1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a pass (at IR level) to replace atomic instructions with 11 // __atomic_* library calls, or target specific instruction which implement the 12 // same semantics in a way which better fits the target backend. This can 13 // include the use of (intrinsic-based) load-linked/store-conditional loops, 14 // AtomicCmpXchg, or type coercions. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/CodeGen/AtomicExpandUtils.h" 22 #include "llvm/CodeGen/RuntimeLibcalls.h" 23 #include "llvm/CodeGen/TargetLowering.h" 24 #include "llvm/CodeGen/TargetPassConfig.h" 25 #include "llvm/CodeGen/TargetSubtargetInfo.h" 26 #include "llvm/CodeGen/ValueTypes.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Constant.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/IRBuilder.h" 35 #include "llvm/IR/InstIterator.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Type.h" 40 #include "llvm/IR/User.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/AtomicOrdering.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include <cassert> 50 #include <cstdint> 51 #include <iterator> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "atomic-expand" 56 57 namespace { 58 59 class AtomicExpand: public FunctionPass { 60 const TargetLowering *TLI = nullptr; 61 62 public: 63 static char ID; // Pass identification, replacement for typeid 64 65 AtomicExpand() : FunctionPass(ID) { 66 initializeAtomicExpandPass(*PassRegistry::getPassRegistry()); 67 } 68 69 bool runOnFunction(Function &F) override; 70 71 private: 72 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order); 73 IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL); 74 LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI); 75 bool tryExpandAtomicLoad(LoadInst *LI); 76 bool expandAtomicLoadToLL(LoadInst *LI); 77 bool expandAtomicLoadToCmpXchg(LoadInst *LI); 78 StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI); 79 bool expandAtomicStore(StoreInst *SI); 80 bool tryExpandAtomicRMW(AtomicRMWInst *AI); 81 Value * 82 insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr, 83 AtomicOrdering MemOpOrder, 84 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); 85 void expandAtomicOpToLLSC( 86 Instruction *I, Type *ResultTy, Value *Addr, AtomicOrdering MemOpOrder, 87 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); 88 void expandPartwordAtomicRMW( 89 AtomicRMWInst *I, 90 TargetLoweringBase::AtomicExpansionKind ExpansionKind); 91 AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI); 92 void expandPartwordCmpXchg(AtomicCmpXchgInst *I); 93 void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI); 94 95 AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI); 96 static Value *insertRMWCmpXchgLoop( 97 IRBuilder<> &Builder, Type *ResultType, Value *Addr, 98 AtomicOrdering MemOpOrder, 99 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, 100 CreateCmpXchgInstFun CreateCmpXchg); 101 bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI); 102 103 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); 104 bool isIdempotentRMW(AtomicRMWInst *RMWI); 105 bool simplifyIdempotentRMW(AtomicRMWInst *RMWI); 106 107 bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, unsigned Align, 108 Value *PointerOperand, Value *ValueOperand, 109 Value *CASExpected, AtomicOrdering Ordering, 110 AtomicOrdering Ordering2, 111 ArrayRef<RTLIB::Libcall> Libcalls); 112 void expandAtomicLoadToLibcall(LoadInst *LI); 113 void expandAtomicStoreToLibcall(StoreInst *LI); 114 void expandAtomicRMWToLibcall(AtomicRMWInst *I); 115 void expandAtomicCASToLibcall(AtomicCmpXchgInst *I); 116 117 friend bool 118 llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 119 CreateCmpXchgInstFun CreateCmpXchg); 120 }; 121 122 } // end anonymous namespace 123 124 char AtomicExpand::ID = 0; 125 126 char &llvm::AtomicExpandID = AtomicExpand::ID; 127 128 INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions", 129 false, false) 130 131 FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); } 132 133 // Helper functions to retrieve the size of atomic instructions. 134 static unsigned getAtomicOpSize(LoadInst *LI) { 135 const DataLayout &DL = LI->getModule()->getDataLayout(); 136 return DL.getTypeStoreSize(LI->getType()); 137 } 138 139 static unsigned getAtomicOpSize(StoreInst *SI) { 140 const DataLayout &DL = SI->getModule()->getDataLayout(); 141 return DL.getTypeStoreSize(SI->getValueOperand()->getType()); 142 } 143 144 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) { 145 const DataLayout &DL = RMWI->getModule()->getDataLayout(); 146 return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); 147 } 148 149 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) { 150 const DataLayout &DL = CASI->getModule()->getDataLayout(); 151 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); 152 } 153 154 // Helper functions to retrieve the alignment of atomic instructions. 155 static unsigned getAtomicOpAlign(LoadInst *LI) { 156 unsigned Align = LI->getAlignment(); 157 // In the future, if this IR restriction is relaxed, we should 158 // return DataLayout::getABITypeAlignment when there's no align 159 // value. 160 assert(Align != 0 && "An atomic LoadInst always has an explicit alignment"); 161 return Align; 162 } 163 164 static unsigned getAtomicOpAlign(StoreInst *SI) { 165 unsigned Align = SI->getAlignment(); 166 // In the future, if this IR restriction is relaxed, we should 167 // return DataLayout::getABITypeAlignment when there's no align 168 // value. 169 assert(Align != 0 && "An atomic StoreInst always has an explicit alignment"); 170 return Align; 171 } 172 173 static unsigned getAtomicOpAlign(AtomicRMWInst *RMWI) { 174 // TODO(PR27168): This instruction has no alignment attribute, but unlike the 175 // default alignment for load/store, the default here is to assume 176 // it has NATURAL alignment, not DataLayout-specified alignment. 177 const DataLayout &DL = RMWI->getModule()->getDataLayout(); 178 return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); 179 } 180 181 static unsigned getAtomicOpAlign(AtomicCmpXchgInst *CASI) { 182 // TODO(PR27168): same comment as above. 183 const DataLayout &DL = CASI->getModule()->getDataLayout(); 184 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); 185 } 186 187 // Determine if a particular atomic operation has a supported size, 188 // and is of appropriate alignment, to be passed through for target 189 // lowering. (Versus turning into a __atomic libcall) 190 template <typename Inst> 191 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) { 192 unsigned Size = getAtomicOpSize(I); 193 unsigned Align = getAtomicOpAlign(I); 194 return Align >= Size && Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8; 195 } 196 197 bool AtomicExpand::runOnFunction(Function &F) { 198 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 199 if (!TPC) 200 return false; 201 202 auto &TM = TPC->getTM<TargetMachine>(); 203 if (!TM.getSubtargetImpl(F)->enableAtomicExpand()) 204 return false; 205 TLI = TM.getSubtargetImpl(F)->getTargetLowering(); 206 207 SmallVector<Instruction *, 1> AtomicInsts; 208 209 // Changing control-flow while iterating through it is a bad idea, so gather a 210 // list of all atomic instructions before we start. 211 for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) { 212 Instruction *I = &*II; 213 if (I->isAtomic() && !isa<FenceInst>(I)) 214 AtomicInsts.push_back(I); 215 } 216 217 bool MadeChange = false; 218 for (auto I : AtomicInsts) { 219 auto LI = dyn_cast<LoadInst>(I); 220 auto SI = dyn_cast<StoreInst>(I); 221 auto RMWI = dyn_cast<AtomicRMWInst>(I); 222 auto CASI = dyn_cast<AtomicCmpXchgInst>(I); 223 assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction"); 224 225 // If the Size/Alignment is not supported, replace with a libcall. 226 if (LI) { 227 if (!atomicSizeSupported(TLI, LI)) { 228 expandAtomicLoadToLibcall(LI); 229 MadeChange = true; 230 continue; 231 } 232 } else if (SI) { 233 if (!atomicSizeSupported(TLI, SI)) { 234 expandAtomicStoreToLibcall(SI); 235 MadeChange = true; 236 continue; 237 } 238 } else if (RMWI) { 239 if (!atomicSizeSupported(TLI, RMWI)) { 240 expandAtomicRMWToLibcall(RMWI); 241 MadeChange = true; 242 continue; 243 } 244 } else if (CASI) { 245 if (!atomicSizeSupported(TLI, CASI)) { 246 expandAtomicCASToLibcall(CASI); 247 MadeChange = true; 248 continue; 249 } 250 } 251 252 if (TLI->shouldInsertFencesForAtomic(I)) { 253 auto FenceOrdering = AtomicOrdering::Monotonic; 254 if (LI && isAcquireOrStronger(LI->getOrdering())) { 255 FenceOrdering = LI->getOrdering(); 256 LI->setOrdering(AtomicOrdering::Monotonic); 257 } else if (SI && isReleaseOrStronger(SI->getOrdering())) { 258 FenceOrdering = SI->getOrdering(); 259 SI->setOrdering(AtomicOrdering::Monotonic); 260 } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) || 261 isAcquireOrStronger(RMWI->getOrdering()))) { 262 FenceOrdering = RMWI->getOrdering(); 263 RMWI->setOrdering(AtomicOrdering::Monotonic); 264 } else if (CASI && 265 TLI->shouldExpandAtomicCmpXchgInIR(CASI) == 266 TargetLoweringBase::AtomicExpansionKind::None && 267 (isReleaseOrStronger(CASI->getSuccessOrdering()) || 268 isAcquireOrStronger(CASI->getSuccessOrdering()))) { 269 // If a compare and swap is lowered to LL/SC, we can do smarter fence 270 // insertion, with a stronger one on the success path than on the 271 // failure path. As a result, fence insertion is directly done by 272 // expandAtomicCmpXchg in that case. 273 FenceOrdering = CASI->getSuccessOrdering(); 274 CASI->setSuccessOrdering(AtomicOrdering::Monotonic); 275 CASI->setFailureOrdering(AtomicOrdering::Monotonic); 276 } 277 278 if (FenceOrdering != AtomicOrdering::Monotonic) { 279 MadeChange |= bracketInstWithFences(I, FenceOrdering); 280 } 281 } 282 283 if (LI) { 284 if (LI->getType()->isFloatingPointTy()) { 285 // TODO: add a TLI hook to control this so that each target can 286 // convert to lowering the original type one at a time. 287 LI = convertAtomicLoadToIntegerType(LI); 288 assert(LI->getType()->isIntegerTy() && "invariant broken"); 289 MadeChange = true; 290 } 291 292 MadeChange |= tryExpandAtomicLoad(LI); 293 } else if (SI) { 294 if (SI->getValueOperand()->getType()->isFloatingPointTy()) { 295 // TODO: add a TLI hook to control this so that each target can 296 // convert to lowering the original type one at a time. 297 SI = convertAtomicStoreToIntegerType(SI); 298 assert(SI->getValueOperand()->getType()->isIntegerTy() && 299 "invariant broken"); 300 MadeChange = true; 301 } 302 303 if (TLI->shouldExpandAtomicStoreInIR(SI)) 304 MadeChange |= expandAtomicStore(SI); 305 } else if (RMWI) { 306 // There are two different ways of expanding RMW instructions: 307 // - into a load if it is idempotent 308 // - into a Cmpxchg/LL-SC loop otherwise 309 // we try them in that order. 310 311 if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) { 312 MadeChange = true; 313 } else { 314 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 315 unsigned ValueSize = getAtomicOpSize(RMWI); 316 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 317 if (ValueSize < MinCASSize && 318 (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 319 Op == AtomicRMWInst::And)) { 320 RMWI = widenPartwordAtomicRMW(RMWI); 321 MadeChange = true; 322 } 323 324 MadeChange |= tryExpandAtomicRMW(RMWI); 325 } 326 } else if (CASI) { 327 // TODO: when we're ready to make the change at the IR level, we can 328 // extend convertCmpXchgToInteger for floating point too. 329 assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() && 330 "unimplemented - floating point not legal at IR level"); 331 if (CASI->getCompareOperand()->getType()->isPointerTy() ) { 332 // TODO: add a TLI hook to control this so that each target can 333 // convert to lowering the original type one at a time. 334 CASI = convertCmpXchgToIntegerType(CASI); 335 assert(CASI->getCompareOperand()->getType()->isIntegerTy() && 336 "invariant broken"); 337 MadeChange = true; 338 } 339 340 MadeChange |= tryExpandAtomicCmpXchg(CASI); 341 } 342 } 343 return MadeChange; 344 } 345 346 bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) { 347 IRBuilder<> Builder(I); 348 349 auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order); 350 351 auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order); 352 // We have a guard here because not every atomic operation generates a 353 // trailing fence. 354 if (TrailingFence) 355 TrailingFence->moveAfter(I); 356 357 return (LeadingFence || TrailingFence); 358 } 359 360 /// Get the iX type with the same bitwidth as T. 361 IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T, 362 const DataLayout &DL) { 363 EVT VT = TLI->getValueType(DL, T); 364 unsigned BitWidth = VT.getStoreSizeInBits(); 365 assert(BitWidth == VT.getSizeInBits() && "must be a power of two"); 366 return IntegerType::get(T->getContext(), BitWidth); 367 } 368 369 /// Convert an atomic load of a non-integral type to an integer load of the 370 /// equivalent bitwidth. See the function comment on 371 /// convertAtomicStoreToIntegerType for background. 372 LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) { 373 auto *M = LI->getModule(); 374 Type *NewTy = getCorrespondingIntegerType(LI->getType(), 375 M->getDataLayout()); 376 377 IRBuilder<> Builder(LI); 378 379 Value *Addr = LI->getPointerOperand(); 380 Type *PT = PointerType::get(NewTy, 381 Addr->getType()->getPointerAddressSpace()); 382 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 383 384 auto *NewLI = Builder.CreateLoad(NewAddr); 385 NewLI->setAlignment(LI->getAlignment()); 386 NewLI->setVolatile(LI->isVolatile()); 387 NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID()); 388 LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n"); 389 390 Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType()); 391 LI->replaceAllUsesWith(NewVal); 392 LI->eraseFromParent(); 393 return NewLI; 394 } 395 396 bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) { 397 switch (TLI->shouldExpandAtomicLoadInIR(LI)) { 398 case TargetLoweringBase::AtomicExpansionKind::None: 399 return false; 400 case TargetLoweringBase::AtomicExpansionKind::LLSC: 401 expandAtomicOpToLLSC( 402 LI, LI->getType(), LI->getPointerOperand(), LI->getOrdering(), 403 [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; }); 404 return true; 405 case TargetLoweringBase::AtomicExpansionKind::LLOnly: 406 return expandAtomicLoadToLL(LI); 407 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: 408 return expandAtomicLoadToCmpXchg(LI); 409 default: 410 llvm_unreachable("Unhandled case in tryExpandAtomicLoad"); 411 } 412 } 413 414 bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) { 415 IRBuilder<> Builder(LI); 416 417 // On some architectures, load-linked instructions are atomic for larger 418 // sizes than normal loads. For example, the only 64-bit load guaranteed 419 // to be single-copy atomic by ARM is an ldrexd (A3.5.3). 420 Value *Val = 421 TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering()); 422 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 423 424 LI->replaceAllUsesWith(Val); 425 LI->eraseFromParent(); 426 427 return true; 428 } 429 430 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) { 431 IRBuilder<> Builder(LI); 432 AtomicOrdering Order = LI->getOrdering(); 433 Value *Addr = LI->getPointerOperand(); 434 Type *Ty = cast<PointerType>(Addr->getType())->getElementType(); 435 Constant *DummyVal = Constant::getNullValue(Ty); 436 437 Value *Pair = Builder.CreateAtomicCmpXchg( 438 Addr, DummyVal, DummyVal, Order, 439 AtomicCmpXchgInst::getStrongestFailureOrdering(Order)); 440 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded"); 441 442 LI->replaceAllUsesWith(Loaded); 443 LI->eraseFromParent(); 444 445 return true; 446 } 447 448 /// Convert an atomic store of a non-integral type to an integer store of the 449 /// equivalent bitwidth. We used to not support floating point or vector 450 /// atomics in the IR at all. The backends learned to deal with the bitcast 451 /// idiom because that was the only way of expressing the notion of a atomic 452 /// float or vector store. The long term plan is to teach each backend to 453 /// instruction select from the original atomic store, but as a migration 454 /// mechanism, we convert back to the old format which the backends understand. 455 /// Each backend will need individual work to recognize the new format. 456 StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) { 457 IRBuilder<> Builder(SI); 458 auto *M = SI->getModule(); 459 Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(), 460 M->getDataLayout()); 461 Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy); 462 463 Value *Addr = SI->getPointerOperand(); 464 Type *PT = PointerType::get(NewTy, 465 Addr->getType()->getPointerAddressSpace()); 466 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 467 468 StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr); 469 NewSI->setAlignment(SI->getAlignment()); 470 NewSI->setVolatile(SI->isVolatile()); 471 NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID()); 472 LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n"); 473 SI->eraseFromParent(); 474 return NewSI; 475 } 476 477 bool AtomicExpand::expandAtomicStore(StoreInst *SI) { 478 // This function is only called on atomic stores that are too large to be 479 // atomic if implemented as a native store. So we replace them by an 480 // atomic swap, that can be implemented for example as a ldrex/strex on ARM 481 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. 482 // It is the responsibility of the target to only signal expansion via 483 // shouldExpandAtomicRMW in cases where this is required and possible. 484 IRBuilder<> Builder(SI); 485 AtomicRMWInst *AI = 486 Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(), 487 SI->getValueOperand(), SI->getOrdering()); 488 SI->eraseFromParent(); 489 490 // Now we have an appropriate swap instruction, lower it as usual. 491 return tryExpandAtomicRMW(AI); 492 } 493 494 static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr, 495 Value *Loaded, Value *NewVal, 496 AtomicOrdering MemOpOrder, 497 Value *&Success, Value *&NewLoaded) { 498 Value* Pair = Builder.CreateAtomicCmpXchg( 499 Addr, Loaded, NewVal, MemOpOrder, 500 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder)); 501 Success = Builder.CreateExtractValue(Pair, 1, "success"); 502 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 503 } 504 505 /// Emit IR to implement the given atomicrmw operation on values in registers, 506 /// returning the new value. 507 static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder, 508 Value *Loaded, Value *Inc) { 509 Value *NewVal; 510 switch (Op) { 511 case AtomicRMWInst::Xchg: 512 return Inc; 513 case AtomicRMWInst::Add: 514 return Builder.CreateAdd(Loaded, Inc, "new"); 515 case AtomicRMWInst::Sub: 516 return Builder.CreateSub(Loaded, Inc, "new"); 517 case AtomicRMWInst::And: 518 return Builder.CreateAnd(Loaded, Inc, "new"); 519 case AtomicRMWInst::Nand: 520 return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new"); 521 case AtomicRMWInst::Or: 522 return Builder.CreateOr(Loaded, Inc, "new"); 523 case AtomicRMWInst::Xor: 524 return Builder.CreateXor(Loaded, Inc, "new"); 525 case AtomicRMWInst::Max: 526 NewVal = Builder.CreateICmpSGT(Loaded, Inc); 527 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 528 case AtomicRMWInst::Min: 529 NewVal = Builder.CreateICmpSLE(Loaded, Inc); 530 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 531 case AtomicRMWInst::UMax: 532 NewVal = Builder.CreateICmpUGT(Loaded, Inc); 533 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 534 case AtomicRMWInst::UMin: 535 NewVal = Builder.CreateICmpULE(Loaded, Inc); 536 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 537 default: 538 llvm_unreachable("Unknown atomic op"); 539 } 540 } 541 542 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) { 543 switch (TLI->shouldExpandAtomicRMWInIR(AI)) { 544 case TargetLoweringBase::AtomicExpansionKind::None: 545 return false; 546 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 547 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 548 unsigned ValueSize = getAtomicOpSize(AI); 549 if (ValueSize < MinCASSize) { 550 llvm_unreachable( 551 "MinCmpXchgSizeInBits not yet supported for LL/SC architectures."); 552 } else { 553 auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) { 554 return performAtomicOp(AI->getOperation(), Builder, Loaded, 555 AI->getValOperand()); 556 }; 557 expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(), 558 AI->getOrdering(), PerformOp); 559 } 560 return true; 561 } 562 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: { 563 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 564 unsigned ValueSize = getAtomicOpSize(AI); 565 if (ValueSize < MinCASSize) { 566 expandPartwordAtomicRMW(AI, 567 TargetLoweringBase::AtomicExpansionKind::CmpXChg); 568 } else { 569 expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun); 570 } 571 return true; 572 } 573 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: { 574 expandAtomicRMWToMaskedIntrinsic(AI); 575 return true; 576 } 577 default: 578 llvm_unreachable("Unhandled case in tryExpandAtomicRMW"); 579 } 580 } 581 582 namespace { 583 584 /// Result values from createMaskInstrs helper. 585 struct PartwordMaskValues { 586 Type *WordType; 587 Type *ValueType; 588 Value *AlignedAddr; 589 Value *ShiftAmt; 590 Value *Mask; 591 Value *Inv_Mask; 592 }; 593 594 } // end anonymous namespace 595 596 /// This is a helper function which builds instructions to provide 597 /// values necessary for partword atomic operations. It takes an 598 /// incoming address, Addr, and ValueType, and constructs the address, 599 /// shift-amounts and masks needed to work with a larger value of size 600 /// WordSize. 601 /// 602 /// AlignedAddr: Addr rounded down to a multiple of WordSize 603 /// 604 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded 605 /// from AlignAddr for it to have the same value as if 606 /// ValueType was loaded from Addr. 607 /// 608 /// Mask: Value to mask with the value loaded from AlignAddr to 609 /// include only the part that would've been loaded from Addr. 610 /// 611 /// Inv_Mask: The inverse of Mask. 612 static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I, 613 Type *ValueType, Value *Addr, 614 unsigned WordSize) { 615 PartwordMaskValues Ret; 616 617 BasicBlock *BB = I->getParent(); 618 Function *F = BB->getParent(); 619 Module *M = I->getModule(); 620 621 LLVMContext &Ctx = F->getContext(); 622 const DataLayout &DL = M->getDataLayout(); 623 624 unsigned ValueSize = DL.getTypeStoreSize(ValueType); 625 626 assert(ValueSize < WordSize); 627 628 Ret.ValueType = ValueType; 629 Ret.WordType = Type::getIntNTy(Ctx, WordSize * 8); 630 631 Type *WordPtrType = 632 Ret.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace()); 633 634 Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx)); 635 Ret.AlignedAddr = Builder.CreateIntToPtr( 636 Builder.CreateAnd(AddrInt, ~(uint64_t)(WordSize - 1)), WordPtrType, 637 "AlignedAddr"); 638 639 Value *PtrLSB = Builder.CreateAnd(AddrInt, WordSize - 1, "PtrLSB"); 640 if (DL.isLittleEndian()) { 641 // turn bytes into bits 642 Ret.ShiftAmt = Builder.CreateShl(PtrLSB, 3); 643 } else { 644 // turn bytes into bits, and count from the other side. 645 Ret.ShiftAmt = 646 Builder.CreateShl(Builder.CreateXor(PtrLSB, WordSize - ValueSize), 3); 647 } 648 649 Ret.ShiftAmt = Builder.CreateTrunc(Ret.ShiftAmt, Ret.WordType, "ShiftAmt"); 650 Ret.Mask = Builder.CreateShl( 651 ConstantInt::get(Ret.WordType, (1 << ValueSize * 8) - 1), Ret.ShiftAmt, 652 "Mask"); 653 Ret.Inv_Mask = Builder.CreateNot(Ret.Mask, "Inv_Mask"); 654 655 return Ret; 656 } 657 658 /// Emit IR to implement a masked version of a given atomicrmw 659 /// operation. (That is, only the bits under the Mask should be 660 /// affected by the operation) 661 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op, 662 IRBuilder<> &Builder, Value *Loaded, 663 Value *Shifted_Inc, Value *Inc, 664 const PartwordMaskValues &PMV) { 665 // TODO: update to use 666 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order 667 // to merge bits from two values without requiring PMV.Inv_Mask. 668 switch (Op) { 669 case AtomicRMWInst::Xchg: { 670 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 671 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc); 672 return FinalVal; 673 } 674 case AtomicRMWInst::Or: 675 case AtomicRMWInst::Xor: 676 case AtomicRMWInst::And: 677 llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW"); 678 case AtomicRMWInst::Add: 679 case AtomicRMWInst::Sub: 680 case AtomicRMWInst::Nand: { 681 // The other arithmetic ops need to be masked into place. 682 Value *NewVal = performAtomicOp(Op, Builder, Loaded, Shifted_Inc); 683 Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask); 684 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 685 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked); 686 return FinalVal; 687 } 688 case AtomicRMWInst::Max: 689 case AtomicRMWInst::Min: 690 case AtomicRMWInst::UMax: 691 case AtomicRMWInst::UMin: { 692 // Finally, comparison ops will operate on the full value, so 693 // truncate down to the original size, and expand out again after 694 // doing the operation. 695 Value *Loaded_Shiftdown = Builder.CreateTrunc( 696 Builder.CreateLShr(Loaded, PMV.ShiftAmt), PMV.ValueType); 697 Value *NewVal = performAtomicOp(Op, Builder, Loaded_Shiftdown, Inc); 698 Value *NewVal_Shiftup = Builder.CreateShl( 699 Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt); 700 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 701 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shiftup); 702 return FinalVal; 703 } 704 default: 705 llvm_unreachable("Unknown atomic op"); 706 } 707 } 708 709 /// Expand a sub-word atomicrmw operation into an appropriate 710 /// word-sized operation. 711 /// 712 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same 713 /// way as a typical atomicrmw expansion. The only difference here is 714 /// that the operation inside of the loop must operate only upon a 715 /// part of the value. 716 void AtomicExpand::expandPartwordAtomicRMW( 717 AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) { 718 assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg); 719 720 AtomicOrdering MemOpOrder = AI->getOrdering(); 721 722 IRBuilder<> Builder(AI); 723 724 PartwordMaskValues PMV = 725 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 726 TLI->getMinCmpXchgSizeInBits() / 8); 727 728 Value *ValOperand_Shifted = 729 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 730 PMV.ShiftAmt, "ValOperand_Shifted"); 731 732 auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) { 733 return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded, 734 ValOperand_Shifted, AI->getValOperand(), PMV); 735 }; 736 737 // TODO: When we're ready to support LLSC conversions too, use 738 // insertRMWLLSCLoop here for ExpansionKind==LLSC. 739 Value *OldResult = 740 insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder, 741 PerformPartwordOp, createCmpXchgInstFun); 742 Value *FinalOldResult = Builder.CreateTrunc( 743 Builder.CreateLShr(OldResult, PMV.ShiftAmt), PMV.ValueType); 744 AI->replaceAllUsesWith(FinalOldResult); 745 AI->eraseFromParent(); 746 } 747 748 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width. 749 AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) { 750 IRBuilder<> Builder(AI); 751 AtomicRMWInst::BinOp Op = AI->getOperation(); 752 753 assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 754 Op == AtomicRMWInst::And) && 755 "Unable to widen operation"); 756 757 PartwordMaskValues PMV = 758 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 759 TLI->getMinCmpXchgSizeInBits() / 8); 760 761 Value *ValOperand_Shifted = 762 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 763 PMV.ShiftAmt, "ValOperand_Shifted"); 764 765 Value *NewOperand; 766 767 if (Op == AtomicRMWInst::And) 768 NewOperand = 769 Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand"); 770 else 771 NewOperand = ValOperand_Shifted; 772 773 AtomicRMWInst *NewAI = Builder.CreateAtomicRMW(Op, PMV.AlignedAddr, 774 NewOperand, AI->getOrdering()); 775 776 Value *FinalOldResult = Builder.CreateTrunc( 777 Builder.CreateLShr(NewAI, PMV.ShiftAmt), PMV.ValueType); 778 AI->replaceAllUsesWith(FinalOldResult); 779 AI->eraseFromParent(); 780 return NewAI; 781 } 782 783 void AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) { 784 // The basic idea here is that we're expanding a cmpxchg of a 785 // smaller memory size up to a word-sized cmpxchg. To do this, we 786 // need to add a retry-loop for strong cmpxchg, so that 787 // modifications to other parts of the word don't cause a spurious 788 // failure. 789 790 // This generates code like the following: 791 // [[Setup mask values PMV.*]] 792 // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt 793 // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt 794 // %InitLoaded = load i32* %addr 795 // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask 796 // br partword.cmpxchg.loop 797 // partword.cmpxchg.loop: 798 // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ], 799 // [ %OldVal_MaskOut, %partword.cmpxchg.failure ] 800 // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted 801 // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted 802 // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp, 803 // i32 %FullWord_NewVal success_ordering failure_ordering 804 // %OldVal = extractvalue { i32, i1 } %NewCI, 0 805 // %Success = extractvalue { i32, i1 } %NewCI, 1 806 // br i1 %Success, label %partword.cmpxchg.end, 807 // label %partword.cmpxchg.failure 808 // partword.cmpxchg.failure: 809 // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask 810 // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut 811 // br i1 %ShouldContinue, label %partword.cmpxchg.loop, 812 // label %partword.cmpxchg.end 813 // partword.cmpxchg.end: 814 // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt 815 // %FinalOldVal = trunc i32 %tmp1 to i8 816 // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0 817 // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1 818 819 Value *Addr = CI->getPointerOperand(); 820 Value *Cmp = CI->getCompareOperand(); 821 Value *NewVal = CI->getNewValOperand(); 822 823 BasicBlock *BB = CI->getParent(); 824 Function *F = BB->getParent(); 825 IRBuilder<> Builder(CI); 826 LLVMContext &Ctx = Builder.getContext(); 827 828 const int WordSize = TLI->getMinCmpXchgSizeInBits() / 8; 829 830 BasicBlock *EndBB = 831 BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end"); 832 auto FailureBB = 833 BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB); 834 auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB); 835 836 // The split call above "helpfully" added a branch at the end of BB 837 // (to the wrong place). 838 std::prev(BB->end())->eraseFromParent(); 839 Builder.SetInsertPoint(BB); 840 841 PartwordMaskValues PMV = createMaskInstrs( 842 Builder, CI, CI->getCompareOperand()->getType(), Addr, WordSize); 843 844 // Shift the incoming values over, into the right location in the word. 845 Value *NewVal_Shifted = 846 Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt); 847 Value *Cmp_Shifted = 848 Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt); 849 850 // Load the entire current word, and mask into place the expected and new 851 // values 852 LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr); 853 InitLoaded->setVolatile(CI->isVolatile()); 854 Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask); 855 Builder.CreateBr(LoopBB); 856 857 // partword.cmpxchg.loop: 858 Builder.SetInsertPoint(LoopBB); 859 PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2); 860 Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB); 861 862 // Mask/Or the expected and new values into place in the loaded word. 863 Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted); 864 Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted); 865 AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg( 866 PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, CI->getSuccessOrdering(), 867 CI->getFailureOrdering(), CI->getSyncScopeID()); 868 NewCI->setVolatile(CI->isVolatile()); 869 // When we're building a strong cmpxchg, we need a loop, so you 870 // might think we could use a weak cmpxchg inside. But, using strong 871 // allows the below comparison for ShouldContinue, and we're 872 // expecting the underlying cmpxchg to be a machine instruction, 873 // which is strong anyways. 874 NewCI->setWeak(CI->isWeak()); 875 876 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 877 Value *Success = Builder.CreateExtractValue(NewCI, 1); 878 879 if (CI->isWeak()) 880 Builder.CreateBr(EndBB); 881 else 882 Builder.CreateCondBr(Success, EndBB, FailureBB); 883 884 // partword.cmpxchg.failure: 885 Builder.SetInsertPoint(FailureBB); 886 // Upon failure, verify that the masked-out part of the loaded value 887 // has been modified. If it didn't, abort the cmpxchg, since the 888 // masked-in part must've. 889 Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask); 890 Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut); 891 Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB); 892 893 // Add the second value to the phi from above 894 Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB); 895 896 // partword.cmpxchg.end: 897 Builder.SetInsertPoint(CI); 898 899 Value *FinalOldVal = Builder.CreateTrunc( 900 Builder.CreateLShr(OldVal, PMV.ShiftAmt), PMV.ValueType); 901 Value *Res = UndefValue::get(CI->getType()); 902 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 903 Res = Builder.CreateInsertValue(Res, Success, 1); 904 905 CI->replaceAllUsesWith(Res); 906 CI->eraseFromParent(); 907 } 908 909 void AtomicExpand::expandAtomicOpToLLSC( 910 Instruction *I, Type *ResultType, Value *Addr, AtomicOrdering MemOpOrder, 911 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { 912 IRBuilder<> Builder(I); 913 Value *Loaded = 914 insertRMWLLSCLoop(Builder, ResultType, Addr, MemOpOrder, PerformOp); 915 916 I->replaceAllUsesWith(Loaded); 917 I->eraseFromParent(); 918 } 919 920 void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) { 921 IRBuilder<> Builder(AI); 922 923 PartwordMaskValues PMV = 924 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 925 TLI->getMinCmpXchgSizeInBits() / 8); 926 927 // The value operand must be sign-extended for signed min/max so that the 928 // target's signed comparison instructions can be used. Otherwise, just 929 // zero-ext. 930 Instruction::CastOps CastOp = Instruction::ZExt; 931 AtomicRMWInst::BinOp RMWOp = AI->getOperation(); 932 if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min) 933 CastOp = Instruction::SExt; 934 935 Value *ValOperand_Shifted = Builder.CreateShl( 936 Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType), 937 PMV.ShiftAmt, "ValOperand_Shifted"); 938 Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic( 939 Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt, 940 AI->getOrdering()); 941 Value *FinalOldResult = Builder.CreateTrunc( 942 Builder.CreateLShr(OldResult, PMV.ShiftAmt), PMV.ValueType); 943 AI->replaceAllUsesWith(FinalOldResult); 944 AI->eraseFromParent(); 945 } 946 947 Value *AtomicExpand::insertRMWLLSCLoop( 948 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, 949 AtomicOrdering MemOpOrder, 950 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { 951 LLVMContext &Ctx = Builder.getContext(); 952 BasicBlock *BB = Builder.GetInsertBlock(); 953 Function *F = BB->getParent(); 954 955 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 956 // 957 // The standard expansion we produce is: 958 // [...] 959 // atomicrmw.start: 960 // %loaded = @load.linked(%addr) 961 // %new = some_op iN %loaded, %incr 962 // %stored = @store_conditional(%new, %addr) 963 // %try_again = icmp i32 ne %stored, 0 964 // br i1 %try_again, label %loop, label %atomicrmw.end 965 // atomicrmw.end: 966 // [...] 967 BasicBlock *ExitBB = 968 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 969 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 970 971 // The split call above "helpfully" added a branch at the end of BB (to the 972 // wrong place). 973 std::prev(BB->end())->eraseFromParent(); 974 Builder.SetInsertPoint(BB); 975 Builder.CreateBr(LoopBB); 976 977 // Start the main loop block now that we've taken care of the preliminaries. 978 Builder.SetInsertPoint(LoopBB); 979 Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); 980 981 Value *NewVal = PerformOp(Builder, Loaded); 982 983 Value *StoreSuccess = 984 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); 985 Value *TryAgain = Builder.CreateICmpNE( 986 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); 987 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); 988 989 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 990 return Loaded; 991 } 992 993 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of 994 /// the equivalent bitwidth. We used to not support pointer cmpxchg in the 995 /// IR. As a migration step, we convert back to what use to be the standard 996 /// way to represent a pointer cmpxchg so that we can update backends one by 997 /// one. 998 AtomicCmpXchgInst *AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) { 999 auto *M = CI->getModule(); 1000 Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(), 1001 M->getDataLayout()); 1002 1003 IRBuilder<> Builder(CI); 1004 1005 Value *Addr = CI->getPointerOperand(); 1006 Type *PT = PointerType::get(NewTy, 1007 Addr->getType()->getPointerAddressSpace()); 1008 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 1009 1010 Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy); 1011 Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy); 1012 1013 1014 auto *NewCI = Builder.CreateAtomicCmpXchg(NewAddr, NewCmp, NewNewVal, 1015 CI->getSuccessOrdering(), 1016 CI->getFailureOrdering(), 1017 CI->getSyncScopeID()); 1018 NewCI->setVolatile(CI->isVolatile()); 1019 NewCI->setWeak(CI->isWeak()); 1020 LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n"); 1021 1022 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 1023 Value *Succ = Builder.CreateExtractValue(NewCI, 1); 1024 1025 OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType()); 1026 1027 Value *Res = UndefValue::get(CI->getType()); 1028 Res = Builder.CreateInsertValue(Res, OldVal, 0); 1029 Res = Builder.CreateInsertValue(Res, Succ, 1); 1030 1031 CI->replaceAllUsesWith(Res); 1032 CI->eraseFromParent(); 1033 return NewCI; 1034 } 1035 1036 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1037 AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); 1038 AtomicOrdering FailureOrder = CI->getFailureOrdering(); 1039 Value *Addr = CI->getPointerOperand(); 1040 BasicBlock *BB = CI->getParent(); 1041 Function *F = BB->getParent(); 1042 LLVMContext &Ctx = F->getContext(); 1043 // If shouldInsertFencesForAtomic() returns true, then the target does not 1044 // want to deal with memory orders, and emitLeading/TrailingFence should take 1045 // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we 1046 // should preserve the ordering. 1047 bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI); 1048 AtomicOrdering MemOpOrder = 1049 ShouldInsertFencesForAtomic ? AtomicOrdering::Monotonic : SuccessOrder; 1050 1051 // In implementations which use a barrier to achieve release semantics, we can 1052 // delay emitting this barrier until we know a store is actually going to be 1053 // attempted. The cost of this delay is that we need 2 copies of the block 1054 // emitting the load-linked, affecting code size. 1055 // 1056 // Ideally, this logic would be unconditional except for the minsize check 1057 // since in other cases the extra blocks naturally collapse down to the 1058 // minimal loop. Unfortunately, this puts too much stress on later 1059 // optimisations so we avoid emitting the extra logic in those cases too. 1060 bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic && 1061 SuccessOrder != AtomicOrdering::Monotonic && 1062 SuccessOrder != AtomicOrdering::Acquire && 1063 !F->optForMinSize(); 1064 1065 // There's no overhead for sinking the release barrier in a weak cmpxchg, so 1066 // do it even on minsize. 1067 bool UseUnconditionalReleaseBarrier = F->optForMinSize() && !CI->isWeak(); 1068 1069 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord 1070 // 1071 // The full expansion we produce is: 1072 // [...] 1073 // cmpxchg.start: 1074 // %unreleasedload = @load.linked(%addr) 1075 // %should_store = icmp eq %unreleasedload, %desired 1076 // br i1 %should_store, label %cmpxchg.fencedstore, 1077 // label %cmpxchg.nostore 1078 // cmpxchg.releasingstore: 1079 // fence? 1080 // br label cmpxchg.trystore 1081 // cmpxchg.trystore: 1082 // %loaded.trystore = phi [%unreleasedload, %releasingstore], 1083 // [%releasedload, %cmpxchg.releasedload] 1084 // %stored = @store_conditional(%new, %addr) 1085 // %success = icmp eq i32 %stored, 0 1086 // br i1 %success, label %cmpxchg.success, 1087 // label %cmpxchg.releasedload/%cmpxchg.failure 1088 // cmpxchg.releasedload: 1089 // %releasedload = @load.linked(%addr) 1090 // %should_store = icmp eq %releasedload, %desired 1091 // br i1 %should_store, label %cmpxchg.trystore, 1092 // label %cmpxchg.failure 1093 // cmpxchg.success: 1094 // fence? 1095 // br label %cmpxchg.end 1096 // cmpxchg.nostore: 1097 // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start], 1098 // [%releasedload, 1099 // %cmpxchg.releasedload/%cmpxchg.trystore] 1100 // @load_linked_fail_balance()? 1101 // br label %cmpxchg.failure 1102 // cmpxchg.failure: 1103 // fence? 1104 // br label %cmpxchg.end 1105 // cmpxchg.end: 1106 // %loaded = phi [%loaded.nostore, %cmpxchg.failure], 1107 // [%loaded.trystore, %cmpxchg.trystore] 1108 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] 1109 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 1110 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 1111 // [...] 1112 BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end"); 1113 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); 1114 auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB); 1115 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB); 1116 auto ReleasedLoadBB = 1117 BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB); 1118 auto TryStoreBB = 1119 BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB); 1120 auto ReleasingStoreBB = 1121 BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB); 1122 auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB); 1123 1124 // This grabs the DebugLoc from CI 1125 IRBuilder<> Builder(CI); 1126 1127 // The split call above "helpfully" added a branch at the end of BB (to the 1128 // wrong place), but we might want a fence too. It's easiest to just remove 1129 // the branch entirely. 1130 std::prev(BB->end())->eraseFromParent(); 1131 Builder.SetInsertPoint(BB); 1132 if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier) 1133 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1134 Builder.CreateBr(StartBB); 1135 1136 // Start the main loop block now that we've taken care of the preliminaries. 1137 Builder.SetInsertPoint(StartBB); 1138 Value *UnreleasedLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); 1139 Value *ShouldStore = Builder.CreateICmpEQ( 1140 UnreleasedLoad, CI->getCompareOperand(), "should_store"); 1141 1142 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1143 // jump straight past that fence instruction (if it exists). 1144 Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB); 1145 1146 Builder.SetInsertPoint(ReleasingStoreBB); 1147 if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier) 1148 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1149 Builder.CreateBr(TryStoreBB); 1150 1151 Builder.SetInsertPoint(TryStoreBB); 1152 Value *StoreSuccess = TLI->emitStoreConditional( 1153 Builder, CI->getNewValOperand(), Addr, MemOpOrder); 1154 StoreSuccess = Builder.CreateICmpEQ( 1155 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); 1156 BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB; 1157 Builder.CreateCondBr(StoreSuccess, SuccessBB, 1158 CI->isWeak() ? FailureBB : RetryBB); 1159 1160 Builder.SetInsertPoint(ReleasedLoadBB); 1161 Value *SecondLoad; 1162 if (HasReleasedLoadBB) { 1163 SecondLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); 1164 ShouldStore = Builder.CreateICmpEQ(SecondLoad, CI->getCompareOperand(), 1165 "should_store"); 1166 1167 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1168 // jump straight past that fence instruction (if it exists). 1169 Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB); 1170 } else 1171 Builder.CreateUnreachable(); 1172 1173 // Make sure later instructions don't get reordered with a fence if 1174 // necessary. 1175 Builder.SetInsertPoint(SuccessBB); 1176 if (ShouldInsertFencesForAtomic) 1177 TLI->emitTrailingFence(Builder, CI, SuccessOrder); 1178 Builder.CreateBr(ExitBB); 1179 1180 Builder.SetInsertPoint(NoStoreBB); 1181 // In the failing case, where we don't execute the store-conditional, the 1182 // target might want to balance out the load-linked with a dedicated 1183 // instruction (e.g., on ARM, clearing the exclusive monitor). 1184 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 1185 Builder.CreateBr(FailureBB); 1186 1187 Builder.SetInsertPoint(FailureBB); 1188 if (ShouldInsertFencesForAtomic) 1189 TLI->emitTrailingFence(Builder, CI, FailureOrder); 1190 Builder.CreateBr(ExitBB); 1191 1192 // Finally, we have control-flow based knowledge of whether the cmpxchg 1193 // succeeded or not. We expose this to later passes by converting any 1194 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate 1195 // PHI. 1196 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1197 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2); 1198 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); 1199 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); 1200 1201 // Setup the builder so we can create any PHIs we need. 1202 Value *Loaded; 1203 if (!HasReleasedLoadBB) 1204 Loaded = UnreleasedLoad; 1205 else { 1206 Builder.SetInsertPoint(TryStoreBB, TryStoreBB->begin()); 1207 PHINode *TryStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2); 1208 TryStoreLoaded->addIncoming(UnreleasedLoad, ReleasingStoreBB); 1209 TryStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB); 1210 1211 Builder.SetInsertPoint(NoStoreBB, NoStoreBB->begin()); 1212 PHINode *NoStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2); 1213 NoStoreLoaded->addIncoming(UnreleasedLoad, StartBB); 1214 NoStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB); 1215 1216 Builder.SetInsertPoint(ExitBB, ++ExitBB->begin()); 1217 PHINode *ExitLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2); 1218 ExitLoaded->addIncoming(TryStoreLoaded, SuccessBB); 1219 ExitLoaded->addIncoming(NoStoreLoaded, FailureBB); 1220 1221 Loaded = ExitLoaded; 1222 } 1223 1224 // Look for any users of the cmpxchg that are just comparing the loaded value 1225 // against the desired one, and replace them with the CFG-derived version. 1226 SmallVector<ExtractValueInst *, 2> PrunedInsts; 1227 for (auto User : CI->users()) { 1228 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); 1229 if (!EV) 1230 continue; 1231 1232 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && 1233 "weird extraction from { iN, i1 }"); 1234 1235 if (EV->getIndices()[0] == 0) 1236 EV->replaceAllUsesWith(Loaded); 1237 else 1238 EV->replaceAllUsesWith(Success); 1239 1240 PrunedInsts.push_back(EV); 1241 } 1242 1243 // We can remove the instructions now we're no longer iterating through them. 1244 for (auto EV : PrunedInsts) 1245 EV->eraseFromParent(); 1246 1247 if (!CI->use_empty()) { 1248 // Some use of the full struct return that we don't understand has happened, 1249 // so we've got to reconstruct it properly. 1250 Value *Res; 1251 Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0); 1252 Res = Builder.CreateInsertValue(Res, Success, 1); 1253 1254 CI->replaceAllUsesWith(Res); 1255 } 1256 1257 CI->eraseFromParent(); 1258 return true; 1259 } 1260 1261 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) { 1262 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand()); 1263 if(!C) 1264 return false; 1265 1266 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 1267 switch(Op) { 1268 case AtomicRMWInst::Add: 1269 case AtomicRMWInst::Sub: 1270 case AtomicRMWInst::Or: 1271 case AtomicRMWInst::Xor: 1272 return C->isZero(); 1273 case AtomicRMWInst::And: 1274 return C->isMinusOne(); 1275 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/... 1276 default: 1277 return false; 1278 } 1279 } 1280 1281 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) { 1282 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { 1283 tryExpandAtomicLoad(ResultingLoad); 1284 return true; 1285 } 1286 return false; 1287 } 1288 1289 Value *AtomicExpand::insertRMWCmpXchgLoop( 1290 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, 1291 AtomicOrdering MemOpOrder, 1292 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, 1293 CreateCmpXchgInstFun CreateCmpXchg) { 1294 LLVMContext &Ctx = Builder.getContext(); 1295 BasicBlock *BB = Builder.GetInsertBlock(); 1296 Function *F = BB->getParent(); 1297 1298 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1299 // 1300 // The standard expansion we produce is: 1301 // [...] 1302 // %init_loaded = load atomic iN* %addr 1303 // br label %loop 1304 // loop: 1305 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] 1306 // %new = some_op iN %loaded, %incr 1307 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new 1308 // %new_loaded = extractvalue { iN, i1 } %pair, 0 1309 // %success = extractvalue { iN, i1 } %pair, 1 1310 // br i1 %success, label %atomicrmw.end, label %loop 1311 // atomicrmw.end: 1312 // [...] 1313 BasicBlock *ExitBB = 1314 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1315 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1316 1317 // The split call above "helpfully" added a branch at the end of BB (to the 1318 // wrong place), but we want a load. It's easiest to just remove 1319 // the branch entirely. 1320 std::prev(BB->end())->eraseFromParent(); 1321 Builder.SetInsertPoint(BB); 1322 LoadInst *InitLoaded = Builder.CreateLoad(ResultTy, Addr); 1323 // Atomics require at least natural alignment. 1324 InitLoaded->setAlignment(ResultTy->getPrimitiveSizeInBits() / 8); 1325 Builder.CreateBr(LoopBB); 1326 1327 // Start the main loop block now that we've taken care of the preliminaries. 1328 Builder.SetInsertPoint(LoopBB); 1329 PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded"); 1330 Loaded->addIncoming(InitLoaded, BB); 1331 1332 Value *NewVal = PerformOp(Builder, Loaded); 1333 1334 Value *NewLoaded = nullptr; 1335 Value *Success = nullptr; 1336 1337 CreateCmpXchg(Builder, Addr, Loaded, NewVal, 1338 MemOpOrder == AtomicOrdering::Unordered 1339 ? AtomicOrdering::Monotonic 1340 : MemOpOrder, 1341 Success, NewLoaded); 1342 assert(Success && NewLoaded); 1343 1344 Loaded->addIncoming(NewLoaded, LoopBB); 1345 1346 Builder.CreateCondBr(Success, ExitBB, LoopBB); 1347 1348 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1349 return NewLoaded; 1350 } 1351 1352 bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1353 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 1354 unsigned ValueSize = getAtomicOpSize(CI); 1355 1356 switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) { 1357 default: 1358 llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg"); 1359 case TargetLoweringBase::AtomicExpansionKind::None: 1360 if (ValueSize < MinCASSize) 1361 expandPartwordCmpXchg(CI); 1362 return false; 1363 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 1364 assert(ValueSize >= MinCASSize && 1365 "MinCmpXchgSizeInBits not yet supported for LL/SC expansions."); 1366 return expandAtomicCmpXchg(CI); 1367 } 1368 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: 1369 llvm_unreachable( 1370 "MaskedIntrinsic expansion of cmpxhg not yet implemented"); 1371 } 1372 } 1373 1374 // Note: This function is exposed externally by AtomicExpandUtils.h 1375 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 1376 CreateCmpXchgInstFun CreateCmpXchg) { 1377 IRBuilder<> Builder(AI); 1378 Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop( 1379 Builder, AI->getType(), AI->getPointerOperand(), AI->getOrdering(), 1380 [&](IRBuilder<> &Builder, Value *Loaded) { 1381 return performAtomicOp(AI->getOperation(), Builder, Loaded, 1382 AI->getValOperand()); 1383 }, 1384 CreateCmpXchg); 1385 1386 AI->replaceAllUsesWith(Loaded); 1387 AI->eraseFromParent(); 1388 return true; 1389 } 1390 1391 // In order to use one of the sized library calls such as 1392 // __atomic_fetch_add_4, the alignment must be sufficient, the size 1393 // must be one of the potentially-specialized sizes, and the value 1394 // type must actually exist in C on the target (otherwise, the 1395 // function wouldn't actually be defined.) 1396 static bool canUseSizedAtomicCall(unsigned Size, unsigned Align, 1397 const DataLayout &DL) { 1398 // TODO: "LargestSize" is an approximation for "largest type that 1399 // you can express in C". It seems to be the case that int128 is 1400 // supported on all 64-bit platforms, otherwise only up to 64-bit 1401 // integers are supported. If we get this wrong, then we'll try to 1402 // call a sized libcall that doesn't actually exist. There should 1403 // really be some more reliable way in LLVM of determining integer 1404 // sizes which are valid in the target's C ABI... 1405 unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8; 1406 return Align >= Size && 1407 (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) && 1408 Size <= LargestSize; 1409 } 1410 1411 void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) { 1412 static const RTLIB::Libcall Libcalls[6] = { 1413 RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2, 1414 RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16}; 1415 unsigned Size = getAtomicOpSize(I); 1416 unsigned Align = getAtomicOpAlign(I); 1417 1418 bool expanded = expandAtomicOpToLibcall( 1419 I, Size, Align, I->getPointerOperand(), nullptr, nullptr, 1420 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1421 (void)expanded; 1422 assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Load"); 1423 } 1424 1425 void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) { 1426 static const RTLIB::Libcall Libcalls[6] = { 1427 RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2, 1428 RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16}; 1429 unsigned Size = getAtomicOpSize(I); 1430 unsigned Align = getAtomicOpAlign(I); 1431 1432 bool expanded = expandAtomicOpToLibcall( 1433 I, Size, Align, I->getPointerOperand(), I->getValueOperand(), nullptr, 1434 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1435 (void)expanded; 1436 assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Store"); 1437 } 1438 1439 void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) { 1440 static const RTLIB::Libcall Libcalls[6] = { 1441 RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1, 1442 RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4, 1443 RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16}; 1444 unsigned Size = getAtomicOpSize(I); 1445 unsigned Align = getAtomicOpAlign(I); 1446 1447 bool expanded = expandAtomicOpToLibcall( 1448 I, Size, Align, I->getPointerOperand(), I->getNewValOperand(), 1449 I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(), 1450 Libcalls); 1451 (void)expanded; 1452 assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor CAS"); 1453 } 1454 1455 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) { 1456 static const RTLIB::Libcall LibcallsXchg[6] = { 1457 RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1, 1458 RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4, 1459 RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16}; 1460 static const RTLIB::Libcall LibcallsAdd[6] = { 1461 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1, 1462 RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4, 1463 RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16}; 1464 static const RTLIB::Libcall LibcallsSub[6] = { 1465 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1, 1466 RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4, 1467 RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16}; 1468 static const RTLIB::Libcall LibcallsAnd[6] = { 1469 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1, 1470 RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4, 1471 RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16}; 1472 static const RTLIB::Libcall LibcallsOr[6] = { 1473 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1, 1474 RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4, 1475 RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16}; 1476 static const RTLIB::Libcall LibcallsXor[6] = { 1477 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1, 1478 RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4, 1479 RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16}; 1480 static const RTLIB::Libcall LibcallsNand[6] = { 1481 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1, 1482 RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4, 1483 RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16}; 1484 1485 switch (Op) { 1486 case AtomicRMWInst::BAD_BINOP: 1487 llvm_unreachable("Should not have BAD_BINOP."); 1488 case AtomicRMWInst::Xchg: 1489 return makeArrayRef(LibcallsXchg); 1490 case AtomicRMWInst::Add: 1491 return makeArrayRef(LibcallsAdd); 1492 case AtomicRMWInst::Sub: 1493 return makeArrayRef(LibcallsSub); 1494 case AtomicRMWInst::And: 1495 return makeArrayRef(LibcallsAnd); 1496 case AtomicRMWInst::Or: 1497 return makeArrayRef(LibcallsOr); 1498 case AtomicRMWInst::Xor: 1499 return makeArrayRef(LibcallsXor); 1500 case AtomicRMWInst::Nand: 1501 return makeArrayRef(LibcallsNand); 1502 case AtomicRMWInst::Max: 1503 case AtomicRMWInst::Min: 1504 case AtomicRMWInst::UMax: 1505 case AtomicRMWInst::UMin: 1506 // No atomic libcalls are available for max/min/umax/umin. 1507 return {}; 1508 } 1509 llvm_unreachable("Unexpected AtomicRMW operation."); 1510 } 1511 1512 void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) { 1513 ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation()); 1514 1515 unsigned Size = getAtomicOpSize(I); 1516 unsigned Align = getAtomicOpAlign(I); 1517 1518 bool Success = false; 1519 if (!Libcalls.empty()) 1520 Success = expandAtomicOpToLibcall( 1521 I, Size, Align, I->getPointerOperand(), I->getValOperand(), nullptr, 1522 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1523 1524 // The expansion failed: either there were no libcalls at all for 1525 // the operation (min/max), or there were only size-specialized 1526 // libcalls (add/sub/etc) and we needed a generic. So, expand to a 1527 // CAS libcall, via a CAS loop, instead. 1528 if (!Success) { 1529 expandAtomicRMWToCmpXchg(I, [this](IRBuilder<> &Builder, Value *Addr, 1530 Value *Loaded, Value *NewVal, 1531 AtomicOrdering MemOpOrder, 1532 Value *&Success, Value *&NewLoaded) { 1533 // Create the CAS instruction normally... 1534 AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg( 1535 Addr, Loaded, NewVal, MemOpOrder, 1536 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder)); 1537 Success = Builder.CreateExtractValue(Pair, 1, "success"); 1538 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 1539 1540 // ...and then expand the CAS into a libcall. 1541 expandAtomicCASToLibcall(Pair); 1542 }); 1543 } 1544 } 1545 1546 // A helper routine for the above expandAtomic*ToLibcall functions. 1547 // 1548 // 'Libcalls' contains an array of enum values for the particular 1549 // ATOMIC libcalls to be emitted. All of the other arguments besides 1550 // 'I' are extracted from the Instruction subclass by the 1551 // caller. Depending on the particular call, some will be null. 1552 bool AtomicExpand::expandAtomicOpToLibcall( 1553 Instruction *I, unsigned Size, unsigned Align, Value *PointerOperand, 1554 Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering, 1555 AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) { 1556 assert(Libcalls.size() == 6); 1557 1558 LLVMContext &Ctx = I->getContext(); 1559 Module *M = I->getModule(); 1560 const DataLayout &DL = M->getDataLayout(); 1561 IRBuilder<> Builder(I); 1562 IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front()); 1563 1564 bool UseSizedLibcall = canUseSizedAtomicCall(Size, Align, DL); 1565 Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8); 1566 1567 unsigned AllocaAlignment = DL.getPrefTypeAlignment(SizedIntTy); 1568 1569 // TODO: the "order" argument type is "int", not int32. So 1570 // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints. 1571 ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size); 1572 assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO"); 1573 Constant *OrderingVal = 1574 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering)); 1575 Constant *Ordering2Val = nullptr; 1576 if (CASExpected) { 1577 assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO"); 1578 Ordering2Val = 1579 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2)); 1580 } 1581 bool HasResult = I->getType() != Type::getVoidTy(Ctx); 1582 1583 RTLIB::Libcall RTLibType; 1584 if (UseSizedLibcall) { 1585 switch (Size) { 1586 case 1: RTLibType = Libcalls[1]; break; 1587 case 2: RTLibType = Libcalls[2]; break; 1588 case 4: RTLibType = Libcalls[3]; break; 1589 case 8: RTLibType = Libcalls[4]; break; 1590 case 16: RTLibType = Libcalls[5]; break; 1591 } 1592 } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) { 1593 RTLibType = Libcalls[0]; 1594 } else { 1595 // Can't use sized function, and there's no generic for this 1596 // operation, so give up. 1597 return false; 1598 } 1599 1600 // Build up the function call. There's two kinds. First, the sized 1601 // variants. These calls are going to be one of the following (with 1602 // N=1,2,4,8,16): 1603 // iN __atomic_load_N(iN *ptr, int ordering) 1604 // void __atomic_store_N(iN *ptr, iN val, int ordering) 1605 // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering) 1606 // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired, 1607 // int success_order, int failure_order) 1608 // 1609 // Note that these functions can be used for non-integer atomic 1610 // operations, the values just need to be bitcast to integers on the 1611 // way in and out. 1612 // 1613 // And, then, the generic variants. They look like the following: 1614 // void __atomic_load(size_t size, void *ptr, void *ret, int ordering) 1615 // void __atomic_store(size_t size, void *ptr, void *val, int ordering) 1616 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, 1617 // int ordering) 1618 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, 1619 // void *desired, int success_order, 1620 // int failure_order) 1621 // 1622 // The different signatures are built up depending on the 1623 // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult' 1624 // variables. 1625 1626 AllocaInst *AllocaCASExpected = nullptr; 1627 Value *AllocaCASExpected_i8 = nullptr; 1628 AllocaInst *AllocaValue = nullptr; 1629 Value *AllocaValue_i8 = nullptr; 1630 AllocaInst *AllocaResult = nullptr; 1631 Value *AllocaResult_i8 = nullptr; 1632 1633 Type *ResultTy; 1634 SmallVector<Value *, 6> Args; 1635 AttributeList Attr; 1636 1637 // 'size' argument. 1638 if (!UseSizedLibcall) { 1639 // Note, getIntPtrType is assumed equivalent to size_t. 1640 Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size)); 1641 } 1642 1643 // 'ptr' argument. 1644 Value *PtrVal = 1645 Builder.CreateBitCast(PointerOperand, Type::getInt8PtrTy(Ctx)); 1646 Args.push_back(PtrVal); 1647 1648 // 'expected' argument, if present. 1649 if (CASExpected) { 1650 AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType()); 1651 AllocaCASExpected->setAlignment(AllocaAlignment); 1652 AllocaCASExpected_i8 = 1653 Builder.CreateBitCast(AllocaCASExpected, Type::getInt8PtrTy(Ctx)); 1654 Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64); 1655 Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment); 1656 Args.push_back(AllocaCASExpected_i8); 1657 } 1658 1659 // 'val' argument ('desired' for cas), if present. 1660 if (ValueOperand) { 1661 if (UseSizedLibcall) { 1662 Value *IntValue = 1663 Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy); 1664 Args.push_back(IntValue); 1665 } else { 1666 AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType()); 1667 AllocaValue->setAlignment(AllocaAlignment); 1668 AllocaValue_i8 = 1669 Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx)); 1670 Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64); 1671 Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment); 1672 Args.push_back(AllocaValue_i8); 1673 } 1674 } 1675 1676 // 'ret' argument. 1677 if (!CASExpected && HasResult && !UseSizedLibcall) { 1678 AllocaResult = AllocaBuilder.CreateAlloca(I->getType()); 1679 AllocaResult->setAlignment(AllocaAlignment); 1680 AllocaResult_i8 = 1681 Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx)); 1682 Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64); 1683 Args.push_back(AllocaResult_i8); 1684 } 1685 1686 // 'ordering' ('success_order' for cas) argument. 1687 Args.push_back(OrderingVal); 1688 1689 // 'failure_order' argument, if present. 1690 if (Ordering2Val) 1691 Args.push_back(Ordering2Val); 1692 1693 // Now, the return type. 1694 if (CASExpected) { 1695 ResultTy = Type::getInt1Ty(Ctx); 1696 Attr = Attr.addAttribute(Ctx, AttributeList::ReturnIndex, Attribute::ZExt); 1697 } else if (HasResult && UseSizedLibcall) 1698 ResultTy = SizedIntTy; 1699 else 1700 ResultTy = Type::getVoidTy(Ctx); 1701 1702 // Done with setting up arguments and return types, create the call: 1703 SmallVector<Type *, 6> ArgTys; 1704 for (Value *Arg : Args) 1705 ArgTys.push_back(Arg->getType()); 1706 FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false); 1707 Constant *LibcallFn = 1708 M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr); 1709 CallInst *Call = Builder.CreateCall(LibcallFn, Args); 1710 Call->setAttributes(Attr); 1711 Value *Result = Call; 1712 1713 // And then, extract the results... 1714 if (ValueOperand && !UseSizedLibcall) 1715 Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64); 1716 1717 if (CASExpected) { 1718 // The final result from the CAS is {load of 'expected' alloca, bool result 1719 // from call} 1720 Type *FinalResultTy = I->getType(); 1721 Value *V = UndefValue::get(FinalResultTy); 1722 Value *ExpectedOut = 1723 Builder.CreateAlignedLoad(AllocaCASExpected, AllocaAlignment); 1724 Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64); 1725 V = Builder.CreateInsertValue(V, ExpectedOut, 0); 1726 V = Builder.CreateInsertValue(V, Result, 1); 1727 I->replaceAllUsesWith(V); 1728 } else if (HasResult) { 1729 Value *V; 1730 if (UseSizedLibcall) 1731 V = Builder.CreateBitOrPointerCast(Result, I->getType()); 1732 else { 1733 V = Builder.CreateAlignedLoad(AllocaResult, AllocaAlignment); 1734 Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64); 1735 } 1736 I->replaceAllUsesWith(V); 1737 } 1738 I->eraseFromParent(); 1739 return true; 1740 } 1741