1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass (at IR level) to replace atomic instructions with 10 // __atomic_* library calls, or target specific instruction which implement the 11 // same semantics in a way which better fits the target backend. This can 12 // include the use of (intrinsic-based) load-linked/store-conditional loops, 13 // AtomicCmpXchg, or type coercions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/STLFunctionalExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/CodeGen/AtomicExpandUtils.h" 22 #include "llvm/CodeGen/RuntimeLibcalls.h" 23 #include "llvm/CodeGen/TargetLowering.h" 24 #include "llvm/CodeGen/TargetPassConfig.h" 25 #include "llvm/CodeGen/TargetSubtargetInfo.h" 26 #include "llvm/CodeGen/ValueTypes.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Constant.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/IRBuilder.h" 35 #include "llvm/IR/InstIterator.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Type.h" 40 #include "llvm/IR/User.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/InitializePasses.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/AtomicOrdering.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Target/TargetMachine.h" 50 #include "llvm/Transforms/Utils/LowerAtomic.h" 51 #include <cassert> 52 #include <cstdint> 53 #include <iterator> 54 55 using namespace llvm; 56 57 #define DEBUG_TYPE "atomic-expand" 58 59 namespace { 60 61 class AtomicExpand : public FunctionPass { 62 const TargetLowering *TLI = nullptr; 63 64 public: 65 static char ID; // Pass identification, replacement for typeid 66 67 AtomicExpand() : FunctionPass(ID) { 68 initializeAtomicExpandPass(*PassRegistry::getPassRegistry()); 69 } 70 71 bool runOnFunction(Function &F) override; 72 73 private: 74 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order); 75 IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL); 76 LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI); 77 bool tryExpandAtomicLoad(LoadInst *LI); 78 bool expandAtomicLoadToLL(LoadInst *LI); 79 bool expandAtomicLoadToCmpXchg(LoadInst *LI); 80 StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI); 81 bool tryExpandAtomicStore(StoreInst *SI); 82 void expandAtomicStore(StoreInst *SI); 83 bool tryExpandAtomicRMW(AtomicRMWInst *AI); 84 AtomicRMWInst *convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI); 85 Value * 86 insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr, 87 Align AddrAlign, AtomicOrdering MemOpOrder, 88 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); 89 void 90 expandAtomicOpToLLSC(Instruction *I, Type *ResultTy, Value *Addr, 91 Align AddrAlign, AtomicOrdering MemOpOrder, 92 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); 93 void expandPartwordAtomicRMW( 94 AtomicRMWInst *I, TargetLoweringBase::AtomicExpansionKind ExpansionKind); 95 AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI); 96 bool expandPartwordCmpXchg(AtomicCmpXchgInst *I); 97 void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI); 98 void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI); 99 100 AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI); 101 static Value * 102 insertRMWCmpXchgLoop(IRBuilder<> &Builder, Type *ResultType, Value *Addr, 103 Align AddrAlign, AtomicOrdering MemOpOrder, 104 SyncScope::ID SSID, 105 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, 106 CreateCmpXchgInstFun CreateCmpXchg); 107 bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI); 108 109 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); 110 bool isIdempotentRMW(AtomicRMWInst *RMWI); 111 bool simplifyIdempotentRMW(AtomicRMWInst *RMWI); 112 113 bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, Align Alignment, 114 Value *PointerOperand, Value *ValueOperand, 115 Value *CASExpected, AtomicOrdering Ordering, 116 AtomicOrdering Ordering2, 117 ArrayRef<RTLIB::Libcall> Libcalls); 118 void expandAtomicLoadToLibcall(LoadInst *LI); 119 void expandAtomicStoreToLibcall(StoreInst *LI); 120 void expandAtomicRMWToLibcall(AtomicRMWInst *I); 121 void expandAtomicCASToLibcall(AtomicCmpXchgInst *I); 122 123 friend bool 124 llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 125 CreateCmpXchgInstFun CreateCmpXchg); 126 }; 127 128 } // end anonymous namespace 129 130 char AtomicExpand::ID = 0; 131 132 char &llvm::AtomicExpandID = AtomicExpand::ID; 133 134 INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions", false, 135 false) 136 137 FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); } 138 139 // Helper functions to retrieve the size of atomic instructions. 140 static unsigned getAtomicOpSize(LoadInst *LI) { 141 const DataLayout &DL = LI->getModule()->getDataLayout(); 142 return DL.getTypeStoreSize(LI->getType()); 143 } 144 145 static unsigned getAtomicOpSize(StoreInst *SI) { 146 const DataLayout &DL = SI->getModule()->getDataLayout(); 147 return DL.getTypeStoreSize(SI->getValueOperand()->getType()); 148 } 149 150 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) { 151 const DataLayout &DL = RMWI->getModule()->getDataLayout(); 152 return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); 153 } 154 155 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) { 156 const DataLayout &DL = CASI->getModule()->getDataLayout(); 157 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); 158 } 159 160 // Determine if a particular atomic operation has a supported size, 161 // and is of appropriate alignment, to be passed through for target 162 // lowering. (Versus turning into a __atomic libcall) 163 template <typename Inst> 164 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) { 165 unsigned Size = getAtomicOpSize(I); 166 Align Alignment = I->getAlign(); 167 return Alignment >= Size && 168 Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8; 169 } 170 171 bool AtomicExpand::runOnFunction(Function &F) { 172 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 173 if (!TPC) 174 return false; 175 176 auto &TM = TPC->getTM<TargetMachine>(); 177 if (!TM.getSubtargetImpl(F)->enableAtomicExpand()) 178 return false; 179 TLI = TM.getSubtargetImpl(F)->getTargetLowering(); 180 181 SmallVector<Instruction *, 1> AtomicInsts; 182 183 // Changing control-flow while iterating through it is a bad idea, so gather a 184 // list of all atomic instructions before we start. 185 for (Instruction &I : instructions(F)) 186 if (I.isAtomic() && !isa<FenceInst>(&I)) 187 AtomicInsts.push_back(&I); 188 189 bool MadeChange = false; 190 for (auto I : AtomicInsts) { 191 auto LI = dyn_cast<LoadInst>(I); 192 auto SI = dyn_cast<StoreInst>(I); 193 auto RMWI = dyn_cast<AtomicRMWInst>(I); 194 auto CASI = dyn_cast<AtomicCmpXchgInst>(I); 195 assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction"); 196 197 // If the Size/Alignment is not supported, replace with a libcall. 198 if (LI) { 199 if (!atomicSizeSupported(TLI, LI)) { 200 expandAtomicLoadToLibcall(LI); 201 MadeChange = true; 202 continue; 203 } 204 } else if (SI) { 205 if (!atomicSizeSupported(TLI, SI)) { 206 expandAtomicStoreToLibcall(SI); 207 MadeChange = true; 208 continue; 209 } 210 } else if (RMWI) { 211 if (!atomicSizeSupported(TLI, RMWI)) { 212 expandAtomicRMWToLibcall(RMWI); 213 MadeChange = true; 214 continue; 215 } 216 } else if (CASI) { 217 if (!atomicSizeSupported(TLI, CASI)) { 218 expandAtomicCASToLibcall(CASI); 219 MadeChange = true; 220 continue; 221 } 222 } 223 224 if (TLI->shouldInsertFencesForAtomic(I)) { 225 auto FenceOrdering = AtomicOrdering::Monotonic; 226 if (LI && isAcquireOrStronger(LI->getOrdering())) { 227 FenceOrdering = LI->getOrdering(); 228 LI->setOrdering(AtomicOrdering::Monotonic); 229 } else if (SI && isReleaseOrStronger(SI->getOrdering())) { 230 FenceOrdering = SI->getOrdering(); 231 SI->setOrdering(AtomicOrdering::Monotonic); 232 } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) || 233 isAcquireOrStronger(RMWI->getOrdering()))) { 234 FenceOrdering = RMWI->getOrdering(); 235 RMWI->setOrdering(AtomicOrdering::Monotonic); 236 } else if (CASI && 237 TLI->shouldExpandAtomicCmpXchgInIR(CASI) == 238 TargetLoweringBase::AtomicExpansionKind::None && 239 (isReleaseOrStronger(CASI->getSuccessOrdering()) || 240 isAcquireOrStronger(CASI->getSuccessOrdering()) || 241 isAcquireOrStronger(CASI->getFailureOrdering()))) { 242 // If a compare and swap is lowered to LL/SC, we can do smarter fence 243 // insertion, with a stronger one on the success path than on the 244 // failure path. As a result, fence insertion is directly done by 245 // expandAtomicCmpXchg in that case. 246 FenceOrdering = CASI->getMergedOrdering(); 247 CASI->setSuccessOrdering(AtomicOrdering::Monotonic); 248 CASI->setFailureOrdering(AtomicOrdering::Monotonic); 249 } 250 251 if (FenceOrdering != AtomicOrdering::Monotonic) { 252 MadeChange |= bracketInstWithFences(I, FenceOrdering); 253 } 254 } 255 256 if (LI) { 257 if (LI->getType()->isFloatingPointTy()) { 258 // TODO: add a TLI hook to control this so that each target can 259 // convert to lowering the original type one at a time. 260 LI = convertAtomicLoadToIntegerType(LI); 261 assert(LI->getType()->isIntegerTy() && "invariant broken"); 262 MadeChange = true; 263 } 264 265 MadeChange |= tryExpandAtomicLoad(LI); 266 } else if (SI) { 267 if (SI->getValueOperand()->getType()->isFloatingPointTy()) { 268 // TODO: add a TLI hook to control this so that each target can 269 // convert to lowering the original type one at a time. 270 SI = convertAtomicStoreToIntegerType(SI); 271 assert(SI->getValueOperand()->getType()->isIntegerTy() && 272 "invariant broken"); 273 MadeChange = true; 274 } 275 276 if (tryExpandAtomicStore(SI)) 277 MadeChange = true; 278 } else if (RMWI) { 279 // There are two different ways of expanding RMW instructions: 280 // - into a load if it is idempotent 281 // - into a Cmpxchg/LL-SC loop otherwise 282 // we try them in that order. 283 284 if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) { 285 MadeChange = true; 286 } else { 287 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 288 if (Op == AtomicRMWInst::Xchg && 289 RMWI->getValOperand()->getType()->isFloatingPointTy()) { 290 // TODO: add a TLI hook to control this so that each target can 291 // convert to lowering the original type one at a time. 292 RMWI = convertAtomicXchgToIntegerType(RMWI); 293 assert(RMWI->getValOperand()->getType()->isIntegerTy() && 294 "invariant broken"); 295 MadeChange = true; 296 } 297 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 298 unsigned ValueSize = getAtomicOpSize(RMWI); 299 if (ValueSize < MinCASSize && 300 (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 301 Op == AtomicRMWInst::And)) { 302 RMWI = widenPartwordAtomicRMW(RMWI); 303 MadeChange = true; 304 } 305 306 MadeChange |= tryExpandAtomicRMW(RMWI); 307 } 308 } else if (CASI) { 309 // TODO: when we're ready to make the change at the IR level, we can 310 // extend convertCmpXchgToInteger for floating point too. 311 assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() && 312 "unimplemented - floating point not legal at IR level"); 313 if (CASI->getCompareOperand()->getType()->isPointerTy()) { 314 // TODO: add a TLI hook to control this so that each target can 315 // convert to lowering the original type one at a time. 316 CASI = convertCmpXchgToIntegerType(CASI); 317 assert(CASI->getCompareOperand()->getType()->isIntegerTy() && 318 "invariant broken"); 319 MadeChange = true; 320 } 321 322 MadeChange |= tryExpandAtomicCmpXchg(CASI); 323 } 324 } 325 return MadeChange; 326 } 327 328 bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) { 329 IRBuilder<> Builder(I); 330 331 auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order); 332 333 auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order); 334 // We have a guard here because not every atomic operation generates a 335 // trailing fence. 336 if (TrailingFence) 337 TrailingFence->moveAfter(I); 338 339 return (LeadingFence || TrailingFence); 340 } 341 342 /// Get the iX type with the same bitwidth as T. 343 IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T, 344 const DataLayout &DL) { 345 EVT VT = TLI->getMemValueType(DL, T); 346 unsigned BitWidth = VT.getStoreSizeInBits(); 347 assert(BitWidth == VT.getSizeInBits() && "must be a power of two"); 348 return IntegerType::get(T->getContext(), BitWidth); 349 } 350 351 /// Convert an atomic load of a non-integral type to an integer load of the 352 /// equivalent bitwidth. See the function comment on 353 /// convertAtomicStoreToIntegerType for background. 354 LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) { 355 auto *M = LI->getModule(); 356 Type *NewTy = getCorrespondingIntegerType(LI->getType(), M->getDataLayout()); 357 358 IRBuilder<> Builder(LI); 359 360 Value *Addr = LI->getPointerOperand(); 361 Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace()); 362 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 363 364 auto *NewLI = Builder.CreateLoad(NewTy, NewAddr); 365 NewLI->setAlignment(LI->getAlign()); 366 NewLI->setVolatile(LI->isVolatile()); 367 NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID()); 368 LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n"); 369 370 Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType()); 371 LI->replaceAllUsesWith(NewVal); 372 LI->eraseFromParent(); 373 return NewLI; 374 } 375 376 AtomicRMWInst * 377 AtomicExpand::convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI) { 378 auto *M = RMWI->getModule(); 379 Type *NewTy = 380 getCorrespondingIntegerType(RMWI->getType(), M->getDataLayout()); 381 382 IRBuilder<> Builder(RMWI); 383 384 Value *Addr = RMWI->getPointerOperand(); 385 Value *Val = RMWI->getValOperand(); 386 Type *PT = PointerType::get(NewTy, RMWI->getPointerAddressSpace()); 387 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 388 Value *NewVal = Builder.CreateBitCast(Val, NewTy); 389 390 auto *NewRMWI = 391 Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, NewAddr, NewVal, 392 RMWI->getAlign(), RMWI->getOrdering()); 393 NewRMWI->setVolatile(RMWI->isVolatile()); 394 LLVM_DEBUG(dbgs() << "Replaced " << *RMWI << " with " << *NewRMWI << "\n"); 395 396 Value *NewRVal = Builder.CreateBitCast(NewRMWI, RMWI->getType()); 397 RMWI->replaceAllUsesWith(NewRVal); 398 RMWI->eraseFromParent(); 399 return NewRMWI; 400 } 401 402 bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) { 403 switch (TLI->shouldExpandAtomicLoadInIR(LI)) { 404 case TargetLoweringBase::AtomicExpansionKind::None: 405 return false; 406 case TargetLoweringBase::AtomicExpansionKind::LLSC: 407 expandAtomicOpToLLSC( 408 LI, LI->getType(), LI->getPointerOperand(), LI->getAlign(), 409 LI->getOrdering(), 410 [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; }); 411 return true; 412 case TargetLoweringBase::AtomicExpansionKind::LLOnly: 413 return expandAtomicLoadToLL(LI); 414 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: 415 return expandAtomicLoadToCmpXchg(LI); 416 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 417 LI->setAtomic(AtomicOrdering::NotAtomic); 418 return true; 419 default: 420 llvm_unreachable("Unhandled case in tryExpandAtomicLoad"); 421 } 422 } 423 424 bool AtomicExpand::tryExpandAtomicStore(StoreInst *SI) { 425 switch (TLI->shouldExpandAtomicStoreInIR(SI)) { 426 case TargetLoweringBase::AtomicExpansionKind::None: 427 return false; 428 case TargetLoweringBase::AtomicExpansionKind::Expand: 429 expandAtomicStore(SI); 430 return true; 431 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 432 SI->setAtomic(AtomicOrdering::NotAtomic); 433 return true; 434 default: 435 llvm_unreachable("Unhandled case in tryExpandAtomicStore"); 436 } 437 } 438 439 bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) { 440 IRBuilder<> Builder(LI); 441 442 // On some architectures, load-linked instructions are atomic for larger 443 // sizes than normal loads. For example, the only 64-bit load guaranteed 444 // to be single-copy atomic by ARM is an ldrexd (A3.5.3). 445 Value *Val = TLI->emitLoadLinked(Builder, LI->getType(), 446 LI->getPointerOperand(), LI->getOrdering()); 447 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 448 449 LI->replaceAllUsesWith(Val); 450 LI->eraseFromParent(); 451 452 return true; 453 } 454 455 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) { 456 IRBuilder<> Builder(LI); 457 AtomicOrdering Order = LI->getOrdering(); 458 if (Order == AtomicOrdering::Unordered) 459 Order = AtomicOrdering::Monotonic; 460 461 Value *Addr = LI->getPointerOperand(); 462 Type *Ty = LI->getType(); 463 Constant *DummyVal = Constant::getNullValue(Ty); 464 465 Value *Pair = Builder.CreateAtomicCmpXchg( 466 Addr, DummyVal, DummyVal, LI->getAlign(), Order, 467 AtomicCmpXchgInst::getStrongestFailureOrdering(Order)); 468 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded"); 469 470 LI->replaceAllUsesWith(Loaded); 471 LI->eraseFromParent(); 472 473 return true; 474 } 475 476 /// Convert an atomic store of a non-integral type to an integer store of the 477 /// equivalent bitwidth. We used to not support floating point or vector 478 /// atomics in the IR at all. The backends learned to deal with the bitcast 479 /// idiom because that was the only way of expressing the notion of a atomic 480 /// float or vector store. The long term plan is to teach each backend to 481 /// instruction select from the original atomic store, but as a migration 482 /// mechanism, we convert back to the old format which the backends understand. 483 /// Each backend will need individual work to recognize the new format. 484 StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) { 485 IRBuilder<> Builder(SI); 486 auto *M = SI->getModule(); 487 Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(), 488 M->getDataLayout()); 489 Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy); 490 491 Value *Addr = SI->getPointerOperand(); 492 Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace()); 493 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 494 495 StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr); 496 NewSI->setAlignment(SI->getAlign()); 497 NewSI->setVolatile(SI->isVolatile()); 498 NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID()); 499 LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n"); 500 SI->eraseFromParent(); 501 return NewSI; 502 } 503 504 void AtomicExpand::expandAtomicStore(StoreInst *SI) { 505 // This function is only called on atomic stores that are too large to be 506 // atomic if implemented as a native store. So we replace them by an 507 // atomic swap, that can be implemented for example as a ldrex/strex on ARM 508 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. 509 // It is the responsibility of the target to only signal expansion via 510 // shouldExpandAtomicRMW in cases where this is required and possible. 511 IRBuilder<> Builder(SI); 512 AtomicRMWInst *AI = Builder.CreateAtomicRMW( 513 AtomicRMWInst::Xchg, SI->getPointerOperand(), SI->getValueOperand(), 514 SI->getAlign(), SI->getOrdering()); 515 SI->eraseFromParent(); 516 517 // Now we have an appropriate swap instruction, lower it as usual. 518 tryExpandAtomicRMW(AI); 519 } 520 521 static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr, 522 Value *Loaded, Value *NewVal, Align AddrAlign, 523 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 524 Value *&Success, Value *&NewLoaded) { 525 Type *OrigTy = NewVal->getType(); 526 527 // This code can go away when cmpxchg supports FP types. 528 bool NeedBitcast = OrigTy->isFloatingPointTy(); 529 if (NeedBitcast) { 530 IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits()); 531 unsigned AS = Addr->getType()->getPointerAddressSpace(); 532 Addr = Builder.CreateBitCast(Addr, IntTy->getPointerTo(AS)); 533 NewVal = Builder.CreateBitCast(NewVal, IntTy); 534 Loaded = Builder.CreateBitCast(Loaded, IntTy); 535 } 536 537 Value *Pair = Builder.CreateAtomicCmpXchg( 538 Addr, Loaded, NewVal, AddrAlign, MemOpOrder, 539 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID); 540 Success = Builder.CreateExtractValue(Pair, 1, "success"); 541 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 542 543 if (NeedBitcast) 544 NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy); 545 } 546 547 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) { 548 LLVMContext &Ctx = AI->getModule()->getContext(); 549 TargetLowering::AtomicExpansionKind Kind = TLI->shouldExpandAtomicRMWInIR(AI); 550 switch (Kind) { 551 case TargetLoweringBase::AtomicExpansionKind::None: 552 return false; 553 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 554 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 555 unsigned ValueSize = getAtomicOpSize(AI); 556 if (ValueSize < MinCASSize) { 557 expandPartwordAtomicRMW(AI, 558 TargetLoweringBase::AtomicExpansionKind::LLSC); 559 } else { 560 auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) { 561 return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded, 562 AI->getValOperand()); 563 }; 564 expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(), 565 AI->getAlign(), AI->getOrdering(), PerformOp); 566 } 567 return true; 568 } 569 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: { 570 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 571 unsigned ValueSize = getAtomicOpSize(AI); 572 if (ValueSize < MinCASSize) { 573 // TODO: Handle atomicrmw fadd/fsub 574 if (AI->getType()->isFloatingPointTy()) 575 return false; 576 577 expandPartwordAtomicRMW(AI, 578 TargetLoweringBase::AtomicExpansionKind::CmpXChg); 579 } else { 580 SmallVector<StringRef> SSNs; 581 Ctx.getSyncScopeNames(SSNs); 582 auto MemScope = SSNs[AI->getSyncScopeID()].empty() 583 ? "system" 584 : SSNs[AI->getSyncScopeID()]; 585 OptimizationRemarkEmitter ORE(AI->getFunction()); 586 ORE.emit([&]() { 587 return OptimizationRemark(DEBUG_TYPE, "Passed", AI) 588 << "A compare and swap loop was generated for an atomic " 589 << AI->getOperationName(AI->getOperation()) << " operation at " 590 << MemScope << " memory scope"; 591 }); 592 expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun); 593 } 594 return true; 595 } 596 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: { 597 expandAtomicRMWToMaskedIntrinsic(AI); 598 return true; 599 } 600 case TargetLoweringBase::AtomicExpansionKind::BitTestIntrinsic: { 601 TLI->emitBitTestAtomicRMWIntrinsic(AI); 602 return true; 603 } 604 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 605 return lowerAtomicRMWInst(AI); 606 default: 607 llvm_unreachable("Unhandled case in tryExpandAtomicRMW"); 608 } 609 } 610 611 namespace { 612 613 struct PartwordMaskValues { 614 // These three fields are guaranteed to be set by createMaskInstrs. 615 Type *WordType = nullptr; 616 Type *ValueType = nullptr; 617 Value *AlignedAddr = nullptr; 618 Align AlignedAddrAlignment; 619 // The remaining fields can be null. 620 Value *ShiftAmt = nullptr; 621 Value *Mask = nullptr; 622 Value *Inv_Mask = nullptr; 623 }; 624 625 LLVM_ATTRIBUTE_UNUSED 626 raw_ostream &operator<<(raw_ostream &O, const PartwordMaskValues &PMV) { 627 auto PrintObj = [&O](auto *V) { 628 if (V) 629 O << *V; 630 else 631 O << "nullptr"; 632 O << '\n'; 633 }; 634 O << "PartwordMaskValues {\n"; 635 O << " WordType: "; 636 PrintObj(PMV.WordType); 637 O << " ValueType: "; 638 PrintObj(PMV.ValueType); 639 O << " AlignedAddr: "; 640 PrintObj(PMV.AlignedAddr); 641 O << " AlignedAddrAlignment: " << PMV.AlignedAddrAlignment.value() << '\n'; 642 O << " ShiftAmt: "; 643 PrintObj(PMV.ShiftAmt); 644 O << " Mask: "; 645 PrintObj(PMV.Mask); 646 O << " Inv_Mask: "; 647 PrintObj(PMV.Inv_Mask); 648 O << "}\n"; 649 return O; 650 } 651 652 } // end anonymous namespace 653 654 /// This is a helper function which builds instructions to provide 655 /// values necessary for partword atomic operations. It takes an 656 /// incoming address, Addr, and ValueType, and constructs the address, 657 /// shift-amounts and masks needed to work with a larger value of size 658 /// WordSize. 659 /// 660 /// AlignedAddr: Addr rounded down to a multiple of WordSize 661 /// 662 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded 663 /// from AlignAddr for it to have the same value as if 664 /// ValueType was loaded from Addr. 665 /// 666 /// Mask: Value to mask with the value loaded from AlignAddr to 667 /// include only the part that would've been loaded from Addr. 668 /// 669 /// Inv_Mask: The inverse of Mask. 670 static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I, 671 Type *ValueType, Value *Addr, 672 Align AddrAlign, 673 unsigned MinWordSize) { 674 PartwordMaskValues PMV; 675 676 Module *M = I->getModule(); 677 LLVMContext &Ctx = M->getContext(); 678 const DataLayout &DL = M->getDataLayout(); 679 unsigned ValueSize = DL.getTypeStoreSize(ValueType); 680 681 PMV.ValueType = ValueType; 682 PMV.WordType = MinWordSize > ValueSize ? Type::getIntNTy(Ctx, MinWordSize * 8) 683 : ValueType; 684 if (PMV.ValueType == PMV.WordType) { 685 PMV.AlignedAddr = Addr; 686 PMV.AlignedAddrAlignment = AddrAlign; 687 PMV.ShiftAmt = ConstantInt::get(PMV.ValueType, 0); 688 PMV.Mask = ConstantInt::get(PMV.ValueType, ~0, /*isSigned*/ true); 689 return PMV; 690 } 691 692 assert(ValueSize < MinWordSize); 693 694 Type *WordPtrType = 695 PMV.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace()); 696 697 // TODO: we could skip some of this if AddrAlign >= MinWordSize. 698 Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx)); 699 PMV.AlignedAddr = Builder.CreateIntToPtr( 700 Builder.CreateAnd(AddrInt, ~(uint64_t)(MinWordSize - 1)), WordPtrType, 701 "AlignedAddr"); 702 PMV.AlignedAddrAlignment = Align(MinWordSize); 703 704 Value *PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1, "PtrLSB"); 705 if (DL.isLittleEndian()) { 706 // turn bytes into bits 707 PMV.ShiftAmt = Builder.CreateShl(PtrLSB, 3); 708 } else { 709 // turn bytes into bits, and count from the other side. 710 PMV.ShiftAmt = Builder.CreateShl( 711 Builder.CreateXor(PtrLSB, MinWordSize - ValueSize), 3); 712 } 713 714 PMV.ShiftAmt = Builder.CreateTrunc(PMV.ShiftAmt, PMV.WordType, "ShiftAmt"); 715 PMV.Mask = Builder.CreateShl( 716 ConstantInt::get(PMV.WordType, (1 << (ValueSize * 8)) - 1), PMV.ShiftAmt, 717 "Mask"); 718 PMV.Inv_Mask = Builder.CreateNot(PMV.Mask, "Inv_Mask"); 719 return PMV; 720 } 721 722 static Value *extractMaskedValue(IRBuilder<> &Builder, Value *WideWord, 723 const PartwordMaskValues &PMV) { 724 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch"); 725 if (PMV.WordType == PMV.ValueType) 726 return WideWord; 727 728 Value *Shift = Builder.CreateLShr(WideWord, PMV.ShiftAmt, "shifted"); 729 Value *Trunc = Builder.CreateTrunc(Shift, PMV.ValueType, "extracted"); 730 return Trunc; 731 } 732 733 static Value *insertMaskedValue(IRBuilder<> &Builder, Value *WideWord, 734 Value *Updated, const PartwordMaskValues &PMV) { 735 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch"); 736 assert(Updated->getType() == PMV.ValueType && "Value type mismatch"); 737 if (PMV.WordType == PMV.ValueType) 738 return Updated; 739 740 Value *ZExt = Builder.CreateZExt(Updated, PMV.WordType, "extended"); 741 Value *Shift = 742 Builder.CreateShl(ZExt, PMV.ShiftAmt, "shifted", /*HasNUW*/ true); 743 Value *And = Builder.CreateAnd(WideWord, PMV.Inv_Mask, "unmasked"); 744 Value *Or = Builder.CreateOr(And, Shift, "inserted"); 745 return Or; 746 } 747 748 /// Emit IR to implement a masked version of a given atomicrmw 749 /// operation. (That is, only the bits under the Mask should be 750 /// affected by the operation) 751 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op, 752 IRBuilder<> &Builder, Value *Loaded, 753 Value *Shifted_Inc, Value *Inc, 754 const PartwordMaskValues &PMV) { 755 // TODO: update to use 756 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order 757 // to merge bits from two values without requiring PMV.Inv_Mask. 758 switch (Op) { 759 case AtomicRMWInst::Xchg: { 760 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 761 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc); 762 return FinalVal; 763 } 764 case AtomicRMWInst::Or: 765 case AtomicRMWInst::Xor: 766 case AtomicRMWInst::And: 767 llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW"); 768 case AtomicRMWInst::Add: 769 case AtomicRMWInst::Sub: 770 case AtomicRMWInst::Nand: { 771 // The other arithmetic ops need to be masked into place. 772 Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded, Shifted_Inc); 773 Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask); 774 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 775 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked); 776 return FinalVal; 777 } 778 case AtomicRMWInst::Max: 779 case AtomicRMWInst::Min: 780 case AtomicRMWInst::UMax: 781 case AtomicRMWInst::UMin: { 782 // Finally, comparison ops will operate on the full value, so 783 // truncate down to the original size, and expand out again after 784 // doing the operation. 785 Value *Loaded_Extract = extractMaskedValue(Builder, Loaded, PMV); 786 Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded_Extract, Inc); 787 Value *FinalVal = insertMaskedValue(Builder, Loaded, NewVal, PMV); 788 return FinalVal; 789 } 790 default: 791 llvm_unreachable("Unknown atomic op"); 792 } 793 } 794 795 /// Expand a sub-word atomicrmw operation into an appropriate 796 /// word-sized operation. 797 /// 798 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same 799 /// way as a typical atomicrmw expansion. The only difference here is 800 /// that the operation inside of the loop may operate upon only a 801 /// part of the value. 802 void AtomicExpand::expandPartwordAtomicRMW( 803 AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) { 804 AtomicOrdering MemOpOrder = AI->getOrdering(); 805 SyncScope::ID SSID = AI->getSyncScopeID(); 806 807 IRBuilder<> Builder(AI); 808 809 PartwordMaskValues PMV = 810 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 811 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 812 813 Value *ValOperand_Shifted = 814 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 815 PMV.ShiftAmt, "ValOperand_Shifted"); 816 817 auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) { 818 return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded, 819 ValOperand_Shifted, AI->getValOperand(), PMV); 820 }; 821 822 Value *OldResult; 823 if (ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg) { 824 OldResult = insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, 825 PMV.AlignedAddrAlignment, MemOpOrder, SSID, 826 PerformPartwordOp, createCmpXchgInstFun); 827 } else { 828 assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::LLSC); 829 OldResult = insertRMWLLSCLoop(Builder, PMV.WordType, PMV.AlignedAddr, 830 PMV.AlignedAddrAlignment, MemOpOrder, 831 PerformPartwordOp); 832 } 833 834 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV); 835 AI->replaceAllUsesWith(FinalOldResult); 836 AI->eraseFromParent(); 837 } 838 839 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width. 840 AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) { 841 IRBuilder<> Builder(AI); 842 AtomicRMWInst::BinOp Op = AI->getOperation(); 843 844 assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 845 Op == AtomicRMWInst::And) && 846 "Unable to widen operation"); 847 848 PartwordMaskValues PMV = 849 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 850 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 851 852 Value *ValOperand_Shifted = 853 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 854 PMV.ShiftAmt, "ValOperand_Shifted"); 855 856 Value *NewOperand; 857 858 if (Op == AtomicRMWInst::And) 859 NewOperand = 860 Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand"); 861 else 862 NewOperand = ValOperand_Shifted; 863 864 AtomicRMWInst *NewAI = 865 Builder.CreateAtomicRMW(Op, PMV.AlignedAddr, NewOperand, 866 PMV.AlignedAddrAlignment, AI->getOrdering()); 867 868 Value *FinalOldResult = extractMaskedValue(Builder, NewAI, PMV); 869 AI->replaceAllUsesWith(FinalOldResult); 870 AI->eraseFromParent(); 871 return NewAI; 872 } 873 874 bool AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) { 875 // The basic idea here is that we're expanding a cmpxchg of a 876 // smaller memory size up to a word-sized cmpxchg. To do this, we 877 // need to add a retry-loop for strong cmpxchg, so that 878 // modifications to other parts of the word don't cause a spurious 879 // failure. 880 881 // This generates code like the following: 882 // [[Setup mask values PMV.*]] 883 // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt 884 // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt 885 // %InitLoaded = load i32* %addr 886 // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask 887 // br partword.cmpxchg.loop 888 // partword.cmpxchg.loop: 889 // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ], 890 // [ %OldVal_MaskOut, %partword.cmpxchg.failure ] 891 // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted 892 // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted 893 // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp, 894 // i32 %FullWord_NewVal success_ordering failure_ordering 895 // %OldVal = extractvalue { i32, i1 } %NewCI, 0 896 // %Success = extractvalue { i32, i1 } %NewCI, 1 897 // br i1 %Success, label %partword.cmpxchg.end, 898 // label %partword.cmpxchg.failure 899 // partword.cmpxchg.failure: 900 // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask 901 // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut 902 // br i1 %ShouldContinue, label %partword.cmpxchg.loop, 903 // label %partword.cmpxchg.end 904 // partword.cmpxchg.end: 905 // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt 906 // %FinalOldVal = trunc i32 %tmp1 to i8 907 // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0 908 // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1 909 910 Value *Addr = CI->getPointerOperand(); 911 Value *Cmp = CI->getCompareOperand(); 912 Value *NewVal = CI->getNewValOperand(); 913 914 BasicBlock *BB = CI->getParent(); 915 Function *F = BB->getParent(); 916 IRBuilder<> Builder(CI); 917 LLVMContext &Ctx = Builder.getContext(); 918 919 BasicBlock *EndBB = 920 BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end"); 921 auto FailureBB = 922 BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB); 923 auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB); 924 925 // The split call above "helpfully" added a branch at the end of BB 926 // (to the wrong place). 927 std::prev(BB->end())->eraseFromParent(); 928 Builder.SetInsertPoint(BB); 929 930 PartwordMaskValues PMV = 931 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr, 932 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 933 934 // Shift the incoming values over, into the right location in the word. 935 Value *NewVal_Shifted = 936 Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt); 937 Value *Cmp_Shifted = 938 Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt); 939 940 // Load the entire current word, and mask into place the expected and new 941 // values 942 LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr); 943 InitLoaded->setVolatile(CI->isVolatile()); 944 Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask); 945 Builder.CreateBr(LoopBB); 946 947 // partword.cmpxchg.loop: 948 Builder.SetInsertPoint(LoopBB); 949 PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2); 950 Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB); 951 952 // Mask/Or the expected and new values into place in the loaded word. 953 Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted); 954 Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted); 955 AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg( 956 PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, PMV.AlignedAddrAlignment, 957 CI->getSuccessOrdering(), CI->getFailureOrdering(), CI->getSyncScopeID()); 958 NewCI->setVolatile(CI->isVolatile()); 959 // When we're building a strong cmpxchg, we need a loop, so you 960 // might think we could use a weak cmpxchg inside. But, using strong 961 // allows the below comparison for ShouldContinue, and we're 962 // expecting the underlying cmpxchg to be a machine instruction, 963 // which is strong anyways. 964 NewCI->setWeak(CI->isWeak()); 965 966 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 967 Value *Success = Builder.CreateExtractValue(NewCI, 1); 968 969 if (CI->isWeak()) 970 Builder.CreateBr(EndBB); 971 else 972 Builder.CreateCondBr(Success, EndBB, FailureBB); 973 974 // partword.cmpxchg.failure: 975 Builder.SetInsertPoint(FailureBB); 976 // Upon failure, verify that the masked-out part of the loaded value 977 // has been modified. If it didn't, abort the cmpxchg, since the 978 // masked-in part must've. 979 Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask); 980 Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut); 981 Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB); 982 983 // Add the second value to the phi from above 984 Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB); 985 986 // partword.cmpxchg.end: 987 Builder.SetInsertPoint(CI); 988 989 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV); 990 Value *Res = UndefValue::get(CI->getType()); 991 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 992 Res = Builder.CreateInsertValue(Res, Success, 1); 993 994 CI->replaceAllUsesWith(Res); 995 CI->eraseFromParent(); 996 return true; 997 } 998 999 void AtomicExpand::expandAtomicOpToLLSC( 1000 Instruction *I, Type *ResultType, Value *Addr, Align AddrAlign, 1001 AtomicOrdering MemOpOrder, 1002 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { 1003 IRBuilder<> Builder(I); 1004 Value *Loaded = insertRMWLLSCLoop(Builder, ResultType, Addr, AddrAlign, 1005 MemOpOrder, PerformOp); 1006 1007 I->replaceAllUsesWith(Loaded); 1008 I->eraseFromParent(); 1009 } 1010 1011 void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) { 1012 IRBuilder<> Builder(AI); 1013 1014 PartwordMaskValues PMV = 1015 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 1016 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1017 1018 // The value operand must be sign-extended for signed min/max so that the 1019 // target's signed comparison instructions can be used. Otherwise, just 1020 // zero-ext. 1021 Instruction::CastOps CastOp = Instruction::ZExt; 1022 AtomicRMWInst::BinOp RMWOp = AI->getOperation(); 1023 if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min) 1024 CastOp = Instruction::SExt; 1025 1026 Value *ValOperand_Shifted = Builder.CreateShl( 1027 Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType), 1028 PMV.ShiftAmt, "ValOperand_Shifted"); 1029 Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic( 1030 Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt, 1031 AI->getOrdering()); 1032 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV); 1033 AI->replaceAllUsesWith(FinalOldResult); 1034 AI->eraseFromParent(); 1035 } 1036 1037 void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI) { 1038 IRBuilder<> Builder(CI); 1039 1040 PartwordMaskValues PMV = createMaskInstrs( 1041 Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(), 1042 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1043 1044 Value *CmpVal_Shifted = Builder.CreateShl( 1045 Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt, 1046 "CmpVal_Shifted"); 1047 Value *NewVal_Shifted = Builder.CreateShl( 1048 Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt, 1049 "NewVal_Shifted"); 1050 Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic( 1051 Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask, 1052 CI->getMergedOrdering()); 1053 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV); 1054 Value *Res = UndefValue::get(CI->getType()); 1055 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 1056 Value *Success = Builder.CreateICmpEQ( 1057 CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success"); 1058 Res = Builder.CreateInsertValue(Res, Success, 1); 1059 1060 CI->replaceAllUsesWith(Res); 1061 CI->eraseFromParent(); 1062 } 1063 1064 Value *AtomicExpand::insertRMWLLSCLoop( 1065 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, 1066 AtomicOrdering MemOpOrder, 1067 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { 1068 LLVMContext &Ctx = Builder.getContext(); 1069 BasicBlock *BB = Builder.GetInsertBlock(); 1070 Function *F = BB->getParent(); 1071 1072 assert(AddrAlign >= 1073 F->getParent()->getDataLayout().getTypeStoreSize(ResultTy) && 1074 "Expected at least natural alignment at this point."); 1075 1076 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1077 // 1078 // The standard expansion we produce is: 1079 // [...] 1080 // atomicrmw.start: 1081 // %loaded = @load.linked(%addr) 1082 // %new = some_op iN %loaded, %incr 1083 // %stored = @store_conditional(%new, %addr) 1084 // %try_again = icmp i32 ne %stored, 0 1085 // br i1 %try_again, label %loop, label %atomicrmw.end 1086 // atomicrmw.end: 1087 // [...] 1088 BasicBlock *ExitBB = 1089 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1090 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1091 1092 // The split call above "helpfully" added a branch at the end of BB (to the 1093 // wrong place). 1094 std::prev(BB->end())->eraseFromParent(); 1095 Builder.SetInsertPoint(BB); 1096 Builder.CreateBr(LoopBB); 1097 1098 // Start the main loop block now that we've taken care of the preliminaries. 1099 Builder.SetInsertPoint(LoopBB); 1100 Value *Loaded = TLI->emitLoadLinked(Builder, ResultTy, Addr, MemOpOrder); 1101 1102 Value *NewVal = PerformOp(Builder, Loaded); 1103 1104 Value *StoreSuccess = 1105 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); 1106 Value *TryAgain = Builder.CreateICmpNE( 1107 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); 1108 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); 1109 1110 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1111 return Loaded; 1112 } 1113 1114 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of 1115 /// the equivalent bitwidth. We used to not support pointer cmpxchg in the 1116 /// IR. As a migration step, we convert back to what use to be the standard 1117 /// way to represent a pointer cmpxchg so that we can update backends one by 1118 /// one. 1119 AtomicCmpXchgInst * 1120 AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) { 1121 auto *M = CI->getModule(); 1122 Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(), 1123 M->getDataLayout()); 1124 1125 IRBuilder<> Builder(CI); 1126 1127 Value *Addr = CI->getPointerOperand(); 1128 Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace()); 1129 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 1130 1131 Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy); 1132 Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy); 1133 1134 auto *NewCI = Builder.CreateAtomicCmpXchg( 1135 NewAddr, NewCmp, NewNewVal, CI->getAlign(), CI->getSuccessOrdering(), 1136 CI->getFailureOrdering(), CI->getSyncScopeID()); 1137 NewCI->setVolatile(CI->isVolatile()); 1138 NewCI->setWeak(CI->isWeak()); 1139 LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n"); 1140 1141 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 1142 Value *Succ = Builder.CreateExtractValue(NewCI, 1); 1143 1144 OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType()); 1145 1146 Value *Res = UndefValue::get(CI->getType()); 1147 Res = Builder.CreateInsertValue(Res, OldVal, 0); 1148 Res = Builder.CreateInsertValue(Res, Succ, 1); 1149 1150 CI->replaceAllUsesWith(Res); 1151 CI->eraseFromParent(); 1152 return NewCI; 1153 } 1154 1155 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1156 AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); 1157 AtomicOrdering FailureOrder = CI->getFailureOrdering(); 1158 Value *Addr = CI->getPointerOperand(); 1159 BasicBlock *BB = CI->getParent(); 1160 Function *F = BB->getParent(); 1161 LLVMContext &Ctx = F->getContext(); 1162 // If shouldInsertFencesForAtomic() returns true, then the target does not 1163 // want to deal with memory orders, and emitLeading/TrailingFence should take 1164 // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we 1165 // should preserve the ordering. 1166 bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI); 1167 AtomicOrdering MemOpOrder = ShouldInsertFencesForAtomic 1168 ? AtomicOrdering::Monotonic 1169 : CI->getMergedOrdering(); 1170 1171 // In implementations which use a barrier to achieve release semantics, we can 1172 // delay emitting this barrier until we know a store is actually going to be 1173 // attempted. The cost of this delay is that we need 2 copies of the block 1174 // emitting the load-linked, affecting code size. 1175 // 1176 // Ideally, this logic would be unconditional except for the minsize check 1177 // since in other cases the extra blocks naturally collapse down to the 1178 // minimal loop. Unfortunately, this puts too much stress on later 1179 // optimisations so we avoid emitting the extra logic in those cases too. 1180 bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic && 1181 SuccessOrder != AtomicOrdering::Monotonic && 1182 SuccessOrder != AtomicOrdering::Acquire && 1183 !F->hasMinSize(); 1184 1185 // There's no overhead for sinking the release barrier in a weak cmpxchg, so 1186 // do it even on minsize. 1187 bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak(); 1188 1189 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord 1190 // 1191 // The full expansion we produce is: 1192 // [...] 1193 // %aligned.addr = ... 1194 // cmpxchg.start: 1195 // %unreleasedload = @load.linked(%aligned.addr) 1196 // %unreleasedload.extract = extract value from %unreleasedload 1197 // %should_store = icmp eq %unreleasedload.extract, %desired 1198 // br i1 %should_store, label %cmpxchg.releasingstore, 1199 // label %cmpxchg.nostore 1200 // cmpxchg.releasingstore: 1201 // fence? 1202 // br label cmpxchg.trystore 1203 // cmpxchg.trystore: 1204 // %loaded.trystore = phi [%unreleasedload, %cmpxchg.releasingstore], 1205 // [%releasedload, %cmpxchg.releasedload] 1206 // %updated.new = insert %new into %loaded.trystore 1207 // %stored = @store_conditional(%updated.new, %aligned.addr) 1208 // %success = icmp eq i32 %stored, 0 1209 // br i1 %success, label %cmpxchg.success, 1210 // label %cmpxchg.releasedload/%cmpxchg.failure 1211 // cmpxchg.releasedload: 1212 // %releasedload = @load.linked(%aligned.addr) 1213 // %releasedload.extract = extract value from %releasedload 1214 // %should_store = icmp eq %releasedload.extract, %desired 1215 // br i1 %should_store, label %cmpxchg.trystore, 1216 // label %cmpxchg.failure 1217 // cmpxchg.success: 1218 // fence? 1219 // br label %cmpxchg.end 1220 // cmpxchg.nostore: 1221 // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start], 1222 // [%releasedload, 1223 // %cmpxchg.releasedload/%cmpxchg.trystore] 1224 // @load_linked_fail_balance()? 1225 // br label %cmpxchg.failure 1226 // cmpxchg.failure: 1227 // fence? 1228 // br label %cmpxchg.end 1229 // cmpxchg.end: 1230 // %loaded.exit = phi [%loaded.nostore, %cmpxchg.failure], 1231 // [%loaded.trystore, %cmpxchg.trystore] 1232 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] 1233 // %loaded = extract value from %loaded.exit 1234 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 1235 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 1236 // [...] 1237 BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end"); 1238 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); 1239 auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB); 1240 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB); 1241 auto ReleasedLoadBB = 1242 BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB); 1243 auto TryStoreBB = 1244 BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB); 1245 auto ReleasingStoreBB = 1246 BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB); 1247 auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB); 1248 1249 // This grabs the DebugLoc from CI 1250 IRBuilder<> Builder(CI); 1251 1252 // The split call above "helpfully" added a branch at the end of BB (to the 1253 // wrong place), but we might want a fence too. It's easiest to just remove 1254 // the branch entirely. 1255 std::prev(BB->end())->eraseFromParent(); 1256 Builder.SetInsertPoint(BB); 1257 if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier) 1258 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1259 1260 PartwordMaskValues PMV = 1261 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr, 1262 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1263 Builder.CreateBr(StartBB); 1264 1265 // Start the main loop block now that we've taken care of the preliminaries. 1266 Builder.SetInsertPoint(StartBB); 1267 Value *UnreleasedLoad = 1268 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder); 1269 Value *UnreleasedLoadExtract = 1270 extractMaskedValue(Builder, UnreleasedLoad, PMV); 1271 Value *ShouldStore = Builder.CreateICmpEQ( 1272 UnreleasedLoadExtract, CI->getCompareOperand(), "should_store"); 1273 1274 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1275 // jump straight past that fence instruction (if it exists). 1276 Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB); 1277 1278 Builder.SetInsertPoint(ReleasingStoreBB); 1279 if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier) 1280 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1281 Builder.CreateBr(TryStoreBB); 1282 1283 Builder.SetInsertPoint(TryStoreBB); 1284 PHINode *LoadedTryStore = 1285 Builder.CreatePHI(PMV.WordType, 2, "loaded.trystore"); 1286 LoadedTryStore->addIncoming(UnreleasedLoad, ReleasingStoreBB); 1287 Value *NewValueInsert = 1288 insertMaskedValue(Builder, LoadedTryStore, CI->getNewValOperand(), PMV); 1289 Value *StoreSuccess = TLI->emitStoreConditional(Builder, NewValueInsert, 1290 PMV.AlignedAddr, MemOpOrder); 1291 StoreSuccess = Builder.CreateICmpEQ( 1292 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); 1293 BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB; 1294 Builder.CreateCondBr(StoreSuccess, SuccessBB, 1295 CI->isWeak() ? FailureBB : RetryBB); 1296 1297 Builder.SetInsertPoint(ReleasedLoadBB); 1298 Value *SecondLoad; 1299 if (HasReleasedLoadBB) { 1300 SecondLoad = 1301 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder); 1302 Value *SecondLoadExtract = extractMaskedValue(Builder, SecondLoad, PMV); 1303 ShouldStore = Builder.CreateICmpEQ(SecondLoadExtract, 1304 CI->getCompareOperand(), "should_store"); 1305 1306 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1307 // jump straight past that fence instruction (if it exists). 1308 Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB); 1309 // Update PHI node in TryStoreBB. 1310 LoadedTryStore->addIncoming(SecondLoad, ReleasedLoadBB); 1311 } else 1312 Builder.CreateUnreachable(); 1313 1314 // Make sure later instructions don't get reordered with a fence if 1315 // necessary. 1316 Builder.SetInsertPoint(SuccessBB); 1317 if (ShouldInsertFencesForAtomic) 1318 TLI->emitTrailingFence(Builder, CI, SuccessOrder); 1319 Builder.CreateBr(ExitBB); 1320 1321 Builder.SetInsertPoint(NoStoreBB); 1322 PHINode *LoadedNoStore = 1323 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.nostore"); 1324 LoadedNoStore->addIncoming(UnreleasedLoad, StartBB); 1325 if (HasReleasedLoadBB) 1326 LoadedNoStore->addIncoming(SecondLoad, ReleasedLoadBB); 1327 1328 // In the failing case, where we don't execute the store-conditional, the 1329 // target might want to balance out the load-linked with a dedicated 1330 // instruction (e.g., on ARM, clearing the exclusive monitor). 1331 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 1332 Builder.CreateBr(FailureBB); 1333 1334 Builder.SetInsertPoint(FailureBB); 1335 PHINode *LoadedFailure = 1336 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.failure"); 1337 LoadedFailure->addIncoming(LoadedNoStore, NoStoreBB); 1338 if (CI->isWeak()) 1339 LoadedFailure->addIncoming(LoadedTryStore, TryStoreBB); 1340 if (ShouldInsertFencesForAtomic) 1341 TLI->emitTrailingFence(Builder, CI, FailureOrder); 1342 Builder.CreateBr(ExitBB); 1343 1344 // Finally, we have control-flow based knowledge of whether the cmpxchg 1345 // succeeded or not. We expose this to later passes by converting any 1346 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate 1347 // PHI. 1348 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1349 PHINode *LoadedExit = 1350 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.exit"); 1351 LoadedExit->addIncoming(LoadedTryStore, SuccessBB); 1352 LoadedExit->addIncoming(LoadedFailure, FailureBB); 1353 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2, "success"); 1354 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); 1355 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); 1356 1357 // This is the "exit value" from the cmpxchg expansion. It may be of 1358 // a type wider than the one in the cmpxchg instruction. 1359 Value *LoadedFull = LoadedExit; 1360 1361 Builder.SetInsertPoint(ExitBB, std::next(Success->getIterator())); 1362 Value *Loaded = extractMaskedValue(Builder, LoadedFull, PMV); 1363 1364 // Look for any users of the cmpxchg that are just comparing the loaded value 1365 // against the desired one, and replace them with the CFG-derived version. 1366 SmallVector<ExtractValueInst *, 2> PrunedInsts; 1367 for (auto User : CI->users()) { 1368 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); 1369 if (!EV) 1370 continue; 1371 1372 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && 1373 "weird extraction from { iN, i1 }"); 1374 1375 if (EV->getIndices()[0] == 0) 1376 EV->replaceAllUsesWith(Loaded); 1377 else 1378 EV->replaceAllUsesWith(Success); 1379 1380 PrunedInsts.push_back(EV); 1381 } 1382 1383 // We can remove the instructions now we're no longer iterating through them. 1384 for (auto EV : PrunedInsts) 1385 EV->eraseFromParent(); 1386 1387 if (!CI->use_empty()) { 1388 // Some use of the full struct return that we don't understand has happened, 1389 // so we've got to reconstruct it properly. 1390 Value *Res; 1391 Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0); 1392 Res = Builder.CreateInsertValue(Res, Success, 1); 1393 1394 CI->replaceAllUsesWith(Res); 1395 } 1396 1397 CI->eraseFromParent(); 1398 return true; 1399 } 1400 1401 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst *RMWI) { 1402 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand()); 1403 if (!C) 1404 return false; 1405 1406 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 1407 switch (Op) { 1408 case AtomicRMWInst::Add: 1409 case AtomicRMWInst::Sub: 1410 case AtomicRMWInst::Or: 1411 case AtomicRMWInst::Xor: 1412 return C->isZero(); 1413 case AtomicRMWInst::And: 1414 return C->isMinusOne(); 1415 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/... 1416 default: 1417 return false; 1418 } 1419 } 1420 1421 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst *RMWI) { 1422 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { 1423 tryExpandAtomicLoad(ResultingLoad); 1424 return true; 1425 } 1426 return false; 1427 } 1428 1429 Value *AtomicExpand::insertRMWCmpXchgLoop( 1430 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, 1431 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 1432 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, 1433 CreateCmpXchgInstFun CreateCmpXchg) { 1434 LLVMContext &Ctx = Builder.getContext(); 1435 BasicBlock *BB = Builder.GetInsertBlock(); 1436 Function *F = BB->getParent(); 1437 1438 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1439 // 1440 // The standard expansion we produce is: 1441 // [...] 1442 // %init_loaded = load atomic iN* %addr 1443 // br label %loop 1444 // loop: 1445 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] 1446 // %new = some_op iN %loaded, %incr 1447 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new 1448 // %new_loaded = extractvalue { iN, i1 } %pair, 0 1449 // %success = extractvalue { iN, i1 } %pair, 1 1450 // br i1 %success, label %atomicrmw.end, label %loop 1451 // atomicrmw.end: 1452 // [...] 1453 BasicBlock *ExitBB = 1454 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1455 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1456 1457 // The split call above "helpfully" added a branch at the end of BB (to the 1458 // wrong place), but we want a load. It's easiest to just remove 1459 // the branch entirely. 1460 std::prev(BB->end())->eraseFromParent(); 1461 Builder.SetInsertPoint(BB); 1462 LoadInst *InitLoaded = Builder.CreateAlignedLoad(ResultTy, Addr, AddrAlign); 1463 Builder.CreateBr(LoopBB); 1464 1465 // Start the main loop block now that we've taken care of the preliminaries. 1466 Builder.SetInsertPoint(LoopBB); 1467 PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded"); 1468 Loaded->addIncoming(InitLoaded, BB); 1469 1470 Value *NewVal = PerformOp(Builder, Loaded); 1471 1472 Value *NewLoaded = nullptr; 1473 Value *Success = nullptr; 1474 1475 CreateCmpXchg(Builder, Addr, Loaded, NewVal, AddrAlign, 1476 MemOpOrder == AtomicOrdering::Unordered 1477 ? AtomicOrdering::Monotonic 1478 : MemOpOrder, 1479 SSID, Success, NewLoaded); 1480 assert(Success && NewLoaded); 1481 1482 Loaded->addIncoming(NewLoaded, LoopBB); 1483 1484 Builder.CreateCondBr(Success, ExitBB, LoopBB); 1485 1486 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1487 return NewLoaded; 1488 } 1489 1490 bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1491 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 1492 unsigned ValueSize = getAtomicOpSize(CI); 1493 1494 switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) { 1495 default: 1496 llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg"); 1497 case TargetLoweringBase::AtomicExpansionKind::None: 1498 if (ValueSize < MinCASSize) 1499 return expandPartwordCmpXchg(CI); 1500 return false; 1501 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 1502 return expandAtomicCmpXchg(CI); 1503 } 1504 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: 1505 expandAtomicCmpXchgToMaskedIntrinsic(CI); 1506 return true; 1507 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 1508 return lowerAtomicCmpXchgInst(CI); 1509 } 1510 } 1511 1512 // Note: This function is exposed externally by AtomicExpandUtils.h 1513 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 1514 CreateCmpXchgInstFun CreateCmpXchg) { 1515 IRBuilder<> Builder(AI); 1516 Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop( 1517 Builder, AI->getType(), AI->getPointerOperand(), AI->getAlign(), 1518 AI->getOrdering(), AI->getSyncScopeID(), 1519 [&](IRBuilder<> &Builder, Value *Loaded) { 1520 return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded, 1521 AI->getValOperand()); 1522 }, 1523 CreateCmpXchg); 1524 1525 AI->replaceAllUsesWith(Loaded); 1526 AI->eraseFromParent(); 1527 return true; 1528 } 1529 1530 // In order to use one of the sized library calls such as 1531 // __atomic_fetch_add_4, the alignment must be sufficient, the size 1532 // must be one of the potentially-specialized sizes, and the value 1533 // type must actually exist in C on the target (otherwise, the 1534 // function wouldn't actually be defined.) 1535 static bool canUseSizedAtomicCall(unsigned Size, Align Alignment, 1536 const DataLayout &DL) { 1537 // TODO: "LargestSize" is an approximation for "largest type that 1538 // you can express in C". It seems to be the case that int128 is 1539 // supported on all 64-bit platforms, otherwise only up to 64-bit 1540 // integers are supported. If we get this wrong, then we'll try to 1541 // call a sized libcall that doesn't actually exist. There should 1542 // really be some more reliable way in LLVM of determining integer 1543 // sizes which are valid in the target's C ABI... 1544 unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8; 1545 return Alignment >= Size && 1546 (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) && 1547 Size <= LargestSize; 1548 } 1549 1550 void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) { 1551 static const RTLIB::Libcall Libcalls[6] = { 1552 RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2, 1553 RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16}; 1554 unsigned Size = getAtomicOpSize(I); 1555 1556 bool expanded = expandAtomicOpToLibcall( 1557 I, Size, I->getAlign(), I->getPointerOperand(), nullptr, nullptr, 1558 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1559 if (!expanded) 1560 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Load"); 1561 } 1562 1563 void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) { 1564 static const RTLIB::Libcall Libcalls[6] = { 1565 RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2, 1566 RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16}; 1567 unsigned Size = getAtomicOpSize(I); 1568 1569 bool expanded = expandAtomicOpToLibcall( 1570 I, Size, I->getAlign(), I->getPointerOperand(), I->getValueOperand(), 1571 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1572 if (!expanded) 1573 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Store"); 1574 } 1575 1576 void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) { 1577 static const RTLIB::Libcall Libcalls[6] = { 1578 RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1, 1579 RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4, 1580 RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16}; 1581 unsigned Size = getAtomicOpSize(I); 1582 1583 bool expanded = expandAtomicOpToLibcall( 1584 I, Size, I->getAlign(), I->getPointerOperand(), I->getNewValOperand(), 1585 I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(), 1586 Libcalls); 1587 if (!expanded) 1588 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for CAS"); 1589 } 1590 1591 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) { 1592 static const RTLIB::Libcall LibcallsXchg[6] = { 1593 RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1, 1594 RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4, 1595 RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16}; 1596 static const RTLIB::Libcall LibcallsAdd[6] = { 1597 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1, 1598 RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4, 1599 RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16}; 1600 static const RTLIB::Libcall LibcallsSub[6] = { 1601 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1, 1602 RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4, 1603 RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16}; 1604 static const RTLIB::Libcall LibcallsAnd[6] = { 1605 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1, 1606 RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4, 1607 RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16}; 1608 static const RTLIB::Libcall LibcallsOr[6] = { 1609 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1, 1610 RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4, 1611 RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16}; 1612 static const RTLIB::Libcall LibcallsXor[6] = { 1613 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1, 1614 RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4, 1615 RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16}; 1616 static const RTLIB::Libcall LibcallsNand[6] = { 1617 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1, 1618 RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4, 1619 RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16}; 1620 1621 switch (Op) { 1622 case AtomicRMWInst::BAD_BINOP: 1623 llvm_unreachable("Should not have BAD_BINOP."); 1624 case AtomicRMWInst::Xchg: 1625 return makeArrayRef(LibcallsXchg); 1626 case AtomicRMWInst::Add: 1627 return makeArrayRef(LibcallsAdd); 1628 case AtomicRMWInst::Sub: 1629 return makeArrayRef(LibcallsSub); 1630 case AtomicRMWInst::And: 1631 return makeArrayRef(LibcallsAnd); 1632 case AtomicRMWInst::Or: 1633 return makeArrayRef(LibcallsOr); 1634 case AtomicRMWInst::Xor: 1635 return makeArrayRef(LibcallsXor); 1636 case AtomicRMWInst::Nand: 1637 return makeArrayRef(LibcallsNand); 1638 case AtomicRMWInst::Max: 1639 case AtomicRMWInst::Min: 1640 case AtomicRMWInst::UMax: 1641 case AtomicRMWInst::UMin: 1642 case AtomicRMWInst::FAdd: 1643 case AtomicRMWInst::FSub: 1644 // No atomic libcalls are available for max/min/umax/umin. 1645 return {}; 1646 } 1647 llvm_unreachable("Unexpected AtomicRMW operation."); 1648 } 1649 1650 void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) { 1651 ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation()); 1652 1653 unsigned Size = getAtomicOpSize(I); 1654 1655 bool Success = false; 1656 if (!Libcalls.empty()) 1657 Success = expandAtomicOpToLibcall( 1658 I, Size, I->getAlign(), I->getPointerOperand(), I->getValOperand(), 1659 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1660 1661 // The expansion failed: either there were no libcalls at all for 1662 // the operation (min/max), or there were only size-specialized 1663 // libcalls (add/sub/etc) and we needed a generic. So, expand to a 1664 // CAS libcall, via a CAS loop, instead. 1665 if (!Success) { 1666 expandAtomicRMWToCmpXchg( 1667 I, [this](IRBuilder<> &Builder, Value *Addr, Value *Loaded, 1668 Value *NewVal, Align Alignment, AtomicOrdering MemOpOrder, 1669 SyncScope::ID SSID, Value *&Success, Value *&NewLoaded) { 1670 // Create the CAS instruction normally... 1671 AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg( 1672 Addr, Loaded, NewVal, Alignment, MemOpOrder, 1673 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID); 1674 Success = Builder.CreateExtractValue(Pair, 1, "success"); 1675 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 1676 1677 // ...and then expand the CAS into a libcall. 1678 expandAtomicCASToLibcall(Pair); 1679 }); 1680 } 1681 } 1682 1683 // A helper routine for the above expandAtomic*ToLibcall functions. 1684 // 1685 // 'Libcalls' contains an array of enum values for the particular 1686 // ATOMIC libcalls to be emitted. All of the other arguments besides 1687 // 'I' are extracted from the Instruction subclass by the 1688 // caller. Depending on the particular call, some will be null. 1689 bool AtomicExpand::expandAtomicOpToLibcall( 1690 Instruction *I, unsigned Size, Align Alignment, Value *PointerOperand, 1691 Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering, 1692 AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) { 1693 assert(Libcalls.size() == 6); 1694 1695 LLVMContext &Ctx = I->getContext(); 1696 Module *M = I->getModule(); 1697 const DataLayout &DL = M->getDataLayout(); 1698 IRBuilder<> Builder(I); 1699 IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front()); 1700 1701 bool UseSizedLibcall = canUseSizedAtomicCall(Size, Alignment, DL); 1702 Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8); 1703 1704 const Align AllocaAlignment = DL.getPrefTypeAlign(SizedIntTy); 1705 1706 // TODO: the "order" argument type is "int", not int32. So 1707 // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints. 1708 ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size); 1709 assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO"); 1710 Constant *OrderingVal = 1711 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering)); 1712 Constant *Ordering2Val = nullptr; 1713 if (CASExpected) { 1714 assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO"); 1715 Ordering2Val = 1716 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2)); 1717 } 1718 bool HasResult = I->getType() != Type::getVoidTy(Ctx); 1719 1720 RTLIB::Libcall RTLibType; 1721 if (UseSizedLibcall) { 1722 switch (Size) { 1723 case 1: 1724 RTLibType = Libcalls[1]; 1725 break; 1726 case 2: 1727 RTLibType = Libcalls[2]; 1728 break; 1729 case 4: 1730 RTLibType = Libcalls[3]; 1731 break; 1732 case 8: 1733 RTLibType = Libcalls[4]; 1734 break; 1735 case 16: 1736 RTLibType = Libcalls[5]; 1737 break; 1738 } 1739 } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) { 1740 RTLibType = Libcalls[0]; 1741 } else { 1742 // Can't use sized function, and there's no generic for this 1743 // operation, so give up. 1744 return false; 1745 } 1746 1747 if (!TLI->getLibcallName(RTLibType)) { 1748 // This target does not implement the requested atomic libcall so give up. 1749 return false; 1750 } 1751 1752 // Build up the function call. There's two kinds. First, the sized 1753 // variants. These calls are going to be one of the following (with 1754 // N=1,2,4,8,16): 1755 // iN __atomic_load_N(iN *ptr, int ordering) 1756 // void __atomic_store_N(iN *ptr, iN val, int ordering) 1757 // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering) 1758 // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired, 1759 // int success_order, int failure_order) 1760 // 1761 // Note that these functions can be used for non-integer atomic 1762 // operations, the values just need to be bitcast to integers on the 1763 // way in and out. 1764 // 1765 // And, then, the generic variants. They look like the following: 1766 // void __atomic_load(size_t size, void *ptr, void *ret, int ordering) 1767 // void __atomic_store(size_t size, void *ptr, void *val, int ordering) 1768 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, 1769 // int ordering) 1770 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, 1771 // void *desired, int success_order, 1772 // int failure_order) 1773 // 1774 // The different signatures are built up depending on the 1775 // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult' 1776 // variables. 1777 1778 AllocaInst *AllocaCASExpected = nullptr; 1779 Value *AllocaCASExpected_i8 = nullptr; 1780 AllocaInst *AllocaValue = nullptr; 1781 Value *AllocaValue_i8 = nullptr; 1782 AllocaInst *AllocaResult = nullptr; 1783 Value *AllocaResult_i8 = nullptr; 1784 1785 Type *ResultTy; 1786 SmallVector<Value *, 6> Args; 1787 AttributeList Attr; 1788 1789 // 'size' argument. 1790 if (!UseSizedLibcall) { 1791 // Note, getIntPtrType is assumed equivalent to size_t. 1792 Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size)); 1793 } 1794 1795 // 'ptr' argument. 1796 // note: This assumes all address spaces share a common libfunc 1797 // implementation and that addresses are convertable. For systems without 1798 // that property, we'd need to extend this mechanism to support AS-specific 1799 // families of atomic intrinsics. 1800 auto PtrTypeAS = PointerOperand->getType()->getPointerAddressSpace(); 1801 Value *PtrVal = 1802 Builder.CreateBitCast(PointerOperand, Type::getInt8PtrTy(Ctx, PtrTypeAS)); 1803 PtrVal = Builder.CreateAddrSpaceCast(PtrVal, Type::getInt8PtrTy(Ctx)); 1804 Args.push_back(PtrVal); 1805 1806 // 'expected' argument, if present. 1807 if (CASExpected) { 1808 AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType()); 1809 AllocaCASExpected->setAlignment(AllocaAlignment); 1810 unsigned AllocaAS = AllocaCASExpected->getType()->getPointerAddressSpace(); 1811 1812 AllocaCASExpected_i8 = Builder.CreateBitCast( 1813 AllocaCASExpected, Type::getInt8PtrTy(Ctx, AllocaAS)); 1814 Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64); 1815 Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment); 1816 Args.push_back(AllocaCASExpected_i8); 1817 } 1818 1819 // 'val' argument ('desired' for cas), if present. 1820 if (ValueOperand) { 1821 if (UseSizedLibcall) { 1822 Value *IntValue = 1823 Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy); 1824 Args.push_back(IntValue); 1825 } else { 1826 AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType()); 1827 AllocaValue->setAlignment(AllocaAlignment); 1828 AllocaValue_i8 = 1829 Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx)); 1830 Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64); 1831 Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment); 1832 Args.push_back(AllocaValue_i8); 1833 } 1834 } 1835 1836 // 'ret' argument. 1837 if (!CASExpected && HasResult && !UseSizedLibcall) { 1838 AllocaResult = AllocaBuilder.CreateAlloca(I->getType()); 1839 AllocaResult->setAlignment(AllocaAlignment); 1840 unsigned AllocaAS = AllocaResult->getType()->getPointerAddressSpace(); 1841 AllocaResult_i8 = 1842 Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx, AllocaAS)); 1843 Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64); 1844 Args.push_back(AllocaResult_i8); 1845 } 1846 1847 // 'ordering' ('success_order' for cas) argument. 1848 Args.push_back(OrderingVal); 1849 1850 // 'failure_order' argument, if present. 1851 if (Ordering2Val) 1852 Args.push_back(Ordering2Val); 1853 1854 // Now, the return type. 1855 if (CASExpected) { 1856 ResultTy = Type::getInt1Ty(Ctx); 1857 Attr = Attr.addRetAttribute(Ctx, Attribute::ZExt); 1858 } else if (HasResult && UseSizedLibcall) 1859 ResultTy = SizedIntTy; 1860 else 1861 ResultTy = Type::getVoidTy(Ctx); 1862 1863 // Done with setting up arguments and return types, create the call: 1864 SmallVector<Type *, 6> ArgTys; 1865 for (Value *Arg : Args) 1866 ArgTys.push_back(Arg->getType()); 1867 FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false); 1868 FunctionCallee LibcallFn = 1869 M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr); 1870 CallInst *Call = Builder.CreateCall(LibcallFn, Args); 1871 Call->setAttributes(Attr); 1872 Value *Result = Call; 1873 1874 // And then, extract the results... 1875 if (ValueOperand && !UseSizedLibcall) 1876 Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64); 1877 1878 if (CASExpected) { 1879 // The final result from the CAS is {load of 'expected' alloca, bool result 1880 // from call} 1881 Type *FinalResultTy = I->getType(); 1882 Value *V = UndefValue::get(FinalResultTy); 1883 Value *ExpectedOut = Builder.CreateAlignedLoad( 1884 CASExpected->getType(), AllocaCASExpected, AllocaAlignment); 1885 Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64); 1886 V = Builder.CreateInsertValue(V, ExpectedOut, 0); 1887 V = Builder.CreateInsertValue(V, Result, 1); 1888 I->replaceAllUsesWith(V); 1889 } else if (HasResult) { 1890 Value *V; 1891 if (UseSizedLibcall) 1892 V = Builder.CreateBitOrPointerCast(Result, I->getType()); 1893 else { 1894 V = Builder.CreateAlignedLoad(I->getType(), AllocaResult, 1895 AllocaAlignment); 1896 Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64); 1897 } 1898 I->replaceAllUsesWith(V); 1899 } 1900 I->eraseFromParent(); 1901 return true; 1902 } 1903