1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a pass (at IR level) to replace atomic instructions with
10 // __atomic_* library calls, or target specific instruction which implement the
11 // same semantics in a way which better fits the target backend.  This can
12 // include the use of (intrinsic-based) load-linked/store-conditional loops,
13 // AtomicCmpXchg, or type coercions.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/CodeGen/AtomicExpandUtils.h"
22 #include "llvm/CodeGen/RuntimeLibcalls.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetPassConfig.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/CodeGen/ValueTypes.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Constant.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/InstIterator.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/IR/User.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/InitializePasses.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/AtomicOrdering.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include "llvm/Target/TargetMachine.h"
50 #include <cassert>
51 #include <cstdint>
52 #include <iterator>
53 
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "atomic-expand"
57 
58 namespace {
59 
60   class AtomicExpand: public FunctionPass {
61     const TargetLowering *TLI = nullptr;
62 
63   public:
64     static char ID; // Pass identification, replacement for typeid
65 
66     AtomicExpand() : FunctionPass(ID) {
67       initializeAtomicExpandPass(*PassRegistry::getPassRegistry());
68     }
69 
70     bool runOnFunction(Function &F) override;
71 
72   private:
73     bool bracketInstWithFences(Instruction *I, AtomicOrdering Order);
74     IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL);
75     LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI);
76     bool tryExpandAtomicLoad(LoadInst *LI);
77     bool expandAtomicLoadToLL(LoadInst *LI);
78     bool expandAtomicLoadToCmpXchg(LoadInst *LI);
79     StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI);
80     bool expandAtomicStore(StoreInst *SI);
81     bool tryExpandAtomicRMW(AtomicRMWInst *AI);
82     AtomicRMWInst *convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI);
83     Value *
84     insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
85                       Align AddrAlign, AtomicOrdering MemOpOrder,
86                       function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
87     void expandAtomicOpToLLSC(
88         Instruction *I, Type *ResultTy, Value *Addr, Align AddrAlign,
89         AtomicOrdering MemOpOrder,
90         function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
91     void expandPartwordAtomicRMW(
92         AtomicRMWInst *I,
93         TargetLoweringBase::AtomicExpansionKind ExpansionKind);
94     AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI);
95     bool expandPartwordCmpXchg(AtomicCmpXchgInst *I);
96     void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI);
97     void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI);
98 
99     AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI);
100     static Value *insertRMWCmpXchgLoop(
101         IRBuilder<> &Builder, Type *ResultType, Value *Addr, Align AddrAlign,
102         AtomicOrdering MemOpOrder, SyncScope::ID SSID,
103         function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
104         CreateCmpXchgInstFun CreateCmpXchg);
105     bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI);
106 
107     bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI);
108     bool isIdempotentRMW(AtomicRMWInst *RMWI);
109     bool simplifyIdempotentRMW(AtomicRMWInst *RMWI);
110 
111     bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, Align Alignment,
112                                  Value *PointerOperand, Value *ValueOperand,
113                                  Value *CASExpected, AtomicOrdering Ordering,
114                                  AtomicOrdering Ordering2,
115                                  ArrayRef<RTLIB::Libcall> Libcalls);
116     void expandAtomicLoadToLibcall(LoadInst *LI);
117     void expandAtomicStoreToLibcall(StoreInst *LI);
118     void expandAtomicRMWToLibcall(AtomicRMWInst *I);
119     void expandAtomicCASToLibcall(AtomicCmpXchgInst *I);
120 
121     friend bool
122     llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
123                                    CreateCmpXchgInstFun CreateCmpXchg);
124   };
125 
126 } // end anonymous namespace
127 
128 char AtomicExpand::ID = 0;
129 
130 char &llvm::AtomicExpandID = AtomicExpand::ID;
131 
132 INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions",
133                 false, false)
134 
135 FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); }
136 
137 // Helper functions to retrieve the size of atomic instructions.
138 static unsigned getAtomicOpSize(LoadInst *LI) {
139   const DataLayout &DL = LI->getModule()->getDataLayout();
140   return DL.getTypeStoreSize(LI->getType());
141 }
142 
143 static unsigned getAtomicOpSize(StoreInst *SI) {
144   const DataLayout &DL = SI->getModule()->getDataLayout();
145   return DL.getTypeStoreSize(SI->getValueOperand()->getType());
146 }
147 
148 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) {
149   const DataLayout &DL = RMWI->getModule()->getDataLayout();
150   return DL.getTypeStoreSize(RMWI->getValOperand()->getType());
151 }
152 
153 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) {
154   const DataLayout &DL = CASI->getModule()->getDataLayout();
155   return DL.getTypeStoreSize(CASI->getCompareOperand()->getType());
156 }
157 
158 // Determine if a particular atomic operation has a supported size,
159 // and is of appropriate alignment, to be passed through for target
160 // lowering. (Versus turning into a __atomic libcall)
161 template <typename Inst>
162 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) {
163   unsigned Size = getAtomicOpSize(I);
164   Align Alignment = I->getAlign();
165   return Alignment >= Size &&
166          Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8;
167 }
168 
169 bool AtomicExpand::runOnFunction(Function &F) {
170   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
171   if (!TPC)
172     return false;
173 
174   auto &TM = TPC->getTM<TargetMachine>();
175   if (!TM.getSubtargetImpl(F)->enableAtomicExpand())
176     return false;
177   TLI = TM.getSubtargetImpl(F)->getTargetLowering();
178 
179   SmallVector<Instruction *, 1> AtomicInsts;
180 
181   // Changing control-flow while iterating through it is a bad idea, so gather a
182   // list of all atomic instructions before we start.
183   for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
184     Instruction *I = &*II;
185     if (I->isAtomic() && !isa<FenceInst>(I))
186       AtomicInsts.push_back(I);
187   }
188 
189   bool MadeChange = false;
190   for (auto I : AtomicInsts) {
191     auto LI = dyn_cast<LoadInst>(I);
192     auto SI = dyn_cast<StoreInst>(I);
193     auto RMWI = dyn_cast<AtomicRMWInst>(I);
194     auto CASI = dyn_cast<AtomicCmpXchgInst>(I);
195     assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction");
196 
197     // If the Size/Alignment is not supported, replace with a libcall.
198     if (LI) {
199       if (!atomicSizeSupported(TLI, LI)) {
200         expandAtomicLoadToLibcall(LI);
201         MadeChange = true;
202         continue;
203       }
204     } else if (SI) {
205       if (!atomicSizeSupported(TLI, SI)) {
206         expandAtomicStoreToLibcall(SI);
207         MadeChange = true;
208         continue;
209       }
210     } else if (RMWI) {
211       if (!atomicSizeSupported(TLI, RMWI)) {
212         expandAtomicRMWToLibcall(RMWI);
213         MadeChange = true;
214         continue;
215       }
216     } else if (CASI) {
217       if (!atomicSizeSupported(TLI, CASI)) {
218         expandAtomicCASToLibcall(CASI);
219         MadeChange = true;
220         continue;
221       }
222     }
223 
224     if (TLI->shouldInsertFencesForAtomic(I)) {
225       auto FenceOrdering = AtomicOrdering::Monotonic;
226       if (LI && isAcquireOrStronger(LI->getOrdering())) {
227         FenceOrdering = LI->getOrdering();
228         LI->setOrdering(AtomicOrdering::Monotonic);
229       } else if (SI && isReleaseOrStronger(SI->getOrdering())) {
230         FenceOrdering = SI->getOrdering();
231         SI->setOrdering(AtomicOrdering::Monotonic);
232       } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) ||
233                           isAcquireOrStronger(RMWI->getOrdering()))) {
234         FenceOrdering = RMWI->getOrdering();
235         RMWI->setOrdering(AtomicOrdering::Monotonic);
236       } else if (CASI &&
237                  TLI->shouldExpandAtomicCmpXchgInIR(CASI) ==
238                      TargetLoweringBase::AtomicExpansionKind::None &&
239                  (isReleaseOrStronger(CASI->getSuccessOrdering()) ||
240                   isAcquireOrStronger(CASI->getSuccessOrdering()) ||
241                   isAcquireOrStronger(CASI->getFailureOrdering()))) {
242         // If a compare and swap is lowered to LL/SC, we can do smarter fence
243         // insertion, with a stronger one on the success path than on the
244         // failure path. As a result, fence insertion is directly done by
245         // expandAtomicCmpXchg in that case.
246         FenceOrdering = CASI->getMergedOrdering();
247         CASI->setSuccessOrdering(AtomicOrdering::Monotonic);
248         CASI->setFailureOrdering(AtomicOrdering::Monotonic);
249       }
250 
251       if (FenceOrdering != AtomicOrdering::Monotonic) {
252         MadeChange |= bracketInstWithFences(I, FenceOrdering);
253       }
254     }
255 
256     if (LI) {
257       if (LI->getType()->isFloatingPointTy()) {
258         // TODO: add a TLI hook to control this so that each target can
259         // convert to lowering the original type one at a time.
260         LI = convertAtomicLoadToIntegerType(LI);
261         assert(LI->getType()->isIntegerTy() && "invariant broken");
262         MadeChange = true;
263       }
264 
265       MadeChange |= tryExpandAtomicLoad(LI);
266     } else if (SI) {
267       if (SI->getValueOperand()->getType()->isFloatingPointTy()) {
268         // TODO: add a TLI hook to control this so that each target can
269         // convert to lowering the original type one at a time.
270         SI = convertAtomicStoreToIntegerType(SI);
271         assert(SI->getValueOperand()->getType()->isIntegerTy() &&
272                "invariant broken");
273         MadeChange = true;
274       }
275 
276       if (TLI->shouldExpandAtomicStoreInIR(SI))
277         MadeChange |= expandAtomicStore(SI);
278     } else if (RMWI) {
279       // There are two different ways of expanding RMW instructions:
280       // - into a load if it is idempotent
281       // - into a Cmpxchg/LL-SC loop otherwise
282       // we try them in that order.
283 
284       if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) {
285         MadeChange = true;
286       } else {
287         AtomicRMWInst::BinOp Op = RMWI->getOperation();
288         if (Op == AtomicRMWInst::Xchg &&
289             RMWI->getValOperand()->getType()->isFloatingPointTy()) {
290           // TODO: add a TLI hook to control this so that each target can
291           // convert to lowering the original type one at a time.
292           RMWI = convertAtomicXchgToIntegerType(RMWI);
293           assert(RMWI->getValOperand()->getType()->isIntegerTy() &&
294                  "invariant broken");
295           MadeChange = true;
296         }
297         unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
298         unsigned ValueSize = getAtomicOpSize(RMWI);
299         if (ValueSize < MinCASSize &&
300             (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
301              Op == AtomicRMWInst::And)) {
302           RMWI = widenPartwordAtomicRMW(RMWI);
303           MadeChange = true;
304         }
305 
306         MadeChange |= tryExpandAtomicRMW(RMWI);
307       }
308     } else if (CASI) {
309       // TODO: when we're ready to make the change at the IR level, we can
310       // extend convertCmpXchgToInteger for floating point too.
311       assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() &&
312              "unimplemented - floating point not legal at IR level");
313       if (CASI->getCompareOperand()->getType()->isPointerTy() ) {
314         // TODO: add a TLI hook to control this so that each target can
315         // convert to lowering the original type one at a time.
316         CASI = convertCmpXchgToIntegerType(CASI);
317         assert(CASI->getCompareOperand()->getType()->isIntegerTy() &&
318                "invariant broken");
319         MadeChange = true;
320       }
321 
322       MadeChange |= tryExpandAtomicCmpXchg(CASI);
323     }
324   }
325   return MadeChange;
326 }
327 
328 bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) {
329   IRBuilder<> Builder(I);
330 
331   auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order);
332 
333   auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order);
334   // We have a guard here because not every atomic operation generates a
335   // trailing fence.
336   if (TrailingFence)
337     TrailingFence->moveAfter(I);
338 
339   return (LeadingFence || TrailingFence);
340 }
341 
342 /// Get the iX type with the same bitwidth as T.
343 IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T,
344                                                        const DataLayout &DL) {
345   EVT VT = TLI->getMemValueType(DL, T);
346   unsigned BitWidth = VT.getStoreSizeInBits();
347   assert(BitWidth == VT.getSizeInBits() && "must be a power of two");
348   return IntegerType::get(T->getContext(), BitWidth);
349 }
350 
351 /// Convert an atomic load of a non-integral type to an integer load of the
352 /// equivalent bitwidth.  See the function comment on
353 /// convertAtomicStoreToIntegerType for background.
354 LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) {
355   auto *M = LI->getModule();
356   Type *NewTy = getCorrespondingIntegerType(LI->getType(),
357                                             M->getDataLayout());
358 
359   IRBuilder<> Builder(LI);
360 
361   Value *Addr = LI->getPointerOperand();
362   Type *PT = PointerType::get(NewTy,
363                               Addr->getType()->getPointerAddressSpace());
364   Value *NewAddr = Builder.CreateBitCast(Addr, PT);
365 
366   auto *NewLI = Builder.CreateLoad(NewTy, NewAddr);
367   NewLI->setAlignment(LI->getAlign());
368   NewLI->setVolatile(LI->isVolatile());
369   NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID());
370   LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n");
371 
372   Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType());
373   LI->replaceAllUsesWith(NewVal);
374   LI->eraseFromParent();
375   return NewLI;
376 }
377 
378 AtomicRMWInst *
379 AtomicExpand::convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI) {
380   auto *M = RMWI->getModule();
381   Type *NewTy =
382       getCorrespondingIntegerType(RMWI->getType(), M->getDataLayout());
383 
384   IRBuilder<> Builder(RMWI);
385 
386   Value *Addr = RMWI->getPointerOperand();
387   Value *Val = RMWI->getValOperand();
388   Type *PT = PointerType::get(NewTy, RMWI->getPointerAddressSpace());
389   Value *NewAddr = Builder.CreateBitCast(Addr, PT);
390   Value *NewVal = Builder.CreateBitCast(Val, NewTy);
391 
392   auto *NewRMWI =
393       Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, NewAddr, NewVal,
394                               RMWI->getAlign(), RMWI->getOrdering());
395   NewRMWI->setVolatile(RMWI->isVolatile());
396   LLVM_DEBUG(dbgs() << "Replaced " << *RMWI << " with " << *NewRMWI << "\n");
397 
398   Value *NewRVal = Builder.CreateBitCast(NewRMWI, RMWI->getType());
399   RMWI->replaceAllUsesWith(NewRVal);
400   RMWI->eraseFromParent();
401   return NewRMWI;
402 }
403 
404 bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) {
405   switch (TLI->shouldExpandAtomicLoadInIR(LI)) {
406   case TargetLoweringBase::AtomicExpansionKind::None:
407     return false;
408   case TargetLoweringBase::AtomicExpansionKind::LLSC:
409     expandAtomicOpToLLSC(
410         LI, LI->getType(), LI->getPointerOperand(), LI->getAlign(),
411         LI->getOrdering(),
412         [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; });
413     return true;
414   case TargetLoweringBase::AtomicExpansionKind::LLOnly:
415     return expandAtomicLoadToLL(LI);
416   case TargetLoweringBase::AtomicExpansionKind::CmpXChg:
417     return expandAtomicLoadToCmpXchg(LI);
418   default:
419     llvm_unreachable("Unhandled case in tryExpandAtomicLoad");
420   }
421 }
422 
423 bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) {
424   IRBuilder<> Builder(LI);
425 
426   // On some architectures, load-linked instructions are atomic for larger
427   // sizes than normal loads. For example, the only 64-bit load guaranteed
428   // to be single-copy atomic by ARM is an ldrexd (A3.5.3).
429   Value *Val = TLI->emitLoadLinked(Builder, LI->getType(),
430                                    LI->getPointerOperand(), LI->getOrdering());
431   TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
432 
433   LI->replaceAllUsesWith(Val);
434   LI->eraseFromParent();
435 
436   return true;
437 }
438 
439 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) {
440   IRBuilder<> Builder(LI);
441   AtomicOrdering Order = LI->getOrdering();
442   if (Order == AtomicOrdering::Unordered)
443     Order = AtomicOrdering::Monotonic;
444 
445   Value *Addr = LI->getPointerOperand();
446   Type *Ty = LI->getType();
447   Constant *DummyVal = Constant::getNullValue(Ty);
448 
449   Value *Pair = Builder.CreateAtomicCmpXchg(
450       Addr, DummyVal, DummyVal, LI->getAlign(), Order,
451       AtomicCmpXchgInst::getStrongestFailureOrdering(Order));
452   Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded");
453 
454   LI->replaceAllUsesWith(Loaded);
455   LI->eraseFromParent();
456 
457   return true;
458 }
459 
460 /// Convert an atomic store of a non-integral type to an integer store of the
461 /// equivalent bitwidth.  We used to not support floating point or vector
462 /// atomics in the IR at all.  The backends learned to deal with the bitcast
463 /// idiom because that was the only way of expressing the notion of a atomic
464 /// float or vector store.  The long term plan is to teach each backend to
465 /// instruction select from the original atomic store, but as a migration
466 /// mechanism, we convert back to the old format which the backends understand.
467 /// Each backend will need individual work to recognize the new format.
468 StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) {
469   IRBuilder<> Builder(SI);
470   auto *M = SI->getModule();
471   Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(),
472                                             M->getDataLayout());
473   Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy);
474 
475   Value *Addr = SI->getPointerOperand();
476   Type *PT = PointerType::get(NewTy,
477                               Addr->getType()->getPointerAddressSpace());
478   Value *NewAddr = Builder.CreateBitCast(Addr, PT);
479 
480   StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr);
481   NewSI->setAlignment(SI->getAlign());
482   NewSI->setVolatile(SI->isVolatile());
483   NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID());
484   LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n");
485   SI->eraseFromParent();
486   return NewSI;
487 }
488 
489 bool AtomicExpand::expandAtomicStore(StoreInst *SI) {
490   // This function is only called on atomic stores that are too large to be
491   // atomic if implemented as a native store. So we replace them by an
492   // atomic swap, that can be implemented for example as a ldrex/strex on ARM
493   // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes.
494   // It is the responsibility of the target to only signal expansion via
495   // shouldExpandAtomicRMW in cases where this is required and possible.
496   IRBuilder<> Builder(SI);
497   AtomicRMWInst *AI = Builder.CreateAtomicRMW(
498       AtomicRMWInst::Xchg, SI->getPointerOperand(), SI->getValueOperand(),
499       SI->getAlign(), SI->getOrdering());
500   SI->eraseFromParent();
501 
502   // Now we have an appropriate swap instruction, lower it as usual.
503   return tryExpandAtomicRMW(AI);
504 }
505 
506 static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr,
507                                  Value *Loaded, Value *NewVal, Align AddrAlign,
508                                  AtomicOrdering MemOpOrder, SyncScope::ID SSID,
509                                  Value *&Success, Value *&NewLoaded) {
510   Type *OrigTy = NewVal->getType();
511 
512   // This code can go away when cmpxchg supports FP types.
513   bool NeedBitcast = OrigTy->isFloatingPointTy();
514   if (NeedBitcast) {
515     IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits());
516     unsigned AS = Addr->getType()->getPointerAddressSpace();
517     Addr = Builder.CreateBitCast(Addr, IntTy->getPointerTo(AS));
518     NewVal = Builder.CreateBitCast(NewVal, IntTy);
519     Loaded = Builder.CreateBitCast(Loaded, IntTy);
520   }
521 
522   Value *Pair = Builder.CreateAtomicCmpXchg(
523       Addr, Loaded, NewVal, AddrAlign, MemOpOrder,
524       AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID);
525   Success = Builder.CreateExtractValue(Pair, 1, "success");
526   NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
527 
528   if (NeedBitcast)
529     NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy);
530 }
531 
532 /// Emit IR to implement the given atomicrmw operation on values in registers,
533 /// returning the new value.
534 static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder,
535                               Value *Loaded, Value *Inc) {
536   Value *NewVal;
537   switch (Op) {
538   case AtomicRMWInst::Xchg:
539     return Inc;
540   case AtomicRMWInst::Add:
541     return Builder.CreateAdd(Loaded, Inc, "new");
542   case AtomicRMWInst::Sub:
543     return Builder.CreateSub(Loaded, Inc, "new");
544   case AtomicRMWInst::And:
545     return Builder.CreateAnd(Loaded, Inc, "new");
546   case AtomicRMWInst::Nand:
547     return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new");
548   case AtomicRMWInst::Or:
549     return Builder.CreateOr(Loaded, Inc, "new");
550   case AtomicRMWInst::Xor:
551     return Builder.CreateXor(Loaded, Inc, "new");
552   case AtomicRMWInst::Max:
553     NewVal = Builder.CreateICmpSGT(Loaded, Inc);
554     return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
555   case AtomicRMWInst::Min:
556     NewVal = Builder.CreateICmpSLE(Loaded, Inc);
557     return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
558   case AtomicRMWInst::UMax:
559     NewVal = Builder.CreateICmpUGT(Loaded, Inc);
560     return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
561   case AtomicRMWInst::UMin:
562     NewVal = Builder.CreateICmpULE(Loaded, Inc);
563     return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
564   case AtomicRMWInst::FAdd:
565     return Builder.CreateFAdd(Loaded, Inc, "new");
566   case AtomicRMWInst::FSub:
567     return Builder.CreateFSub(Loaded, Inc, "new");
568   default:
569     llvm_unreachable("Unknown atomic op");
570   }
571 }
572 
573 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) {
574   LLVMContext &Ctx = AI->getModule()->getContext();
575   TargetLowering::AtomicExpansionKind Kind = TLI->shouldExpandAtomicRMWInIR(AI);
576   switch (Kind) {
577   case TargetLoweringBase::AtomicExpansionKind::None:
578     return false;
579   case TargetLoweringBase::AtomicExpansionKind::LLSC: {
580     unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
581     unsigned ValueSize = getAtomicOpSize(AI);
582     if (ValueSize < MinCASSize) {
583       expandPartwordAtomicRMW(AI,
584                               TargetLoweringBase::AtomicExpansionKind::LLSC);
585     } else {
586       auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) {
587         return performAtomicOp(AI->getOperation(), Builder, Loaded,
588                                AI->getValOperand());
589       };
590       expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(),
591                            AI->getAlign(), AI->getOrdering(), PerformOp);
592     }
593     return true;
594   }
595   case TargetLoweringBase::AtomicExpansionKind::CmpXChg: {
596     unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
597     unsigned ValueSize = getAtomicOpSize(AI);
598     if (ValueSize < MinCASSize) {
599       // TODO: Handle atomicrmw fadd/fsub
600       if (AI->getType()->isFloatingPointTy())
601         return false;
602 
603       expandPartwordAtomicRMW(AI,
604                               TargetLoweringBase::AtomicExpansionKind::CmpXChg);
605     } else {
606       SmallVector<StringRef> SSNs;
607       Ctx.getSyncScopeNames(SSNs);
608       auto MemScope = SSNs[AI->getSyncScopeID()].empty()
609                           ? "system"
610                           : SSNs[AI->getSyncScopeID()];
611       OptimizationRemarkEmitter ORE(AI->getFunction());
612       ORE.emit([&]() {
613         return OptimizationRemark(DEBUG_TYPE, "Passed", AI)
614                << "A compare and swap loop was generated for an atomic "
615                << AI->getOperationName(AI->getOperation()) << " operation at "
616                << MemScope << " memory scope";
617       });
618       expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun);
619     }
620     return true;
621   }
622   case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: {
623     expandAtomicRMWToMaskedIntrinsic(AI);
624     return true;
625   }
626   default:
627     llvm_unreachable("Unhandled case in tryExpandAtomicRMW");
628   }
629 }
630 
631 namespace {
632 
633 struct PartwordMaskValues {
634   // These three fields are guaranteed to be set by createMaskInstrs.
635   Type *WordType = nullptr;
636   Type *ValueType = nullptr;
637   Value *AlignedAddr = nullptr;
638   Align AlignedAddrAlignment;
639   // The remaining fields can be null.
640   Value *ShiftAmt = nullptr;
641   Value *Mask = nullptr;
642   Value *Inv_Mask = nullptr;
643 };
644 
645 LLVM_ATTRIBUTE_UNUSED
646 raw_ostream &operator<<(raw_ostream &O, const PartwordMaskValues &PMV) {
647   auto PrintObj = [&O](auto *V) {
648     if (V)
649       O << *V;
650     else
651       O << "nullptr";
652     O << '\n';
653   };
654   O << "PartwordMaskValues {\n";
655   O << "  WordType: ";
656   PrintObj(PMV.WordType);
657   O << "  ValueType: ";
658   PrintObj(PMV.ValueType);
659   O << "  AlignedAddr: ";
660   PrintObj(PMV.AlignedAddr);
661   O << "  AlignedAddrAlignment: " << PMV.AlignedAddrAlignment.value() << '\n';
662   O << "  ShiftAmt: ";
663   PrintObj(PMV.ShiftAmt);
664   O << "  Mask: ";
665   PrintObj(PMV.Mask);
666   O << "  Inv_Mask: ";
667   PrintObj(PMV.Inv_Mask);
668   O << "}\n";
669   return O;
670 }
671 
672 } // end anonymous namespace
673 
674 /// This is a helper function which builds instructions to provide
675 /// values necessary for partword atomic operations. It takes an
676 /// incoming address, Addr, and ValueType, and constructs the address,
677 /// shift-amounts and masks needed to work with a larger value of size
678 /// WordSize.
679 ///
680 /// AlignedAddr: Addr rounded down to a multiple of WordSize
681 ///
682 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded
683 ///           from AlignAddr for it to have the same value as if
684 ///           ValueType was loaded from Addr.
685 ///
686 /// Mask: Value to mask with the value loaded from AlignAddr to
687 ///       include only the part that would've been loaded from Addr.
688 ///
689 /// Inv_Mask: The inverse of Mask.
690 static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I,
691                                            Type *ValueType, Value *Addr,
692                                            Align AddrAlign,
693                                            unsigned MinWordSize) {
694   PartwordMaskValues PMV;
695 
696   Module *M = I->getModule();
697   LLVMContext &Ctx = M->getContext();
698   const DataLayout &DL = M->getDataLayout();
699   unsigned ValueSize = DL.getTypeStoreSize(ValueType);
700 
701   PMV.ValueType = ValueType;
702   PMV.WordType = MinWordSize > ValueSize ? Type::getIntNTy(Ctx, MinWordSize * 8)
703                                          : ValueType;
704   if (PMV.ValueType == PMV.WordType) {
705     PMV.AlignedAddr = Addr;
706     PMV.AlignedAddrAlignment = AddrAlign;
707     PMV.ShiftAmt = ConstantInt::get(PMV.ValueType, 0);
708     PMV.Mask = ConstantInt::get(PMV.ValueType, ~0);
709     return PMV;
710   }
711 
712   assert(ValueSize < MinWordSize);
713 
714   Type *WordPtrType =
715       PMV.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace());
716 
717   // TODO: we could skip some of this if AddrAlign >= MinWordSize.
718   Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx));
719   PMV.AlignedAddr = Builder.CreateIntToPtr(
720       Builder.CreateAnd(AddrInt, ~(uint64_t)(MinWordSize - 1)), WordPtrType,
721       "AlignedAddr");
722   PMV.AlignedAddrAlignment = Align(MinWordSize);
723 
724   Value *PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1, "PtrLSB");
725   if (DL.isLittleEndian()) {
726     // turn bytes into bits
727     PMV.ShiftAmt = Builder.CreateShl(PtrLSB, 3);
728   } else {
729     // turn bytes into bits, and count from the other side.
730     PMV.ShiftAmt = Builder.CreateShl(
731         Builder.CreateXor(PtrLSB, MinWordSize - ValueSize), 3);
732   }
733 
734   PMV.ShiftAmt = Builder.CreateTrunc(PMV.ShiftAmt, PMV.WordType, "ShiftAmt");
735   PMV.Mask = Builder.CreateShl(
736       ConstantInt::get(PMV.WordType, (1 << (ValueSize * 8)) - 1), PMV.ShiftAmt,
737       "Mask");
738   PMV.Inv_Mask = Builder.CreateNot(PMV.Mask, "Inv_Mask");
739   return PMV;
740 }
741 
742 static Value *extractMaskedValue(IRBuilder<> &Builder, Value *WideWord,
743                                  const PartwordMaskValues &PMV) {
744   assert(WideWord->getType() == PMV.WordType && "Widened type mismatch");
745   if (PMV.WordType == PMV.ValueType)
746     return WideWord;
747 
748   Value *Shift = Builder.CreateLShr(WideWord, PMV.ShiftAmt, "shifted");
749   Value *Trunc = Builder.CreateTrunc(Shift, PMV.ValueType, "extracted");
750   return Trunc;
751 }
752 
753 static Value *insertMaskedValue(IRBuilder<> &Builder, Value *WideWord,
754                                 Value *Updated, const PartwordMaskValues &PMV) {
755   assert(WideWord->getType() == PMV.WordType && "Widened type mismatch");
756   assert(Updated->getType() == PMV.ValueType && "Value type mismatch");
757   if (PMV.WordType == PMV.ValueType)
758     return Updated;
759 
760   Value *ZExt = Builder.CreateZExt(Updated, PMV.WordType, "extended");
761   Value *Shift =
762       Builder.CreateShl(ZExt, PMV.ShiftAmt, "shifted", /*HasNUW*/ true);
763   Value *And = Builder.CreateAnd(WideWord, PMV.Inv_Mask, "unmasked");
764   Value *Or = Builder.CreateOr(And, Shift, "inserted");
765   return Or;
766 }
767 
768 /// Emit IR to implement a masked version of a given atomicrmw
769 /// operation. (That is, only the bits under the Mask should be
770 /// affected by the operation)
771 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op,
772                                     IRBuilder<> &Builder, Value *Loaded,
773                                     Value *Shifted_Inc, Value *Inc,
774                                     const PartwordMaskValues &PMV) {
775   // TODO: update to use
776   // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order
777   // to merge bits from two values without requiring PMV.Inv_Mask.
778   switch (Op) {
779   case AtomicRMWInst::Xchg: {
780     Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
781     Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc);
782     return FinalVal;
783   }
784   case AtomicRMWInst::Or:
785   case AtomicRMWInst::Xor:
786   case AtomicRMWInst::And:
787     llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW");
788   case AtomicRMWInst::Add:
789   case AtomicRMWInst::Sub:
790   case AtomicRMWInst::Nand: {
791     // The other arithmetic ops need to be masked into place.
792     Value *NewVal = performAtomicOp(Op, Builder, Loaded, Shifted_Inc);
793     Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask);
794     Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
795     Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked);
796     return FinalVal;
797   }
798   case AtomicRMWInst::Max:
799   case AtomicRMWInst::Min:
800   case AtomicRMWInst::UMax:
801   case AtomicRMWInst::UMin: {
802     // Finally, comparison ops will operate on the full value, so
803     // truncate down to the original size, and expand out again after
804     // doing the operation.
805     Value *Loaded_Extract = extractMaskedValue(Builder, Loaded, PMV);
806     Value *NewVal = performAtomicOp(Op, Builder, Loaded_Extract, Inc);
807     Value *FinalVal = insertMaskedValue(Builder, Loaded, NewVal, PMV);
808     return FinalVal;
809   }
810   default:
811     llvm_unreachable("Unknown atomic op");
812   }
813 }
814 
815 /// Expand a sub-word atomicrmw operation into an appropriate
816 /// word-sized operation.
817 ///
818 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same
819 /// way as a typical atomicrmw expansion. The only difference here is
820 /// that the operation inside of the loop may operate upon only a
821 /// part of the value.
822 void AtomicExpand::expandPartwordAtomicRMW(
823     AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) {
824   AtomicOrdering MemOpOrder = AI->getOrdering();
825   SyncScope::ID SSID = AI->getSyncScopeID();
826 
827   IRBuilder<> Builder(AI);
828 
829   PartwordMaskValues PMV =
830       createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
831                        AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
832 
833   Value *ValOperand_Shifted =
834       Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
835                         PMV.ShiftAmt, "ValOperand_Shifted");
836 
837   auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) {
838     return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded,
839                                  ValOperand_Shifted, AI->getValOperand(), PMV);
840   };
841 
842   Value *OldResult;
843   if (ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg) {
844     OldResult = insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr,
845                                      PMV.AlignedAddrAlignment, MemOpOrder,
846                                      SSID, PerformPartwordOp,
847                                      createCmpXchgInstFun);
848   } else {
849     assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::LLSC);
850     OldResult = insertRMWLLSCLoop(Builder, PMV.WordType, PMV.AlignedAddr,
851                                   PMV.AlignedAddrAlignment, MemOpOrder,
852                                   PerformPartwordOp);
853   }
854 
855   Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV);
856   AI->replaceAllUsesWith(FinalOldResult);
857   AI->eraseFromParent();
858 }
859 
860 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width.
861 AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) {
862   IRBuilder<> Builder(AI);
863   AtomicRMWInst::BinOp Op = AI->getOperation();
864 
865   assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
866           Op == AtomicRMWInst::And) &&
867          "Unable to widen operation");
868 
869   PartwordMaskValues PMV =
870       createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
871                        AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
872 
873   Value *ValOperand_Shifted =
874       Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
875                         PMV.ShiftAmt, "ValOperand_Shifted");
876 
877   Value *NewOperand;
878 
879   if (Op == AtomicRMWInst::And)
880     NewOperand =
881         Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand");
882   else
883     NewOperand = ValOperand_Shifted;
884 
885   AtomicRMWInst *NewAI =
886       Builder.CreateAtomicRMW(Op, PMV.AlignedAddr, NewOperand,
887                               PMV.AlignedAddrAlignment, AI->getOrdering());
888 
889   Value *FinalOldResult = extractMaskedValue(Builder, NewAI, PMV);
890   AI->replaceAllUsesWith(FinalOldResult);
891   AI->eraseFromParent();
892   return NewAI;
893 }
894 
895 bool AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) {
896   // The basic idea here is that we're expanding a cmpxchg of a
897   // smaller memory size up to a word-sized cmpxchg. To do this, we
898   // need to add a retry-loop for strong cmpxchg, so that
899   // modifications to other parts of the word don't cause a spurious
900   // failure.
901 
902   // This generates code like the following:
903   //     [[Setup mask values PMV.*]]
904   //     %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt
905   //     %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt
906   //     %InitLoaded = load i32* %addr
907   //     %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask
908   //     br partword.cmpxchg.loop
909   // partword.cmpxchg.loop:
910   //     %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ],
911   //        [ %OldVal_MaskOut, %partword.cmpxchg.failure ]
912   //     %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted
913   //     %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted
914   //     %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp,
915   //        i32 %FullWord_NewVal success_ordering failure_ordering
916   //     %OldVal = extractvalue { i32, i1 } %NewCI, 0
917   //     %Success = extractvalue { i32, i1 } %NewCI, 1
918   //     br i1 %Success, label %partword.cmpxchg.end,
919   //        label %partword.cmpxchg.failure
920   // partword.cmpxchg.failure:
921   //     %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask
922   //     %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut
923   //     br i1 %ShouldContinue, label %partword.cmpxchg.loop,
924   //         label %partword.cmpxchg.end
925   // partword.cmpxchg.end:
926   //    %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt
927   //    %FinalOldVal = trunc i32 %tmp1 to i8
928   //    %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0
929   //    %Res = insertvalue { i8, i1 } %25, i1 %Success, 1
930 
931   Value *Addr = CI->getPointerOperand();
932   Value *Cmp = CI->getCompareOperand();
933   Value *NewVal = CI->getNewValOperand();
934 
935   BasicBlock *BB = CI->getParent();
936   Function *F = BB->getParent();
937   IRBuilder<> Builder(CI);
938   LLVMContext &Ctx = Builder.getContext();
939 
940   BasicBlock *EndBB =
941       BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end");
942   auto FailureBB =
943       BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB);
944   auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB);
945 
946   // The split call above "helpfully" added a branch at the end of BB
947   // (to the wrong place).
948   std::prev(BB->end())->eraseFromParent();
949   Builder.SetInsertPoint(BB);
950 
951   PartwordMaskValues PMV =
952       createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr,
953                        CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
954 
955   // Shift the incoming values over, into the right location in the word.
956   Value *NewVal_Shifted =
957       Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt);
958   Value *Cmp_Shifted =
959       Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt);
960 
961   // Load the entire current word, and mask into place the expected and new
962   // values
963   LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr);
964   InitLoaded->setVolatile(CI->isVolatile());
965   Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask);
966   Builder.CreateBr(LoopBB);
967 
968   // partword.cmpxchg.loop:
969   Builder.SetInsertPoint(LoopBB);
970   PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2);
971   Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB);
972 
973   // Mask/Or the expected and new values into place in the loaded word.
974   Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted);
975   Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted);
976   AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg(
977       PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, PMV.AlignedAddrAlignment,
978       CI->getSuccessOrdering(), CI->getFailureOrdering(), CI->getSyncScopeID());
979   NewCI->setVolatile(CI->isVolatile());
980   // When we're building a strong cmpxchg, we need a loop, so you
981   // might think we could use a weak cmpxchg inside. But, using strong
982   // allows the below comparison for ShouldContinue, and we're
983   // expecting the underlying cmpxchg to be a machine instruction,
984   // which is strong anyways.
985   NewCI->setWeak(CI->isWeak());
986 
987   Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
988   Value *Success = Builder.CreateExtractValue(NewCI, 1);
989 
990   if (CI->isWeak())
991     Builder.CreateBr(EndBB);
992   else
993     Builder.CreateCondBr(Success, EndBB, FailureBB);
994 
995   // partword.cmpxchg.failure:
996   Builder.SetInsertPoint(FailureBB);
997   // Upon failure, verify that the masked-out part of the loaded value
998   // has been modified.  If it didn't, abort the cmpxchg, since the
999   // masked-in part must've.
1000   Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask);
1001   Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut);
1002   Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB);
1003 
1004   // Add the second value to the phi from above
1005   Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB);
1006 
1007   // partword.cmpxchg.end:
1008   Builder.SetInsertPoint(CI);
1009 
1010   Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV);
1011   Value *Res = UndefValue::get(CI->getType());
1012   Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
1013   Res = Builder.CreateInsertValue(Res, Success, 1);
1014 
1015   CI->replaceAllUsesWith(Res);
1016   CI->eraseFromParent();
1017   return true;
1018 }
1019 
1020 void AtomicExpand::expandAtomicOpToLLSC(
1021     Instruction *I, Type *ResultType, Value *Addr, Align AddrAlign,
1022     AtomicOrdering MemOpOrder,
1023     function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
1024   IRBuilder<> Builder(I);
1025   Value *Loaded = insertRMWLLSCLoop(Builder, ResultType, Addr, AddrAlign,
1026                                     MemOpOrder, PerformOp);
1027 
1028   I->replaceAllUsesWith(Loaded);
1029   I->eraseFromParent();
1030 }
1031 
1032 void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) {
1033   IRBuilder<> Builder(AI);
1034 
1035   PartwordMaskValues PMV =
1036       createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
1037                        AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
1038 
1039   // The value operand must be sign-extended for signed min/max so that the
1040   // target's signed comparison instructions can be used. Otherwise, just
1041   // zero-ext.
1042   Instruction::CastOps CastOp = Instruction::ZExt;
1043   AtomicRMWInst::BinOp RMWOp = AI->getOperation();
1044   if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min)
1045     CastOp = Instruction::SExt;
1046 
1047   Value *ValOperand_Shifted = Builder.CreateShl(
1048       Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType),
1049       PMV.ShiftAmt, "ValOperand_Shifted");
1050   Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic(
1051       Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt,
1052       AI->getOrdering());
1053   Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV);
1054   AI->replaceAllUsesWith(FinalOldResult);
1055   AI->eraseFromParent();
1056 }
1057 
1058 void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI) {
1059   IRBuilder<> Builder(CI);
1060 
1061   PartwordMaskValues PMV = createMaskInstrs(
1062       Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(),
1063       CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
1064 
1065   Value *CmpVal_Shifted = Builder.CreateShl(
1066       Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt,
1067       "CmpVal_Shifted");
1068   Value *NewVal_Shifted = Builder.CreateShl(
1069       Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt,
1070       "NewVal_Shifted");
1071   Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic(
1072       Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask,
1073       CI->getMergedOrdering());
1074   Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV);
1075   Value *Res = UndefValue::get(CI->getType());
1076   Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
1077   Value *Success = Builder.CreateICmpEQ(
1078       CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success");
1079   Res = Builder.CreateInsertValue(Res, Success, 1);
1080 
1081   CI->replaceAllUsesWith(Res);
1082   CI->eraseFromParent();
1083 }
1084 
1085 Value *AtomicExpand::insertRMWLLSCLoop(
1086     IRBuilder<> &Builder, Type *ResultTy, Value *Addr, Align AddrAlign,
1087     AtomicOrdering MemOpOrder,
1088     function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
1089   LLVMContext &Ctx = Builder.getContext();
1090   BasicBlock *BB = Builder.GetInsertBlock();
1091   Function *F = BB->getParent();
1092 
1093   assert(AddrAlign >=
1094              F->getParent()->getDataLayout().getTypeStoreSize(ResultTy) &&
1095          "Expected at least natural alignment at this point.");
1096 
1097   // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1098   //
1099   // The standard expansion we produce is:
1100   //     [...]
1101   // atomicrmw.start:
1102   //     %loaded = @load.linked(%addr)
1103   //     %new = some_op iN %loaded, %incr
1104   //     %stored = @store_conditional(%new, %addr)
1105   //     %try_again = icmp i32 ne %stored, 0
1106   //     br i1 %try_again, label %loop, label %atomicrmw.end
1107   // atomicrmw.end:
1108   //     [...]
1109   BasicBlock *ExitBB =
1110       BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
1111   BasicBlock *LoopBB =  BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
1112 
1113   // The split call above "helpfully" added a branch at the end of BB (to the
1114   // wrong place).
1115   std::prev(BB->end())->eraseFromParent();
1116   Builder.SetInsertPoint(BB);
1117   Builder.CreateBr(LoopBB);
1118 
1119   // Start the main loop block now that we've taken care of the preliminaries.
1120   Builder.SetInsertPoint(LoopBB);
1121   Value *Loaded = TLI->emitLoadLinked(Builder, ResultTy, Addr, MemOpOrder);
1122 
1123   Value *NewVal = PerformOp(Builder, Loaded);
1124 
1125   Value *StoreSuccess =
1126       TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder);
1127   Value *TryAgain = Builder.CreateICmpNE(
1128       StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain");
1129   Builder.CreateCondBr(TryAgain, LoopBB, ExitBB);
1130 
1131   Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1132   return Loaded;
1133 }
1134 
1135 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of
1136 /// the equivalent bitwidth.  We used to not support pointer cmpxchg in the
1137 /// IR.  As a migration step, we convert back to what use to be the standard
1138 /// way to represent a pointer cmpxchg so that we can update backends one by
1139 /// one.
1140 AtomicCmpXchgInst *AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) {
1141   auto *M = CI->getModule();
1142   Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(),
1143                                             M->getDataLayout());
1144 
1145   IRBuilder<> Builder(CI);
1146 
1147   Value *Addr = CI->getPointerOperand();
1148   Type *PT = PointerType::get(NewTy,
1149                               Addr->getType()->getPointerAddressSpace());
1150   Value *NewAddr = Builder.CreateBitCast(Addr, PT);
1151 
1152   Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy);
1153   Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy);
1154 
1155   auto *NewCI = Builder.CreateAtomicCmpXchg(
1156       NewAddr, NewCmp, NewNewVal, CI->getAlign(), CI->getSuccessOrdering(),
1157       CI->getFailureOrdering(), CI->getSyncScopeID());
1158   NewCI->setVolatile(CI->isVolatile());
1159   NewCI->setWeak(CI->isWeak());
1160   LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n");
1161 
1162   Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
1163   Value *Succ = Builder.CreateExtractValue(NewCI, 1);
1164 
1165   OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType());
1166 
1167   Value *Res = UndefValue::get(CI->getType());
1168   Res = Builder.CreateInsertValue(Res, OldVal, 0);
1169   Res = Builder.CreateInsertValue(Res, Succ, 1);
1170 
1171   CI->replaceAllUsesWith(Res);
1172   CI->eraseFromParent();
1173   return NewCI;
1174 }
1175 
1176 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1177   AtomicOrdering SuccessOrder = CI->getSuccessOrdering();
1178   AtomicOrdering FailureOrder = CI->getFailureOrdering();
1179   Value *Addr = CI->getPointerOperand();
1180   BasicBlock *BB = CI->getParent();
1181   Function *F = BB->getParent();
1182   LLVMContext &Ctx = F->getContext();
1183   // If shouldInsertFencesForAtomic() returns true, then the target does not
1184   // want to deal with memory orders, and emitLeading/TrailingFence should take
1185   // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we
1186   // should preserve the ordering.
1187   bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI);
1188   AtomicOrdering MemOpOrder = ShouldInsertFencesForAtomic
1189                                   ? AtomicOrdering::Monotonic
1190                                   : CI->getMergedOrdering();
1191 
1192   // In implementations which use a barrier to achieve release semantics, we can
1193   // delay emitting this barrier until we know a store is actually going to be
1194   // attempted. The cost of this delay is that we need 2 copies of the block
1195   // emitting the load-linked, affecting code size.
1196   //
1197   // Ideally, this logic would be unconditional except for the minsize check
1198   // since in other cases the extra blocks naturally collapse down to the
1199   // minimal loop. Unfortunately, this puts too much stress on later
1200   // optimisations so we avoid emitting the extra logic in those cases too.
1201   bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic &&
1202                            SuccessOrder != AtomicOrdering::Monotonic &&
1203                            SuccessOrder != AtomicOrdering::Acquire &&
1204                            !F->hasMinSize();
1205 
1206   // There's no overhead for sinking the release barrier in a weak cmpxchg, so
1207   // do it even on minsize.
1208   bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak();
1209 
1210   // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord
1211   //
1212   // The full expansion we produce is:
1213   //     [...]
1214   // %aligned.addr = ...
1215   // cmpxchg.start:
1216   //     %unreleasedload = @load.linked(%aligned.addr)
1217   //     %unreleasedload.extract = extract value from %unreleasedload
1218   //     %should_store = icmp eq %unreleasedload.extract, %desired
1219   //     br i1 %should_store, label %cmpxchg.releasingstore,
1220   //                          label %cmpxchg.nostore
1221   // cmpxchg.releasingstore:
1222   //     fence?
1223   //     br label cmpxchg.trystore
1224   // cmpxchg.trystore:
1225   //     %loaded.trystore = phi [%unreleasedload, %cmpxchg.releasingstore],
1226   //                            [%releasedload, %cmpxchg.releasedload]
1227   //     %updated.new = insert %new into %loaded.trystore
1228   //     %stored = @store_conditional(%updated.new, %aligned.addr)
1229   //     %success = icmp eq i32 %stored, 0
1230   //     br i1 %success, label %cmpxchg.success,
1231   //                     label %cmpxchg.releasedload/%cmpxchg.failure
1232   // cmpxchg.releasedload:
1233   //     %releasedload = @load.linked(%aligned.addr)
1234   //     %releasedload.extract = extract value from %releasedload
1235   //     %should_store = icmp eq %releasedload.extract, %desired
1236   //     br i1 %should_store, label %cmpxchg.trystore,
1237   //                          label %cmpxchg.failure
1238   // cmpxchg.success:
1239   //     fence?
1240   //     br label %cmpxchg.end
1241   // cmpxchg.nostore:
1242   //     %loaded.nostore = phi [%unreleasedload, %cmpxchg.start],
1243   //                           [%releasedload,
1244   //                               %cmpxchg.releasedload/%cmpxchg.trystore]
1245   //     @load_linked_fail_balance()?
1246   //     br label %cmpxchg.failure
1247   // cmpxchg.failure:
1248   //     fence?
1249   //     br label %cmpxchg.end
1250   // cmpxchg.end:
1251   //     %loaded.exit = phi [%loaded.nostore, %cmpxchg.failure],
1252   //                        [%loaded.trystore, %cmpxchg.trystore]
1253   //     %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure]
1254   //     %loaded = extract value from %loaded.exit
1255   //     %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0
1256   //     %res = insertvalue { iN, i1 } %restmp, i1 %success, 1
1257   //     [...]
1258   BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end");
1259   auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB);
1260   auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB);
1261   auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB);
1262   auto ReleasedLoadBB =
1263       BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB);
1264   auto TryStoreBB =
1265       BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB);
1266   auto ReleasingStoreBB =
1267       BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB);
1268   auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB);
1269 
1270   // This grabs the DebugLoc from CI
1271   IRBuilder<> Builder(CI);
1272 
1273   // The split call above "helpfully" added a branch at the end of BB (to the
1274   // wrong place), but we might want a fence too. It's easiest to just remove
1275   // the branch entirely.
1276   std::prev(BB->end())->eraseFromParent();
1277   Builder.SetInsertPoint(BB);
1278   if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier)
1279     TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1280 
1281   PartwordMaskValues PMV =
1282       createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr,
1283                        CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
1284   Builder.CreateBr(StartBB);
1285 
1286   // Start the main loop block now that we've taken care of the preliminaries.
1287   Builder.SetInsertPoint(StartBB);
1288   Value *UnreleasedLoad =
1289       TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder);
1290   Value *UnreleasedLoadExtract =
1291       extractMaskedValue(Builder, UnreleasedLoad, PMV);
1292   Value *ShouldStore = Builder.CreateICmpEQ(
1293       UnreleasedLoadExtract, CI->getCompareOperand(), "should_store");
1294 
1295   // If the cmpxchg doesn't actually need any ordering when it fails, we can
1296   // jump straight past that fence instruction (if it exists).
1297   Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB);
1298 
1299   Builder.SetInsertPoint(ReleasingStoreBB);
1300   if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier)
1301     TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1302   Builder.CreateBr(TryStoreBB);
1303 
1304   Builder.SetInsertPoint(TryStoreBB);
1305   PHINode *LoadedTryStore =
1306       Builder.CreatePHI(PMV.WordType, 2, "loaded.trystore");
1307   LoadedTryStore->addIncoming(UnreleasedLoad, ReleasingStoreBB);
1308   Value *NewValueInsert =
1309       insertMaskedValue(Builder, LoadedTryStore, CI->getNewValOperand(), PMV);
1310   Value *StoreSuccess =
1311       TLI->emitStoreConditional(Builder, NewValueInsert, PMV.AlignedAddr,
1312                                 MemOpOrder);
1313   StoreSuccess = Builder.CreateICmpEQ(
1314       StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success");
1315   BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB;
1316   Builder.CreateCondBr(StoreSuccess, SuccessBB,
1317                        CI->isWeak() ? FailureBB : RetryBB);
1318 
1319   Builder.SetInsertPoint(ReleasedLoadBB);
1320   Value *SecondLoad;
1321   if (HasReleasedLoadBB) {
1322     SecondLoad =
1323         TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder);
1324     Value *SecondLoadExtract = extractMaskedValue(Builder, SecondLoad, PMV);
1325     ShouldStore = Builder.CreateICmpEQ(SecondLoadExtract,
1326                                        CI->getCompareOperand(), "should_store");
1327 
1328     // If the cmpxchg doesn't actually need any ordering when it fails, we can
1329     // jump straight past that fence instruction (if it exists).
1330     Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB);
1331     // Update PHI node in TryStoreBB.
1332     LoadedTryStore->addIncoming(SecondLoad, ReleasedLoadBB);
1333   } else
1334     Builder.CreateUnreachable();
1335 
1336   // Make sure later instructions don't get reordered with a fence if
1337   // necessary.
1338   Builder.SetInsertPoint(SuccessBB);
1339   if (ShouldInsertFencesForAtomic)
1340     TLI->emitTrailingFence(Builder, CI, SuccessOrder);
1341   Builder.CreateBr(ExitBB);
1342 
1343   Builder.SetInsertPoint(NoStoreBB);
1344   PHINode *LoadedNoStore =
1345       Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.nostore");
1346   LoadedNoStore->addIncoming(UnreleasedLoad, StartBB);
1347   if (HasReleasedLoadBB)
1348     LoadedNoStore->addIncoming(SecondLoad, ReleasedLoadBB);
1349 
1350   // In the failing case, where we don't execute the store-conditional, the
1351   // target might want to balance out the load-linked with a dedicated
1352   // instruction (e.g., on ARM, clearing the exclusive monitor).
1353   TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
1354   Builder.CreateBr(FailureBB);
1355 
1356   Builder.SetInsertPoint(FailureBB);
1357   PHINode *LoadedFailure =
1358       Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.failure");
1359   LoadedFailure->addIncoming(LoadedNoStore, NoStoreBB);
1360   if (CI->isWeak())
1361     LoadedFailure->addIncoming(LoadedTryStore, TryStoreBB);
1362   if (ShouldInsertFencesForAtomic)
1363     TLI->emitTrailingFence(Builder, CI, FailureOrder);
1364   Builder.CreateBr(ExitBB);
1365 
1366   // Finally, we have control-flow based knowledge of whether the cmpxchg
1367   // succeeded or not. We expose this to later passes by converting any
1368   // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate
1369   // PHI.
1370   Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1371   PHINode *LoadedExit =
1372       Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.exit");
1373   LoadedExit->addIncoming(LoadedTryStore, SuccessBB);
1374   LoadedExit->addIncoming(LoadedFailure, FailureBB);
1375   PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2, "success");
1376   Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB);
1377   Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB);
1378 
1379   // This is the "exit value" from the cmpxchg expansion. It may be of
1380   // a type wider than the one in the cmpxchg instruction.
1381   Value *LoadedFull = LoadedExit;
1382 
1383   Builder.SetInsertPoint(ExitBB, std::next(Success->getIterator()));
1384   Value *Loaded = extractMaskedValue(Builder, LoadedFull, PMV);
1385 
1386   // Look for any users of the cmpxchg that are just comparing the loaded value
1387   // against the desired one, and replace them with the CFG-derived version.
1388   SmallVector<ExtractValueInst *, 2> PrunedInsts;
1389   for (auto User : CI->users()) {
1390     ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User);
1391     if (!EV)
1392       continue;
1393 
1394     assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 &&
1395            "weird extraction from { iN, i1 }");
1396 
1397     if (EV->getIndices()[0] == 0)
1398       EV->replaceAllUsesWith(Loaded);
1399     else
1400       EV->replaceAllUsesWith(Success);
1401 
1402     PrunedInsts.push_back(EV);
1403   }
1404 
1405   // We can remove the instructions now we're no longer iterating through them.
1406   for (auto EV : PrunedInsts)
1407     EV->eraseFromParent();
1408 
1409   if (!CI->use_empty()) {
1410     // Some use of the full struct return that we don't understand has happened,
1411     // so we've got to reconstruct it properly.
1412     Value *Res;
1413     Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0);
1414     Res = Builder.CreateInsertValue(Res, Success, 1);
1415 
1416     CI->replaceAllUsesWith(Res);
1417   }
1418 
1419   CI->eraseFromParent();
1420   return true;
1421 }
1422 
1423 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) {
1424   auto C = dyn_cast<ConstantInt>(RMWI->getValOperand());
1425   if(!C)
1426     return false;
1427 
1428   AtomicRMWInst::BinOp Op = RMWI->getOperation();
1429   switch(Op) {
1430     case AtomicRMWInst::Add:
1431     case AtomicRMWInst::Sub:
1432     case AtomicRMWInst::Or:
1433     case AtomicRMWInst::Xor:
1434       return C->isZero();
1435     case AtomicRMWInst::And:
1436       return C->isMinusOne();
1437     // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/...
1438     default:
1439       return false;
1440   }
1441 }
1442 
1443 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) {
1444   if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) {
1445     tryExpandAtomicLoad(ResultingLoad);
1446     return true;
1447   }
1448   return false;
1449 }
1450 
1451 Value *AtomicExpand::insertRMWCmpXchgLoop(
1452     IRBuilder<> &Builder, Type *ResultTy, Value *Addr, Align AddrAlign,
1453     AtomicOrdering MemOpOrder, SyncScope::ID SSID,
1454     function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
1455     CreateCmpXchgInstFun CreateCmpXchg) {
1456   LLVMContext &Ctx = Builder.getContext();
1457   BasicBlock *BB = Builder.GetInsertBlock();
1458   Function *F = BB->getParent();
1459 
1460   // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1461   //
1462   // The standard expansion we produce is:
1463   //     [...]
1464   //     %init_loaded = load atomic iN* %addr
1465   //     br label %loop
1466   // loop:
1467   //     %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ]
1468   //     %new = some_op iN %loaded, %incr
1469   //     %pair = cmpxchg iN* %addr, iN %loaded, iN %new
1470   //     %new_loaded = extractvalue { iN, i1 } %pair, 0
1471   //     %success = extractvalue { iN, i1 } %pair, 1
1472   //     br i1 %success, label %atomicrmw.end, label %loop
1473   // atomicrmw.end:
1474   //     [...]
1475   BasicBlock *ExitBB =
1476       BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
1477   BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
1478 
1479   // The split call above "helpfully" added a branch at the end of BB (to the
1480   // wrong place), but we want a load. It's easiest to just remove
1481   // the branch entirely.
1482   std::prev(BB->end())->eraseFromParent();
1483   Builder.SetInsertPoint(BB);
1484   LoadInst *InitLoaded = Builder.CreateAlignedLoad(ResultTy, Addr, AddrAlign);
1485   Builder.CreateBr(LoopBB);
1486 
1487   // Start the main loop block now that we've taken care of the preliminaries.
1488   Builder.SetInsertPoint(LoopBB);
1489   PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded");
1490   Loaded->addIncoming(InitLoaded, BB);
1491 
1492   Value *NewVal = PerformOp(Builder, Loaded);
1493 
1494   Value *NewLoaded = nullptr;
1495   Value *Success = nullptr;
1496 
1497   CreateCmpXchg(Builder, Addr, Loaded, NewVal, AddrAlign,
1498                 MemOpOrder == AtomicOrdering::Unordered
1499                     ? AtomicOrdering::Monotonic
1500                     : MemOpOrder,
1501                 SSID, Success, NewLoaded);
1502   assert(Success && NewLoaded);
1503 
1504   Loaded->addIncoming(NewLoaded, LoopBB);
1505 
1506   Builder.CreateCondBr(Success, ExitBB, LoopBB);
1507 
1508   Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1509   return NewLoaded;
1510 }
1511 
1512 bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1513   unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
1514   unsigned ValueSize = getAtomicOpSize(CI);
1515 
1516   switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) {
1517   default:
1518     llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg");
1519   case TargetLoweringBase::AtomicExpansionKind::None:
1520     if (ValueSize < MinCASSize)
1521       return expandPartwordCmpXchg(CI);
1522     return false;
1523   case TargetLoweringBase::AtomicExpansionKind::LLSC: {
1524     return expandAtomicCmpXchg(CI);
1525   }
1526   case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic:
1527     expandAtomicCmpXchgToMaskedIntrinsic(CI);
1528     return true;
1529   }
1530 }
1531 
1532 // Note: This function is exposed externally by AtomicExpandUtils.h
1533 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
1534                                     CreateCmpXchgInstFun CreateCmpXchg) {
1535   IRBuilder<> Builder(AI);
1536   Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop(
1537       Builder, AI->getType(), AI->getPointerOperand(), AI->getAlign(),
1538       AI->getOrdering(), AI->getSyncScopeID(),
1539       [&](IRBuilder<> &Builder, Value *Loaded) {
1540         return performAtomicOp(AI->getOperation(), Builder, Loaded,
1541                                AI->getValOperand());
1542       },
1543       CreateCmpXchg);
1544 
1545   AI->replaceAllUsesWith(Loaded);
1546   AI->eraseFromParent();
1547   return true;
1548 }
1549 
1550 // In order to use one of the sized library calls such as
1551 // __atomic_fetch_add_4, the alignment must be sufficient, the size
1552 // must be one of the potentially-specialized sizes, and the value
1553 // type must actually exist in C on the target (otherwise, the
1554 // function wouldn't actually be defined.)
1555 static bool canUseSizedAtomicCall(unsigned Size, Align Alignment,
1556                                   const DataLayout &DL) {
1557   // TODO: "LargestSize" is an approximation for "largest type that
1558   // you can express in C". It seems to be the case that int128 is
1559   // supported on all 64-bit platforms, otherwise only up to 64-bit
1560   // integers are supported. If we get this wrong, then we'll try to
1561   // call a sized libcall that doesn't actually exist. There should
1562   // really be some more reliable way in LLVM of determining integer
1563   // sizes which are valid in the target's C ABI...
1564   unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8;
1565   return Alignment >= Size &&
1566          (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) &&
1567          Size <= LargestSize;
1568 }
1569 
1570 void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) {
1571   static const RTLIB::Libcall Libcalls[6] = {
1572       RTLIB::ATOMIC_LOAD,   RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2,
1573       RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16};
1574   unsigned Size = getAtomicOpSize(I);
1575 
1576   bool expanded = expandAtomicOpToLibcall(
1577       I, Size, I->getAlign(), I->getPointerOperand(), nullptr, nullptr,
1578       I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1579   if (!expanded)
1580     report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Load");
1581 }
1582 
1583 void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) {
1584   static const RTLIB::Libcall Libcalls[6] = {
1585       RTLIB::ATOMIC_STORE,   RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2,
1586       RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16};
1587   unsigned Size = getAtomicOpSize(I);
1588 
1589   bool expanded = expandAtomicOpToLibcall(
1590       I, Size, I->getAlign(), I->getPointerOperand(), I->getValueOperand(),
1591       nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1592   if (!expanded)
1593     report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Store");
1594 }
1595 
1596 void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) {
1597   static const RTLIB::Libcall Libcalls[6] = {
1598       RTLIB::ATOMIC_COMPARE_EXCHANGE,   RTLIB::ATOMIC_COMPARE_EXCHANGE_1,
1599       RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4,
1600       RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16};
1601   unsigned Size = getAtomicOpSize(I);
1602 
1603   bool expanded = expandAtomicOpToLibcall(
1604       I, Size, I->getAlign(), I->getPointerOperand(), I->getNewValOperand(),
1605       I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(),
1606       Libcalls);
1607   if (!expanded)
1608     report_fatal_error("expandAtomicOpToLibcall shouldn't fail for CAS");
1609 }
1610 
1611 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) {
1612   static const RTLIB::Libcall LibcallsXchg[6] = {
1613       RTLIB::ATOMIC_EXCHANGE,   RTLIB::ATOMIC_EXCHANGE_1,
1614       RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4,
1615       RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16};
1616   static const RTLIB::Libcall LibcallsAdd[6] = {
1617       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_ADD_1,
1618       RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4,
1619       RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16};
1620   static const RTLIB::Libcall LibcallsSub[6] = {
1621       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_SUB_1,
1622       RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4,
1623       RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16};
1624   static const RTLIB::Libcall LibcallsAnd[6] = {
1625       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_AND_1,
1626       RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4,
1627       RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16};
1628   static const RTLIB::Libcall LibcallsOr[6] = {
1629       RTLIB::UNKNOWN_LIBCALL,   RTLIB::ATOMIC_FETCH_OR_1,
1630       RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4,
1631       RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16};
1632   static const RTLIB::Libcall LibcallsXor[6] = {
1633       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_XOR_1,
1634       RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4,
1635       RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16};
1636   static const RTLIB::Libcall LibcallsNand[6] = {
1637       RTLIB::UNKNOWN_LIBCALL,     RTLIB::ATOMIC_FETCH_NAND_1,
1638       RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4,
1639       RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16};
1640 
1641   switch (Op) {
1642   case AtomicRMWInst::BAD_BINOP:
1643     llvm_unreachable("Should not have BAD_BINOP.");
1644   case AtomicRMWInst::Xchg:
1645     return makeArrayRef(LibcallsXchg);
1646   case AtomicRMWInst::Add:
1647     return makeArrayRef(LibcallsAdd);
1648   case AtomicRMWInst::Sub:
1649     return makeArrayRef(LibcallsSub);
1650   case AtomicRMWInst::And:
1651     return makeArrayRef(LibcallsAnd);
1652   case AtomicRMWInst::Or:
1653     return makeArrayRef(LibcallsOr);
1654   case AtomicRMWInst::Xor:
1655     return makeArrayRef(LibcallsXor);
1656   case AtomicRMWInst::Nand:
1657     return makeArrayRef(LibcallsNand);
1658   case AtomicRMWInst::Max:
1659   case AtomicRMWInst::Min:
1660   case AtomicRMWInst::UMax:
1661   case AtomicRMWInst::UMin:
1662   case AtomicRMWInst::FAdd:
1663   case AtomicRMWInst::FSub:
1664     // No atomic libcalls are available for max/min/umax/umin.
1665     return {};
1666   }
1667   llvm_unreachable("Unexpected AtomicRMW operation.");
1668 }
1669 
1670 void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) {
1671   ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation());
1672 
1673   unsigned Size = getAtomicOpSize(I);
1674 
1675   bool Success = false;
1676   if (!Libcalls.empty())
1677     Success = expandAtomicOpToLibcall(
1678         I, Size, I->getAlign(), I->getPointerOperand(), I->getValOperand(),
1679         nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1680 
1681   // The expansion failed: either there were no libcalls at all for
1682   // the operation (min/max), or there were only size-specialized
1683   // libcalls (add/sub/etc) and we needed a generic. So, expand to a
1684   // CAS libcall, via a CAS loop, instead.
1685   if (!Success) {
1686     expandAtomicRMWToCmpXchg(
1687         I, [this](IRBuilder<> &Builder, Value *Addr, Value *Loaded,
1688                   Value *NewVal, Align Alignment, AtomicOrdering MemOpOrder,
1689                   SyncScope::ID SSID, Value *&Success, Value *&NewLoaded) {
1690           // Create the CAS instruction normally...
1691           AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg(
1692               Addr, Loaded, NewVal, Alignment, MemOpOrder,
1693               AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID);
1694           Success = Builder.CreateExtractValue(Pair, 1, "success");
1695           NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
1696 
1697           // ...and then expand the CAS into a libcall.
1698           expandAtomicCASToLibcall(Pair);
1699         });
1700   }
1701 }
1702 
1703 // A helper routine for the above expandAtomic*ToLibcall functions.
1704 //
1705 // 'Libcalls' contains an array of enum values for the particular
1706 // ATOMIC libcalls to be emitted. All of the other arguments besides
1707 // 'I' are extracted from the Instruction subclass by the
1708 // caller. Depending on the particular call, some will be null.
1709 bool AtomicExpand::expandAtomicOpToLibcall(
1710     Instruction *I, unsigned Size, Align Alignment, Value *PointerOperand,
1711     Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering,
1712     AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) {
1713   assert(Libcalls.size() == 6);
1714 
1715   LLVMContext &Ctx = I->getContext();
1716   Module *M = I->getModule();
1717   const DataLayout &DL = M->getDataLayout();
1718   IRBuilder<> Builder(I);
1719   IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front());
1720 
1721   bool UseSizedLibcall = canUseSizedAtomicCall(Size, Alignment, DL);
1722   Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8);
1723 
1724   const Align AllocaAlignment = DL.getPrefTypeAlign(SizedIntTy);
1725 
1726   // TODO: the "order" argument type is "int", not int32. So
1727   // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints.
1728   ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size);
1729   assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO");
1730   Constant *OrderingVal =
1731       ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering));
1732   Constant *Ordering2Val = nullptr;
1733   if (CASExpected) {
1734     assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO");
1735     Ordering2Val =
1736         ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2));
1737   }
1738   bool HasResult = I->getType() != Type::getVoidTy(Ctx);
1739 
1740   RTLIB::Libcall RTLibType;
1741   if (UseSizedLibcall) {
1742     switch (Size) {
1743     case 1: RTLibType = Libcalls[1]; break;
1744     case 2: RTLibType = Libcalls[2]; break;
1745     case 4: RTLibType = Libcalls[3]; break;
1746     case 8: RTLibType = Libcalls[4]; break;
1747     case 16: RTLibType = Libcalls[5]; break;
1748     }
1749   } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) {
1750     RTLibType = Libcalls[0];
1751   } else {
1752     // Can't use sized function, and there's no generic for this
1753     // operation, so give up.
1754     return false;
1755   }
1756 
1757   if (!TLI->getLibcallName(RTLibType)) {
1758     // This target does not implement the requested atomic libcall so give up.
1759     return false;
1760   }
1761 
1762   // Build up the function call. There's two kinds. First, the sized
1763   // variants.  These calls are going to be one of the following (with
1764   // N=1,2,4,8,16):
1765   //  iN    __atomic_load_N(iN *ptr, int ordering)
1766   //  void  __atomic_store_N(iN *ptr, iN val, int ordering)
1767   //  iN    __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering)
1768   //  bool  __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired,
1769   //                                    int success_order, int failure_order)
1770   //
1771   // Note that these functions can be used for non-integer atomic
1772   // operations, the values just need to be bitcast to integers on the
1773   // way in and out.
1774   //
1775   // And, then, the generic variants. They look like the following:
1776   //  void  __atomic_load(size_t size, void *ptr, void *ret, int ordering)
1777   //  void  __atomic_store(size_t size, void *ptr, void *val, int ordering)
1778   //  void  __atomic_exchange(size_t size, void *ptr, void *val, void *ret,
1779   //                          int ordering)
1780   //  bool  __atomic_compare_exchange(size_t size, void *ptr, void *expected,
1781   //                                  void *desired, int success_order,
1782   //                                  int failure_order)
1783   //
1784   // The different signatures are built up depending on the
1785   // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult'
1786   // variables.
1787 
1788   AllocaInst *AllocaCASExpected = nullptr;
1789   Value *AllocaCASExpected_i8 = nullptr;
1790   AllocaInst *AllocaValue = nullptr;
1791   Value *AllocaValue_i8 = nullptr;
1792   AllocaInst *AllocaResult = nullptr;
1793   Value *AllocaResult_i8 = nullptr;
1794 
1795   Type *ResultTy;
1796   SmallVector<Value *, 6> Args;
1797   AttributeList Attr;
1798 
1799   // 'size' argument.
1800   if (!UseSizedLibcall) {
1801     // Note, getIntPtrType is assumed equivalent to size_t.
1802     Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size));
1803   }
1804 
1805   // 'ptr' argument.
1806   // note: This assumes all address spaces share a common libfunc
1807   // implementation and that addresses are convertable.  For systems without
1808   // that property, we'd need to extend this mechanism to support AS-specific
1809   // families of atomic intrinsics.
1810   auto PtrTypeAS = PointerOperand->getType()->getPointerAddressSpace();
1811   Value *PtrVal = Builder.CreateBitCast(PointerOperand,
1812                                         Type::getInt8PtrTy(Ctx, PtrTypeAS));
1813   PtrVal = Builder.CreateAddrSpaceCast(PtrVal, Type::getInt8PtrTy(Ctx));
1814   Args.push_back(PtrVal);
1815 
1816   // 'expected' argument, if present.
1817   if (CASExpected) {
1818     AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType());
1819     AllocaCASExpected->setAlignment(AllocaAlignment);
1820     unsigned AllocaAS =  AllocaCASExpected->getType()->getPointerAddressSpace();
1821 
1822     AllocaCASExpected_i8 =
1823       Builder.CreateBitCast(AllocaCASExpected,
1824                             Type::getInt8PtrTy(Ctx, AllocaAS));
1825     Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64);
1826     Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment);
1827     Args.push_back(AllocaCASExpected_i8);
1828   }
1829 
1830   // 'val' argument ('desired' for cas), if present.
1831   if (ValueOperand) {
1832     if (UseSizedLibcall) {
1833       Value *IntValue =
1834           Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy);
1835       Args.push_back(IntValue);
1836     } else {
1837       AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType());
1838       AllocaValue->setAlignment(AllocaAlignment);
1839       AllocaValue_i8 =
1840           Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx));
1841       Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64);
1842       Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment);
1843       Args.push_back(AllocaValue_i8);
1844     }
1845   }
1846 
1847   // 'ret' argument.
1848   if (!CASExpected && HasResult && !UseSizedLibcall) {
1849     AllocaResult = AllocaBuilder.CreateAlloca(I->getType());
1850     AllocaResult->setAlignment(AllocaAlignment);
1851     unsigned AllocaAS =  AllocaResult->getType()->getPointerAddressSpace();
1852     AllocaResult_i8 =
1853       Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx, AllocaAS));
1854     Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64);
1855     Args.push_back(AllocaResult_i8);
1856   }
1857 
1858   // 'ordering' ('success_order' for cas) argument.
1859   Args.push_back(OrderingVal);
1860 
1861   // 'failure_order' argument, if present.
1862   if (Ordering2Val)
1863     Args.push_back(Ordering2Val);
1864 
1865   // Now, the return type.
1866   if (CASExpected) {
1867     ResultTy = Type::getInt1Ty(Ctx);
1868     Attr = Attr.addRetAttribute(Ctx, Attribute::ZExt);
1869   } else if (HasResult && UseSizedLibcall)
1870     ResultTy = SizedIntTy;
1871   else
1872     ResultTy = Type::getVoidTy(Ctx);
1873 
1874   // Done with setting up arguments and return types, create the call:
1875   SmallVector<Type *, 6> ArgTys;
1876   for (Value *Arg : Args)
1877     ArgTys.push_back(Arg->getType());
1878   FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false);
1879   FunctionCallee LibcallFn =
1880       M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr);
1881   CallInst *Call = Builder.CreateCall(LibcallFn, Args);
1882   Call->setAttributes(Attr);
1883   Value *Result = Call;
1884 
1885   // And then, extract the results...
1886   if (ValueOperand && !UseSizedLibcall)
1887     Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64);
1888 
1889   if (CASExpected) {
1890     // The final result from the CAS is {load of 'expected' alloca, bool result
1891     // from call}
1892     Type *FinalResultTy = I->getType();
1893     Value *V = UndefValue::get(FinalResultTy);
1894     Value *ExpectedOut = Builder.CreateAlignedLoad(
1895         CASExpected->getType(), AllocaCASExpected, AllocaAlignment);
1896     Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64);
1897     V = Builder.CreateInsertValue(V, ExpectedOut, 0);
1898     V = Builder.CreateInsertValue(V, Result, 1);
1899     I->replaceAllUsesWith(V);
1900   } else if (HasResult) {
1901     Value *V;
1902     if (UseSizedLibcall)
1903       V = Builder.CreateBitOrPointerCast(Result, I->getType());
1904     else {
1905       V = Builder.CreateAlignedLoad(I->getType(), AllocaResult,
1906                                     AllocaAlignment);
1907       Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64);
1908     }
1909     I->replaceAllUsesWith(V);
1910   }
1911   I->eraseFromParent();
1912   return true;
1913 }
1914