1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a pass (at IR level) to replace atomic instructions with
10 // __atomic_* library calls, or target specific instruction which implement the
11 // same semantics in a way which better fits the target backend.  This can
12 // include the use of (intrinsic-based) load-linked/store-conditional loops,
13 // AtomicCmpXchg, or type coercions.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/STLFunctionalExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/CodeGen/AtomicExpandUtils.h"
22 #include "llvm/CodeGen/RuntimeLibcalls.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetPassConfig.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/CodeGen/ValueTypes.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Constant.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/InstIterator.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/IR/User.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/InitializePasses.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/AtomicOrdering.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include "llvm/Target/TargetMachine.h"
50 #include "llvm/Transforms/Utils/LowerAtomic.h"
51 #include <cassert>
52 #include <cstdint>
53 #include <iterator>
54 
55 using namespace llvm;
56 
57 #define DEBUG_TYPE "atomic-expand"
58 
59 namespace {
60 
61 class AtomicExpand : public FunctionPass {
62   const TargetLowering *TLI = nullptr;
63 
64 public:
65   static char ID; // Pass identification, replacement for typeid
66 
67   AtomicExpand() : FunctionPass(ID) {
68     initializeAtomicExpandPass(*PassRegistry::getPassRegistry());
69   }
70 
71   bool runOnFunction(Function &F) override;
72 
73 private:
74   bool bracketInstWithFences(Instruction *I, AtomicOrdering Order);
75   IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL);
76   LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI);
77   bool tryExpandAtomicLoad(LoadInst *LI);
78   bool expandAtomicLoadToLL(LoadInst *LI);
79   bool expandAtomicLoadToCmpXchg(LoadInst *LI);
80   StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI);
81   bool tryExpandAtomicStore(StoreInst *SI);
82   void expandAtomicStore(StoreInst *SI);
83   bool tryExpandAtomicRMW(AtomicRMWInst *AI);
84   AtomicRMWInst *convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI);
85   Value *
86   insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
87                     Align AddrAlign, AtomicOrdering MemOpOrder,
88                     function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
89   void
90   expandAtomicOpToLLSC(Instruction *I, Type *ResultTy, Value *Addr,
91                        Align AddrAlign, AtomicOrdering MemOpOrder,
92                        function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
93   void expandPartwordAtomicRMW(
94       AtomicRMWInst *I, TargetLoweringBase::AtomicExpansionKind ExpansionKind);
95   AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI);
96   bool expandPartwordCmpXchg(AtomicCmpXchgInst *I);
97   void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI);
98   void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI);
99 
100   AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI);
101   static Value *
102   insertRMWCmpXchgLoop(IRBuilder<> &Builder, Type *ResultType, Value *Addr,
103                        Align AddrAlign, AtomicOrdering MemOpOrder,
104                        SyncScope::ID SSID,
105                        function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
106                        CreateCmpXchgInstFun CreateCmpXchg);
107   bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI);
108 
109   bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI);
110   bool isIdempotentRMW(AtomicRMWInst *RMWI);
111   bool simplifyIdempotentRMW(AtomicRMWInst *RMWI);
112 
113   bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, Align Alignment,
114                                Value *PointerOperand, Value *ValueOperand,
115                                Value *CASExpected, AtomicOrdering Ordering,
116                                AtomicOrdering Ordering2,
117                                ArrayRef<RTLIB::Libcall> Libcalls);
118   void expandAtomicLoadToLibcall(LoadInst *LI);
119   void expandAtomicStoreToLibcall(StoreInst *LI);
120   void expandAtomicRMWToLibcall(AtomicRMWInst *I);
121   void expandAtomicCASToLibcall(AtomicCmpXchgInst *I);
122 
123   friend bool
124   llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
125                                  CreateCmpXchgInstFun CreateCmpXchg);
126 };
127 
128 } // end anonymous namespace
129 
130 char AtomicExpand::ID = 0;
131 
132 char &llvm::AtomicExpandID = AtomicExpand::ID;
133 
134 INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions", false,
135                 false)
136 
137 FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); }
138 
139 // Helper functions to retrieve the size of atomic instructions.
140 static unsigned getAtomicOpSize(LoadInst *LI) {
141   const DataLayout &DL = LI->getModule()->getDataLayout();
142   return DL.getTypeStoreSize(LI->getType());
143 }
144 
145 static unsigned getAtomicOpSize(StoreInst *SI) {
146   const DataLayout &DL = SI->getModule()->getDataLayout();
147   return DL.getTypeStoreSize(SI->getValueOperand()->getType());
148 }
149 
150 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) {
151   const DataLayout &DL = RMWI->getModule()->getDataLayout();
152   return DL.getTypeStoreSize(RMWI->getValOperand()->getType());
153 }
154 
155 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) {
156   const DataLayout &DL = CASI->getModule()->getDataLayout();
157   return DL.getTypeStoreSize(CASI->getCompareOperand()->getType());
158 }
159 
160 // Determine if a particular atomic operation has a supported size,
161 // and is of appropriate alignment, to be passed through for target
162 // lowering. (Versus turning into a __atomic libcall)
163 template <typename Inst>
164 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) {
165   unsigned Size = getAtomicOpSize(I);
166   Align Alignment = I->getAlign();
167   return Alignment >= Size &&
168          Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8;
169 }
170 
171 bool AtomicExpand::runOnFunction(Function &F) {
172   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
173   if (!TPC)
174     return false;
175 
176   auto &TM = TPC->getTM<TargetMachine>();
177   if (!TM.getSubtargetImpl(F)->enableAtomicExpand())
178     return false;
179   TLI = TM.getSubtargetImpl(F)->getTargetLowering();
180 
181   SmallVector<Instruction *, 1> AtomicInsts;
182 
183   // Changing control-flow while iterating through it is a bad idea, so gather a
184   // list of all atomic instructions before we start.
185   for (Instruction &I : instructions(F))
186     if (I.isAtomic() && !isa<FenceInst>(&I))
187       AtomicInsts.push_back(&I);
188 
189   bool MadeChange = false;
190   for (auto I : AtomicInsts) {
191     auto LI = dyn_cast<LoadInst>(I);
192     auto SI = dyn_cast<StoreInst>(I);
193     auto RMWI = dyn_cast<AtomicRMWInst>(I);
194     auto CASI = dyn_cast<AtomicCmpXchgInst>(I);
195     assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction");
196 
197     // If the Size/Alignment is not supported, replace with a libcall.
198     if (LI) {
199       if (!atomicSizeSupported(TLI, LI)) {
200         expandAtomicLoadToLibcall(LI);
201         MadeChange = true;
202         continue;
203       }
204     } else if (SI) {
205       if (!atomicSizeSupported(TLI, SI)) {
206         expandAtomicStoreToLibcall(SI);
207         MadeChange = true;
208         continue;
209       }
210     } else if (RMWI) {
211       if (!atomicSizeSupported(TLI, RMWI)) {
212         expandAtomicRMWToLibcall(RMWI);
213         MadeChange = true;
214         continue;
215       }
216     } else if (CASI) {
217       if (!atomicSizeSupported(TLI, CASI)) {
218         expandAtomicCASToLibcall(CASI);
219         MadeChange = true;
220         continue;
221       }
222     }
223 
224     if (TLI->shouldInsertFencesForAtomic(I)) {
225       auto FenceOrdering = AtomicOrdering::Monotonic;
226       if (LI && isAcquireOrStronger(LI->getOrdering())) {
227         FenceOrdering = LI->getOrdering();
228         LI->setOrdering(AtomicOrdering::Monotonic);
229       } else if (SI && isReleaseOrStronger(SI->getOrdering())) {
230         FenceOrdering = SI->getOrdering();
231         SI->setOrdering(AtomicOrdering::Monotonic);
232       } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) ||
233                           isAcquireOrStronger(RMWI->getOrdering()))) {
234         FenceOrdering = RMWI->getOrdering();
235         RMWI->setOrdering(AtomicOrdering::Monotonic);
236       } else if (CASI &&
237                  TLI->shouldExpandAtomicCmpXchgInIR(CASI) ==
238                      TargetLoweringBase::AtomicExpansionKind::None &&
239                  (isReleaseOrStronger(CASI->getSuccessOrdering()) ||
240                   isAcquireOrStronger(CASI->getSuccessOrdering()) ||
241                   isAcquireOrStronger(CASI->getFailureOrdering()))) {
242         // If a compare and swap is lowered to LL/SC, we can do smarter fence
243         // insertion, with a stronger one on the success path than on the
244         // failure path. As a result, fence insertion is directly done by
245         // expandAtomicCmpXchg in that case.
246         FenceOrdering = CASI->getMergedOrdering();
247         CASI->setSuccessOrdering(AtomicOrdering::Monotonic);
248         CASI->setFailureOrdering(AtomicOrdering::Monotonic);
249       }
250 
251       if (FenceOrdering != AtomicOrdering::Monotonic) {
252         MadeChange |= bracketInstWithFences(I, FenceOrdering);
253       }
254     }
255 
256     if (LI) {
257       if (TLI->shouldCastAtomicLoadInIR(LI) ==
258           TargetLoweringBase::AtomicExpansionKind::CastToInteger) {
259         // TODO: add a TLI hook to control this so that each target can
260         // convert to lowering the original type one at a time.
261         LI = convertAtomicLoadToIntegerType(LI);
262         assert(LI->getType()->isIntegerTy() && "invariant broken");
263         MadeChange = true;
264       }
265 
266       MadeChange |= tryExpandAtomicLoad(LI);
267     } else if (SI) {
268       if (TLI->shouldCastAtomicStoreInIR(SI) ==
269           TargetLoweringBase::AtomicExpansionKind::CastToInteger) {
270         // TODO: add a TLI hook to control this so that each target can
271         // convert to lowering the original type one at a time.
272         SI = convertAtomicStoreToIntegerType(SI);
273         assert(SI->getValueOperand()->getType()->isIntegerTy() &&
274                "invariant broken");
275         MadeChange = true;
276       }
277 
278       if (tryExpandAtomicStore(SI))
279         MadeChange = true;
280     } else if (RMWI) {
281       // There are two different ways of expanding RMW instructions:
282       // - into a load if it is idempotent
283       // - into a Cmpxchg/LL-SC loop otherwise
284       // we try them in that order.
285 
286       if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) {
287         MadeChange = true;
288       } else {
289         AtomicRMWInst::BinOp Op = RMWI->getOperation();
290         if (TLI->shouldCastAtomicRMWIInIR(RMWI) ==
291             TargetLoweringBase::AtomicExpansionKind::CastToInteger) {
292           // TODO: add a TLI hook to control this so that each target can
293           // convert to lowering the original type one at a time.
294           RMWI = convertAtomicXchgToIntegerType(RMWI);
295           assert(RMWI->getValOperand()->getType()->isIntegerTy() &&
296                  "invariant broken");
297           MadeChange = true;
298         }
299         unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
300         unsigned ValueSize = getAtomicOpSize(RMWI);
301         if (ValueSize < MinCASSize &&
302             (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
303              Op == AtomicRMWInst::And)) {
304           RMWI = widenPartwordAtomicRMW(RMWI);
305           MadeChange = true;
306         }
307 
308         MadeChange |= tryExpandAtomicRMW(RMWI);
309       }
310     } else if (CASI) {
311       // TODO: when we're ready to make the change at the IR level, we can
312       // extend convertCmpXchgToInteger for floating point too.
313       assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() &&
314              "unimplemented - floating point not legal at IR level");
315       if (CASI->getCompareOperand()->getType()->isPointerTy()) {
316         // TODO: add a TLI hook to control this so that each target can
317         // convert to lowering the original type one at a time.
318         CASI = convertCmpXchgToIntegerType(CASI);
319         assert(CASI->getCompareOperand()->getType()->isIntegerTy() &&
320                "invariant broken");
321         MadeChange = true;
322       }
323 
324       MadeChange |= tryExpandAtomicCmpXchg(CASI);
325     }
326   }
327   return MadeChange;
328 }
329 
330 bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) {
331   IRBuilder<> Builder(I);
332 
333   auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order);
334 
335   auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order);
336   // We have a guard here because not every atomic operation generates a
337   // trailing fence.
338   if (TrailingFence)
339     TrailingFence->moveAfter(I);
340 
341   return (LeadingFence || TrailingFence);
342 }
343 
344 /// Get the iX type with the same bitwidth as T.
345 IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T,
346                                                        const DataLayout &DL) {
347   EVT VT = TLI->getMemValueType(DL, T);
348   unsigned BitWidth = VT.getStoreSizeInBits();
349   assert(BitWidth == VT.getSizeInBits() && "must be a power of two");
350   return IntegerType::get(T->getContext(), BitWidth);
351 }
352 
353 /// Convert an atomic load of a non-integral type to an integer load of the
354 /// equivalent bitwidth.  See the function comment on
355 /// convertAtomicStoreToIntegerType for background.
356 LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) {
357   auto *M = LI->getModule();
358   Type *NewTy = getCorrespondingIntegerType(LI->getType(), M->getDataLayout());
359 
360   IRBuilder<> Builder(LI);
361 
362   Value *Addr = LI->getPointerOperand();
363   Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace());
364   Value *NewAddr = Builder.CreateBitCast(Addr, PT);
365 
366   auto *NewLI = Builder.CreateLoad(NewTy, NewAddr);
367   NewLI->setAlignment(LI->getAlign());
368   NewLI->setVolatile(LI->isVolatile());
369   NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID());
370   LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n");
371 
372   Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType());
373   LI->replaceAllUsesWith(NewVal);
374   LI->eraseFromParent();
375   return NewLI;
376 }
377 
378 AtomicRMWInst *
379 AtomicExpand::convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI) {
380   auto *M = RMWI->getModule();
381   Type *NewTy =
382       getCorrespondingIntegerType(RMWI->getType(), M->getDataLayout());
383 
384   IRBuilder<> Builder(RMWI);
385 
386   Value *Addr = RMWI->getPointerOperand();
387   Value *Val = RMWI->getValOperand();
388   Type *PT = PointerType::get(NewTy, RMWI->getPointerAddressSpace());
389   Value *NewAddr = Builder.CreateBitCast(Addr, PT);
390   Value *NewVal = Builder.CreateBitCast(Val, NewTy);
391 
392   auto *NewRMWI =
393       Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, NewAddr, NewVal,
394                               RMWI->getAlign(), RMWI->getOrdering());
395   NewRMWI->setVolatile(RMWI->isVolatile());
396   LLVM_DEBUG(dbgs() << "Replaced " << *RMWI << " with " << *NewRMWI << "\n");
397 
398   Value *NewRVal = Builder.CreateBitCast(NewRMWI, RMWI->getType());
399   RMWI->replaceAllUsesWith(NewRVal);
400   RMWI->eraseFromParent();
401   return NewRMWI;
402 }
403 
404 bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) {
405   switch (TLI->shouldExpandAtomicLoadInIR(LI)) {
406   case TargetLoweringBase::AtomicExpansionKind::None:
407     return false;
408   case TargetLoweringBase::AtomicExpansionKind::LLSC:
409     expandAtomicOpToLLSC(
410         LI, LI->getType(), LI->getPointerOperand(), LI->getAlign(),
411         LI->getOrdering(),
412         [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; });
413     return true;
414   case TargetLoweringBase::AtomicExpansionKind::LLOnly:
415     return expandAtomicLoadToLL(LI);
416   case TargetLoweringBase::AtomicExpansionKind::CmpXChg:
417     return expandAtomicLoadToCmpXchg(LI);
418   case TargetLoweringBase::AtomicExpansionKind::NotAtomic:
419     LI->setAtomic(AtomicOrdering::NotAtomic);
420     return true;
421   default:
422     llvm_unreachable("Unhandled case in tryExpandAtomicLoad");
423   }
424 }
425 
426 bool AtomicExpand::tryExpandAtomicStore(StoreInst *SI) {
427   switch (TLI->shouldExpandAtomicStoreInIR(SI)) {
428   case TargetLoweringBase::AtomicExpansionKind::None:
429     return false;
430   case TargetLoweringBase::AtomicExpansionKind::Expand:
431     expandAtomicStore(SI);
432     return true;
433   case TargetLoweringBase::AtomicExpansionKind::NotAtomic:
434     SI->setAtomic(AtomicOrdering::NotAtomic);
435     return true;
436   default:
437     llvm_unreachable("Unhandled case in tryExpandAtomicStore");
438   }
439 }
440 
441 bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) {
442   IRBuilder<> Builder(LI);
443 
444   // On some architectures, load-linked instructions are atomic for larger
445   // sizes than normal loads. For example, the only 64-bit load guaranteed
446   // to be single-copy atomic by ARM is an ldrexd (A3.5.3).
447   Value *Val = TLI->emitLoadLinked(Builder, LI->getType(),
448                                    LI->getPointerOperand(), LI->getOrdering());
449   TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
450 
451   LI->replaceAllUsesWith(Val);
452   LI->eraseFromParent();
453 
454   return true;
455 }
456 
457 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) {
458   IRBuilder<> Builder(LI);
459   AtomicOrdering Order = LI->getOrdering();
460   if (Order == AtomicOrdering::Unordered)
461     Order = AtomicOrdering::Monotonic;
462 
463   Value *Addr = LI->getPointerOperand();
464   Type *Ty = LI->getType();
465   Constant *DummyVal = Constant::getNullValue(Ty);
466 
467   Value *Pair = Builder.CreateAtomicCmpXchg(
468       Addr, DummyVal, DummyVal, LI->getAlign(), Order,
469       AtomicCmpXchgInst::getStrongestFailureOrdering(Order));
470   Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded");
471 
472   LI->replaceAllUsesWith(Loaded);
473   LI->eraseFromParent();
474 
475   return true;
476 }
477 
478 /// Convert an atomic store of a non-integral type to an integer store of the
479 /// equivalent bitwidth.  We used to not support floating point or vector
480 /// atomics in the IR at all.  The backends learned to deal with the bitcast
481 /// idiom because that was the only way of expressing the notion of a atomic
482 /// float or vector store.  The long term plan is to teach each backend to
483 /// instruction select from the original atomic store, but as a migration
484 /// mechanism, we convert back to the old format which the backends understand.
485 /// Each backend will need individual work to recognize the new format.
486 StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) {
487   IRBuilder<> Builder(SI);
488   auto *M = SI->getModule();
489   Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(),
490                                             M->getDataLayout());
491   Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy);
492 
493   Value *Addr = SI->getPointerOperand();
494   Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace());
495   Value *NewAddr = Builder.CreateBitCast(Addr, PT);
496 
497   StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr);
498   NewSI->setAlignment(SI->getAlign());
499   NewSI->setVolatile(SI->isVolatile());
500   NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID());
501   LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n");
502   SI->eraseFromParent();
503   return NewSI;
504 }
505 
506 void AtomicExpand::expandAtomicStore(StoreInst *SI) {
507   // This function is only called on atomic stores that are too large to be
508   // atomic if implemented as a native store. So we replace them by an
509   // atomic swap, that can be implemented for example as a ldrex/strex on ARM
510   // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes.
511   // It is the responsibility of the target to only signal expansion via
512   // shouldExpandAtomicRMW in cases where this is required and possible.
513   IRBuilder<> Builder(SI);
514   AtomicRMWInst *AI = Builder.CreateAtomicRMW(
515       AtomicRMWInst::Xchg, SI->getPointerOperand(), SI->getValueOperand(),
516       SI->getAlign(), SI->getOrdering());
517   SI->eraseFromParent();
518 
519   // Now we have an appropriate swap instruction, lower it as usual.
520   tryExpandAtomicRMW(AI);
521 }
522 
523 static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr,
524                                  Value *Loaded, Value *NewVal, Align AddrAlign,
525                                  AtomicOrdering MemOpOrder, SyncScope::ID SSID,
526                                  Value *&Success, Value *&NewLoaded) {
527   Type *OrigTy = NewVal->getType();
528 
529   // This code can go away when cmpxchg supports FP types.
530   bool NeedBitcast = OrigTy->isFloatingPointTy();
531   if (NeedBitcast) {
532     IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits());
533     unsigned AS = Addr->getType()->getPointerAddressSpace();
534     Addr = Builder.CreateBitCast(Addr, IntTy->getPointerTo(AS));
535     NewVal = Builder.CreateBitCast(NewVal, IntTy);
536     Loaded = Builder.CreateBitCast(Loaded, IntTy);
537   }
538 
539   Value *Pair = Builder.CreateAtomicCmpXchg(
540       Addr, Loaded, NewVal, AddrAlign, MemOpOrder,
541       AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID);
542   Success = Builder.CreateExtractValue(Pair, 1, "success");
543   NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
544 
545   if (NeedBitcast)
546     NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy);
547 }
548 
549 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) {
550   LLVMContext &Ctx = AI->getModule()->getContext();
551   TargetLowering::AtomicExpansionKind Kind = TLI->shouldExpandAtomicRMWInIR(AI);
552   switch (Kind) {
553   case TargetLoweringBase::AtomicExpansionKind::None:
554     return false;
555   case TargetLoweringBase::AtomicExpansionKind::LLSC: {
556     unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
557     unsigned ValueSize = getAtomicOpSize(AI);
558     if (ValueSize < MinCASSize) {
559       expandPartwordAtomicRMW(AI,
560                               TargetLoweringBase::AtomicExpansionKind::LLSC);
561     } else {
562       auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) {
563         return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded,
564                                    AI->getValOperand());
565       };
566       expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(),
567                            AI->getAlign(), AI->getOrdering(), PerformOp);
568     }
569     return true;
570   }
571   case TargetLoweringBase::AtomicExpansionKind::CmpXChg: {
572     unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
573     unsigned ValueSize = getAtomicOpSize(AI);
574     if (ValueSize < MinCASSize) {
575       // TODO: Handle atomicrmw fadd/fsub
576       if (AI->getType()->isFloatingPointTy())
577         return false;
578 
579       expandPartwordAtomicRMW(AI,
580                               TargetLoweringBase::AtomicExpansionKind::CmpXChg);
581     } else {
582       SmallVector<StringRef> SSNs;
583       Ctx.getSyncScopeNames(SSNs);
584       auto MemScope = SSNs[AI->getSyncScopeID()].empty()
585                           ? "system"
586                           : SSNs[AI->getSyncScopeID()];
587       OptimizationRemarkEmitter ORE(AI->getFunction());
588       ORE.emit([&]() {
589         return OptimizationRemark(DEBUG_TYPE, "Passed", AI)
590                << "A compare and swap loop was generated for an atomic "
591                << AI->getOperationName(AI->getOperation()) << " operation at "
592                << MemScope << " memory scope";
593       });
594       expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun);
595     }
596     return true;
597   }
598   case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: {
599     expandAtomicRMWToMaskedIntrinsic(AI);
600     return true;
601   }
602   case TargetLoweringBase::AtomicExpansionKind::BitTestIntrinsic: {
603     TLI->emitBitTestAtomicRMWIntrinsic(AI);
604     return true;
605   }
606   case TargetLoweringBase::AtomicExpansionKind::NotAtomic:
607     return lowerAtomicRMWInst(AI);
608   default:
609     llvm_unreachable("Unhandled case in tryExpandAtomicRMW");
610   }
611 }
612 
613 namespace {
614 
615 struct PartwordMaskValues {
616   // These three fields are guaranteed to be set by createMaskInstrs.
617   Type *WordType = nullptr;
618   Type *ValueType = nullptr;
619   Value *AlignedAddr = nullptr;
620   Align AlignedAddrAlignment;
621   // The remaining fields can be null.
622   Value *ShiftAmt = nullptr;
623   Value *Mask = nullptr;
624   Value *Inv_Mask = nullptr;
625 };
626 
627 LLVM_ATTRIBUTE_UNUSED
628 raw_ostream &operator<<(raw_ostream &O, const PartwordMaskValues &PMV) {
629   auto PrintObj = [&O](auto *V) {
630     if (V)
631       O << *V;
632     else
633       O << "nullptr";
634     O << '\n';
635   };
636   O << "PartwordMaskValues {\n";
637   O << "  WordType: ";
638   PrintObj(PMV.WordType);
639   O << "  ValueType: ";
640   PrintObj(PMV.ValueType);
641   O << "  AlignedAddr: ";
642   PrintObj(PMV.AlignedAddr);
643   O << "  AlignedAddrAlignment: " << PMV.AlignedAddrAlignment.value() << '\n';
644   O << "  ShiftAmt: ";
645   PrintObj(PMV.ShiftAmt);
646   O << "  Mask: ";
647   PrintObj(PMV.Mask);
648   O << "  Inv_Mask: ";
649   PrintObj(PMV.Inv_Mask);
650   O << "}\n";
651   return O;
652 }
653 
654 } // end anonymous namespace
655 
656 /// This is a helper function which builds instructions to provide
657 /// values necessary for partword atomic operations. It takes an
658 /// incoming address, Addr, and ValueType, and constructs the address,
659 /// shift-amounts and masks needed to work with a larger value of size
660 /// WordSize.
661 ///
662 /// AlignedAddr: Addr rounded down to a multiple of WordSize
663 ///
664 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded
665 ///           from AlignAddr for it to have the same value as if
666 ///           ValueType was loaded from Addr.
667 ///
668 /// Mask: Value to mask with the value loaded from AlignAddr to
669 ///       include only the part that would've been loaded from Addr.
670 ///
671 /// Inv_Mask: The inverse of Mask.
672 static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I,
673                                            Type *ValueType, Value *Addr,
674                                            Align AddrAlign,
675                                            unsigned MinWordSize) {
676   PartwordMaskValues PMV;
677 
678   Module *M = I->getModule();
679   LLVMContext &Ctx = M->getContext();
680   const DataLayout &DL = M->getDataLayout();
681   unsigned ValueSize = DL.getTypeStoreSize(ValueType);
682 
683   PMV.ValueType = ValueType;
684   PMV.WordType = MinWordSize > ValueSize ? Type::getIntNTy(Ctx, MinWordSize * 8)
685                                          : ValueType;
686   if (PMV.ValueType == PMV.WordType) {
687     PMV.AlignedAddr = Addr;
688     PMV.AlignedAddrAlignment = AddrAlign;
689     PMV.ShiftAmt = ConstantInt::get(PMV.ValueType, 0);
690     PMV.Mask = ConstantInt::get(PMV.ValueType, ~0, /*isSigned*/ true);
691     return PMV;
692   }
693 
694   assert(ValueSize < MinWordSize);
695 
696   Type *WordPtrType =
697       PMV.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace());
698 
699   // TODO: we could skip some of this if AddrAlign >= MinWordSize.
700   Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx));
701   PMV.AlignedAddr = Builder.CreateIntToPtr(
702       Builder.CreateAnd(AddrInt, ~(uint64_t)(MinWordSize - 1)), WordPtrType,
703       "AlignedAddr");
704   PMV.AlignedAddrAlignment = Align(MinWordSize);
705 
706   Value *PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1, "PtrLSB");
707   if (DL.isLittleEndian()) {
708     // turn bytes into bits
709     PMV.ShiftAmt = Builder.CreateShl(PtrLSB, 3);
710   } else {
711     // turn bytes into bits, and count from the other side.
712     PMV.ShiftAmt = Builder.CreateShl(
713         Builder.CreateXor(PtrLSB, MinWordSize - ValueSize), 3);
714   }
715 
716   PMV.ShiftAmt = Builder.CreateTrunc(PMV.ShiftAmt, PMV.WordType, "ShiftAmt");
717   PMV.Mask = Builder.CreateShl(
718       ConstantInt::get(PMV.WordType, (1 << (ValueSize * 8)) - 1), PMV.ShiftAmt,
719       "Mask");
720   PMV.Inv_Mask = Builder.CreateNot(PMV.Mask, "Inv_Mask");
721   return PMV;
722 }
723 
724 static Value *extractMaskedValue(IRBuilder<> &Builder, Value *WideWord,
725                                  const PartwordMaskValues &PMV) {
726   assert(WideWord->getType() == PMV.WordType && "Widened type mismatch");
727   if (PMV.WordType == PMV.ValueType)
728     return WideWord;
729 
730   Value *Shift = Builder.CreateLShr(WideWord, PMV.ShiftAmt, "shifted");
731   Value *Trunc = Builder.CreateTrunc(Shift, PMV.ValueType, "extracted");
732   return Trunc;
733 }
734 
735 static Value *insertMaskedValue(IRBuilder<> &Builder, Value *WideWord,
736                                 Value *Updated, const PartwordMaskValues &PMV) {
737   assert(WideWord->getType() == PMV.WordType && "Widened type mismatch");
738   assert(Updated->getType() == PMV.ValueType && "Value type mismatch");
739   if (PMV.WordType == PMV.ValueType)
740     return Updated;
741 
742   Value *ZExt = Builder.CreateZExt(Updated, PMV.WordType, "extended");
743   Value *Shift =
744       Builder.CreateShl(ZExt, PMV.ShiftAmt, "shifted", /*HasNUW*/ true);
745   Value *And = Builder.CreateAnd(WideWord, PMV.Inv_Mask, "unmasked");
746   Value *Or = Builder.CreateOr(And, Shift, "inserted");
747   return Or;
748 }
749 
750 /// Emit IR to implement a masked version of a given atomicrmw
751 /// operation. (That is, only the bits under the Mask should be
752 /// affected by the operation)
753 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op,
754                                     IRBuilder<> &Builder, Value *Loaded,
755                                     Value *Shifted_Inc, Value *Inc,
756                                     const PartwordMaskValues &PMV) {
757   // TODO: update to use
758   // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order
759   // to merge bits from two values without requiring PMV.Inv_Mask.
760   switch (Op) {
761   case AtomicRMWInst::Xchg: {
762     Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
763     Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc);
764     return FinalVal;
765   }
766   case AtomicRMWInst::Or:
767   case AtomicRMWInst::Xor:
768   case AtomicRMWInst::And:
769     llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW");
770   case AtomicRMWInst::Add:
771   case AtomicRMWInst::Sub:
772   case AtomicRMWInst::Nand: {
773     // The other arithmetic ops need to be masked into place.
774     Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded, Shifted_Inc);
775     Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask);
776     Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
777     Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked);
778     return FinalVal;
779   }
780   case AtomicRMWInst::Max:
781   case AtomicRMWInst::Min:
782   case AtomicRMWInst::UMax:
783   case AtomicRMWInst::UMin: {
784     // Finally, comparison ops will operate on the full value, so
785     // truncate down to the original size, and expand out again after
786     // doing the operation.
787     Value *Loaded_Extract = extractMaskedValue(Builder, Loaded, PMV);
788     Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded_Extract, Inc);
789     Value *FinalVal = insertMaskedValue(Builder, Loaded, NewVal, PMV);
790     return FinalVal;
791   }
792   default:
793     llvm_unreachable("Unknown atomic op");
794   }
795 }
796 
797 /// Expand a sub-word atomicrmw operation into an appropriate
798 /// word-sized operation.
799 ///
800 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same
801 /// way as a typical atomicrmw expansion. The only difference here is
802 /// that the operation inside of the loop may operate upon only a
803 /// part of the value.
804 void AtomicExpand::expandPartwordAtomicRMW(
805     AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) {
806   AtomicOrdering MemOpOrder = AI->getOrdering();
807   SyncScope::ID SSID = AI->getSyncScopeID();
808 
809   IRBuilder<> Builder(AI);
810 
811   PartwordMaskValues PMV =
812       createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
813                        AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
814 
815   Value *ValOperand_Shifted =
816       Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
817                         PMV.ShiftAmt, "ValOperand_Shifted");
818 
819   auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) {
820     return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded,
821                                  ValOperand_Shifted, AI->getValOperand(), PMV);
822   };
823 
824   Value *OldResult;
825   if (ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg) {
826     OldResult = insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr,
827                                      PMV.AlignedAddrAlignment, MemOpOrder, SSID,
828                                      PerformPartwordOp, createCmpXchgInstFun);
829   } else {
830     assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::LLSC);
831     OldResult = insertRMWLLSCLoop(Builder, PMV.WordType, PMV.AlignedAddr,
832                                   PMV.AlignedAddrAlignment, MemOpOrder,
833                                   PerformPartwordOp);
834   }
835 
836   Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV);
837   AI->replaceAllUsesWith(FinalOldResult);
838   AI->eraseFromParent();
839 }
840 
841 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width.
842 AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) {
843   IRBuilder<> Builder(AI);
844   AtomicRMWInst::BinOp Op = AI->getOperation();
845 
846   assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
847           Op == AtomicRMWInst::And) &&
848          "Unable to widen operation");
849 
850   PartwordMaskValues PMV =
851       createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
852                        AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
853 
854   Value *ValOperand_Shifted =
855       Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
856                         PMV.ShiftAmt, "ValOperand_Shifted");
857 
858   Value *NewOperand;
859 
860   if (Op == AtomicRMWInst::And)
861     NewOperand =
862         Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand");
863   else
864     NewOperand = ValOperand_Shifted;
865 
866   AtomicRMWInst *NewAI =
867       Builder.CreateAtomicRMW(Op, PMV.AlignedAddr, NewOperand,
868                               PMV.AlignedAddrAlignment, AI->getOrdering());
869 
870   Value *FinalOldResult = extractMaskedValue(Builder, NewAI, PMV);
871   AI->replaceAllUsesWith(FinalOldResult);
872   AI->eraseFromParent();
873   return NewAI;
874 }
875 
876 bool AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) {
877   // The basic idea here is that we're expanding a cmpxchg of a
878   // smaller memory size up to a word-sized cmpxchg. To do this, we
879   // need to add a retry-loop for strong cmpxchg, so that
880   // modifications to other parts of the word don't cause a spurious
881   // failure.
882 
883   // This generates code like the following:
884   //     [[Setup mask values PMV.*]]
885   //     %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt
886   //     %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt
887   //     %InitLoaded = load i32* %addr
888   //     %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask
889   //     br partword.cmpxchg.loop
890   // partword.cmpxchg.loop:
891   //     %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ],
892   //        [ %OldVal_MaskOut, %partword.cmpxchg.failure ]
893   //     %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted
894   //     %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted
895   //     %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp,
896   //        i32 %FullWord_NewVal success_ordering failure_ordering
897   //     %OldVal = extractvalue { i32, i1 } %NewCI, 0
898   //     %Success = extractvalue { i32, i1 } %NewCI, 1
899   //     br i1 %Success, label %partword.cmpxchg.end,
900   //        label %partword.cmpxchg.failure
901   // partword.cmpxchg.failure:
902   //     %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask
903   //     %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut
904   //     br i1 %ShouldContinue, label %partword.cmpxchg.loop,
905   //         label %partword.cmpxchg.end
906   // partword.cmpxchg.end:
907   //    %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt
908   //    %FinalOldVal = trunc i32 %tmp1 to i8
909   //    %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0
910   //    %Res = insertvalue { i8, i1 } %25, i1 %Success, 1
911 
912   Value *Addr = CI->getPointerOperand();
913   Value *Cmp = CI->getCompareOperand();
914   Value *NewVal = CI->getNewValOperand();
915 
916   BasicBlock *BB = CI->getParent();
917   Function *F = BB->getParent();
918   IRBuilder<> Builder(CI);
919   LLVMContext &Ctx = Builder.getContext();
920 
921   BasicBlock *EndBB =
922       BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end");
923   auto FailureBB =
924       BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB);
925   auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB);
926 
927   // The split call above "helpfully" added a branch at the end of BB
928   // (to the wrong place).
929   std::prev(BB->end())->eraseFromParent();
930   Builder.SetInsertPoint(BB);
931 
932   PartwordMaskValues PMV =
933       createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr,
934                        CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
935 
936   // Shift the incoming values over, into the right location in the word.
937   Value *NewVal_Shifted =
938       Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt);
939   Value *Cmp_Shifted =
940       Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt);
941 
942   // Load the entire current word, and mask into place the expected and new
943   // values
944   LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr);
945   InitLoaded->setVolatile(CI->isVolatile());
946   Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask);
947   Builder.CreateBr(LoopBB);
948 
949   // partword.cmpxchg.loop:
950   Builder.SetInsertPoint(LoopBB);
951   PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2);
952   Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB);
953 
954   // Mask/Or the expected and new values into place in the loaded word.
955   Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted);
956   Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted);
957   AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg(
958       PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, PMV.AlignedAddrAlignment,
959       CI->getSuccessOrdering(), CI->getFailureOrdering(), CI->getSyncScopeID());
960   NewCI->setVolatile(CI->isVolatile());
961   // When we're building a strong cmpxchg, we need a loop, so you
962   // might think we could use a weak cmpxchg inside. But, using strong
963   // allows the below comparison for ShouldContinue, and we're
964   // expecting the underlying cmpxchg to be a machine instruction,
965   // which is strong anyways.
966   NewCI->setWeak(CI->isWeak());
967 
968   Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
969   Value *Success = Builder.CreateExtractValue(NewCI, 1);
970 
971   if (CI->isWeak())
972     Builder.CreateBr(EndBB);
973   else
974     Builder.CreateCondBr(Success, EndBB, FailureBB);
975 
976   // partword.cmpxchg.failure:
977   Builder.SetInsertPoint(FailureBB);
978   // Upon failure, verify that the masked-out part of the loaded value
979   // has been modified.  If it didn't, abort the cmpxchg, since the
980   // masked-in part must've.
981   Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask);
982   Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut);
983   Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB);
984 
985   // Add the second value to the phi from above
986   Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB);
987 
988   // partword.cmpxchg.end:
989   Builder.SetInsertPoint(CI);
990 
991   Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV);
992   Value *Res = UndefValue::get(CI->getType());
993   Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
994   Res = Builder.CreateInsertValue(Res, Success, 1);
995 
996   CI->replaceAllUsesWith(Res);
997   CI->eraseFromParent();
998   return true;
999 }
1000 
1001 void AtomicExpand::expandAtomicOpToLLSC(
1002     Instruction *I, Type *ResultType, Value *Addr, Align AddrAlign,
1003     AtomicOrdering MemOpOrder,
1004     function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
1005   IRBuilder<> Builder(I);
1006   Value *Loaded = insertRMWLLSCLoop(Builder, ResultType, Addr, AddrAlign,
1007                                     MemOpOrder, PerformOp);
1008 
1009   I->replaceAllUsesWith(Loaded);
1010   I->eraseFromParent();
1011 }
1012 
1013 void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) {
1014   IRBuilder<> Builder(AI);
1015 
1016   PartwordMaskValues PMV =
1017       createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
1018                        AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
1019 
1020   // The value operand must be sign-extended for signed min/max so that the
1021   // target's signed comparison instructions can be used. Otherwise, just
1022   // zero-ext.
1023   Instruction::CastOps CastOp = Instruction::ZExt;
1024   AtomicRMWInst::BinOp RMWOp = AI->getOperation();
1025   if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min)
1026     CastOp = Instruction::SExt;
1027 
1028   Value *ValOperand_Shifted = Builder.CreateShl(
1029       Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType),
1030       PMV.ShiftAmt, "ValOperand_Shifted");
1031   Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic(
1032       Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt,
1033       AI->getOrdering());
1034   Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV);
1035   AI->replaceAllUsesWith(FinalOldResult);
1036   AI->eraseFromParent();
1037 }
1038 
1039 void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI) {
1040   IRBuilder<> Builder(CI);
1041 
1042   PartwordMaskValues PMV = createMaskInstrs(
1043       Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(),
1044       CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
1045 
1046   Value *CmpVal_Shifted = Builder.CreateShl(
1047       Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt,
1048       "CmpVal_Shifted");
1049   Value *NewVal_Shifted = Builder.CreateShl(
1050       Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt,
1051       "NewVal_Shifted");
1052   Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic(
1053       Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask,
1054       CI->getMergedOrdering());
1055   Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV);
1056   Value *Res = UndefValue::get(CI->getType());
1057   Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
1058   Value *Success = Builder.CreateICmpEQ(
1059       CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success");
1060   Res = Builder.CreateInsertValue(Res, Success, 1);
1061 
1062   CI->replaceAllUsesWith(Res);
1063   CI->eraseFromParent();
1064 }
1065 
1066 Value *AtomicExpand::insertRMWLLSCLoop(
1067     IRBuilder<> &Builder, Type *ResultTy, Value *Addr, Align AddrAlign,
1068     AtomicOrdering MemOpOrder,
1069     function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
1070   LLVMContext &Ctx = Builder.getContext();
1071   BasicBlock *BB = Builder.GetInsertBlock();
1072   Function *F = BB->getParent();
1073 
1074   assert(AddrAlign >=
1075              F->getParent()->getDataLayout().getTypeStoreSize(ResultTy) &&
1076          "Expected at least natural alignment at this point.");
1077 
1078   // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1079   //
1080   // The standard expansion we produce is:
1081   //     [...]
1082   // atomicrmw.start:
1083   //     %loaded = @load.linked(%addr)
1084   //     %new = some_op iN %loaded, %incr
1085   //     %stored = @store_conditional(%new, %addr)
1086   //     %try_again = icmp i32 ne %stored, 0
1087   //     br i1 %try_again, label %loop, label %atomicrmw.end
1088   // atomicrmw.end:
1089   //     [...]
1090   BasicBlock *ExitBB =
1091       BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
1092   BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
1093 
1094   // The split call above "helpfully" added a branch at the end of BB (to the
1095   // wrong place).
1096   std::prev(BB->end())->eraseFromParent();
1097   Builder.SetInsertPoint(BB);
1098   Builder.CreateBr(LoopBB);
1099 
1100   // Start the main loop block now that we've taken care of the preliminaries.
1101   Builder.SetInsertPoint(LoopBB);
1102   Value *Loaded = TLI->emitLoadLinked(Builder, ResultTy, Addr, MemOpOrder);
1103 
1104   Value *NewVal = PerformOp(Builder, Loaded);
1105 
1106   Value *StoreSuccess =
1107       TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder);
1108   Value *TryAgain = Builder.CreateICmpNE(
1109       StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain");
1110   Builder.CreateCondBr(TryAgain, LoopBB, ExitBB);
1111 
1112   Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1113   return Loaded;
1114 }
1115 
1116 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of
1117 /// the equivalent bitwidth.  We used to not support pointer cmpxchg in the
1118 /// IR.  As a migration step, we convert back to what use to be the standard
1119 /// way to represent a pointer cmpxchg so that we can update backends one by
1120 /// one.
1121 AtomicCmpXchgInst *
1122 AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) {
1123   auto *M = CI->getModule();
1124   Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(),
1125                                             M->getDataLayout());
1126 
1127   IRBuilder<> Builder(CI);
1128 
1129   Value *Addr = CI->getPointerOperand();
1130   Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace());
1131   Value *NewAddr = Builder.CreateBitCast(Addr, PT);
1132 
1133   Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy);
1134   Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy);
1135 
1136   auto *NewCI = Builder.CreateAtomicCmpXchg(
1137       NewAddr, NewCmp, NewNewVal, CI->getAlign(), CI->getSuccessOrdering(),
1138       CI->getFailureOrdering(), CI->getSyncScopeID());
1139   NewCI->setVolatile(CI->isVolatile());
1140   NewCI->setWeak(CI->isWeak());
1141   LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n");
1142 
1143   Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
1144   Value *Succ = Builder.CreateExtractValue(NewCI, 1);
1145 
1146   OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType());
1147 
1148   Value *Res = UndefValue::get(CI->getType());
1149   Res = Builder.CreateInsertValue(Res, OldVal, 0);
1150   Res = Builder.CreateInsertValue(Res, Succ, 1);
1151 
1152   CI->replaceAllUsesWith(Res);
1153   CI->eraseFromParent();
1154   return NewCI;
1155 }
1156 
1157 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1158   AtomicOrdering SuccessOrder = CI->getSuccessOrdering();
1159   AtomicOrdering FailureOrder = CI->getFailureOrdering();
1160   Value *Addr = CI->getPointerOperand();
1161   BasicBlock *BB = CI->getParent();
1162   Function *F = BB->getParent();
1163   LLVMContext &Ctx = F->getContext();
1164   // If shouldInsertFencesForAtomic() returns true, then the target does not
1165   // want to deal with memory orders, and emitLeading/TrailingFence should take
1166   // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we
1167   // should preserve the ordering.
1168   bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI);
1169   AtomicOrdering MemOpOrder = ShouldInsertFencesForAtomic
1170                                   ? AtomicOrdering::Monotonic
1171                                   : CI->getMergedOrdering();
1172 
1173   // In implementations which use a barrier to achieve release semantics, we can
1174   // delay emitting this barrier until we know a store is actually going to be
1175   // attempted. The cost of this delay is that we need 2 copies of the block
1176   // emitting the load-linked, affecting code size.
1177   //
1178   // Ideally, this logic would be unconditional except for the minsize check
1179   // since in other cases the extra blocks naturally collapse down to the
1180   // minimal loop. Unfortunately, this puts too much stress on later
1181   // optimisations so we avoid emitting the extra logic in those cases too.
1182   bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic &&
1183                            SuccessOrder != AtomicOrdering::Monotonic &&
1184                            SuccessOrder != AtomicOrdering::Acquire &&
1185                            !F->hasMinSize();
1186 
1187   // There's no overhead for sinking the release barrier in a weak cmpxchg, so
1188   // do it even on minsize.
1189   bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak();
1190 
1191   // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord
1192   //
1193   // The full expansion we produce is:
1194   //     [...]
1195   // %aligned.addr = ...
1196   // cmpxchg.start:
1197   //     %unreleasedload = @load.linked(%aligned.addr)
1198   //     %unreleasedload.extract = extract value from %unreleasedload
1199   //     %should_store = icmp eq %unreleasedload.extract, %desired
1200   //     br i1 %should_store, label %cmpxchg.releasingstore,
1201   //                          label %cmpxchg.nostore
1202   // cmpxchg.releasingstore:
1203   //     fence?
1204   //     br label cmpxchg.trystore
1205   // cmpxchg.trystore:
1206   //     %loaded.trystore = phi [%unreleasedload, %cmpxchg.releasingstore],
1207   //                            [%releasedload, %cmpxchg.releasedload]
1208   //     %updated.new = insert %new into %loaded.trystore
1209   //     %stored = @store_conditional(%updated.new, %aligned.addr)
1210   //     %success = icmp eq i32 %stored, 0
1211   //     br i1 %success, label %cmpxchg.success,
1212   //                     label %cmpxchg.releasedload/%cmpxchg.failure
1213   // cmpxchg.releasedload:
1214   //     %releasedload = @load.linked(%aligned.addr)
1215   //     %releasedload.extract = extract value from %releasedload
1216   //     %should_store = icmp eq %releasedload.extract, %desired
1217   //     br i1 %should_store, label %cmpxchg.trystore,
1218   //                          label %cmpxchg.failure
1219   // cmpxchg.success:
1220   //     fence?
1221   //     br label %cmpxchg.end
1222   // cmpxchg.nostore:
1223   //     %loaded.nostore = phi [%unreleasedload, %cmpxchg.start],
1224   //                           [%releasedload,
1225   //                               %cmpxchg.releasedload/%cmpxchg.trystore]
1226   //     @load_linked_fail_balance()?
1227   //     br label %cmpxchg.failure
1228   // cmpxchg.failure:
1229   //     fence?
1230   //     br label %cmpxchg.end
1231   // cmpxchg.end:
1232   //     %loaded.exit = phi [%loaded.nostore, %cmpxchg.failure],
1233   //                        [%loaded.trystore, %cmpxchg.trystore]
1234   //     %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure]
1235   //     %loaded = extract value from %loaded.exit
1236   //     %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0
1237   //     %res = insertvalue { iN, i1 } %restmp, i1 %success, 1
1238   //     [...]
1239   BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end");
1240   auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB);
1241   auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB);
1242   auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB);
1243   auto ReleasedLoadBB =
1244       BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB);
1245   auto TryStoreBB =
1246       BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB);
1247   auto ReleasingStoreBB =
1248       BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB);
1249   auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB);
1250 
1251   // This grabs the DebugLoc from CI
1252   IRBuilder<> Builder(CI);
1253 
1254   // The split call above "helpfully" added a branch at the end of BB (to the
1255   // wrong place), but we might want a fence too. It's easiest to just remove
1256   // the branch entirely.
1257   std::prev(BB->end())->eraseFromParent();
1258   Builder.SetInsertPoint(BB);
1259   if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier)
1260     TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1261 
1262   PartwordMaskValues PMV =
1263       createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr,
1264                        CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
1265   Builder.CreateBr(StartBB);
1266 
1267   // Start the main loop block now that we've taken care of the preliminaries.
1268   Builder.SetInsertPoint(StartBB);
1269   Value *UnreleasedLoad =
1270       TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder);
1271   Value *UnreleasedLoadExtract =
1272       extractMaskedValue(Builder, UnreleasedLoad, PMV);
1273   Value *ShouldStore = Builder.CreateICmpEQ(
1274       UnreleasedLoadExtract, CI->getCompareOperand(), "should_store");
1275 
1276   // If the cmpxchg doesn't actually need any ordering when it fails, we can
1277   // jump straight past that fence instruction (if it exists).
1278   Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB);
1279 
1280   Builder.SetInsertPoint(ReleasingStoreBB);
1281   if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier)
1282     TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1283   Builder.CreateBr(TryStoreBB);
1284 
1285   Builder.SetInsertPoint(TryStoreBB);
1286   PHINode *LoadedTryStore =
1287       Builder.CreatePHI(PMV.WordType, 2, "loaded.trystore");
1288   LoadedTryStore->addIncoming(UnreleasedLoad, ReleasingStoreBB);
1289   Value *NewValueInsert =
1290       insertMaskedValue(Builder, LoadedTryStore, CI->getNewValOperand(), PMV);
1291   Value *StoreSuccess = TLI->emitStoreConditional(Builder, NewValueInsert,
1292                                                   PMV.AlignedAddr, MemOpOrder);
1293   StoreSuccess = Builder.CreateICmpEQ(
1294       StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success");
1295   BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB;
1296   Builder.CreateCondBr(StoreSuccess, SuccessBB,
1297                        CI->isWeak() ? FailureBB : RetryBB);
1298 
1299   Builder.SetInsertPoint(ReleasedLoadBB);
1300   Value *SecondLoad;
1301   if (HasReleasedLoadBB) {
1302     SecondLoad =
1303         TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder);
1304     Value *SecondLoadExtract = extractMaskedValue(Builder, SecondLoad, PMV);
1305     ShouldStore = Builder.CreateICmpEQ(SecondLoadExtract,
1306                                        CI->getCompareOperand(), "should_store");
1307 
1308     // If the cmpxchg doesn't actually need any ordering when it fails, we can
1309     // jump straight past that fence instruction (if it exists).
1310     Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB);
1311     // Update PHI node in TryStoreBB.
1312     LoadedTryStore->addIncoming(SecondLoad, ReleasedLoadBB);
1313   } else
1314     Builder.CreateUnreachable();
1315 
1316   // Make sure later instructions don't get reordered with a fence if
1317   // necessary.
1318   Builder.SetInsertPoint(SuccessBB);
1319   if (ShouldInsertFencesForAtomic)
1320     TLI->emitTrailingFence(Builder, CI, SuccessOrder);
1321   Builder.CreateBr(ExitBB);
1322 
1323   Builder.SetInsertPoint(NoStoreBB);
1324   PHINode *LoadedNoStore =
1325       Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.nostore");
1326   LoadedNoStore->addIncoming(UnreleasedLoad, StartBB);
1327   if (HasReleasedLoadBB)
1328     LoadedNoStore->addIncoming(SecondLoad, ReleasedLoadBB);
1329 
1330   // In the failing case, where we don't execute the store-conditional, the
1331   // target might want to balance out the load-linked with a dedicated
1332   // instruction (e.g., on ARM, clearing the exclusive monitor).
1333   TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
1334   Builder.CreateBr(FailureBB);
1335 
1336   Builder.SetInsertPoint(FailureBB);
1337   PHINode *LoadedFailure =
1338       Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.failure");
1339   LoadedFailure->addIncoming(LoadedNoStore, NoStoreBB);
1340   if (CI->isWeak())
1341     LoadedFailure->addIncoming(LoadedTryStore, TryStoreBB);
1342   if (ShouldInsertFencesForAtomic)
1343     TLI->emitTrailingFence(Builder, CI, FailureOrder);
1344   Builder.CreateBr(ExitBB);
1345 
1346   // Finally, we have control-flow based knowledge of whether the cmpxchg
1347   // succeeded or not. We expose this to later passes by converting any
1348   // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate
1349   // PHI.
1350   Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1351   PHINode *LoadedExit =
1352       Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.exit");
1353   LoadedExit->addIncoming(LoadedTryStore, SuccessBB);
1354   LoadedExit->addIncoming(LoadedFailure, FailureBB);
1355   PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2, "success");
1356   Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB);
1357   Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB);
1358 
1359   // This is the "exit value" from the cmpxchg expansion. It may be of
1360   // a type wider than the one in the cmpxchg instruction.
1361   Value *LoadedFull = LoadedExit;
1362 
1363   Builder.SetInsertPoint(ExitBB, std::next(Success->getIterator()));
1364   Value *Loaded = extractMaskedValue(Builder, LoadedFull, PMV);
1365 
1366   // Look for any users of the cmpxchg that are just comparing the loaded value
1367   // against the desired one, and replace them with the CFG-derived version.
1368   SmallVector<ExtractValueInst *, 2> PrunedInsts;
1369   for (auto User : CI->users()) {
1370     ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User);
1371     if (!EV)
1372       continue;
1373 
1374     assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 &&
1375            "weird extraction from { iN, i1 }");
1376 
1377     if (EV->getIndices()[0] == 0)
1378       EV->replaceAllUsesWith(Loaded);
1379     else
1380       EV->replaceAllUsesWith(Success);
1381 
1382     PrunedInsts.push_back(EV);
1383   }
1384 
1385   // We can remove the instructions now we're no longer iterating through them.
1386   for (auto EV : PrunedInsts)
1387     EV->eraseFromParent();
1388 
1389   if (!CI->use_empty()) {
1390     // Some use of the full struct return that we don't understand has happened,
1391     // so we've got to reconstruct it properly.
1392     Value *Res;
1393     Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0);
1394     Res = Builder.CreateInsertValue(Res, Success, 1);
1395 
1396     CI->replaceAllUsesWith(Res);
1397   }
1398 
1399   CI->eraseFromParent();
1400   return true;
1401 }
1402 
1403 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst *RMWI) {
1404   auto C = dyn_cast<ConstantInt>(RMWI->getValOperand());
1405   if (!C)
1406     return false;
1407 
1408   AtomicRMWInst::BinOp Op = RMWI->getOperation();
1409   switch (Op) {
1410   case AtomicRMWInst::Add:
1411   case AtomicRMWInst::Sub:
1412   case AtomicRMWInst::Or:
1413   case AtomicRMWInst::Xor:
1414     return C->isZero();
1415   case AtomicRMWInst::And:
1416     return C->isMinusOne();
1417   // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/...
1418   default:
1419     return false;
1420   }
1421 }
1422 
1423 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst *RMWI) {
1424   if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) {
1425     tryExpandAtomicLoad(ResultingLoad);
1426     return true;
1427   }
1428   return false;
1429 }
1430 
1431 Value *AtomicExpand::insertRMWCmpXchgLoop(
1432     IRBuilder<> &Builder, Type *ResultTy, Value *Addr, Align AddrAlign,
1433     AtomicOrdering MemOpOrder, SyncScope::ID SSID,
1434     function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
1435     CreateCmpXchgInstFun CreateCmpXchg) {
1436   LLVMContext &Ctx = Builder.getContext();
1437   BasicBlock *BB = Builder.GetInsertBlock();
1438   Function *F = BB->getParent();
1439 
1440   // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1441   //
1442   // The standard expansion we produce is:
1443   //     [...]
1444   //     %init_loaded = load atomic iN* %addr
1445   //     br label %loop
1446   // loop:
1447   //     %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ]
1448   //     %new = some_op iN %loaded, %incr
1449   //     %pair = cmpxchg iN* %addr, iN %loaded, iN %new
1450   //     %new_loaded = extractvalue { iN, i1 } %pair, 0
1451   //     %success = extractvalue { iN, i1 } %pair, 1
1452   //     br i1 %success, label %atomicrmw.end, label %loop
1453   // atomicrmw.end:
1454   //     [...]
1455   BasicBlock *ExitBB =
1456       BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
1457   BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
1458 
1459   // The split call above "helpfully" added a branch at the end of BB (to the
1460   // wrong place), but we want a load. It's easiest to just remove
1461   // the branch entirely.
1462   std::prev(BB->end())->eraseFromParent();
1463   Builder.SetInsertPoint(BB);
1464   LoadInst *InitLoaded = Builder.CreateAlignedLoad(ResultTy, Addr, AddrAlign);
1465   Builder.CreateBr(LoopBB);
1466 
1467   // Start the main loop block now that we've taken care of the preliminaries.
1468   Builder.SetInsertPoint(LoopBB);
1469   PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded");
1470   Loaded->addIncoming(InitLoaded, BB);
1471 
1472   Value *NewVal = PerformOp(Builder, Loaded);
1473 
1474   Value *NewLoaded = nullptr;
1475   Value *Success = nullptr;
1476 
1477   CreateCmpXchg(Builder, Addr, Loaded, NewVal, AddrAlign,
1478                 MemOpOrder == AtomicOrdering::Unordered
1479                     ? AtomicOrdering::Monotonic
1480                     : MemOpOrder,
1481                 SSID, Success, NewLoaded);
1482   assert(Success && NewLoaded);
1483 
1484   Loaded->addIncoming(NewLoaded, LoopBB);
1485 
1486   Builder.CreateCondBr(Success, ExitBB, LoopBB);
1487 
1488   Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1489   return NewLoaded;
1490 }
1491 
1492 bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1493   unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
1494   unsigned ValueSize = getAtomicOpSize(CI);
1495 
1496   switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) {
1497   default:
1498     llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg");
1499   case TargetLoweringBase::AtomicExpansionKind::None:
1500     if (ValueSize < MinCASSize)
1501       return expandPartwordCmpXchg(CI);
1502     return false;
1503   case TargetLoweringBase::AtomicExpansionKind::LLSC: {
1504     return expandAtomicCmpXchg(CI);
1505   }
1506   case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic:
1507     expandAtomicCmpXchgToMaskedIntrinsic(CI);
1508     return true;
1509   case TargetLoweringBase::AtomicExpansionKind::NotAtomic:
1510     return lowerAtomicCmpXchgInst(CI);
1511   }
1512 }
1513 
1514 // Note: This function is exposed externally by AtomicExpandUtils.h
1515 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
1516                                     CreateCmpXchgInstFun CreateCmpXchg) {
1517   IRBuilder<> Builder(AI);
1518   Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop(
1519       Builder, AI->getType(), AI->getPointerOperand(), AI->getAlign(),
1520       AI->getOrdering(), AI->getSyncScopeID(),
1521       [&](IRBuilder<> &Builder, Value *Loaded) {
1522         return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded,
1523                                    AI->getValOperand());
1524       },
1525       CreateCmpXchg);
1526 
1527   AI->replaceAllUsesWith(Loaded);
1528   AI->eraseFromParent();
1529   return true;
1530 }
1531 
1532 // In order to use one of the sized library calls such as
1533 // __atomic_fetch_add_4, the alignment must be sufficient, the size
1534 // must be one of the potentially-specialized sizes, and the value
1535 // type must actually exist in C on the target (otherwise, the
1536 // function wouldn't actually be defined.)
1537 static bool canUseSizedAtomicCall(unsigned Size, Align Alignment,
1538                                   const DataLayout &DL) {
1539   // TODO: "LargestSize" is an approximation for "largest type that
1540   // you can express in C". It seems to be the case that int128 is
1541   // supported on all 64-bit platforms, otherwise only up to 64-bit
1542   // integers are supported. If we get this wrong, then we'll try to
1543   // call a sized libcall that doesn't actually exist. There should
1544   // really be some more reliable way in LLVM of determining integer
1545   // sizes which are valid in the target's C ABI...
1546   unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8;
1547   return Alignment >= Size &&
1548          (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) &&
1549          Size <= LargestSize;
1550 }
1551 
1552 void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) {
1553   static const RTLIB::Libcall Libcalls[6] = {
1554       RTLIB::ATOMIC_LOAD,   RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2,
1555       RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16};
1556   unsigned Size = getAtomicOpSize(I);
1557 
1558   bool expanded = expandAtomicOpToLibcall(
1559       I, Size, I->getAlign(), I->getPointerOperand(), nullptr, nullptr,
1560       I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1561   if (!expanded)
1562     report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Load");
1563 }
1564 
1565 void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) {
1566   static const RTLIB::Libcall Libcalls[6] = {
1567       RTLIB::ATOMIC_STORE,   RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2,
1568       RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16};
1569   unsigned Size = getAtomicOpSize(I);
1570 
1571   bool expanded = expandAtomicOpToLibcall(
1572       I, Size, I->getAlign(), I->getPointerOperand(), I->getValueOperand(),
1573       nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1574   if (!expanded)
1575     report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Store");
1576 }
1577 
1578 void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) {
1579   static const RTLIB::Libcall Libcalls[6] = {
1580       RTLIB::ATOMIC_COMPARE_EXCHANGE,   RTLIB::ATOMIC_COMPARE_EXCHANGE_1,
1581       RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4,
1582       RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16};
1583   unsigned Size = getAtomicOpSize(I);
1584 
1585   bool expanded = expandAtomicOpToLibcall(
1586       I, Size, I->getAlign(), I->getPointerOperand(), I->getNewValOperand(),
1587       I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(),
1588       Libcalls);
1589   if (!expanded)
1590     report_fatal_error("expandAtomicOpToLibcall shouldn't fail for CAS");
1591 }
1592 
1593 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) {
1594   static const RTLIB::Libcall LibcallsXchg[6] = {
1595       RTLIB::ATOMIC_EXCHANGE,   RTLIB::ATOMIC_EXCHANGE_1,
1596       RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4,
1597       RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16};
1598   static const RTLIB::Libcall LibcallsAdd[6] = {
1599       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_ADD_1,
1600       RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4,
1601       RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16};
1602   static const RTLIB::Libcall LibcallsSub[6] = {
1603       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_SUB_1,
1604       RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4,
1605       RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16};
1606   static const RTLIB::Libcall LibcallsAnd[6] = {
1607       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_AND_1,
1608       RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4,
1609       RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16};
1610   static const RTLIB::Libcall LibcallsOr[6] = {
1611       RTLIB::UNKNOWN_LIBCALL,   RTLIB::ATOMIC_FETCH_OR_1,
1612       RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4,
1613       RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16};
1614   static const RTLIB::Libcall LibcallsXor[6] = {
1615       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_XOR_1,
1616       RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4,
1617       RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16};
1618   static const RTLIB::Libcall LibcallsNand[6] = {
1619       RTLIB::UNKNOWN_LIBCALL,     RTLIB::ATOMIC_FETCH_NAND_1,
1620       RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4,
1621       RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16};
1622 
1623   switch (Op) {
1624   case AtomicRMWInst::BAD_BINOP:
1625     llvm_unreachable("Should not have BAD_BINOP.");
1626   case AtomicRMWInst::Xchg:
1627     return makeArrayRef(LibcallsXchg);
1628   case AtomicRMWInst::Add:
1629     return makeArrayRef(LibcallsAdd);
1630   case AtomicRMWInst::Sub:
1631     return makeArrayRef(LibcallsSub);
1632   case AtomicRMWInst::And:
1633     return makeArrayRef(LibcallsAnd);
1634   case AtomicRMWInst::Or:
1635     return makeArrayRef(LibcallsOr);
1636   case AtomicRMWInst::Xor:
1637     return makeArrayRef(LibcallsXor);
1638   case AtomicRMWInst::Nand:
1639     return makeArrayRef(LibcallsNand);
1640   case AtomicRMWInst::Max:
1641   case AtomicRMWInst::Min:
1642   case AtomicRMWInst::UMax:
1643   case AtomicRMWInst::UMin:
1644   case AtomicRMWInst::FAdd:
1645   case AtomicRMWInst::FSub:
1646     // No atomic libcalls are available for max/min/umax/umin.
1647     return {};
1648   }
1649   llvm_unreachable("Unexpected AtomicRMW operation.");
1650 }
1651 
1652 void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) {
1653   ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation());
1654 
1655   unsigned Size = getAtomicOpSize(I);
1656 
1657   bool Success = false;
1658   if (!Libcalls.empty())
1659     Success = expandAtomicOpToLibcall(
1660         I, Size, I->getAlign(), I->getPointerOperand(), I->getValOperand(),
1661         nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1662 
1663   // The expansion failed: either there were no libcalls at all for
1664   // the operation (min/max), or there were only size-specialized
1665   // libcalls (add/sub/etc) and we needed a generic. So, expand to a
1666   // CAS libcall, via a CAS loop, instead.
1667   if (!Success) {
1668     expandAtomicRMWToCmpXchg(
1669         I, [this](IRBuilder<> &Builder, Value *Addr, Value *Loaded,
1670                   Value *NewVal, Align Alignment, AtomicOrdering MemOpOrder,
1671                   SyncScope::ID SSID, Value *&Success, Value *&NewLoaded) {
1672           // Create the CAS instruction normally...
1673           AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg(
1674               Addr, Loaded, NewVal, Alignment, MemOpOrder,
1675               AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID);
1676           Success = Builder.CreateExtractValue(Pair, 1, "success");
1677           NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
1678 
1679           // ...and then expand the CAS into a libcall.
1680           expandAtomicCASToLibcall(Pair);
1681         });
1682   }
1683 }
1684 
1685 // A helper routine for the above expandAtomic*ToLibcall functions.
1686 //
1687 // 'Libcalls' contains an array of enum values for the particular
1688 // ATOMIC libcalls to be emitted. All of the other arguments besides
1689 // 'I' are extracted from the Instruction subclass by the
1690 // caller. Depending on the particular call, some will be null.
1691 bool AtomicExpand::expandAtomicOpToLibcall(
1692     Instruction *I, unsigned Size, Align Alignment, Value *PointerOperand,
1693     Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering,
1694     AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) {
1695   assert(Libcalls.size() == 6);
1696 
1697   LLVMContext &Ctx = I->getContext();
1698   Module *M = I->getModule();
1699   const DataLayout &DL = M->getDataLayout();
1700   IRBuilder<> Builder(I);
1701   IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front());
1702 
1703   bool UseSizedLibcall = canUseSizedAtomicCall(Size, Alignment, DL);
1704   Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8);
1705 
1706   const Align AllocaAlignment = DL.getPrefTypeAlign(SizedIntTy);
1707 
1708   // TODO: the "order" argument type is "int", not int32. So
1709   // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints.
1710   ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size);
1711   assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO");
1712   Constant *OrderingVal =
1713       ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering));
1714   Constant *Ordering2Val = nullptr;
1715   if (CASExpected) {
1716     assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO");
1717     Ordering2Val =
1718         ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2));
1719   }
1720   bool HasResult = I->getType() != Type::getVoidTy(Ctx);
1721 
1722   RTLIB::Libcall RTLibType;
1723   if (UseSizedLibcall) {
1724     switch (Size) {
1725     case 1:
1726       RTLibType = Libcalls[1];
1727       break;
1728     case 2:
1729       RTLibType = Libcalls[2];
1730       break;
1731     case 4:
1732       RTLibType = Libcalls[3];
1733       break;
1734     case 8:
1735       RTLibType = Libcalls[4];
1736       break;
1737     case 16:
1738       RTLibType = Libcalls[5];
1739       break;
1740     }
1741   } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) {
1742     RTLibType = Libcalls[0];
1743   } else {
1744     // Can't use sized function, and there's no generic for this
1745     // operation, so give up.
1746     return false;
1747   }
1748 
1749   if (!TLI->getLibcallName(RTLibType)) {
1750     // This target does not implement the requested atomic libcall so give up.
1751     return false;
1752   }
1753 
1754   // Build up the function call. There's two kinds. First, the sized
1755   // variants.  These calls are going to be one of the following (with
1756   // N=1,2,4,8,16):
1757   //  iN    __atomic_load_N(iN *ptr, int ordering)
1758   //  void  __atomic_store_N(iN *ptr, iN val, int ordering)
1759   //  iN    __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering)
1760   //  bool  __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired,
1761   //                                    int success_order, int failure_order)
1762   //
1763   // Note that these functions can be used for non-integer atomic
1764   // operations, the values just need to be bitcast to integers on the
1765   // way in and out.
1766   //
1767   // And, then, the generic variants. They look like the following:
1768   //  void  __atomic_load(size_t size, void *ptr, void *ret, int ordering)
1769   //  void  __atomic_store(size_t size, void *ptr, void *val, int ordering)
1770   //  void  __atomic_exchange(size_t size, void *ptr, void *val, void *ret,
1771   //                          int ordering)
1772   //  bool  __atomic_compare_exchange(size_t size, void *ptr, void *expected,
1773   //                                  void *desired, int success_order,
1774   //                                  int failure_order)
1775   //
1776   // The different signatures are built up depending on the
1777   // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult'
1778   // variables.
1779 
1780   AllocaInst *AllocaCASExpected = nullptr;
1781   Value *AllocaCASExpected_i8 = nullptr;
1782   AllocaInst *AllocaValue = nullptr;
1783   Value *AllocaValue_i8 = nullptr;
1784   AllocaInst *AllocaResult = nullptr;
1785   Value *AllocaResult_i8 = nullptr;
1786 
1787   Type *ResultTy;
1788   SmallVector<Value *, 6> Args;
1789   AttributeList Attr;
1790 
1791   // 'size' argument.
1792   if (!UseSizedLibcall) {
1793     // Note, getIntPtrType is assumed equivalent to size_t.
1794     Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size));
1795   }
1796 
1797   // 'ptr' argument.
1798   // note: This assumes all address spaces share a common libfunc
1799   // implementation and that addresses are convertable.  For systems without
1800   // that property, we'd need to extend this mechanism to support AS-specific
1801   // families of atomic intrinsics.
1802   auto PtrTypeAS = PointerOperand->getType()->getPointerAddressSpace();
1803   Value *PtrVal =
1804       Builder.CreateBitCast(PointerOperand, Type::getInt8PtrTy(Ctx, PtrTypeAS));
1805   PtrVal = Builder.CreateAddrSpaceCast(PtrVal, Type::getInt8PtrTy(Ctx));
1806   Args.push_back(PtrVal);
1807 
1808   // 'expected' argument, if present.
1809   if (CASExpected) {
1810     AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType());
1811     AllocaCASExpected->setAlignment(AllocaAlignment);
1812     unsigned AllocaAS = AllocaCASExpected->getType()->getPointerAddressSpace();
1813 
1814     AllocaCASExpected_i8 = Builder.CreateBitCast(
1815         AllocaCASExpected, Type::getInt8PtrTy(Ctx, AllocaAS));
1816     Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64);
1817     Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment);
1818     Args.push_back(AllocaCASExpected_i8);
1819   }
1820 
1821   // 'val' argument ('desired' for cas), if present.
1822   if (ValueOperand) {
1823     if (UseSizedLibcall) {
1824       Value *IntValue =
1825           Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy);
1826       Args.push_back(IntValue);
1827     } else {
1828       AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType());
1829       AllocaValue->setAlignment(AllocaAlignment);
1830       AllocaValue_i8 =
1831           Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx));
1832       Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64);
1833       Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment);
1834       Args.push_back(AllocaValue_i8);
1835     }
1836   }
1837 
1838   // 'ret' argument.
1839   if (!CASExpected && HasResult && !UseSizedLibcall) {
1840     AllocaResult = AllocaBuilder.CreateAlloca(I->getType());
1841     AllocaResult->setAlignment(AllocaAlignment);
1842     unsigned AllocaAS = AllocaResult->getType()->getPointerAddressSpace();
1843     AllocaResult_i8 =
1844         Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx, AllocaAS));
1845     Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64);
1846     Args.push_back(AllocaResult_i8);
1847   }
1848 
1849   // 'ordering' ('success_order' for cas) argument.
1850   Args.push_back(OrderingVal);
1851 
1852   // 'failure_order' argument, if present.
1853   if (Ordering2Val)
1854     Args.push_back(Ordering2Val);
1855 
1856   // Now, the return type.
1857   if (CASExpected) {
1858     ResultTy = Type::getInt1Ty(Ctx);
1859     Attr = Attr.addRetAttribute(Ctx, Attribute::ZExt);
1860   } else if (HasResult && UseSizedLibcall)
1861     ResultTy = SizedIntTy;
1862   else
1863     ResultTy = Type::getVoidTy(Ctx);
1864 
1865   // Done with setting up arguments and return types, create the call:
1866   SmallVector<Type *, 6> ArgTys;
1867   for (Value *Arg : Args)
1868     ArgTys.push_back(Arg->getType());
1869   FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false);
1870   FunctionCallee LibcallFn =
1871       M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr);
1872   CallInst *Call = Builder.CreateCall(LibcallFn, Args);
1873   Call->setAttributes(Attr);
1874   Value *Result = Call;
1875 
1876   // And then, extract the results...
1877   if (ValueOperand && !UseSizedLibcall)
1878     Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64);
1879 
1880   if (CASExpected) {
1881     // The final result from the CAS is {load of 'expected' alloca, bool result
1882     // from call}
1883     Type *FinalResultTy = I->getType();
1884     Value *V = UndefValue::get(FinalResultTy);
1885     Value *ExpectedOut = Builder.CreateAlignedLoad(
1886         CASExpected->getType(), AllocaCASExpected, AllocaAlignment);
1887     Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64);
1888     V = Builder.CreateInsertValue(V, ExpectedOut, 0);
1889     V = Builder.CreateInsertValue(V, Result, 1);
1890     I->replaceAllUsesWith(V);
1891   } else if (HasResult) {
1892     Value *V;
1893     if (UseSizedLibcall)
1894       V = Builder.CreateBitOrPointerCast(Result, I->getType());
1895     else {
1896       V = Builder.CreateAlignedLoad(I->getType(), AllocaResult,
1897                                     AllocaAlignment);
1898       Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64);
1899     }
1900     I->replaceAllUsesWith(V);
1901   }
1902   I->eraseFromParent();
1903   return true;
1904 }
1905