1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass (at IR level) to replace atomic instructions with 10 // __atomic_* library calls, or target specific instruction which implement the 11 // same semantics in a way which better fits the target backend. This can 12 // include the use of (intrinsic-based) load-linked/store-conditional loops, 13 // AtomicCmpXchg, or type coercions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/CodeGen/AtomicExpandUtils.h" 21 #include "llvm/CodeGen/RuntimeLibcalls.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetPassConfig.h" 24 #include "llvm/CodeGen/TargetSubtargetInfo.h" 25 #include "llvm/CodeGen/ValueTypes.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/Constant.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/InstIterator.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/IR/User.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/InitializePasses.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/AtomicOrdering.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include <cassert> 50 #include <cstdint> 51 #include <iterator> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "atomic-expand" 56 57 namespace { 58 59 class AtomicExpand: public FunctionPass { 60 const TargetLowering *TLI = nullptr; 61 62 public: 63 static char ID; // Pass identification, replacement for typeid 64 65 AtomicExpand() : FunctionPass(ID) { 66 initializeAtomicExpandPass(*PassRegistry::getPassRegistry()); 67 } 68 69 bool runOnFunction(Function &F) override; 70 71 private: 72 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order); 73 IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL); 74 LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI); 75 bool tryExpandAtomicLoad(LoadInst *LI); 76 bool expandAtomicLoadToLL(LoadInst *LI); 77 bool expandAtomicLoadToCmpXchg(LoadInst *LI); 78 StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI); 79 bool expandAtomicStore(StoreInst *SI); 80 bool tryExpandAtomicRMW(AtomicRMWInst *AI); 81 AtomicRMWInst *convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI); 82 Value * 83 insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr, 84 Align AddrAlign, AtomicOrdering MemOpOrder, 85 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); 86 void expandAtomicOpToLLSC( 87 Instruction *I, Type *ResultTy, Value *Addr, Align AddrAlign, 88 AtomicOrdering MemOpOrder, 89 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); 90 void expandPartwordAtomicRMW( 91 AtomicRMWInst *I, 92 TargetLoweringBase::AtomicExpansionKind ExpansionKind); 93 AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI); 94 bool expandPartwordCmpXchg(AtomicCmpXchgInst *I); 95 void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI); 96 void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI); 97 98 AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI); 99 static Value *insertRMWCmpXchgLoop( 100 IRBuilder<> &Builder, Type *ResultType, Value *Addr, Align AddrAlign, 101 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 102 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, 103 CreateCmpXchgInstFun CreateCmpXchg); 104 bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI); 105 106 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); 107 bool isIdempotentRMW(AtomicRMWInst *RMWI); 108 bool simplifyIdempotentRMW(AtomicRMWInst *RMWI); 109 110 bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, Align Alignment, 111 Value *PointerOperand, Value *ValueOperand, 112 Value *CASExpected, AtomicOrdering Ordering, 113 AtomicOrdering Ordering2, 114 ArrayRef<RTLIB::Libcall> Libcalls); 115 void expandAtomicLoadToLibcall(LoadInst *LI); 116 void expandAtomicStoreToLibcall(StoreInst *LI); 117 void expandAtomicRMWToLibcall(AtomicRMWInst *I); 118 void expandAtomicCASToLibcall(AtomicCmpXchgInst *I); 119 120 friend bool 121 llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 122 CreateCmpXchgInstFun CreateCmpXchg); 123 }; 124 125 } // end anonymous namespace 126 127 char AtomicExpand::ID = 0; 128 129 char &llvm::AtomicExpandID = AtomicExpand::ID; 130 131 INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions", 132 false, false) 133 134 FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); } 135 136 // Helper functions to retrieve the size of atomic instructions. 137 static unsigned getAtomicOpSize(LoadInst *LI) { 138 const DataLayout &DL = LI->getModule()->getDataLayout(); 139 return DL.getTypeStoreSize(LI->getType()); 140 } 141 142 static unsigned getAtomicOpSize(StoreInst *SI) { 143 const DataLayout &DL = SI->getModule()->getDataLayout(); 144 return DL.getTypeStoreSize(SI->getValueOperand()->getType()); 145 } 146 147 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) { 148 const DataLayout &DL = RMWI->getModule()->getDataLayout(); 149 return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); 150 } 151 152 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) { 153 const DataLayout &DL = CASI->getModule()->getDataLayout(); 154 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); 155 } 156 157 // Determine if a particular atomic operation has a supported size, 158 // and is of appropriate alignment, to be passed through for target 159 // lowering. (Versus turning into a __atomic libcall) 160 template <typename Inst> 161 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) { 162 unsigned Size = getAtomicOpSize(I); 163 Align Alignment = I->getAlign(); 164 return Alignment >= Size && 165 Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8; 166 } 167 168 bool AtomicExpand::runOnFunction(Function &F) { 169 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 170 if (!TPC) 171 return false; 172 173 auto &TM = TPC->getTM<TargetMachine>(); 174 if (!TM.getSubtargetImpl(F)->enableAtomicExpand()) 175 return false; 176 TLI = TM.getSubtargetImpl(F)->getTargetLowering(); 177 178 SmallVector<Instruction *, 1> AtomicInsts; 179 180 // Changing control-flow while iterating through it is a bad idea, so gather a 181 // list of all atomic instructions before we start. 182 for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) { 183 Instruction *I = &*II; 184 if (I->isAtomic() && !isa<FenceInst>(I)) 185 AtomicInsts.push_back(I); 186 } 187 188 bool MadeChange = false; 189 for (auto I : AtomicInsts) { 190 auto LI = dyn_cast<LoadInst>(I); 191 auto SI = dyn_cast<StoreInst>(I); 192 auto RMWI = dyn_cast<AtomicRMWInst>(I); 193 auto CASI = dyn_cast<AtomicCmpXchgInst>(I); 194 assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction"); 195 196 // If the Size/Alignment is not supported, replace with a libcall. 197 if (LI) { 198 if (!atomicSizeSupported(TLI, LI)) { 199 expandAtomicLoadToLibcall(LI); 200 MadeChange = true; 201 continue; 202 } 203 } else if (SI) { 204 if (!atomicSizeSupported(TLI, SI)) { 205 expandAtomicStoreToLibcall(SI); 206 MadeChange = true; 207 continue; 208 } 209 } else if (RMWI) { 210 if (!atomicSizeSupported(TLI, RMWI)) { 211 expandAtomicRMWToLibcall(RMWI); 212 MadeChange = true; 213 continue; 214 } 215 } else if (CASI) { 216 if (!atomicSizeSupported(TLI, CASI)) { 217 expandAtomicCASToLibcall(CASI); 218 MadeChange = true; 219 continue; 220 } 221 } 222 223 if (TLI->shouldInsertFencesForAtomic(I)) { 224 auto FenceOrdering = AtomicOrdering::Monotonic; 225 if (LI && isAcquireOrStronger(LI->getOrdering())) { 226 FenceOrdering = LI->getOrdering(); 227 LI->setOrdering(AtomicOrdering::Monotonic); 228 } else if (SI && isReleaseOrStronger(SI->getOrdering())) { 229 FenceOrdering = SI->getOrdering(); 230 SI->setOrdering(AtomicOrdering::Monotonic); 231 } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) || 232 isAcquireOrStronger(RMWI->getOrdering()))) { 233 FenceOrdering = RMWI->getOrdering(); 234 RMWI->setOrdering(AtomicOrdering::Monotonic); 235 } else if (CASI && 236 TLI->shouldExpandAtomicCmpXchgInIR(CASI) == 237 TargetLoweringBase::AtomicExpansionKind::None && 238 (isReleaseOrStronger(CASI->getSuccessOrdering()) || 239 isAcquireOrStronger(CASI->getSuccessOrdering()) || 240 isAcquireOrStronger(CASI->getFailureOrdering()))) { 241 // If a compare and swap is lowered to LL/SC, we can do smarter fence 242 // insertion, with a stronger one on the success path than on the 243 // failure path. As a result, fence insertion is directly done by 244 // expandAtomicCmpXchg in that case. 245 FenceOrdering = CASI->getMergedOrdering(); 246 CASI->setSuccessOrdering(AtomicOrdering::Monotonic); 247 CASI->setFailureOrdering(AtomicOrdering::Monotonic); 248 } 249 250 if (FenceOrdering != AtomicOrdering::Monotonic) { 251 MadeChange |= bracketInstWithFences(I, FenceOrdering); 252 } 253 } 254 255 if (LI) { 256 if (LI->getType()->isFloatingPointTy()) { 257 // TODO: add a TLI hook to control this so that each target can 258 // convert to lowering the original type one at a time. 259 LI = convertAtomicLoadToIntegerType(LI); 260 assert(LI->getType()->isIntegerTy() && "invariant broken"); 261 MadeChange = true; 262 } 263 264 MadeChange |= tryExpandAtomicLoad(LI); 265 } else if (SI) { 266 if (SI->getValueOperand()->getType()->isFloatingPointTy()) { 267 // TODO: add a TLI hook to control this so that each target can 268 // convert to lowering the original type one at a time. 269 SI = convertAtomicStoreToIntegerType(SI); 270 assert(SI->getValueOperand()->getType()->isIntegerTy() && 271 "invariant broken"); 272 MadeChange = true; 273 } 274 275 if (TLI->shouldExpandAtomicStoreInIR(SI)) 276 MadeChange |= expandAtomicStore(SI); 277 } else if (RMWI) { 278 // There are two different ways of expanding RMW instructions: 279 // - into a load if it is idempotent 280 // - into a Cmpxchg/LL-SC loop otherwise 281 // we try them in that order. 282 283 if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) { 284 MadeChange = true; 285 } else { 286 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 287 if (Op == AtomicRMWInst::Xchg && 288 RMWI->getValOperand()->getType()->isFloatingPointTy()) { 289 // TODO: add a TLI hook to control this so that each target can 290 // convert to lowering the original type one at a time. 291 RMWI = convertAtomicXchgToIntegerType(RMWI); 292 assert(RMWI->getValOperand()->getType()->isIntegerTy() && 293 "invariant broken"); 294 MadeChange = true; 295 } 296 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 297 unsigned ValueSize = getAtomicOpSize(RMWI); 298 if (ValueSize < MinCASSize && 299 (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 300 Op == AtomicRMWInst::And)) { 301 RMWI = widenPartwordAtomicRMW(RMWI); 302 MadeChange = true; 303 } 304 305 MadeChange |= tryExpandAtomicRMW(RMWI); 306 } 307 } else if (CASI) { 308 // TODO: when we're ready to make the change at the IR level, we can 309 // extend convertCmpXchgToInteger for floating point too. 310 assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() && 311 "unimplemented - floating point not legal at IR level"); 312 if (CASI->getCompareOperand()->getType()->isPointerTy() ) { 313 // TODO: add a TLI hook to control this so that each target can 314 // convert to lowering the original type one at a time. 315 CASI = convertCmpXchgToIntegerType(CASI); 316 assert(CASI->getCompareOperand()->getType()->isIntegerTy() && 317 "invariant broken"); 318 MadeChange = true; 319 } 320 321 MadeChange |= tryExpandAtomicCmpXchg(CASI); 322 } 323 } 324 return MadeChange; 325 } 326 327 bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) { 328 IRBuilder<> Builder(I); 329 330 auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order); 331 332 auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order); 333 // We have a guard here because not every atomic operation generates a 334 // trailing fence. 335 if (TrailingFence) 336 TrailingFence->moveAfter(I); 337 338 return (LeadingFence || TrailingFence); 339 } 340 341 /// Get the iX type with the same bitwidth as T. 342 IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T, 343 const DataLayout &DL) { 344 EVT VT = TLI->getMemValueType(DL, T); 345 unsigned BitWidth = VT.getStoreSizeInBits(); 346 assert(BitWidth == VT.getSizeInBits() && "must be a power of two"); 347 return IntegerType::get(T->getContext(), BitWidth); 348 } 349 350 /// Convert an atomic load of a non-integral type to an integer load of the 351 /// equivalent bitwidth. See the function comment on 352 /// convertAtomicStoreToIntegerType for background. 353 LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) { 354 auto *M = LI->getModule(); 355 Type *NewTy = getCorrespondingIntegerType(LI->getType(), 356 M->getDataLayout()); 357 358 IRBuilder<> Builder(LI); 359 360 Value *Addr = LI->getPointerOperand(); 361 Type *PT = PointerType::get(NewTy, 362 Addr->getType()->getPointerAddressSpace()); 363 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 364 365 auto *NewLI = Builder.CreateLoad(NewTy, NewAddr); 366 NewLI->setAlignment(LI->getAlign()); 367 NewLI->setVolatile(LI->isVolatile()); 368 NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID()); 369 LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n"); 370 371 Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType()); 372 LI->replaceAllUsesWith(NewVal); 373 LI->eraseFromParent(); 374 return NewLI; 375 } 376 377 AtomicRMWInst * 378 AtomicExpand::convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI) { 379 auto *M = RMWI->getModule(); 380 Type *NewTy = 381 getCorrespondingIntegerType(RMWI->getType(), M->getDataLayout()); 382 383 IRBuilder<> Builder(RMWI); 384 385 Value *Addr = RMWI->getPointerOperand(); 386 Value *Val = RMWI->getValOperand(); 387 Type *PT = PointerType::get(NewTy, RMWI->getPointerAddressSpace()); 388 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 389 Value *NewVal = Builder.CreateBitCast(Val, NewTy); 390 391 auto *NewRMWI = 392 Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, NewAddr, NewVal, 393 RMWI->getAlign(), RMWI->getOrdering()); 394 NewRMWI->setVolatile(RMWI->isVolatile()); 395 LLVM_DEBUG(dbgs() << "Replaced " << *RMWI << " with " << *NewRMWI << "\n"); 396 397 Value *NewRVal = Builder.CreateBitCast(NewRMWI, RMWI->getType()); 398 RMWI->replaceAllUsesWith(NewRVal); 399 RMWI->eraseFromParent(); 400 return NewRMWI; 401 } 402 403 bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) { 404 switch (TLI->shouldExpandAtomicLoadInIR(LI)) { 405 case TargetLoweringBase::AtomicExpansionKind::None: 406 return false; 407 case TargetLoweringBase::AtomicExpansionKind::LLSC: 408 expandAtomicOpToLLSC( 409 LI, LI->getType(), LI->getPointerOperand(), LI->getAlign(), 410 LI->getOrdering(), 411 [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; }); 412 return true; 413 case TargetLoweringBase::AtomicExpansionKind::LLOnly: 414 return expandAtomicLoadToLL(LI); 415 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: 416 return expandAtomicLoadToCmpXchg(LI); 417 default: 418 llvm_unreachable("Unhandled case in tryExpandAtomicLoad"); 419 } 420 } 421 422 bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) { 423 IRBuilder<> Builder(LI); 424 425 // On some architectures, load-linked instructions are atomic for larger 426 // sizes than normal loads. For example, the only 64-bit load guaranteed 427 // to be single-copy atomic by ARM is an ldrexd (A3.5.3). 428 Value *Val = 429 TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering()); 430 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 431 432 LI->replaceAllUsesWith(Val); 433 LI->eraseFromParent(); 434 435 return true; 436 } 437 438 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) { 439 IRBuilder<> Builder(LI); 440 AtomicOrdering Order = LI->getOrdering(); 441 if (Order == AtomicOrdering::Unordered) 442 Order = AtomicOrdering::Monotonic; 443 444 Value *Addr = LI->getPointerOperand(); 445 Type *Ty = LI->getType(); 446 Constant *DummyVal = Constant::getNullValue(Ty); 447 448 Value *Pair = Builder.CreateAtomicCmpXchg( 449 Addr, DummyVal, DummyVal, LI->getAlign(), Order, 450 AtomicCmpXchgInst::getStrongestFailureOrdering(Order)); 451 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded"); 452 453 LI->replaceAllUsesWith(Loaded); 454 LI->eraseFromParent(); 455 456 return true; 457 } 458 459 /// Convert an atomic store of a non-integral type to an integer store of the 460 /// equivalent bitwidth. We used to not support floating point or vector 461 /// atomics in the IR at all. The backends learned to deal with the bitcast 462 /// idiom because that was the only way of expressing the notion of a atomic 463 /// float or vector store. The long term plan is to teach each backend to 464 /// instruction select from the original atomic store, but as a migration 465 /// mechanism, we convert back to the old format which the backends understand. 466 /// Each backend will need individual work to recognize the new format. 467 StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) { 468 IRBuilder<> Builder(SI); 469 auto *M = SI->getModule(); 470 Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(), 471 M->getDataLayout()); 472 Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy); 473 474 Value *Addr = SI->getPointerOperand(); 475 Type *PT = PointerType::get(NewTy, 476 Addr->getType()->getPointerAddressSpace()); 477 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 478 479 StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr); 480 NewSI->setAlignment(SI->getAlign()); 481 NewSI->setVolatile(SI->isVolatile()); 482 NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID()); 483 LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n"); 484 SI->eraseFromParent(); 485 return NewSI; 486 } 487 488 bool AtomicExpand::expandAtomicStore(StoreInst *SI) { 489 // This function is only called on atomic stores that are too large to be 490 // atomic if implemented as a native store. So we replace them by an 491 // atomic swap, that can be implemented for example as a ldrex/strex on ARM 492 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. 493 // It is the responsibility of the target to only signal expansion via 494 // shouldExpandAtomicRMW in cases where this is required and possible. 495 IRBuilder<> Builder(SI); 496 AtomicRMWInst *AI = Builder.CreateAtomicRMW( 497 AtomicRMWInst::Xchg, SI->getPointerOperand(), SI->getValueOperand(), 498 SI->getAlign(), SI->getOrdering()); 499 SI->eraseFromParent(); 500 501 // Now we have an appropriate swap instruction, lower it as usual. 502 return tryExpandAtomicRMW(AI); 503 } 504 505 static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr, 506 Value *Loaded, Value *NewVal, Align AddrAlign, 507 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 508 Value *&Success, Value *&NewLoaded) { 509 Type *OrigTy = NewVal->getType(); 510 511 // This code can go away when cmpxchg supports FP types. 512 bool NeedBitcast = OrigTy->isFloatingPointTy(); 513 if (NeedBitcast) { 514 IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits()); 515 unsigned AS = Addr->getType()->getPointerAddressSpace(); 516 Addr = Builder.CreateBitCast(Addr, IntTy->getPointerTo(AS)); 517 NewVal = Builder.CreateBitCast(NewVal, IntTy); 518 Loaded = Builder.CreateBitCast(Loaded, IntTy); 519 } 520 521 Value *Pair = Builder.CreateAtomicCmpXchg( 522 Addr, Loaded, NewVal, AddrAlign, MemOpOrder, 523 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID); 524 Success = Builder.CreateExtractValue(Pair, 1, "success"); 525 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 526 527 if (NeedBitcast) 528 NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy); 529 } 530 531 /// Emit IR to implement the given atomicrmw operation on values in registers, 532 /// returning the new value. 533 static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder, 534 Value *Loaded, Value *Inc) { 535 Value *NewVal; 536 switch (Op) { 537 case AtomicRMWInst::Xchg: 538 return Inc; 539 case AtomicRMWInst::Add: 540 return Builder.CreateAdd(Loaded, Inc, "new"); 541 case AtomicRMWInst::Sub: 542 return Builder.CreateSub(Loaded, Inc, "new"); 543 case AtomicRMWInst::And: 544 return Builder.CreateAnd(Loaded, Inc, "new"); 545 case AtomicRMWInst::Nand: 546 return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new"); 547 case AtomicRMWInst::Or: 548 return Builder.CreateOr(Loaded, Inc, "new"); 549 case AtomicRMWInst::Xor: 550 return Builder.CreateXor(Loaded, Inc, "new"); 551 case AtomicRMWInst::Max: 552 NewVal = Builder.CreateICmpSGT(Loaded, Inc); 553 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 554 case AtomicRMWInst::Min: 555 NewVal = Builder.CreateICmpSLE(Loaded, Inc); 556 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 557 case AtomicRMWInst::UMax: 558 NewVal = Builder.CreateICmpUGT(Loaded, Inc); 559 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 560 case AtomicRMWInst::UMin: 561 NewVal = Builder.CreateICmpULE(Loaded, Inc); 562 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 563 case AtomicRMWInst::FAdd: 564 return Builder.CreateFAdd(Loaded, Inc, "new"); 565 case AtomicRMWInst::FSub: 566 return Builder.CreateFSub(Loaded, Inc, "new"); 567 default: 568 llvm_unreachable("Unknown atomic op"); 569 } 570 } 571 572 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) { 573 switch (TLI->shouldExpandAtomicRMWInIR(AI)) { 574 case TargetLoweringBase::AtomicExpansionKind::None: 575 return false; 576 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 577 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 578 unsigned ValueSize = getAtomicOpSize(AI); 579 if (ValueSize < MinCASSize) { 580 expandPartwordAtomicRMW(AI, 581 TargetLoweringBase::AtomicExpansionKind::LLSC); 582 } else { 583 auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) { 584 return performAtomicOp(AI->getOperation(), Builder, Loaded, 585 AI->getValOperand()); 586 }; 587 expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(), 588 AI->getAlign(), AI->getOrdering(), PerformOp); 589 } 590 return true; 591 } 592 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: { 593 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 594 unsigned ValueSize = getAtomicOpSize(AI); 595 if (ValueSize < MinCASSize) { 596 // TODO: Handle atomicrmw fadd/fsub 597 if (AI->getType()->isFloatingPointTy()) 598 return false; 599 600 expandPartwordAtomicRMW(AI, 601 TargetLoweringBase::AtomicExpansionKind::CmpXChg); 602 } else { 603 expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun); 604 } 605 return true; 606 } 607 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: { 608 expandAtomicRMWToMaskedIntrinsic(AI); 609 return true; 610 } 611 default: 612 llvm_unreachable("Unhandled case in tryExpandAtomicRMW"); 613 } 614 } 615 616 namespace { 617 618 struct PartwordMaskValues { 619 // These three fields are guaranteed to be set by createMaskInstrs. 620 Type *WordType = nullptr; 621 Type *ValueType = nullptr; 622 Value *AlignedAddr = nullptr; 623 Align AlignedAddrAlignment; 624 // The remaining fields can be null. 625 Value *ShiftAmt = nullptr; 626 Value *Mask = nullptr; 627 Value *Inv_Mask = nullptr; 628 }; 629 630 LLVM_ATTRIBUTE_UNUSED 631 raw_ostream &operator<<(raw_ostream &O, const PartwordMaskValues &PMV) { 632 auto PrintObj = [&O](auto *V) { 633 if (V) 634 O << *V; 635 else 636 O << "nullptr"; 637 O << '\n'; 638 }; 639 O << "PartwordMaskValues {\n"; 640 O << " WordType: "; 641 PrintObj(PMV.WordType); 642 O << " ValueType: "; 643 PrintObj(PMV.ValueType); 644 O << " AlignedAddr: "; 645 PrintObj(PMV.AlignedAddr); 646 O << " AlignedAddrAlignment: " << PMV.AlignedAddrAlignment.value() << '\n'; 647 O << " ShiftAmt: "; 648 PrintObj(PMV.ShiftAmt); 649 O << " Mask: "; 650 PrintObj(PMV.Mask); 651 O << " Inv_Mask: "; 652 PrintObj(PMV.Inv_Mask); 653 O << "}\n"; 654 return O; 655 } 656 657 } // end anonymous namespace 658 659 /// This is a helper function which builds instructions to provide 660 /// values necessary for partword atomic operations. It takes an 661 /// incoming address, Addr, and ValueType, and constructs the address, 662 /// shift-amounts and masks needed to work with a larger value of size 663 /// WordSize. 664 /// 665 /// AlignedAddr: Addr rounded down to a multiple of WordSize 666 /// 667 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded 668 /// from AlignAddr for it to have the same value as if 669 /// ValueType was loaded from Addr. 670 /// 671 /// Mask: Value to mask with the value loaded from AlignAddr to 672 /// include only the part that would've been loaded from Addr. 673 /// 674 /// Inv_Mask: The inverse of Mask. 675 static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I, 676 Type *ValueType, Value *Addr, 677 Align AddrAlign, 678 unsigned MinWordSize) { 679 PartwordMaskValues PMV; 680 681 Module *M = I->getModule(); 682 LLVMContext &Ctx = M->getContext(); 683 const DataLayout &DL = M->getDataLayout(); 684 unsigned ValueSize = DL.getTypeStoreSize(ValueType); 685 686 PMV.ValueType = ValueType; 687 PMV.WordType = MinWordSize > ValueSize ? Type::getIntNTy(Ctx, MinWordSize * 8) 688 : ValueType; 689 if (PMV.ValueType == PMV.WordType) { 690 PMV.AlignedAddr = Addr; 691 PMV.AlignedAddrAlignment = AddrAlign; 692 return PMV; 693 } 694 695 assert(ValueSize < MinWordSize); 696 697 Type *WordPtrType = 698 PMV.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace()); 699 700 // TODO: we could skip some of this if AddrAlign >= MinWordSize. 701 Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx)); 702 PMV.AlignedAddr = Builder.CreateIntToPtr( 703 Builder.CreateAnd(AddrInt, ~(uint64_t)(MinWordSize - 1)), WordPtrType, 704 "AlignedAddr"); 705 PMV.AlignedAddrAlignment = Align(MinWordSize); 706 707 Value *PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1, "PtrLSB"); 708 if (DL.isLittleEndian()) { 709 // turn bytes into bits 710 PMV.ShiftAmt = Builder.CreateShl(PtrLSB, 3); 711 } else { 712 // turn bytes into bits, and count from the other side. 713 PMV.ShiftAmt = Builder.CreateShl( 714 Builder.CreateXor(PtrLSB, MinWordSize - ValueSize), 3); 715 } 716 717 PMV.ShiftAmt = Builder.CreateTrunc(PMV.ShiftAmt, PMV.WordType, "ShiftAmt"); 718 PMV.Mask = Builder.CreateShl( 719 ConstantInt::get(PMV.WordType, (1 << (ValueSize * 8)) - 1), PMV.ShiftAmt, 720 "Mask"); 721 PMV.Inv_Mask = Builder.CreateNot(PMV.Mask, "Inv_Mask"); 722 return PMV; 723 } 724 725 static Value *extractMaskedValue(IRBuilder<> &Builder, Value *WideWord, 726 const PartwordMaskValues &PMV) { 727 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch"); 728 if (PMV.WordType == PMV.ValueType) 729 return WideWord; 730 731 Value *Shift = Builder.CreateLShr(WideWord, PMV.ShiftAmt, "shifted"); 732 Value *Trunc = Builder.CreateTrunc(Shift, PMV.ValueType, "extracted"); 733 return Trunc; 734 } 735 736 static Value *insertMaskedValue(IRBuilder<> &Builder, Value *WideWord, 737 Value *Updated, const PartwordMaskValues &PMV) { 738 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch"); 739 assert(Updated->getType() == PMV.ValueType && "Value type mismatch"); 740 if (PMV.WordType == PMV.ValueType) 741 return Updated; 742 743 Value *ZExt = Builder.CreateZExt(Updated, PMV.WordType, "extended"); 744 Value *Shift = 745 Builder.CreateShl(ZExt, PMV.ShiftAmt, "shifted", /*HasNUW*/ true); 746 Value *And = Builder.CreateAnd(WideWord, PMV.Inv_Mask, "unmasked"); 747 Value *Or = Builder.CreateOr(And, Shift, "inserted"); 748 return Or; 749 } 750 751 /// Emit IR to implement a masked version of a given atomicrmw 752 /// operation. (That is, only the bits under the Mask should be 753 /// affected by the operation) 754 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op, 755 IRBuilder<> &Builder, Value *Loaded, 756 Value *Shifted_Inc, Value *Inc, 757 const PartwordMaskValues &PMV) { 758 // TODO: update to use 759 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order 760 // to merge bits from two values without requiring PMV.Inv_Mask. 761 switch (Op) { 762 case AtomicRMWInst::Xchg: { 763 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 764 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc); 765 return FinalVal; 766 } 767 case AtomicRMWInst::Or: 768 case AtomicRMWInst::Xor: 769 case AtomicRMWInst::And: 770 llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW"); 771 case AtomicRMWInst::Add: 772 case AtomicRMWInst::Sub: 773 case AtomicRMWInst::Nand: { 774 // The other arithmetic ops need to be masked into place. 775 Value *NewVal = performAtomicOp(Op, Builder, Loaded, Shifted_Inc); 776 Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask); 777 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 778 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked); 779 return FinalVal; 780 } 781 case AtomicRMWInst::Max: 782 case AtomicRMWInst::Min: 783 case AtomicRMWInst::UMax: 784 case AtomicRMWInst::UMin: { 785 // Finally, comparison ops will operate on the full value, so 786 // truncate down to the original size, and expand out again after 787 // doing the operation. 788 Value *Loaded_Extract = extractMaskedValue(Builder, Loaded, PMV); 789 Value *NewVal = performAtomicOp(Op, Builder, Loaded_Extract, Inc); 790 Value *FinalVal = insertMaskedValue(Builder, Loaded, NewVal, PMV); 791 return FinalVal; 792 } 793 default: 794 llvm_unreachable("Unknown atomic op"); 795 } 796 } 797 798 /// Expand a sub-word atomicrmw operation into an appropriate 799 /// word-sized operation. 800 /// 801 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same 802 /// way as a typical atomicrmw expansion. The only difference here is 803 /// that the operation inside of the loop may operate upon only a 804 /// part of the value. 805 void AtomicExpand::expandPartwordAtomicRMW( 806 AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) { 807 AtomicOrdering MemOpOrder = AI->getOrdering(); 808 SyncScope::ID SSID = AI->getSyncScopeID(); 809 810 IRBuilder<> Builder(AI); 811 812 PartwordMaskValues PMV = 813 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 814 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 815 816 Value *ValOperand_Shifted = 817 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 818 PMV.ShiftAmt, "ValOperand_Shifted"); 819 820 auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) { 821 return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded, 822 ValOperand_Shifted, AI->getValOperand(), PMV); 823 }; 824 825 Value *OldResult; 826 if (ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg) { 827 OldResult = insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, 828 PMV.AlignedAddrAlignment, MemOpOrder, 829 SSID, PerformPartwordOp, 830 createCmpXchgInstFun); 831 } else { 832 assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::LLSC); 833 OldResult = insertRMWLLSCLoop(Builder, PMV.WordType, PMV.AlignedAddr, 834 PMV.AlignedAddrAlignment, MemOpOrder, 835 PerformPartwordOp); 836 } 837 838 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV); 839 AI->replaceAllUsesWith(FinalOldResult); 840 AI->eraseFromParent(); 841 } 842 843 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width. 844 AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) { 845 IRBuilder<> Builder(AI); 846 AtomicRMWInst::BinOp Op = AI->getOperation(); 847 848 assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 849 Op == AtomicRMWInst::And) && 850 "Unable to widen operation"); 851 852 PartwordMaskValues PMV = 853 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 854 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 855 856 Value *ValOperand_Shifted = 857 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 858 PMV.ShiftAmt, "ValOperand_Shifted"); 859 860 Value *NewOperand; 861 862 if (Op == AtomicRMWInst::And) 863 NewOperand = 864 Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand"); 865 else 866 NewOperand = ValOperand_Shifted; 867 868 AtomicRMWInst *NewAI = 869 Builder.CreateAtomicRMW(Op, PMV.AlignedAddr, NewOperand, 870 PMV.AlignedAddrAlignment, AI->getOrdering()); 871 872 Value *FinalOldResult = extractMaskedValue(Builder, NewAI, PMV); 873 AI->replaceAllUsesWith(FinalOldResult); 874 AI->eraseFromParent(); 875 return NewAI; 876 } 877 878 bool AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) { 879 // The basic idea here is that we're expanding a cmpxchg of a 880 // smaller memory size up to a word-sized cmpxchg. To do this, we 881 // need to add a retry-loop for strong cmpxchg, so that 882 // modifications to other parts of the word don't cause a spurious 883 // failure. 884 885 // This generates code like the following: 886 // [[Setup mask values PMV.*]] 887 // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt 888 // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt 889 // %InitLoaded = load i32* %addr 890 // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask 891 // br partword.cmpxchg.loop 892 // partword.cmpxchg.loop: 893 // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ], 894 // [ %OldVal_MaskOut, %partword.cmpxchg.failure ] 895 // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted 896 // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted 897 // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp, 898 // i32 %FullWord_NewVal success_ordering failure_ordering 899 // %OldVal = extractvalue { i32, i1 } %NewCI, 0 900 // %Success = extractvalue { i32, i1 } %NewCI, 1 901 // br i1 %Success, label %partword.cmpxchg.end, 902 // label %partword.cmpxchg.failure 903 // partword.cmpxchg.failure: 904 // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask 905 // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut 906 // br i1 %ShouldContinue, label %partword.cmpxchg.loop, 907 // label %partword.cmpxchg.end 908 // partword.cmpxchg.end: 909 // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt 910 // %FinalOldVal = trunc i32 %tmp1 to i8 911 // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0 912 // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1 913 914 Value *Addr = CI->getPointerOperand(); 915 Value *Cmp = CI->getCompareOperand(); 916 Value *NewVal = CI->getNewValOperand(); 917 918 BasicBlock *BB = CI->getParent(); 919 Function *F = BB->getParent(); 920 IRBuilder<> Builder(CI); 921 LLVMContext &Ctx = Builder.getContext(); 922 923 BasicBlock *EndBB = 924 BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end"); 925 auto FailureBB = 926 BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB); 927 auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB); 928 929 // The split call above "helpfully" added a branch at the end of BB 930 // (to the wrong place). 931 std::prev(BB->end())->eraseFromParent(); 932 Builder.SetInsertPoint(BB); 933 934 PartwordMaskValues PMV = 935 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr, 936 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 937 938 // Shift the incoming values over, into the right location in the word. 939 Value *NewVal_Shifted = 940 Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt); 941 Value *Cmp_Shifted = 942 Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt); 943 944 // Load the entire current word, and mask into place the expected and new 945 // values 946 LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr); 947 InitLoaded->setVolatile(CI->isVolatile()); 948 Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask); 949 Builder.CreateBr(LoopBB); 950 951 // partword.cmpxchg.loop: 952 Builder.SetInsertPoint(LoopBB); 953 PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2); 954 Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB); 955 956 // Mask/Or the expected and new values into place in the loaded word. 957 Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted); 958 Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted); 959 AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg( 960 PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, PMV.AlignedAddrAlignment, 961 CI->getSuccessOrdering(), CI->getFailureOrdering(), CI->getSyncScopeID()); 962 NewCI->setVolatile(CI->isVolatile()); 963 // When we're building a strong cmpxchg, we need a loop, so you 964 // might think we could use a weak cmpxchg inside. But, using strong 965 // allows the below comparison for ShouldContinue, and we're 966 // expecting the underlying cmpxchg to be a machine instruction, 967 // which is strong anyways. 968 NewCI->setWeak(CI->isWeak()); 969 970 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 971 Value *Success = Builder.CreateExtractValue(NewCI, 1); 972 973 if (CI->isWeak()) 974 Builder.CreateBr(EndBB); 975 else 976 Builder.CreateCondBr(Success, EndBB, FailureBB); 977 978 // partword.cmpxchg.failure: 979 Builder.SetInsertPoint(FailureBB); 980 // Upon failure, verify that the masked-out part of the loaded value 981 // has been modified. If it didn't, abort the cmpxchg, since the 982 // masked-in part must've. 983 Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask); 984 Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut); 985 Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB); 986 987 // Add the second value to the phi from above 988 Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB); 989 990 // partword.cmpxchg.end: 991 Builder.SetInsertPoint(CI); 992 993 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV); 994 Value *Res = UndefValue::get(CI->getType()); 995 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 996 Res = Builder.CreateInsertValue(Res, Success, 1); 997 998 CI->replaceAllUsesWith(Res); 999 CI->eraseFromParent(); 1000 return true; 1001 } 1002 1003 void AtomicExpand::expandAtomicOpToLLSC( 1004 Instruction *I, Type *ResultType, Value *Addr, Align AddrAlign, 1005 AtomicOrdering MemOpOrder, 1006 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { 1007 IRBuilder<> Builder(I); 1008 Value *Loaded = insertRMWLLSCLoop(Builder, ResultType, Addr, AddrAlign, 1009 MemOpOrder, PerformOp); 1010 1011 I->replaceAllUsesWith(Loaded); 1012 I->eraseFromParent(); 1013 } 1014 1015 void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) { 1016 IRBuilder<> Builder(AI); 1017 1018 PartwordMaskValues PMV = 1019 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 1020 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1021 1022 // The value operand must be sign-extended for signed min/max so that the 1023 // target's signed comparison instructions can be used. Otherwise, just 1024 // zero-ext. 1025 Instruction::CastOps CastOp = Instruction::ZExt; 1026 AtomicRMWInst::BinOp RMWOp = AI->getOperation(); 1027 if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min) 1028 CastOp = Instruction::SExt; 1029 1030 Value *ValOperand_Shifted = Builder.CreateShl( 1031 Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType), 1032 PMV.ShiftAmt, "ValOperand_Shifted"); 1033 Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic( 1034 Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt, 1035 AI->getOrdering()); 1036 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV); 1037 AI->replaceAllUsesWith(FinalOldResult); 1038 AI->eraseFromParent(); 1039 } 1040 1041 void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI) { 1042 IRBuilder<> Builder(CI); 1043 1044 PartwordMaskValues PMV = createMaskInstrs( 1045 Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(), 1046 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1047 1048 Value *CmpVal_Shifted = Builder.CreateShl( 1049 Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt, 1050 "CmpVal_Shifted"); 1051 Value *NewVal_Shifted = Builder.CreateShl( 1052 Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt, 1053 "NewVal_Shifted"); 1054 Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic( 1055 Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask, 1056 CI->getMergedOrdering()); 1057 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV); 1058 Value *Res = UndefValue::get(CI->getType()); 1059 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 1060 Value *Success = Builder.CreateICmpEQ( 1061 CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success"); 1062 Res = Builder.CreateInsertValue(Res, Success, 1); 1063 1064 CI->replaceAllUsesWith(Res); 1065 CI->eraseFromParent(); 1066 } 1067 1068 Value *AtomicExpand::insertRMWLLSCLoop( 1069 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, 1070 AtomicOrdering MemOpOrder, 1071 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { 1072 LLVMContext &Ctx = Builder.getContext(); 1073 BasicBlock *BB = Builder.GetInsertBlock(); 1074 Function *F = BB->getParent(); 1075 1076 assert(AddrAlign >= 1077 F->getParent()->getDataLayout().getTypeStoreSize(ResultTy) && 1078 "Expected at least natural alignment at this point."); 1079 1080 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1081 // 1082 // The standard expansion we produce is: 1083 // [...] 1084 // atomicrmw.start: 1085 // %loaded = @load.linked(%addr) 1086 // %new = some_op iN %loaded, %incr 1087 // %stored = @store_conditional(%new, %addr) 1088 // %try_again = icmp i32 ne %stored, 0 1089 // br i1 %try_again, label %loop, label %atomicrmw.end 1090 // atomicrmw.end: 1091 // [...] 1092 BasicBlock *ExitBB = 1093 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1094 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1095 1096 // The split call above "helpfully" added a branch at the end of BB (to the 1097 // wrong place). 1098 std::prev(BB->end())->eraseFromParent(); 1099 Builder.SetInsertPoint(BB); 1100 Builder.CreateBr(LoopBB); 1101 1102 // Start the main loop block now that we've taken care of the preliminaries. 1103 Builder.SetInsertPoint(LoopBB); 1104 Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); 1105 1106 Value *NewVal = PerformOp(Builder, Loaded); 1107 1108 Value *StoreSuccess = 1109 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); 1110 Value *TryAgain = Builder.CreateICmpNE( 1111 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); 1112 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); 1113 1114 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1115 return Loaded; 1116 } 1117 1118 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of 1119 /// the equivalent bitwidth. We used to not support pointer cmpxchg in the 1120 /// IR. As a migration step, we convert back to what use to be the standard 1121 /// way to represent a pointer cmpxchg so that we can update backends one by 1122 /// one. 1123 AtomicCmpXchgInst *AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) { 1124 auto *M = CI->getModule(); 1125 Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(), 1126 M->getDataLayout()); 1127 1128 IRBuilder<> Builder(CI); 1129 1130 Value *Addr = CI->getPointerOperand(); 1131 Type *PT = PointerType::get(NewTy, 1132 Addr->getType()->getPointerAddressSpace()); 1133 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 1134 1135 Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy); 1136 Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy); 1137 1138 auto *NewCI = Builder.CreateAtomicCmpXchg( 1139 NewAddr, NewCmp, NewNewVal, CI->getAlign(), CI->getSuccessOrdering(), 1140 CI->getFailureOrdering(), CI->getSyncScopeID()); 1141 NewCI->setVolatile(CI->isVolatile()); 1142 NewCI->setWeak(CI->isWeak()); 1143 LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n"); 1144 1145 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 1146 Value *Succ = Builder.CreateExtractValue(NewCI, 1); 1147 1148 OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType()); 1149 1150 Value *Res = UndefValue::get(CI->getType()); 1151 Res = Builder.CreateInsertValue(Res, OldVal, 0); 1152 Res = Builder.CreateInsertValue(Res, Succ, 1); 1153 1154 CI->replaceAllUsesWith(Res); 1155 CI->eraseFromParent(); 1156 return NewCI; 1157 } 1158 1159 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1160 AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); 1161 AtomicOrdering FailureOrder = CI->getFailureOrdering(); 1162 Value *Addr = CI->getPointerOperand(); 1163 BasicBlock *BB = CI->getParent(); 1164 Function *F = BB->getParent(); 1165 LLVMContext &Ctx = F->getContext(); 1166 // If shouldInsertFencesForAtomic() returns true, then the target does not 1167 // want to deal with memory orders, and emitLeading/TrailingFence should take 1168 // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we 1169 // should preserve the ordering. 1170 bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI); 1171 AtomicOrdering MemOpOrder = ShouldInsertFencesForAtomic 1172 ? AtomicOrdering::Monotonic 1173 : CI->getMergedOrdering(); 1174 1175 // In implementations which use a barrier to achieve release semantics, we can 1176 // delay emitting this barrier until we know a store is actually going to be 1177 // attempted. The cost of this delay is that we need 2 copies of the block 1178 // emitting the load-linked, affecting code size. 1179 // 1180 // Ideally, this logic would be unconditional except for the minsize check 1181 // since in other cases the extra blocks naturally collapse down to the 1182 // minimal loop. Unfortunately, this puts too much stress on later 1183 // optimisations so we avoid emitting the extra logic in those cases too. 1184 bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic && 1185 SuccessOrder != AtomicOrdering::Monotonic && 1186 SuccessOrder != AtomicOrdering::Acquire && 1187 !F->hasMinSize(); 1188 1189 // There's no overhead for sinking the release barrier in a weak cmpxchg, so 1190 // do it even on minsize. 1191 bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak(); 1192 1193 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord 1194 // 1195 // The full expansion we produce is: 1196 // [...] 1197 // %aligned.addr = ... 1198 // cmpxchg.start: 1199 // %unreleasedload = @load.linked(%aligned.addr) 1200 // %unreleasedload.extract = extract value from %unreleasedload 1201 // %should_store = icmp eq %unreleasedload.extract, %desired 1202 // br i1 %should_store, label %cmpxchg.releasingstore, 1203 // label %cmpxchg.nostore 1204 // cmpxchg.releasingstore: 1205 // fence? 1206 // br label cmpxchg.trystore 1207 // cmpxchg.trystore: 1208 // %loaded.trystore = phi [%unreleasedload, %cmpxchg.releasingstore], 1209 // [%releasedload, %cmpxchg.releasedload] 1210 // %updated.new = insert %new into %loaded.trystore 1211 // %stored = @store_conditional(%updated.new, %aligned.addr) 1212 // %success = icmp eq i32 %stored, 0 1213 // br i1 %success, label %cmpxchg.success, 1214 // label %cmpxchg.releasedload/%cmpxchg.failure 1215 // cmpxchg.releasedload: 1216 // %releasedload = @load.linked(%aligned.addr) 1217 // %releasedload.extract = extract value from %releasedload 1218 // %should_store = icmp eq %releasedload.extract, %desired 1219 // br i1 %should_store, label %cmpxchg.trystore, 1220 // label %cmpxchg.failure 1221 // cmpxchg.success: 1222 // fence? 1223 // br label %cmpxchg.end 1224 // cmpxchg.nostore: 1225 // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start], 1226 // [%releasedload, 1227 // %cmpxchg.releasedload/%cmpxchg.trystore] 1228 // @load_linked_fail_balance()? 1229 // br label %cmpxchg.failure 1230 // cmpxchg.failure: 1231 // fence? 1232 // br label %cmpxchg.end 1233 // cmpxchg.end: 1234 // %loaded.exit = phi [%loaded.nostore, %cmpxchg.failure], 1235 // [%loaded.trystore, %cmpxchg.trystore] 1236 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] 1237 // %loaded = extract value from %loaded.exit 1238 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 1239 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 1240 // [...] 1241 BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end"); 1242 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); 1243 auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB); 1244 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB); 1245 auto ReleasedLoadBB = 1246 BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB); 1247 auto TryStoreBB = 1248 BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB); 1249 auto ReleasingStoreBB = 1250 BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB); 1251 auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB); 1252 1253 // This grabs the DebugLoc from CI 1254 IRBuilder<> Builder(CI); 1255 1256 // The split call above "helpfully" added a branch at the end of BB (to the 1257 // wrong place), but we might want a fence too. It's easiest to just remove 1258 // the branch entirely. 1259 std::prev(BB->end())->eraseFromParent(); 1260 Builder.SetInsertPoint(BB); 1261 if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier) 1262 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1263 1264 PartwordMaskValues PMV = 1265 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr, 1266 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1267 Builder.CreateBr(StartBB); 1268 1269 // Start the main loop block now that we've taken care of the preliminaries. 1270 Builder.SetInsertPoint(StartBB); 1271 Value *UnreleasedLoad = 1272 TLI->emitLoadLinked(Builder, PMV.AlignedAddr, MemOpOrder); 1273 Value *UnreleasedLoadExtract = 1274 extractMaskedValue(Builder, UnreleasedLoad, PMV); 1275 Value *ShouldStore = Builder.CreateICmpEQ( 1276 UnreleasedLoadExtract, CI->getCompareOperand(), "should_store"); 1277 1278 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1279 // jump straight past that fence instruction (if it exists). 1280 Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB); 1281 1282 Builder.SetInsertPoint(ReleasingStoreBB); 1283 if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier) 1284 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1285 Builder.CreateBr(TryStoreBB); 1286 1287 Builder.SetInsertPoint(TryStoreBB); 1288 PHINode *LoadedTryStore = 1289 Builder.CreatePHI(PMV.WordType, 2, "loaded.trystore"); 1290 LoadedTryStore->addIncoming(UnreleasedLoad, ReleasingStoreBB); 1291 Value *NewValueInsert = 1292 insertMaskedValue(Builder, LoadedTryStore, CI->getNewValOperand(), PMV); 1293 Value *StoreSuccess = 1294 TLI->emitStoreConditional(Builder, NewValueInsert, PMV.AlignedAddr, 1295 MemOpOrder); 1296 StoreSuccess = Builder.CreateICmpEQ( 1297 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); 1298 BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB; 1299 Builder.CreateCondBr(StoreSuccess, SuccessBB, 1300 CI->isWeak() ? FailureBB : RetryBB); 1301 1302 Builder.SetInsertPoint(ReleasedLoadBB); 1303 Value *SecondLoad; 1304 if (HasReleasedLoadBB) { 1305 SecondLoad = TLI->emitLoadLinked(Builder, PMV.AlignedAddr, MemOpOrder); 1306 Value *SecondLoadExtract = extractMaskedValue(Builder, SecondLoad, PMV); 1307 ShouldStore = Builder.CreateICmpEQ(SecondLoadExtract, 1308 CI->getCompareOperand(), "should_store"); 1309 1310 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1311 // jump straight past that fence instruction (if it exists). 1312 Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB); 1313 // Update PHI node in TryStoreBB. 1314 LoadedTryStore->addIncoming(SecondLoad, ReleasedLoadBB); 1315 } else 1316 Builder.CreateUnreachable(); 1317 1318 // Make sure later instructions don't get reordered with a fence if 1319 // necessary. 1320 Builder.SetInsertPoint(SuccessBB); 1321 if (ShouldInsertFencesForAtomic) 1322 TLI->emitTrailingFence(Builder, CI, SuccessOrder); 1323 Builder.CreateBr(ExitBB); 1324 1325 Builder.SetInsertPoint(NoStoreBB); 1326 PHINode *LoadedNoStore = 1327 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.nostore"); 1328 LoadedNoStore->addIncoming(UnreleasedLoad, StartBB); 1329 if (HasReleasedLoadBB) 1330 LoadedNoStore->addIncoming(SecondLoad, ReleasedLoadBB); 1331 1332 // In the failing case, where we don't execute the store-conditional, the 1333 // target might want to balance out the load-linked with a dedicated 1334 // instruction (e.g., on ARM, clearing the exclusive monitor). 1335 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 1336 Builder.CreateBr(FailureBB); 1337 1338 Builder.SetInsertPoint(FailureBB); 1339 PHINode *LoadedFailure = 1340 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.failure"); 1341 LoadedFailure->addIncoming(LoadedNoStore, NoStoreBB); 1342 if (CI->isWeak()) 1343 LoadedFailure->addIncoming(LoadedTryStore, TryStoreBB); 1344 if (ShouldInsertFencesForAtomic) 1345 TLI->emitTrailingFence(Builder, CI, FailureOrder); 1346 Builder.CreateBr(ExitBB); 1347 1348 // Finally, we have control-flow based knowledge of whether the cmpxchg 1349 // succeeded or not. We expose this to later passes by converting any 1350 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate 1351 // PHI. 1352 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1353 PHINode *LoadedExit = 1354 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.exit"); 1355 LoadedExit->addIncoming(LoadedTryStore, SuccessBB); 1356 LoadedExit->addIncoming(LoadedFailure, FailureBB); 1357 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2, "success"); 1358 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); 1359 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); 1360 1361 // This is the "exit value" from the cmpxchg expansion. It may be of 1362 // a type wider than the one in the cmpxchg instruction. 1363 Value *LoadedFull = LoadedExit; 1364 1365 Builder.SetInsertPoint(ExitBB, std::next(Success->getIterator())); 1366 Value *Loaded = extractMaskedValue(Builder, LoadedFull, PMV); 1367 1368 // Look for any users of the cmpxchg that are just comparing the loaded value 1369 // against the desired one, and replace them with the CFG-derived version. 1370 SmallVector<ExtractValueInst *, 2> PrunedInsts; 1371 for (auto User : CI->users()) { 1372 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); 1373 if (!EV) 1374 continue; 1375 1376 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && 1377 "weird extraction from { iN, i1 }"); 1378 1379 if (EV->getIndices()[0] == 0) 1380 EV->replaceAllUsesWith(Loaded); 1381 else 1382 EV->replaceAllUsesWith(Success); 1383 1384 PrunedInsts.push_back(EV); 1385 } 1386 1387 // We can remove the instructions now we're no longer iterating through them. 1388 for (auto EV : PrunedInsts) 1389 EV->eraseFromParent(); 1390 1391 if (!CI->use_empty()) { 1392 // Some use of the full struct return that we don't understand has happened, 1393 // so we've got to reconstruct it properly. 1394 Value *Res; 1395 Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0); 1396 Res = Builder.CreateInsertValue(Res, Success, 1); 1397 1398 CI->replaceAllUsesWith(Res); 1399 } 1400 1401 CI->eraseFromParent(); 1402 return true; 1403 } 1404 1405 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) { 1406 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand()); 1407 if(!C) 1408 return false; 1409 1410 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 1411 switch(Op) { 1412 case AtomicRMWInst::Add: 1413 case AtomicRMWInst::Sub: 1414 case AtomicRMWInst::Or: 1415 case AtomicRMWInst::Xor: 1416 return C->isZero(); 1417 case AtomicRMWInst::And: 1418 return C->isMinusOne(); 1419 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/... 1420 default: 1421 return false; 1422 } 1423 } 1424 1425 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) { 1426 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { 1427 tryExpandAtomicLoad(ResultingLoad); 1428 return true; 1429 } 1430 return false; 1431 } 1432 1433 Value *AtomicExpand::insertRMWCmpXchgLoop( 1434 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, 1435 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 1436 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, 1437 CreateCmpXchgInstFun CreateCmpXchg) { 1438 LLVMContext &Ctx = Builder.getContext(); 1439 BasicBlock *BB = Builder.GetInsertBlock(); 1440 Function *F = BB->getParent(); 1441 1442 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1443 // 1444 // The standard expansion we produce is: 1445 // [...] 1446 // %init_loaded = load atomic iN* %addr 1447 // br label %loop 1448 // loop: 1449 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] 1450 // %new = some_op iN %loaded, %incr 1451 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new 1452 // %new_loaded = extractvalue { iN, i1 } %pair, 0 1453 // %success = extractvalue { iN, i1 } %pair, 1 1454 // br i1 %success, label %atomicrmw.end, label %loop 1455 // atomicrmw.end: 1456 // [...] 1457 BasicBlock *ExitBB = 1458 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1459 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1460 1461 // The split call above "helpfully" added a branch at the end of BB (to the 1462 // wrong place), but we want a load. It's easiest to just remove 1463 // the branch entirely. 1464 std::prev(BB->end())->eraseFromParent(); 1465 Builder.SetInsertPoint(BB); 1466 LoadInst *InitLoaded = Builder.CreateAlignedLoad(ResultTy, Addr, AddrAlign); 1467 Builder.CreateBr(LoopBB); 1468 1469 // Start the main loop block now that we've taken care of the preliminaries. 1470 Builder.SetInsertPoint(LoopBB); 1471 PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded"); 1472 Loaded->addIncoming(InitLoaded, BB); 1473 1474 Value *NewVal = PerformOp(Builder, Loaded); 1475 1476 Value *NewLoaded = nullptr; 1477 Value *Success = nullptr; 1478 1479 CreateCmpXchg(Builder, Addr, Loaded, NewVal, AddrAlign, 1480 MemOpOrder == AtomicOrdering::Unordered 1481 ? AtomicOrdering::Monotonic 1482 : MemOpOrder, 1483 SSID, Success, NewLoaded); 1484 assert(Success && NewLoaded); 1485 1486 Loaded->addIncoming(NewLoaded, LoopBB); 1487 1488 Builder.CreateCondBr(Success, ExitBB, LoopBB); 1489 1490 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1491 return NewLoaded; 1492 } 1493 1494 bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1495 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 1496 unsigned ValueSize = getAtomicOpSize(CI); 1497 1498 switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) { 1499 default: 1500 llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg"); 1501 case TargetLoweringBase::AtomicExpansionKind::None: 1502 if (ValueSize < MinCASSize) 1503 return expandPartwordCmpXchg(CI); 1504 return false; 1505 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 1506 return expandAtomicCmpXchg(CI); 1507 } 1508 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: 1509 expandAtomicCmpXchgToMaskedIntrinsic(CI); 1510 return true; 1511 } 1512 } 1513 1514 // Note: This function is exposed externally by AtomicExpandUtils.h 1515 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 1516 CreateCmpXchgInstFun CreateCmpXchg) { 1517 IRBuilder<> Builder(AI); 1518 Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop( 1519 Builder, AI->getType(), AI->getPointerOperand(), AI->getAlign(), 1520 AI->getOrdering(), AI->getSyncScopeID(), 1521 [&](IRBuilder<> &Builder, Value *Loaded) { 1522 return performAtomicOp(AI->getOperation(), Builder, Loaded, 1523 AI->getValOperand()); 1524 }, 1525 CreateCmpXchg); 1526 1527 AI->replaceAllUsesWith(Loaded); 1528 AI->eraseFromParent(); 1529 return true; 1530 } 1531 1532 // In order to use one of the sized library calls such as 1533 // __atomic_fetch_add_4, the alignment must be sufficient, the size 1534 // must be one of the potentially-specialized sizes, and the value 1535 // type must actually exist in C on the target (otherwise, the 1536 // function wouldn't actually be defined.) 1537 static bool canUseSizedAtomicCall(unsigned Size, Align Alignment, 1538 const DataLayout &DL) { 1539 // TODO: "LargestSize" is an approximation for "largest type that 1540 // you can express in C". It seems to be the case that int128 is 1541 // supported on all 64-bit platforms, otherwise only up to 64-bit 1542 // integers are supported. If we get this wrong, then we'll try to 1543 // call a sized libcall that doesn't actually exist. There should 1544 // really be some more reliable way in LLVM of determining integer 1545 // sizes which are valid in the target's C ABI... 1546 unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8; 1547 return Alignment >= Size && 1548 (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) && 1549 Size <= LargestSize; 1550 } 1551 1552 void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) { 1553 static const RTLIB::Libcall Libcalls[6] = { 1554 RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2, 1555 RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16}; 1556 unsigned Size = getAtomicOpSize(I); 1557 1558 bool expanded = expandAtomicOpToLibcall( 1559 I, Size, I->getAlign(), I->getPointerOperand(), nullptr, nullptr, 1560 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1561 if (!expanded) 1562 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Load"); 1563 } 1564 1565 void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) { 1566 static const RTLIB::Libcall Libcalls[6] = { 1567 RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2, 1568 RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16}; 1569 unsigned Size = getAtomicOpSize(I); 1570 1571 bool expanded = expandAtomicOpToLibcall( 1572 I, Size, I->getAlign(), I->getPointerOperand(), I->getValueOperand(), 1573 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1574 if (!expanded) 1575 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Store"); 1576 } 1577 1578 void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) { 1579 static const RTLIB::Libcall Libcalls[6] = { 1580 RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1, 1581 RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4, 1582 RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16}; 1583 unsigned Size = getAtomicOpSize(I); 1584 1585 bool expanded = expandAtomicOpToLibcall( 1586 I, Size, I->getAlign(), I->getPointerOperand(), I->getNewValOperand(), 1587 I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(), 1588 Libcalls); 1589 if (!expanded) 1590 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for CAS"); 1591 } 1592 1593 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) { 1594 static const RTLIB::Libcall LibcallsXchg[6] = { 1595 RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1, 1596 RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4, 1597 RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16}; 1598 static const RTLIB::Libcall LibcallsAdd[6] = { 1599 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1, 1600 RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4, 1601 RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16}; 1602 static const RTLIB::Libcall LibcallsSub[6] = { 1603 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1, 1604 RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4, 1605 RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16}; 1606 static const RTLIB::Libcall LibcallsAnd[6] = { 1607 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1, 1608 RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4, 1609 RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16}; 1610 static const RTLIB::Libcall LibcallsOr[6] = { 1611 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1, 1612 RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4, 1613 RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16}; 1614 static const RTLIB::Libcall LibcallsXor[6] = { 1615 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1, 1616 RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4, 1617 RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16}; 1618 static const RTLIB::Libcall LibcallsNand[6] = { 1619 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1, 1620 RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4, 1621 RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16}; 1622 1623 switch (Op) { 1624 case AtomicRMWInst::BAD_BINOP: 1625 llvm_unreachable("Should not have BAD_BINOP."); 1626 case AtomicRMWInst::Xchg: 1627 return makeArrayRef(LibcallsXchg); 1628 case AtomicRMWInst::Add: 1629 return makeArrayRef(LibcallsAdd); 1630 case AtomicRMWInst::Sub: 1631 return makeArrayRef(LibcallsSub); 1632 case AtomicRMWInst::And: 1633 return makeArrayRef(LibcallsAnd); 1634 case AtomicRMWInst::Or: 1635 return makeArrayRef(LibcallsOr); 1636 case AtomicRMWInst::Xor: 1637 return makeArrayRef(LibcallsXor); 1638 case AtomicRMWInst::Nand: 1639 return makeArrayRef(LibcallsNand); 1640 case AtomicRMWInst::Max: 1641 case AtomicRMWInst::Min: 1642 case AtomicRMWInst::UMax: 1643 case AtomicRMWInst::UMin: 1644 case AtomicRMWInst::FAdd: 1645 case AtomicRMWInst::FSub: 1646 // No atomic libcalls are available for max/min/umax/umin. 1647 return {}; 1648 } 1649 llvm_unreachable("Unexpected AtomicRMW operation."); 1650 } 1651 1652 void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) { 1653 ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation()); 1654 1655 unsigned Size = getAtomicOpSize(I); 1656 1657 bool Success = false; 1658 if (!Libcalls.empty()) 1659 Success = expandAtomicOpToLibcall( 1660 I, Size, I->getAlign(), I->getPointerOperand(), I->getValOperand(), 1661 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1662 1663 // The expansion failed: either there were no libcalls at all for 1664 // the operation (min/max), or there were only size-specialized 1665 // libcalls (add/sub/etc) and we needed a generic. So, expand to a 1666 // CAS libcall, via a CAS loop, instead. 1667 if (!Success) { 1668 expandAtomicRMWToCmpXchg( 1669 I, [this](IRBuilder<> &Builder, Value *Addr, Value *Loaded, 1670 Value *NewVal, Align Alignment, AtomicOrdering MemOpOrder, 1671 SyncScope::ID SSID, Value *&Success, Value *&NewLoaded) { 1672 // Create the CAS instruction normally... 1673 AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg( 1674 Addr, Loaded, NewVal, Alignment, MemOpOrder, 1675 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID); 1676 Success = Builder.CreateExtractValue(Pair, 1, "success"); 1677 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 1678 1679 // ...and then expand the CAS into a libcall. 1680 expandAtomicCASToLibcall(Pair); 1681 }); 1682 } 1683 } 1684 1685 // A helper routine for the above expandAtomic*ToLibcall functions. 1686 // 1687 // 'Libcalls' contains an array of enum values for the particular 1688 // ATOMIC libcalls to be emitted. All of the other arguments besides 1689 // 'I' are extracted from the Instruction subclass by the 1690 // caller. Depending on the particular call, some will be null. 1691 bool AtomicExpand::expandAtomicOpToLibcall( 1692 Instruction *I, unsigned Size, Align Alignment, Value *PointerOperand, 1693 Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering, 1694 AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) { 1695 assert(Libcalls.size() == 6); 1696 1697 LLVMContext &Ctx = I->getContext(); 1698 Module *M = I->getModule(); 1699 const DataLayout &DL = M->getDataLayout(); 1700 IRBuilder<> Builder(I); 1701 IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front()); 1702 1703 bool UseSizedLibcall = canUseSizedAtomicCall(Size, Alignment, DL); 1704 Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8); 1705 1706 const Align AllocaAlignment = DL.getPrefTypeAlign(SizedIntTy); 1707 1708 // TODO: the "order" argument type is "int", not int32. So 1709 // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints. 1710 ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size); 1711 assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO"); 1712 Constant *OrderingVal = 1713 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering)); 1714 Constant *Ordering2Val = nullptr; 1715 if (CASExpected) { 1716 assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO"); 1717 Ordering2Val = 1718 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2)); 1719 } 1720 bool HasResult = I->getType() != Type::getVoidTy(Ctx); 1721 1722 RTLIB::Libcall RTLibType; 1723 if (UseSizedLibcall) { 1724 switch (Size) { 1725 case 1: RTLibType = Libcalls[1]; break; 1726 case 2: RTLibType = Libcalls[2]; break; 1727 case 4: RTLibType = Libcalls[3]; break; 1728 case 8: RTLibType = Libcalls[4]; break; 1729 case 16: RTLibType = Libcalls[5]; break; 1730 } 1731 } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) { 1732 RTLibType = Libcalls[0]; 1733 } else { 1734 // Can't use sized function, and there's no generic for this 1735 // operation, so give up. 1736 return false; 1737 } 1738 1739 if (!TLI->getLibcallName(RTLibType)) { 1740 // This target does not implement the requested atomic libcall so give up. 1741 return false; 1742 } 1743 1744 // Build up the function call. There's two kinds. First, the sized 1745 // variants. These calls are going to be one of the following (with 1746 // N=1,2,4,8,16): 1747 // iN __atomic_load_N(iN *ptr, int ordering) 1748 // void __atomic_store_N(iN *ptr, iN val, int ordering) 1749 // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering) 1750 // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired, 1751 // int success_order, int failure_order) 1752 // 1753 // Note that these functions can be used for non-integer atomic 1754 // operations, the values just need to be bitcast to integers on the 1755 // way in and out. 1756 // 1757 // And, then, the generic variants. They look like the following: 1758 // void __atomic_load(size_t size, void *ptr, void *ret, int ordering) 1759 // void __atomic_store(size_t size, void *ptr, void *val, int ordering) 1760 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, 1761 // int ordering) 1762 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, 1763 // void *desired, int success_order, 1764 // int failure_order) 1765 // 1766 // The different signatures are built up depending on the 1767 // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult' 1768 // variables. 1769 1770 AllocaInst *AllocaCASExpected = nullptr; 1771 Value *AllocaCASExpected_i8 = nullptr; 1772 AllocaInst *AllocaValue = nullptr; 1773 Value *AllocaValue_i8 = nullptr; 1774 AllocaInst *AllocaResult = nullptr; 1775 Value *AllocaResult_i8 = nullptr; 1776 1777 Type *ResultTy; 1778 SmallVector<Value *, 6> Args; 1779 AttributeList Attr; 1780 1781 // 'size' argument. 1782 if (!UseSizedLibcall) { 1783 // Note, getIntPtrType is assumed equivalent to size_t. 1784 Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size)); 1785 } 1786 1787 // 'ptr' argument. 1788 // note: This assumes all address spaces share a common libfunc 1789 // implementation and that addresses are convertable. For systems without 1790 // that property, we'd need to extend this mechanism to support AS-specific 1791 // families of atomic intrinsics. 1792 auto PtrTypeAS = PointerOperand->getType()->getPointerAddressSpace(); 1793 Value *PtrVal = Builder.CreateBitCast(PointerOperand, 1794 Type::getInt8PtrTy(Ctx, PtrTypeAS)); 1795 PtrVal = Builder.CreateAddrSpaceCast(PtrVal, Type::getInt8PtrTy(Ctx)); 1796 Args.push_back(PtrVal); 1797 1798 // 'expected' argument, if present. 1799 if (CASExpected) { 1800 AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType()); 1801 AllocaCASExpected->setAlignment(AllocaAlignment); 1802 unsigned AllocaAS = AllocaCASExpected->getType()->getPointerAddressSpace(); 1803 1804 AllocaCASExpected_i8 = 1805 Builder.CreateBitCast(AllocaCASExpected, 1806 Type::getInt8PtrTy(Ctx, AllocaAS)); 1807 Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64); 1808 Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment); 1809 Args.push_back(AllocaCASExpected_i8); 1810 } 1811 1812 // 'val' argument ('desired' for cas), if present. 1813 if (ValueOperand) { 1814 if (UseSizedLibcall) { 1815 Value *IntValue = 1816 Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy); 1817 Args.push_back(IntValue); 1818 } else { 1819 AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType()); 1820 AllocaValue->setAlignment(AllocaAlignment); 1821 AllocaValue_i8 = 1822 Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx)); 1823 Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64); 1824 Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment); 1825 Args.push_back(AllocaValue_i8); 1826 } 1827 } 1828 1829 // 'ret' argument. 1830 if (!CASExpected && HasResult && !UseSizedLibcall) { 1831 AllocaResult = AllocaBuilder.CreateAlloca(I->getType()); 1832 AllocaResult->setAlignment(AllocaAlignment); 1833 unsigned AllocaAS = AllocaResult->getType()->getPointerAddressSpace(); 1834 AllocaResult_i8 = 1835 Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx, AllocaAS)); 1836 Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64); 1837 Args.push_back(AllocaResult_i8); 1838 } 1839 1840 // 'ordering' ('success_order' for cas) argument. 1841 Args.push_back(OrderingVal); 1842 1843 // 'failure_order' argument, if present. 1844 if (Ordering2Val) 1845 Args.push_back(Ordering2Val); 1846 1847 // Now, the return type. 1848 if (CASExpected) { 1849 ResultTy = Type::getInt1Ty(Ctx); 1850 Attr = Attr.addAttribute(Ctx, AttributeList::ReturnIndex, Attribute::ZExt); 1851 } else if (HasResult && UseSizedLibcall) 1852 ResultTy = SizedIntTy; 1853 else 1854 ResultTy = Type::getVoidTy(Ctx); 1855 1856 // Done with setting up arguments and return types, create the call: 1857 SmallVector<Type *, 6> ArgTys; 1858 for (Value *Arg : Args) 1859 ArgTys.push_back(Arg->getType()); 1860 FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false); 1861 FunctionCallee LibcallFn = 1862 M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr); 1863 CallInst *Call = Builder.CreateCall(LibcallFn, Args); 1864 Call->setAttributes(Attr); 1865 Value *Result = Call; 1866 1867 // And then, extract the results... 1868 if (ValueOperand && !UseSizedLibcall) 1869 Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64); 1870 1871 if (CASExpected) { 1872 // The final result from the CAS is {load of 'expected' alloca, bool result 1873 // from call} 1874 Type *FinalResultTy = I->getType(); 1875 Value *V = UndefValue::get(FinalResultTy); 1876 Value *ExpectedOut = Builder.CreateAlignedLoad( 1877 CASExpected->getType(), AllocaCASExpected, AllocaAlignment); 1878 Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64); 1879 V = Builder.CreateInsertValue(V, ExpectedOut, 0); 1880 V = Builder.CreateInsertValue(V, Result, 1); 1881 I->replaceAllUsesWith(V); 1882 } else if (HasResult) { 1883 Value *V; 1884 if (UseSizedLibcall) 1885 V = Builder.CreateBitOrPointerCast(Result, I->getType()); 1886 else { 1887 V = Builder.CreateAlignedLoad(I->getType(), AllocaResult, 1888 AllocaAlignment); 1889 Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64); 1890 } 1891 I->replaceAllUsesWith(V); 1892 } 1893 I->eraseFromParent(); 1894 return true; 1895 } 1896