1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a pass (at IR level) to replace atomic instructions with
10 // __atomic_* library calls, or target specific instruction which implement the
11 // same semantics in a way which better fits the target backend. This can
12 // include the use of (intrinsic-based) load-linked/store-conditional loops,
13 // AtomicCmpXchg, or type coercions.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/STLFunctionalExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/CodeGen/AtomicExpandUtils.h"
22 #include "llvm/CodeGen/RuntimeLibcalls.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetPassConfig.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/CodeGen/ValueTypes.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Constant.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/InstIterator.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/IR/User.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/InitializePasses.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/AtomicOrdering.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include "llvm/Target/TargetMachine.h"
50 #include "llvm/Transforms/Utils/LowerAtomic.h"
51 #include <cassert>
52 #include <cstdint>
53 #include <iterator>
54
55 using namespace llvm;
56
57 #define DEBUG_TYPE "atomic-expand"
58
59 namespace {
60
61 class AtomicExpand : public FunctionPass {
62 const TargetLowering *TLI = nullptr;
63
64 public:
65 static char ID; // Pass identification, replacement for typeid
66
AtomicExpand()67 AtomicExpand() : FunctionPass(ID) {
68 initializeAtomicExpandPass(*PassRegistry::getPassRegistry());
69 }
70
71 bool runOnFunction(Function &F) override;
72
73 private:
74 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order);
75 IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL);
76 LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI);
77 bool tryExpandAtomicLoad(LoadInst *LI);
78 bool expandAtomicLoadToLL(LoadInst *LI);
79 bool expandAtomicLoadToCmpXchg(LoadInst *LI);
80 StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI);
81 bool tryExpandAtomicStore(StoreInst *SI);
82 void expandAtomicStore(StoreInst *SI);
83 bool tryExpandAtomicRMW(AtomicRMWInst *AI);
84 AtomicRMWInst *convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI);
85 Value *
86 insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
87 Align AddrAlign, AtomicOrdering MemOpOrder,
88 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
89 void
90 expandAtomicOpToLLSC(Instruction *I, Type *ResultTy, Value *Addr,
91 Align AddrAlign, AtomicOrdering MemOpOrder,
92 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
93 void expandPartwordAtomicRMW(
94 AtomicRMWInst *I, TargetLoweringBase::AtomicExpansionKind ExpansionKind);
95 AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI);
96 bool expandPartwordCmpXchg(AtomicCmpXchgInst *I);
97 void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI);
98 void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI);
99
100 AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI);
101 static Value *
102 insertRMWCmpXchgLoop(IRBuilder<> &Builder, Type *ResultType, Value *Addr,
103 Align AddrAlign, AtomicOrdering MemOpOrder,
104 SyncScope::ID SSID,
105 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
106 CreateCmpXchgInstFun CreateCmpXchg);
107 bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI);
108
109 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI);
110 bool isIdempotentRMW(AtomicRMWInst *RMWI);
111 bool simplifyIdempotentRMW(AtomicRMWInst *RMWI);
112
113 bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, Align Alignment,
114 Value *PointerOperand, Value *ValueOperand,
115 Value *CASExpected, AtomicOrdering Ordering,
116 AtomicOrdering Ordering2,
117 ArrayRef<RTLIB::Libcall> Libcalls);
118 void expandAtomicLoadToLibcall(LoadInst *LI);
119 void expandAtomicStoreToLibcall(StoreInst *LI);
120 void expandAtomicRMWToLibcall(AtomicRMWInst *I);
121 void expandAtomicCASToLibcall(AtomicCmpXchgInst *I);
122
123 friend bool
124 llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
125 CreateCmpXchgInstFun CreateCmpXchg);
126 };
127
128 } // end anonymous namespace
129
130 char AtomicExpand::ID = 0;
131
132 char &llvm::AtomicExpandID = AtomicExpand::ID;
133
134 INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions", false,
135 false)
136
createAtomicExpandPass()137 FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); }
138
139 // Helper functions to retrieve the size of atomic instructions.
getAtomicOpSize(LoadInst * LI)140 static unsigned getAtomicOpSize(LoadInst *LI) {
141 const DataLayout &DL = LI->getModule()->getDataLayout();
142 return DL.getTypeStoreSize(LI->getType());
143 }
144
getAtomicOpSize(StoreInst * SI)145 static unsigned getAtomicOpSize(StoreInst *SI) {
146 const DataLayout &DL = SI->getModule()->getDataLayout();
147 return DL.getTypeStoreSize(SI->getValueOperand()->getType());
148 }
149
getAtomicOpSize(AtomicRMWInst * RMWI)150 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) {
151 const DataLayout &DL = RMWI->getModule()->getDataLayout();
152 return DL.getTypeStoreSize(RMWI->getValOperand()->getType());
153 }
154
getAtomicOpSize(AtomicCmpXchgInst * CASI)155 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) {
156 const DataLayout &DL = CASI->getModule()->getDataLayout();
157 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType());
158 }
159
160 // Determine if a particular atomic operation has a supported size,
161 // and is of appropriate alignment, to be passed through for target
162 // lowering. (Versus turning into a __atomic libcall)
163 template <typename Inst>
atomicSizeSupported(const TargetLowering * TLI,Inst * I)164 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) {
165 unsigned Size = getAtomicOpSize(I);
166 Align Alignment = I->getAlign();
167 return Alignment >= Size &&
168 Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8;
169 }
170
runOnFunction(Function & F)171 bool AtomicExpand::runOnFunction(Function &F) {
172 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
173 if (!TPC)
174 return false;
175
176 auto &TM = TPC->getTM<TargetMachine>();
177 if (!TM.getSubtargetImpl(F)->enableAtomicExpand())
178 return false;
179 TLI = TM.getSubtargetImpl(F)->getTargetLowering();
180
181 SmallVector<Instruction *, 1> AtomicInsts;
182
183 // Changing control-flow while iterating through it is a bad idea, so gather a
184 // list of all atomic instructions before we start.
185 for (Instruction &I : instructions(F))
186 if (I.isAtomic() && !isa<FenceInst>(&I))
187 AtomicInsts.push_back(&I);
188
189 bool MadeChange = false;
190 for (auto *I : AtomicInsts) {
191 auto LI = dyn_cast<LoadInst>(I);
192 auto SI = dyn_cast<StoreInst>(I);
193 auto RMWI = dyn_cast<AtomicRMWInst>(I);
194 auto CASI = dyn_cast<AtomicCmpXchgInst>(I);
195 assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction");
196
197 // If the Size/Alignment is not supported, replace with a libcall.
198 if (LI) {
199 if (!atomicSizeSupported(TLI, LI)) {
200 expandAtomicLoadToLibcall(LI);
201 MadeChange = true;
202 continue;
203 }
204 } else if (SI) {
205 if (!atomicSizeSupported(TLI, SI)) {
206 expandAtomicStoreToLibcall(SI);
207 MadeChange = true;
208 continue;
209 }
210 } else if (RMWI) {
211 if (!atomicSizeSupported(TLI, RMWI)) {
212 expandAtomicRMWToLibcall(RMWI);
213 MadeChange = true;
214 continue;
215 }
216 } else if (CASI) {
217 if (!atomicSizeSupported(TLI, CASI)) {
218 expandAtomicCASToLibcall(CASI);
219 MadeChange = true;
220 continue;
221 }
222 }
223
224 if (TLI->shouldInsertFencesForAtomic(I)) {
225 auto FenceOrdering = AtomicOrdering::Monotonic;
226 if (LI && isAcquireOrStronger(LI->getOrdering())) {
227 FenceOrdering = LI->getOrdering();
228 LI->setOrdering(AtomicOrdering::Monotonic);
229 } else if (SI && isReleaseOrStronger(SI->getOrdering())) {
230 FenceOrdering = SI->getOrdering();
231 SI->setOrdering(AtomicOrdering::Monotonic);
232 } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) ||
233 isAcquireOrStronger(RMWI->getOrdering()))) {
234 FenceOrdering = RMWI->getOrdering();
235 RMWI->setOrdering(AtomicOrdering::Monotonic);
236 } else if (CASI &&
237 TLI->shouldExpandAtomicCmpXchgInIR(CASI) ==
238 TargetLoweringBase::AtomicExpansionKind::None &&
239 (isReleaseOrStronger(CASI->getSuccessOrdering()) ||
240 isAcquireOrStronger(CASI->getSuccessOrdering()) ||
241 isAcquireOrStronger(CASI->getFailureOrdering()))) {
242 // If a compare and swap is lowered to LL/SC, we can do smarter fence
243 // insertion, with a stronger one on the success path than on the
244 // failure path. As a result, fence insertion is directly done by
245 // expandAtomicCmpXchg in that case.
246 FenceOrdering = CASI->getMergedOrdering();
247 CASI->setSuccessOrdering(AtomicOrdering::Monotonic);
248 CASI->setFailureOrdering(AtomicOrdering::Monotonic);
249 }
250
251 if (FenceOrdering != AtomicOrdering::Monotonic) {
252 MadeChange |= bracketInstWithFences(I, FenceOrdering);
253 }
254 }
255
256 if (LI) {
257 if (TLI->shouldCastAtomicLoadInIR(LI) ==
258 TargetLoweringBase::AtomicExpansionKind::CastToInteger) {
259 // TODO: add a TLI hook to control this so that each target can
260 // convert to lowering the original type one at a time.
261 LI = convertAtomicLoadToIntegerType(LI);
262 assert(LI->getType()->isIntegerTy() && "invariant broken");
263 MadeChange = true;
264 }
265
266 MadeChange |= tryExpandAtomicLoad(LI);
267 } else if (SI) {
268 if (TLI->shouldCastAtomicStoreInIR(SI) ==
269 TargetLoweringBase::AtomicExpansionKind::CastToInteger) {
270 // TODO: add a TLI hook to control this so that each target can
271 // convert to lowering the original type one at a time.
272 SI = convertAtomicStoreToIntegerType(SI);
273 assert(SI->getValueOperand()->getType()->isIntegerTy() &&
274 "invariant broken");
275 MadeChange = true;
276 }
277
278 if (tryExpandAtomicStore(SI))
279 MadeChange = true;
280 } else if (RMWI) {
281 // There are two different ways of expanding RMW instructions:
282 // - into a load if it is idempotent
283 // - into a Cmpxchg/LL-SC loop otherwise
284 // we try them in that order.
285
286 if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) {
287 MadeChange = true;
288 } else {
289 AtomicRMWInst::BinOp Op = RMWI->getOperation();
290 if (TLI->shouldCastAtomicRMWIInIR(RMWI) ==
291 TargetLoweringBase::AtomicExpansionKind::CastToInteger) {
292 // TODO: add a TLI hook to control this so that each target can
293 // convert to lowering the original type one at a time.
294 RMWI = convertAtomicXchgToIntegerType(RMWI);
295 assert(RMWI->getValOperand()->getType()->isIntegerTy() &&
296 "invariant broken");
297 MadeChange = true;
298 }
299 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
300 unsigned ValueSize = getAtomicOpSize(RMWI);
301 if (ValueSize < MinCASSize &&
302 (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
303 Op == AtomicRMWInst::And)) {
304 RMWI = widenPartwordAtomicRMW(RMWI);
305 MadeChange = true;
306 }
307
308 MadeChange |= tryExpandAtomicRMW(RMWI);
309 }
310 } else if (CASI) {
311 // TODO: when we're ready to make the change at the IR level, we can
312 // extend convertCmpXchgToInteger for floating point too.
313 assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() &&
314 "unimplemented - floating point not legal at IR level");
315 if (CASI->getCompareOperand()->getType()->isPointerTy()) {
316 // TODO: add a TLI hook to control this so that each target can
317 // convert to lowering the original type one at a time.
318 CASI = convertCmpXchgToIntegerType(CASI);
319 assert(CASI->getCompareOperand()->getType()->isIntegerTy() &&
320 "invariant broken");
321 MadeChange = true;
322 }
323
324 MadeChange |= tryExpandAtomicCmpXchg(CASI);
325 }
326 }
327 return MadeChange;
328 }
329
bracketInstWithFences(Instruction * I,AtomicOrdering Order)330 bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) {
331 IRBuilder<> Builder(I);
332
333 auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order);
334
335 auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order);
336 // We have a guard here because not every atomic operation generates a
337 // trailing fence.
338 if (TrailingFence)
339 TrailingFence->moveAfter(I);
340
341 return (LeadingFence || TrailingFence);
342 }
343
344 /// Get the iX type with the same bitwidth as T.
getCorrespondingIntegerType(Type * T,const DataLayout & DL)345 IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T,
346 const DataLayout &DL) {
347 EVT VT = TLI->getMemValueType(DL, T);
348 unsigned BitWidth = VT.getStoreSizeInBits();
349 assert(BitWidth == VT.getSizeInBits() && "must be a power of two");
350 return IntegerType::get(T->getContext(), BitWidth);
351 }
352
353 /// Convert an atomic load of a non-integral type to an integer load of the
354 /// equivalent bitwidth. See the function comment on
355 /// convertAtomicStoreToIntegerType for background.
convertAtomicLoadToIntegerType(LoadInst * LI)356 LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) {
357 auto *M = LI->getModule();
358 Type *NewTy = getCorrespondingIntegerType(LI->getType(), M->getDataLayout());
359
360 IRBuilder<> Builder(LI);
361
362 Value *Addr = LI->getPointerOperand();
363 Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace());
364 Value *NewAddr = Builder.CreateBitCast(Addr, PT);
365
366 auto *NewLI = Builder.CreateLoad(NewTy, NewAddr);
367 NewLI->setAlignment(LI->getAlign());
368 NewLI->setVolatile(LI->isVolatile());
369 NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID());
370 LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n");
371
372 Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType());
373 LI->replaceAllUsesWith(NewVal);
374 LI->eraseFromParent();
375 return NewLI;
376 }
377
378 AtomicRMWInst *
convertAtomicXchgToIntegerType(AtomicRMWInst * RMWI)379 AtomicExpand::convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI) {
380 auto *M = RMWI->getModule();
381 Type *NewTy =
382 getCorrespondingIntegerType(RMWI->getType(), M->getDataLayout());
383
384 IRBuilder<> Builder(RMWI);
385
386 Value *Addr = RMWI->getPointerOperand();
387 Value *Val = RMWI->getValOperand();
388 Type *PT = PointerType::get(NewTy, RMWI->getPointerAddressSpace());
389 Value *NewAddr = Builder.CreateBitCast(Addr, PT);
390 Value *NewVal = Val->getType()->isPointerTy()
391 ? Builder.CreatePtrToInt(Val, NewTy)
392 : Builder.CreateBitCast(Val, NewTy);
393
394 auto *NewRMWI =
395 Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, NewAddr, NewVal,
396 RMWI->getAlign(), RMWI->getOrdering());
397 NewRMWI->setVolatile(RMWI->isVolatile());
398 LLVM_DEBUG(dbgs() << "Replaced " << *RMWI << " with " << *NewRMWI << "\n");
399
400 Value *NewRVal = RMWI->getType()->isPointerTy()
401 ? Builder.CreateIntToPtr(NewRMWI, RMWI->getType())
402 : Builder.CreateBitCast(NewRMWI, RMWI->getType());
403 RMWI->replaceAllUsesWith(NewRVal);
404 RMWI->eraseFromParent();
405 return NewRMWI;
406 }
407
tryExpandAtomicLoad(LoadInst * LI)408 bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) {
409 switch (TLI->shouldExpandAtomicLoadInIR(LI)) {
410 case TargetLoweringBase::AtomicExpansionKind::None:
411 return false;
412 case TargetLoweringBase::AtomicExpansionKind::LLSC:
413 expandAtomicOpToLLSC(
414 LI, LI->getType(), LI->getPointerOperand(), LI->getAlign(),
415 LI->getOrdering(),
416 [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; });
417 return true;
418 case TargetLoweringBase::AtomicExpansionKind::LLOnly:
419 return expandAtomicLoadToLL(LI);
420 case TargetLoweringBase::AtomicExpansionKind::CmpXChg:
421 return expandAtomicLoadToCmpXchg(LI);
422 case TargetLoweringBase::AtomicExpansionKind::NotAtomic:
423 LI->setAtomic(AtomicOrdering::NotAtomic);
424 return true;
425 default:
426 llvm_unreachable("Unhandled case in tryExpandAtomicLoad");
427 }
428 }
429
tryExpandAtomicStore(StoreInst * SI)430 bool AtomicExpand::tryExpandAtomicStore(StoreInst *SI) {
431 switch (TLI->shouldExpandAtomicStoreInIR(SI)) {
432 case TargetLoweringBase::AtomicExpansionKind::None:
433 return false;
434 case TargetLoweringBase::AtomicExpansionKind::Expand:
435 expandAtomicStore(SI);
436 return true;
437 case TargetLoweringBase::AtomicExpansionKind::NotAtomic:
438 SI->setAtomic(AtomicOrdering::NotAtomic);
439 return true;
440 default:
441 llvm_unreachable("Unhandled case in tryExpandAtomicStore");
442 }
443 }
444
expandAtomicLoadToLL(LoadInst * LI)445 bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) {
446 IRBuilder<> Builder(LI);
447
448 // On some architectures, load-linked instructions are atomic for larger
449 // sizes than normal loads. For example, the only 64-bit load guaranteed
450 // to be single-copy atomic by ARM is an ldrexd (A3.5.3).
451 Value *Val = TLI->emitLoadLinked(Builder, LI->getType(),
452 LI->getPointerOperand(), LI->getOrdering());
453 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
454
455 LI->replaceAllUsesWith(Val);
456 LI->eraseFromParent();
457
458 return true;
459 }
460
expandAtomicLoadToCmpXchg(LoadInst * LI)461 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) {
462 IRBuilder<> Builder(LI);
463 AtomicOrdering Order = LI->getOrdering();
464 if (Order == AtomicOrdering::Unordered)
465 Order = AtomicOrdering::Monotonic;
466
467 Value *Addr = LI->getPointerOperand();
468 Type *Ty = LI->getType();
469 Constant *DummyVal = Constant::getNullValue(Ty);
470
471 Value *Pair = Builder.CreateAtomicCmpXchg(
472 Addr, DummyVal, DummyVal, LI->getAlign(), Order,
473 AtomicCmpXchgInst::getStrongestFailureOrdering(Order));
474 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded");
475
476 LI->replaceAllUsesWith(Loaded);
477 LI->eraseFromParent();
478
479 return true;
480 }
481
482 /// Convert an atomic store of a non-integral type to an integer store of the
483 /// equivalent bitwidth. We used to not support floating point or vector
484 /// atomics in the IR at all. The backends learned to deal with the bitcast
485 /// idiom because that was the only way of expressing the notion of a atomic
486 /// float or vector store. The long term plan is to teach each backend to
487 /// instruction select from the original atomic store, but as a migration
488 /// mechanism, we convert back to the old format which the backends understand.
489 /// Each backend will need individual work to recognize the new format.
convertAtomicStoreToIntegerType(StoreInst * SI)490 StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) {
491 IRBuilder<> Builder(SI);
492 auto *M = SI->getModule();
493 Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(),
494 M->getDataLayout());
495 Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy);
496
497 Value *Addr = SI->getPointerOperand();
498 Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace());
499 Value *NewAddr = Builder.CreateBitCast(Addr, PT);
500
501 StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr);
502 NewSI->setAlignment(SI->getAlign());
503 NewSI->setVolatile(SI->isVolatile());
504 NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID());
505 LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n");
506 SI->eraseFromParent();
507 return NewSI;
508 }
509
expandAtomicStore(StoreInst * SI)510 void AtomicExpand::expandAtomicStore(StoreInst *SI) {
511 // This function is only called on atomic stores that are too large to be
512 // atomic if implemented as a native store. So we replace them by an
513 // atomic swap, that can be implemented for example as a ldrex/strex on ARM
514 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes.
515 // It is the responsibility of the target to only signal expansion via
516 // shouldExpandAtomicRMW in cases where this is required and possible.
517 IRBuilder<> Builder(SI);
518 AtomicOrdering Ordering = SI->getOrdering();
519 assert(Ordering != AtomicOrdering::NotAtomic);
520 AtomicOrdering RMWOrdering = Ordering == AtomicOrdering::Unordered
521 ? AtomicOrdering::Monotonic
522 : Ordering;
523 AtomicRMWInst *AI = Builder.CreateAtomicRMW(
524 AtomicRMWInst::Xchg, SI->getPointerOperand(), SI->getValueOperand(),
525 SI->getAlign(), RMWOrdering);
526 SI->eraseFromParent();
527
528 // Now we have an appropriate swap instruction, lower it as usual.
529 tryExpandAtomicRMW(AI);
530 }
531
createCmpXchgInstFun(IRBuilder<> & Builder,Value * Addr,Value * Loaded,Value * NewVal,Align AddrAlign,AtomicOrdering MemOpOrder,SyncScope::ID SSID,Value * & Success,Value * & NewLoaded)532 static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr,
533 Value *Loaded, Value *NewVal, Align AddrAlign,
534 AtomicOrdering MemOpOrder, SyncScope::ID SSID,
535 Value *&Success, Value *&NewLoaded) {
536 Type *OrigTy = NewVal->getType();
537
538 // This code can go away when cmpxchg supports FP types.
539 assert(!OrigTy->isPointerTy());
540 bool NeedBitcast = OrigTy->isFloatingPointTy();
541 if (NeedBitcast) {
542 IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits());
543 unsigned AS = Addr->getType()->getPointerAddressSpace();
544 Addr = Builder.CreateBitCast(Addr, IntTy->getPointerTo(AS));
545 NewVal = Builder.CreateBitCast(NewVal, IntTy);
546 Loaded = Builder.CreateBitCast(Loaded, IntTy);
547 }
548
549 Value *Pair = Builder.CreateAtomicCmpXchg(
550 Addr, Loaded, NewVal, AddrAlign, MemOpOrder,
551 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID);
552 Success = Builder.CreateExtractValue(Pair, 1, "success");
553 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
554
555 if (NeedBitcast)
556 NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy);
557 }
558
tryExpandAtomicRMW(AtomicRMWInst * AI)559 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) {
560 LLVMContext &Ctx = AI->getModule()->getContext();
561 TargetLowering::AtomicExpansionKind Kind = TLI->shouldExpandAtomicRMWInIR(AI);
562 switch (Kind) {
563 case TargetLoweringBase::AtomicExpansionKind::None:
564 return false;
565 case TargetLoweringBase::AtomicExpansionKind::LLSC: {
566 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
567 unsigned ValueSize = getAtomicOpSize(AI);
568 if (ValueSize < MinCASSize) {
569 expandPartwordAtomicRMW(AI,
570 TargetLoweringBase::AtomicExpansionKind::LLSC);
571 } else {
572 auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) {
573 return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded,
574 AI->getValOperand());
575 };
576 expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(),
577 AI->getAlign(), AI->getOrdering(), PerformOp);
578 }
579 return true;
580 }
581 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: {
582 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
583 unsigned ValueSize = getAtomicOpSize(AI);
584 if (ValueSize < MinCASSize) {
585 // TODO: Handle atomicrmw fadd/fsub
586 if (AI->getType()->isFloatingPointTy())
587 return false;
588
589 expandPartwordAtomicRMW(AI,
590 TargetLoweringBase::AtomicExpansionKind::CmpXChg);
591 } else {
592 SmallVector<StringRef> SSNs;
593 Ctx.getSyncScopeNames(SSNs);
594 auto MemScope = SSNs[AI->getSyncScopeID()].empty()
595 ? "system"
596 : SSNs[AI->getSyncScopeID()];
597 OptimizationRemarkEmitter ORE(AI->getFunction());
598 ORE.emit([&]() {
599 return OptimizationRemark(DEBUG_TYPE, "Passed", AI)
600 << "A compare and swap loop was generated for an atomic "
601 << AI->getOperationName(AI->getOperation()) << " operation at "
602 << MemScope << " memory scope";
603 });
604 expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun);
605 }
606 return true;
607 }
608 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: {
609 expandAtomicRMWToMaskedIntrinsic(AI);
610 return true;
611 }
612 case TargetLoweringBase::AtomicExpansionKind::BitTestIntrinsic: {
613 TLI->emitBitTestAtomicRMWIntrinsic(AI);
614 return true;
615 }
616 case TargetLoweringBase::AtomicExpansionKind::NotAtomic:
617 return lowerAtomicRMWInst(AI);
618 default:
619 llvm_unreachable("Unhandled case in tryExpandAtomicRMW");
620 }
621 }
622
623 namespace {
624
625 struct PartwordMaskValues {
626 // These three fields are guaranteed to be set by createMaskInstrs.
627 Type *WordType = nullptr;
628 Type *ValueType = nullptr;
629 Value *AlignedAddr = nullptr;
630 Align AlignedAddrAlignment;
631 // The remaining fields can be null.
632 Value *ShiftAmt = nullptr;
633 Value *Mask = nullptr;
634 Value *Inv_Mask = nullptr;
635 };
636
637 LLVM_ATTRIBUTE_UNUSED
operator <<(raw_ostream & O,const PartwordMaskValues & PMV)638 raw_ostream &operator<<(raw_ostream &O, const PartwordMaskValues &PMV) {
639 auto PrintObj = [&O](auto *V) {
640 if (V)
641 O << *V;
642 else
643 O << "nullptr";
644 O << '\n';
645 };
646 O << "PartwordMaskValues {\n";
647 O << " WordType: ";
648 PrintObj(PMV.WordType);
649 O << " ValueType: ";
650 PrintObj(PMV.ValueType);
651 O << " AlignedAddr: ";
652 PrintObj(PMV.AlignedAddr);
653 O << " AlignedAddrAlignment: " << PMV.AlignedAddrAlignment.value() << '\n';
654 O << " ShiftAmt: ";
655 PrintObj(PMV.ShiftAmt);
656 O << " Mask: ";
657 PrintObj(PMV.Mask);
658 O << " Inv_Mask: ";
659 PrintObj(PMV.Inv_Mask);
660 O << "}\n";
661 return O;
662 }
663
664 } // end anonymous namespace
665
666 /// This is a helper function which builds instructions to provide
667 /// values necessary for partword atomic operations. It takes an
668 /// incoming address, Addr, and ValueType, and constructs the address,
669 /// shift-amounts and masks needed to work with a larger value of size
670 /// WordSize.
671 ///
672 /// AlignedAddr: Addr rounded down to a multiple of WordSize
673 ///
674 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded
675 /// from AlignAddr for it to have the same value as if
676 /// ValueType was loaded from Addr.
677 ///
678 /// Mask: Value to mask with the value loaded from AlignAddr to
679 /// include only the part that would've been loaded from Addr.
680 ///
681 /// Inv_Mask: The inverse of Mask.
createMaskInstrs(IRBuilder<> & Builder,Instruction * I,Type * ValueType,Value * Addr,Align AddrAlign,unsigned MinWordSize)682 static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I,
683 Type *ValueType, Value *Addr,
684 Align AddrAlign,
685 unsigned MinWordSize) {
686 PartwordMaskValues PMV;
687
688 Module *M = I->getModule();
689 LLVMContext &Ctx = M->getContext();
690 const DataLayout &DL = M->getDataLayout();
691 unsigned ValueSize = DL.getTypeStoreSize(ValueType);
692
693 PMV.ValueType = ValueType;
694 PMV.WordType = MinWordSize > ValueSize ? Type::getIntNTy(Ctx, MinWordSize * 8)
695 : ValueType;
696 if (PMV.ValueType == PMV.WordType) {
697 PMV.AlignedAddr = Addr;
698 PMV.AlignedAddrAlignment = AddrAlign;
699 PMV.ShiftAmt = ConstantInt::get(PMV.ValueType, 0);
700 PMV.Mask = ConstantInt::get(PMV.ValueType, ~0, /*isSigned*/ true);
701 return PMV;
702 }
703
704 assert(ValueSize < MinWordSize);
705
706 Type *WordPtrType =
707 PMV.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace());
708
709 // TODO: we could skip some of this if AddrAlign >= MinWordSize.
710 Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx));
711 PMV.AlignedAddr = Builder.CreateIntToPtr(
712 Builder.CreateAnd(AddrInt, ~(uint64_t)(MinWordSize - 1)), WordPtrType,
713 "AlignedAddr");
714 PMV.AlignedAddrAlignment = Align(MinWordSize);
715
716 Value *PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1, "PtrLSB");
717 if (DL.isLittleEndian()) {
718 // turn bytes into bits
719 PMV.ShiftAmt = Builder.CreateShl(PtrLSB, 3);
720 } else {
721 // turn bytes into bits, and count from the other side.
722 PMV.ShiftAmt = Builder.CreateShl(
723 Builder.CreateXor(PtrLSB, MinWordSize - ValueSize), 3);
724 }
725
726 PMV.ShiftAmt = Builder.CreateTrunc(PMV.ShiftAmt, PMV.WordType, "ShiftAmt");
727 PMV.Mask = Builder.CreateShl(
728 ConstantInt::get(PMV.WordType, (1 << (ValueSize * 8)) - 1), PMV.ShiftAmt,
729 "Mask");
730 PMV.Inv_Mask = Builder.CreateNot(PMV.Mask, "Inv_Mask");
731 return PMV;
732 }
733
extractMaskedValue(IRBuilder<> & Builder,Value * WideWord,const PartwordMaskValues & PMV)734 static Value *extractMaskedValue(IRBuilder<> &Builder, Value *WideWord,
735 const PartwordMaskValues &PMV) {
736 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch");
737 if (PMV.WordType == PMV.ValueType)
738 return WideWord;
739
740 Value *Shift = Builder.CreateLShr(WideWord, PMV.ShiftAmt, "shifted");
741 Value *Trunc = Builder.CreateTrunc(Shift, PMV.ValueType, "extracted");
742 return Trunc;
743 }
744
insertMaskedValue(IRBuilder<> & Builder,Value * WideWord,Value * Updated,const PartwordMaskValues & PMV)745 static Value *insertMaskedValue(IRBuilder<> &Builder, Value *WideWord,
746 Value *Updated, const PartwordMaskValues &PMV) {
747 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch");
748 assert(Updated->getType() == PMV.ValueType && "Value type mismatch");
749 if (PMV.WordType == PMV.ValueType)
750 return Updated;
751
752 Value *ZExt = Builder.CreateZExt(Updated, PMV.WordType, "extended");
753 Value *Shift =
754 Builder.CreateShl(ZExt, PMV.ShiftAmt, "shifted", /*HasNUW*/ true);
755 Value *And = Builder.CreateAnd(WideWord, PMV.Inv_Mask, "unmasked");
756 Value *Or = Builder.CreateOr(And, Shift, "inserted");
757 return Or;
758 }
759
760 /// Emit IR to implement a masked version of a given atomicrmw
761 /// operation. (That is, only the bits under the Mask should be
762 /// affected by the operation)
performMaskedAtomicOp(AtomicRMWInst::BinOp Op,IRBuilder<> & Builder,Value * Loaded,Value * Shifted_Inc,Value * Inc,const PartwordMaskValues & PMV)763 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op,
764 IRBuilder<> &Builder, Value *Loaded,
765 Value *Shifted_Inc, Value *Inc,
766 const PartwordMaskValues &PMV) {
767 // TODO: update to use
768 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order
769 // to merge bits from two values without requiring PMV.Inv_Mask.
770 switch (Op) {
771 case AtomicRMWInst::Xchg: {
772 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
773 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc);
774 return FinalVal;
775 }
776 case AtomicRMWInst::Or:
777 case AtomicRMWInst::Xor:
778 case AtomicRMWInst::And:
779 llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW");
780 case AtomicRMWInst::Add:
781 case AtomicRMWInst::Sub:
782 case AtomicRMWInst::Nand: {
783 // The other arithmetic ops need to be masked into place.
784 Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded, Shifted_Inc);
785 Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask);
786 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
787 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked);
788 return FinalVal;
789 }
790 case AtomicRMWInst::Max:
791 case AtomicRMWInst::Min:
792 case AtomicRMWInst::UMax:
793 case AtomicRMWInst::UMin: {
794 // Finally, comparison ops will operate on the full value, so
795 // truncate down to the original size, and expand out again after
796 // doing the operation.
797 Value *Loaded_Extract = extractMaskedValue(Builder, Loaded, PMV);
798 Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded_Extract, Inc);
799 Value *FinalVal = insertMaskedValue(Builder, Loaded, NewVal, PMV);
800 return FinalVal;
801 }
802 default:
803 llvm_unreachable("Unknown atomic op");
804 }
805 }
806
807 /// Expand a sub-word atomicrmw operation into an appropriate
808 /// word-sized operation.
809 ///
810 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same
811 /// way as a typical atomicrmw expansion. The only difference here is
812 /// that the operation inside of the loop may operate upon only a
813 /// part of the value.
expandPartwordAtomicRMW(AtomicRMWInst * AI,TargetLoweringBase::AtomicExpansionKind ExpansionKind)814 void AtomicExpand::expandPartwordAtomicRMW(
815 AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) {
816 AtomicOrdering MemOpOrder = AI->getOrdering();
817 SyncScope::ID SSID = AI->getSyncScopeID();
818
819 IRBuilder<> Builder(AI);
820
821 PartwordMaskValues PMV =
822 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
823 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
824
825 Value *ValOperand_Shifted =
826 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
827 PMV.ShiftAmt, "ValOperand_Shifted");
828
829 auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) {
830 return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded,
831 ValOperand_Shifted, AI->getValOperand(), PMV);
832 };
833
834 Value *OldResult;
835 if (ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg) {
836 OldResult = insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr,
837 PMV.AlignedAddrAlignment, MemOpOrder, SSID,
838 PerformPartwordOp, createCmpXchgInstFun);
839 } else {
840 assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::LLSC);
841 OldResult = insertRMWLLSCLoop(Builder, PMV.WordType, PMV.AlignedAddr,
842 PMV.AlignedAddrAlignment, MemOpOrder,
843 PerformPartwordOp);
844 }
845
846 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV);
847 AI->replaceAllUsesWith(FinalOldResult);
848 AI->eraseFromParent();
849 }
850
851 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width.
widenPartwordAtomicRMW(AtomicRMWInst * AI)852 AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) {
853 IRBuilder<> Builder(AI);
854 AtomicRMWInst::BinOp Op = AI->getOperation();
855
856 assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
857 Op == AtomicRMWInst::And) &&
858 "Unable to widen operation");
859
860 PartwordMaskValues PMV =
861 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
862 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
863
864 Value *ValOperand_Shifted =
865 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
866 PMV.ShiftAmt, "ValOperand_Shifted");
867
868 Value *NewOperand;
869
870 if (Op == AtomicRMWInst::And)
871 NewOperand =
872 Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand");
873 else
874 NewOperand = ValOperand_Shifted;
875
876 AtomicRMWInst *NewAI =
877 Builder.CreateAtomicRMW(Op, PMV.AlignedAddr, NewOperand,
878 PMV.AlignedAddrAlignment, AI->getOrdering());
879
880 Value *FinalOldResult = extractMaskedValue(Builder, NewAI, PMV);
881 AI->replaceAllUsesWith(FinalOldResult);
882 AI->eraseFromParent();
883 return NewAI;
884 }
885
expandPartwordCmpXchg(AtomicCmpXchgInst * CI)886 bool AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) {
887 // The basic idea here is that we're expanding a cmpxchg of a
888 // smaller memory size up to a word-sized cmpxchg. To do this, we
889 // need to add a retry-loop for strong cmpxchg, so that
890 // modifications to other parts of the word don't cause a spurious
891 // failure.
892
893 // This generates code like the following:
894 // [[Setup mask values PMV.*]]
895 // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt
896 // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt
897 // %InitLoaded = load i32* %addr
898 // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask
899 // br partword.cmpxchg.loop
900 // partword.cmpxchg.loop:
901 // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ],
902 // [ %OldVal_MaskOut, %partword.cmpxchg.failure ]
903 // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted
904 // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted
905 // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp,
906 // i32 %FullWord_NewVal success_ordering failure_ordering
907 // %OldVal = extractvalue { i32, i1 } %NewCI, 0
908 // %Success = extractvalue { i32, i1 } %NewCI, 1
909 // br i1 %Success, label %partword.cmpxchg.end,
910 // label %partword.cmpxchg.failure
911 // partword.cmpxchg.failure:
912 // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask
913 // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut
914 // br i1 %ShouldContinue, label %partword.cmpxchg.loop,
915 // label %partword.cmpxchg.end
916 // partword.cmpxchg.end:
917 // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt
918 // %FinalOldVal = trunc i32 %tmp1 to i8
919 // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0
920 // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1
921
922 Value *Addr = CI->getPointerOperand();
923 Value *Cmp = CI->getCompareOperand();
924 Value *NewVal = CI->getNewValOperand();
925
926 BasicBlock *BB = CI->getParent();
927 Function *F = BB->getParent();
928 IRBuilder<> Builder(CI);
929 LLVMContext &Ctx = Builder.getContext();
930
931 BasicBlock *EndBB =
932 BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end");
933 auto FailureBB =
934 BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB);
935 auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB);
936
937 // The split call above "helpfully" added a branch at the end of BB
938 // (to the wrong place).
939 std::prev(BB->end())->eraseFromParent();
940 Builder.SetInsertPoint(BB);
941
942 PartwordMaskValues PMV =
943 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr,
944 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
945
946 // Shift the incoming values over, into the right location in the word.
947 Value *NewVal_Shifted =
948 Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt);
949 Value *Cmp_Shifted =
950 Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt);
951
952 // Load the entire current word, and mask into place the expected and new
953 // values
954 LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr);
955 InitLoaded->setVolatile(CI->isVolatile());
956 Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask);
957 Builder.CreateBr(LoopBB);
958
959 // partword.cmpxchg.loop:
960 Builder.SetInsertPoint(LoopBB);
961 PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2);
962 Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB);
963
964 // Mask/Or the expected and new values into place in the loaded word.
965 Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted);
966 Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted);
967 AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg(
968 PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, PMV.AlignedAddrAlignment,
969 CI->getSuccessOrdering(), CI->getFailureOrdering(), CI->getSyncScopeID());
970 NewCI->setVolatile(CI->isVolatile());
971 // When we're building a strong cmpxchg, we need a loop, so you
972 // might think we could use a weak cmpxchg inside. But, using strong
973 // allows the below comparison for ShouldContinue, and we're
974 // expecting the underlying cmpxchg to be a machine instruction,
975 // which is strong anyways.
976 NewCI->setWeak(CI->isWeak());
977
978 Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
979 Value *Success = Builder.CreateExtractValue(NewCI, 1);
980
981 if (CI->isWeak())
982 Builder.CreateBr(EndBB);
983 else
984 Builder.CreateCondBr(Success, EndBB, FailureBB);
985
986 // partword.cmpxchg.failure:
987 Builder.SetInsertPoint(FailureBB);
988 // Upon failure, verify that the masked-out part of the loaded value
989 // has been modified. If it didn't, abort the cmpxchg, since the
990 // masked-in part must've.
991 Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask);
992 Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut);
993 Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB);
994
995 // Add the second value to the phi from above
996 Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB);
997
998 // partword.cmpxchg.end:
999 Builder.SetInsertPoint(CI);
1000
1001 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV);
1002 Value *Res = UndefValue::get(CI->getType());
1003 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
1004 Res = Builder.CreateInsertValue(Res, Success, 1);
1005
1006 CI->replaceAllUsesWith(Res);
1007 CI->eraseFromParent();
1008 return true;
1009 }
1010
expandAtomicOpToLLSC(Instruction * I,Type * ResultType,Value * Addr,Align AddrAlign,AtomicOrdering MemOpOrder,function_ref<Value * (IRBuilder<> &,Value *)> PerformOp)1011 void AtomicExpand::expandAtomicOpToLLSC(
1012 Instruction *I, Type *ResultType, Value *Addr, Align AddrAlign,
1013 AtomicOrdering MemOpOrder,
1014 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
1015 IRBuilder<> Builder(I);
1016 Value *Loaded = insertRMWLLSCLoop(Builder, ResultType, Addr, AddrAlign,
1017 MemOpOrder, PerformOp);
1018
1019 I->replaceAllUsesWith(Loaded);
1020 I->eraseFromParent();
1021 }
1022
expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst * AI)1023 void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) {
1024 IRBuilder<> Builder(AI);
1025
1026 PartwordMaskValues PMV =
1027 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
1028 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
1029
1030 // The value operand must be sign-extended for signed min/max so that the
1031 // target's signed comparison instructions can be used. Otherwise, just
1032 // zero-ext.
1033 Instruction::CastOps CastOp = Instruction::ZExt;
1034 AtomicRMWInst::BinOp RMWOp = AI->getOperation();
1035 if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min)
1036 CastOp = Instruction::SExt;
1037
1038 Value *ValOperand_Shifted = Builder.CreateShl(
1039 Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType),
1040 PMV.ShiftAmt, "ValOperand_Shifted");
1041 Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic(
1042 Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt,
1043 AI->getOrdering());
1044 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV);
1045 AI->replaceAllUsesWith(FinalOldResult);
1046 AI->eraseFromParent();
1047 }
1048
expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst * CI)1049 void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI) {
1050 IRBuilder<> Builder(CI);
1051
1052 PartwordMaskValues PMV = createMaskInstrs(
1053 Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(),
1054 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
1055
1056 Value *CmpVal_Shifted = Builder.CreateShl(
1057 Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt,
1058 "CmpVal_Shifted");
1059 Value *NewVal_Shifted = Builder.CreateShl(
1060 Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt,
1061 "NewVal_Shifted");
1062 Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic(
1063 Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask,
1064 CI->getMergedOrdering());
1065 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV);
1066 Value *Res = UndefValue::get(CI->getType());
1067 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
1068 Value *Success = Builder.CreateICmpEQ(
1069 CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success");
1070 Res = Builder.CreateInsertValue(Res, Success, 1);
1071
1072 CI->replaceAllUsesWith(Res);
1073 CI->eraseFromParent();
1074 }
1075
insertRMWLLSCLoop(IRBuilder<> & Builder,Type * ResultTy,Value * Addr,Align AddrAlign,AtomicOrdering MemOpOrder,function_ref<Value * (IRBuilder<> &,Value *)> PerformOp)1076 Value *AtomicExpand::insertRMWLLSCLoop(
1077 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, Align AddrAlign,
1078 AtomicOrdering MemOpOrder,
1079 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
1080 LLVMContext &Ctx = Builder.getContext();
1081 BasicBlock *BB = Builder.GetInsertBlock();
1082 Function *F = BB->getParent();
1083
1084 assert(AddrAlign >=
1085 F->getParent()->getDataLayout().getTypeStoreSize(ResultTy) &&
1086 "Expected at least natural alignment at this point.");
1087
1088 // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1089 //
1090 // The standard expansion we produce is:
1091 // [...]
1092 // atomicrmw.start:
1093 // %loaded = @load.linked(%addr)
1094 // %new = some_op iN %loaded, %incr
1095 // %stored = @store_conditional(%new, %addr)
1096 // %try_again = icmp i32 ne %stored, 0
1097 // br i1 %try_again, label %loop, label %atomicrmw.end
1098 // atomicrmw.end:
1099 // [...]
1100 BasicBlock *ExitBB =
1101 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
1102 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
1103
1104 // The split call above "helpfully" added a branch at the end of BB (to the
1105 // wrong place).
1106 std::prev(BB->end())->eraseFromParent();
1107 Builder.SetInsertPoint(BB);
1108 Builder.CreateBr(LoopBB);
1109
1110 // Start the main loop block now that we've taken care of the preliminaries.
1111 Builder.SetInsertPoint(LoopBB);
1112 Value *Loaded = TLI->emitLoadLinked(Builder, ResultTy, Addr, MemOpOrder);
1113
1114 Value *NewVal = PerformOp(Builder, Loaded);
1115
1116 Value *StoreSuccess =
1117 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder);
1118 Value *TryAgain = Builder.CreateICmpNE(
1119 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain");
1120 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB);
1121
1122 Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1123 return Loaded;
1124 }
1125
1126 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of
1127 /// the equivalent bitwidth. We used to not support pointer cmpxchg in the
1128 /// IR. As a migration step, we convert back to what use to be the standard
1129 /// way to represent a pointer cmpxchg so that we can update backends one by
1130 /// one.
1131 AtomicCmpXchgInst *
convertCmpXchgToIntegerType(AtomicCmpXchgInst * CI)1132 AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) {
1133 auto *M = CI->getModule();
1134 Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(),
1135 M->getDataLayout());
1136
1137 IRBuilder<> Builder(CI);
1138
1139 Value *Addr = CI->getPointerOperand();
1140 Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace());
1141 Value *NewAddr = Builder.CreateBitCast(Addr, PT);
1142
1143 Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy);
1144 Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy);
1145
1146 auto *NewCI = Builder.CreateAtomicCmpXchg(
1147 NewAddr, NewCmp, NewNewVal, CI->getAlign(), CI->getSuccessOrdering(),
1148 CI->getFailureOrdering(), CI->getSyncScopeID());
1149 NewCI->setVolatile(CI->isVolatile());
1150 NewCI->setWeak(CI->isWeak());
1151 LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n");
1152
1153 Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
1154 Value *Succ = Builder.CreateExtractValue(NewCI, 1);
1155
1156 OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType());
1157
1158 Value *Res = UndefValue::get(CI->getType());
1159 Res = Builder.CreateInsertValue(Res, OldVal, 0);
1160 Res = Builder.CreateInsertValue(Res, Succ, 1);
1161
1162 CI->replaceAllUsesWith(Res);
1163 CI->eraseFromParent();
1164 return NewCI;
1165 }
1166
expandAtomicCmpXchg(AtomicCmpXchgInst * CI)1167 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1168 AtomicOrdering SuccessOrder = CI->getSuccessOrdering();
1169 AtomicOrdering FailureOrder = CI->getFailureOrdering();
1170 Value *Addr = CI->getPointerOperand();
1171 BasicBlock *BB = CI->getParent();
1172 Function *F = BB->getParent();
1173 LLVMContext &Ctx = F->getContext();
1174 // If shouldInsertFencesForAtomic() returns true, then the target does not
1175 // want to deal with memory orders, and emitLeading/TrailingFence should take
1176 // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we
1177 // should preserve the ordering.
1178 bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI);
1179 AtomicOrdering MemOpOrder = ShouldInsertFencesForAtomic
1180 ? AtomicOrdering::Monotonic
1181 : CI->getMergedOrdering();
1182
1183 // In implementations which use a barrier to achieve release semantics, we can
1184 // delay emitting this barrier until we know a store is actually going to be
1185 // attempted. The cost of this delay is that we need 2 copies of the block
1186 // emitting the load-linked, affecting code size.
1187 //
1188 // Ideally, this logic would be unconditional except for the minsize check
1189 // since in other cases the extra blocks naturally collapse down to the
1190 // minimal loop. Unfortunately, this puts too much stress on later
1191 // optimisations so we avoid emitting the extra logic in those cases too.
1192 bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic &&
1193 SuccessOrder != AtomicOrdering::Monotonic &&
1194 SuccessOrder != AtomicOrdering::Acquire &&
1195 !F->hasMinSize();
1196
1197 // There's no overhead for sinking the release barrier in a weak cmpxchg, so
1198 // do it even on minsize.
1199 bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak();
1200
1201 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord
1202 //
1203 // The full expansion we produce is:
1204 // [...]
1205 // %aligned.addr = ...
1206 // cmpxchg.start:
1207 // %unreleasedload = @load.linked(%aligned.addr)
1208 // %unreleasedload.extract = extract value from %unreleasedload
1209 // %should_store = icmp eq %unreleasedload.extract, %desired
1210 // br i1 %should_store, label %cmpxchg.releasingstore,
1211 // label %cmpxchg.nostore
1212 // cmpxchg.releasingstore:
1213 // fence?
1214 // br label cmpxchg.trystore
1215 // cmpxchg.trystore:
1216 // %loaded.trystore = phi [%unreleasedload, %cmpxchg.releasingstore],
1217 // [%releasedload, %cmpxchg.releasedload]
1218 // %updated.new = insert %new into %loaded.trystore
1219 // %stored = @store_conditional(%updated.new, %aligned.addr)
1220 // %success = icmp eq i32 %stored, 0
1221 // br i1 %success, label %cmpxchg.success,
1222 // label %cmpxchg.releasedload/%cmpxchg.failure
1223 // cmpxchg.releasedload:
1224 // %releasedload = @load.linked(%aligned.addr)
1225 // %releasedload.extract = extract value from %releasedload
1226 // %should_store = icmp eq %releasedload.extract, %desired
1227 // br i1 %should_store, label %cmpxchg.trystore,
1228 // label %cmpxchg.failure
1229 // cmpxchg.success:
1230 // fence?
1231 // br label %cmpxchg.end
1232 // cmpxchg.nostore:
1233 // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start],
1234 // [%releasedload,
1235 // %cmpxchg.releasedload/%cmpxchg.trystore]
1236 // @load_linked_fail_balance()?
1237 // br label %cmpxchg.failure
1238 // cmpxchg.failure:
1239 // fence?
1240 // br label %cmpxchg.end
1241 // cmpxchg.end:
1242 // %loaded.exit = phi [%loaded.nostore, %cmpxchg.failure],
1243 // [%loaded.trystore, %cmpxchg.trystore]
1244 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure]
1245 // %loaded = extract value from %loaded.exit
1246 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0
1247 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1
1248 // [...]
1249 BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end");
1250 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB);
1251 auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB);
1252 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB);
1253 auto ReleasedLoadBB =
1254 BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB);
1255 auto TryStoreBB =
1256 BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB);
1257 auto ReleasingStoreBB =
1258 BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB);
1259 auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB);
1260
1261 // This grabs the DebugLoc from CI
1262 IRBuilder<> Builder(CI);
1263
1264 // The split call above "helpfully" added a branch at the end of BB (to the
1265 // wrong place), but we might want a fence too. It's easiest to just remove
1266 // the branch entirely.
1267 std::prev(BB->end())->eraseFromParent();
1268 Builder.SetInsertPoint(BB);
1269 if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier)
1270 TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1271
1272 PartwordMaskValues PMV =
1273 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr,
1274 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
1275 Builder.CreateBr(StartBB);
1276
1277 // Start the main loop block now that we've taken care of the preliminaries.
1278 Builder.SetInsertPoint(StartBB);
1279 Value *UnreleasedLoad =
1280 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder);
1281 Value *UnreleasedLoadExtract =
1282 extractMaskedValue(Builder, UnreleasedLoad, PMV);
1283 Value *ShouldStore = Builder.CreateICmpEQ(
1284 UnreleasedLoadExtract, CI->getCompareOperand(), "should_store");
1285
1286 // If the cmpxchg doesn't actually need any ordering when it fails, we can
1287 // jump straight past that fence instruction (if it exists).
1288 Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB);
1289
1290 Builder.SetInsertPoint(ReleasingStoreBB);
1291 if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier)
1292 TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1293 Builder.CreateBr(TryStoreBB);
1294
1295 Builder.SetInsertPoint(TryStoreBB);
1296 PHINode *LoadedTryStore =
1297 Builder.CreatePHI(PMV.WordType, 2, "loaded.trystore");
1298 LoadedTryStore->addIncoming(UnreleasedLoad, ReleasingStoreBB);
1299 Value *NewValueInsert =
1300 insertMaskedValue(Builder, LoadedTryStore, CI->getNewValOperand(), PMV);
1301 Value *StoreSuccess = TLI->emitStoreConditional(Builder, NewValueInsert,
1302 PMV.AlignedAddr, MemOpOrder);
1303 StoreSuccess = Builder.CreateICmpEQ(
1304 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success");
1305 BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB;
1306 Builder.CreateCondBr(StoreSuccess, SuccessBB,
1307 CI->isWeak() ? FailureBB : RetryBB);
1308
1309 Builder.SetInsertPoint(ReleasedLoadBB);
1310 Value *SecondLoad;
1311 if (HasReleasedLoadBB) {
1312 SecondLoad =
1313 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder);
1314 Value *SecondLoadExtract = extractMaskedValue(Builder, SecondLoad, PMV);
1315 ShouldStore = Builder.CreateICmpEQ(SecondLoadExtract,
1316 CI->getCompareOperand(), "should_store");
1317
1318 // If the cmpxchg doesn't actually need any ordering when it fails, we can
1319 // jump straight past that fence instruction (if it exists).
1320 Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB);
1321 // Update PHI node in TryStoreBB.
1322 LoadedTryStore->addIncoming(SecondLoad, ReleasedLoadBB);
1323 } else
1324 Builder.CreateUnreachable();
1325
1326 // Make sure later instructions don't get reordered with a fence if
1327 // necessary.
1328 Builder.SetInsertPoint(SuccessBB);
1329 if (ShouldInsertFencesForAtomic)
1330 TLI->emitTrailingFence(Builder, CI, SuccessOrder);
1331 Builder.CreateBr(ExitBB);
1332
1333 Builder.SetInsertPoint(NoStoreBB);
1334 PHINode *LoadedNoStore =
1335 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.nostore");
1336 LoadedNoStore->addIncoming(UnreleasedLoad, StartBB);
1337 if (HasReleasedLoadBB)
1338 LoadedNoStore->addIncoming(SecondLoad, ReleasedLoadBB);
1339
1340 // In the failing case, where we don't execute the store-conditional, the
1341 // target might want to balance out the load-linked with a dedicated
1342 // instruction (e.g., on ARM, clearing the exclusive monitor).
1343 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
1344 Builder.CreateBr(FailureBB);
1345
1346 Builder.SetInsertPoint(FailureBB);
1347 PHINode *LoadedFailure =
1348 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.failure");
1349 LoadedFailure->addIncoming(LoadedNoStore, NoStoreBB);
1350 if (CI->isWeak())
1351 LoadedFailure->addIncoming(LoadedTryStore, TryStoreBB);
1352 if (ShouldInsertFencesForAtomic)
1353 TLI->emitTrailingFence(Builder, CI, FailureOrder);
1354 Builder.CreateBr(ExitBB);
1355
1356 // Finally, we have control-flow based knowledge of whether the cmpxchg
1357 // succeeded or not. We expose this to later passes by converting any
1358 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate
1359 // PHI.
1360 Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1361 PHINode *LoadedExit =
1362 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.exit");
1363 LoadedExit->addIncoming(LoadedTryStore, SuccessBB);
1364 LoadedExit->addIncoming(LoadedFailure, FailureBB);
1365 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2, "success");
1366 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB);
1367 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB);
1368
1369 // This is the "exit value" from the cmpxchg expansion. It may be of
1370 // a type wider than the one in the cmpxchg instruction.
1371 Value *LoadedFull = LoadedExit;
1372
1373 Builder.SetInsertPoint(ExitBB, std::next(Success->getIterator()));
1374 Value *Loaded = extractMaskedValue(Builder, LoadedFull, PMV);
1375
1376 // Look for any users of the cmpxchg that are just comparing the loaded value
1377 // against the desired one, and replace them with the CFG-derived version.
1378 SmallVector<ExtractValueInst *, 2> PrunedInsts;
1379 for (auto *User : CI->users()) {
1380 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User);
1381 if (!EV)
1382 continue;
1383
1384 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 &&
1385 "weird extraction from { iN, i1 }");
1386
1387 if (EV->getIndices()[0] == 0)
1388 EV->replaceAllUsesWith(Loaded);
1389 else
1390 EV->replaceAllUsesWith(Success);
1391
1392 PrunedInsts.push_back(EV);
1393 }
1394
1395 // We can remove the instructions now we're no longer iterating through them.
1396 for (auto *EV : PrunedInsts)
1397 EV->eraseFromParent();
1398
1399 if (!CI->use_empty()) {
1400 // Some use of the full struct return that we don't understand has happened,
1401 // so we've got to reconstruct it properly.
1402 Value *Res;
1403 Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0);
1404 Res = Builder.CreateInsertValue(Res, Success, 1);
1405
1406 CI->replaceAllUsesWith(Res);
1407 }
1408
1409 CI->eraseFromParent();
1410 return true;
1411 }
1412
isIdempotentRMW(AtomicRMWInst * RMWI)1413 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst *RMWI) {
1414 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand());
1415 if (!C)
1416 return false;
1417
1418 AtomicRMWInst::BinOp Op = RMWI->getOperation();
1419 switch (Op) {
1420 case AtomicRMWInst::Add:
1421 case AtomicRMWInst::Sub:
1422 case AtomicRMWInst::Or:
1423 case AtomicRMWInst::Xor:
1424 return C->isZero();
1425 case AtomicRMWInst::And:
1426 return C->isMinusOne();
1427 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/...
1428 default:
1429 return false;
1430 }
1431 }
1432
simplifyIdempotentRMW(AtomicRMWInst * RMWI)1433 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst *RMWI) {
1434 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) {
1435 tryExpandAtomicLoad(ResultingLoad);
1436 return true;
1437 }
1438 return false;
1439 }
1440
insertRMWCmpXchgLoop(IRBuilder<> & Builder,Type * ResultTy,Value * Addr,Align AddrAlign,AtomicOrdering MemOpOrder,SyncScope::ID SSID,function_ref<Value * (IRBuilder<> &,Value *)> PerformOp,CreateCmpXchgInstFun CreateCmpXchg)1441 Value *AtomicExpand::insertRMWCmpXchgLoop(
1442 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, Align AddrAlign,
1443 AtomicOrdering MemOpOrder, SyncScope::ID SSID,
1444 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
1445 CreateCmpXchgInstFun CreateCmpXchg) {
1446 LLVMContext &Ctx = Builder.getContext();
1447 BasicBlock *BB = Builder.GetInsertBlock();
1448 Function *F = BB->getParent();
1449
1450 // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1451 //
1452 // The standard expansion we produce is:
1453 // [...]
1454 // %init_loaded = load atomic iN* %addr
1455 // br label %loop
1456 // loop:
1457 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ]
1458 // %new = some_op iN %loaded, %incr
1459 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new
1460 // %new_loaded = extractvalue { iN, i1 } %pair, 0
1461 // %success = extractvalue { iN, i1 } %pair, 1
1462 // br i1 %success, label %atomicrmw.end, label %loop
1463 // atomicrmw.end:
1464 // [...]
1465 BasicBlock *ExitBB =
1466 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
1467 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
1468
1469 // The split call above "helpfully" added a branch at the end of BB (to the
1470 // wrong place), but we want a load. It's easiest to just remove
1471 // the branch entirely.
1472 std::prev(BB->end())->eraseFromParent();
1473 Builder.SetInsertPoint(BB);
1474 LoadInst *InitLoaded = Builder.CreateAlignedLoad(ResultTy, Addr, AddrAlign);
1475 Builder.CreateBr(LoopBB);
1476
1477 // Start the main loop block now that we've taken care of the preliminaries.
1478 Builder.SetInsertPoint(LoopBB);
1479 PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded");
1480 Loaded->addIncoming(InitLoaded, BB);
1481
1482 Value *NewVal = PerformOp(Builder, Loaded);
1483
1484 Value *NewLoaded = nullptr;
1485 Value *Success = nullptr;
1486
1487 CreateCmpXchg(Builder, Addr, Loaded, NewVal, AddrAlign,
1488 MemOpOrder == AtomicOrdering::Unordered
1489 ? AtomicOrdering::Monotonic
1490 : MemOpOrder,
1491 SSID, Success, NewLoaded);
1492 assert(Success && NewLoaded);
1493
1494 Loaded->addIncoming(NewLoaded, LoopBB);
1495
1496 Builder.CreateCondBr(Success, ExitBB, LoopBB);
1497
1498 Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1499 return NewLoaded;
1500 }
1501
tryExpandAtomicCmpXchg(AtomicCmpXchgInst * CI)1502 bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1503 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
1504 unsigned ValueSize = getAtomicOpSize(CI);
1505
1506 switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) {
1507 default:
1508 llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg");
1509 case TargetLoweringBase::AtomicExpansionKind::None:
1510 if (ValueSize < MinCASSize)
1511 return expandPartwordCmpXchg(CI);
1512 return false;
1513 case TargetLoweringBase::AtomicExpansionKind::LLSC: {
1514 return expandAtomicCmpXchg(CI);
1515 }
1516 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic:
1517 expandAtomicCmpXchgToMaskedIntrinsic(CI);
1518 return true;
1519 case TargetLoweringBase::AtomicExpansionKind::NotAtomic:
1520 return lowerAtomicCmpXchgInst(CI);
1521 }
1522 }
1523
1524 // Note: This function is exposed externally by AtomicExpandUtils.h
expandAtomicRMWToCmpXchg(AtomicRMWInst * AI,CreateCmpXchgInstFun CreateCmpXchg)1525 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
1526 CreateCmpXchgInstFun CreateCmpXchg) {
1527 IRBuilder<> Builder(AI);
1528 Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop(
1529 Builder, AI->getType(), AI->getPointerOperand(), AI->getAlign(),
1530 AI->getOrdering(), AI->getSyncScopeID(),
1531 [&](IRBuilder<> &Builder, Value *Loaded) {
1532 return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded,
1533 AI->getValOperand());
1534 },
1535 CreateCmpXchg);
1536
1537 AI->replaceAllUsesWith(Loaded);
1538 AI->eraseFromParent();
1539 return true;
1540 }
1541
1542 // In order to use one of the sized library calls such as
1543 // __atomic_fetch_add_4, the alignment must be sufficient, the size
1544 // must be one of the potentially-specialized sizes, and the value
1545 // type must actually exist in C on the target (otherwise, the
1546 // function wouldn't actually be defined.)
canUseSizedAtomicCall(unsigned Size,Align Alignment,const DataLayout & DL)1547 static bool canUseSizedAtomicCall(unsigned Size, Align Alignment,
1548 const DataLayout &DL) {
1549 // TODO: "LargestSize" is an approximation for "largest type that
1550 // you can express in C". It seems to be the case that int128 is
1551 // supported on all 64-bit platforms, otherwise only up to 64-bit
1552 // integers are supported. If we get this wrong, then we'll try to
1553 // call a sized libcall that doesn't actually exist. There should
1554 // really be some more reliable way in LLVM of determining integer
1555 // sizes which are valid in the target's C ABI...
1556 unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8;
1557 return Alignment >= Size &&
1558 (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) &&
1559 Size <= LargestSize;
1560 }
1561
expandAtomicLoadToLibcall(LoadInst * I)1562 void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) {
1563 static const RTLIB::Libcall Libcalls[6] = {
1564 RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2,
1565 RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16};
1566 unsigned Size = getAtomicOpSize(I);
1567
1568 bool expanded = expandAtomicOpToLibcall(
1569 I, Size, I->getAlign(), I->getPointerOperand(), nullptr, nullptr,
1570 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1571 if (!expanded)
1572 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Load");
1573 }
1574
expandAtomicStoreToLibcall(StoreInst * I)1575 void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) {
1576 static const RTLIB::Libcall Libcalls[6] = {
1577 RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2,
1578 RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16};
1579 unsigned Size = getAtomicOpSize(I);
1580
1581 bool expanded = expandAtomicOpToLibcall(
1582 I, Size, I->getAlign(), I->getPointerOperand(), I->getValueOperand(),
1583 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1584 if (!expanded)
1585 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Store");
1586 }
1587
expandAtomicCASToLibcall(AtomicCmpXchgInst * I)1588 void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) {
1589 static const RTLIB::Libcall Libcalls[6] = {
1590 RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1,
1591 RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4,
1592 RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16};
1593 unsigned Size = getAtomicOpSize(I);
1594
1595 bool expanded = expandAtomicOpToLibcall(
1596 I, Size, I->getAlign(), I->getPointerOperand(), I->getNewValOperand(),
1597 I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(),
1598 Libcalls);
1599 if (!expanded)
1600 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for CAS");
1601 }
1602
GetRMWLibcall(AtomicRMWInst::BinOp Op)1603 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) {
1604 static const RTLIB::Libcall LibcallsXchg[6] = {
1605 RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1,
1606 RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4,
1607 RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16};
1608 static const RTLIB::Libcall LibcallsAdd[6] = {
1609 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1,
1610 RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4,
1611 RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16};
1612 static const RTLIB::Libcall LibcallsSub[6] = {
1613 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1,
1614 RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4,
1615 RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16};
1616 static const RTLIB::Libcall LibcallsAnd[6] = {
1617 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1,
1618 RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4,
1619 RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16};
1620 static const RTLIB::Libcall LibcallsOr[6] = {
1621 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1,
1622 RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4,
1623 RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16};
1624 static const RTLIB::Libcall LibcallsXor[6] = {
1625 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1,
1626 RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4,
1627 RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16};
1628 static const RTLIB::Libcall LibcallsNand[6] = {
1629 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1,
1630 RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4,
1631 RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16};
1632
1633 switch (Op) {
1634 case AtomicRMWInst::BAD_BINOP:
1635 llvm_unreachable("Should not have BAD_BINOP.");
1636 case AtomicRMWInst::Xchg:
1637 return makeArrayRef(LibcallsXchg);
1638 case AtomicRMWInst::Add:
1639 return makeArrayRef(LibcallsAdd);
1640 case AtomicRMWInst::Sub:
1641 return makeArrayRef(LibcallsSub);
1642 case AtomicRMWInst::And:
1643 return makeArrayRef(LibcallsAnd);
1644 case AtomicRMWInst::Or:
1645 return makeArrayRef(LibcallsOr);
1646 case AtomicRMWInst::Xor:
1647 return makeArrayRef(LibcallsXor);
1648 case AtomicRMWInst::Nand:
1649 return makeArrayRef(LibcallsNand);
1650 case AtomicRMWInst::Max:
1651 case AtomicRMWInst::Min:
1652 case AtomicRMWInst::UMax:
1653 case AtomicRMWInst::UMin:
1654 case AtomicRMWInst::FMax:
1655 case AtomicRMWInst::FMin:
1656 case AtomicRMWInst::FAdd:
1657 case AtomicRMWInst::FSub:
1658 // No atomic libcalls are available for max/min/umax/umin.
1659 return {};
1660 }
1661 llvm_unreachable("Unexpected AtomicRMW operation.");
1662 }
1663
expandAtomicRMWToLibcall(AtomicRMWInst * I)1664 void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) {
1665 ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation());
1666
1667 unsigned Size = getAtomicOpSize(I);
1668
1669 bool Success = false;
1670 if (!Libcalls.empty())
1671 Success = expandAtomicOpToLibcall(
1672 I, Size, I->getAlign(), I->getPointerOperand(), I->getValOperand(),
1673 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1674
1675 // The expansion failed: either there were no libcalls at all for
1676 // the operation (min/max), or there were only size-specialized
1677 // libcalls (add/sub/etc) and we needed a generic. So, expand to a
1678 // CAS libcall, via a CAS loop, instead.
1679 if (!Success) {
1680 expandAtomicRMWToCmpXchg(
1681 I, [this](IRBuilder<> &Builder, Value *Addr, Value *Loaded,
1682 Value *NewVal, Align Alignment, AtomicOrdering MemOpOrder,
1683 SyncScope::ID SSID, Value *&Success, Value *&NewLoaded) {
1684 // Create the CAS instruction normally...
1685 AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg(
1686 Addr, Loaded, NewVal, Alignment, MemOpOrder,
1687 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID);
1688 Success = Builder.CreateExtractValue(Pair, 1, "success");
1689 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
1690
1691 // ...and then expand the CAS into a libcall.
1692 expandAtomicCASToLibcall(Pair);
1693 });
1694 }
1695 }
1696
1697 // A helper routine for the above expandAtomic*ToLibcall functions.
1698 //
1699 // 'Libcalls' contains an array of enum values for the particular
1700 // ATOMIC libcalls to be emitted. All of the other arguments besides
1701 // 'I' are extracted from the Instruction subclass by the
1702 // caller. Depending on the particular call, some will be null.
expandAtomicOpToLibcall(Instruction * I,unsigned Size,Align Alignment,Value * PointerOperand,Value * ValueOperand,Value * CASExpected,AtomicOrdering Ordering,AtomicOrdering Ordering2,ArrayRef<RTLIB::Libcall> Libcalls)1703 bool AtomicExpand::expandAtomicOpToLibcall(
1704 Instruction *I, unsigned Size, Align Alignment, Value *PointerOperand,
1705 Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering,
1706 AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) {
1707 assert(Libcalls.size() == 6);
1708
1709 LLVMContext &Ctx = I->getContext();
1710 Module *M = I->getModule();
1711 const DataLayout &DL = M->getDataLayout();
1712 IRBuilder<> Builder(I);
1713 IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front());
1714
1715 bool UseSizedLibcall = canUseSizedAtomicCall(Size, Alignment, DL);
1716 Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8);
1717
1718 const Align AllocaAlignment = DL.getPrefTypeAlign(SizedIntTy);
1719
1720 // TODO: the "order" argument type is "int", not int32. So
1721 // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints.
1722 ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size);
1723 assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO");
1724 Constant *OrderingVal =
1725 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering));
1726 Constant *Ordering2Val = nullptr;
1727 if (CASExpected) {
1728 assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO");
1729 Ordering2Val =
1730 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2));
1731 }
1732 bool HasResult = I->getType() != Type::getVoidTy(Ctx);
1733
1734 RTLIB::Libcall RTLibType;
1735 if (UseSizedLibcall) {
1736 switch (Size) {
1737 case 1:
1738 RTLibType = Libcalls[1];
1739 break;
1740 case 2:
1741 RTLibType = Libcalls[2];
1742 break;
1743 case 4:
1744 RTLibType = Libcalls[3];
1745 break;
1746 case 8:
1747 RTLibType = Libcalls[4];
1748 break;
1749 case 16:
1750 RTLibType = Libcalls[5];
1751 break;
1752 }
1753 } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) {
1754 RTLibType = Libcalls[0];
1755 } else {
1756 // Can't use sized function, and there's no generic for this
1757 // operation, so give up.
1758 return false;
1759 }
1760
1761 if (!TLI->getLibcallName(RTLibType)) {
1762 // This target does not implement the requested atomic libcall so give up.
1763 return false;
1764 }
1765
1766 // Build up the function call. There's two kinds. First, the sized
1767 // variants. These calls are going to be one of the following (with
1768 // N=1,2,4,8,16):
1769 // iN __atomic_load_N(iN *ptr, int ordering)
1770 // void __atomic_store_N(iN *ptr, iN val, int ordering)
1771 // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering)
1772 // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired,
1773 // int success_order, int failure_order)
1774 //
1775 // Note that these functions can be used for non-integer atomic
1776 // operations, the values just need to be bitcast to integers on the
1777 // way in and out.
1778 //
1779 // And, then, the generic variants. They look like the following:
1780 // void __atomic_load(size_t size, void *ptr, void *ret, int ordering)
1781 // void __atomic_store(size_t size, void *ptr, void *val, int ordering)
1782 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret,
1783 // int ordering)
1784 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected,
1785 // void *desired, int success_order,
1786 // int failure_order)
1787 //
1788 // The different signatures are built up depending on the
1789 // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult'
1790 // variables.
1791
1792 AllocaInst *AllocaCASExpected = nullptr;
1793 Value *AllocaCASExpected_i8 = nullptr;
1794 AllocaInst *AllocaValue = nullptr;
1795 Value *AllocaValue_i8 = nullptr;
1796 AllocaInst *AllocaResult = nullptr;
1797 Value *AllocaResult_i8 = nullptr;
1798
1799 Type *ResultTy;
1800 SmallVector<Value *, 6> Args;
1801 AttributeList Attr;
1802
1803 // 'size' argument.
1804 if (!UseSizedLibcall) {
1805 // Note, getIntPtrType is assumed equivalent to size_t.
1806 Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size));
1807 }
1808
1809 // 'ptr' argument.
1810 // note: This assumes all address spaces share a common libfunc
1811 // implementation and that addresses are convertable. For systems without
1812 // that property, we'd need to extend this mechanism to support AS-specific
1813 // families of atomic intrinsics.
1814 auto PtrTypeAS = PointerOperand->getType()->getPointerAddressSpace();
1815 Value *PtrVal =
1816 Builder.CreateBitCast(PointerOperand, Type::getInt8PtrTy(Ctx, PtrTypeAS));
1817 PtrVal = Builder.CreateAddrSpaceCast(PtrVal, Type::getInt8PtrTy(Ctx));
1818 Args.push_back(PtrVal);
1819
1820 // 'expected' argument, if present.
1821 if (CASExpected) {
1822 AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType());
1823 AllocaCASExpected->setAlignment(AllocaAlignment);
1824 unsigned AllocaAS = AllocaCASExpected->getType()->getPointerAddressSpace();
1825
1826 AllocaCASExpected_i8 = Builder.CreateBitCast(
1827 AllocaCASExpected, Type::getInt8PtrTy(Ctx, AllocaAS));
1828 Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64);
1829 Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment);
1830 Args.push_back(AllocaCASExpected_i8);
1831 }
1832
1833 // 'val' argument ('desired' for cas), if present.
1834 if (ValueOperand) {
1835 if (UseSizedLibcall) {
1836 Value *IntValue =
1837 Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy);
1838 Args.push_back(IntValue);
1839 } else {
1840 AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType());
1841 AllocaValue->setAlignment(AllocaAlignment);
1842 AllocaValue_i8 =
1843 Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx));
1844 Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64);
1845 Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment);
1846 Args.push_back(AllocaValue_i8);
1847 }
1848 }
1849
1850 // 'ret' argument.
1851 if (!CASExpected && HasResult && !UseSizedLibcall) {
1852 AllocaResult = AllocaBuilder.CreateAlloca(I->getType());
1853 AllocaResult->setAlignment(AllocaAlignment);
1854 unsigned AllocaAS = AllocaResult->getType()->getPointerAddressSpace();
1855 AllocaResult_i8 =
1856 Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx, AllocaAS));
1857 Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64);
1858 Args.push_back(AllocaResult_i8);
1859 }
1860
1861 // 'ordering' ('success_order' for cas) argument.
1862 Args.push_back(OrderingVal);
1863
1864 // 'failure_order' argument, if present.
1865 if (Ordering2Val)
1866 Args.push_back(Ordering2Val);
1867
1868 // Now, the return type.
1869 if (CASExpected) {
1870 ResultTy = Type::getInt1Ty(Ctx);
1871 Attr = Attr.addRetAttribute(Ctx, Attribute::ZExt);
1872 } else if (HasResult && UseSizedLibcall)
1873 ResultTy = SizedIntTy;
1874 else
1875 ResultTy = Type::getVoidTy(Ctx);
1876
1877 // Done with setting up arguments and return types, create the call:
1878 SmallVector<Type *, 6> ArgTys;
1879 for (Value *Arg : Args)
1880 ArgTys.push_back(Arg->getType());
1881 FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false);
1882 FunctionCallee LibcallFn =
1883 M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr);
1884 CallInst *Call = Builder.CreateCall(LibcallFn, Args);
1885 Call->setAttributes(Attr);
1886 Value *Result = Call;
1887
1888 // And then, extract the results...
1889 if (ValueOperand && !UseSizedLibcall)
1890 Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64);
1891
1892 if (CASExpected) {
1893 // The final result from the CAS is {load of 'expected' alloca, bool result
1894 // from call}
1895 Type *FinalResultTy = I->getType();
1896 Value *V = UndefValue::get(FinalResultTy);
1897 Value *ExpectedOut = Builder.CreateAlignedLoad(
1898 CASExpected->getType(), AllocaCASExpected, AllocaAlignment);
1899 Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64);
1900 V = Builder.CreateInsertValue(V, ExpectedOut, 0);
1901 V = Builder.CreateInsertValue(V, Result, 1);
1902 I->replaceAllUsesWith(V);
1903 } else if (HasResult) {
1904 Value *V;
1905 if (UseSizedLibcall)
1906 V = Builder.CreateBitOrPointerCast(Result, I->getType());
1907 else {
1908 V = Builder.CreateAlignedLoad(I->getType(), AllocaResult,
1909 AllocaAlignment);
1910 Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64);
1911 }
1912 I->replaceAllUsesWith(V);
1913 }
1914 I->eraseFromParent();
1915 return true;
1916 }
1917