallyDeadInstructions( 7724 &I, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); 7725 return true; 7726 } 7727 7728 // In this pass we look for GEP and cast instructions that are used 7729 // across basic blocks and rewrite them to improve basic-block-at-a-time 7730 // selection. 7731 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { 7732 SunkAddrs.clear(); 7733 bool MadeChange = false; 7734 7735 CurInstIterator = BB.begin(); 7736 while (CurInstIterator != BB.end()) { 7737 MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); 7738 if (ModifiedDT) 7739 return true; 7740 } 7741 7742 bool MadeBitReverse = true; 7743 while (MadeBitReverse) { 7744 MadeBitReverse = false; 7745 for (auto &I : reverse(BB)) { 7746 if (makeBitReverse(I)) { 7747 MadeBitReverse = MadeChange = true; 7748 break; 7749 } 7750 } 7751 } 7752 MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); 7753 7754 return MadeChange; 7755 } 7756 7757 // Some CGP optimizations may move or alter what's computed in a block. Check 7758 // whether a dbg.value intrinsic could be pointed at a more appropriate operand. 7759 bool CodeGenPrepare::fixupDbgValue(Instruction *I) { 7760 assert(isa<DbgValueInst>(I)); 7761 DbgValueInst &DVI = *cast<DbgValueInst>(I); 7762 7763 // Does this dbg.value refer to a sunk address calculation? 7764 Value *Location = DVI.getVariableLocation(); 7765 WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; 7766 Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; 7767 if (SunkAddr) { 7768 // Point dbg.value at locally computed address, which should give the best 7769 // opportunity to be accurately lowered. This update may change the type of 7770 // pointer being referred to; however this makes no difference to debugging 7771 // information, and we can't generate bitcasts that may affect codegen. 7772 DVI.setOperand(0, MetadataAsValue::get(DVI.getContext(), 7773 ValueAsMetadata::get(SunkAddr))); 7774 return true; 7775 } 7776 return false; 7777 } 7778 7779 // A llvm.dbg.value may be using a value before its definition, due to 7780 // optimizations in this pass and others. Scan for such dbg.values, and rescue 7781 // them by moving the dbg.value to immediately after the value definition. 7782 // FIXME: Ideally this should never be necessary, and this has the potential 7783 // to re-order dbg.value intrinsics. 7784 bool CodeGenPrepare::placeDbgValues(Function &F) { 7785 bool MadeChange = false; 7786 DominatorTree DT(F); 7787 7788 for (BasicBlock &BB : F) { 7789 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 7790 Instruction *Insn = &*BI++; 7791 DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); 7792 if (!DVI) 7793 continue; 7794 7795 Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); 7796 7797 if (!VI || VI->isTerminator()) 7798 continue; 7799 7800 // If VI is a phi in a block with an EHPad terminator, we can't insert 7801 // after it. 7802 if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) 7803 continue; 7804 7805 // If the defining instruction dominates the dbg.value, we do not need 7806 // to move the dbg.value. 7807 if (DT.dominates(VI, DVI)) 7808 continue; 7809 7810 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" 7811 << *DVI << ' ' << *VI); 7812 DVI->removeFromParent(); 7813 if (isa<PHINode>(VI)) 7814 DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); 7815 else 7816 DVI->insertAfter(VI); 7817 MadeChange = true; 7818 ++NumDbgValueMoved; 7819 } 7820 } 7821 return MadeChange; 7822 } 7823 7824 /// Scale down both weights to fit into uint32_t. 7825 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 7826 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 7827 uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; 7828 NewTrue = NewTrue / Scale; 7829 NewFalse = NewFalse / Scale; 7830 } 7831 7832 /// Some targets prefer to split a conditional branch like: 7833 /// \code 7834 /// %0 = icmp ne i32 %a, 0 7835 /// %1 = icmp ne i32 %b, 0 7836 /// %or.cond = or i1 %0, %1 7837 /// br i1 %or.cond, label %TrueBB, label %FalseBB 7838 /// \endcode 7839 /// into multiple branch instructions like: 7840 /// \code 7841 /// bb1: 7842 /// %0 = icmp ne i32 %a, 0 7843 /// br i1 %0, label %TrueBB, label %bb2 7844 /// bb2: 7845 /// %1 = icmp ne i32 %b, 0 7846 /// br i1 %1, label %TrueBB, label %FalseBB 7847 /// \endcode 7848 /// This usually allows instruction selection to do even further optimizations 7849 /// and combine the compare with the branch instruction. Currently this is 7850 /// applied for targets which have "cheap" jump instructions. 7851 /// 7852 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG. 7853 /// 7854 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { 7855 if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) 7856 return false; 7857 7858 bool MadeChange = false; 7859 for (auto &BB : F) { 7860 // Does this BB end with the following? 7861 // %cond1 = icmp|fcmp|binary instruction ... 7862 // %cond2 = icmp|fcmp|binary instruction ... 7863 // %cond.or = or|and i1 %cond1, cond2 7864 // br i1 %cond.or label %dest1, label %dest2" 7865 Instruction *LogicOp; 7866 BasicBlock *TBB, *FBB; 7867 if (!match(BB.getTerminator(), 7868 m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB))) 7869 continue; 7870 7871 auto *Br1 = cast<BranchInst>(BB.getTerminator()); 7872 if (Br1->getMetadata(LLVMContext::MD_unpredictable)) 7873 continue; 7874 7875 // The merging of mostly empty BB can cause a degenerate branch. 7876 if (TBB == FBB) 7877 continue; 7878 7879 unsigned Opc; 7880 Value *Cond1, *Cond2; 7881 if (match(LogicOp, 7882 m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2))))) 7883 Opc = Instruction::And; 7884 else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)), 7885 m_OneUse(m_Value(Cond2))))) 7886 Opc = Instruction::Or; 7887 else 7888 continue; 7889 7890 auto IsGoodCond = [](Value *Cond) { 7891 return match( 7892 Cond, 7893 m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()), 7894 m_LogicalOr(m_Value(), m_Value())))); 7895 }; 7896 if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2)) 7897 continue; 7898 7899 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); 7900 7901 // Create a new BB. 7902 auto *TmpBB = 7903 BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", 7904 BB.getParent(), BB.getNextNode()); 7905 7906 // Update original basic block by using the first condition directly by the 7907 // branch instruction and removing the no longer needed and/or instruction. 7908 Br1->setCondition(Cond1); 7909 LogicOp->eraseFromParent(); 7910 7911 // Depending on the condition we have to either replace the true or the 7912 // false successor of the original branch instruction. 7913 if (Opc == Instruction::And) 7914 Br1->setSuccessor(0, TmpBB); 7915 else 7916 Br1->setSuccessor(1, TmpBB); 7917 7918 // Fill in the new basic block. 7919 auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); 7920 if (auto *I = dyn_cast<Instruction>(Cond2)) { 7921 I->removeFromParent(); 7922 I->insertBefore(Br2); 7923 } 7924 7925 // Update PHI nodes in both successors. The original BB needs to be 7926 // replaced in one successor's PHI nodes, because the branch comes now from 7927 // the newly generated BB (NewBB). In the other successor we need to add one 7928 // incoming edge to the PHI nodes, because both branch instructions target 7929 // now the same successor. Depending on the original branch condition 7930 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that 7931 // we perform the correct update for the PHI nodes. 7932 // This doesn't change the successor order of the just created branch 7933 // instruction (or any other instruction). 7934 if (Opc == Instruction::Or) 7935 std::swap(TBB, FBB); 7936 7937 // Replace the old BB with the new BB. 7938 TBB->replacePhiUsesWith(&BB, TmpBB); 7939 7940 // Add another incoming edge form the new BB. 7941 for (PHINode &PN : FBB->phis()) { 7942 auto *Val = PN.getIncomingValueForBlock(&BB); 7943 PN.addIncoming(Val, TmpBB); 7944 } 7945 7946 // Update the branch weights (from SelectionDAGBuilder:: 7947 // FindMergedConditions). 7948 if (Opc == Instruction::Or) { 7949 // Codegen X | Y as: 7950 // BB1: 7951 // jmp_if_X TBB 7952 // jmp TmpBB 7953 // TmpBB: 7954 // jmp_if_Y TBB 7955 // jmp FBB 7956 // 7957 7958 // We have flexibility in setting Prob for BB1 and Prob for NewBB. 7959 // The requirement is that 7960 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 7961 // = TrueProb for original BB. 7962 // Assuming the original weights are A and B, one choice is to set BB1's 7963 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 7964 // assumes that 7965 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 7966 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 7967 // TmpBB, but the math is more complicated. 7968 uint64_t TrueWeight, FalseWeight; 7969 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 7970 uint64_t NewTrueWeight = TrueWeight; 7971 uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; 7972 scaleWeights(NewTrueWeight, NewFalseWeight); 7973 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 7974 .createBranchWeights(TrueWeight, FalseWeight)); 7975 7976 NewTrueWeight = TrueWeight; 7977 NewFalseWeight = 2 * FalseWeight; 7978 scaleWeights(NewTrueWeight, NewFalseWeight); 7979 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 7980 .createBranchWeights(TrueWeight, FalseWeight)); 7981 } 7982 } else { 7983 // Codegen X & Y as: 7984 // BB1: 7985 // jmp_if_X TmpBB 7986 // jmp FBB 7987 // TmpBB: 7988 // jmp_if_Y TBB 7989 // jmp FBB 7990 // 7991 // This requires creation of TmpBB after CurBB. 7992 7993 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 7994 // The requirement is that 7995 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 7996 // = FalseProb for original BB. 7997 // Assuming the original weights are A and B, one choice is to set BB1's 7998 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 7999 // assumes that 8000 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 8001 uint64_t TrueWeight, FalseWeight; 8002 if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { 8003 uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; 8004 uint64_t NewFalseWeight = FalseWeight; 8005 scaleWeights(NewTrueWeight, NewFalseWeight); 8006 Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) 8007 .createBranchWeights(TrueWeight, FalseWeight)); 8008 8009 NewTrueWeight = 2 * TrueWeight; 8010 NewFalseWeight = FalseWeight; 8011 scaleWeights(NewTrueWeight, NewFalseWeight); 8012 Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) 8013 .createBranchWeights(TrueWeight, FalseWeight)); 8014 } 8015 } 8016 8017 ModifiedDT = true; 8018 MadeChange = true; 8019 8020 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); 8021 TmpBB->dump()); 8022 } 8023 return MadeChange; 8024 } 8025