1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a pass (at IR level) to replace atomic instructions with 11 // __atomic_* library calls, or target specific instruction which implement the 12 // same semantics in a way which better fits the target backend. This can 13 // include the use of (intrinsic-based) load-linked/store-conditional loops, 14 // AtomicCmpXchg, or type coercions. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/CodeGen/AtomicExpandUtils.h" 22 #include "llvm/CodeGen/RuntimeLibcalls.h" 23 #include "llvm/CodeGen/TargetLowering.h" 24 #include "llvm/CodeGen/TargetPassConfig.h" 25 #include "llvm/CodeGen/TargetSubtargetInfo.h" 26 #include "llvm/CodeGen/ValueTypes.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Constant.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/IRBuilder.h" 35 #include "llvm/IR/InstIterator.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Type.h" 40 #include "llvm/IR/User.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/AtomicOrdering.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include <cassert> 50 #include <cstdint> 51 #include <iterator> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "atomic-expand" 56 57 namespace { 58 59 class AtomicExpand: public FunctionPass { 60 const TargetLowering *TLI = nullptr; 61 62 public: 63 static char ID; // Pass identification, replacement for typeid 64 65 AtomicExpand() : FunctionPass(ID) { 66 initializeAtomicExpandPass(*PassRegistry::getPassRegistry()); 67 } 68 69 bool runOnFunction(Function &F) override; 70 71 private: 72 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order); 73 IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL); 74 LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI); 75 bool tryExpandAtomicLoad(LoadInst *LI); 76 bool expandAtomicLoadToLL(LoadInst *LI); 77 bool expandAtomicLoadToCmpXchg(LoadInst *LI); 78 StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI); 79 bool expandAtomicStore(StoreInst *SI); 80 bool tryExpandAtomicRMW(AtomicRMWInst *AI); 81 Value * 82 insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr, 83 AtomicOrdering MemOpOrder, 84 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); 85 void expandAtomicOpToLLSC( 86 Instruction *I, Type *ResultTy, Value *Addr, AtomicOrdering MemOpOrder, 87 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); 88 void expandPartwordAtomicRMW( 89 AtomicRMWInst *I, 90 TargetLoweringBase::AtomicExpansionKind ExpansionKind); 91 void expandPartwordCmpXchg(AtomicCmpXchgInst *I); 92 93 AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI); 94 static Value *insertRMWCmpXchgLoop( 95 IRBuilder<> &Builder, Type *ResultType, Value *Addr, 96 AtomicOrdering MemOpOrder, 97 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, 98 CreateCmpXchgInstFun CreateCmpXchg); 99 100 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); 101 bool isIdempotentRMW(AtomicRMWInst *AI); 102 bool simplifyIdempotentRMW(AtomicRMWInst *AI); 103 104 bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, unsigned Align, 105 Value *PointerOperand, Value *ValueOperand, 106 Value *CASExpected, AtomicOrdering Ordering, 107 AtomicOrdering Ordering2, 108 ArrayRef<RTLIB::Libcall> Libcalls); 109 void expandAtomicLoadToLibcall(LoadInst *LI); 110 void expandAtomicStoreToLibcall(StoreInst *LI); 111 void expandAtomicRMWToLibcall(AtomicRMWInst *I); 112 void expandAtomicCASToLibcall(AtomicCmpXchgInst *I); 113 114 friend bool 115 llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 116 CreateCmpXchgInstFun CreateCmpXchg); 117 }; 118 119 } // end anonymous namespace 120 121 char AtomicExpand::ID = 0; 122 123 char &llvm::AtomicExpandID = AtomicExpand::ID; 124 125 INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions", 126 false, false) 127 128 FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); } 129 130 // Helper functions to retrieve the size of atomic instructions. 131 static unsigned getAtomicOpSize(LoadInst *LI) { 132 const DataLayout &DL = LI->getModule()->getDataLayout(); 133 return DL.getTypeStoreSize(LI->getType()); 134 } 135 136 static unsigned getAtomicOpSize(StoreInst *SI) { 137 const DataLayout &DL = SI->getModule()->getDataLayout(); 138 return DL.getTypeStoreSize(SI->getValueOperand()->getType()); 139 } 140 141 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) { 142 const DataLayout &DL = RMWI->getModule()->getDataLayout(); 143 return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); 144 } 145 146 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) { 147 const DataLayout &DL = CASI->getModule()->getDataLayout(); 148 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); 149 } 150 151 // Helper functions to retrieve the alignment of atomic instructions. 152 static unsigned getAtomicOpAlign(LoadInst *LI) { 153 unsigned Align = LI->getAlignment(); 154 // In the future, if this IR restriction is relaxed, we should 155 // return DataLayout::getABITypeAlignment when there's no align 156 // value. 157 assert(Align != 0 && "An atomic LoadInst always has an explicit alignment"); 158 return Align; 159 } 160 161 static unsigned getAtomicOpAlign(StoreInst *SI) { 162 unsigned Align = SI->getAlignment(); 163 // In the future, if this IR restriction is relaxed, we should 164 // return DataLayout::getABITypeAlignment when there's no align 165 // value. 166 assert(Align != 0 && "An atomic StoreInst always has an explicit alignment"); 167 return Align; 168 } 169 170 static unsigned getAtomicOpAlign(AtomicRMWInst *RMWI) { 171 // TODO(PR27168): This instruction has no alignment attribute, but unlike the 172 // default alignment for load/store, the default here is to assume 173 // it has NATURAL alignment, not DataLayout-specified alignment. 174 const DataLayout &DL = RMWI->getModule()->getDataLayout(); 175 return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); 176 } 177 178 static unsigned getAtomicOpAlign(AtomicCmpXchgInst *CASI) { 179 // TODO(PR27168): same comment as above. 180 const DataLayout &DL = CASI->getModule()->getDataLayout(); 181 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); 182 } 183 184 // Determine if a particular atomic operation has a supported size, 185 // and is of appropriate alignment, to be passed through for target 186 // lowering. (Versus turning into a __atomic libcall) 187 template <typename Inst> 188 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) { 189 unsigned Size = getAtomicOpSize(I); 190 unsigned Align = getAtomicOpAlign(I); 191 return Align >= Size && Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8; 192 } 193 194 bool AtomicExpand::runOnFunction(Function &F) { 195 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 196 if (!TPC) 197 return false; 198 199 auto &TM = TPC->getTM<TargetMachine>(); 200 if (!TM.getSubtargetImpl(F)->enableAtomicExpand()) 201 return false; 202 TLI = TM.getSubtargetImpl(F)->getTargetLowering(); 203 204 SmallVector<Instruction *, 1> AtomicInsts; 205 206 // Changing control-flow while iterating through it is a bad idea, so gather a 207 // list of all atomic instructions before we start. 208 for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) { 209 Instruction *I = &*II; 210 if (I->isAtomic() && !isa<FenceInst>(I)) 211 AtomicInsts.push_back(I); 212 } 213 214 bool MadeChange = false; 215 for (auto I : AtomicInsts) { 216 auto LI = dyn_cast<LoadInst>(I); 217 auto SI = dyn_cast<StoreInst>(I); 218 auto RMWI = dyn_cast<AtomicRMWInst>(I); 219 auto CASI = dyn_cast<AtomicCmpXchgInst>(I); 220 assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction"); 221 222 // If the Size/Alignment is not supported, replace with a libcall. 223 if (LI) { 224 if (!atomicSizeSupported(TLI, LI)) { 225 expandAtomicLoadToLibcall(LI); 226 MadeChange = true; 227 continue; 228 } 229 } else if (SI) { 230 if (!atomicSizeSupported(TLI, SI)) { 231 expandAtomicStoreToLibcall(SI); 232 MadeChange = true; 233 continue; 234 } 235 } else if (RMWI) { 236 if (!atomicSizeSupported(TLI, RMWI)) { 237 expandAtomicRMWToLibcall(RMWI); 238 MadeChange = true; 239 continue; 240 } 241 } else if (CASI) { 242 if (!atomicSizeSupported(TLI, CASI)) { 243 expandAtomicCASToLibcall(CASI); 244 MadeChange = true; 245 continue; 246 } 247 } 248 249 if (TLI->shouldInsertFencesForAtomic(I)) { 250 auto FenceOrdering = AtomicOrdering::Monotonic; 251 if (LI && isAcquireOrStronger(LI->getOrdering())) { 252 FenceOrdering = LI->getOrdering(); 253 LI->setOrdering(AtomicOrdering::Monotonic); 254 } else if (SI && isReleaseOrStronger(SI->getOrdering())) { 255 FenceOrdering = SI->getOrdering(); 256 SI->setOrdering(AtomicOrdering::Monotonic); 257 } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) || 258 isAcquireOrStronger(RMWI->getOrdering()))) { 259 FenceOrdering = RMWI->getOrdering(); 260 RMWI->setOrdering(AtomicOrdering::Monotonic); 261 } else if (CASI && !TLI->shouldExpandAtomicCmpXchgInIR(CASI) && 262 (isReleaseOrStronger(CASI->getSuccessOrdering()) || 263 isAcquireOrStronger(CASI->getSuccessOrdering()))) { 264 // If a compare and swap is lowered to LL/SC, we can do smarter fence 265 // insertion, with a stronger one on the success path than on the 266 // failure path. As a result, fence insertion is directly done by 267 // expandAtomicCmpXchg in that case. 268 FenceOrdering = CASI->getSuccessOrdering(); 269 CASI->setSuccessOrdering(AtomicOrdering::Monotonic); 270 CASI->setFailureOrdering(AtomicOrdering::Monotonic); 271 } 272 273 if (FenceOrdering != AtomicOrdering::Monotonic) { 274 MadeChange |= bracketInstWithFences(I, FenceOrdering); 275 } 276 } 277 278 if (LI) { 279 if (LI->getType()->isFloatingPointTy()) { 280 // TODO: add a TLI hook to control this so that each target can 281 // convert to lowering the original type one at a time. 282 LI = convertAtomicLoadToIntegerType(LI); 283 assert(LI->getType()->isIntegerTy() && "invariant broken"); 284 MadeChange = true; 285 } 286 287 MadeChange |= tryExpandAtomicLoad(LI); 288 } else if (SI) { 289 if (SI->getValueOperand()->getType()->isFloatingPointTy()) { 290 // TODO: add a TLI hook to control this so that each target can 291 // convert to lowering the original type one at a time. 292 SI = convertAtomicStoreToIntegerType(SI); 293 assert(SI->getValueOperand()->getType()->isIntegerTy() && 294 "invariant broken"); 295 MadeChange = true; 296 } 297 298 if (TLI->shouldExpandAtomicStoreInIR(SI)) 299 MadeChange |= expandAtomicStore(SI); 300 } else if (RMWI) { 301 // There are two different ways of expanding RMW instructions: 302 // - into a load if it is idempotent 303 // - into a Cmpxchg/LL-SC loop otherwise 304 // we try them in that order. 305 306 if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) { 307 MadeChange = true; 308 } else { 309 MadeChange |= tryExpandAtomicRMW(RMWI); 310 } 311 } else if (CASI) { 312 // TODO: when we're ready to make the change at the IR level, we can 313 // extend convertCmpXchgToInteger for floating point too. 314 assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() && 315 "unimplemented - floating point not legal at IR level"); 316 if (CASI->getCompareOperand()->getType()->isPointerTy() ) { 317 // TODO: add a TLI hook to control this so that each target can 318 // convert to lowering the original type one at a time. 319 CASI = convertCmpXchgToIntegerType(CASI); 320 assert(CASI->getCompareOperand()->getType()->isIntegerTy() && 321 "invariant broken"); 322 MadeChange = true; 323 } 324 325 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 326 unsigned ValueSize = getAtomicOpSize(CASI); 327 if (ValueSize < MinCASSize) { 328 assert(!TLI->shouldExpandAtomicCmpXchgInIR(CASI) && 329 "MinCmpXchgSizeInBits not yet supported for LL/SC expansions."); 330 expandPartwordCmpXchg(CASI); 331 } else { 332 if (TLI->shouldExpandAtomicCmpXchgInIR(CASI)) 333 MadeChange |= expandAtomicCmpXchg(CASI); 334 } 335 } 336 } 337 return MadeChange; 338 } 339 340 bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) { 341 IRBuilder<> Builder(I); 342 343 auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order); 344 345 auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order); 346 // We have a guard here because not every atomic operation generates a 347 // trailing fence. 348 if (TrailingFence) 349 TrailingFence->moveAfter(I); 350 351 return (LeadingFence || TrailingFence); 352 } 353 354 /// Get the iX type with the same bitwidth as T. 355 IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T, 356 const DataLayout &DL) { 357 EVT VT = TLI->getValueType(DL, T); 358 unsigned BitWidth = VT.getStoreSizeInBits(); 359 assert(BitWidth == VT.getSizeInBits() && "must be a power of two"); 360 return IntegerType::get(T->getContext(), BitWidth); 361 } 362 363 /// Convert an atomic load of a non-integral type to an integer load of the 364 /// equivalent bitwidth. See the function comment on 365 /// convertAtomicStoreToIntegerType for background. 366 LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) { 367 auto *M = LI->getModule(); 368 Type *NewTy = getCorrespondingIntegerType(LI->getType(), 369 M->getDataLayout()); 370 371 IRBuilder<> Builder(LI); 372 373 Value *Addr = LI->getPointerOperand(); 374 Type *PT = PointerType::get(NewTy, 375 Addr->getType()->getPointerAddressSpace()); 376 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 377 378 auto *NewLI = Builder.CreateLoad(NewAddr); 379 NewLI->setAlignment(LI->getAlignment()); 380 NewLI->setVolatile(LI->isVolatile()); 381 NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID()); 382 DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n"); 383 384 Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType()); 385 LI->replaceAllUsesWith(NewVal); 386 LI->eraseFromParent(); 387 return NewLI; 388 } 389 390 bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) { 391 switch (TLI->shouldExpandAtomicLoadInIR(LI)) { 392 case TargetLoweringBase::AtomicExpansionKind::None: 393 return false; 394 case TargetLoweringBase::AtomicExpansionKind::LLSC: 395 expandAtomicOpToLLSC( 396 LI, LI->getType(), LI->getPointerOperand(), LI->getOrdering(), 397 [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; }); 398 return true; 399 case TargetLoweringBase::AtomicExpansionKind::LLOnly: 400 return expandAtomicLoadToLL(LI); 401 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: 402 return expandAtomicLoadToCmpXchg(LI); 403 } 404 llvm_unreachable("Unhandled case in tryExpandAtomicLoad"); 405 } 406 407 bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) { 408 IRBuilder<> Builder(LI); 409 410 // On some architectures, load-linked instructions are atomic for larger 411 // sizes than normal loads. For example, the only 64-bit load guaranteed 412 // to be single-copy atomic by ARM is an ldrexd (A3.5.3). 413 Value *Val = 414 TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering()); 415 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 416 417 LI->replaceAllUsesWith(Val); 418 LI->eraseFromParent(); 419 420 return true; 421 } 422 423 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) { 424 IRBuilder<> Builder(LI); 425 AtomicOrdering Order = LI->getOrdering(); 426 Value *Addr = LI->getPointerOperand(); 427 Type *Ty = cast<PointerType>(Addr->getType())->getElementType(); 428 Constant *DummyVal = Constant::getNullValue(Ty); 429 430 Value *Pair = Builder.CreateAtomicCmpXchg( 431 Addr, DummyVal, DummyVal, Order, 432 AtomicCmpXchgInst::getStrongestFailureOrdering(Order)); 433 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded"); 434 435 LI->replaceAllUsesWith(Loaded); 436 LI->eraseFromParent(); 437 438 return true; 439 } 440 441 /// Convert an atomic store of a non-integral type to an integer store of the 442 /// equivalent bitwidth. We used to not support floating point or vector 443 /// atomics in the IR at all. The backends learned to deal with the bitcast 444 /// idiom because that was the only way of expressing the notion of a atomic 445 /// float or vector store. The long term plan is to teach each backend to 446 /// instruction select from the original atomic store, but as a migration 447 /// mechanism, we convert back to the old format which the backends understand. 448 /// Each backend will need individual work to recognize the new format. 449 StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) { 450 IRBuilder<> Builder(SI); 451 auto *M = SI->getModule(); 452 Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(), 453 M->getDataLayout()); 454 Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy); 455 456 Value *Addr = SI->getPointerOperand(); 457 Type *PT = PointerType::get(NewTy, 458 Addr->getType()->getPointerAddressSpace()); 459 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 460 461 StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr); 462 NewSI->setAlignment(SI->getAlignment()); 463 NewSI->setVolatile(SI->isVolatile()); 464 NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID()); 465 DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n"); 466 SI->eraseFromParent(); 467 return NewSI; 468 } 469 470 bool AtomicExpand::expandAtomicStore(StoreInst *SI) { 471 // This function is only called on atomic stores that are too large to be 472 // atomic if implemented as a native store. So we replace them by an 473 // atomic swap, that can be implemented for example as a ldrex/strex on ARM 474 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. 475 // It is the responsibility of the target to only signal expansion via 476 // shouldExpandAtomicRMW in cases where this is required and possible. 477 IRBuilder<> Builder(SI); 478 AtomicRMWInst *AI = 479 Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(), 480 SI->getValueOperand(), SI->getOrdering()); 481 SI->eraseFromParent(); 482 483 // Now we have an appropriate swap instruction, lower it as usual. 484 return tryExpandAtomicRMW(AI); 485 } 486 487 static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr, 488 Value *Loaded, Value *NewVal, 489 AtomicOrdering MemOpOrder, 490 Value *&Success, Value *&NewLoaded) { 491 Value* Pair = Builder.CreateAtomicCmpXchg( 492 Addr, Loaded, NewVal, MemOpOrder, 493 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder)); 494 Success = Builder.CreateExtractValue(Pair, 1, "success"); 495 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 496 } 497 498 /// Emit IR to implement the given atomicrmw operation on values in registers, 499 /// returning the new value. 500 static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder, 501 Value *Loaded, Value *Inc) { 502 Value *NewVal; 503 switch (Op) { 504 case AtomicRMWInst::Xchg: 505 return Inc; 506 case AtomicRMWInst::Add: 507 return Builder.CreateAdd(Loaded, Inc, "new"); 508 case AtomicRMWInst::Sub: 509 return Builder.CreateSub(Loaded, Inc, "new"); 510 case AtomicRMWInst::And: 511 return Builder.CreateAnd(Loaded, Inc, "new"); 512 case AtomicRMWInst::Nand: 513 return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new"); 514 case AtomicRMWInst::Or: 515 return Builder.CreateOr(Loaded, Inc, "new"); 516 case AtomicRMWInst::Xor: 517 return Builder.CreateXor(Loaded, Inc, "new"); 518 case AtomicRMWInst::Max: 519 NewVal = Builder.CreateICmpSGT(Loaded, Inc); 520 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 521 case AtomicRMWInst::Min: 522 NewVal = Builder.CreateICmpSLE(Loaded, Inc); 523 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 524 case AtomicRMWInst::UMax: 525 NewVal = Builder.CreateICmpUGT(Loaded, Inc); 526 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 527 case AtomicRMWInst::UMin: 528 NewVal = Builder.CreateICmpULE(Loaded, Inc); 529 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 530 default: 531 llvm_unreachable("Unknown atomic op"); 532 } 533 } 534 535 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) { 536 switch (TLI->shouldExpandAtomicRMWInIR(AI)) { 537 case TargetLoweringBase::AtomicExpansionKind::None: 538 return false; 539 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 540 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 541 unsigned ValueSize = getAtomicOpSize(AI); 542 if (ValueSize < MinCASSize) { 543 llvm_unreachable( 544 "MinCmpXchgSizeInBits not yet supported for LL/SC architectures."); 545 } else { 546 auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) { 547 return performAtomicOp(AI->getOperation(), Builder, Loaded, 548 AI->getValOperand()); 549 }; 550 expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(), 551 AI->getOrdering(), PerformOp); 552 } 553 return true; 554 } 555 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: { 556 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 557 unsigned ValueSize = getAtomicOpSize(AI); 558 if (ValueSize < MinCASSize) { 559 expandPartwordAtomicRMW(AI, 560 TargetLoweringBase::AtomicExpansionKind::CmpXChg); 561 } else { 562 expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun); 563 } 564 return true; 565 } 566 default: 567 llvm_unreachable("Unhandled case in tryExpandAtomicRMW"); 568 } 569 } 570 571 namespace { 572 573 /// Result values from createMaskInstrs helper. 574 struct PartwordMaskValues { 575 Type *WordType; 576 Type *ValueType; 577 Value *AlignedAddr; 578 Value *ShiftAmt; 579 Value *Mask; 580 Value *Inv_Mask; 581 }; 582 583 } // end anonymous namespace 584 585 /// This is a helper function which builds instructions to provide 586 /// values necessary for partword atomic operations. It takes an 587 /// incoming address, Addr, and ValueType, and constructs the address, 588 /// shift-amounts and masks needed to work with a larger value of size 589 /// WordSize. 590 /// 591 /// AlignedAddr: Addr rounded down to a multiple of WordSize 592 /// 593 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded 594 /// from AlignAddr for it to have the same value as if 595 /// ValueType was loaded from Addr. 596 /// 597 /// Mask: Value to mask with the value loaded from AlignAddr to 598 /// include only the part that would've been loaded from Addr. 599 /// 600 /// Inv_Mask: The inverse of Mask. 601 static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I, 602 Type *ValueType, Value *Addr, 603 unsigned WordSize) { 604 PartwordMaskValues Ret; 605 606 BasicBlock *BB = I->getParent(); 607 Function *F = BB->getParent(); 608 Module *M = I->getModule(); 609 610 LLVMContext &Ctx = F->getContext(); 611 const DataLayout &DL = M->getDataLayout(); 612 613 unsigned ValueSize = DL.getTypeStoreSize(ValueType); 614 615 assert(ValueSize < WordSize); 616 617 Ret.ValueType = ValueType; 618 Ret.WordType = Type::getIntNTy(Ctx, WordSize * 8); 619 620 Type *WordPtrType = 621 Ret.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace()); 622 623 Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx)); 624 Ret.AlignedAddr = Builder.CreateIntToPtr( 625 Builder.CreateAnd(AddrInt, ~(uint64_t)(WordSize - 1)), WordPtrType, 626 "AlignedAddr"); 627 628 Value *PtrLSB = Builder.CreateAnd(AddrInt, WordSize - 1, "PtrLSB"); 629 if (DL.isLittleEndian()) { 630 // turn bytes into bits 631 Ret.ShiftAmt = Builder.CreateShl(PtrLSB, 3); 632 } else { 633 // turn bytes into bits, and count from the other side. 634 Ret.ShiftAmt = 635 Builder.CreateShl(Builder.CreateXor(PtrLSB, WordSize - ValueSize), 3); 636 } 637 638 Ret.ShiftAmt = Builder.CreateTrunc(Ret.ShiftAmt, Ret.WordType, "ShiftAmt"); 639 Ret.Mask = Builder.CreateShl( 640 ConstantInt::get(Ret.WordType, (1 << ValueSize * 8) - 1), Ret.ShiftAmt, 641 "Mask"); 642 Ret.Inv_Mask = Builder.CreateNot(Ret.Mask, "Inv_Mask"); 643 644 return Ret; 645 } 646 647 /// Emit IR to implement a masked version of a given atomicrmw 648 /// operation. (That is, only the bits under the Mask should be 649 /// affected by the operation) 650 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op, 651 IRBuilder<> &Builder, Value *Loaded, 652 Value *Shifted_Inc, Value *Inc, 653 const PartwordMaskValues &PMV) { 654 switch (Op) { 655 case AtomicRMWInst::Xchg: { 656 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 657 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc); 658 return FinalVal; 659 } 660 case AtomicRMWInst::Or: 661 case AtomicRMWInst::Xor: 662 // Or/Xor won't affect any other bits, so can just be done 663 // directly. 664 return performAtomicOp(Op, Builder, Loaded, Shifted_Inc); 665 case AtomicRMWInst::Add: 666 case AtomicRMWInst::Sub: 667 case AtomicRMWInst::And: 668 case AtomicRMWInst::Nand: { 669 // The other arithmetic ops need to be masked into place. 670 Value *NewVal = performAtomicOp(Op, Builder, Loaded, Shifted_Inc); 671 Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask); 672 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 673 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked); 674 return FinalVal; 675 } 676 case AtomicRMWInst::Max: 677 case AtomicRMWInst::Min: 678 case AtomicRMWInst::UMax: 679 case AtomicRMWInst::UMin: { 680 // Finally, comparison ops will operate on the full value, so 681 // truncate down to the original size, and expand out again after 682 // doing the operation. 683 Value *Loaded_Shiftdown = Builder.CreateTrunc( 684 Builder.CreateLShr(Loaded, PMV.ShiftAmt), PMV.ValueType); 685 Value *NewVal = performAtomicOp(Op, Builder, Loaded_Shiftdown, Inc); 686 Value *NewVal_Shiftup = Builder.CreateShl( 687 Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt); 688 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 689 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shiftup); 690 return FinalVal; 691 } 692 default: 693 llvm_unreachable("Unknown atomic op"); 694 } 695 } 696 697 /// Expand a sub-word atomicrmw operation into an appropriate 698 /// word-sized operation. 699 /// 700 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same 701 /// way as a typical atomicrmw expansion. The only difference here is 702 /// that the operation inside of the loop must operate only upon a 703 /// part of the value. 704 void AtomicExpand::expandPartwordAtomicRMW( 705 AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) { 706 assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg); 707 708 AtomicOrdering MemOpOrder = AI->getOrdering(); 709 710 IRBuilder<> Builder(AI); 711 712 PartwordMaskValues PMV = 713 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 714 TLI->getMinCmpXchgSizeInBits() / 8); 715 716 Value *ValOperand_Shifted = 717 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 718 PMV.ShiftAmt, "ValOperand_Shifted"); 719 720 auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) { 721 return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded, 722 ValOperand_Shifted, AI->getValOperand(), PMV); 723 }; 724 725 // TODO: When we're ready to support LLSC conversions too, use 726 // insertRMWLLSCLoop here for ExpansionKind==LLSC. 727 Value *OldResult = 728 insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder, 729 PerformPartwordOp, createCmpXchgInstFun); 730 Value *FinalOldResult = Builder.CreateTrunc( 731 Builder.CreateLShr(OldResult, PMV.ShiftAmt), PMV.ValueType); 732 AI->replaceAllUsesWith(FinalOldResult); 733 AI->eraseFromParent(); 734 } 735 736 void AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) { 737 // The basic idea here is that we're expanding a cmpxchg of a 738 // smaller memory size up to a word-sized cmpxchg. To do this, we 739 // need to add a retry-loop for strong cmpxchg, so that 740 // modifications to other parts of the word don't cause a spurious 741 // failure. 742 743 // This generates code like the following: 744 // [[Setup mask values PMV.*]] 745 // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt 746 // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt 747 // %InitLoaded = load i32* %addr 748 // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask 749 // br partword.cmpxchg.loop 750 // partword.cmpxchg.loop: 751 // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ], 752 // [ %OldVal_MaskOut, %partword.cmpxchg.failure ] 753 // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted 754 // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted 755 // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp, 756 // i32 %FullWord_NewVal success_ordering failure_ordering 757 // %OldVal = extractvalue { i32, i1 } %NewCI, 0 758 // %Success = extractvalue { i32, i1 } %NewCI, 1 759 // br i1 %Success, label %partword.cmpxchg.end, 760 // label %partword.cmpxchg.failure 761 // partword.cmpxchg.failure: 762 // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask 763 // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut 764 // br i1 %ShouldContinue, label %partword.cmpxchg.loop, 765 // label %partword.cmpxchg.end 766 // partword.cmpxchg.end: 767 // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt 768 // %FinalOldVal = trunc i32 %tmp1 to i8 769 // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0 770 // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1 771 772 Value *Addr = CI->getPointerOperand(); 773 Value *Cmp = CI->getCompareOperand(); 774 Value *NewVal = CI->getNewValOperand(); 775 776 BasicBlock *BB = CI->getParent(); 777 Function *F = BB->getParent(); 778 IRBuilder<> Builder(CI); 779 LLVMContext &Ctx = Builder.getContext(); 780 781 const int WordSize = TLI->getMinCmpXchgSizeInBits() / 8; 782 783 BasicBlock *EndBB = 784 BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end"); 785 auto FailureBB = 786 BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB); 787 auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB); 788 789 // The split call above "helpfully" added a branch at the end of BB 790 // (to the wrong place). 791 std::prev(BB->end())->eraseFromParent(); 792 Builder.SetInsertPoint(BB); 793 794 PartwordMaskValues PMV = createMaskInstrs( 795 Builder, CI, CI->getCompareOperand()->getType(), Addr, WordSize); 796 797 // Shift the incoming values over, into the right location in the word. 798 Value *NewVal_Shifted = 799 Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt); 800 Value *Cmp_Shifted = 801 Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt); 802 803 // Load the entire current word, and mask into place the expected and new 804 // values 805 LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr); 806 InitLoaded->setVolatile(CI->isVolatile()); 807 Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask); 808 Builder.CreateBr(LoopBB); 809 810 // partword.cmpxchg.loop: 811 Builder.SetInsertPoint(LoopBB); 812 PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2); 813 Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB); 814 815 // Mask/Or the expected and new values into place in the loaded word. 816 Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted); 817 Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted); 818 AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg( 819 PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, CI->getSuccessOrdering(), 820 CI->getFailureOrdering(), CI->getSyncScopeID()); 821 NewCI->setVolatile(CI->isVolatile()); 822 // When we're building a strong cmpxchg, we need a loop, so you 823 // might think we could use a weak cmpxchg inside. But, using strong 824 // allows the below comparison for ShouldContinue, and we're 825 // expecting the underlying cmpxchg to be a machine instruction, 826 // which is strong anyways. 827 NewCI->setWeak(CI->isWeak()); 828 829 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 830 Value *Success = Builder.CreateExtractValue(NewCI, 1); 831 832 if (CI->isWeak()) 833 Builder.CreateBr(EndBB); 834 else 835 Builder.CreateCondBr(Success, EndBB, FailureBB); 836 837 // partword.cmpxchg.failure: 838 Builder.SetInsertPoint(FailureBB); 839 // Upon failure, verify that the masked-out part of the loaded value 840 // has been modified. If it didn't, abort the cmpxchg, since the 841 // masked-in part must've. 842 Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask); 843 Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut); 844 Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB); 845 846 // Add the second value to the phi from above 847 Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB); 848 849 // partword.cmpxchg.end: 850 Builder.SetInsertPoint(CI); 851 852 Value *FinalOldVal = Builder.CreateTrunc( 853 Builder.CreateLShr(OldVal, PMV.ShiftAmt), PMV.ValueType); 854 Value *Res = UndefValue::get(CI->getType()); 855 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 856 Res = Builder.CreateInsertValue(Res, Success, 1); 857 858 CI->replaceAllUsesWith(Res); 859 CI->eraseFromParent(); 860 } 861 862 void AtomicExpand::expandAtomicOpToLLSC( 863 Instruction *I, Type *ResultType, Value *Addr, AtomicOrdering MemOpOrder, 864 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { 865 IRBuilder<> Builder(I); 866 Value *Loaded = 867 insertRMWLLSCLoop(Builder, ResultType, Addr, MemOpOrder, PerformOp); 868 869 I->replaceAllUsesWith(Loaded); 870 I->eraseFromParent(); 871 } 872 873 Value *AtomicExpand::insertRMWLLSCLoop( 874 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, 875 AtomicOrdering MemOpOrder, 876 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { 877 LLVMContext &Ctx = Builder.getContext(); 878 BasicBlock *BB = Builder.GetInsertBlock(); 879 Function *F = BB->getParent(); 880 881 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 882 // 883 // The standard expansion we produce is: 884 // [...] 885 // atomicrmw.start: 886 // %loaded = @load.linked(%addr) 887 // %new = some_op iN %loaded, %incr 888 // %stored = @store_conditional(%new, %addr) 889 // %try_again = icmp i32 ne %stored, 0 890 // br i1 %try_again, label %loop, label %atomicrmw.end 891 // atomicrmw.end: 892 // [...] 893 BasicBlock *ExitBB = 894 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 895 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 896 897 // The split call above "helpfully" added a branch at the end of BB (to the 898 // wrong place). 899 std::prev(BB->end())->eraseFromParent(); 900 Builder.SetInsertPoint(BB); 901 Builder.CreateBr(LoopBB); 902 903 // Start the main loop block now that we've taken care of the preliminaries. 904 Builder.SetInsertPoint(LoopBB); 905 Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); 906 907 Value *NewVal = PerformOp(Builder, Loaded); 908 909 Value *StoreSuccess = 910 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); 911 Value *TryAgain = Builder.CreateICmpNE( 912 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); 913 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); 914 915 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 916 return Loaded; 917 } 918 919 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of 920 /// the equivalent bitwidth. We used to not support pointer cmpxchg in the 921 /// IR. As a migration step, we convert back to what use to be the standard 922 /// way to represent a pointer cmpxchg so that we can update backends one by 923 /// one. 924 AtomicCmpXchgInst *AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) { 925 auto *M = CI->getModule(); 926 Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(), 927 M->getDataLayout()); 928 929 IRBuilder<> Builder(CI); 930 931 Value *Addr = CI->getPointerOperand(); 932 Type *PT = PointerType::get(NewTy, 933 Addr->getType()->getPointerAddressSpace()); 934 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 935 936 Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy); 937 Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy); 938 939 940 auto *NewCI = Builder.CreateAtomicCmpXchg(NewAddr, NewCmp, NewNewVal, 941 CI->getSuccessOrdering(), 942 CI->getFailureOrdering(), 943 CI->getSyncScopeID()); 944 NewCI->setVolatile(CI->isVolatile()); 945 NewCI->setWeak(CI->isWeak()); 946 DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n"); 947 948 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 949 Value *Succ = Builder.CreateExtractValue(NewCI, 1); 950 951 OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType()); 952 953 Value *Res = UndefValue::get(CI->getType()); 954 Res = Builder.CreateInsertValue(Res, OldVal, 0); 955 Res = Builder.CreateInsertValue(Res, Succ, 1); 956 957 CI->replaceAllUsesWith(Res); 958 CI->eraseFromParent(); 959 return NewCI; 960 } 961 962 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 963 AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); 964 AtomicOrdering FailureOrder = CI->getFailureOrdering(); 965 Value *Addr = CI->getPointerOperand(); 966 BasicBlock *BB = CI->getParent(); 967 Function *F = BB->getParent(); 968 LLVMContext &Ctx = F->getContext(); 969 // If shouldInsertFencesForAtomic() returns true, then the target does not 970 // want to deal with memory orders, and emitLeading/TrailingFence should take 971 // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we 972 // should preserve the ordering. 973 bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI); 974 AtomicOrdering MemOpOrder = 975 ShouldInsertFencesForAtomic ? AtomicOrdering::Monotonic : SuccessOrder; 976 977 // In implementations which use a barrier to achieve release semantics, we can 978 // delay emitting this barrier until we know a store is actually going to be 979 // attempted. The cost of this delay is that we need 2 copies of the block 980 // emitting the load-linked, affecting code size. 981 // 982 // Ideally, this logic would be unconditional except for the minsize check 983 // since in other cases the extra blocks naturally collapse down to the 984 // minimal loop. Unfortunately, this puts too much stress on later 985 // optimisations so we avoid emitting the extra logic in those cases too. 986 bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic && 987 SuccessOrder != AtomicOrdering::Monotonic && 988 SuccessOrder != AtomicOrdering::Acquire && 989 !F->optForMinSize(); 990 991 // There's no overhead for sinking the release barrier in a weak cmpxchg, so 992 // do it even on minsize. 993 bool UseUnconditionalReleaseBarrier = F->optForMinSize() && !CI->isWeak(); 994 995 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord 996 // 997 // The full expansion we produce is: 998 // [...] 999 // cmpxchg.start: 1000 // %unreleasedload = @load.linked(%addr) 1001 // %should_store = icmp eq %unreleasedload, %desired 1002 // br i1 %should_store, label %cmpxchg.fencedstore, 1003 // label %cmpxchg.nostore 1004 // cmpxchg.releasingstore: 1005 // fence? 1006 // br label cmpxchg.trystore 1007 // cmpxchg.trystore: 1008 // %loaded.trystore = phi [%unreleasedload, %releasingstore], 1009 // [%releasedload, %cmpxchg.releasedload] 1010 // %stored = @store_conditional(%new, %addr) 1011 // %success = icmp eq i32 %stored, 0 1012 // br i1 %success, label %cmpxchg.success, 1013 // label %cmpxchg.releasedload/%cmpxchg.failure 1014 // cmpxchg.releasedload: 1015 // %releasedload = @load.linked(%addr) 1016 // %should_store = icmp eq %releasedload, %desired 1017 // br i1 %should_store, label %cmpxchg.trystore, 1018 // label %cmpxchg.failure 1019 // cmpxchg.success: 1020 // fence? 1021 // br label %cmpxchg.end 1022 // cmpxchg.nostore: 1023 // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start], 1024 // [%releasedload, 1025 // %cmpxchg.releasedload/%cmpxchg.trystore] 1026 // @load_linked_fail_balance()? 1027 // br label %cmpxchg.failure 1028 // cmpxchg.failure: 1029 // fence? 1030 // br label %cmpxchg.end 1031 // cmpxchg.end: 1032 // %loaded = phi [%loaded.nostore, %cmpxchg.failure], 1033 // [%loaded.trystore, %cmpxchg.trystore] 1034 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] 1035 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 1036 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 1037 // [...] 1038 BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end"); 1039 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); 1040 auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB); 1041 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB); 1042 auto ReleasedLoadBB = 1043 BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB); 1044 auto TryStoreBB = 1045 BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB); 1046 auto ReleasingStoreBB = 1047 BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB); 1048 auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB); 1049 1050 // This grabs the DebugLoc from CI 1051 IRBuilder<> Builder(CI); 1052 1053 // The split call above "helpfully" added a branch at the end of BB (to the 1054 // wrong place), but we might want a fence too. It's easiest to just remove 1055 // the branch entirely. 1056 std::prev(BB->end())->eraseFromParent(); 1057 Builder.SetInsertPoint(BB); 1058 if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier) 1059 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1060 Builder.CreateBr(StartBB); 1061 1062 // Start the main loop block now that we've taken care of the preliminaries. 1063 Builder.SetInsertPoint(StartBB); 1064 Value *UnreleasedLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); 1065 Value *ShouldStore = Builder.CreateICmpEQ( 1066 UnreleasedLoad, CI->getCompareOperand(), "should_store"); 1067 1068 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1069 // jump straight past that fence instruction (if it exists). 1070 Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB); 1071 1072 Builder.SetInsertPoint(ReleasingStoreBB); 1073 if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier) 1074 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1075 Builder.CreateBr(TryStoreBB); 1076 1077 Builder.SetInsertPoint(TryStoreBB); 1078 Value *StoreSuccess = TLI->emitStoreConditional( 1079 Builder, CI->getNewValOperand(), Addr, MemOpOrder); 1080 StoreSuccess = Builder.CreateICmpEQ( 1081 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); 1082 BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB; 1083 Builder.CreateCondBr(StoreSuccess, SuccessBB, 1084 CI->isWeak() ? FailureBB : RetryBB); 1085 1086 Builder.SetInsertPoint(ReleasedLoadBB); 1087 Value *SecondLoad; 1088 if (HasReleasedLoadBB) { 1089 SecondLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); 1090 ShouldStore = Builder.CreateICmpEQ(SecondLoad, CI->getCompareOperand(), 1091 "should_store"); 1092 1093 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1094 // jump straight past that fence instruction (if it exists). 1095 Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB); 1096 } else 1097 Builder.CreateUnreachable(); 1098 1099 // Make sure later instructions don't get reordered with a fence if 1100 // necessary. 1101 Builder.SetInsertPoint(SuccessBB); 1102 if (ShouldInsertFencesForAtomic) 1103 TLI->emitTrailingFence(Builder, CI, SuccessOrder); 1104 Builder.CreateBr(ExitBB); 1105 1106 Builder.SetInsertPoint(NoStoreBB); 1107 // In the failing case, where we don't execute the store-conditional, the 1108 // target might want to balance out the load-linked with a dedicated 1109 // instruction (e.g., on ARM, clearing the exclusive monitor). 1110 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 1111 Builder.CreateBr(FailureBB); 1112 1113 Builder.SetInsertPoint(FailureBB); 1114 if (ShouldInsertFencesForAtomic) 1115 TLI->emitTrailingFence(Builder, CI, FailureOrder); 1116 Builder.CreateBr(ExitBB); 1117 1118 // Finally, we have control-flow based knowledge of whether the cmpxchg 1119 // succeeded or not. We expose this to later passes by converting any 1120 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate 1121 // PHI. 1122 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1123 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2); 1124 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); 1125 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); 1126 1127 // Setup the builder so we can create any PHIs we need. 1128 Value *Loaded; 1129 if (!HasReleasedLoadBB) 1130 Loaded = UnreleasedLoad; 1131 else { 1132 Builder.SetInsertPoint(TryStoreBB, TryStoreBB->begin()); 1133 PHINode *TryStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2); 1134 TryStoreLoaded->addIncoming(UnreleasedLoad, ReleasingStoreBB); 1135 TryStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB); 1136 1137 Builder.SetInsertPoint(NoStoreBB, NoStoreBB->begin()); 1138 PHINode *NoStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2); 1139 NoStoreLoaded->addIncoming(UnreleasedLoad, StartBB); 1140 NoStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB); 1141 1142 Builder.SetInsertPoint(ExitBB, ++ExitBB->begin()); 1143 PHINode *ExitLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2); 1144 ExitLoaded->addIncoming(TryStoreLoaded, SuccessBB); 1145 ExitLoaded->addIncoming(NoStoreLoaded, FailureBB); 1146 1147 Loaded = ExitLoaded; 1148 } 1149 1150 // Look for any users of the cmpxchg that are just comparing the loaded value 1151 // against the desired one, and replace them with the CFG-derived version. 1152 SmallVector<ExtractValueInst *, 2> PrunedInsts; 1153 for (auto User : CI->users()) { 1154 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); 1155 if (!EV) 1156 continue; 1157 1158 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && 1159 "weird extraction from { iN, i1 }"); 1160 1161 if (EV->getIndices()[0] == 0) 1162 EV->replaceAllUsesWith(Loaded); 1163 else 1164 EV->replaceAllUsesWith(Success); 1165 1166 PrunedInsts.push_back(EV); 1167 } 1168 1169 // We can remove the instructions now we're no longer iterating through them. 1170 for (auto EV : PrunedInsts) 1171 EV->eraseFromParent(); 1172 1173 if (!CI->use_empty()) { 1174 // Some use of the full struct return that we don't understand has happened, 1175 // so we've got to reconstruct it properly. 1176 Value *Res; 1177 Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0); 1178 Res = Builder.CreateInsertValue(Res, Success, 1); 1179 1180 CI->replaceAllUsesWith(Res); 1181 } 1182 1183 CI->eraseFromParent(); 1184 return true; 1185 } 1186 1187 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) { 1188 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand()); 1189 if(!C) 1190 return false; 1191 1192 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 1193 switch(Op) { 1194 case AtomicRMWInst::Add: 1195 case AtomicRMWInst::Sub: 1196 case AtomicRMWInst::Or: 1197 case AtomicRMWInst::Xor: 1198 return C->isZero(); 1199 case AtomicRMWInst::And: 1200 return C->isMinusOne(); 1201 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/... 1202 default: 1203 return false; 1204 } 1205 } 1206 1207 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) { 1208 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { 1209 tryExpandAtomicLoad(ResultingLoad); 1210 return true; 1211 } 1212 return false; 1213 } 1214 1215 Value *AtomicExpand::insertRMWCmpXchgLoop( 1216 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, 1217 AtomicOrdering MemOpOrder, 1218 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, 1219 CreateCmpXchgInstFun CreateCmpXchg) { 1220 LLVMContext &Ctx = Builder.getContext(); 1221 BasicBlock *BB = Builder.GetInsertBlock(); 1222 Function *F = BB->getParent(); 1223 1224 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1225 // 1226 // The standard expansion we produce is: 1227 // [...] 1228 // %init_loaded = load atomic iN* %addr 1229 // br label %loop 1230 // loop: 1231 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] 1232 // %new = some_op iN %loaded, %incr 1233 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new 1234 // %new_loaded = extractvalue { iN, i1 } %pair, 0 1235 // %success = extractvalue { iN, i1 } %pair, 1 1236 // br i1 %success, label %atomicrmw.end, label %loop 1237 // atomicrmw.end: 1238 // [...] 1239 BasicBlock *ExitBB = 1240 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1241 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1242 1243 // The split call above "helpfully" added a branch at the end of BB (to the 1244 // wrong place), but we want a load. It's easiest to just remove 1245 // the branch entirely. 1246 std::prev(BB->end())->eraseFromParent(); 1247 Builder.SetInsertPoint(BB); 1248 LoadInst *InitLoaded = Builder.CreateLoad(ResultTy, Addr); 1249 // Atomics require at least natural alignment. 1250 InitLoaded->setAlignment(ResultTy->getPrimitiveSizeInBits() / 8); 1251 Builder.CreateBr(LoopBB); 1252 1253 // Start the main loop block now that we've taken care of the preliminaries. 1254 Builder.SetInsertPoint(LoopBB); 1255 PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded"); 1256 Loaded->addIncoming(InitLoaded, BB); 1257 1258 Value *NewVal = PerformOp(Builder, Loaded); 1259 1260 Value *NewLoaded = nullptr; 1261 Value *Success = nullptr; 1262 1263 CreateCmpXchg(Builder, Addr, Loaded, NewVal, 1264 MemOpOrder == AtomicOrdering::Unordered 1265 ? AtomicOrdering::Monotonic 1266 : MemOpOrder, 1267 Success, NewLoaded); 1268 assert(Success && NewLoaded); 1269 1270 Loaded->addIncoming(NewLoaded, LoopBB); 1271 1272 Builder.CreateCondBr(Success, ExitBB, LoopBB); 1273 1274 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1275 return NewLoaded; 1276 } 1277 1278 // Note: This function is exposed externally by AtomicExpandUtils.h 1279 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 1280 CreateCmpXchgInstFun CreateCmpXchg) { 1281 IRBuilder<> Builder(AI); 1282 Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop( 1283 Builder, AI->getType(), AI->getPointerOperand(), AI->getOrdering(), 1284 [&](IRBuilder<> &Builder, Value *Loaded) { 1285 return performAtomicOp(AI->getOperation(), Builder, Loaded, 1286 AI->getValOperand()); 1287 }, 1288 CreateCmpXchg); 1289 1290 AI->replaceAllUsesWith(Loaded); 1291 AI->eraseFromParent(); 1292 return true; 1293 } 1294 1295 // In order to use one of the sized library calls such as 1296 // __atomic_fetch_add_4, the alignment must be sufficient, the size 1297 // must be one of the potentially-specialized sizes, and the value 1298 // type must actually exist in C on the target (otherwise, the 1299 // function wouldn't actually be defined.) 1300 static bool canUseSizedAtomicCall(unsigned Size, unsigned Align, 1301 const DataLayout &DL) { 1302 // TODO: "LargestSize" is an approximation for "largest type that 1303 // you can express in C". It seems to be the case that int128 is 1304 // supported on all 64-bit platforms, otherwise only up to 64-bit 1305 // integers are supported. If we get this wrong, then we'll try to 1306 // call a sized libcall that doesn't actually exist. There should 1307 // really be some more reliable way in LLVM of determining integer 1308 // sizes which are valid in the target's C ABI... 1309 unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8; 1310 return Align >= Size && 1311 (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) && 1312 Size <= LargestSize; 1313 } 1314 1315 void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) { 1316 static const RTLIB::Libcall Libcalls[6] = { 1317 RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2, 1318 RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16}; 1319 unsigned Size = getAtomicOpSize(I); 1320 unsigned Align = getAtomicOpAlign(I); 1321 1322 bool expanded = expandAtomicOpToLibcall( 1323 I, Size, Align, I->getPointerOperand(), nullptr, nullptr, 1324 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1325 (void)expanded; 1326 assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Load"); 1327 } 1328 1329 void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) { 1330 static const RTLIB::Libcall Libcalls[6] = { 1331 RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2, 1332 RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16}; 1333 unsigned Size = getAtomicOpSize(I); 1334 unsigned Align = getAtomicOpAlign(I); 1335 1336 bool expanded = expandAtomicOpToLibcall( 1337 I, Size, Align, I->getPointerOperand(), I->getValueOperand(), nullptr, 1338 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1339 (void)expanded; 1340 assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Store"); 1341 } 1342 1343 void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) { 1344 static const RTLIB::Libcall Libcalls[6] = { 1345 RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1, 1346 RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4, 1347 RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16}; 1348 unsigned Size = getAtomicOpSize(I); 1349 unsigned Align = getAtomicOpAlign(I); 1350 1351 bool expanded = expandAtomicOpToLibcall( 1352 I, Size, Align, I->getPointerOperand(), I->getNewValOperand(), 1353 I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(), 1354 Libcalls); 1355 (void)expanded; 1356 assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor CAS"); 1357 } 1358 1359 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) { 1360 static const RTLIB::Libcall LibcallsXchg[6] = { 1361 RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1, 1362 RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4, 1363 RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16}; 1364 static const RTLIB::Libcall LibcallsAdd[6] = { 1365 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1, 1366 RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4, 1367 RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16}; 1368 static const RTLIB::Libcall LibcallsSub[6] = { 1369 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1, 1370 RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4, 1371 RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16}; 1372 static const RTLIB::Libcall LibcallsAnd[6] = { 1373 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1, 1374 RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4, 1375 RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16}; 1376 static const RTLIB::Libcall LibcallsOr[6] = { 1377 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1, 1378 RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4, 1379 RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16}; 1380 static const RTLIB::Libcall LibcallsXor[6] = { 1381 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1, 1382 RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4, 1383 RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16}; 1384 static const RTLIB::Libcall LibcallsNand[6] = { 1385 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1, 1386 RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4, 1387 RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16}; 1388 1389 switch (Op) { 1390 case AtomicRMWInst::BAD_BINOP: 1391 llvm_unreachable("Should not have BAD_BINOP."); 1392 case AtomicRMWInst::Xchg: 1393 return makeArrayRef(LibcallsXchg); 1394 case AtomicRMWInst::Add: 1395 return makeArrayRef(LibcallsAdd); 1396 case AtomicRMWInst::Sub: 1397 return makeArrayRef(LibcallsSub); 1398 case AtomicRMWInst::And: 1399 return makeArrayRef(LibcallsAnd); 1400 case AtomicRMWInst::Or: 1401 return makeArrayRef(LibcallsOr); 1402 case AtomicRMWInst::Xor: 1403 return makeArrayRef(LibcallsXor); 1404 case AtomicRMWInst::Nand: 1405 return makeArrayRef(LibcallsNand); 1406 case AtomicRMWInst::Max: 1407 case AtomicRMWInst::Min: 1408 case AtomicRMWInst::UMax: 1409 case AtomicRMWInst::UMin: 1410 // No atomic libcalls are available for max/min/umax/umin. 1411 return {}; 1412 } 1413 llvm_unreachable("Unexpected AtomicRMW operation."); 1414 } 1415 1416 void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) { 1417 ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation()); 1418 1419 unsigned Size = getAtomicOpSize(I); 1420 unsigned Align = getAtomicOpAlign(I); 1421 1422 bool Success = false; 1423 if (!Libcalls.empty()) 1424 Success = expandAtomicOpToLibcall( 1425 I, Size, Align, I->getPointerOperand(), I->getValOperand(), nullptr, 1426 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1427 1428 // The expansion failed: either there were no libcalls at all for 1429 // the operation (min/max), or there were only size-specialized 1430 // libcalls (add/sub/etc) and we needed a generic. So, expand to a 1431 // CAS libcall, via a CAS loop, instead. 1432 if (!Success) { 1433 expandAtomicRMWToCmpXchg(I, [this](IRBuilder<> &Builder, Value *Addr, 1434 Value *Loaded, Value *NewVal, 1435 AtomicOrdering MemOpOrder, 1436 Value *&Success, Value *&NewLoaded) { 1437 // Create the CAS instruction normally... 1438 AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg( 1439 Addr, Loaded, NewVal, MemOpOrder, 1440 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder)); 1441 Success = Builder.CreateExtractValue(Pair, 1, "success"); 1442 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 1443 1444 // ...and then expand the CAS into a libcall. 1445 expandAtomicCASToLibcall(Pair); 1446 }); 1447 } 1448 } 1449 1450 // A helper routine for the above expandAtomic*ToLibcall functions. 1451 // 1452 // 'Libcalls' contains an array of enum values for the particular 1453 // ATOMIC libcalls to be emitted. All of the other arguments besides 1454 // 'I' are extracted from the Instruction subclass by the 1455 // caller. Depending on the particular call, some will be null. 1456 bool AtomicExpand::expandAtomicOpToLibcall( 1457 Instruction *I, unsigned Size, unsigned Align, Value *PointerOperand, 1458 Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering, 1459 AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) { 1460 assert(Libcalls.size() == 6); 1461 1462 LLVMContext &Ctx = I->getContext(); 1463 Module *M = I->getModule(); 1464 const DataLayout &DL = M->getDataLayout(); 1465 IRBuilder<> Builder(I); 1466 IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front()); 1467 1468 bool UseSizedLibcall = canUseSizedAtomicCall(Size, Align, DL); 1469 Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8); 1470 1471 unsigned AllocaAlignment = DL.getPrefTypeAlignment(SizedIntTy); 1472 1473 // TODO: the "order" argument type is "int", not int32. So 1474 // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints. 1475 ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size); 1476 assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO"); 1477 Constant *OrderingVal = 1478 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering)); 1479 Constant *Ordering2Val = nullptr; 1480 if (CASExpected) { 1481 assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO"); 1482 Ordering2Val = 1483 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2)); 1484 } 1485 bool HasResult = I->getType() != Type::getVoidTy(Ctx); 1486 1487 RTLIB::Libcall RTLibType; 1488 if (UseSizedLibcall) { 1489 switch (Size) { 1490 case 1: RTLibType = Libcalls[1]; break; 1491 case 2: RTLibType = Libcalls[2]; break; 1492 case 4: RTLibType = Libcalls[3]; break; 1493 case 8: RTLibType = Libcalls[4]; break; 1494 case 16: RTLibType = Libcalls[5]; break; 1495 } 1496 } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) { 1497 RTLibType = Libcalls[0]; 1498 } else { 1499 // Can't use sized function, and there's no generic for this 1500 // operation, so give up. 1501 return false; 1502 } 1503 1504 // Build up the function call. There's two kinds. First, the sized 1505 // variants. These calls are going to be one of the following (with 1506 // N=1,2,4,8,16): 1507 // iN __atomic_load_N(iN *ptr, int ordering) 1508 // void __atomic_store_N(iN *ptr, iN val, int ordering) 1509 // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering) 1510 // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired, 1511 // int success_order, int failure_order) 1512 // 1513 // Note that these functions can be used for non-integer atomic 1514 // operations, the values just need to be bitcast to integers on the 1515 // way in and out. 1516 // 1517 // And, then, the generic variants. They look like the following: 1518 // void __atomic_load(size_t size, void *ptr, void *ret, int ordering) 1519 // void __atomic_store(size_t size, void *ptr, void *val, int ordering) 1520 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, 1521 // int ordering) 1522 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, 1523 // void *desired, int success_order, 1524 // int failure_order) 1525 // 1526 // The different signatures are built up depending on the 1527 // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult' 1528 // variables. 1529 1530 AllocaInst *AllocaCASExpected = nullptr; 1531 Value *AllocaCASExpected_i8 = nullptr; 1532 AllocaInst *AllocaValue = nullptr; 1533 Value *AllocaValue_i8 = nullptr; 1534 AllocaInst *AllocaResult = nullptr; 1535 Value *AllocaResult_i8 = nullptr; 1536 1537 Type *ResultTy; 1538 SmallVector<Value *, 6> Args; 1539 AttributeList Attr; 1540 1541 // 'size' argument. 1542 if (!UseSizedLibcall) { 1543 // Note, getIntPtrType is assumed equivalent to size_t. 1544 Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size)); 1545 } 1546 1547 // 'ptr' argument. 1548 Value *PtrVal = 1549 Builder.CreateBitCast(PointerOperand, Type::getInt8PtrTy(Ctx)); 1550 Args.push_back(PtrVal); 1551 1552 // 'expected' argument, if present. 1553 if (CASExpected) { 1554 AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType()); 1555 AllocaCASExpected->setAlignment(AllocaAlignment); 1556 AllocaCASExpected_i8 = 1557 Builder.CreateBitCast(AllocaCASExpected, Type::getInt8PtrTy(Ctx)); 1558 Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64); 1559 Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment); 1560 Args.push_back(AllocaCASExpected_i8); 1561 } 1562 1563 // 'val' argument ('desired' for cas), if present. 1564 if (ValueOperand) { 1565 if (UseSizedLibcall) { 1566 Value *IntValue = 1567 Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy); 1568 Args.push_back(IntValue); 1569 } else { 1570 AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType()); 1571 AllocaValue->setAlignment(AllocaAlignment); 1572 AllocaValue_i8 = 1573 Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx)); 1574 Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64); 1575 Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment); 1576 Args.push_back(AllocaValue_i8); 1577 } 1578 } 1579 1580 // 'ret' argument. 1581 if (!CASExpected && HasResult && !UseSizedLibcall) { 1582 AllocaResult = AllocaBuilder.CreateAlloca(I->getType()); 1583 AllocaResult->setAlignment(AllocaAlignment); 1584 AllocaResult_i8 = 1585 Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx)); 1586 Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64); 1587 Args.push_back(AllocaResult_i8); 1588 } 1589 1590 // 'ordering' ('success_order' for cas) argument. 1591 Args.push_back(OrderingVal); 1592 1593 // 'failure_order' argument, if present. 1594 if (Ordering2Val) 1595 Args.push_back(Ordering2Val); 1596 1597 // Now, the return type. 1598 if (CASExpected) { 1599 ResultTy = Type::getInt1Ty(Ctx); 1600 Attr = Attr.addAttribute(Ctx, AttributeList::ReturnIndex, Attribute::ZExt); 1601 } else if (HasResult && UseSizedLibcall) 1602 ResultTy = SizedIntTy; 1603 else 1604 ResultTy = Type::getVoidTy(Ctx); 1605 1606 // Done with setting up arguments and return types, create the call: 1607 SmallVector<Type *, 6> ArgTys; 1608 for (Value *Arg : Args) 1609 ArgTys.push_back(Arg->getType()); 1610 FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false); 1611 Constant *LibcallFn = 1612 M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr); 1613 CallInst *Call = Builder.CreateCall(LibcallFn, Args); 1614 Call->setAttributes(Attr); 1615 Value *Result = Call; 1616 1617 // And then, extract the results... 1618 if (ValueOperand && !UseSizedLibcall) 1619 Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64); 1620 1621 if (CASExpected) { 1622 // The final result from the CAS is {load of 'expected' alloca, bool result 1623 // from call} 1624 Type *FinalResultTy = I->getType(); 1625 Value *V = UndefValue::get(FinalResultTy); 1626 Value *ExpectedOut = 1627 Builder.CreateAlignedLoad(AllocaCASExpected, AllocaAlignment); 1628 Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64); 1629 V = Builder.CreateInsertValue(V, ExpectedOut, 0); 1630 V = Builder.CreateInsertValue(V, Result, 1); 1631 I->replaceAllUsesWith(V); 1632 } else if (HasResult) { 1633 Value *V; 1634 if (UseSizedLibcall) 1635 V = Builder.CreateBitOrPointerCast(Result, I->getType()); 1636 else { 1637 V = Builder.CreateAlignedLoad(AllocaResult, AllocaAlignment); 1638 Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64); 1639 } 1640 I->replaceAllUsesWith(V); 1641 } 1642 I->eraseFromParent(); 1643 return true; 1644 } 1645