1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a pass (at IR level) to replace atomic instructions with
11 // __atomic_* library calls, or target specific instruction which implement the
12 // same semantics in a way which better fits the target backend.  This can
13 // include the use of (intrinsic-based) load-linked/store-conditional loops,
14 // AtomicCmpXchg, or type coercions.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/CodeGen/AtomicExpandUtils.h"
22 #include "llvm/CodeGen/RuntimeLibcalls.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetPassConfig.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/CodeGen/ValueTypes.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Constant.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/InstIterator.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/IR/User.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/AtomicOrdering.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include <cassert>
50 #include <cstdint>
51 #include <iterator>
52 
53 using namespace llvm;
54 
55 #define DEBUG_TYPE "atomic-expand"
56 
57 namespace {
58 
59   class AtomicExpand: public FunctionPass {
60     const TargetLowering *TLI = nullptr;
61 
62   public:
63     static char ID; // Pass identification, replacement for typeid
64 
65     AtomicExpand() : FunctionPass(ID) {
66       initializeAtomicExpandPass(*PassRegistry::getPassRegistry());
67     }
68 
69     bool runOnFunction(Function &F) override;
70 
71   private:
72     bool bracketInstWithFences(Instruction *I, AtomicOrdering Order);
73     IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL);
74     LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI);
75     bool tryExpandAtomicLoad(LoadInst *LI);
76     bool expandAtomicLoadToLL(LoadInst *LI);
77     bool expandAtomicLoadToCmpXchg(LoadInst *LI);
78     StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI);
79     bool expandAtomicStore(StoreInst *SI);
80     bool tryExpandAtomicRMW(AtomicRMWInst *AI);
81     Value *
82     insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
83                       AtomicOrdering MemOpOrder,
84                       function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
85     void expandAtomicOpToLLSC(
86         Instruction *I, Type *ResultTy, Value *Addr, AtomicOrdering MemOpOrder,
87         function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
88     void expandPartwordAtomicRMW(
89         AtomicRMWInst *I,
90         TargetLoweringBase::AtomicExpansionKind ExpansionKind);
91     AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI);
92     void expandPartwordCmpXchg(AtomicCmpXchgInst *I);
93     void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI);
94 
95     AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI);
96     static Value *insertRMWCmpXchgLoop(
97         IRBuilder<> &Builder, Type *ResultType, Value *Addr,
98         AtomicOrdering MemOpOrder,
99         function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
100         CreateCmpXchgInstFun CreateCmpXchg);
101     bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI);
102 
103     bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI);
104     bool isIdempotentRMW(AtomicRMWInst *RMWI);
105     bool simplifyIdempotentRMW(AtomicRMWInst *RMWI);
106 
107     bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, unsigned Align,
108                                  Value *PointerOperand, Value *ValueOperand,
109                                  Value *CASExpected, AtomicOrdering Ordering,
110                                  AtomicOrdering Ordering2,
111                                  ArrayRef<RTLIB::Libcall> Libcalls);
112     void expandAtomicLoadToLibcall(LoadInst *LI);
113     void expandAtomicStoreToLibcall(StoreInst *LI);
114     void expandAtomicRMWToLibcall(AtomicRMWInst *I);
115     void expandAtomicCASToLibcall(AtomicCmpXchgInst *I);
116 
117     friend bool
118     llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
119                                    CreateCmpXchgInstFun CreateCmpXchg);
120   };
121 
122 } // end anonymous namespace
123 
124 char AtomicExpand::ID = 0;
125 
126 char &llvm::AtomicExpandID = AtomicExpand::ID;
127 
128 INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions",
129                 false, false)
130 
131 FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); }
132 
133 // Helper functions to retrieve the size of atomic instructions.
134 static unsigned getAtomicOpSize(LoadInst *LI) {
135   const DataLayout &DL = LI->getModule()->getDataLayout();
136   return DL.getTypeStoreSize(LI->getType());
137 }
138 
139 static unsigned getAtomicOpSize(StoreInst *SI) {
140   const DataLayout &DL = SI->getModule()->getDataLayout();
141   return DL.getTypeStoreSize(SI->getValueOperand()->getType());
142 }
143 
144 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) {
145   const DataLayout &DL = RMWI->getModule()->getDataLayout();
146   return DL.getTypeStoreSize(RMWI->getValOperand()->getType());
147 }
148 
149 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) {
150   const DataLayout &DL = CASI->getModule()->getDataLayout();
151   return DL.getTypeStoreSize(CASI->getCompareOperand()->getType());
152 }
153 
154 // Helper functions to retrieve the alignment of atomic instructions.
155 static unsigned getAtomicOpAlign(LoadInst *LI) {
156   unsigned Align = LI->getAlignment();
157   // In the future, if this IR restriction is relaxed, we should
158   // return DataLayout::getABITypeAlignment when there's no align
159   // value.
160   assert(Align != 0 && "An atomic LoadInst always has an explicit alignment");
161   return Align;
162 }
163 
164 static unsigned getAtomicOpAlign(StoreInst *SI) {
165   unsigned Align = SI->getAlignment();
166   // In the future, if this IR restriction is relaxed, we should
167   // return DataLayout::getABITypeAlignment when there's no align
168   // value.
169   assert(Align != 0 && "An atomic StoreInst always has an explicit alignment");
170   return Align;
171 }
172 
173 static unsigned getAtomicOpAlign(AtomicRMWInst *RMWI) {
174   // TODO(PR27168): This instruction has no alignment attribute, but unlike the
175   // default alignment for load/store, the default here is to assume
176   // it has NATURAL alignment, not DataLayout-specified alignment.
177   const DataLayout &DL = RMWI->getModule()->getDataLayout();
178   return DL.getTypeStoreSize(RMWI->getValOperand()->getType());
179 }
180 
181 static unsigned getAtomicOpAlign(AtomicCmpXchgInst *CASI) {
182   // TODO(PR27168): same comment as above.
183   const DataLayout &DL = CASI->getModule()->getDataLayout();
184   return DL.getTypeStoreSize(CASI->getCompareOperand()->getType());
185 }
186 
187 // Determine if a particular atomic operation has a supported size,
188 // and is of appropriate alignment, to be passed through for target
189 // lowering. (Versus turning into a __atomic libcall)
190 template <typename Inst>
191 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) {
192   unsigned Size = getAtomicOpSize(I);
193   unsigned Align = getAtomicOpAlign(I);
194   return Align >= Size && Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8;
195 }
196 
197 bool AtomicExpand::runOnFunction(Function &F) {
198   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
199   if (!TPC)
200     return false;
201 
202   auto &TM = TPC->getTM<TargetMachine>();
203   if (!TM.getSubtargetImpl(F)->enableAtomicExpand())
204     return false;
205   TLI = TM.getSubtargetImpl(F)->getTargetLowering();
206 
207   SmallVector<Instruction *, 1> AtomicInsts;
208 
209   // Changing control-flow while iterating through it is a bad idea, so gather a
210   // list of all atomic instructions before we start.
211   for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
212     Instruction *I = &*II;
213     if (I->isAtomic() && !isa<FenceInst>(I))
214       AtomicInsts.push_back(I);
215   }
216 
217   bool MadeChange = false;
218   for (auto I : AtomicInsts) {
219     auto LI = dyn_cast<LoadInst>(I);
220     auto SI = dyn_cast<StoreInst>(I);
221     auto RMWI = dyn_cast<AtomicRMWInst>(I);
222     auto CASI = dyn_cast<AtomicCmpXchgInst>(I);
223     assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction");
224 
225     // If the Size/Alignment is not supported, replace with a libcall.
226     if (LI) {
227       if (!atomicSizeSupported(TLI, LI)) {
228         expandAtomicLoadToLibcall(LI);
229         MadeChange = true;
230         continue;
231       }
232     } else if (SI) {
233       if (!atomicSizeSupported(TLI, SI)) {
234         expandAtomicStoreToLibcall(SI);
235         MadeChange = true;
236         continue;
237       }
238     } else if (RMWI) {
239       if (!atomicSizeSupported(TLI, RMWI)) {
240         expandAtomicRMWToLibcall(RMWI);
241         MadeChange = true;
242         continue;
243       }
244     } else if (CASI) {
245       if (!atomicSizeSupported(TLI, CASI)) {
246         expandAtomicCASToLibcall(CASI);
247         MadeChange = true;
248         continue;
249       }
250     }
251 
252     if (TLI->shouldInsertFencesForAtomic(I)) {
253       auto FenceOrdering = AtomicOrdering::Monotonic;
254       if (LI && isAcquireOrStronger(LI->getOrdering())) {
255         FenceOrdering = LI->getOrdering();
256         LI->setOrdering(AtomicOrdering::Monotonic);
257       } else if (SI && isReleaseOrStronger(SI->getOrdering())) {
258         FenceOrdering = SI->getOrdering();
259         SI->setOrdering(AtomicOrdering::Monotonic);
260       } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) ||
261                           isAcquireOrStronger(RMWI->getOrdering()))) {
262         FenceOrdering = RMWI->getOrdering();
263         RMWI->setOrdering(AtomicOrdering::Monotonic);
264       } else if (CASI &&
265                  TLI->shouldExpandAtomicCmpXchgInIR(CASI) ==
266                      TargetLoweringBase::AtomicExpansionKind::None &&
267                  (isReleaseOrStronger(CASI->getSuccessOrdering()) ||
268                   isAcquireOrStronger(CASI->getSuccessOrdering()))) {
269         // If a compare and swap is lowered to LL/SC, we can do smarter fence
270         // insertion, with a stronger one on the success path than on the
271         // failure path. As a result, fence insertion is directly done by
272         // expandAtomicCmpXchg in that case.
273         FenceOrdering = CASI->getSuccessOrdering();
274         CASI->setSuccessOrdering(AtomicOrdering::Monotonic);
275         CASI->setFailureOrdering(AtomicOrdering::Monotonic);
276       }
277 
278       if (FenceOrdering != AtomicOrdering::Monotonic) {
279         MadeChange |= bracketInstWithFences(I, FenceOrdering);
280       }
281     }
282 
283     if (LI) {
284       if (LI->getType()->isFloatingPointTy()) {
285         // TODO: add a TLI hook to control this so that each target can
286         // convert to lowering the original type one at a time.
287         LI = convertAtomicLoadToIntegerType(LI);
288         assert(LI->getType()->isIntegerTy() && "invariant broken");
289         MadeChange = true;
290       }
291 
292       MadeChange |= tryExpandAtomicLoad(LI);
293     } else if (SI) {
294       if (SI->getValueOperand()->getType()->isFloatingPointTy()) {
295         // TODO: add a TLI hook to control this so that each target can
296         // convert to lowering the original type one at a time.
297         SI = convertAtomicStoreToIntegerType(SI);
298         assert(SI->getValueOperand()->getType()->isIntegerTy() &&
299                "invariant broken");
300         MadeChange = true;
301       }
302 
303       if (TLI->shouldExpandAtomicStoreInIR(SI))
304         MadeChange |= expandAtomicStore(SI);
305     } else if (RMWI) {
306       // There are two different ways of expanding RMW instructions:
307       // - into a load if it is idempotent
308       // - into a Cmpxchg/LL-SC loop otherwise
309       // we try them in that order.
310 
311       if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) {
312         MadeChange = true;
313       } else {
314         unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
315         unsigned ValueSize = getAtomicOpSize(RMWI);
316         AtomicRMWInst::BinOp Op = RMWI->getOperation();
317         if (ValueSize < MinCASSize &&
318             (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
319              Op == AtomicRMWInst::And)) {
320           RMWI = widenPartwordAtomicRMW(RMWI);
321           MadeChange = true;
322         }
323 
324         MadeChange |= tryExpandAtomicRMW(RMWI);
325       }
326     } else if (CASI) {
327       // TODO: when we're ready to make the change at the IR level, we can
328       // extend convertCmpXchgToInteger for floating point too.
329       assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() &&
330              "unimplemented - floating point not legal at IR level");
331       if (CASI->getCompareOperand()->getType()->isPointerTy() ) {
332         // TODO: add a TLI hook to control this so that each target can
333         // convert to lowering the original type one at a time.
334         CASI = convertCmpXchgToIntegerType(CASI);
335         assert(CASI->getCompareOperand()->getType()->isIntegerTy() &&
336                "invariant broken");
337         MadeChange = true;
338       }
339 
340       MadeChange |= tryExpandAtomicCmpXchg(CASI);
341     }
342   }
343   return MadeChange;
344 }
345 
346 bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) {
347   IRBuilder<> Builder(I);
348 
349   auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order);
350 
351   auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order);
352   // We have a guard here because not every atomic operation generates a
353   // trailing fence.
354   if (TrailingFence)
355     TrailingFence->moveAfter(I);
356 
357   return (LeadingFence || TrailingFence);
358 }
359 
360 /// Get the iX type with the same bitwidth as T.
361 IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T,
362                                                        const DataLayout &DL) {
363   EVT VT = TLI->getValueType(DL, T);
364   unsigned BitWidth = VT.getStoreSizeInBits();
365   assert(BitWidth == VT.getSizeInBits() && "must be a power of two");
366   return IntegerType::get(T->getContext(), BitWidth);
367 }
368 
369 /// Convert an atomic load of a non-integral type to an integer load of the
370 /// equivalent bitwidth.  See the function comment on
371 /// convertAtomicStoreToIntegerType for background.
372 LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) {
373   auto *M = LI->getModule();
374   Type *NewTy = getCorrespondingIntegerType(LI->getType(),
375                                             M->getDataLayout());
376 
377   IRBuilder<> Builder(LI);
378 
379   Value *Addr = LI->getPointerOperand();
380   Type *PT = PointerType::get(NewTy,
381                               Addr->getType()->getPointerAddressSpace());
382   Value *NewAddr = Builder.CreateBitCast(Addr, PT);
383 
384   auto *NewLI = Builder.CreateLoad(NewAddr);
385   NewLI->setAlignment(LI->getAlignment());
386   NewLI->setVolatile(LI->isVolatile());
387   NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID());
388   LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n");
389 
390   Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType());
391   LI->replaceAllUsesWith(NewVal);
392   LI->eraseFromParent();
393   return NewLI;
394 }
395 
396 bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) {
397   switch (TLI->shouldExpandAtomicLoadInIR(LI)) {
398   case TargetLoweringBase::AtomicExpansionKind::None:
399     return false;
400   case TargetLoweringBase::AtomicExpansionKind::LLSC:
401     expandAtomicOpToLLSC(
402         LI, LI->getType(), LI->getPointerOperand(), LI->getOrdering(),
403         [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; });
404     return true;
405   case TargetLoweringBase::AtomicExpansionKind::LLOnly:
406     return expandAtomicLoadToLL(LI);
407   case TargetLoweringBase::AtomicExpansionKind::CmpXChg:
408     return expandAtomicLoadToCmpXchg(LI);
409   default:
410     llvm_unreachable("Unhandled case in tryExpandAtomicLoad");
411   }
412 }
413 
414 bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) {
415   IRBuilder<> Builder(LI);
416 
417   // On some architectures, load-linked instructions are atomic for larger
418   // sizes than normal loads. For example, the only 64-bit load guaranteed
419   // to be single-copy atomic by ARM is an ldrexd (A3.5.3).
420   Value *Val =
421       TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering());
422   TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
423 
424   LI->replaceAllUsesWith(Val);
425   LI->eraseFromParent();
426 
427   return true;
428 }
429 
430 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) {
431   IRBuilder<> Builder(LI);
432   AtomicOrdering Order = LI->getOrdering();
433   Value *Addr = LI->getPointerOperand();
434   Type *Ty = cast<PointerType>(Addr->getType())->getElementType();
435   Constant *DummyVal = Constant::getNullValue(Ty);
436 
437   Value *Pair = Builder.CreateAtomicCmpXchg(
438       Addr, DummyVal, DummyVal, Order,
439       AtomicCmpXchgInst::getStrongestFailureOrdering(Order));
440   Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded");
441 
442   LI->replaceAllUsesWith(Loaded);
443   LI->eraseFromParent();
444 
445   return true;
446 }
447 
448 /// Convert an atomic store of a non-integral type to an integer store of the
449 /// equivalent bitwidth.  We used to not support floating point or vector
450 /// atomics in the IR at all.  The backends learned to deal with the bitcast
451 /// idiom because that was the only way of expressing the notion of a atomic
452 /// float or vector store.  The long term plan is to teach each backend to
453 /// instruction select from the original atomic store, but as a migration
454 /// mechanism, we convert back to the old format which the backends understand.
455 /// Each backend will need individual work to recognize the new format.
456 StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) {
457   IRBuilder<> Builder(SI);
458   auto *M = SI->getModule();
459   Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(),
460                                             M->getDataLayout());
461   Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy);
462 
463   Value *Addr = SI->getPointerOperand();
464   Type *PT = PointerType::get(NewTy,
465                               Addr->getType()->getPointerAddressSpace());
466   Value *NewAddr = Builder.CreateBitCast(Addr, PT);
467 
468   StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr);
469   NewSI->setAlignment(SI->getAlignment());
470   NewSI->setVolatile(SI->isVolatile());
471   NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID());
472   LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n");
473   SI->eraseFromParent();
474   return NewSI;
475 }
476 
477 bool AtomicExpand::expandAtomicStore(StoreInst *SI) {
478   // This function is only called on atomic stores that are too large to be
479   // atomic if implemented as a native store. So we replace them by an
480   // atomic swap, that can be implemented for example as a ldrex/strex on ARM
481   // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes.
482   // It is the responsibility of the target to only signal expansion via
483   // shouldExpandAtomicRMW in cases where this is required and possible.
484   IRBuilder<> Builder(SI);
485   AtomicRMWInst *AI =
486       Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(),
487                               SI->getValueOperand(), SI->getOrdering());
488   SI->eraseFromParent();
489 
490   // Now we have an appropriate swap instruction, lower it as usual.
491   return tryExpandAtomicRMW(AI);
492 }
493 
494 static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr,
495                                  Value *Loaded, Value *NewVal,
496                                  AtomicOrdering MemOpOrder,
497                                  Value *&Success, Value *&NewLoaded) {
498   Value* Pair = Builder.CreateAtomicCmpXchg(
499       Addr, Loaded, NewVal, MemOpOrder,
500       AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder));
501   Success = Builder.CreateExtractValue(Pair, 1, "success");
502   NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
503 }
504 
505 /// Emit IR to implement the given atomicrmw operation on values in registers,
506 /// returning the new value.
507 static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder,
508                               Value *Loaded, Value *Inc) {
509   Value *NewVal;
510   switch (Op) {
511   case AtomicRMWInst::Xchg:
512     return Inc;
513   case AtomicRMWInst::Add:
514     return Builder.CreateAdd(Loaded, Inc, "new");
515   case AtomicRMWInst::Sub:
516     return Builder.CreateSub(Loaded, Inc, "new");
517   case AtomicRMWInst::And:
518     return Builder.CreateAnd(Loaded, Inc, "new");
519   case AtomicRMWInst::Nand:
520     return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new");
521   case AtomicRMWInst::Or:
522     return Builder.CreateOr(Loaded, Inc, "new");
523   case AtomicRMWInst::Xor:
524     return Builder.CreateXor(Loaded, Inc, "new");
525   case AtomicRMWInst::Max:
526     NewVal = Builder.CreateICmpSGT(Loaded, Inc);
527     return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
528   case AtomicRMWInst::Min:
529     NewVal = Builder.CreateICmpSLE(Loaded, Inc);
530     return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
531   case AtomicRMWInst::UMax:
532     NewVal = Builder.CreateICmpUGT(Loaded, Inc);
533     return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
534   case AtomicRMWInst::UMin:
535     NewVal = Builder.CreateICmpULE(Loaded, Inc);
536     return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
537   default:
538     llvm_unreachable("Unknown atomic op");
539   }
540 }
541 
542 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) {
543   switch (TLI->shouldExpandAtomicRMWInIR(AI)) {
544   case TargetLoweringBase::AtomicExpansionKind::None:
545     return false;
546   case TargetLoweringBase::AtomicExpansionKind::LLSC: {
547     unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
548     unsigned ValueSize = getAtomicOpSize(AI);
549     if (ValueSize < MinCASSize) {
550       llvm_unreachable(
551           "MinCmpXchgSizeInBits not yet supported for LL/SC architectures.");
552     } else {
553       auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) {
554         return performAtomicOp(AI->getOperation(), Builder, Loaded,
555                                AI->getValOperand());
556       };
557       expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(),
558                            AI->getOrdering(), PerformOp);
559     }
560     return true;
561   }
562   case TargetLoweringBase::AtomicExpansionKind::CmpXChg: {
563     unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
564     unsigned ValueSize = getAtomicOpSize(AI);
565     if (ValueSize < MinCASSize) {
566       expandPartwordAtomicRMW(AI,
567                               TargetLoweringBase::AtomicExpansionKind::CmpXChg);
568     } else {
569       expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun);
570     }
571     return true;
572   }
573   case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: {
574     expandAtomicRMWToMaskedIntrinsic(AI);
575     return true;
576   }
577   default:
578     llvm_unreachable("Unhandled case in tryExpandAtomicRMW");
579   }
580 }
581 
582 namespace {
583 
584 /// Result values from createMaskInstrs helper.
585 struct PartwordMaskValues {
586   Type *WordType;
587   Type *ValueType;
588   Value *AlignedAddr;
589   Value *ShiftAmt;
590   Value *Mask;
591   Value *Inv_Mask;
592 };
593 
594 } // end anonymous namespace
595 
596 /// This is a helper function which builds instructions to provide
597 /// values necessary for partword atomic operations. It takes an
598 /// incoming address, Addr, and ValueType, and constructs the address,
599 /// shift-amounts and masks needed to work with a larger value of size
600 /// WordSize.
601 ///
602 /// AlignedAddr: Addr rounded down to a multiple of WordSize
603 ///
604 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded
605 ///           from AlignAddr for it to have the same value as if
606 ///           ValueType was loaded from Addr.
607 ///
608 /// Mask: Value to mask with the value loaded from AlignAddr to
609 ///       include only the part that would've been loaded from Addr.
610 ///
611 /// Inv_Mask: The inverse of Mask.
612 static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I,
613                                            Type *ValueType, Value *Addr,
614                                            unsigned WordSize) {
615   PartwordMaskValues Ret;
616 
617   BasicBlock *BB = I->getParent();
618   Function *F = BB->getParent();
619   Module *M = I->getModule();
620 
621   LLVMContext &Ctx = F->getContext();
622   const DataLayout &DL = M->getDataLayout();
623 
624   unsigned ValueSize = DL.getTypeStoreSize(ValueType);
625 
626   assert(ValueSize < WordSize);
627 
628   Ret.ValueType = ValueType;
629   Ret.WordType = Type::getIntNTy(Ctx, WordSize * 8);
630 
631   Type *WordPtrType =
632       Ret.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace());
633 
634   Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx));
635   Ret.AlignedAddr = Builder.CreateIntToPtr(
636       Builder.CreateAnd(AddrInt, ~(uint64_t)(WordSize - 1)), WordPtrType,
637       "AlignedAddr");
638 
639   Value *PtrLSB = Builder.CreateAnd(AddrInt, WordSize - 1, "PtrLSB");
640   if (DL.isLittleEndian()) {
641     // turn bytes into bits
642     Ret.ShiftAmt = Builder.CreateShl(PtrLSB, 3);
643   } else {
644     // turn bytes into bits, and count from the other side.
645     Ret.ShiftAmt =
646         Builder.CreateShl(Builder.CreateXor(PtrLSB, WordSize - ValueSize), 3);
647   }
648 
649   Ret.ShiftAmt = Builder.CreateTrunc(Ret.ShiftAmt, Ret.WordType, "ShiftAmt");
650   Ret.Mask = Builder.CreateShl(
651       ConstantInt::get(Ret.WordType, (1 << ValueSize * 8) - 1), Ret.ShiftAmt,
652       "Mask");
653   Ret.Inv_Mask = Builder.CreateNot(Ret.Mask, "Inv_Mask");
654 
655   return Ret;
656 }
657 
658 /// Emit IR to implement a masked version of a given atomicrmw
659 /// operation. (That is, only the bits under the Mask should be
660 /// affected by the operation)
661 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op,
662                                     IRBuilder<> &Builder, Value *Loaded,
663                                     Value *Shifted_Inc, Value *Inc,
664                                     const PartwordMaskValues &PMV) {
665   // TODO: update to use
666   // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order
667   // to merge bits from two values without requiring PMV.Inv_Mask.
668   switch (Op) {
669   case AtomicRMWInst::Xchg: {
670     Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
671     Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc);
672     return FinalVal;
673   }
674   case AtomicRMWInst::Or:
675   case AtomicRMWInst::Xor:
676   case AtomicRMWInst::And:
677     llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW");
678   case AtomicRMWInst::Add:
679   case AtomicRMWInst::Sub:
680   case AtomicRMWInst::Nand: {
681     // The other arithmetic ops need to be masked into place.
682     Value *NewVal = performAtomicOp(Op, Builder, Loaded, Shifted_Inc);
683     Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask);
684     Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
685     Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked);
686     return FinalVal;
687   }
688   case AtomicRMWInst::Max:
689   case AtomicRMWInst::Min:
690   case AtomicRMWInst::UMax:
691   case AtomicRMWInst::UMin: {
692     // Finally, comparison ops will operate on the full value, so
693     // truncate down to the original size, and expand out again after
694     // doing the operation.
695     Value *Loaded_Shiftdown = Builder.CreateTrunc(
696         Builder.CreateLShr(Loaded, PMV.ShiftAmt), PMV.ValueType);
697     Value *NewVal = performAtomicOp(Op, Builder, Loaded_Shiftdown, Inc);
698     Value *NewVal_Shiftup = Builder.CreateShl(
699         Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt);
700     Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
701     Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shiftup);
702     return FinalVal;
703   }
704   default:
705     llvm_unreachable("Unknown atomic op");
706   }
707 }
708 
709 /// Expand a sub-word atomicrmw operation into an appropriate
710 /// word-sized operation.
711 ///
712 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same
713 /// way as a typical atomicrmw expansion. The only difference here is
714 /// that the operation inside of the loop must operate only upon a
715 /// part of the value.
716 void AtomicExpand::expandPartwordAtomicRMW(
717     AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) {
718   assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg);
719 
720   AtomicOrdering MemOpOrder = AI->getOrdering();
721 
722   IRBuilder<> Builder(AI);
723 
724   PartwordMaskValues PMV =
725       createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
726                        TLI->getMinCmpXchgSizeInBits() / 8);
727 
728   Value *ValOperand_Shifted =
729       Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
730                         PMV.ShiftAmt, "ValOperand_Shifted");
731 
732   auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) {
733     return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded,
734                                  ValOperand_Shifted, AI->getValOperand(), PMV);
735   };
736 
737   // TODO: When we're ready to support LLSC conversions too, use
738   // insertRMWLLSCLoop here for ExpansionKind==LLSC.
739   Value *OldResult =
740       insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder,
741                            PerformPartwordOp, createCmpXchgInstFun);
742   Value *FinalOldResult = Builder.CreateTrunc(
743       Builder.CreateLShr(OldResult, PMV.ShiftAmt), PMV.ValueType);
744   AI->replaceAllUsesWith(FinalOldResult);
745   AI->eraseFromParent();
746 }
747 
748 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width.
749 AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) {
750   IRBuilder<> Builder(AI);
751   AtomicRMWInst::BinOp Op = AI->getOperation();
752 
753   assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
754           Op == AtomicRMWInst::And) &&
755          "Unable to widen operation");
756 
757   PartwordMaskValues PMV =
758       createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
759                        TLI->getMinCmpXchgSizeInBits() / 8);
760 
761   Value *ValOperand_Shifted =
762       Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
763                         PMV.ShiftAmt, "ValOperand_Shifted");
764 
765   Value *NewOperand;
766 
767   if (Op == AtomicRMWInst::And)
768     NewOperand =
769         Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand");
770   else
771     NewOperand = ValOperand_Shifted;
772 
773   AtomicRMWInst *NewAI = Builder.CreateAtomicRMW(Op, PMV.AlignedAddr,
774                                                  NewOperand, AI->getOrdering());
775 
776   Value *FinalOldResult = Builder.CreateTrunc(
777       Builder.CreateLShr(NewAI, PMV.ShiftAmt), PMV.ValueType);
778   AI->replaceAllUsesWith(FinalOldResult);
779   AI->eraseFromParent();
780   return NewAI;
781 }
782 
783 void AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) {
784   // The basic idea here is that we're expanding a cmpxchg of a
785   // smaller memory size up to a word-sized cmpxchg. To do this, we
786   // need to add a retry-loop for strong cmpxchg, so that
787   // modifications to other parts of the word don't cause a spurious
788   // failure.
789 
790   // This generates code like the following:
791   //     [[Setup mask values PMV.*]]
792   //     %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt
793   //     %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt
794   //     %InitLoaded = load i32* %addr
795   //     %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask
796   //     br partword.cmpxchg.loop
797   // partword.cmpxchg.loop:
798   //     %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ],
799   //        [ %OldVal_MaskOut, %partword.cmpxchg.failure ]
800   //     %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted
801   //     %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted
802   //     %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp,
803   //        i32 %FullWord_NewVal success_ordering failure_ordering
804   //     %OldVal = extractvalue { i32, i1 } %NewCI, 0
805   //     %Success = extractvalue { i32, i1 } %NewCI, 1
806   //     br i1 %Success, label %partword.cmpxchg.end,
807   //        label %partword.cmpxchg.failure
808   // partword.cmpxchg.failure:
809   //     %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask
810   //     %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut
811   //     br i1 %ShouldContinue, label %partword.cmpxchg.loop,
812   //         label %partword.cmpxchg.end
813   // partword.cmpxchg.end:
814   //    %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt
815   //    %FinalOldVal = trunc i32 %tmp1 to i8
816   //    %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0
817   //    %Res = insertvalue { i8, i1 } %25, i1 %Success, 1
818 
819   Value *Addr = CI->getPointerOperand();
820   Value *Cmp = CI->getCompareOperand();
821   Value *NewVal = CI->getNewValOperand();
822 
823   BasicBlock *BB = CI->getParent();
824   Function *F = BB->getParent();
825   IRBuilder<> Builder(CI);
826   LLVMContext &Ctx = Builder.getContext();
827 
828   const int WordSize = TLI->getMinCmpXchgSizeInBits() / 8;
829 
830   BasicBlock *EndBB =
831       BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end");
832   auto FailureBB =
833       BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB);
834   auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB);
835 
836   // The split call above "helpfully" added a branch at the end of BB
837   // (to the wrong place).
838   std::prev(BB->end())->eraseFromParent();
839   Builder.SetInsertPoint(BB);
840 
841   PartwordMaskValues PMV = createMaskInstrs(
842       Builder, CI, CI->getCompareOperand()->getType(), Addr, WordSize);
843 
844   // Shift the incoming values over, into the right location in the word.
845   Value *NewVal_Shifted =
846       Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt);
847   Value *Cmp_Shifted =
848       Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt);
849 
850   // Load the entire current word, and mask into place the expected and new
851   // values
852   LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr);
853   InitLoaded->setVolatile(CI->isVolatile());
854   Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask);
855   Builder.CreateBr(LoopBB);
856 
857   // partword.cmpxchg.loop:
858   Builder.SetInsertPoint(LoopBB);
859   PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2);
860   Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB);
861 
862   // Mask/Or the expected and new values into place in the loaded word.
863   Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted);
864   Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted);
865   AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg(
866       PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, CI->getSuccessOrdering(),
867       CI->getFailureOrdering(), CI->getSyncScopeID());
868   NewCI->setVolatile(CI->isVolatile());
869   // When we're building a strong cmpxchg, we need a loop, so you
870   // might think we could use a weak cmpxchg inside. But, using strong
871   // allows the below comparison for ShouldContinue, and we're
872   // expecting the underlying cmpxchg to be a machine instruction,
873   // which is strong anyways.
874   NewCI->setWeak(CI->isWeak());
875 
876   Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
877   Value *Success = Builder.CreateExtractValue(NewCI, 1);
878 
879   if (CI->isWeak())
880     Builder.CreateBr(EndBB);
881   else
882     Builder.CreateCondBr(Success, EndBB, FailureBB);
883 
884   // partword.cmpxchg.failure:
885   Builder.SetInsertPoint(FailureBB);
886   // Upon failure, verify that the masked-out part of the loaded value
887   // has been modified.  If it didn't, abort the cmpxchg, since the
888   // masked-in part must've.
889   Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask);
890   Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut);
891   Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB);
892 
893   // Add the second value to the phi from above
894   Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB);
895 
896   // partword.cmpxchg.end:
897   Builder.SetInsertPoint(CI);
898 
899   Value *FinalOldVal = Builder.CreateTrunc(
900       Builder.CreateLShr(OldVal, PMV.ShiftAmt), PMV.ValueType);
901   Value *Res = UndefValue::get(CI->getType());
902   Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
903   Res = Builder.CreateInsertValue(Res, Success, 1);
904 
905   CI->replaceAllUsesWith(Res);
906   CI->eraseFromParent();
907 }
908 
909 void AtomicExpand::expandAtomicOpToLLSC(
910     Instruction *I, Type *ResultType, Value *Addr, AtomicOrdering MemOpOrder,
911     function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
912   IRBuilder<> Builder(I);
913   Value *Loaded =
914       insertRMWLLSCLoop(Builder, ResultType, Addr, MemOpOrder, PerformOp);
915 
916   I->replaceAllUsesWith(Loaded);
917   I->eraseFromParent();
918 }
919 
920 void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) {
921   IRBuilder<> Builder(AI);
922 
923   PartwordMaskValues PMV =
924       createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
925                        TLI->getMinCmpXchgSizeInBits() / 8);
926 
927   // The value operand must be sign-extended for signed min/max so that the
928   // target's signed comparison instructions can be used. Otherwise, just
929   // zero-ext.
930   Instruction::CastOps CastOp = Instruction::ZExt;
931   AtomicRMWInst::BinOp RMWOp = AI->getOperation();
932   if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min)
933     CastOp = Instruction::SExt;
934 
935   Value *ValOperand_Shifted = Builder.CreateShl(
936       Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType),
937       PMV.ShiftAmt, "ValOperand_Shifted");
938   Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic(
939       Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt,
940       AI->getOrdering());
941   Value *FinalOldResult = Builder.CreateTrunc(
942       Builder.CreateLShr(OldResult, PMV.ShiftAmt), PMV.ValueType);
943   AI->replaceAllUsesWith(FinalOldResult);
944   AI->eraseFromParent();
945 }
946 
947 Value *AtomicExpand::insertRMWLLSCLoop(
948     IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
949     AtomicOrdering MemOpOrder,
950     function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
951   LLVMContext &Ctx = Builder.getContext();
952   BasicBlock *BB = Builder.GetInsertBlock();
953   Function *F = BB->getParent();
954 
955   // Given: atomicrmw some_op iN* %addr, iN %incr ordering
956   //
957   // The standard expansion we produce is:
958   //     [...]
959   // atomicrmw.start:
960   //     %loaded = @load.linked(%addr)
961   //     %new = some_op iN %loaded, %incr
962   //     %stored = @store_conditional(%new, %addr)
963   //     %try_again = icmp i32 ne %stored, 0
964   //     br i1 %try_again, label %loop, label %atomicrmw.end
965   // atomicrmw.end:
966   //     [...]
967   BasicBlock *ExitBB =
968       BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
969   BasicBlock *LoopBB =  BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
970 
971   // The split call above "helpfully" added a branch at the end of BB (to the
972   // wrong place).
973   std::prev(BB->end())->eraseFromParent();
974   Builder.SetInsertPoint(BB);
975   Builder.CreateBr(LoopBB);
976 
977   // Start the main loop block now that we've taken care of the preliminaries.
978   Builder.SetInsertPoint(LoopBB);
979   Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
980 
981   Value *NewVal = PerformOp(Builder, Loaded);
982 
983   Value *StoreSuccess =
984       TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder);
985   Value *TryAgain = Builder.CreateICmpNE(
986       StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain");
987   Builder.CreateCondBr(TryAgain, LoopBB, ExitBB);
988 
989   Builder.SetInsertPoint(ExitBB, ExitBB->begin());
990   return Loaded;
991 }
992 
993 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of
994 /// the equivalent bitwidth.  We used to not support pointer cmpxchg in the
995 /// IR.  As a migration step, we convert back to what use to be the standard
996 /// way to represent a pointer cmpxchg so that we can update backends one by
997 /// one.
998 AtomicCmpXchgInst *AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) {
999   auto *M = CI->getModule();
1000   Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(),
1001                                             M->getDataLayout());
1002 
1003   IRBuilder<> Builder(CI);
1004 
1005   Value *Addr = CI->getPointerOperand();
1006   Type *PT = PointerType::get(NewTy,
1007                               Addr->getType()->getPointerAddressSpace());
1008   Value *NewAddr = Builder.CreateBitCast(Addr, PT);
1009 
1010   Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy);
1011   Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy);
1012 
1013 
1014   auto *NewCI = Builder.CreateAtomicCmpXchg(NewAddr, NewCmp, NewNewVal,
1015                                             CI->getSuccessOrdering(),
1016                                             CI->getFailureOrdering(),
1017                                             CI->getSyncScopeID());
1018   NewCI->setVolatile(CI->isVolatile());
1019   NewCI->setWeak(CI->isWeak());
1020   LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n");
1021 
1022   Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
1023   Value *Succ = Builder.CreateExtractValue(NewCI, 1);
1024 
1025   OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType());
1026 
1027   Value *Res = UndefValue::get(CI->getType());
1028   Res = Builder.CreateInsertValue(Res, OldVal, 0);
1029   Res = Builder.CreateInsertValue(Res, Succ, 1);
1030 
1031   CI->replaceAllUsesWith(Res);
1032   CI->eraseFromParent();
1033   return NewCI;
1034 }
1035 
1036 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1037   AtomicOrdering SuccessOrder = CI->getSuccessOrdering();
1038   AtomicOrdering FailureOrder = CI->getFailureOrdering();
1039   Value *Addr = CI->getPointerOperand();
1040   BasicBlock *BB = CI->getParent();
1041   Function *F = BB->getParent();
1042   LLVMContext &Ctx = F->getContext();
1043   // If shouldInsertFencesForAtomic() returns true, then the target does not
1044   // want to deal with memory orders, and emitLeading/TrailingFence should take
1045   // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we
1046   // should preserve the ordering.
1047   bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI);
1048   AtomicOrdering MemOpOrder =
1049       ShouldInsertFencesForAtomic ? AtomicOrdering::Monotonic : SuccessOrder;
1050 
1051   // In implementations which use a barrier to achieve release semantics, we can
1052   // delay emitting this barrier until we know a store is actually going to be
1053   // attempted. The cost of this delay is that we need 2 copies of the block
1054   // emitting the load-linked, affecting code size.
1055   //
1056   // Ideally, this logic would be unconditional except for the minsize check
1057   // since in other cases the extra blocks naturally collapse down to the
1058   // minimal loop. Unfortunately, this puts too much stress on later
1059   // optimisations so we avoid emitting the extra logic in those cases too.
1060   bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic &&
1061                            SuccessOrder != AtomicOrdering::Monotonic &&
1062                            SuccessOrder != AtomicOrdering::Acquire &&
1063                            !F->optForMinSize();
1064 
1065   // There's no overhead for sinking the release barrier in a weak cmpxchg, so
1066   // do it even on minsize.
1067   bool UseUnconditionalReleaseBarrier = F->optForMinSize() && !CI->isWeak();
1068 
1069   // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord
1070   //
1071   // The full expansion we produce is:
1072   //     [...]
1073   // cmpxchg.start:
1074   //     %unreleasedload = @load.linked(%addr)
1075   //     %should_store = icmp eq %unreleasedload, %desired
1076   //     br i1 %should_store, label %cmpxchg.fencedstore,
1077   //                          label %cmpxchg.nostore
1078   // cmpxchg.releasingstore:
1079   //     fence?
1080   //     br label cmpxchg.trystore
1081   // cmpxchg.trystore:
1082   //     %loaded.trystore = phi [%unreleasedload, %releasingstore],
1083   //                            [%releasedload, %cmpxchg.releasedload]
1084   //     %stored = @store_conditional(%new, %addr)
1085   //     %success = icmp eq i32 %stored, 0
1086   //     br i1 %success, label %cmpxchg.success,
1087   //                     label %cmpxchg.releasedload/%cmpxchg.failure
1088   // cmpxchg.releasedload:
1089   //     %releasedload = @load.linked(%addr)
1090   //     %should_store = icmp eq %releasedload, %desired
1091   //     br i1 %should_store, label %cmpxchg.trystore,
1092   //                          label %cmpxchg.failure
1093   // cmpxchg.success:
1094   //     fence?
1095   //     br label %cmpxchg.end
1096   // cmpxchg.nostore:
1097   //     %loaded.nostore = phi [%unreleasedload, %cmpxchg.start],
1098   //                           [%releasedload,
1099   //                               %cmpxchg.releasedload/%cmpxchg.trystore]
1100   //     @load_linked_fail_balance()?
1101   //     br label %cmpxchg.failure
1102   // cmpxchg.failure:
1103   //     fence?
1104   //     br label %cmpxchg.end
1105   // cmpxchg.end:
1106   //     %loaded = phi [%loaded.nostore, %cmpxchg.failure],
1107   //                   [%loaded.trystore, %cmpxchg.trystore]
1108   //     %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure]
1109   //     %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0
1110   //     %res = insertvalue { iN, i1 } %restmp, i1 %success, 1
1111   //     [...]
1112   BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end");
1113   auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB);
1114   auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB);
1115   auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB);
1116   auto ReleasedLoadBB =
1117       BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB);
1118   auto TryStoreBB =
1119       BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB);
1120   auto ReleasingStoreBB =
1121       BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB);
1122   auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB);
1123 
1124   // This grabs the DebugLoc from CI
1125   IRBuilder<> Builder(CI);
1126 
1127   // The split call above "helpfully" added a branch at the end of BB (to the
1128   // wrong place), but we might want a fence too. It's easiest to just remove
1129   // the branch entirely.
1130   std::prev(BB->end())->eraseFromParent();
1131   Builder.SetInsertPoint(BB);
1132   if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier)
1133     TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1134   Builder.CreateBr(StartBB);
1135 
1136   // Start the main loop block now that we've taken care of the preliminaries.
1137   Builder.SetInsertPoint(StartBB);
1138   Value *UnreleasedLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
1139   Value *ShouldStore = Builder.CreateICmpEQ(
1140       UnreleasedLoad, CI->getCompareOperand(), "should_store");
1141 
1142   // If the cmpxchg doesn't actually need any ordering when it fails, we can
1143   // jump straight past that fence instruction (if it exists).
1144   Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB);
1145 
1146   Builder.SetInsertPoint(ReleasingStoreBB);
1147   if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier)
1148     TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1149   Builder.CreateBr(TryStoreBB);
1150 
1151   Builder.SetInsertPoint(TryStoreBB);
1152   Value *StoreSuccess = TLI->emitStoreConditional(
1153       Builder, CI->getNewValOperand(), Addr, MemOpOrder);
1154   StoreSuccess = Builder.CreateICmpEQ(
1155       StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success");
1156   BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB;
1157   Builder.CreateCondBr(StoreSuccess, SuccessBB,
1158                        CI->isWeak() ? FailureBB : RetryBB);
1159 
1160   Builder.SetInsertPoint(ReleasedLoadBB);
1161   Value *SecondLoad;
1162   if (HasReleasedLoadBB) {
1163     SecondLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
1164     ShouldStore = Builder.CreateICmpEQ(SecondLoad, CI->getCompareOperand(),
1165                                        "should_store");
1166 
1167     // If the cmpxchg doesn't actually need any ordering when it fails, we can
1168     // jump straight past that fence instruction (if it exists).
1169     Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB);
1170   } else
1171     Builder.CreateUnreachable();
1172 
1173   // Make sure later instructions don't get reordered with a fence if
1174   // necessary.
1175   Builder.SetInsertPoint(SuccessBB);
1176   if (ShouldInsertFencesForAtomic)
1177     TLI->emitTrailingFence(Builder, CI, SuccessOrder);
1178   Builder.CreateBr(ExitBB);
1179 
1180   Builder.SetInsertPoint(NoStoreBB);
1181   // In the failing case, where we don't execute the store-conditional, the
1182   // target might want to balance out the load-linked with a dedicated
1183   // instruction (e.g., on ARM, clearing the exclusive monitor).
1184   TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
1185   Builder.CreateBr(FailureBB);
1186 
1187   Builder.SetInsertPoint(FailureBB);
1188   if (ShouldInsertFencesForAtomic)
1189     TLI->emitTrailingFence(Builder, CI, FailureOrder);
1190   Builder.CreateBr(ExitBB);
1191 
1192   // Finally, we have control-flow based knowledge of whether the cmpxchg
1193   // succeeded or not. We expose this to later passes by converting any
1194   // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate
1195   // PHI.
1196   Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1197   PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2);
1198   Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB);
1199   Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB);
1200 
1201   // Setup the builder so we can create any PHIs we need.
1202   Value *Loaded;
1203   if (!HasReleasedLoadBB)
1204     Loaded = UnreleasedLoad;
1205   else {
1206     Builder.SetInsertPoint(TryStoreBB, TryStoreBB->begin());
1207     PHINode *TryStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2);
1208     TryStoreLoaded->addIncoming(UnreleasedLoad, ReleasingStoreBB);
1209     TryStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB);
1210 
1211     Builder.SetInsertPoint(NoStoreBB, NoStoreBB->begin());
1212     PHINode *NoStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2);
1213     NoStoreLoaded->addIncoming(UnreleasedLoad, StartBB);
1214     NoStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB);
1215 
1216     Builder.SetInsertPoint(ExitBB, ++ExitBB->begin());
1217     PHINode *ExitLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2);
1218     ExitLoaded->addIncoming(TryStoreLoaded, SuccessBB);
1219     ExitLoaded->addIncoming(NoStoreLoaded, FailureBB);
1220 
1221     Loaded = ExitLoaded;
1222   }
1223 
1224   // Look for any users of the cmpxchg that are just comparing the loaded value
1225   // against the desired one, and replace them with the CFG-derived version.
1226   SmallVector<ExtractValueInst *, 2> PrunedInsts;
1227   for (auto User : CI->users()) {
1228     ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User);
1229     if (!EV)
1230       continue;
1231 
1232     assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 &&
1233            "weird extraction from { iN, i1 }");
1234 
1235     if (EV->getIndices()[0] == 0)
1236       EV->replaceAllUsesWith(Loaded);
1237     else
1238       EV->replaceAllUsesWith(Success);
1239 
1240     PrunedInsts.push_back(EV);
1241   }
1242 
1243   // We can remove the instructions now we're no longer iterating through them.
1244   for (auto EV : PrunedInsts)
1245     EV->eraseFromParent();
1246 
1247   if (!CI->use_empty()) {
1248     // Some use of the full struct return that we don't understand has happened,
1249     // so we've got to reconstruct it properly.
1250     Value *Res;
1251     Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0);
1252     Res = Builder.CreateInsertValue(Res, Success, 1);
1253 
1254     CI->replaceAllUsesWith(Res);
1255   }
1256 
1257   CI->eraseFromParent();
1258   return true;
1259 }
1260 
1261 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) {
1262   auto C = dyn_cast<ConstantInt>(RMWI->getValOperand());
1263   if(!C)
1264     return false;
1265 
1266   AtomicRMWInst::BinOp Op = RMWI->getOperation();
1267   switch(Op) {
1268     case AtomicRMWInst::Add:
1269     case AtomicRMWInst::Sub:
1270     case AtomicRMWInst::Or:
1271     case AtomicRMWInst::Xor:
1272       return C->isZero();
1273     case AtomicRMWInst::And:
1274       return C->isMinusOne();
1275     // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/...
1276     default:
1277       return false;
1278   }
1279 }
1280 
1281 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) {
1282   if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) {
1283     tryExpandAtomicLoad(ResultingLoad);
1284     return true;
1285   }
1286   return false;
1287 }
1288 
1289 Value *AtomicExpand::insertRMWCmpXchgLoop(
1290     IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
1291     AtomicOrdering MemOpOrder,
1292     function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
1293     CreateCmpXchgInstFun CreateCmpXchg) {
1294   LLVMContext &Ctx = Builder.getContext();
1295   BasicBlock *BB = Builder.GetInsertBlock();
1296   Function *F = BB->getParent();
1297 
1298   // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1299   //
1300   // The standard expansion we produce is:
1301   //     [...]
1302   //     %init_loaded = load atomic iN* %addr
1303   //     br label %loop
1304   // loop:
1305   //     %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ]
1306   //     %new = some_op iN %loaded, %incr
1307   //     %pair = cmpxchg iN* %addr, iN %loaded, iN %new
1308   //     %new_loaded = extractvalue { iN, i1 } %pair, 0
1309   //     %success = extractvalue { iN, i1 } %pair, 1
1310   //     br i1 %success, label %atomicrmw.end, label %loop
1311   // atomicrmw.end:
1312   //     [...]
1313   BasicBlock *ExitBB =
1314       BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
1315   BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
1316 
1317   // The split call above "helpfully" added a branch at the end of BB (to the
1318   // wrong place), but we want a load. It's easiest to just remove
1319   // the branch entirely.
1320   std::prev(BB->end())->eraseFromParent();
1321   Builder.SetInsertPoint(BB);
1322   LoadInst *InitLoaded = Builder.CreateLoad(ResultTy, Addr);
1323   // Atomics require at least natural alignment.
1324   InitLoaded->setAlignment(ResultTy->getPrimitiveSizeInBits() / 8);
1325   Builder.CreateBr(LoopBB);
1326 
1327   // Start the main loop block now that we've taken care of the preliminaries.
1328   Builder.SetInsertPoint(LoopBB);
1329   PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded");
1330   Loaded->addIncoming(InitLoaded, BB);
1331 
1332   Value *NewVal = PerformOp(Builder, Loaded);
1333 
1334   Value *NewLoaded = nullptr;
1335   Value *Success = nullptr;
1336 
1337   CreateCmpXchg(Builder, Addr, Loaded, NewVal,
1338                 MemOpOrder == AtomicOrdering::Unordered
1339                     ? AtomicOrdering::Monotonic
1340                     : MemOpOrder,
1341                 Success, NewLoaded);
1342   assert(Success && NewLoaded);
1343 
1344   Loaded->addIncoming(NewLoaded, LoopBB);
1345 
1346   Builder.CreateCondBr(Success, ExitBB, LoopBB);
1347 
1348   Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1349   return NewLoaded;
1350 }
1351 
1352 bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1353   unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
1354   unsigned ValueSize = getAtomicOpSize(CI);
1355 
1356   switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) {
1357   default:
1358     llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg");
1359   case TargetLoweringBase::AtomicExpansionKind::None:
1360     if (ValueSize < MinCASSize)
1361       expandPartwordCmpXchg(CI);
1362     return false;
1363   case TargetLoweringBase::AtomicExpansionKind::LLSC: {
1364     assert(ValueSize >= MinCASSize &&
1365            "MinCmpXchgSizeInBits not yet supported for LL/SC expansions.");
1366     return expandAtomicCmpXchg(CI);
1367   }
1368   case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic:
1369     llvm_unreachable(
1370         "MaskedIntrinsic expansion of cmpxhg not yet implemented");
1371   }
1372 }
1373 
1374 // Note: This function is exposed externally by AtomicExpandUtils.h
1375 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
1376                                     CreateCmpXchgInstFun CreateCmpXchg) {
1377   IRBuilder<> Builder(AI);
1378   Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop(
1379       Builder, AI->getType(), AI->getPointerOperand(), AI->getOrdering(),
1380       [&](IRBuilder<> &Builder, Value *Loaded) {
1381         return performAtomicOp(AI->getOperation(), Builder, Loaded,
1382                                AI->getValOperand());
1383       },
1384       CreateCmpXchg);
1385 
1386   AI->replaceAllUsesWith(Loaded);
1387   AI->eraseFromParent();
1388   return true;
1389 }
1390 
1391 // In order to use one of the sized library calls such as
1392 // __atomic_fetch_add_4, the alignment must be sufficient, the size
1393 // must be one of the potentially-specialized sizes, and the value
1394 // type must actually exist in C on the target (otherwise, the
1395 // function wouldn't actually be defined.)
1396 static bool canUseSizedAtomicCall(unsigned Size, unsigned Align,
1397                                   const DataLayout &DL) {
1398   // TODO: "LargestSize" is an approximation for "largest type that
1399   // you can express in C". It seems to be the case that int128 is
1400   // supported on all 64-bit platforms, otherwise only up to 64-bit
1401   // integers are supported. If we get this wrong, then we'll try to
1402   // call a sized libcall that doesn't actually exist. There should
1403   // really be some more reliable way in LLVM of determining integer
1404   // sizes which are valid in the target's C ABI...
1405   unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8;
1406   return Align >= Size &&
1407          (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) &&
1408          Size <= LargestSize;
1409 }
1410 
1411 void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) {
1412   static const RTLIB::Libcall Libcalls[6] = {
1413       RTLIB::ATOMIC_LOAD,   RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2,
1414       RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16};
1415   unsigned Size = getAtomicOpSize(I);
1416   unsigned Align = getAtomicOpAlign(I);
1417 
1418   bool expanded = expandAtomicOpToLibcall(
1419       I, Size, Align, I->getPointerOperand(), nullptr, nullptr,
1420       I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1421   (void)expanded;
1422   assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Load");
1423 }
1424 
1425 void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) {
1426   static const RTLIB::Libcall Libcalls[6] = {
1427       RTLIB::ATOMIC_STORE,   RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2,
1428       RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16};
1429   unsigned Size = getAtomicOpSize(I);
1430   unsigned Align = getAtomicOpAlign(I);
1431 
1432   bool expanded = expandAtomicOpToLibcall(
1433       I, Size, Align, I->getPointerOperand(), I->getValueOperand(), nullptr,
1434       I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1435   (void)expanded;
1436   assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Store");
1437 }
1438 
1439 void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) {
1440   static const RTLIB::Libcall Libcalls[6] = {
1441       RTLIB::ATOMIC_COMPARE_EXCHANGE,   RTLIB::ATOMIC_COMPARE_EXCHANGE_1,
1442       RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4,
1443       RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16};
1444   unsigned Size = getAtomicOpSize(I);
1445   unsigned Align = getAtomicOpAlign(I);
1446 
1447   bool expanded = expandAtomicOpToLibcall(
1448       I, Size, Align, I->getPointerOperand(), I->getNewValOperand(),
1449       I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(),
1450       Libcalls);
1451   (void)expanded;
1452   assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor CAS");
1453 }
1454 
1455 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) {
1456   static const RTLIB::Libcall LibcallsXchg[6] = {
1457       RTLIB::ATOMIC_EXCHANGE,   RTLIB::ATOMIC_EXCHANGE_1,
1458       RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4,
1459       RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16};
1460   static const RTLIB::Libcall LibcallsAdd[6] = {
1461       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_ADD_1,
1462       RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4,
1463       RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16};
1464   static const RTLIB::Libcall LibcallsSub[6] = {
1465       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_SUB_1,
1466       RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4,
1467       RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16};
1468   static const RTLIB::Libcall LibcallsAnd[6] = {
1469       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_AND_1,
1470       RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4,
1471       RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16};
1472   static const RTLIB::Libcall LibcallsOr[6] = {
1473       RTLIB::UNKNOWN_LIBCALL,   RTLIB::ATOMIC_FETCH_OR_1,
1474       RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4,
1475       RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16};
1476   static const RTLIB::Libcall LibcallsXor[6] = {
1477       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_XOR_1,
1478       RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4,
1479       RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16};
1480   static const RTLIB::Libcall LibcallsNand[6] = {
1481       RTLIB::UNKNOWN_LIBCALL,     RTLIB::ATOMIC_FETCH_NAND_1,
1482       RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4,
1483       RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16};
1484 
1485   switch (Op) {
1486   case AtomicRMWInst::BAD_BINOP:
1487     llvm_unreachable("Should not have BAD_BINOP.");
1488   case AtomicRMWInst::Xchg:
1489     return makeArrayRef(LibcallsXchg);
1490   case AtomicRMWInst::Add:
1491     return makeArrayRef(LibcallsAdd);
1492   case AtomicRMWInst::Sub:
1493     return makeArrayRef(LibcallsSub);
1494   case AtomicRMWInst::And:
1495     return makeArrayRef(LibcallsAnd);
1496   case AtomicRMWInst::Or:
1497     return makeArrayRef(LibcallsOr);
1498   case AtomicRMWInst::Xor:
1499     return makeArrayRef(LibcallsXor);
1500   case AtomicRMWInst::Nand:
1501     return makeArrayRef(LibcallsNand);
1502   case AtomicRMWInst::Max:
1503   case AtomicRMWInst::Min:
1504   case AtomicRMWInst::UMax:
1505   case AtomicRMWInst::UMin:
1506     // No atomic libcalls are available for max/min/umax/umin.
1507     return {};
1508   }
1509   llvm_unreachable("Unexpected AtomicRMW operation.");
1510 }
1511 
1512 void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) {
1513   ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation());
1514 
1515   unsigned Size = getAtomicOpSize(I);
1516   unsigned Align = getAtomicOpAlign(I);
1517 
1518   bool Success = false;
1519   if (!Libcalls.empty())
1520     Success = expandAtomicOpToLibcall(
1521         I, Size, Align, I->getPointerOperand(), I->getValOperand(), nullptr,
1522         I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1523 
1524   // The expansion failed: either there were no libcalls at all for
1525   // the operation (min/max), or there were only size-specialized
1526   // libcalls (add/sub/etc) and we needed a generic. So, expand to a
1527   // CAS libcall, via a CAS loop, instead.
1528   if (!Success) {
1529     expandAtomicRMWToCmpXchg(I, [this](IRBuilder<> &Builder, Value *Addr,
1530                                        Value *Loaded, Value *NewVal,
1531                                        AtomicOrdering MemOpOrder,
1532                                        Value *&Success, Value *&NewLoaded) {
1533       // Create the CAS instruction normally...
1534       AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg(
1535           Addr, Loaded, NewVal, MemOpOrder,
1536           AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder));
1537       Success = Builder.CreateExtractValue(Pair, 1, "success");
1538       NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
1539 
1540       // ...and then expand the CAS into a libcall.
1541       expandAtomicCASToLibcall(Pair);
1542     });
1543   }
1544 }
1545 
1546 // A helper routine for the above expandAtomic*ToLibcall functions.
1547 //
1548 // 'Libcalls' contains an array of enum values for the particular
1549 // ATOMIC libcalls to be emitted. All of the other arguments besides
1550 // 'I' are extracted from the Instruction subclass by the
1551 // caller. Depending on the particular call, some will be null.
1552 bool AtomicExpand::expandAtomicOpToLibcall(
1553     Instruction *I, unsigned Size, unsigned Align, Value *PointerOperand,
1554     Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering,
1555     AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) {
1556   assert(Libcalls.size() == 6);
1557 
1558   LLVMContext &Ctx = I->getContext();
1559   Module *M = I->getModule();
1560   const DataLayout &DL = M->getDataLayout();
1561   IRBuilder<> Builder(I);
1562   IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front());
1563 
1564   bool UseSizedLibcall = canUseSizedAtomicCall(Size, Align, DL);
1565   Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8);
1566 
1567   unsigned AllocaAlignment = DL.getPrefTypeAlignment(SizedIntTy);
1568 
1569   // TODO: the "order" argument type is "int", not int32. So
1570   // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints.
1571   ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size);
1572   assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO");
1573   Constant *OrderingVal =
1574       ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering));
1575   Constant *Ordering2Val = nullptr;
1576   if (CASExpected) {
1577     assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO");
1578     Ordering2Val =
1579         ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2));
1580   }
1581   bool HasResult = I->getType() != Type::getVoidTy(Ctx);
1582 
1583   RTLIB::Libcall RTLibType;
1584   if (UseSizedLibcall) {
1585     switch (Size) {
1586     case 1: RTLibType = Libcalls[1]; break;
1587     case 2: RTLibType = Libcalls[2]; break;
1588     case 4: RTLibType = Libcalls[3]; break;
1589     case 8: RTLibType = Libcalls[4]; break;
1590     case 16: RTLibType = Libcalls[5]; break;
1591     }
1592   } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) {
1593     RTLibType = Libcalls[0];
1594   } else {
1595     // Can't use sized function, and there's no generic for this
1596     // operation, so give up.
1597     return false;
1598   }
1599 
1600   // Build up the function call. There's two kinds. First, the sized
1601   // variants.  These calls are going to be one of the following (with
1602   // N=1,2,4,8,16):
1603   //  iN    __atomic_load_N(iN *ptr, int ordering)
1604   //  void  __atomic_store_N(iN *ptr, iN val, int ordering)
1605   //  iN    __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering)
1606   //  bool  __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired,
1607   //                                    int success_order, int failure_order)
1608   //
1609   // Note that these functions can be used for non-integer atomic
1610   // operations, the values just need to be bitcast to integers on the
1611   // way in and out.
1612   //
1613   // And, then, the generic variants. They look like the following:
1614   //  void  __atomic_load(size_t size, void *ptr, void *ret, int ordering)
1615   //  void  __atomic_store(size_t size, void *ptr, void *val, int ordering)
1616   //  void  __atomic_exchange(size_t size, void *ptr, void *val, void *ret,
1617   //                          int ordering)
1618   //  bool  __atomic_compare_exchange(size_t size, void *ptr, void *expected,
1619   //                                  void *desired, int success_order,
1620   //                                  int failure_order)
1621   //
1622   // The different signatures are built up depending on the
1623   // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult'
1624   // variables.
1625 
1626   AllocaInst *AllocaCASExpected = nullptr;
1627   Value *AllocaCASExpected_i8 = nullptr;
1628   AllocaInst *AllocaValue = nullptr;
1629   Value *AllocaValue_i8 = nullptr;
1630   AllocaInst *AllocaResult = nullptr;
1631   Value *AllocaResult_i8 = nullptr;
1632 
1633   Type *ResultTy;
1634   SmallVector<Value *, 6> Args;
1635   AttributeList Attr;
1636 
1637   // 'size' argument.
1638   if (!UseSizedLibcall) {
1639     // Note, getIntPtrType is assumed equivalent to size_t.
1640     Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size));
1641   }
1642 
1643   // 'ptr' argument.
1644   Value *PtrVal =
1645       Builder.CreateBitCast(PointerOperand, Type::getInt8PtrTy(Ctx));
1646   Args.push_back(PtrVal);
1647 
1648   // 'expected' argument, if present.
1649   if (CASExpected) {
1650     AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType());
1651     AllocaCASExpected->setAlignment(AllocaAlignment);
1652     AllocaCASExpected_i8 =
1653         Builder.CreateBitCast(AllocaCASExpected, Type::getInt8PtrTy(Ctx));
1654     Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64);
1655     Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment);
1656     Args.push_back(AllocaCASExpected_i8);
1657   }
1658 
1659   // 'val' argument ('desired' for cas), if present.
1660   if (ValueOperand) {
1661     if (UseSizedLibcall) {
1662       Value *IntValue =
1663           Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy);
1664       Args.push_back(IntValue);
1665     } else {
1666       AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType());
1667       AllocaValue->setAlignment(AllocaAlignment);
1668       AllocaValue_i8 =
1669           Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx));
1670       Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64);
1671       Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment);
1672       Args.push_back(AllocaValue_i8);
1673     }
1674   }
1675 
1676   // 'ret' argument.
1677   if (!CASExpected && HasResult && !UseSizedLibcall) {
1678     AllocaResult = AllocaBuilder.CreateAlloca(I->getType());
1679     AllocaResult->setAlignment(AllocaAlignment);
1680     AllocaResult_i8 =
1681         Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx));
1682     Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64);
1683     Args.push_back(AllocaResult_i8);
1684   }
1685 
1686   // 'ordering' ('success_order' for cas) argument.
1687   Args.push_back(OrderingVal);
1688 
1689   // 'failure_order' argument, if present.
1690   if (Ordering2Val)
1691     Args.push_back(Ordering2Val);
1692 
1693   // Now, the return type.
1694   if (CASExpected) {
1695     ResultTy = Type::getInt1Ty(Ctx);
1696     Attr = Attr.addAttribute(Ctx, AttributeList::ReturnIndex, Attribute::ZExt);
1697   } else if (HasResult && UseSizedLibcall)
1698     ResultTy = SizedIntTy;
1699   else
1700     ResultTy = Type::getVoidTy(Ctx);
1701 
1702   // Done with setting up arguments and return types, create the call:
1703   SmallVector<Type *, 6> ArgTys;
1704   for (Value *Arg : Args)
1705     ArgTys.push_back(Arg->getType());
1706   FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false);
1707   Constant *LibcallFn =
1708       M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr);
1709   CallInst *Call = Builder.CreateCall(LibcallFn, Args);
1710   Call->setAttributes(Attr);
1711   Value *Result = Call;
1712 
1713   // And then, extract the results...
1714   if (ValueOperand && !UseSizedLibcall)
1715     Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64);
1716 
1717   if (CASExpected) {
1718     // The final result from the CAS is {load of 'expected' alloca, bool result
1719     // from call}
1720     Type *FinalResultTy = I->getType();
1721     Value *V = UndefValue::get(FinalResultTy);
1722     Value *ExpectedOut =
1723         Builder.CreateAlignedLoad(AllocaCASExpected, AllocaAlignment);
1724     Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64);
1725     V = Builder.CreateInsertValue(V, ExpectedOut, 0);
1726     V = Builder.CreateInsertValue(V, Result, 1);
1727     I->replaceAllUsesWith(V);
1728   } else if (HasResult) {
1729     Value *V;
1730     if (UseSizedLibcall)
1731       V = Builder.CreateBitOrPointerCast(Result, I->getType());
1732     else {
1733       V = Builder.CreateAlignedLoad(AllocaResult, AllocaAlignment);
1734       Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64);
1735     }
1736     I->replaceAllUsesWith(V);
1737   }
1738   I->eraseFromParent();
1739   return true;
1740 }
1741