1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass (at IR level) to replace atomic instructions with 10 // __atomic_* library calls, or target specific instruction which implement the 11 // same semantics in a way which better fits the target backend. This can 12 // include the use of (intrinsic-based) load-linked/store-conditional loops, 13 // AtomicCmpXchg, or type coercions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/CodeGen/AtomicExpandUtils.h" 21 #include "llvm/CodeGen/RuntimeLibcalls.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetPassConfig.h" 24 #include "llvm/CodeGen/TargetSubtargetInfo.h" 25 #include "llvm/CodeGen/ValueTypes.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/Constant.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/InstIterator.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/IR/User.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/InitializePasses.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/AtomicOrdering.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include <cassert> 50 #include <cstdint> 51 #include <iterator> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "atomic-expand" 56 57 namespace { 58 59 class AtomicExpand: public FunctionPass { 60 const TargetLowering *TLI = nullptr; 61 62 public: 63 static char ID; // Pass identification, replacement for typeid 64 65 AtomicExpand() : FunctionPass(ID) { 66 initializeAtomicExpandPass(*PassRegistry::getPassRegistry()); 67 } 68 69 bool runOnFunction(Function &F) override; 70 71 private: 72 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order); 73 IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL); 74 LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI); 75 bool tryExpandAtomicLoad(LoadInst *LI); 76 bool expandAtomicLoadToLL(LoadInst *LI); 77 bool expandAtomicLoadToCmpXchg(LoadInst *LI); 78 StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI); 79 bool expandAtomicStore(StoreInst *SI); 80 bool tryExpandAtomicRMW(AtomicRMWInst *AI); 81 AtomicRMWInst *convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI); 82 Value * 83 insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr, 84 Align AddrAlign, AtomicOrdering MemOpOrder, 85 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); 86 void expandAtomicOpToLLSC( 87 Instruction *I, Type *ResultTy, Value *Addr, Align AddrAlign, 88 AtomicOrdering MemOpOrder, 89 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); 90 void expandPartwordAtomicRMW( 91 AtomicRMWInst *I, 92 TargetLoweringBase::AtomicExpansionKind ExpansionKind); 93 AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI); 94 bool expandPartwordCmpXchg(AtomicCmpXchgInst *I); 95 void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI); 96 void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI); 97 98 AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI); 99 static Value *insertRMWCmpXchgLoop( 100 IRBuilder<> &Builder, Type *ResultType, Value *Addr, Align AddrAlign, 101 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 102 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, 103 CreateCmpXchgInstFun CreateCmpXchg); 104 bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI); 105 106 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); 107 bool isIdempotentRMW(AtomicRMWInst *RMWI); 108 bool simplifyIdempotentRMW(AtomicRMWInst *RMWI); 109 110 bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, Align Alignment, 111 Value *PointerOperand, Value *ValueOperand, 112 Value *CASExpected, AtomicOrdering Ordering, 113 AtomicOrdering Ordering2, 114 ArrayRef<RTLIB::Libcall> Libcalls); 115 void expandAtomicLoadToLibcall(LoadInst *LI); 116 void expandAtomicStoreToLibcall(StoreInst *LI); 117 void expandAtomicRMWToLibcall(AtomicRMWInst *I); 118 void expandAtomicCASToLibcall(AtomicCmpXchgInst *I); 119 120 friend bool 121 llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 122 CreateCmpXchgInstFun CreateCmpXchg); 123 }; 124 125 } // end anonymous namespace 126 127 char AtomicExpand::ID = 0; 128 129 char &llvm::AtomicExpandID = AtomicExpand::ID; 130 131 INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions", 132 false, false) 133 134 FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); } 135 136 // Helper functions to retrieve the size of atomic instructions. 137 static unsigned getAtomicOpSize(LoadInst *LI) { 138 const DataLayout &DL = LI->getModule()->getDataLayout(); 139 return DL.getTypeStoreSize(LI->getType()); 140 } 141 142 static unsigned getAtomicOpSize(StoreInst *SI) { 143 const DataLayout &DL = SI->getModule()->getDataLayout(); 144 return DL.getTypeStoreSize(SI->getValueOperand()->getType()); 145 } 146 147 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) { 148 const DataLayout &DL = RMWI->getModule()->getDataLayout(); 149 return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); 150 } 151 152 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) { 153 const DataLayout &DL = CASI->getModule()->getDataLayout(); 154 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); 155 } 156 157 // Determine if a particular atomic operation has a supported size, 158 // and is of appropriate alignment, to be passed through for target 159 // lowering. (Versus turning into a __atomic libcall) 160 template <typename Inst> 161 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) { 162 unsigned Size = getAtomicOpSize(I); 163 Align Alignment = I->getAlign(); 164 return Alignment >= Size && 165 Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8; 166 } 167 168 bool AtomicExpand::runOnFunction(Function &F) { 169 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 170 if (!TPC) 171 return false; 172 173 auto &TM = TPC->getTM<TargetMachine>(); 174 if (!TM.getSubtargetImpl(F)->enableAtomicExpand()) 175 return false; 176 TLI = TM.getSubtargetImpl(F)->getTargetLowering(); 177 178 SmallVector<Instruction *, 1> AtomicInsts; 179 180 // Changing control-flow while iterating through it is a bad idea, so gather a 181 // list of all atomic instructions before we start. 182 for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) { 183 Instruction *I = &*II; 184 if (I->isAtomic() && !isa<FenceInst>(I)) 185 AtomicInsts.push_back(I); 186 } 187 188 bool MadeChange = false; 189 for (auto I : AtomicInsts) { 190 auto LI = dyn_cast<LoadInst>(I); 191 auto SI = dyn_cast<StoreInst>(I); 192 auto RMWI = dyn_cast<AtomicRMWInst>(I); 193 auto CASI = dyn_cast<AtomicCmpXchgInst>(I); 194 assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction"); 195 196 // If the Size/Alignment is not supported, replace with a libcall. 197 if (LI) { 198 if (!atomicSizeSupported(TLI, LI)) { 199 expandAtomicLoadToLibcall(LI); 200 MadeChange = true; 201 continue; 202 } 203 } else if (SI) { 204 if (!atomicSizeSupported(TLI, SI)) { 205 expandAtomicStoreToLibcall(SI); 206 MadeChange = true; 207 continue; 208 } 209 } else if (RMWI) { 210 if (!atomicSizeSupported(TLI, RMWI)) { 211 expandAtomicRMWToLibcall(RMWI); 212 MadeChange = true; 213 continue; 214 } 215 } else if (CASI) { 216 if (!atomicSizeSupported(TLI, CASI)) { 217 expandAtomicCASToLibcall(CASI); 218 MadeChange = true; 219 continue; 220 } 221 } 222 223 if (TLI->shouldInsertFencesForAtomic(I)) { 224 auto FenceOrdering = AtomicOrdering::Monotonic; 225 if (LI && isAcquireOrStronger(LI->getOrdering())) { 226 FenceOrdering = LI->getOrdering(); 227 LI->setOrdering(AtomicOrdering::Monotonic); 228 } else if (SI && isReleaseOrStronger(SI->getOrdering())) { 229 FenceOrdering = SI->getOrdering(); 230 SI->setOrdering(AtomicOrdering::Monotonic); 231 } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) || 232 isAcquireOrStronger(RMWI->getOrdering()))) { 233 FenceOrdering = RMWI->getOrdering(); 234 RMWI->setOrdering(AtomicOrdering::Monotonic); 235 } else if (CASI && 236 TLI->shouldExpandAtomicCmpXchgInIR(CASI) == 237 TargetLoweringBase::AtomicExpansionKind::None && 238 (isReleaseOrStronger(CASI->getSuccessOrdering()) || 239 isAcquireOrStronger(CASI->getSuccessOrdering()))) { 240 // If a compare and swap is lowered to LL/SC, we can do smarter fence 241 // insertion, with a stronger one on the success path than on the 242 // failure path. As a result, fence insertion is directly done by 243 // expandAtomicCmpXchg in that case. 244 FenceOrdering = CASI->getSuccessOrdering(); 245 CASI->setSuccessOrdering(AtomicOrdering::Monotonic); 246 CASI->setFailureOrdering(AtomicOrdering::Monotonic); 247 } 248 249 if (FenceOrdering != AtomicOrdering::Monotonic) { 250 MadeChange |= bracketInstWithFences(I, FenceOrdering); 251 } 252 } 253 254 if (LI) { 255 if (LI->getType()->isFloatingPointTy()) { 256 // TODO: add a TLI hook to control this so that each target can 257 // convert to lowering the original type one at a time. 258 LI = convertAtomicLoadToIntegerType(LI); 259 assert(LI->getType()->isIntegerTy() && "invariant broken"); 260 MadeChange = true; 261 } 262 263 MadeChange |= tryExpandAtomicLoad(LI); 264 } else if (SI) { 265 if (SI->getValueOperand()->getType()->isFloatingPointTy()) { 266 // TODO: add a TLI hook to control this so that each target can 267 // convert to lowering the original type one at a time. 268 SI = convertAtomicStoreToIntegerType(SI); 269 assert(SI->getValueOperand()->getType()->isIntegerTy() && 270 "invariant broken"); 271 MadeChange = true; 272 } 273 274 if (TLI->shouldExpandAtomicStoreInIR(SI)) 275 MadeChange |= expandAtomicStore(SI); 276 } else if (RMWI) { 277 // There are two different ways of expanding RMW instructions: 278 // - into a load if it is idempotent 279 // - into a Cmpxchg/LL-SC loop otherwise 280 // we try them in that order. 281 282 if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) { 283 MadeChange = true; 284 } else { 285 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 286 if (Op == AtomicRMWInst::Xchg && 287 RMWI->getValOperand()->getType()->isFloatingPointTy()) { 288 // TODO: add a TLI hook to control this so that each target can 289 // convert to lowering the original type one at a time. 290 RMWI = convertAtomicXchgToIntegerType(RMWI); 291 assert(RMWI->getValOperand()->getType()->isIntegerTy() && 292 "invariant broken"); 293 MadeChange = true; 294 } 295 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 296 unsigned ValueSize = getAtomicOpSize(RMWI); 297 if (ValueSize < MinCASSize && 298 (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 299 Op == AtomicRMWInst::And)) { 300 RMWI = widenPartwordAtomicRMW(RMWI); 301 MadeChange = true; 302 } 303 304 MadeChange |= tryExpandAtomicRMW(RMWI); 305 } 306 } else if (CASI) { 307 // TODO: when we're ready to make the change at the IR level, we can 308 // extend convertCmpXchgToInteger for floating point too. 309 assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() && 310 "unimplemented - floating point not legal at IR level"); 311 if (CASI->getCompareOperand()->getType()->isPointerTy() ) { 312 // TODO: add a TLI hook to control this so that each target can 313 // convert to lowering the original type one at a time. 314 CASI = convertCmpXchgToIntegerType(CASI); 315 assert(CASI->getCompareOperand()->getType()->isIntegerTy() && 316 "invariant broken"); 317 MadeChange = true; 318 } 319 320 MadeChange |= tryExpandAtomicCmpXchg(CASI); 321 } 322 } 323 return MadeChange; 324 } 325 326 bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) { 327 IRBuilder<> Builder(I); 328 329 auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order); 330 331 auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order); 332 // We have a guard here because not every atomic operation generates a 333 // trailing fence. 334 if (TrailingFence) 335 TrailingFence->moveAfter(I); 336 337 return (LeadingFence || TrailingFence); 338 } 339 340 /// Get the iX type with the same bitwidth as T. 341 IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T, 342 const DataLayout &DL) { 343 EVT VT = TLI->getMemValueType(DL, T); 344 unsigned BitWidth = VT.getStoreSizeInBits(); 345 assert(BitWidth == VT.getSizeInBits() && "must be a power of two"); 346 return IntegerType::get(T->getContext(), BitWidth); 347 } 348 349 /// Convert an atomic load of a non-integral type to an integer load of the 350 /// equivalent bitwidth. See the function comment on 351 /// convertAtomicStoreToIntegerType for background. 352 LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) { 353 auto *M = LI->getModule(); 354 Type *NewTy = getCorrespondingIntegerType(LI->getType(), 355 M->getDataLayout()); 356 357 IRBuilder<> Builder(LI); 358 359 Value *Addr = LI->getPointerOperand(); 360 Type *PT = PointerType::get(NewTy, 361 Addr->getType()->getPointerAddressSpace()); 362 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 363 364 auto *NewLI = Builder.CreateLoad(NewTy, NewAddr); 365 NewLI->setAlignment(LI->getAlign()); 366 NewLI->setVolatile(LI->isVolatile()); 367 NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID()); 368 LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n"); 369 370 Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType()); 371 LI->replaceAllUsesWith(NewVal); 372 LI->eraseFromParent(); 373 return NewLI; 374 } 375 376 AtomicRMWInst * 377 AtomicExpand::convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI) { 378 auto *M = RMWI->getModule(); 379 Type *NewTy = 380 getCorrespondingIntegerType(RMWI->getType(), M->getDataLayout()); 381 382 IRBuilder<> Builder(RMWI); 383 384 Value *Addr = RMWI->getPointerOperand(); 385 Value *Val = RMWI->getValOperand(); 386 Type *PT = PointerType::get(NewTy, RMWI->getPointerAddressSpace()); 387 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 388 Value *NewVal = Builder.CreateBitCast(Val, NewTy); 389 390 auto *NewRMWI = 391 Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, NewAddr, NewVal, 392 RMWI->getAlign(), RMWI->getOrdering()); 393 NewRMWI->setVolatile(RMWI->isVolatile()); 394 LLVM_DEBUG(dbgs() << "Replaced " << *RMWI << " with " << *NewRMWI << "\n"); 395 396 Value *NewRVal = Builder.CreateBitCast(NewRMWI, RMWI->getType()); 397 RMWI->replaceAllUsesWith(NewRVal); 398 RMWI->eraseFromParent(); 399 return NewRMWI; 400 } 401 402 bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) { 403 switch (TLI->shouldExpandAtomicLoadInIR(LI)) { 404 case TargetLoweringBase::AtomicExpansionKind::None: 405 return false; 406 case TargetLoweringBase::AtomicExpansionKind::LLSC: 407 expandAtomicOpToLLSC( 408 LI, LI->getType(), LI->getPointerOperand(), LI->getAlign(), 409 LI->getOrdering(), 410 [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; }); 411 return true; 412 case TargetLoweringBase::AtomicExpansionKind::LLOnly: 413 return expandAtomicLoadToLL(LI); 414 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: 415 return expandAtomicLoadToCmpXchg(LI); 416 default: 417 llvm_unreachable("Unhandled case in tryExpandAtomicLoad"); 418 } 419 } 420 421 bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) { 422 IRBuilder<> Builder(LI); 423 424 // On some architectures, load-linked instructions are atomic for larger 425 // sizes than normal loads. For example, the only 64-bit load guaranteed 426 // to be single-copy atomic by ARM is an ldrexd (A3.5.3). 427 Value *Val = 428 TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering()); 429 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 430 431 LI->replaceAllUsesWith(Val); 432 LI->eraseFromParent(); 433 434 return true; 435 } 436 437 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) { 438 IRBuilder<> Builder(LI); 439 AtomicOrdering Order = LI->getOrdering(); 440 if (Order == AtomicOrdering::Unordered) 441 Order = AtomicOrdering::Monotonic; 442 443 Value *Addr = LI->getPointerOperand(); 444 Type *Ty = LI->getType(); 445 Constant *DummyVal = Constant::getNullValue(Ty); 446 447 Value *Pair = Builder.CreateAtomicCmpXchg( 448 Addr, DummyVal, DummyVal, LI->getAlign(), Order, 449 AtomicCmpXchgInst::getStrongestFailureOrdering(Order)); 450 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded"); 451 452 LI->replaceAllUsesWith(Loaded); 453 LI->eraseFromParent(); 454 455 return true; 456 } 457 458 /// Convert an atomic store of a non-integral type to an integer store of the 459 /// equivalent bitwidth. We used to not support floating point or vector 460 /// atomics in the IR at all. The backends learned to deal with the bitcast 461 /// idiom because that was the only way of expressing the notion of a atomic 462 /// float or vector store. The long term plan is to teach each backend to 463 /// instruction select from the original atomic store, but as a migration 464 /// mechanism, we convert back to the old format which the backends understand. 465 /// Each backend will need individual work to recognize the new format. 466 StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) { 467 IRBuilder<> Builder(SI); 468 auto *M = SI->getModule(); 469 Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(), 470 M->getDataLayout()); 471 Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy); 472 473 Value *Addr = SI->getPointerOperand(); 474 Type *PT = PointerType::get(NewTy, 475 Addr->getType()->getPointerAddressSpace()); 476 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 477 478 StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr); 479 NewSI->setAlignment(SI->getAlign()); 480 NewSI->setVolatile(SI->isVolatile()); 481 NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID()); 482 LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n"); 483 SI->eraseFromParent(); 484 return NewSI; 485 } 486 487 bool AtomicExpand::expandAtomicStore(StoreInst *SI) { 488 // This function is only called on atomic stores that are too large to be 489 // atomic if implemented as a native store. So we replace them by an 490 // atomic swap, that can be implemented for example as a ldrex/strex on ARM 491 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. 492 // It is the responsibility of the target to only signal expansion via 493 // shouldExpandAtomicRMW in cases where this is required and possible. 494 IRBuilder<> Builder(SI); 495 AtomicRMWInst *AI = Builder.CreateAtomicRMW( 496 AtomicRMWInst::Xchg, SI->getPointerOperand(), SI->getValueOperand(), 497 SI->getAlign(), SI->getOrdering()); 498 SI->eraseFromParent(); 499 500 // Now we have an appropriate swap instruction, lower it as usual. 501 return tryExpandAtomicRMW(AI); 502 } 503 504 static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr, 505 Value *Loaded, Value *NewVal, Align AddrAlign, 506 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 507 Value *&Success, Value *&NewLoaded) { 508 Type *OrigTy = NewVal->getType(); 509 510 // This code can go away when cmpxchg supports FP types. 511 bool NeedBitcast = OrigTy->isFloatingPointTy(); 512 if (NeedBitcast) { 513 IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits()); 514 unsigned AS = Addr->getType()->getPointerAddressSpace(); 515 Addr = Builder.CreateBitCast(Addr, IntTy->getPointerTo(AS)); 516 NewVal = Builder.CreateBitCast(NewVal, IntTy); 517 Loaded = Builder.CreateBitCast(Loaded, IntTy); 518 } 519 520 Value *Pair = Builder.CreateAtomicCmpXchg( 521 Addr, Loaded, NewVal, AddrAlign, MemOpOrder, 522 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID); 523 Success = Builder.CreateExtractValue(Pair, 1, "success"); 524 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 525 526 if (NeedBitcast) 527 NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy); 528 } 529 530 /// Emit IR to implement the given atomicrmw operation on values in registers, 531 /// returning the new value. 532 static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder, 533 Value *Loaded, Value *Inc) { 534 Value *NewVal; 535 switch (Op) { 536 case AtomicRMWInst::Xchg: 537 return Inc; 538 case AtomicRMWInst::Add: 539 return Builder.CreateAdd(Loaded, Inc, "new"); 540 case AtomicRMWInst::Sub: 541 return Builder.CreateSub(Loaded, Inc, "new"); 542 case AtomicRMWInst::And: 543 return Builder.CreateAnd(Loaded, Inc, "new"); 544 case AtomicRMWInst::Nand: 545 return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new"); 546 case AtomicRMWInst::Or: 547 return Builder.CreateOr(Loaded, Inc, "new"); 548 case AtomicRMWInst::Xor: 549 return Builder.CreateXor(Loaded, Inc, "new"); 550 case AtomicRMWInst::Max: 551 NewVal = Builder.CreateICmpSGT(Loaded, Inc); 552 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 553 case AtomicRMWInst::Min: 554 NewVal = Builder.CreateICmpSLE(Loaded, Inc); 555 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 556 case AtomicRMWInst::UMax: 557 NewVal = Builder.CreateICmpUGT(Loaded, Inc); 558 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 559 case AtomicRMWInst::UMin: 560 NewVal = Builder.CreateICmpULE(Loaded, Inc); 561 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 562 case AtomicRMWInst::FAdd: 563 return Builder.CreateFAdd(Loaded, Inc, "new"); 564 case AtomicRMWInst::FSub: 565 return Builder.CreateFSub(Loaded, Inc, "new"); 566 default: 567 llvm_unreachable("Unknown atomic op"); 568 } 569 } 570 571 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) { 572 switch (TLI->shouldExpandAtomicRMWInIR(AI)) { 573 case TargetLoweringBase::AtomicExpansionKind::None: 574 return false; 575 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 576 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 577 unsigned ValueSize = getAtomicOpSize(AI); 578 if (ValueSize < MinCASSize) { 579 expandPartwordAtomicRMW(AI, 580 TargetLoweringBase::AtomicExpansionKind::LLSC); 581 } else { 582 auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) { 583 return performAtomicOp(AI->getOperation(), Builder, Loaded, 584 AI->getValOperand()); 585 }; 586 expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(), 587 AI->getAlign(), AI->getOrdering(), PerformOp); 588 } 589 return true; 590 } 591 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: { 592 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 593 unsigned ValueSize = getAtomicOpSize(AI); 594 if (ValueSize < MinCASSize) { 595 // TODO: Handle atomicrmw fadd/fsub 596 if (AI->getType()->isFloatingPointTy()) 597 return false; 598 599 expandPartwordAtomicRMW(AI, 600 TargetLoweringBase::AtomicExpansionKind::CmpXChg); 601 } else { 602 expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun); 603 } 604 return true; 605 } 606 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: { 607 expandAtomicRMWToMaskedIntrinsic(AI); 608 return true; 609 } 610 default: 611 llvm_unreachable("Unhandled case in tryExpandAtomicRMW"); 612 } 613 } 614 615 namespace { 616 617 struct PartwordMaskValues { 618 // These three fields are guaranteed to be set by createMaskInstrs. 619 Type *WordType = nullptr; 620 Type *ValueType = nullptr; 621 Value *AlignedAddr = nullptr; 622 Align AlignedAddrAlignment; 623 // The remaining fields can be null. 624 Value *ShiftAmt = nullptr; 625 Value *Mask = nullptr; 626 Value *Inv_Mask = nullptr; 627 }; 628 629 LLVM_ATTRIBUTE_UNUSED 630 raw_ostream &operator<<(raw_ostream &O, const PartwordMaskValues &PMV) { 631 auto PrintObj = [&O](auto *V) { 632 if (V) 633 O << *V; 634 else 635 O << "nullptr"; 636 O << '\n'; 637 }; 638 O << "PartwordMaskValues {\n"; 639 O << " WordType: "; 640 PrintObj(PMV.WordType); 641 O << " ValueType: "; 642 PrintObj(PMV.ValueType); 643 O << " AlignedAddr: "; 644 PrintObj(PMV.AlignedAddr); 645 O << " AlignedAddrAlignment: " << PMV.AlignedAddrAlignment.value() << '\n'; 646 O << " ShiftAmt: "; 647 PrintObj(PMV.ShiftAmt); 648 O << " Mask: "; 649 PrintObj(PMV.Mask); 650 O << " Inv_Mask: "; 651 PrintObj(PMV.Inv_Mask); 652 O << "}\n"; 653 return O; 654 } 655 656 } // end anonymous namespace 657 658 /// This is a helper function which builds instructions to provide 659 /// values necessary for partword atomic operations. It takes an 660 /// incoming address, Addr, and ValueType, and constructs the address, 661 /// shift-amounts and masks needed to work with a larger value of size 662 /// WordSize. 663 /// 664 /// AlignedAddr: Addr rounded down to a multiple of WordSize 665 /// 666 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded 667 /// from AlignAddr for it to have the same value as if 668 /// ValueType was loaded from Addr. 669 /// 670 /// Mask: Value to mask with the value loaded from AlignAddr to 671 /// include only the part that would've been loaded from Addr. 672 /// 673 /// Inv_Mask: The inverse of Mask. 674 static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I, 675 Type *ValueType, Value *Addr, 676 Align AddrAlign, 677 unsigned MinWordSize) { 678 PartwordMaskValues PMV; 679 680 Module *M = I->getModule(); 681 LLVMContext &Ctx = M->getContext(); 682 const DataLayout &DL = M->getDataLayout(); 683 unsigned ValueSize = DL.getTypeStoreSize(ValueType); 684 685 PMV.ValueType = ValueType; 686 PMV.WordType = MinWordSize > ValueSize ? Type::getIntNTy(Ctx, MinWordSize * 8) 687 : ValueType; 688 if (PMV.ValueType == PMV.WordType) { 689 PMV.AlignedAddr = Addr; 690 PMV.AlignedAddrAlignment = AddrAlign; 691 return PMV; 692 } 693 694 assert(ValueSize < MinWordSize); 695 696 Type *WordPtrType = 697 PMV.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace()); 698 699 // TODO: we could skip some of this if AddrAlign >= MinWordSize. 700 Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx)); 701 PMV.AlignedAddr = Builder.CreateIntToPtr( 702 Builder.CreateAnd(AddrInt, ~(uint64_t)(MinWordSize - 1)), WordPtrType, 703 "AlignedAddr"); 704 PMV.AlignedAddrAlignment = Align(MinWordSize); 705 706 Value *PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1, "PtrLSB"); 707 if (DL.isLittleEndian()) { 708 // turn bytes into bits 709 PMV.ShiftAmt = Builder.CreateShl(PtrLSB, 3); 710 } else { 711 // turn bytes into bits, and count from the other side. 712 PMV.ShiftAmt = Builder.CreateShl( 713 Builder.CreateXor(PtrLSB, MinWordSize - ValueSize), 3); 714 } 715 716 PMV.ShiftAmt = Builder.CreateTrunc(PMV.ShiftAmt, PMV.WordType, "ShiftAmt"); 717 PMV.Mask = Builder.CreateShl( 718 ConstantInt::get(PMV.WordType, (1 << (ValueSize * 8)) - 1), PMV.ShiftAmt, 719 "Mask"); 720 PMV.Inv_Mask = Builder.CreateNot(PMV.Mask, "Inv_Mask"); 721 return PMV; 722 } 723 724 static Value *extractMaskedValue(IRBuilder<> &Builder, Value *WideWord, 725 const PartwordMaskValues &PMV) { 726 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch"); 727 if (PMV.WordType == PMV.ValueType) 728 return WideWord; 729 730 Value *Shift = Builder.CreateLShr(WideWord, PMV.ShiftAmt, "shifted"); 731 Value *Trunc = Builder.CreateTrunc(Shift, PMV.ValueType, "extracted"); 732 return Trunc; 733 } 734 735 static Value *insertMaskedValue(IRBuilder<> &Builder, Value *WideWord, 736 Value *Updated, const PartwordMaskValues &PMV) { 737 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch"); 738 assert(Updated->getType() == PMV.ValueType && "Value type mismatch"); 739 if (PMV.WordType == PMV.ValueType) 740 return Updated; 741 742 Value *ZExt = Builder.CreateZExt(Updated, PMV.WordType, "extended"); 743 Value *Shift = 744 Builder.CreateShl(ZExt, PMV.ShiftAmt, "shifted", /*HasNUW*/ true); 745 Value *And = Builder.CreateAnd(WideWord, PMV.Inv_Mask, "unmasked"); 746 Value *Or = Builder.CreateOr(And, Shift, "inserted"); 747 return Or; 748 } 749 750 /// Emit IR to implement a masked version of a given atomicrmw 751 /// operation. (That is, only the bits under the Mask should be 752 /// affected by the operation) 753 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op, 754 IRBuilder<> &Builder, Value *Loaded, 755 Value *Shifted_Inc, Value *Inc, 756 const PartwordMaskValues &PMV) { 757 // TODO: update to use 758 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order 759 // to merge bits from two values without requiring PMV.Inv_Mask. 760 switch (Op) { 761 case AtomicRMWInst::Xchg: { 762 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 763 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc); 764 return FinalVal; 765 } 766 case AtomicRMWInst::Or: 767 case AtomicRMWInst::Xor: 768 case AtomicRMWInst::And: 769 llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW"); 770 case AtomicRMWInst::Add: 771 case AtomicRMWInst::Sub: 772 case AtomicRMWInst::Nand: { 773 // The other arithmetic ops need to be masked into place. 774 Value *NewVal = performAtomicOp(Op, Builder, Loaded, Shifted_Inc); 775 Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask); 776 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 777 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked); 778 return FinalVal; 779 } 780 case AtomicRMWInst::Max: 781 case AtomicRMWInst::Min: 782 case AtomicRMWInst::UMax: 783 case AtomicRMWInst::UMin: { 784 // Finally, comparison ops will operate on the full value, so 785 // truncate down to the original size, and expand out again after 786 // doing the operation. 787 Value *Loaded_Extract = extractMaskedValue(Builder, Loaded, PMV); 788 Value *NewVal = performAtomicOp(Op, Builder, Loaded_Extract, Inc); 789 Value *FinalVal = insertMaskedValue(Builder, Loaded, NewVal, PMV); 790 return FinalVal; 791 } 792 default: 793 llvm_unreachable("Unknown atomic op"); 794 } 795 } 796 797 /// Expand a sub-word atomicrmw operation into an appropriate 798 /// word-sized operation. 799 /// 800 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same 801 /// way as a typical atomicrmw expansion. The only difference here is 802 /// that the operation inside of the loop may operate upon only a 803 /// part of the value. 804 void AtomicExpand::expandPartwordAtomicRMW( 805 AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) { 806 AtomicOrdering MemOpOrder = AI->getOrdering(); 807 SyncScope::ID SSID = AI->getSyncScopeID(); 808 809 IRBuilder<> Builder(AI); 810 811 PartwordMaskValues PMV = 812 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 813 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 814 815 Value *ValOperand_Shifted = 816 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 817 PMV.ShiftAmt, "ValOperand_Shifted"); 818 819 auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) { 820 return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded, 821 ValOperand_Shifted, AI->getValOperand(), PMV); 822 }; 823 824 Value *OldResult; 825 if (ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg) { 826 OldResult = insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, 827 PMV.AlignedAddrAlignment, MemOpOrder, 828 SSID, PerformPartwordOp, 829 createCmpXchgInstFun); 830 } else { 831 assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::LLSC); 832 OldResult = insertRMWLLSCLoop(Builder, PMV.WordType, PMV.AlignedAddr, 833 PMV.AlignedAddrAlignment, MemOpOrder, 834 PerformPartwordOp); 835 } 836 837 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV); 838 AI->replaceAllUsesWith(FinalOldResult); 839 AI->eraseFromParent(); 840 } 841 842 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width. 843 AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) { 844 IRBuilder<> Builder(AI); 845 AtomicRMWInst::BinOp Op = AI->getOperation(); 846 847 assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 848 Op == AtomicRMWInst::And) && 849 "Unable to widen operation"); 850 851 PartwordMaskValues PMV = 852 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 853 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 854 855 Value *ValOperand_Shifted = 856 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 857 PMV.ShiftAmt, "ValOperand_Shifted"); 858 859 Value *NewOperand; 860 861 if (Op == AtomicRMWInst::And) 862 NewOperand = 863 Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand"); 864 else 865 NewOperand = ValOperand_Shifted; 866 867 AtomicRMWInst *NewAI = 868 Builder.CreateAtomicRMW(Op, PMV.AlignedAddr, NewOperand, 869 PMV.AlignedAddrAlignment, AI->getOrdering()); 870 871 Value *FinalOldResult = extractMaskedValue(Builder, NewAI, PMV); 872 AI->replaceAllUsesWith(FinalOldResult); 873 AI->eraseFromParent(); 874 return NewAI; 875 } 876 877 bool AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) { 878 // The basic idea here is that we're expanding a cmpxchg of a 879 // smaller memory size up to a word-sized cmpxchg. To do this, we 880 // need to add a retry-loop for strong cmpxchg, so that 881 // modifications to other parts of the word don't cause a spurious 882 // failure. 883 884 // This generates code like the following: 885 // [[Setup mask values PMV.*]] 886 // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt 887 // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt 888 // %InitLoaded = load i32* %addr 889 // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask 890 // br partword.cmpxchg.loop 891 // partword.cmpxchg.loop: 892 // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ], 893 // [ %OldVal_MaskOut, %partword.cmpxchg.failure ] 894 // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted 895 // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted 896 // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp, 897 // i32 %FullWord_NewVal success_ordering failure_ordering 898 // %OldVal = extractvalue { i32, i1 } %NewCI, 0 899 // %Success = extractvalue { i32, i1 } %NewCI, 1 900 // br i1 %Success, label %partword.cmpxchg.end, 901 // label %partword.cmpxchg.failure 902 // partword.cmpxchg.failure: 903 // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask 904 // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut 905 // br i1 %ShouldContinue, label %partword.cmpxchg.loop, 906 // label %partword.cmpxchg.end 907 // partword.cmpxchg.end: 908 // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt 909 // %FinalOldVal = trunc i32 %tmp1 to i8 910 // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0 911 // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1 912 913 Value *Addr = CI->getPointerOperand(); 914 Value *Cmp = CI->getCompareOperand(); 915 Value *NewVal = CI->getNewValOperand(); 916 917 BasicBlock *BB = CI->getParent(); 918 Function *F = BB->getParent(); 919 IRBuilder<> Builder(CI); 920 LLVMContext &Ctx = Builder.getContext(); 921 922 BasicBlock *EndBB = 923 BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end"); 924 auto FailureBB = 925 BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB); 926 auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB); 927 928 // The split call above "helpfully" added a branch at the end of BB 929 // (to the wrong place). 930 std::prev(BB->end())->eraseFromParent(); 931 Builder.SetInsertPoint(BB); 932 933 PartwordMaskValues PMV = 934 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr, 935 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 936 937 // Shift the incoming values over, into the right location in the word. 938 Value *NewVal_Shifted = 939 Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt); 940 Value *Cmp_Shifted = 941 Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt); 942 943 // Load the entire current word, and mask into place the expected and new 944 // values 945 LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr); 946 InitLoaded->setVolatile(CI->isVolatile()); 947 Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask); 948 Builder.CreateBr(LoopBB); 949 950 // partword.cmpxchg.loop: 951 Builder.SetInsertPoint(LoopBB); 952 PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2); 953 Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB); 954 955 // Mask/Or the expected and new values into place in the loaded word. 956 Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted); 957 Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted); 958 AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg( 959 PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, PMV.AlignedAddrAlignment, 960 CI->getSuccessOrdering(), CI->getFailureOrdering(), CI->getSyncScopeID()); 961 NewCI->setVolatile(CI->isVolatile()); 962 // When we're building a strong cmpxchg, we need a loop, so you 963 // might think we could use a weak cmpxchg inside. But, using strong 964 // allows the below comparison for ShouldContinue, and we're 965 // expecting the underlying cmpxchg to be a machine instruction, 966 // which is strong anyways. 967 NewCI->setWeak(CI->isWeak()); 968 969 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 970 Value *Success = Builder.CreateExtractValue(NewCI, 1); 971 972 if (CI->isWeak()) 973 Builder.CreateBr(EndBB); 974 else 975 Builder.CreateCondBr(Success, EndBB, FailureBB); 976 977 // partword.cmpxchg.failure: 978 Builder.SetInsertPoint(FailureBB); 979 // Upon failure, verify that the masked-out part of the loaded value 980 // has been modified. If it didn't, abort the cmpxchg, since the 981 // masked-in part must've. 982 Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask); 983 Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut); 984 Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB); 985 986 // Add the second value to the phi from above 987 Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB); 988 989 // partword.cmpxchg.end: 990 Builder.SetInsertPoint(CI); 991 992 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV); 993 Value *Res = UndefValue::get(CI->getType()); 994 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 995 Res = Builder.CreateInsertValue(Res, Success, 1); 996 997 CI->replaceAllUsesWith(Res); 998 CI->eraseFromParent(); 999 return true; 1000 } 1001 1002 void AtomicExpand::expandAtomicOpToLLSC( 1003 Instruction *I, Type *ResultType, Value *Addr, Align AddrAlign, 1004 AtomicOrdering MemOpOrder, 1005 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { 1006 IRBuilder<> Builder(I); 1007 Value *Loaded = insertRMWLLSCLoop(Builder, ResultType, Addr, AddrAlign, 1008 MemOpOrder, PerformOp); 1009 1010 I->replaceAllUsesWith(Loaded); 1011 I->eraseFromParent(); 1012 } 1013 1014 void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) { 1015 IRBuilder<> Builder(AI); 1016 1017 PartwordMaskValues PMV = 1018 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 1019 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1020 1021 // The value operand must be sign-extended for signed min/max so that the 1022 // target's signed comparison instructions can be used. Otherwise, just 1023 // zero-ext. 1024 Instruction::CastOps CastOp = Instruction::ZExt; 1025 AtomicRMWInst::BinOp RMWOp = AI->getOperation(); 1026 if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min) 1027 CastOp = Instruction::SExt; 1028 1029 Value *ValOperand_Shifted = Builder.CreateShl( 1030 Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType), 1031 PMV.ShiftAmt, "ValOperand_Shifted"); 1032 Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic( 1033 Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt, 1034 AI->getOrdering()); 1035 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV); 1036 AI->replaceAllUsesWith(FinalOldResult); 1037 AI->eraseFromParent(); 1038 } 1039 1040 void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI) { 1041 IRBuilder<> Builder(CI); 1042 1043 PartwordMaskValues PMV = createMaskInstrs( 1044 Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(), 1045 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1046 1047 Value *CmpVal_Shifted = Builder.CreateShl( 1048 Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt, 1049 "CmpVal_Shifted"); 1050 Value *NewVal_Shifted = Builder.CreateShl( 1051 Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt, 1052 "NewVal_Shifted"); 1053 Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic( 1054 Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask, 1055 CI->getSuccessOrdering()); 1056 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV); 1057 Value *Res = UndefValue::get(CI->getType()); 1058 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 1059 Value *Success = Builder.CreateICmpEQ( 1060 CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success"); 1061 Res = Builder.CreateInsertValue(Res, Success, 1); 1062 1063 CI->replaceAllUsesWith(Res); 1064 CI->eraseFromParent(); 1065 } 1066 1067 Value *AtomicExpand::insertRMWLLSCLoop( 1068 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, 1069 AtomicOrdering MemOpOrder, 1070 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { 1071 LLVMContext &Ctx = Builder.getContext(); 1072 BasicBlock *BB = Builder.GetInsertBlock(); 1073 Function *F = BB->getParent(); 1074 1075 assert(AddrAlign >= 1076 F->getParent()->getDataLayout().getTypeStoreSize(ResultTy) && 1077 "Expected at least natural alignment at this point."); 1078 1079 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1080 // 1081 // The standard expansion we produce is: 1082 // [...] 1083 // atomicrmw.start: 1084 // %loaded = @load.linked(%addr) 1085 // %new = some_op iN %loaded, %incr 1086 // %stored = @store_conditional(%new, %addr) 1087 // %try_again = icmp i32 ne %stored, 0 1088 // br i1 %try_again, label %loop, label %atomicrmw.end 1089 // atomicrmw.end: 1090 // [...] 1091 BasicBlock *ExitBB = 1092 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1093 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1094 1095 // The split call above "helpfully" added a branch at the end of BB (to the 1096 // wrong place). 1097 std::prev(BB->end())->eraseFromParent(); 1098 Builder.SetInsertPoint(BB); 1099 Builder.CreateBr(LoopBB); 1100 1101 // Start the main loop block now that we've taken care of the preliminaries. 1102 Builder.SetInsertPoint(LoopBB); 1103 Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); 1104 1105 Value *NewVal = PerformOp(Builder, Loaded); 1106 1107 Value *StoreSuccess = 1108 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); 1109 Value *TryAgain = Builder.CreateICmpNE( 1110 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); 1111 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); 1112 1113 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1114 return Loaded; 1115 } 1116 1117 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of 1118 /// the equivalent bitwidth. We used to not support pointer cmpxchg in the 1119 /// IR. As a migration step, we convert back to what use to be the standard 1120 /// way to represent a pointer cmpxchg so that we can update backends one by 1121 /// one. 1122 AtomicCmpXchgInst *AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) { 1123 auto *M = CI->getModule(); 1124 Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(), 1125 M->getDataLayout()); 1126 1127 IRBuilder<> Builder(CI); 1128 1129 Value *Addr = CI->getPointerOperand(); 1130 Type *PT = PointerType::get(NewTy, 1131 Addr->getType()->getPointerAddressSpace()); 1132 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 1133 1134 Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy); 1135 Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy); 1136 1137 auto *NewCI = Builder.CreateAtomicCmpXchg( 1138 NewAddr, NewCmp, NewNewVal, CI->getAlign(), CI->getSuccessOrdering(), 1139 CI->getFailureOrdering(), CI->getSyncScopeID()); 1140 NewCI->setVolatile(CI->isVolatile()); 1141 NewCI->setWeak(CI->isWeak()); 1142 LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n"); 1143 1144 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 1145 Value *Succ = Builder.CreateExtractValue(NewCI, 1); 1146 1147 OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType()); 1148 1149 Value *Res = UndefValue::get(CI->getType()); 1150 Res = Builder.CreateInsertValue(Res, OldVal, 0); 1151 Res = Builder.CreateInsertValue(Res, Succ, 1); 1152 1153 CI->replaceAllUsesWith(Res); 1154 CI->eraseFromParent(); 1155 return NewCI; 1156 } 1157 1158 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1159 AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); 1160 AtomicOrdering FailureOrder = CI->getFailureOrdering(); 1161 Value *Addr = CI->getPointerOperand(); 1162 BasicBlock *BB = CI->getParent(); 1163 Function *F = BB->getParent(); 1164 LLVMContext &Ctx = F->getContext(); 1165 // If shouldInsertFencesForAtomic() returns true, then the target does not 1166 // want to deal with memory orders, and emitLeading/TrailingFence should take 1167 // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we 1168 // should preserve the ordering. 1169 bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI); 1170 AtomicOrdering MemOpOrder = 1171 ShouldInsertFencesForAtomic ? AtomicOrdering::Monotonic : SuccessOrder; 1172 1173 // In implementations which use a barrier to achieve release semantics, we can 1174 // delay emitting this barrier until we know a store is actually going to be 1175 // attempted. The cost of this delay is that we need 2 copies of the block 1176 // emitting the load-linked, affecting code size. 1177 // 1178 // Ideally, this logic would be unconditional except for the minsize check 1179 // since in other cases the extra blocks naturally collapse down to the 1180 // minimal loop. Unfortunately, this puts too much stress on later 1181 // optimisations so we avoid emitting the extra logic in those cases too. 1182 bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic && 1183 SuccessOrder != AtomicOrdering::Monotonic && 1184 SuccessOrder != AtomicOrdering::Acquire && 1185 !F->hasMinSize(); 1186 1187 // There's no overhead for sinking the release barrier in a weak cmpxchg, so 1188 // do it even on minsize. 1189 bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak(); 1190 1191 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord 1192 // 1193 // The full expansion we produce is: 1194 // [...] 1195 // %aligned.addr = ... 1196 // cmpxchg.start: 1197 // %unreleasedload = @load.linked(%aligned.addr) 1198 // %unreleasedload.extract = extract value from %unreleasedload 1199 // %should_store = icmp eq %unreleasedload.extract, %desired 1200 // br i1 %should_store, label %cmpxchg.releasingstore, 1201 // label %cmpxchg.nostore 1202 // cmpxchg.releasingstore: 1203 // fence? 1204 // br label cmpxchg.trystore 1205 // cmpxchg.trystore: 1206 // %loaded.trystore = phi [%unreleasedload, %cmpxchg.releasingstore], 1207 // [%releasedload, %cmpxchg.releasedload] 1208 // %updated.new = insert %new into %loaded.trystore 1209 // %stored = @store_conditional(%updated.new, %aligned.addr) 1210 // %success = icmp eq i32 %stored, 0 1211 // br i1 %success, label %cmpxchg.success, 1212 // label %cmpxchg.releasedload/%cmpxchg.failure 1213 // cmpxchg.releasedload: 1214 // %releasedload = @load.linked(%aligned.addr) 1215 // %releasedload.extract = extract value from %releasedload 1216 // %should_store = icmp eq %releasedload.extract, %desired 1217 // br i1 %should_store, label %cmpxchg.trystore, 1218 // label %cmpxchg.failure 1219 // cmpxchg.success: 1220 // fence? 1221 // br label %cmpxchg.end 1222 // cmpxchg.nostore: 1223 // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start], 1224 // [%releasedload, 1225 // %cmpxchg.releasedload/%cmpxchg.trystore] 1226 // @load_linked_fail_balance()? 1227 // br label %cmpxchg.failure 1228 // cmpxchg.failure: 1229 // fence? 1230 // br label %cmpxchg.end 1231 // cmpxchg.end: 1232 // %loaded.exit = phi [%loaded.nostore, %cmpxchg.failure], 1233 // [%loaded.trystore, %cmpxchg.trystore] 1234 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] 1235 // %loaded = extract value from %loaded.exit 1236 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 1237 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 1238 // [...] 1239 BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end"); 1240 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); 1241 auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB); 1242 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB); 1243 auto ReleasedLoadBB = 1244 BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB); 1245 auto TryStoreBB = 1246 BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB); 1247 auto ReleasingStoreBB = 1248 BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB); 1249 auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB); 1250 1251 // This grabs the DebugLoc from CI 1252 IRBuilder<> Builder(CI); 1253 1254 // The split call above "helpfully" added a branch at the end of BB (to the 1255 // wrong place), but we might want a fence too. It's easiest to just remove 1256 // the branch entirely. 1257 std::prev(BB->end())->eraseFromParent(); 1258 Builder.SetInsertPoint(BB); 1259 if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier) 1260 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1261 1262 PartwordMaskValues PMV = 1263 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr, 1264 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1265 Builder.CreateBr(StartBB); 1266 1267 // Start the main loop block now that we've taken care of the preliminaries. 1268 Builder.SetInsertPoint(StartBB); 1269 Value *UnreleasedLoad = 1270 TLI->emitLoadLinked(Builder, PMV.AlignedAddr, MemOpOrder); 1271 Value *UnreleasedLoadExtract = 1272 extractMaskedValue(Builder, UnreleasedLoad, PMV); 1273 Value *ShouldStore = Builder.CreateICmpEQ( 1274 UnreleasedLoadExtract, CI->getCompareOperand(), "should_store"); 1275 1276 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1277 // jump straight past that fence instruction (if it exists). 1278 Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB); 1279 1280 Builder.SetInsertPoint(ReleasingStoreBB); 1281 if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier) 1282 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1283 Builder.CreateBr(TryStoreBB); 1284 1285 Builder.SetInsertPoint(TryStoreBB); 1286 PHINode *LoadedTryStore = 1287 Builder.CreatePHI(PMV.WordType, 2, "loaded.trystore"); 1288 LoadedTryStore->addIncoming(UnreleasedLoad, ReleasingStoreBB); 1289 Value *NewValueInsert = 1290 insertMaskedValue(Builder, LoadedTryStore, CI->getNewValOperand(), PMV); 1291 Value *StoreSuccess = 1292 TLI->emitStoreConditional(Builder, NewValueInsert, PMV.AlignedAddr, 1293 MemOpOrder); 1294 StoreSuccess = Builder.CreateICmpEQ( 1295 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); 1296 BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB; 1297 Builder.CreateCondBr(StoreSuccess, SuccessBB, 1298 CI->isWeak() ? FailureBB : RetryBB); 1299 1300 Builder.SetInsertPoint(ReleasedLoadBB); 1301 Value *SecondLoad; 1302 if (HasReleasedLoadBB) { 1303 SecondLoad = TLI->emitLoadLinked(Builder, PMV.AlignedAddr, MemOpOrder); 1304 Value *SecondLoadExtract = extractMaskedValue(Builder, SecondLoad, PMV); 1305 ShouldStore = Builder.CreateICmpEQ(SecondLoadExtract, 1306 CI->getCompareOperand(), "should_store"); 1307 1308 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1309 // jump straight past that fence instruction (if it exists). 1310 Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB); 1311 // Update PHI node in TryStoreBB. 1312 LoadedTryStore->addIncoming(SecondLoad, ReleasedLoadBB); 1313 } else 1314 Builder.CreateUnreachable(); 1315 1316 // Make sure later instructions don't get reordered with a fence if 1317 // necessary. 1318 Builder.SetInsertPoint(SuccessBB); 1319 if (ShouldInsertFencesForAtomic) 1320 TLI->emitTrailingFence(Builder, CI, SuccessOrder); 1321 Builder.CreateBr(ExitBB); 1322 1323 Builder.SetInsertPoint(NoStoreBB); 1324 PHINode *LoadedNoStore = 1325 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.nostore"); 1326 LoadedNoStore->addIncoming(UnreleasedLoad, StartBB); 1327 if (HasReleasedLoadBB) 1328 LoadedNoStore->addIncoming(SecondLoad, ReleasedLoadBB); 1329 1330 // In the failing case, where we don't execute the store-conditional, the 1331 // target might want to balance out the load-linked with a dedicated 1332 // instruction (e.g., on ARM, clearing the exclusive monitor). 1333 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 1334 Builder.CreateBr(FailureBB); 1335 1336 Builder.SetInsertPoint(FailureBB); 1337 PHINode *LoadedFailure = 1338 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.failure"); 1339 LoadedFailure->addIncoming(LoadedNoStore, NoStoreBB); 1340 if (CI->isWeak()) 1341 LoadedFailure->addIncoming(LoadedTryStore, TryStoreBB); 1342 if (ShouldInsertFencesForAtomic) 1343 TLI->emitTrailingFence(Builder, CI, FailureOrder); 1344 Builder.CreateBr(ExitBB); 1345 1346 // Finally, we have control-flow based knowledge of whether the cmpxchg 1347 // succeeded or not. We expose this to later passes by converting any 1348 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate 1349 // PHI. 1350 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1351 PHINode *LoadedExit = 1352 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.exit"); 1353 LoadedExit->addIncoming(LoadedTryStore, SuccessBB); 1354 LoadedExit->addIncoming(LoadedFailure, FailureBB); 1355 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2, "success"); 1356 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); 1357 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); 1358 1359 // This is the "exit value" from the cmpxchg expansion. It may be of 1360 // a type wider than the one in the cmpxchg instruction. 1361 Value *LoadedFull = LoadedExit; 1362 1363 Builder.SetInsertPoint(ExitBB, std::next(Success->getIterator())); 1364 Value *Loaded = extractMaskedValue(Builder, LoadedFull, PMV); 1365 1366 // Look for any users of the cmpxchg that are just comparing the loaded value 1367 // against the desired one, and replace them with the CFG-derived version. 1368 SmallVector<ExtractValueInst *, 2> PrunedInsts; 1369 for (auto User : CI->users()) { 1370 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); 1371 if (!EV) 1372 continue; 1373 1374 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && 1375 "weird extraction from { iN, i1 }"); 1376 1377 if (EV->getIndices()[0] == 0) 1378 EV->replaceAllUsesWith(Loaded); 1379 else 1380 EV->replaceAllUsesWith(Success); 1381 1382 PrunedInsts.push_back(EV); 1383 } 1384 1385 // We can remove the instructions now we're no longer iterating through them. 1386 for (auto EV : PrunedInsts) 1387 EV->eraseFromParent(); 1388 1389 if (!CI->use_empty()) { 1390 // Some use of the full struct return that we don't understand has happened, 1391 // so we've got to reconstruct it properly. 1392 Value *Res; 1393 Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0); 1394 Res = Builder.CreateInsertValue(Res, Success, 1); 1395 1396 CI->replaceAllUsesWith(Res); 1397 } 1398 1399 CI->eraseFromParent(); 1400 return true; 1401 } 1402 1403 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) { 1404 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand()); 1405 if(!C) 1406 return false; 1407 1408 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 1409 switch(Op) { 1410 case AtomicRMWInst::Add: 1411 case AtomicRMWInst::Sub: 1412 case AtomicRMWInst::Or: 1413 case AtomicRMWInst::Xor: 1414 return C->isZero(); 1415 case AtomicRMWInst::And: 1416 return C->isMinusOne(); 1417 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/... 1418 default: 1419 return false; 1420 } 1421 } 1422 1423 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) { 1424 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { 1425 tryExpandAtomicLoad(ResultingLoad); 1426 return true; 1427 } 1428 return false; 1429 } 1430 1431 Value *AtomicExpand::insertRMWCmpXchgLoop( 1432 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, 1433 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 1434 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, 1435 CreateCmpXchgInstFun CreateCmpXchg) { 1436 LLVMContext &Ctx = Builder.getContext(); 1437 BasicBlock *BB = Builder.GetInsertBlock(); 1438 Function *F = BB->getParent(); 1439 1440 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1441 // 1442 // The standard expansion we produce is: 1443 // [...] 1444 // %init_loaded = load atomic iN* %addr 1445 // br label %loop 1446 // loop: 1447 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] 1448 // %new = some_op iN %loaded, %incr 1449 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new 1450 // %new_loaded = extractvalue { iN, i1 } %pair, 0 1451 // %success = extractvalue { iN, i1 } %pair, 1 1452 // br i1 %success, label %atomicrmw.end, label %loop 1453 // atomicrmw.end: 1454 // [...] 1455 BasicBlock *ExitBB = 1456 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1457 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1458 1459 // The split call above "helpfully" added a branch at the end of BB (to the 1460 // wrong place), but we want a load. It's easiest to just remove 1461 // the branch entirely. 1462 std::prev(BB->end())->eraseFromParent(); 1463 Builder.SetInsertPoint(BB); 1464 LoadInst *InitLoaded = Builder.CreateAlignedLoad(ResultTy, Addr, AddrAlign); 1465 Builder.CreateBr(LoopBB); 1466 1467 // Start the main loop block now that we've taken care of the preliminaries. 1468 Builder.SetInsertPoint(LoopBB); 1469 PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded"); 1470 Loaded->addIncoming(InitLoaded, BB); 1471 1472 Value *NewVal = PerformOp(Builder, Loaded); 1473 1474 Value *NewLoaded = nullptr; 1475 Value *Success = nullptr; 1476 1477 CreateCmpXchg(Builder, Addr, Loaded, NewVal, AddrAlign, 1478 MemOpOrder == AtomicOrdering::Unordered 1479 ? AtomicOrdering::Monotonic 1480 : MemOpOrder, 1481 SSID, Success, NewLoaded); 1482 assert(Success && NewLoaded); 1483 1484 Loaded->addIncoming(NewLoaded, LoopBB); 1485 1486 Builder.CreateCondBr(Success, ExitBB, LoopBB); 1487 1488 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1489 return NewLoaded; 1490 } 1491 1492 bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1493 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 1494 unsigned ValueSize = getAtomicOpSize(CI); 1495 1496 switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) { 1497 default: 1498 llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg"); 1499 case TargetLoweringBase::AtomicExpansionKind::None: 1500 if (ValueSize < MinCASSize) 1501 return expandPartwordCmpXchg(CI); 1502 return false; 1503 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 1504 return expandAtomicCmpXchg(CI); 1505 } 1506 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: 1507 expandAtomicCmpXchgToMaskedIntrinsic(CI); 1508 return true; 1509 } 1510 } 1511 1512 // Note: This function is exposed externally by AtomicExpandUtils.h 1513 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 1514 CreateCmpXchgInstFun CreateCmpXchg) { 1515 IRBuilder<> Builder(AI); 1516 Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop( 1517 Builder, AI->getType(), AI->getPointerOperand(), AI->getAlign(), 1518 AI->getOrdering(), AI->getSyncScopeID(), 1519 [&](IRBuilder<> &Builder, Value *Loaded) { 1520 return performAtomicOp(AI->getOperation(), Builder, Loaded, 1521 AI->getValOperand()); 1522 }, 1523 CreateCmpXchg); 1524 1525 AI->replaceAllUsesWith(Loaded); 1526 AI->eraseFromParent(); 1527 return true; 1528 } 1529 1530 // In order to use one of the sized library calls such as 1531 // __atomic_fetch_add_4, the alignment must be sufficient, the size 1532 // must be one of the potentially-specialized sizes, and the value 1533 // type must actually exist in C on the target (otherwise, the 1534 // function wouldn't actually be defined.) 1535 static bool canUseSizedAtomicCall(unsigned Size, Align Alignment, 1536 const DataLayout &DL) { 1537 // TODO: "LargestSize" is an approximation for "largest type that 1538 // you can express in C". It seems to be the case that int128 is 1539 // supported on all 64-bit platforms, otherwise only up to 64-bit 1540 // integers are supported. If we get this wrong, then we'll try to 1541 // call a sized libcall that doesn't actually exist. There should 1542 // really be some more reliable way in LLVM of determining integer 1543 // sizes which are valid in the target's C ABI... 1544 unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8; 1545 return Alignment >= Size && 1546 (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) && 1547 Size <= LargestSize; 1548 } 1549 1550 void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) { 1551 static const RTLIB::Libcall Libcalls[6] = { 1552 RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2, 1553 RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16}; 1554 unsigned Size = getAtomicOpSize(I); 1555 1556 bool expanded = expandAtomicOpToLibcall( 1557 I, Size, I->getAlign(), I->getPointerOperand(), nullptr, nullptr, 1558 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1559 if (!expanded) 1560 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Load"); 1561 } 1562 1563 void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) { 1564 static const RTLIB::Libcall Libcalls[6] = { 1565 RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2, 1566 RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16}; 1567 unsigned Size = getAtomicOpSize(I); 1568 1569 bool expanded = expandAtomicOpToLibcall( 1570 I, Size, I->getAlign(), I->getPointerOperand(), I->getValueOperand(), 1571 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1572 if (!expanded) 1573 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Store"); 1574 } 1575 1576 void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) { 1577 static const RTLIB::Libcall Libcalls[6] = { 1578 RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1, 1579 RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4, 1580 RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16}; 1581 unsigned Size = getAtomicOpSize(I); 1582 1583 bool expanded = expandAtomicOpToLibcall( 1584 I, Size, I->getAlign(), I->getPointerOperand(), I->getNewValOperand(), 1585 I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(), 1586 Libcalls); 1587 if (!expanded) 1588 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for CAS"); 1589 } 1590 1591 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) { 1592 static const RTLIB::Libcall LibcallsXchg[6] = { 1593 RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1, 1594 RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4, 1595 RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16}; 1596 static const RTLIB::Libcall LibcallsAdd[6] = { 1597 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1, 1598 RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4, 1599 RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16}; 1600 static const RTLIB::Libcall LibcallsSub[6] = { 1601 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1, 1602 RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4, 1603 RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16}; 1604 static const RTLIB::Libcall LibcallsAnd[6] = { 1605 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1, 1606 RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4, 1607 RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16}; 1608 static const RTLIB::Libcall LibcallsOr[6] = { 1609 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1, 1610 RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4, 1611 RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16}; 1612 static const RTLIB::Libcall LibcallsXor[6] = { 1613 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1, 1614 RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4, 1615 RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16}; 1616 static const RTLIB::Libcall LibcallsNand[6] = { 1617 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1, 1618 RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4, 1619 RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16}; 1620 1621 switch (Op) { 1622 case AtomicRMWInst::BAD_BINOP: 1623 llvm_unreachable("Should not have BAD_BINOP."); 1624 case AtomicRMWInst::Xchg: 1625 return makeArrayRef(LibcallsXchg); 1626 case AtomicRMWInst::Add: 1627 return makeArrayRef(LibcallsAdd); 1628 case AtomicRMWInst::Sub: 1629 return makeArrayRef(LibcallsSub); 1630 case AtomicRMWInst::And: 1631 return makeArrayRef(LibcallsAnd); 1632 case AtomicRMWInst::Or: 1633 return makeArrayRef(LibcallsOr); 1634 case AtomicRMWInst::Xor: 1635 return makeArrayRef(LibcallsXor); 1636 case AtomicRMWInst::Nand: 1637 return makeArrayRef(LibcallsNand); 1638 case AtomicRMWInst::Max: 1639 case AtomicRMWInst::Min: 1640 case AtomicRMWInst::UMax: 1641 case AtomicRMWInst::UMin: 1642 case AtomicRMWInst::FAdd: 1643 case AtomicRMWInst::FSub: 1644 // No atomic libcalls are available for max/min/umax/umin. 1645 return {}; 1646 } 1647 llvm_unreachable("Unexpected AtomicRMW operation."); 1648 } 1649 1650 void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) { 1651 ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation()); 1652 1653 unsigned Size = getAtomicOpSize(I); 1654 1655 bool Success = false; 1656 if (!Libcalls.empty()) 1657 Success = expandAtomicOpToLibcall( 1658 I, Size, I->getAlign(), I->getPointerOperand(), I->getValOperand(), 1659 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1660 1661 // The expansion failed: either there were no libcalls at all for 1662 // the operation (min/max), or there were only size-specialized 1663 // libcalls (add/sub/etc) and we needed a generic. So, expand to a 1664 // CAS libcall, via a CAS loop, instead. 1665 if (!Success) { 1666 expandAtomicRMWToCmpXchg( 1667 I, [this](IRBuilder<> &Builder, Value *Addr, Value *Loaded, 1668 Value *NewVal, Align Alignment, AtomicOrdering MemOpOrder, 1669 SyncScope::ID SSID, Value *&Success, Value *&NewLoaded) { 1670 // Create the CAS instruction normally... 1671 AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg( 1672 Addr, Loaded, NewVal, Alignment, MemOpOrder, 1673 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID); 1674 Success = Builder.CreateExtractValue(Pair, 1, "success"); 1675 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 1676 1677 // ...and then expand the CAS into a libcall. 1678 expandAtomicCASToLibcall(Pair); 1679 }); 1680 } 1681 } 1682 1683 // A helper routine for the above expandAtomic*ToLibcall functions. 1684 // 1685 // 'Libcalls' contains an array of enum values for the particular 1686 // ATOMIC libcalls to be emitted. All of the other arguments besides 1687 // 'I' are extracted from the Instruction subclass by the 1688 // caller. Depending on the particular call, some will be null. 1689 bool AtomicExpand::expandAtomicOpToLibcall( 1690 Instruction *I, unsigned Size, Align Alignment, Value *PointerOperand, 1691 Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering, 1692 AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) { 1693 assert(Libcalls.size() == 6); 1694 1695 LLVMContext &Ctx = I->getContext(); 1696 Module *M = I->getModule(); 1697 const DataLayout &DL = M->getDataLayout(); 1698 IRBuilder<> Builder(I); 1699 IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front()); 1700 1701 bool UseSizedLibcall = canUseSizedAtomicCall(Size, Alignment, DL); 1702 Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8); 1703 1704 const Align AllocaAlignment = DL.getPrefTypeAlign(SizedIntTy); 1705 1706 // TODO: the "order" argument type is "int", not int32. So 1707 // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints. 1708 ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size); 1709 assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO"); 1710 Constant *OrderingVal = 1711 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering)); 1712 Constant *Ordering2Val = nullptr; 1713 if (CASExpected) { 1714 assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO"); 1715 Ordering2Val = 1716 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2)); 1717 } 1718 bool HasResult = I->getType() != Type::getVoidTy(Ctx); 1719 1720 RTLIB::Libcall RTLibType; 1721 if (UseSizedLibcall) { 1722 switch (Size) { 1723 case 1: RTLibType = Libcalls[1]; break; 1724 case 2: RTLibType = Libcalls[2]; break; 1725 case 4: RTLibType = Libcalls[3]; break; 1726 case 8: RTLibType = Libcalls[4]; break; 1727 case 16: RTLibType = Libcalls[5]; break; 1728 } 1729 } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) { 1730 RTLibType = Libcalls[0]; 1731 } else { 1732 // Can't use sized function, and there's no generic for this 1733 // operation, so give up. 1734 return false; 1735 } 1736 1737 if (!TLI->getLibcallName(RTLibType)) { 1738 // This target does not implement the requested atomic libcall so give up. 1739 return false; 1740 } 1741 1742 // Build up the function call. There's two kinds. First, the sized 1743 // variants. These calls are going to be one of the following (with 1744 // N=1,2,4,8,16): 1745 // iN __atomic_load_N(iN *ptr, int ordering) 1746 // void __atomic_store_N(iN *ptr, iN val, int ordering) 1747 // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering) 1748 // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired, 1749 // int success_order, int failure_order) 1750 // 1751 // Note that these functions can be used for non-integer atomic 1752 // operations, the values just need to be bitcast to integers on the 1753 // way in and out. 1754 // 1755 // And, then, the generic variants. They look like the following: 1756 // void __atomic_load(size_t size, void *ptr, void *ret, int ordering) 1757 // void __atomic_store(size_t size, void *ptr, void *val, int ordering) 1758 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, 1759 // int ordering) 1760 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, 1761 // void *desired, int success_order, 1762 // int failure_order) 1763 // 1764 // The different signatures are built up depending on the 1765 // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult' 1766 // variables. 1767 1768 AllocaInst *AllocaCASExpected = nullptr; 1769 Value *AllocaCASExpected_i8 = nullptr; 1770 AllocaInst *AllocaValue = nullptr; 1771 Value *AllocaValue_i8 = nullptr; 1772 AllocaInst *AllocaResult = nullptr; 1773 Value *AllocaResult_i8 = nullptr; 1774 1775 Type *ResultTy; 1776 SmallVector<Value *, 6> Args; 1777 AttributeList Attr; 1778 1779 // 'size' argument. 1780 if (!UseSizedLibcall) { 1781 // Note, getIntPtrType is assumed equivalent to size_t. 1782 Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size)); 1783 } 1784 1785 // 'ptr' argument. 1786 // note: This assumes all address spaces share a common libfunc 1787 // implementation and that addresses are convertable. For systems without 1788 // that property, we'd need to extend this mechanism to support AS-specific 1789 // families of atomic intrinsics. 1790 auto PtrTypeAS = PointerOperand->getType()->getPointerAddressSpace(); 1791 Value *PtrVal = Builder.CreateBitCast(PointerOperand, 1792 Type::getInt8PtrTy(Ctx, PtrTypeAS)); 1793 PtrVal = Builder.CreateAddrSpaceCast(PtrVal, Type::getInt8PtrTy(Ctx)); 1794 Args.push_back(PtrVal); 1795 1796 // 'expected' argument, if present. 1797 if (CASExpected) { 1798 AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType()); 1799 AllocaCASExpected->setAlignment(AllocaAlignment); 1800 unsigned AllocaAS = AllocaCASExpected->getType()->getPointerAddressSpace(); 1801 1802 AllocaCASExpected_i8 = 1803 Builder.CreateBitCast(AllocaCASExpected, 1804 Type::getInt8PtrTy(Ctx, AllocaAS)); 1805 Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64); 1806 Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment); 1807 Args.push_back(AllocaCASExpected_i8); 1808 } 1809 1810 // 'val' argument ('desired' for cas), if present. 1811 if (ValueOperand) { 1812 if (UseSizedLibcall) { 1813 Value *IntValue = 1814 Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy); 1815 Args.push_back(IntValue); 1816 } else { 1817 AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType()); 1818 AllocaValue->setAlignment(AllocaAlignment); 1819 AllocaValue_i8 = 1820 Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx)); 1821 Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64); 1822 Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment); 1823 Args.push_back(AllocaValue_i8); 1824 } 1825 } 1826 1827 // 'ret' argument. 1828 if (!CASExpected && HasResult && !UseSizedLibcall) { 1829 AllocaResult = AllocaBuilder.CreateAlloca(I->getType()); 1830 AllocaResult->setAlignment(AllocaAlignment); 1831 unsigned AllocaAS = AllocaResult->getType()->getPointerAddressSpace(); 1832 AllocaResult_i8 = 1833 Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx, AllocaAS)); 1834 Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64); 1835 Args.push_back(AllocaResult_i8); 1836 } 1837 1838 // 'ordering' ('success_order' for cas) argument. 1839 Args.push_back(OrderingVal); 1840 1841 // 'failure_order' argument, if present. 1842 if (Ordering2Val) 1843 Args.push_back(Ordering2Val); 1844 1845 // Now, the return type. 1846 if (CASExpected) { 1847 ResultTy = Type::getInt1Ty(Ctx); 1848 Attr = Attr.addAttribute(Ctx, AttributeList::ReturnIndex, Attribute::ZExt); 1849 } else if (HasResult && UseSizedLibcall) 1850 ResultTy = SizedIntTy; 1851 else 1852 ResultTy = Type::getVoidTy(Ctx); 1853 1854 // Done with setting up arguments and return types, create the call: 1855 SmallVector<Type *, 6> ArgTys; 1856 for (Value *Arg : Args) 1857 ArgTys.push_back(Arg->getType()); 1858 FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false); 1859 FunctionCallee LibcallFn = 1860 M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr); 1861 CallInst *Call = Builder.CreateCall(LibcallFn, Args); 1862 Call->setAttributes(Attr); 1863 Value *Result = Call; 1864 1865 // And then, extract the results... 1866 if (ValueOperand && !UseSizedLibcall) 1867 Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64); 1868 1869 if (CASExpected) { 1870 // The final result from the CAS is {load of 'expected' alloca, bool result 1871 // from call} 1872 Type *FinalResultTy = I->getType(); 1873 Value *V = UndefValue::get(FinalResultTy); 1874 Value *ExpectedOut = Builder.CreateAlignedLoad( 1875 CASExpected->getType(), AllocaCASExpected, AllocaAlignment); 1876 Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64); 1877 V = Builder.CreateInsertValue(V, ExpectedOut, 0); 1878 V = Builder.CreateInsertValue(V, Result, 1); 1879 I->replaceAllUsesWith(V); 1880 } else if (HasResult) { 1881 Value *V; 1882 if (UseSizedLibcall) 1883 V = Builder.CreateBitOrPointerCast(Result, I->getType()); 1884 else { 1885 V = Builder.CreateAlignedLoad(I->getType(), AllocaResult, 1886 AllocaAlignment); 1887 Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64); 1888 } 1889 I->replaceAllUsesWith(V); 1890 } 1891 I->eraseFromParent(); 1892 return true; 1893 } 1894