1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass (at IR level) to replace atomic instructions with 10 // __atomic_* library calls, or target specific instruction which implement the 11 // same semantics in a way which better fits the target backend. This can 12 // include the use of (intrinsic-based) load-linked/store-conditional loops, 13 // AtomicCmpXchg, or type coercions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/STLFunctionalExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/CodeGen/AtomicExpandUtils.h" 22 #include "llvm/CodeGen/RuntimeLibcalls.h" 23 #include "llvm/CodeGen/TargetLowering.h" 24 #include "llvm/CodeGen/TargetPassConfig.h" 25 #include "llvm/CodeGen/TargetSubtargetInfo.h" 26 #include "llvm/CodeGen/ValueTypes.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Constant.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/IRBuilder.h" 35 #include "llvm/IR/InstIterator.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Type.h" 40 #include "llvm/IR/User.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/InitializePasses.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/AtomicOrdering.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Target/TargetMachine.h" 50 #include "llvm/Transforms/Utils/LowerAtomic.h" 51 #include <cassert> 52 #include <cstdint> 53 #include <iterator> 54 55 using namespace llvm; 56 57 #define DEBUG_TYPE "atomic-expand" 58 59 namespace { 60 61 class AtomicExpand : public FunctionPass { 62 const TargetLowering *TLI = nullptr; 63 64 public: 65 static char ID; // Pass identification, replacement for typeid 66 67 AtomicExpand() : FunctionPass(ID) { 68 initializeAtomicExpandPass(*PassRegistry::getPassRegistry()); 69 } 70 71 bool runOnFunction(Function &F) override; 72 73 private: 74 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order); 75 IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL); 76 LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI); 77 bool tryExpandAtomicLoad(LoadInst *LI); 78 bool expandAtomicLoadToLL(LoadInst *LI); 79 bool expandAtomicLoadToCmpXchg(LoadInst *LI); 80 StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI); 81 bool tryExpandAtomicStore(StoreInst *SI); 82 void expandAtomicStore(StoreInst *SI); 83 bool tryExpandAtomicRMW(AtomicRMWInst *AI); 84 AtomicRMWInst *convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI); 85 Value * 86 insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr, 87 Align AddrAlign, AtomicOrdering MemOpOrder, 88 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); 89 void 90 expandAtomicOpToLLSC(Instruction *I, Type *ResultTy, Value *Addr, 91 Align AddrAlign, AtomicOrdering MemOpOrder, 92 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); 93 void expandPartwordAtomicRMW( 94 AtomicRMWInst *I, TargetLoweringBase::AtomicExpansionKind ExpansionKind); 95 AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI); 96 bool expandPartwordCmpXchg(AtomicCmpXchgInst *I); 97 void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI); 98 void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI); 99 100 AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI); 101 static Value * 102 insertRMWCmpXchgLoop(IRBuilder<> &Builder, Type *ResultType, Value *Addr, 103 Align AddrAlign, AtomicOrdering MemOpOrder, 104 SyncScope::ID SSID, 105 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, 106 CreateCmpXchgInstFun CreateCmpXchg); 107 bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI); 108 109 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); 110 bool isIdempotentRMW(AtomicRMWInst *RMWI); 111 bool simplifyIdempotentRMW(AtomicRMWInst *RMWI); 112 113 bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, Align Alignment, 114 Value *PointerOperand, Value *ValueOperand, 115 Value *CASExpected, AtomicOrdering Ordering, 116 AtomicOrdering Ordering2, 117 ArrayRef<RTLIB::Libcall> Libcalls); 118 void expandAtomicLoadToLibcall(LoadInst *LI); 119 void expandAtomicStoreToLibcall(StoreInst *LI); 120 void expandAtomicRMWToLibcall(AtomicRMWInst *I); 121 void expandAtomicCASToLibcall(AtomicCmpXchgInst *I); 122 123 friend bool 124 llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 125 CreateCmpXchgInstFun CreateCmpXchg); 126 }; 127 128 } // end anonymous namespace 129 130 char AtomicExpand::ID = 0; 131 132 char &llvm::AtomicExpandID = AtomicExpand::ID; 133 134 INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions", false, 135 false) 136 137 FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); } 138 139 // Helper functions to retrieve the size of atomic instructions. 140 static unsigned getAtomicOpSize(LoadInst *LI) { 141 const DataLayout &DL = LI->getModule()->getDataLayout(); 142 return DL.getTypeStoreSize(LI->getType()); 143 } 144 145 static unsigned getAtomicOpSize(StoreInst *SI) { 146 const DataLayout &DL = SI->getModule()->getDataLayout(); 147 return DL.getTypeStoreSize(SI->getValueOperand()->getType()); 148 } 149 150 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) { 151 const DataLayout &DL = RMWI->getModule()->getDataLayout(); 152 return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); 153 } 154 155 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) { 156 const DataLayout &DL = CASI->getModule()->getDataLayout(); 157 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); 158 } 159 160 // Determine if a particular atomic operation has a supported size, 161 // and is of appropriate alignment, to be passed through for target 162 // lowering. (Versus turning into a __atomic libcall) 163 template <typename Inst> 164 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) { 165 unsigned Size = getAtomicOpSize(I); 166 Align Alignment = I->getAlign(); 167 return Alignment >= Size && 168 Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8; 169 } 170 171 bool AtomicExpand::runOnFunction(Function &F) { 172 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 173 if (!TPC) 174 return false; 175 176 auto &TM = TPC->getTM<TargetMachine>(); 177 if (!TM.getSubtargetImpl(F)->enableAtomicExpand()) 178 return false; 179 TLI = TM.getSubtargetImpl(F)->getTargetLowering(); 180 181 SmallVector<Instruction *, 1> AtomicInsts; 182 183 // Changing control-flow while iterating through it is a bad idea, so gather a 184 // list of all atomic instructions before we start. 185 for (Instruction &I : instructions(F)) 186 if (I.isAtomic() && !isa<FenceInst>(&I)) 187 AtomicInsts.push_back(&I); 188 189 bool MadeChange = false; 190 for (auto I : AtomicInsts) { 191 auto LI = dyn_cast<LoadInst>(I); 192 auto SI = dyn_cast<StoreInst>(I); 193 auto RMWI = dyn_cast<AtomicRMWInst>(I); 194 auto CASI = dyn_cast<AtomicCmpXchgInst>(I); 195 assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction"); 196 197 // If the Size/Alignment is not supported, replace with a libcall. 198 if (LI) { 199 if (!atomicSizeSupported(TLI, LI)) { 200 expandAtomicLoadToLibcall(LI); 201 MadeChange = true; 202 continue; 203 } 204 } else if (SI) { 205 if (!atomicSizeSupported(TLI, SI)) { 206 expandAtomicStoreToLibcall(SI); 207 MadeChange = true; 208 continue; 209 } 210 } else if (RMWI) { 211 if (!atomicSizeSupported(TLI, RMWI)) { 212 expandAtomicRMWToLibcall(RMWI); 213 MadeChange = true; 214 continue; 215 } 216 } else if (CASI) { 217 if (!atomicSizeSupported(TLI, CASI)) { 218 expandAtomicCASToLibcall(CASI); 219 MadeChange = true; 220 continue; 221 } 222 } 223 224 if (TLI->shouldInsertFencesForAtomic(I)) { 225 auto FenceOrdering = AtomicOrdering::Monotonic; 226 if (LI && isAcquireOrStronger(LI->getOrdering())) { 227 FenceOrdering = LI->getOrdering(); 228 LI->setOrdering(AtomicOrdering::Monotonic); 229 } else if (SI && isReleaseOrStronger(SI->getOrdering())) { 230 FenceOrdering = SI->getOrdering(); 231 SI->setOrdering(AtomicOrdering::Monotonic); 232 } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) || 233 isAcquireOrStronger(RMWI->getOrdering()))) { 234 FenceOrdering = RMWI->getOrdering(); 235 RMWI->setOrdering(AtomicOrdering::Monotonic); 236 } else if (CASI && 237 TLI->shouldExpandAtomicCmpXchgInIR(CASI) == 238 TargetLoweringBase::AtomicExpansionKind::None && 239 (isReleaseOrStronger(CASI->getSuccessOrdering()) || 240 isAcquireOrStronger(CASI->getSuccessOrdering()) || 241 isAcquireOrStronger(CASI->getFailureOrdering()))) { 242 // If a compare and swap is lowered to LL/SC, we can do smarter fence 243 // insertion, with a stronger one on the success path than on the 244 // failure path. As a result, fence insertion is directly done by 245 // expandAtomicCmpXchg in that case. 246 FenceOrdering = CASI->getMergedOrdering(); 247 CASI->setSuccessOrdering(AtomicOrdering::Monotonic); 248 CASI->setFailureOrdering(AtomicOrdering::Monotonic); 249 } 250 251 if (FenceOrdering != AtomicOrdering::Monotonic) { 252 MadeChange |= bracketInstWithFences(I, FenceOrdering); 253 } 254 } 255 256 if (LI) { 257 if (TLI->shouldCastAtomicLoadInIR(LI) == 258 TargetLoweringBase::AtomicExpansionKind::CastToInteger) { 259 // TODO: add a TLI hook to control this so that each target can 260 // convert to lowering the original type one at a time. 261 LI = convertAtomicLoadToIntegerType(LI); 262 assert(LI->getType()->isIntegerTy() && "invariant broken"); 263 MadeChange = true; 264 } 265 266 MadeChange |= tryExpandAtomicLoad(LI); 267 } else if (SI) { 268 if (TLI->shouldCastAtomicStoreInIR(SI) == 269 TargetLoweringBase::AtomicExpansionKind::CastToInteger) { 270 // TODO: add a TLI hook to control this so that each target can 271 // convert to lowering the original type one at a time. 272 SI = convertAtomicStoreToIntegerType(SI); 273 assert(SI->getValueOperand()->getType()->isIntegerTy() && 274 "invariant broken"); 275 MadeChange = true; 276 } 277 278 if (tryExpandAtomicStore(SI)) 279 MadeChange = true; 280 } else if (RMWI) { 281 // There are two different ways of expanding RMW instructions: 282 // - into a load if it is idempotent 283 // - into a Cmpxchg/LL-SC loop otherwise 284 // we try them in that order. 285 286 if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) { 287 MadeChange = true; 288 } else { 289 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 290 if (TLI->shouldCastAtomicRMWIInIR(RMWI) == 291 TargetLoweringBase::AtomicExpansionKind::CastToInteger) { 292 // TODO: add a TLI hook to control this so that each target can 293 // convert to lowering the original type one at a time. 294 RMWI = convertAtomicXchgToIntegerType(RMWI); 295 assert(RMWI->getValOperand()->getType()->isIntegerTy() && 296 "invariant broken"); 297 MadeChange = true; 298 } 299 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 300 unsigned ValueSize = getAtomicOpSize(RMWI); 301 if (ValueSize < MinCASSize && 302 (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 303 Op == AtomicRMWInst::And)) { 304 RMWI = widenPartwordAtomicRMW(RMWI); 305 MadeChange = true; 306 } 307 308 MadeChange |= tryExpandAtomicRMW(RMWI); 309 } 310 } else if (CASI) { 311 // TODO: when we're ready to make the change at the IR level, we can 312 // extend convertCmpXchgToInteger for floating point too. 313 assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() && 314 "unimplemented - floating point not legal at IR level"); 315 if (CASI->getCompareOperand()->getType()->isPointerTy()) { 316 // TODO: add a TLI hook to control this so that each target can 317 // convert to lowering the original type one at a time. 318 CASI = convertCmpXchgToIntegerType(CASI); 319 assert(CASI->getCompareOperand()->getType()->isIntegerTy() && 320 "invariant broken"); 321 MadeChange = true; 322 } 323 324 MadeChange |= tryExpandAtomicCmpXchg(CASI); 325 } 326 } 327 return MadeChange; 328 } 329 330 bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) { 331 IRBuilder<> Builder(I); 332 333 auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order); 334 335 auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order); 336 // We have a guard here because not every atomic operation generates a 337 // trailing fence. 338 if (TrailingFence) 339 TrailingFence->moveAfter(I); 340 341 return (LeadingFence || TrailingFence); 342 } 343 344 /// Get the iX type with the same bitwidth as T. 345 IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T, 346 const DataLayout &DL) { 347 EVT VT = TLI->getMemValueType(DL, T); 348 unsigned BitWidth = VT.getStoreSizeInBits(); 349 assert(BitWidth == VT.getSizeInBits() && "must be a power of two"); 350 return IntegerType::get(T->getContext(), BitWidth); 351 } 352 353 /// Convert an atomic load of a non-integral type to an integer load of the 354 /// equivalent bitwidth. See the function comment on 355 /// convertAtomicStoreToIntegerType for background. 356 LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) { 357 auto *M = LI->getModule(); 358 Type *NewTy = getCorrespondingIntegerType(LI->getType(), M->getDataLayout()); 359 360 IRBuilder<> Builder(LI); 361 362 Value *Addr = LI->getPointerOperand(); 363 Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace()); 364 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 365 366 auto *NewLI = Builder.CreateLoad(NewTy, NewAddr); 367 NewLI->setAlignment(LI->getAlign()); 368 NewLI->setVolatile(LI->isVolatile()); 369 NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID()); 370 LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n"); 371 372 Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType()); 373 LI->replaceAllUsesWith(NewVal); 374 LI->eraseFromParent(); 375 return NewLI; 376 } 377 378 AtomicRMWInst * 379 AtomicExpand::convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI) { 380 auto *M = RMWI->getModule(); 381 Type *NewTy = 382 getCorrespondingIntegerType(RMWI->getType(), M->getDataLayout()); 383 384 IRBuilder<> Builder(RMWI); 385 386 Value *Addr = RMWI->getPointerOperand(); 387 Value *Val = RMWI->getValOperand(); 388 Type *PT = PointerType::get(NewTy, RMWI->getPointerAddressSpace()); 389 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 390 Value *NewVal = Builder.CreateBitCast(Val, NewTy); 391 392 auto *NewRMWI = 393 Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, NewAddr, NewVal, 394 RMWI->getAlign(), RMWI->getOrdering()); 395 NewRMWI->setVolatile(RMWI->isVolatile()); 396 LLVM_DEBUG(dbgs() << "Replaced " << *RMWI << " with " << *NewRMWI << "\n"); 397 398 Value *NewRVal = Builder.CreateBitCast(NewRMWI, RMWI->getType()); 399 RMWI->replaceAllUsesWith(NewRVal); 400 RMWI->eraseFromParent(); 401 return NewRMWI; 402 } 403 404 bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) { 405 switch (TLI->shouldExpandAtomicLoadInIR(LI)) { 406 case TargetLoweringBase::AtomicExpansionKind::None: 407 return false; 408 case TargetLoweringBase::AtomicExpansionKind::LLSC: 409 expandAtomicOpToLLSC( 410 LI, LI->getType(), LI->getPointerOperand(), LI->getAlign(), 411 LI->getOrdering(), 412 [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; }); 413 return true; 414 case TargetLoweringBase::AtomicExpansionKind::LLOnly: 415 return expandAtomicLoadToLL(LI); 416 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: 417 return expandAtomicLoadToCmpXchg(LI); 418 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 419 LI->setAtomic(AtomicOrdering::NotAtomic); 420 return true; 421 default: 422 llvm_unreachable("Unhandled case in tryExpandAtomicLoad"); 423 } 424 } 425 426 bool AtomicExpand::tryExpandAtomicStore(StoreInst *SI) { 427 switch (TLI->shouldExpandAtomicStoreInIR(SI)) { 428 case TargetLoweringBase::AtomicExpansionKind::None: 429 return false; 430 case TargetLoweringBase::AtomicExpansionKind::Expand: 431 expandAtomicStore(SI); 432 return true; 433 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 434 SI->setAtomic(AtomicOrdering::NotAtomic); 435 return true; 436 default: 437 llvm_unreachable("Unhandled case in tryExpandAtomicStore"); 438 } 439 } 440 441 bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) { 442 IRBuilder<> Builder(LI); 443 444 // On some architectures, load-linked instructions are atomic for larger 445 // sizes than normal loads. For example, the only 64-bit load guaranteed 446 // to be single-copy atomic by ARM is an ldrexd (A3.5.3). 447 Value *Val = TLI->emitLoadLinked(Builder, LI->getType(), 448 LI->getPointerOperand(), LI->getOrdering()); 449 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 450 451 LI->replaceAllUsesWith(Val); 452 LI->eraseFromParent(); 453 454 return true; 455 } 456 457 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) { 458 IRBuilder<> Builder(LI); 459 AtomicOrdering Order = LI->getOrdering(); 460 if (Order == AtomicOrdering::Unordered) 461 Order = AtomicOrdering::Monotonic; 462 463 Value *Addr = LI->getPointerOperand(); 464 Type *Ty = LI->getType(); 465 Constant *DummyVal = Constant::getNullValue(Ty); 466 467 Value *Pair = Builder.CreateAtomicCmpXchg( 468 Addr, DummyVal, DummyVal, LI->getAlign(), Order, 469 AtomicCmpXchgInst::getStrongestFailureOrdering(Order)); 470 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded"); 471 472 LI->replaceAllUsesWith(Loaded); 473 LI->eraseFromParent(); 474 475 return true; 476 } 477 478 /// Convert an atomic store of a non-integral type to an integer store of the 479 /// equivalent bitwidth. We used to not support floating point or vector 480 /// atomics in the IR at all. The backends learned to deal with the bitcast 481 /// idiom because that was the only way of expressing the notion of a atomic 482 /// float or vector store. The long term plan is to teach each backend to 483 /// instruction select from the original atomic store, but as a migration 484 /// mechanism, we convert back to the old format which the backends understand. 485 /// Each backend will need individual work to recognize the new format. 486 StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) { 487 IRBuilder<> Builder(SI); 488 auto *M = SI->getModule(); 489 Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(), 490 M->getDataLayout()); 491 Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy); 492 493 Value *Addr = SI->getPointerOperand(); 494 Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace()); 495 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 496 497 StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr); 498 NewSI->setAlignment(SI->getAlign()); 499 NewSI->setVolatile(SI->isVolatile()); 500 NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID()); 501 LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n"); 502 SI->eraseFromParent(); 503 return NewSI; 504 } 505 506 void AtomicExpand::expandAtomicStore(StoreInst *SI) { 507 // This function is only called on atomic stores that are too large to be 508 // atomic if implemented as a native store. So we replace them by an 509 // atomic swap, that can be implemented for example as a ldrex/strex on ARM 510 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. 511 // It is the responsibility of the target to only signal expansion via 512 // shouldExpandAtomicRMW in cases where this is required and possible. 513 IRBuilder<> Builder(SI); 514 AtomicRMWInst *AI = Builder.CreateAtomicRMW( 515 AtomicRMWInst::Xchg, SI->getPointerOperand(), SI->getValueOperand(), 516 SI->getAlign(), SI->getOrdering()); 517 SI->eraseFromParent(); 518 519 // Now we have an appropriate swap instruction, lower it as usual. 520 tryExpandAtomicRMW(AI); 521 } 522 523 static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr, 524 Value *Loaded, Value *NewVal, Align AddrAlign, 525 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 526 Value *&Success, Value *&NewLoaded) { 527 Type *OrigTy = NewVal->getType(); 528 529 // This code can go away when cmpxchg supports FP types. 530 bool NeedBitcast = OrigTy->isFloatingPointTy(); 531 if (NeedBitcast) { 532 IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits()); 533 unsigned AS = Addr->getType()->getPointerAddressSpace(); 534 Addr = Builder.CreateBitCast(Addr, IntTy->getPointerTo(AS)); 535 NewVal = Builder.CreateBitCast(NewVal, IntTy); 536 Loaded = Builder.CreateBitCast(Loaded, IntTy); 537 } 538 539 Value *Pair = Builder.CreateAtomicCmpXchg( 540 Addr, Loaded, NewVal, AddrAlign, MemOpOrder, 541 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID); 542 Success = Builder.CreateExtractValue(Pair, 1, "success"); 543 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 544 545 if (NeedBitcast) 546 NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy); 547 } 548 549 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) { 550 LLVMContext &Ctx = AI->getModule()->getContext(); 551 TargetLowering::AtomicExpansionKind Kind = TLI->shouldExpandAtomicRMWInIR(AI); 552 switch (Kind) { 553 case TargetLoweringBase::AtomicExpansionKind::None: 554 return false; 555 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 556 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 557 unsigned ValueSize = getAtomicOpSize(AI); 558 if (ValueSize < MinCASSize) { 559 expandPartwordAtomicRMW(AI, 560 TargetLoweringBase::AtomicExpansionKind::LLSC); 561 } else { 562 auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) { 563 return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded, 564 AI->getValOperand()); 565 }; 566 expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(), 567 AI->getAlign(), AI->getOrdering(), PerformOp); 568 } 569 return true; 570 } 571 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: { 572 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 573 unsigned ValueSize = getAtomicOpSize(AI); 574 if (ValueSize < MinCASSize) { 575 // TODO: Handle atomicrmw fadd/fsub 576 if (AI->getType()->isFloatingPointTy()) 577 return false; 578 579 expandPartwordAtomicRMW(AI, 580 TargetLoweringBase::AtomicExpansionKind::CmpXChg); 581 } else { 582 SmallVector<StringRef> SSNs; 583 Ctx.getSyncScopeNames(SSNs); 584 auto MemScope = SSNs[AI->getSyncScopeID()].empty() 585 ? "system" 586 : SSNs[AI->getSyncScopeID()]; 587 OptimizationRemarkEmitter ORE(AI->getFunction()); 588 ORE.emit([&]() { 589 return OptimizationRemark(DEBUG_TYPE, "Passed", AI) 590 << "A compare and swap loop was generated for an atomic " 591 << AI->getOperationName(AI->getOperation()) << " operation at " 592 << MemScope << " memory scope"; 593 }); 594 expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun); 595 } 596 return true; 597 } 598 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: { 599 expandAtomicRMWToMaskedIntrinsic(AI); 600 return true; 601 } 602 case TargetLoweringBase::AtomicExpansionKind::BitTestIntrinsic: { 603 TLI->emitBitTestAtomicRMWIntrinsic(AI); 604 return true; 605 } 606 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 607 return lowerAtomicRMWInst(AI); 608 default: 609 llvm_unreachable("Unhandled case in tryExpandAtomicRMW"); 610 } 611 } 612 613 namespace { 614 615 struct PartwordMaskValues { 616 // These three fields are guaranteed to be set by createMaskInstrs. 617 Type *WordType = nullptr; 618 Type *ValueType = nullptr; 619 Value *AlignedAddr = nullptr; 620 Align AlignedAddrAlignment; 621 // The remaining fields can be null. 622 Value *ShiftAmt = nullptr; 623 Value *Mask = nullptr; 624 Value *Inv_Mask = nullptr; 625 }; 626 627 LLVM_ATTRIBUTE_UNUSED 628 raw_ostream &operator<<(raw_ostream &O, const PartwordMaskValues &PMV) { 629 auto PrintObj = [&O](auto *V) { 630 if (V) 631 O << *V; 632 else 633 O << "nullptr"; 634 O << '\n'; 635 }; 636 O << "PartwordMaskValues {\n"; 637 O << " WordType: "; 638 PrintObj(PMV.WordType); 639 O << " ValueType: "; 640 PrintObj(PMV.ValueType); 641 O << " AlignedAddr: "; 642 PrintObj(PMV.AlignedAddr); 643 O << " AlignedAddrAlignment: " << PMV.AlignedAddrAlignment.value() << '\n'; 644 O << " ShiftAmt: "; 645 PrintObj(PMV.ShiftAmt); 646 O << " Mask: "; 647 PrintObj(PMV.Mask); 648 O << " Inv_Mask: "; 649 PrintObj(PMV.Inv_Mask); 650 O << "}\n"; 651 return O; 652 } 653 654 } // end anonymous namespace 655 656 /// This is a helper function which builds instructions to provide 657 /// values necessary for partword atomic operations. It takes an 658 /// incoming address, Addr, and ValueType, and constructs the address, 659 /// shift-amounts and masks needed to work with a larger value of size 660 /// WordSize. 661 /// 662 /// AlignedAddr: Addr rounded down to a multiple of WordSize 663 /// 664 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded 665 /// from AlignAddr for it to have the same value as if 666 /// ValueType was loaded from Addr. 667 /// 668 /// Mask: Value to mask with the value loaded from AlignAddr to 669 /// include only the part that would've been loaded from Addr. 670 /// 671 /// Inv_Mask: The inverse of Mask. 672 static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I, 673 Type *ValueType, Value *Addr, 674 Align AddrAlign, 675 unsigned MinWordSize) { 676 PartwordMaskValues PMV; 677 678 Module *M = I->getModule(); 679 LLVMContext &Ctx = M->getContext(); 680 const DataLayout &DL = M->getDataLayout(); 681 unsigned ValueSize = DL.getTypeStoreSize(ValueType); 682 683 PMV.ValueType = ValueType; 684 PMV.WordType = MinWordSize > ValueSize ? Type::getIntNTy(Ctx, MinWordSize * 8) 685 : ValueType; 686 if (PMV.ValueType == PMV.WordType) { 687 PMV.AlignedAddr = Addr; 688 PMV.AlignedAddrAlignment = AddrAlign; 689 PMV.ShiftAmt = ConstantInt::get(PMV.ValueType, 0); 690 PMV.Mask = ConstantInt::get(PMV.ValueType, ~0, /*isSigned*/ true); 691 return PMV; 692 } 693 694 assert(ValueSize < MinWordSize); 695 696 Type *WordPtrType = 697 PMV.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace()); 698 699 // TODO: we could skip some of this if AddrAlign >= MinWordSize. 700 Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx)); 701 PMV.AlignedAddr = Builder.CreateIntToPtr( 702 Builder.CreateAnd(AddrInt, ~(uint64_t)(MinWordSize - 1)), WordPtrType, 703 "AlignedAddr"); 704 PMV.AlignedAddrAlignment = Align(MinWordSize); 705 706 Value *PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1, "PtrLSB"); 707 if (DL.isLittleEndian()) { 708 // turn bytes into bits 709 PMV.ShiftAmt = Builder.CreateShl(PtrLSB, 3); 710 } else { 711 // turn bytes into bits, and count from the other side. 712 PMV.ShiftAmt = Builder.CreateShl( 713 Builder.CreateXor(PtrLSB, MinWordSize - ValueSize), 3); 714 } 715 716 PMV.ShiftAmt = Builder.CreateTrunc(PMV.ShiftAmt, PMV.WordType, "ShiftAmt"); 717 PMV.Mask = Builder.CreateShl( 718 ConstantInt::get(PMV.WordType, (1 << (ValueSize * 8)) - 1), PMV.ShiftAmt, 719 "Mask"); 720 PMV.Inv_Mask = Builder.CreateNot(PMV.Mask, "Inv_Mask"); 721 return PMV; 722 } 723 724 static Value *extractMaskedValue(IRBuilder<> &Builder, Value *WideWord, 725 const PartwordMaskValues &PMV) { 726 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch"); 727 if (PMV.WordType == PMV.ValueType) 728 return WideWord; 729 730 Value *Shift = Builder.CreateLShr(WideWord, PMV.ShiftAmt, "shifted"); 731 Value *Trunc = Builder.CreateTrunc(Shift, PMV.ValueType, "extracted"); 732 return Trunc; 733 } 734 735 static Value *insertMaskedValue(IRBuilder<> &Builder, Value *WideWord, 736 Value *Updated, const PartwordMaskValues &PMV) { 737 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch"); 738 assert(Updated->getType() == PMV.ValueType && "Value type mismatch"); 739 if (PMV.WordType == PMV.ValueType) 740 return Updated; 741 742 Value *ZExt = Builder.CreateZExt(Updated, PMV.WordType, "extended"); 743 Value *Shift = 744 Builder.CreateShl(ZExt, PMV.ShiftAmt, "shifted", /*HasNUW*/ true); 745 Value *And = Builder.CreateAnd(WideWord, PMV.Inv_Mask, "unmasked"); 746 Value *Or = Builder.CreateOr(And, Shift, "inserted"); 747 return Or; 748 } 749 750 /// Emit IR to implement a masked version of a given atomicrmw 751 /// operation. (That is, only the bits under the Mask should be 752 /// affected by the operation) 753 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op, 754 IRBuilder<> &Builder, Value *Loaded, 755 Value *Shifted_Inc, Value *Inc, 756 const PartwordMaskValues &PMV) { 757 // TODO: update to use 758 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order 759 // to merge bits from two values without requiring PMV.Inv_Mask. 760 switch (Op) { 761 case AtomicRMWInst::Xchg: { 762 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 763 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc); 764 return FinalVal; 765 } 766 case AtomicRMWInst::Or: 767 case AtomicRMWInst::Xor: 768 case AtomicRMWInst::And: 769 llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW"); 770 case AtomicRMWInst::Add: 771 case AtomicRMWInst::Sub: 772 case AtomicRMWInst::Nand: { 773 // The other arithmetic ops need to be masked into place. 774 Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded, Shifted_Inc); 775 Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask); 776 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 777 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked); 778 return FinalVal; 779 } 780 case AtomicRMWInst::Max: 781 case AtomicRMWInst::Min: 782 case AtomicRMWInst::UMax: 783 case AtomicRMWInst::UMin: { 784 // Finally, comparison ops will operate on the full value, so 785 // truncate down to the original size, and expand out again after 786 // doing the operation. 787 Value *Loaded_Extract = extractMaskedValue(Builder, Loaded, PMV); 788 Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded_Extract, Inc); 789 Value *FinalVal = insertMaskedValue(Builder, Loaded, NewVal, PMV); 790 return FinalVal; 791 } 792 default: 793 llvm_unreachable("Unknown atomic op"); 794 } 795 } 796 797 /// Expand a sub-word atomicrmw operation into an appropriate 798 /// word-sized operation. 799 /// 800 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same 801 /// way as a typical atomicrmw expansion. The only difference here is 802 /// that the operation inside of the loop may operate upon only a 803 /// part of the value. 804 void AtomicExpand::expandPartwordAtomicRMW( 805 AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) { 806 AtomicOrdering MemOpOrder = AI->getOrdering(); 807 SyncScope::ID SSID = AI->getSyncScopeID(); 808 809 IRBuilder<> Builder(AI); 810 811 PartwordMaskValues PMV = 812 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 813 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 814 815 Value *ValOperand_Shifted = 816 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 817 PMV.ShiftAmt, "ValOperand_Shifted"); 818 819 auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) { 820 return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded, 821 ValOperand_Shifted, AI->getValOperand(), PMV); 822 }; 823 824 Value *OldResult; 825 if (ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg) { 826 OldResult = insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, 827 PMV.AlignedAddrAlignment, MemOpOrder, SSID, 828 PerformPartwordOp, createCmpXchgInstFun); 829 } else { 830 assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::LLSC); 831 OldResult = insertRMWLLSCLoop(Builder, PMV.WordType, PMV.AlignedAddr, 832 PMV.AlignedAddrAlignment, MemOpOrder, 833 PerformPartwordOp); 834 } 835 836 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV); 837 AI->replaceAllUsesWith(FinalOldResult); 838 AI->eraseFromParent(); 839 } 840 841 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width. 842 AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) { 843 IRBuilder<> Builder(AI); 844 AtomicRMWInst::BinOp Op = AI->getOperation(); 845 846 assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 847 Op == AtomicRMWInst::And) && 848 "Unable to widen operation"); 849 850 PartwordMaskValues PMV = 851 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 852 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 853 854 Value *ValOperand_Shifted = 855 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 856 PMV.ShiftAmt, "ValOperand_Shifted"); 857 858 Value *NewOperand; 859 860 if (Op == AtomicRMWInst::And) 861 NewOperand = 862 Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand"); 863 else 864 NewOperand = ValOperand_Shifted; 865 866 AtomicRMWInst *NewAI = 867 Builder.CreateAtomicRMW(Op, PMV.AlignedAddr, NewOperand, 868 PMV.AlignedAddrAlignment, AI->getOrdering()); 869 870 Value *FinalOldResult = extractMaskedValue(Builder, NewAI, PMV); 871 AI->replaceAllUsesWith(FinalOldResult); 872 AI->eraseFromParent(); 873 return NewAI; 874 } 875 876 bool AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) { 877 // The basic idea here is that we're expanding a cmpxchg of a 878 // smaller memory size up to a word-sized cmpxchg. To do this, we 879 // need to add a retry-loop for strong cmpxchg, so that 880 // modifications to other parts of the word don't cause a spurious 881 // failure. 882 883 // This generates code like the following: 884 // [[Setup mask values PMV.*]] 885 // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt 886 // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt 887 // %InitLoaded = load i32* %addr 888 // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask 889 // br partword.cmpxchg.loop 890 // partword.cmpxchg.loop: 891 // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ], 892 // [ %OldVal_MaskOut, %partword.cmpxchg.failure ] 893 // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted 894 // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted 895 // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp, 896 // i32 %FullWord_NewVal success_ordering failure_ordering 897 // %OldVal = extractvalue { i32, i1 } %NewCI, 0 898 // %Success = extractvalue { i32, i1 } %NewCI, 1 899 // br i1 %Success, label %partword.cmpxchg.end, 900 // label %partword.cmpxchg.failure 901 // partword.cmpxchg.failure: 902 // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask 903 // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut 904 // br i1 %ShouldContinue, label %partword.cmpxchg.loop, 905 // label %partword.cmpxchg.end 906 // partword.cmpxchg.end: 907 // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt 908 // %FinalOldVal = trunc i32 %tmp1 to i8 909 // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0 910 // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1 911 912 Value *Addr = CI->getPointerOperand(); 913 Value *Cmp = CI->getCompareOperand(); 914 Value *NewVal = CI->getNewValOperand(); 915 916 BasicBlock *BB = CI->getParent(); 917 Function *F = BB->getParent(); 918 IRBuilder<> Builder(CI); 919 LLVMContext &Ctx = Builder.getContext(); 920 921 BasicBlock *EndBB = 922 BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end"); 923 auto FailureBB = 924 BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB); 925 auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB); 926 927 // The split call above "helpfully" added a branch at the end of BB 928 // (to the wrong place). 929 std::prev(BB->end())->eraseFromParent(); 930 Builder.SetInsertPoint(BB); 931 932 PartwordMaskValues PMV = 933 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr, 934 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 935 936 // Shift the incoming values over, into the right location in the word. 937 Value *NewVal_Shifted = 938 Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt); 939 Value *Cmp_Shifted = 940 Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt); 941 942 // Load the entire current word, and mask into place the expected and new 943 // values 944 LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr); 945 InitLoaded->setVolatile(CI->isVolatile()); 946 Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask); 947 Builder.CreateBr(LoopBB); 948 949 // partword.cmpxchg.loop: 950 Builder.SetInsertPoint(LoopBB); 951 PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2); 952 Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB); 953 954 // Mask/Or the expected and new values into place in the loaded word. 955 Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted); 956 Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted); 957 AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg( 958 PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, PMV.AlignedAddrAlignment, 959 CI->getSuccessOrdering(), CI->getFailureOrdering(), CI->getSyncScopeID()); 960 NewCI->setVolatile(CI->isVolatile()); 961 // When we're building a strong cmpxchg, we need a loop, so you 962 // might think we could use a weak cmpxchg inside. But, using strong 963 // allows the below comparison for ShouldContinue, and we're 964 // expecting the underlying cmpxchg to be a machine instruction, 965 // which is strong anyways. 966 NewCI->setWeak(CI->isWeak()); 967 968 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 969 Value *Success = Builder.CreateExtractValue(NewCI, 1); 970 971 if (CI->isWeak()) 972 Builder.CreateBr(EndBB); 973 else 974 Builder.CreateCondBr(Success, EndBB, FailureBB); 975 976 // partword.cmpxchg.failure: 977 Builder.SetInsertPoint(FailureBB); 978 // Upon failure, verify that the masked-out part of the loaded value 979 // has been modified. If it didn't, abort the cmpxchg, since the 980 // masked-in part must've. 981 Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask); 982 Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut); 983 Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB); 984 985 // Add the second value to the phi from above 986 Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB); 987 988 // partword.cmpxchg.end: 989 Builder.SetInsertPoint(CI); 990 991 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV); 992 Value *Res = UndefValue::get(CI->getType()); 993 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 994 Res = Builder.CreateInsertValue(Res, Success, 1); 995 996 CI->replaceAllUsesWith(Res); 997 CI->eraseFromParent(); 998 return true; 999 } 1000 1001 void AtomicExpand::expandAtomicOpToLLSC( 1002 Instruction *I, Type *ResultType, Value *Addr, Align AddrAlign, 1003 AtomicOrdering MemOpOrder, 1004 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { 1005 IRBuilder<> Builder(I); 1006 Value *Loaded = insertRMWLLSCLoop(Builder, ResultType, Addr, AddrAlign, 1007 MemOpOrder, PerformOp); 1008 1009 I->replaceAllUsesWith(Loaded); 1010 I->eraseFromParent(); 1011 } 1012 1013 void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) { 1014 IRBuilder<> Builder(AI); 1015 1016 PartwordMaskValues PMV = 1017 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 1018 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1019 1020 // The value operand must be sign-extended for signed min/max so that the 1021 // target's signed comparison instructions can be used. Otherwise, just 1022 // zero-ext. 1023 Instruction::CastOps CastOp = Instruction::ZExt; 1024 AtomicRMWInst::BinOp RMWOp = AI->getOperation(); 1025 if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min) 1026 CastOp = Instruction::SExt; 1027 1028 Value *ValOperand_Shifted = Builder.CreateShl( 1029 Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType), 1030 PMV.ShiftAmt, "ValOperand_Shifted"); 1031 Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic( 1032 Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt, 1033 AI->getOrdering()); 1034 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV); 1035 AI->replaceAllUsesWith(FinalOldResult); 1036 AI->eraseFromParent(); 1037 } 1038 1039 void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI) { 1040 IRBuilder<> Builder(CI); 1041 1042 PartwordMaskValues PMV = createMaskInstrs( 1043 Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(), 1044 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1045 1046 Value *CmpVal_Shifted = Builder.CreateShl( 1047 Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt, 1048 "CmpVal_Shifted"); 1049 Value *NewVal_Shifted = Builder.CreateShl( 1050 Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt, 1051 "NewVal_Shifted"); 1052 Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic( 1053 Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask, 1054 CI->getMergedOrdering()); 1055 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV); 1056 Value *Res = UndefValue::get(CI->getType()); 1057 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 1058 Value *Success = Builder.CreateICmpEQ( 1059 CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success"); 1060 Res = Builder.CreateInsertValue(Res, Success, 1); 1061 1062 CI->replaceAllUsesWith(Res); 1063 CI->eraseFromParent(); 1064 } 1065 1066 Value *AtomicExpand::insertRMWLLSCLoop( 1067 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, 1068 AtomicOrdering MemOpOrder, 1069 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { 1070 LLVMContext &Ctx = Builder.getContext(); 1071 BasicBlock *BB = Builder.GetInsertBlock(); 1072 Function *F = BB->getParent(); 1073 1074 assert(AddrAlign >= 1075 F->getParent()->getDataLayout().getTypeStoreSize(ResultTy) && 1076 "Expected at least natural alignment at this point."); 1077 1078 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1079 // 1080 // The standard expansion we produce is: 1081 // [...] 1082 // atomicrmw.start: 1083 // %loaded = @load.linked(%addr) 1084 // %new = some_op iN %loaded, %incr 1085 // %stored = @store_conditional(%new, %addr) 1086 // %try_again = icmp i32 ne %stored, 0 1087 // br i1 %try_again, label %loop, label %atomicrmw.end 1088 // atomicrmw.end: 1089 // [...] 1090 BasicBlock *ExitBB = 1091 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1092 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1093 1094 // The split call above "helpfully" added a branch at the end of BB (to the 1095 // wrong place). 1096 std::prev(BB->end())->eraseFromParent(); 1097 Builder.SetInsertPoint(BB); 1098 Builder.CreateBr(LoopBB); 1099 1100 // Start the main loop block now that we've taken care of the preliminaries. 1101 Builder.SetInsertPoint(LoopBB); 1102 Value *Loaded = TLI->emitLoadLinked(Builder, ResultTy, Addr, MemOpOrder); 1103 1104 Value *NewVal = PerformOp(Builder, Loaded); 1105 1106 Value *StoreSuccess = 1107 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); 1108 Value *TryAgain = Builder.CreateICmpNE( 1109 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); 1110 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); 1111 1112 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1113 return Loaded; 1114 } 1115 1116 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of 1117 /// the equivalent bitwidth. We used to not support pointer cmpxchg in the 1118 /// IR. As a migration step, we convert back to what use to be the standard 1119 /// way to represent a pointer cmpxchg so that we can update backends one by 1120 /// one. 1121 AtomicCmpXchgInst * 1122 AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) { 1123 auto *M = CI->getModule(); 1124 Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(), 1125 M->getDataLayout()); 1126 1127 IRBuilder<> Builder(CI); 1128 1129 Value *Addr = CI->getPointerOperand(); 1130 Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace()); 1131 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 1132 1133 Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy); 1134 Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy); 1135 1136 auto *NewCI = Builder.CreateAtomicCmpXchg( 1137 NewAddr, NewCmp, NewNewVal, CI->getAlign(), CI->getSuccessOrdering(), 1138 CI->getFailureOrdering(), CI->getSyncScopeID()); 1139 NewCI->setVolatile(CI->isVolatile()); 1140 NewCI->setWeak(CI->isWeak()); 1141 LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n"); 1142 1143 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 1144 Value *Succ = Builder.CreateExtractValue(NewCI, 1); 1145 1146 OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType()); 1147 1148 Value *Res = UndefValue::get(CI->getType()); 1149 Res = Builder.CreateInsertValue(Res, OldVal, 0); 1150 Res = Builder.CreateInsertValue(Res, Succ, 1); 1151 1152 CI->replaceAllUsesWith(Res); 1153 CI->eraseFromParent(); 1154 return NewCI; 1155 } 1156 1157 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1158 AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); 1159 AtomicOrdering FailureOrder = CI->getFailureOrdering(); 1160 Value *Addr = CI->getPointerOperand(); 1161 BasicBlock *BB = CI->getParent(); 1162 Function *F = BB->getParent(); 1163 LLVMContext &Ctx = F->getContext(); 1164 // If shouldInsertFencesForAtomic() returns true, then the target does not 1165 // want to deal with memory orders, and emitLeading/TrailingFence should take 1166 // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we 1167 // should preserve the ordering. 1168 bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI); 1169 AtomicOrdering MemOpOrder = ShouldInsertFencesForAtomic 1170 ? AtomicOrdering::Monotonic 1171 : CI->getMergedOrdering(); 1172 1173 // In implementations which use a barrier to achieve release semantics, we can 1174 // delay emitting this barrier until we know a store is actually going to be 1175 // attempted. The cost of this delay is that we need 2 copies of the block 1176 // emitting the load-linked, affecting code size. 1177 // 1178 // Ideally, this logic would be unconditional except for the minsize check 1179 // since in other cases the extra blocks naturally collapse down to the 1180 // minimal loop. Unfortunately, this puts too much stress on later 1181 // optimisations so we avoid emitting the extra logic in those cases too. 1182 bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic && 1183 SuccessOrder != AtomicOrdering::Monotonic && 1184 SuccessOrder != AtomicOrdering::Acquire && 1185 !F->hasMinSize(); 1186 1187 // There's no overhead for sinking the release barrier in a weak cmpxchg, so 1188 // do it even on minsize. 1189 bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak(); 1190 1191 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord 1192 // 1193 // The full expansion we produce is: 1194 // [...] 1195 // %aligned.addr = ... 1196 // cmpxchg.start: 1197 // %unreleasedload = @load.linked(%aligned.addr) 1198 // %unreleasedload.extract = extract value from %unreleasedload 1199 // %should_store = icmp eq %unreleasedload.extract, %desired 1200 // br i1 %should_store, label %cmpxchg.releasingstore, 1201 // label %cmpxchg.nostore 1202 // cmpxchg.releasingstore: 1203 // fence? 1204 // br label cmpxchg.trystore 1205 // cmpxchg.trystore: 1206 // %loaded.trystore = phi [%unreleasedload, %cmpxchg.releasingstore], 1207 // [%releasedload, %cmpxchg.releasedload] 1208 // %updated.new = insert %new into %loaded.trystore 1209 // %stored = @store_conditional(%updated.new, %aligned.addr) 1210 // %success = icmp eq i32 %stored, 0 1211 // br i1 %success, label %cmpxchg.success, 1212 // label %cmpxchg.releasedload/%cmpxchg.failure 1213 // cmpxchg.releasedload: 1214 // %releasedload = @load.linked(%aligned.addr) 1215 // %releasedload.extract = extract value from %releasedload 1216 // %should_store = icmp eq %releasedload.extract, %desired 1217 // br i1 %should_store, label %cmpxchg.trystore, 1218 // label %cmpxchg.failure 1219 // cmpxchg.success: 1220 // fence? 1221 // br label %cmpxchg.end 1222 // cmpxchg.nostore: 1223 // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start], 1224 // [%releasedload, 1225 // %cmpxchg.releasedload/%cmpxchg.trystore] 1226 // @load_linked_fail_balance()? 1227 // br label %cmpxchg.failure 1228 // cmpxchg.failure: 1229 // fence? 1230 // br label %cmpxchg.end 1231 // cmpxchg.end: 1232 // %loaded.exit = phi [%loaded.nostore, %cmpxchg.failure], 1233 // [%loaded.trystore, %cmpxchg.trystore] 1234 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] 1235 // %loaded = extract value from %loaded.exit 1236 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 1237 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 1238 // [...] 1239 BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end"); 1240 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); 1241 auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB); 1242 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB); 1243 auto ReleasedLoadBB = 1244 BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB); 1245 auto TryStoreBB = 1246 BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB); 1247 auto ReleasingStoreBB = 1248 BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB); 1249 auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB); 1250 1251 // This grabs the DebugLoc from CI 1252 IRBuilder<> Builder(CI); 1253 1254 // The split call above "helpfully" added a branch at the end of BB (to the 1255 // wrong place), but we might want a fence too. It's easiest to just remove 1256 // the branch entirely. 1257 std::prev(BB->end())->eraseFromParent(); 1258 Builder.SetInsertPoint(BB); 1259 if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier) 1260 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1261 1262 PartwordMaskValues PMV = 1263 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr, 1264 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1265 Builder.CreateBr(StartBB); 1266 1267 // Start the main loop block now that we've taken care of the preliminaries. 1268 Builder.SetInsertPoint(StartBB); 1269 Value *UnreleasedLoad = 1270 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder); 1271 Value *UnreleasedLoadExtract = 1272 extractMaskedValue(Builder, UnreleasedLoad, PMV); 1273 Value *ShouldStore = Builder.CreateICmpEQ( 1274 UnreleasedLoadExtract, CI->getCompareOperand(), "should_store"); 1275 1276 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1277 // jump straight past that fence instruction (if it exists). 1278 Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB); 1279 1280 Builder.SetInsertPoint(ReleasingStoreBB); 1281 if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier) 1282 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1283 Builder.CreateBr(TryStoreBB); 1284 1285 Builder.SetInsertPoint(TryStoreBB); 1286 PHINode *LoadedTryStore = 1287 Builder.CreatePHI(PMV.WordType, 2, "loaded.trystore"); 1288 LoadedTryStore->addIncoming(UnreleasedLoad, ReleasingStoreBB); 1289 Value *NewValueInsert = 1290 insertMaskedValue(Builder, LoadedTryStore, CI->getNewValOperand(), PMV); 1291 Value *StoreSuccess = TLI->emitStoreConditional(Builder, NewValueInsert, 1292 PMV.AlignedAddr, MemOpOrder); 1293 StoreSuccess = Builder.CreateICmpEQ( 1294 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); 1295 BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB; 1296 Builder.CreateCondBr(StoreSuccess, SuccessBB, 1297 CI->isWeak() ? FailureBB : RetryBB); 1298 1299 Builder.SetInsertPoint(ReleasedLoadBB); 1300 Value *SecondLoad; 1301 if (HasReleasedLoadBB) { 1302 SecondLoad = 1303 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder); 1304 Value *SecondLoadExtract = extractMaskedValue(Builder, SecondLoad, PMV); 1305 ShouldStore = Builder.CreateICmpEQ(SecondLoadExtract, 1306 CI->getCompareOperand(), "should_store"); 1307 1308 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1309 // jump straight past that fence instruction (if it exists). 1310 Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB); 1311 // Update PHI node in TryStoreBB. 1312 LoadedTryStore->addIncoming(SecondLoad, ReleasedLoadBB); 1313 } else 1314 Builder.CreateUnreachable(); 1315 1316 // Make sure later instructions don't get reordered with a fence if 1317 // necessary. 1318 Builder.SetInsertPoint(SuccessBB); 1319 if (ShouldInsertFencesForAtomic) 1320 TLI->emitTrailingFence(Builder, CI, SuccessOrder); 1321 Builder.CreateBr(ExitBB); 1322 1323 Builder.SetInsertPoint(NoStoreBB); 1324 PHINode *LoadedNoStore = 1325 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.nostore"); 1326 LoadedNoStore->addIncoming(UnreleasedLoad, StartBB); 1327 if (HasReleasedLoadBB) 1328 LoadedNoStore->addIncoming(SecondLoad, ReleasedLoadBB); 1329 1330 // In the failing case, where we don't execute the store-conditional, the 1331 // target might want to balance out the load-linked with a dedicated 1332 // instruction (e.g., on ARM, clearing the exclusive monitor). 1333 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 1334 Builder.CreateBr(FailureBB); 1335 1336 Builder.SetInsertPoint(FailureBB); 1337 PHINode *LoadedFailure = 1338 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.failure"); 1339 LoadedFailure->addIncoming(LoadedNoStore, NoStoreBB); 1340 if (CI->isWeak()) 1341 LoadedFailure->addIncoming(LoadedTryStore, TryStoreBB); 1342 if (ShouldInsertFencesForAtomic) 1343 TLI->emitTrailingFence(Builder, CI, FailureOrder); 1344 Builder.CreateBr(ExitBB); 1345 1346 // Finally, we have control-flow based knowledge of whether the cmpxchg 1347 // succeeded or not. We expose this to later passes by converting any 1348 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate 1349 // PHI. 1350 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1351 PHINode *LoadedExit = 1352 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.exit"); 1353 LoadedExit->addIncoming(LoadedTryStore, SuccessBB); 1354 LoadedExit->addIncoming(LoadedFailure, FailureBB); 1355 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2, "success"); 1356 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); 1357 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); 1358 1359 // This is the "exit value" from the cmpxchg expansion. It may be of 1360 // a type wider than the one in the cmpxchg instruction. 1361 Value *LoadedFull = LoadedExit; 1362 1363 Builder.SetInsertPoint(ExitBB, std::next(Success->getIterator())); 1364 Value *Loaded = extractMaskedValue(Builder, LoadedFull, PMV); 1365 1366 // Look for any users of the cmpxchg that are just comparing the loaded value 1367 // against the desired one, and replace them with the CFG-derived version. 1368 SmallVector<ExtractValueInst *, 2> PrunedInsts; 1369 for (auto User : CI->users()) { 1370 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); 1371 if (!EV) 1372 continue; 1373 1374 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && 1375 "weird extraction from { iN, i1 }"); 1376 1377 if (EV->getIndices()[0] == 0) 1378 EV->replaceAllUsesWith(Loaded); 1379 else 1380 EV->replaceAllUsesWith(Success); 1381 1382 PrunedInsts.push_back(EV); 1383 } 1384 1385 // We can remove the instructions now we're no longer iterating through them. 1386 for (auto EV : PrunedInsts) 1387 EV->eraseFromParent(); 1388 1389 if (!CI->use_empty()) { 1390 // Some use of the full struct return that we don't understand has happened, 1391 // so we've got to reconstruct it properly. 1392 Value *Res; 1393 Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0); 1394 Res = Builder.CreateInsertValue(Res, Success, 1); 1395 1396 CI->replaceAllUsesWith(Res); 1397 } 1398 1399 CI->eraseFromParent(); 1400 return true; 1401 } 1402 1403 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst *RMWI) { 1404 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand()); 1405 if (!C) 1406 return false; 1407 1408 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 1409 switch (Op) { 1410 case AtomicRMWInst::Add: 1411 case AtomicRMWInst::Sub: 1412 case AtomicRMWInst::Or: 1413 case AtomicRMWInst::Xor: 1414 return C->isZero(); 1415 case AtomicRMWInst::And: 1416 return C->isMinusOne(); 1417 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/... 1418 default: 1419 return false; 1420 } 1421 } 1422 1423 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst *RMWI) { 1424 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { 1425 tryExpandAtomicLoad(ResultingLoad); 1426 return true; 1427 } 1428 return false; 1429 } 1430 1431 Value *AtomicExpand::insertRMWCmpXchgLoop( 1432 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, 1433 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 1434 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, 1435 CreateCmpXchgInstFun CreateCmpXchg) { 1436 LLVMContext &Ctx = Builder.getContext(); 1437 BasicBlock *BB = Builder.GetInsertBlock(); 1438 Function *F = BB->getParent(); 1439 1440 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1441 // 1442 // The standard expansion we produce is: 1443 // [...] 1444 // %init_loaded = load atomic iN* %addr 1445 // br label %loop 1446 // loop: 1447 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] 1448 // %new = some_op iN %loaded, %incr 1449 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new 1450 // %new_loaded = extractvalue { iN, i1 } %pair, 0 1451 // %success = extractvalue { iN, i1 } %pair, 1 1452 // br i1 %success, label %atomicrmw.end, label %loop 1453 // atomicrmw.end: 1454 // [...] 1455 BasicBlock *ExitBB = 1456 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1457 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1458 1459 // The split call above "helpfully" added a branch at the end of BB (to the 1460 // wrong place), but we want a load. It's easiest to just remove 1461 // the branch entirely. 1462 std::prev(BB->end())->eraseFromParent(); 1463 Builder.SetInsertPoint(BB); 1464 LoadInst *InitLoaded = Builder.CreateAlignedLoad(ResultTy, Addr, AddrAlign); 1465 Builder.CreateBr(LoopBB); 1466 1467 // Start the main loop block now that we've taken care of the preliminaries. 1468 Builder.SetInsertPoint(LoopBB); 1469 PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded"); 1470 Loaded->addIncoming(InitLoaded, BB); 1471 1472 Value *NewVal = PerformOp(Builder, Loaded); 1473 1474 Value *NewLoaded = nullptr; 1475 Value *Success = nullptr; 1476 1477 CreateCmpXchg(Builder, Addr, Loaded, NewVal, AddrAlign, 1478 MemOpOrder == AtomicOrdering::Unordered 1479 ? AtomicOrdering::Monotonic 1480 : MemOpOrder, 1481 SSID, Success, NewLoaded); 1482 assert(Success && NewLoaded); 1483 1484 Loaded->addIncoming(NewLoaded, LoopBB); 1485 1486 Builder.CreateCondBr(Success, ExitBB, LoopBB); 1487 1488 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1489 return NewLoaded; 1490 } 1491 1492 bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1493 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 1494 unsigned ValueSize = getAtomicOpSize(CI); 1495 1496 switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) { 1497 default: 1498 llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg"); 1499 case TargetLoweringBase::AtomicExpansionKind::None: 1500 if (ValueSize < MinCASSize) 1501 return expandPartwordCmpXchg(CI); 1502 return false; 1503 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 1504 return expandAtomicCmpXchg(CI); 1505 } 1506 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: 1507 expandAtomicCmpXchgToMaskedIntrinsic(CI); 1508 return true; 1509 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 1510 return lowerAtomicCmpXchgInst(CI); 1511 } 1512 } 1513 1514 // Note: This function is exposed externally by AtomicExpandUtils.h 1515 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 1516 CreateCmpXchgInstFun CreateCmpXchg) { 1517 IRBuilder<> Builder(AI); 1518 Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop( 1519 Builder, AI->getType(), AI->getPointerOperand(), AI->getAlign(), 1520 AI->getOrdering(), AI->getSyncScopeID(), 1521 [&](IRBuilder<> &Builder, Value *Loaded) { 1522 return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded, 1523 AI->getValOperand()); 1524 }, 1525 CreateCmpXchg); 1526 1527 AI->replaceAllUsesWith(Loaded); 1528 AI->eraseFromParent(); 1529 return true; 1530 } 1531 1532 // In order to use one of the sized library calls such as 1533 // __atomic_fetch_add_4, the alignment must be sufficient, the size 1534 // must be one of the potentially-specialized sizes, and the value 1535 // type must actually exist in C on the target (otherwise, the 1536 // function wouldn't actually be defined.) 1537 static bool canUseSizedAtomicCall(unsigned Size, Align Alignment, 1538 const DataLayout &DL) { 1539 // TODO: "LargestSize" is an approximation for "largest type that 1540 // you can express in C". It seems to be the case that int128 is 1541 // supported on all 64-bit platforms, otherwise only up to 64-bit 1542 // integers are supported. If we get this wrong, then we'll try to 1543 // call a sized libcall that doesn't actually exist. There should 1544 // really be some more reliable way in LLVM of determining integer 1545 // sizes which are valid in the target's C ABI... 1546 unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8; 1547 return Alignment >= Size && 1548 (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) && 1549 Size <= LargestSize; 1550 } 1551 1552 void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) { 1553 static const RTLIB::Libcall Libcalls[6] = { 1554 RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2, 1555 RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16}; 1556 unsigned Size = getAtomicOpSize(I); 1557 1558 bool expanded = expandAtomicOpToLibcall( 1559 I, Size, I->getAlign(), I->getPointerOperand(), nullptr, nullptr, 1560 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1561 if (!expanded) 1562 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Load"); 1563 } 1564 1565 void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) { 1566 static const RTLIB::Libcall Libcalls[6] = { 1567 RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2, 1568 RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16}; 1569 unsigned Size = getAtomicOpSize(I); 1570 1571 bool expanded = expandAtomicOpToLibcall( 1572 I, Size, I->getAlign(), I->getPointerOperand(), I->getValueOperand(), 1573 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1574 if (!expanded) 1575 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Store"); 1576 } 1577 1578 void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) { 1579 static const RTLIB::Libcall Libcalls[6] = { 1580 RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1, 1581 RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4, 1582 RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16}; 1583 unsigned Size = getAtomicOpSize(I); 1584 1585 bool expanded = expandAtomicOpToLibcall( 1586 I, Size, I->getAlign(), I->getPointerOperand(), I->getNewValOperand(), 1587 I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(), 1588 Libcalls); 1589 if (!expanded) 1590 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for CAS"); 1591 } 1592 1593 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) { 1594 static const RTLIB::Libcall LibcallsXchg[6] = { 1595 RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1, 1596 RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4, 1597 RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16}; 1598 static const RTLIB::Libcall LibcallsAdd[6] = { 1599 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1, 1600 RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4, 1601 RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16}; 1602 static const RTLIB::Libcall LibcallsSub[6] = { 1603 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1, 1604 RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4, 1605 RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16}; 1606 static const RTLIB::Libcall LibcallsAnd[6] = { 1607 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1, 1608 RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4, 1609 RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16}; 1610 static const RTLIB::Libcall LibcallsOr[6] = { 1611 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1, 1612 RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4, 1613 RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16}; 1614 static const RTLIB::Libcall LibcallsXor[6] = { 1615 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1, 1616 RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4, 1617 RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16}; 1618 static const RTLIB::Libcall LibcallsNand[6] = { 1619 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1, 1620 RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4, 1621 RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16}; 1622 1623 switch (Op) { 1624 case AtomicRMWInst::BAD_BINOP: 1625 llvm_unreachable("Should not have BAD_BINOP."); 1626 case AtomicRMWInst::Xchg: 1627 return makeArrayRef(LibcallsXchg); 1628 case AtomicRMWInst::Add: 1629 return makeArrayRef(LibcallsAdd); 1630 case AtomicRMWInst::Sub: 1631 return makeArrayRef(LibcallsSub); 1632 case AtomicRMWInst::And: 1633 return makeArrayRef(LibcallsAnd); 1634 case AtomicRMWInst::Or: 1635 return makeArrayRef(LibcallsOr); 1636 case AtomicRMWInst::Xor: 1637 return makeArrayRef(LibcallsXor); 1638 case AtomicRMWInst::Nand: 1639 return makeArrayRef(LibcallsNand); 1640 case AtomicRMWInst::Max: 1641 case AtomicRMWInst::Min: 1642 case AtomicRMWInst::UMax: 1643 case AtomicRMWInst::UMin: 1644 case AtomicRMWInst::FAdd: 1645 case AtomicRMWInst::FSub: 1646 // No atomic libcalls are available for max/min/umax/umin. 1647 return {}; 1648 } 1649 llvm_unreachable("Unexpected AtomicRMW operation."); 1650 } 1651 1652 void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) { 1653 ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation()); 1654 1655 unsigned Size = getAtomicOpSize(I); 1656 1657 bool Success = false; 1658 if (!Libcalls.empty()) 1659 Success = expandAtomicOpToLibcall( 1660 I, Size, I->getAlign(), I->getPointerOperand(), I->getValOperand(), 1661 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1662 1663 // The expansion failed: either there were no libcalls at all for 1664 // the operation (min/max), or there were only size-specialized 1665 // libcalls (add/sub/etc) and we needed a generic. So, expand to a 1666 // CAS libcall, via a CAS loop, instead. 1667 if (!Success) { 1668 expandAtomicRMWToCmpXchg( 1669 I, [this](IRBuilder<> &Builder, Value *Addr, Value *Loaded, 1670 Value *NewVal, Align Alignment, AtomicOrdering MemOpOrder, 1671 SyncScope::ID SSID, Value *&Success, Value *&NewLoaded) { 1672 // Create the CAS instruction normally... 1673 AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg( 1674 Addr, Loaded, NewVal, Alignment, MemOpOrder, 1675 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID); 1676 Success = Builder.CreateExtractValue(Pair, 1, "success"); 1677 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 1678 1679 // ...and then expand the CAS into a libcall. 1680 expandAtomicCASToLibcall(Pair); 1681 }); 1682 } 1683 } 1684 1685 // A helper routine for the above expandAtomic*ToLibcall functions. 1686 // 1687 // 'Libcalls' contains an array of enum values for the particular 1688 // ATOMIC libcalls to be emitted. All of the other arguments besides 1689 // 'I' are extracted from the Instruction subclass by the 1690 // caller. Depending on the particular call, some will be null. 1691 bool AtomicExpand::expandAtomicOpToLibcall( 1692 Instruction *I, unsigned Size, Align Alignment, Value *PointerOperand, 1693 Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering, 1694 AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) { 1695 assert(Libcalls.size() == 6); 1696 1697 LLVMContext &Ctx = I->getContext(); 1698 Module *M = I->getModule(); 1699 const DataLayout &DL = M->getDataLayout(); 1700 IRBuilder<> Builder(I); 1701 IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front()); 1702 1703 bool UseSizedLibcall = canUseSizedAtomicCall(Size, Alignment, DL); 1704 Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8); 1705 1706 const Align AllocaAlignment = DL.getPrefTypeAlign(SizedIntTy); 1707 1708 // TODO: the "order" argument type is "int", not int32. So 1709 // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints. 1710 ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size); 1711 assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO"); 1712 Constant *OrderingVal = 1713 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering)); 1714 Constant *Ordering2Val = nullptr; 1715 if (CASExpected) { 1716 assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO"); 1717 Ordering2Val = 1718 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2)); 1719 } 1720 bool HasResult = I->getType() != Type::getVoidTy(Ctx); 1721 1722 RTLIB::Libcall RTLibType; 1723 if (UseSizedLibcall) { 1724 switch (Size) { 1725 case 1: 1726 RTLibType = Libcalls[1]; 1727 break; 1728 case 2: 1729 RTLibType = Libcalls[2]; 1730 break; 1731 case 4: 1732 RTLibType = Libcalls[3]; 1733 break; 1734 case 8: 1735 RTLibType = Libcalls[4]; 1736 break; 1737 case 16: 1738 RTLibType = Libcalls[5]; 1739 break; 1740 } 1741 } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) { 1742 RTLibType = Libcalls[0]; 1743 } else { 1744 // Can't use sized function, and there's no generic for this 1745 // operation, so give up. 1746 return false; 1747 } 1748 1749 if (!TLI->getLibcallName(RTLibType)) { 1750 // This target does not implement the requested atomic libcall so give up. 1751 return false; 1752 } 1753 1754 // Build up the function call. There's two kinds. First, the sized 1755 // variants. These calls are going to be one of the following (with 1756 // N=1,2,4,8,16): 1757 // iN __atomic_load_N(iN *ptr, int ordering) 1758 // void __atomic_store_N(iN *ptr, iN val, int ordering) 1759 // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering) 1760 // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired, 1761 // int success_order, int failure_order) 1762 // 1763 // Note that these functions can be used for non-integer atomic 1764 // operations, the values just need to be bitcast to integers on the 1765 // way in and out. 1766 // 1767 // And, then, the generic variants. They look like the following: 1768 // void __atomic_load(size_t size, void *ptr, void *ret, int ordering) 1769 // void __atomic_store(size_t size, void *ptr, void *val, int ordering) 1770 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, 1771 // int ordering) 1772 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, 1773 // void *desired, int success_order, 1774 // int failure_order) 1775 // 1776 // The different signatures are built up depending on the 1777 // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult' 1778 // variables. 1779 1780 AllocaInst *AllocaCASExpected = nullptr; 1781 Value *AllocaCASExpected_i8 = nullptr; 1782 AllocaInst *AllocaValue = nullptr; 1783 Value *AllocaValue_i8 = nullptr; 1784 AllocaInst *AllocaResult = nullptr; 1785 Value *AllocaResult_i8 = nullptr; 1786 1787 Type *ResultTy; 1788 SmallVector<Value *, 6> Args; 1789 AttributeList Attr; 1790 1791 // 'size' argument. 1792 if (!UseSizedLibcall) { 1793 // Note, getIntPtrType is assumed equivalent to size_t. 1794 Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size)); 1795 } 1796 1797 // 'ptr' argument. 1798 // note: This assumes all address spaces share a common libfunc 1799 // implementation and that addresses are convertable. For systems without 1800 // that property, we'd need to extend this mechanism to support AS-specific 1801 // families of atomic intrinsics. 1802 auto PtrTypeAS = PointerOperand->getType()->getPointerAddressSpace(); 1803 Value *PtrVal = 1804 Builder.CreateBitCast(PointerOperand, Type::getInt8PtrTy(Ctx, PtrTypeAS)); 1805 PtrVal = Builder.CreateAddrSpaceCast(PtrVal, Type::getInt8PtrTy(Ctx)); 1806 Args.push_back(PtrVal); 1807 1808 // 'expected' argument, if present. 1809 if (CASExpected) { 1810 AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType()); 1811 AllocaCASExpected->setAlignment(AllocaAlignment); 1812 unsigned AllocaAS = AllocaCASExpected->getType()->getPointerAddressSpace(); 1813 1814 AllocaCASExpected_i8 = Builder.CreateBitCast( 1815 AllocaCASExpected, Type::getInt8PtrTy(Ctx, AllocaAS)); 1816 Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64); 1817 Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment); 1818 Args.push_back(AllocaCASExpected_i8); 1819 } 1820 1821 // 'val' argument ('desired' for cas), if present. 1822 if (ValueOperand) { 1823 if (UseSizedLibcall) { 1824 Value *IntValue = 1825 Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy); 1826 Args.push_back(IntValue); 1827 } else { 1828 AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType()); 1829 AllocaValue->setAlignment(AllocaAlignment); 1830 AllocaValue_i8 = 1831 Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx)); 1832 Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64); 1833 Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment); 1834 Args.push_back(AllocaValue_i8); 1835 } 1836 } 1837 1838 // 'ret' argument. 1839 if (!CASExpected && HasResult && !UseSizedLibcall) { 1840 AllocaResult = AllocaBuilder.CreateAlloca(I->getType()); 1841 AllocaResult->setAlignment(AllocaAlignment); 1842 unsigned AllocaAS = AllocaResult->getType()->getPointerAddressSpace(); 1843 AllocaResult_i8 = 1844 Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx, AllocaAS)); 1845 Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64); 1846 Args.push_back(AllocaResult_i8); 1847 } 1848 1849 // 'ordering' ('success_order' for cas) argument. 1850 Args.push_back(OrderingVal); 1851 1852 // 'failure_order' argument, if present. 1853 if (Ordering2Val) 1854 Args.push_back(Ordering2Val); 1855 1856 // Now, the return type. 1857 if (CASExpected) { 1858 ResultTy = Type::getInt1Ty(Ctx); 1859 Attr = Attr.addRetAttribute(Ctx, Attribute::ZExt); 1860 } else if (HasResult && UseSizedLibcall) 1861 ResultTy = SizedIntTy; 1862 else 1863 ResultTy = Type::getVoidTy(Ctx); 1864 1865 // Done with setting up arguments and return types, create the call: 1866 SmallVector<Type *, 6> ArgTys; 1867 for (Value *Arg : Args) 1868 ArgTys.push_back(Arg->getType()); 1869 FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false); 1870 FunctionCallee LibcallFn = 1871 M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr); 1872 CallInst *Call = Builder.CreateCall(LibcallFn, Args); 1873 Call->setAttributes(Attr); 1874 Value *Result = Call; 1875 1876 // And then, extract the results... 1877 if (ValueOperand && !UseSizedLibcall) 1878 Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64); 1879 1880 if (CASExpected) { 1881 // The final result from the CAS is {load of 'expected' alloca, bool result 1882 // from call} 1883 Type *FinalResultTy = I->getType(); 1884 Value *V = UndefValue::get(FinalResultTy); 1885 Value *ExpectedOut = Builder.CreateAlignedLoad( 1886 CASExpected->getType(), AllocaCASExpected, AllocaAlignment); 1887 Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64); 1888 V = Builder.CreateInsertValue(V, ExpectedOut, 0); 1889 V = Builder.CreateInsertValue(V, Result, 1); 1890 I->replaceAllUsesWith(V); 1891 } else if (HasResult) { 1892 Value *V; 1893 if (UseSizedLibcall) 1894 V = Builder.CreateBitOrPointerCast(Result, I->getType()); 1895 else { 1896 V = Builder.CreateAlignedLoad(I->getType(), AllocaResult, 1897 AllocaAlignment); 1898 Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64); 1899 } 1900 I->replaceAllUsesWith(V); 1901 } 1902 I->eraseFromParent(); 1903 return true; 1904 } 1905