1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass (at IR level) to replace atomic instructions with 10 // __atomic_* library calls, or target specific instruction which implement the 11 // same semantics in a way which better fits the target backend. This can 12 // include the use of (intrinsic-based) load-linked/store-conditional loops, 13 // AtomicCmpXchg, or type coercions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/STLFunctionalExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/CodeGen/AtomicExpandUtils.h" 22 #include "llvm/CodeGen/RuntimeLibcalls.h" 23 #include "llvm/CodeGen/TargetLowering.h" 24 #include "llvm/CodeGen/TargetPassConfig.h" 25 #include "llvm/CodeGen/TargetSubtargetInfo.h" 26 #include "llvm/CodeGen/ValueTypes.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Constant.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/IRBuilder.h" 35 #include "llvm/IR/InstIterator.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Type.h" 40 #include "llvm/IR/User.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/InitializePasses.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/AtomicOrdering.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Target/TargetMachine.h" 50 #include "llvm/Transforms/Utils/LowerAtomic.h" 51 #include <cassert> 52 #include <cstdint> 53 #include <iterator> 54 55 using namespace llvm; 56 57 #define DEBUG_TYPE "atomic-expand" 58 59 namespace { 60 61 class AtomicExpand : public FunctionPass { 62 const TargetLowering *TLI = nullptr; 63 64 public: 65 static char ID; // Pass identification, replacement for typeid 66 67 AtomicExpand() : FunctionPass(ID) { 68 initializeAtomicExpandPass(*PassRegistry::getPassRegistry()); 69 } 70 71 bool runOnFunction(Function &F) override; 72 73 private: 74 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order); 75 IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL); 76 LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI); 77 bool tryExpandAtomicLoad(LoadInst *LI); 78 bool expandAtomicLoadToLL(LoadInst *LI); 79 bool expandAtomicLoadToCmpXchg(LoadInst *LI); 80 StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI); 81 bool tryExpandAtomicStore(StoreInst *SI); 82 void expandAtomicStore(StoreInst *SI); 83 bool tryExpandAtomicRMW(AtomicRMWInst *AI); 84 AtomicRMWInst *convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI); 85 Value * 86 insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr, 87 Align AddrAlign, AtomicOrdering MemOpOrder, 88 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); 89 void 90 expandAtomicOpToLLSC(Instruction *I, Type *ResultTy, Value *Addr, 91 Align AddrAlign, AtomicOrdering MemOpOrder, 92 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); 93 void expandPartwordAtomicRMW( 94 AtomicRMWInst *I, TargetLoweringBase::AtomicExpansionKind ExpansionKind); 95 AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI); 96 bool expandPartwordCmpXchg(AtomicCmpXchgInst *I); 97 void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI); 98 void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI); 99 100 AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI); 101 static Value * 102 insertRMWCmpXchgLoop(IRBuilder<> &Builder, Type *ResultType, Value *Addr, 103 Align AddrAlign, AtomicOrdering MemOpOrder, 104 SyncScope::ID SSID, 105 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, 106 CreateCmpXchgInstFun CreateCmpXchg); 107 bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI); 108 109 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); 110 bool isIdempotentRMW(AtomicRMWInst *RMWI); 111 bool simplifyIdempotentRMW(AtomicRMWInst *RMWI); 112 113 bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, Align Alignment, 114 Value *PointerOperand, Value *ValueOperand, 115 Value *CASExpected, AtomicOrdering Ordering, 116 AtomicOrdering Ordering2, 117 ArrayRef<RTLIB::Libcall> Libcalls); 118 void expandAtomicLoadToLibcall(LoadInst *LI); 119 void expandAtomicStoreToLibcall(StoreInst *LI); 120 void expandAtomicRMWToLibcall(AtomicRMWInst *I); 121 void expandAtomicCASToLibcall(AtomicCmpXchgInst *I); 122 123 friend bool 124 llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 125 CreateCmpXchgInstFun CreateCmpXchg); 126 }; 127 128 } // end anonymous namespace 129 130 char AtomicExpand::ID = 0; 131 132 char &llvm::AtomicExpandID = AtomicExpand::ID; 133 134 INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions", false, 135 false) 136 137 FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); } 138 139 // Helper functions to retrieve the size of atomic instructions. 140 static unsigned getAtomicOpSize(LoadInst *LI) { 141 const DataLayout &DL = LI->getModule()->getDataLayout(); 142 return DL.getTypeStoreSize(LI->getType()); 143 } 144 145 static unsigned getAtomicOpSize(StoreInst *SI) { 146 const DataLayout &DL = SI->getModule()->getDataLayout(); 147 return DL.getTypeStoreSize(SI->getValueOperand()->getType()); 148 } 149 150 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) { 151 const DataLayout &DL = RMWI->getModule()->getDataLayout(); 152 return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); 153 } 154 155 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) { 156 const DataLayout &DL = CASI->getModule()->getDataLayout(); 157 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); 158 } 159 160 // Determine if a particular atomic operation has a supported size, 161 // and is of appropriate alignment, to be passed through for target 162 // lowering. (Versus turning into a __atomic libcall) 163 template <typename Inst> 164 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) { 165 unsigned Size = getAtomicOpSize(I); 166 Align Alignment = I->getAlign(); 167 return Alignment >= Size && 168 Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8; 169 } 170 171 bool AtomicExpand::runOnFunction(Function &F) { 172 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 173 if (!TPC) 174 return false; 175 176 auto &TM = TPC->getTM<TargetMachine>(); 177 if (!TM.getSubtargetImpl(F)->enableAtomicExpand()) 178 return false; 179 TLI = TM.getSubtargetImpl(F)->getTargetLowering(); 180 181 SmallVector<Instruction *, 1> AtomicInsts; 182 183 // Changing control-flow while iterating through it is a bad idea, so gather a 184 // list of all atomic instructions before we start. 185 for (Instruction &I : instructions(F)) 186 if (I.isAtomic() && !isa<FenceInst>(&I)) 187 AtomicInsts.push_back(&I); 188 189 bool MadeChange = false; 190 for (auto I : AtomicInsts) { 191 auto LI = dyn_cast<LoadInst>(I); 192 auto SI = dyn_cast<StoreInst>(I); 193 auto RMWI = dyn_cast<AtomicRMWInst>(I); 194 auto CASI = dyn_cast<AtomicCmpXchgInst>(I); 195 assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction"); 196 197 // If the Size/Alignment is not supported, replace with a libcall. 198 if (LI) { 199 if (!atomicSizeSupported(TLI, LI)) { 200 expandAtomicLoadToLibcall(LI); 201 MadeChange = true; 202 continue; 203 } 204 } else if (SI) { 205 if (!atomicSizeSupported(TLI, SI)) { 206 expandAtomicStoreToLibcall(SI); 207 MadeChange = true; 208 continue; 209 } 210 } else if (RMWI) { 211 if (!atomicSizeSupported(TLI, RMWI)) { 212 expandAtomicRMWToLibcall(RMWI); 213 MadeChange = true; 214 continue; 215 } 216 } else if (CASI) { 217 if (!atomicSizeSupported(TLI, CASI)) { 218 expandAtomicCASToLibcall(CASI); 219 MadeChange = true; 220 continue; 221 } 222 } 223 224 if (TLI->shouldInsertFencesForAtomic(I)) { 225 auto FenceOrdering = AtomicOrdering::Monotonic; 226 if (LI && isAcquireOrStronger(LI->getOrdering())) { 227 FenceOrdering = LI->getOrdering(); 228 LI->setOrdering(AtomicOrdering::Monotonic); 229 } else if (SI && isReleaseOrStronger(SI->getOrdering())) { 230 FenceOrdering = SI->getOrdering(); 231 SI->setOrdering(AtomicOrdering::Monotonic); 232 } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) || 233 isAcquireOrStronger(RMWI->getOrdering()))) { 234 FenceOrdering = RMWI->getOrdering(); 235 RMWI->setOrdering(AtomicOrdering::Monotonic); 236 } else if (CASI && 237 TLI->shouldExpandAtomicCmpXchgInIR(CASI) == 238 TargetLoweringBase::AtomicExpansionKind::None && 239 (isReleaseOrStronger(CASI->getSuccessOrdering()) || 240 isAcquireOrStronger(CASI->getSuccessOrdering()) || 241 isAcquireOrStronger(CASI->getFailureOrdering()))) { 242 // If a compare and swap is lowered to LL/SC, we can do smarter fence 243 // insertion, with a stronger one on the success path than on the 244 // failure path. As a result, fence insertion is directly done by 245 // expandAtomicCmpXchg in that case. 246 FenceOrdering = CASI->getMergedOrdering(); 247 CASI->setSuccessOrdering(AtomicOrdering::Monotonic); 248 CASI->setFailureOrdering(AtomicOrdering::Monotonic); 249 } 250 251 if (FenceOrdering != AtomicOrdering::Monotonic) { 252 MadeChange |= bracketInstWithFences(I, FenceOrdering); 253 } 254 } 255 256 if (LI) { 257 if (LI->getType()->isFloatingPointTy()) { 258 // TODO: add a TLI hook to control this so that each target can 259 // convert to lowering the original type one at a time. 260 LI = convertAtomicLoadToIntegerType(LI); 261 assert(LI->getType()->isIntegerTy() && "invariant broken"); 262 MadeChange = true; 263 } 264 265 MadeChange |= tryExpandAtomicLoad(LI); 266 } else if (SI) { 267 if (SI->getValueOperand()->getType()->isFloatingPointTy()) { 268 // TODO: add a TLI hook to control this so that each target can 269 // convert to lowering the original type one at a time. 270 SI = convertAtomicStoreToIntegerType(SI); 271 assert(SI->getValueOperand()->getType()->isIntegerTy() && 272 "invariant broken"); 273 MadeChange = true; 274 } 275 276 if (tryExpandAtomicStore(SI)) 277 MadeChange = true; 278 } else if (RMWI) { 279 // There are two different ways of expanding RMW instructions: 280 // - into a load if it is idempotent 281 // - into a Cmpxchg/LL-SC loop otherwise 282 // we try them in that order. 283 284 if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) { 285 MadeChange = true; 286 } else { 287 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 288 if (Op == AtomicRMWInst::Xchg && 289 RMWI->getValOperand()->getType()->isFloatingPointTy()) { 290 // TODO: add a TLI hook to control this so that each target can 291 // convert to lowering the original type one at a time. 292 RMWI = convertAtomicXchgToIntegerType(RMWI); 293 assert(RMWI->getValOperand()->getType()->isIntegerTy() && 294 "invariant broken"); 295 MadeChange = true; 296 } 297 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 298 unsigned ValueSize = getAtomicOpSize(RMWI); 299 if (ValueSize < MinCASSize && 300 (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 301 Op == AtomicRMWInst::And)) { 302 RMWI = widenPartwordAtomicRMW(RMWI); 303 MadeChange = true; 304 } 305 306 MadeChange |= tryExpandAtomicRMW(RMWI); 307 } 308 } else if (CASI) { 309 // TODO: when we're ready to make the change at the IR level, we can 310 // extend convertCmpXchgToInteger for floating point too. 311 assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() && 312 "unimplemented - floating point not legal at IR level"); 313 if (CASI->getCompareOperand()->getType()->isPointerTy()) { 314 // TODO: add a TLI hook to control this so that each target can 315 // convert to lowering the original type one at a time. 316 CASI = convertCmpXchgToIntegerType(CASI); 317 assert(CASI->getCompareOperand()->getType()->isIntegerTy() && 318 "invariant broken"); 319 MadeChange = true; 320 } 321 322 MadeChange |= tryExpandAtomicCmpXchg(CASI); 323 } 324 } 325 return MadeChange; 326 } 327 328 bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) { 329 IRBuilder<> Builder(I); 330 331 auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order); 332 333 auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order); 334 // We have a guard here because not every atomic operation generates a 335 // trailing fence. 336 if (TrailingFence) 337 TrailingFence->moveAfter(I); 338 339 return (LeadingFence || TrailingFence); 340 } 341 342 /// Get the iX type with the same bitwidth as T. 343 IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T, 344 const DataLayout &DL) { 345 EVT VT = TLI->getMemValueType(DL, T); 346 unsigned BitWidth = VT.getStoreSizeInBits(); 347 assert(BitWidth == VT.getSizeInBits() && "must be a power of two"); 348 return IntegerType::get(T->getContext(), BitWidth); 349 } 350 351 /// Convert an atomic load of a non-integral type to an integer load of the 352 /// equivalent bitwidth. See the function comment on 353 /// convertAtomicStoreToIntegerType for background. 354 LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) { 355 auto *M = LI->getModule(); 356 Type *NewTy = getCorrespondingIntegerType(LI->getType(), M->getDataLayout()); 357 358 IRBuilder<> Builder(LI); 359 360 Value *Addr = LI->getPointerOperand(); 361 Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace()); 362 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 363 364 auto *NewLI = Builder.CreateLoad(NewTy, NewAddr); 365 NewLI->setAlignment(LI->getAlign()); 366 NewLI->setVolatile(LI->isVolatile()); 367 NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID()); 368 LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n"); 369 370 Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType()); 371 LI->replaceAllUsesWith(NewVal); 372 LI->eraseFromParent(); 373 return NewLI; 374 } 375 376 AtomicRMWInst * 377 AtomicExpand::convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI) { 378 auto *M = RMWI->getModule(); 379 Type *NewTy = 380 getCorrespondingIntegerType(RMWI->getType(), M->getDataLayout()); 381 382 IRBuilder<> Builder(RMWI); 383 384 Value *Addr = RMWI->getPointerOperand(); 385 Value *Val = RMWI->getValOperand(); 386 Type *PT = PointerType::get(NewTy, RMWI->getPointerAddressSpace()); 387 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 388 Value *NewVal = Builder.CreateBitCast(Val, NewTy); 389 390 auto *NewRMWI = 391 Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, NewAddr, NewVal, 392 RMWI->getAlign(), RMWI->getOrdering()); 393 NewRMWI->setVolatile(RMWI->isVolatile()); 394 LLVM_DEBUG(dbgs() << "Replaced " << *RMWI << " with " << *NewRMWI << "\n"); 395 396 Value *NewRVal = Builder.CreateBitCast(NewRMWI, RMWI->getType()); 397 RMWI->replaceAllUsesWith(NewRVal); 398 RMWI->eraseFromParent(); 399 return NewRMWI; 400 } 401 402 bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) { 403 switch (TLI->shouldExpandAtomicLoadInIR(LI)) { 404 case TargetLoweringBase::AtomicExpansionKind::None: 405 return false; 406 case TargetLoweringBase::AtomicExpansionKind::LLSC: 407 expandAtomicOpToLLSC( 408 LI, LI->getType(), LI->getPointerOperand(), LI->getAlign(), 409 LI->getOrdering(), 410 [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; }); 411 return true; 412 case TargetLoweringBase::AtomicExpansionKind::LLOnly: 413 return expandAtomicLoadToLL(LI); 414 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: 415 return expandAtomicLoadToCmpXchg(LI); 416 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 417 LI->setAtomic(AtomicOrdering::NotAtomic); 418 return true; 419 default: 420 llvm_unreachable("Unhandled case in tryExpandAtomicLoad"); 421 } 422 } 423 424 bool AtomicExpand::tryExpandAtomicStore(StoreInst *SI) { 425 switch (TLI->shouldExpandAtomicStoreInIR(SI)) { 426 case TargetLoweringBase::AtomicExpansionKind::None: 427 return false; 428 case TargetLoweringBase::AtomicExpansionKind::Expand: 429 expandAtomicStore(SI); 430 return true; 431 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 432 SI->setAtomic(AtomicOrdering::NotAtomic); 433 return true; 434 default: 435 llvm_unreachable("Unhandled case in tryExpandAtomicStore"); 436 } 437 } 438 439 bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) { 440 IRBuilder<> Builder(LI); 441 442 // On some architectures, load-linked instructions are atomic for larger 443 // sizes than normal loads. For example, the only 64-bit load guaranteed 444 // to be single-copy atomic by ARM is an ldrexd (A3.5.3). 445 Value *Val = TLI->emitLoadLinked(Builder, LI->getType(), 446 LI->getPointerOperand(), LI->getOrdering()); 447 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 448 449 LI->replaceAllUsesWith(Val); 450 LI->eraseFromParent(); 451 452 return true; 453 } 454 455 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) { 456 IRBuilder<> Builder(LI); 457 AtomicOrdering Order = LI->getOrdering(); 458 if (Order == AtomicOrdering::Unordered) 459 Order = AtomicOrdering::Monotonic; 460 461 Value *Addr = LI->getPointerOperand(); 462 Type *Ty = LI->getType(); 463 Constant *DummyVal = Constant::getNullValue(Ty); 464 465 Value *Pair = Builder.CreateAtomicCmpXchg( 466 Addr, DummyVal, DummyVal, LI->getAlign(), Order, 467 AtomicCmpXchgInst::getStrongestFailureOrdering(Order)); 468 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded"); 469 470 LI->replaceAllUsesWith(Loaded); 471 LI->eraseFromParent(); 472 473 return true; 474 } 475 476 /// Convert an atomic store of a non-integral type to an integer store of the 477 /// equivalent bitwidth. We used to not support floating point or vector 478 /// atomics in the IR at all. The backends learned to deal with the bitcast 479 /// idiom because that was the only way of expressing the notion of a atomic 480 /// float or vector store. The long term plan is to teach each backend to 481 /// instruction select from the original atomic store, but as a migration 482 /// mechanism, we convert back to the old format which the backends understand. 483 /// Each backend will need individual work to recognize the new format. 484 StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) { 485 IRBuilder<> Builder(SI); 486 auto *M = SI->getModule(); 487 Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(), 488 M->getDataLayout()); 489 Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy); 490 491 Value *Addr = SI->getPointerOperand(); 492 Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace()); 493 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 494 495 StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr); 496 NewSI->setAlignment(SI->getAlign()); 497 NewSI->setVolatile(SI->isVolatile()); 498 NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID()); 499 LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n"); 500 SI->eraseFromParent(); 501 return NewSI; 502 } 503 504 void AtomicExpand::expandAtomicStore(StoreInst *SI) { 505 // This function is only called on atomic stores that are too large to be 506 // atomic if implemented as a native store. So we replace them by an 507 // atomic swap, that can be implemented for example as a ldrex/strex on ARM 508 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. 509 // It is the responsibility of the target to only signal expansion via 510 // shouldExpandAtomicRMW in cases where this is required and possible. 511 IRBuilder<> Builder(SI); 512 AtomicRMWInst *AI = Builder.CreateAtomicRMW( 513 AtomicRMWInst::Xchg, SI->getPointerOperand(), SI->getValueOperand(), 514 SI->getAlign(), SI->getOrdering()); 515 SI->eraseFromParent(); 516 517 // Now we have an appropriate swap instruction, lower it as usual. 518 tryExpandAtomicRMW(AI); 519 } 520 521 static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr, 522 Value *Loaded, Value *NewVal, Align AddrAlign, 523 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 524 Value *&Success, Value *&NewLoaded) { 525 Type *OrigTy = NewVal->getType(); 526 527 // This code can go away when cmpxchg supports FP types. 528 bool NeedBitcast = OrigTy->isFloatingPointTy(); 529 if (NeedBitcast) { 530 IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits()); 531 unsigned AS = Addr->getType()->getPointerAddressSpace(); 532 Addr = Builder.CreateBitCast(Addr, IntTy->getPointerTo(AS)); 533 NewVal = Builder.CreateBitCast(NewVal, IntTy); 534 Loaded = Builder.CreateBitCast(Loaded, IntTy); 535 } 536 537 Value *Pair = Builder.CreateAtomicCmpXchg( 538 Addr, Loaded, NewVal, AddrAlign, MemOpOrder, 539 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID); 540 Success = Builder.CreateExtractValue(Pair, 1, "success"); 541 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 542 543 if (NeedBitcast) 544 NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy); 545 } 546 547 /// Emit IR to implement the given atomicrmw operation on values in registers, 548 /// returning the new value. 549 static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder, 550 Value *Loaded, Value *Inc) { 551 Value *NewVal; 552 switch (Op) { 553 case AtomicRMWInst::Xchg: 554 return Inc; 555 case AtomicRMWInst::Add: 556 return Builder.CreateAdd(Loaded, Inc, "new"); 557 case AtomicRMWInst::Sub: 558 return Builder.CreateSub(Loaded, Inc, "new"); 559 case AtomicRMWInst::And: 560 return Builder.CreateAnd(Loaded, Inc, "new"); 561 case AtomicRMWInst::Nand: 562 return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new"); 563 case AtomicRMWInst::Or: 564 return Builder.CreateOr(Loaded, Inc, "new"); 565 case AtomicRMWInst::Xor: 566 return Builder.CreateXor(Loaded, Inc, "new"); 567 case AtomicRMWInst::Max: 568 NewVal = Builder.CreateICmpSGT(Loaded, Inc); 569 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 570 case AtomicRMWInst::Min: 571 NewVal = Builder.CreateICmpSLE(Loaded, Inc); 572 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 573 case AtomicRMWInst::UMax: 574 NewVal = Builder.CreateICmpUGT(Loaded, Inc); 575 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 576 case AtomicRMWInst::UMin: 577 NewVal = Builder.CreateICmpULE(Loaded, Inc); 578 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 579 case AtomicRMWInst::FAdd: 580 return Builder.CreateFAdd(Loaded, Inc, "new"); 581 case AtomicRMWInst::FSub: 582 return Builder.CreateFSub(Loaded, Inc, "new"); 583 default: 584 llvm_unreachable("Unknown atomic op"); 585 } 586 } 587 588 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) { 589 LLVMContext &Ctx = AI->getModule()->getContext(); 590 TargetLowering::AtomicExpansionKind Kind = TLI->shouldExpandAtomicRMWInIR(AI); 591 switch (Kind) { 592 case TargetLoweringBase::AtomicExpansionKind::None: 593 return false; 594 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 595 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 596 unsigned ValueSize = getAtomicOpSize(AI); 597 if (ValueSize < MinCASSize) { 598 expandPartwordAtomicRMW(AI, 599 TargetLoweringBase::AtomicExpansionKind::LLSC); 600 } else { 601 auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) { 602 return performAtomicOp(AI->getOperation(), Builder, Loaded, 603 AI->getValOperand()); 604 }; 605 expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(), 606 AI->getAlign(), AI->getOrdering(), PerformOp); 607 } 608 return true; 609 } 610 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: { 611 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 612 unsigned ValueSize = getAtomicOpSize(AI); 613 if (ValueSize < MinCASSize) { 614 // TODO: Handle atomicrmw fadd/fsub 615 if (AI->getType()->isFloatingPointTy()) 616 return false; 617 618 expandPartwordAtomicRMW(AI, 619 TargetLoweringBase::AtomicExpansionKind::CmpXChg); 620 } else { 621 SmallVector<StringRef> SSNs; 622 Ctx.getSyncScopeNames(SSNs); 623 auto MemScope = SSNs[AI->getSyncScopeID()].empty() 624 ? "system" 625 : SSNs[AI->getSyncScopeID()]; 626 OptimizationRemarkEmitter ORE(AI->getFunction()); 627 ORE.emit([&]() { 628 return OptimizationRemark(DEBUG_TYPE, "Passed", AI) 629 << "A compare and swap loop was generated for an atomic " 630 << AI->getOperationName(AI->getOperation()) << " operation at " 631 << MemScope << " memory scope"; 632 }); 633 expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun); 634 } 635 return true; 636 } 637 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: { 638 expandAtomicRMWToMaskedIntrinsic(AI); 639 return true; 640 } 641 case TargetLoweringBase::AtomicExpansionKind::BitTestIntrinsic: { 642 TLI->emitBitTestAtomicRMWIntrinsic(AI); 643 return true; 644 } 645 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 646 return lowerAtomicRMWInst(AI); 647 default: 648 llvm_unreachable("Unhandled case in tryExpandAtomicRMW"); 649 } 650 } 651 652 namespace { 653 654 struct PartwordMaskValues { 655 // These three fields are guaranteed to be set by createMaskInstrs. 656 Type *WordType = nullptr; 657 Type *ValueType = nullptr; 658 Value *AlignedAddr = nullptr; 659 Align AlignedAddrAlignment; 660 // The remaining fields can be null. 661 Value *ShiftAmt = nullptr; 662 Value *Mask = nullptr; 663 Value *Inv_Mask = nullptr; 664 }; 665 666 LLVM_ATTRIBUTE_UNUSED 667 raw_ostream &operator<<(raw_ostream &O, const PartwordMaskValues &PMV) { 668 auto PrintObj = [&O](auto *V) { 669 if (V) 670 O << *V; 671 else 672 O << "nullptr"; 673 O << '\n'; 674 }; 675 O << "PartwordMaskValues {\n"; 676 O << " WordType: "; 677 PrintObj(PMV.WordType); 678 O << " ValueType: "; 679 PrintObj(PMV.ValueType); 680 O << " AlignedAddr: "; 681 PrintObj(PMV.AlignedAddr); 682 O << " AlignedAddrAlignment: " << PMV.AlignedAddrAlignment.value() << '\n'; 683 O << " ShiftAmt: "; 684 PrintObj(PMV.ShiftAmt); 685 O << " Mask: "; 686 PrintObj(PMV.Mask); 687 O << " Inv_Mask: "; 688 PrintObj(PMV.Inv_Mask); 689 O << "}\n"; 690 return O; 691 } 692 693 } // end anonymous namespace 694 695 /// This is a helper function which builds instructions to provide 696 /// values necessary for partword atomic operations. It takes an 697 /// incoming address, Addr, and ValueType, and constructs the address, 698 /// shift-amounts and masks needed to work with a larger value of size 699 /// WordSize. 700 /// 701 /// AlignedAddr: Addr rounded down to a multiple of WordSize 702 /// 703 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded 704 /// from AlignAddr for it to have the same value as if 705 /// ValueType was loaded from Addr. 706 /// 707 /// Mask: Value to mask with the value loaded from AlignAddr to 708 /// include only the part that would've been loaded from Addr. 709 /// 710 /// Inv_Mask: The inverse of Mask. 711 static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I, 712 Type *ValueType, Value *Addr, 713 Align AddrAlign, 714 unsigned MinWordSize) { 715 PartwordMaskValues PMV; 716 717 Module *M = I->getModule(); 718 LLVMContext &Ctx = M->getContext(); 719 const DataLayout &DL = M->getDataLayout(); 720 unsigned ValueSize = DL.getTypeStoreSize(ValueType); 721 722 PMV.ValueType = ValueType; 723 PMV.WordType = MinWordSize > ValueSize ? Type::getIntNTy(Ctx, MinWordSize * 8) 724 : ValueType; 725 if (PMV.ValueType == PMV.WordType) { 726 PMV.AlignedAddr = Addr; 727 PMV.AlignedAddrAlignment = AddrAlign; 728 PMV.ShiftAmt = ConstantInt::get(PMV.ValueType, 0); 729 PMV.Mask = ConstantInt::get(PMV.ValueType, ~0, /*isSigned*/ true); 730 return PMV; 731 } 732 733 assert(ValueSize < MinWordSize); 734 735 Type *WordPtrType = 736 PMV.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace()); 737 738 // TODO: we could skip some of this if AddrAlign >= MinWordSize. 739 Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx)); 740 PMV.AlignedAddr = Builder.CreateIntToPtr( 741 Builder.CreateAnd(AddrInt, ~(uint64_t)(MinWordSize - 1)), WordPtrType, 742 "AlignedAddr"); 743 PMV.AlignedAddrAlignment = Align(MinWordSize); 744 745 Value *PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1, "PtrLSB"); 746 if (DL.isLittleEndian()) { 747 // turn bytes into bits 748 PMV.ShiftAmt = Builder.CreateShl(PtrLSB, 3); 749 } else { 750 // turn bytes into bits, and count from the other side. 751 PMV.ShiftAmt = Builder.CreateShl( 752 Builder.CreateXor(PtrLSB, MinWordSize - ValueSize), 3); 753 } 754 755 PMV.ShiftAmt = Builder.CreateTrunc(PMV.ShiftAmt, PMV.WordType, "ShiftAmt"); 756 PMV.Mask = Builder.CreateShl( 757 ConstantInt::get(PMV.WordType, (1 << (ValueSize * 8)) - 1), PMV.ShiftAmt, 758 "Mask"); 759 PMV.Inv_Mask = Builder.CreateNot(PMV.Mask, "Inv_Mask"); 760 return PMV; 761 } 762 763 static Value *extractMaskedValue(IRBuilder<> &Builder, Value *WideWord, 764 const PartwordMaskValues &PMV) { 765 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch"); 766 if (PMV.WordType == PMV.ValueType) 767 return WideWord; 768 769 Value *Shift = Builder.CreateLShr(WideWord, PMV.ShiftAmt, "shifted"); 770 Value *Trunc = Builder.CreateTrunc(Shift, PMV.ValueType, "extracted"); 771 return Trunc; 772 } 773 774 static Value *insertMaskedValue(IRBuilder<> &Builder, Value *WideWord, 775 Value *Updated, const PartwordMaskValues &PMV) { 776 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch"); 777 assert(Updated->getType() == PMV.ValueType && "Value type mismatch"); 778 if (PMV.WordType == PMV.ValueType) 779 return Updated; 780 781 Value *ZExt = Builder.CreateZExt(Updated, PMV.WordType, "extended"); 782 Value *Shift = 783 Builder.CreateShl(ZExt, PMV.ShiftAmt, "shifted", /*HasNUW*/ true); 784 Value *And = Builder.CreateAnd(WideWord, PMV.Inv_Mask, "unmasked"); 785 Value *Or = Builder.CreateOr(And, Shift, "inserted"); 786 return Or; 787 } 788 789 /// Emit IR to implement a masked version of a given atomicrmw 790 /// operation. (That is, only the bits under the Mask should be 791 /// affected by the operation) 792 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op, 793 IRBuilder<> &Builder, Value *Loaded, 794 Value *Shifted_Inc, Value *Inc, 795 const PartwordMaskValues &PMV) { 796 // TODO: update to use 797 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order 798 // to merge bits from two values without requiring PMV.Inv_Mask. 799 switch (Op) { 800 case AtomicRMWInst::Xchg: { 801 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 802 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc); 803 return FinalVal; 804 } 805 case AtomicRMWInst::Or: 806 case AtomicRMWInst::Xor: 807 case AtomicRMWInst::And: 808 llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW"); 809 case AtomicRMWInst::Add: 810 case AtomicRMWInst::Sub: 811 case AtomicRMWInst::Nand: { 812 // The other arithmetic ops need to be masked into place. 813 Value *NewVal = performAtomicOp(Op, Builder, Loaded, Shifted_Inc); 814 Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask); 815 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 816 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked); 817 return FinalVal; 818 } 819 case AtomicRMWInst::Max: 820 case AtomicRMWInst::Min: 821 case AtomicRMWInst::UMax: 822 case AtomicRMWInst::UMin: { 823 // Finally, comparison ops will operate on the full value, so 824 // truncate down to the original size, and expand out again after 825 // doing the operation. 826 Value *Loaded_Extract = extractMaskedValue(Builder, Loaded, PMV); 827 Value *NewVal = performAtomicOp(Op, Builder, Loaded_Extract, Inc); 828 Value *FinalVal = insertMaskedValue(Builder, Loaded, NewVal, PMV); 829 return FinalVal; 830 } 831 default: 832 llvm_unreachable("Unknown atomic op"); 833 } 834 } 835 836 /// Expand a sub-word atomicrmw operation into an appropriate 837 /// word-sized operation. 838 /// 839 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same 840 /// way as a typical atomicrmw expansion. The only difference here is 841 /// that the operation inside of the loop may operate upon only a 842 /// part of the value. 843 void AtomicExpand::expandPartwordAtomicRMW( 844 AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) { 845 AtomicOrdering MemOpOrder = AI->getOrdering(); 846 SyncScope::ID SSID = AI->getSyncScopeID(); 847 848 IRBuilder<> Builder(AI); 849 850 PartwordMaskValues PMV = 851 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 852 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 853 854 Value *ValOperand_Shifted = 855 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 856 PMV.ShiftAmt, "ValOperand_Shifted"); 857 858 auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) { 859 return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded, 860 ValOperand_Shifted, AI->getValOperand(), PMV); 861 }; 862 863 Value *OldResult; 864 if (ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg) { 865 OldResult = insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, 866 PMV.AlignedAddrAlignment, MemOpOrder, SSID, 867 PerformPartwordOp, createCmpXchgInstFun); 868 } else { 869 assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::LLSC); 870 OldResult = insertRMWLLSCLoop(Builder, PMV.WordType, PMV.AlignedAddr, 871 PMV.AlignedAddrAlignment, MemOpOrder, 872 PerformPartwordOp); 873 } 874 875 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV); 876 AI->replaceAllUsesWith(FinalOldResult); 877 AI->eraseFromParent(); 878 } 879 880 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width. 881 AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) { 882 IRBuilder<> Builder(AI); 883 AtomicRMWInst::BinOp Op = AI->getOperation(); 884 885 assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 886 Op == AtomicRMWInst::And) && 887 "Unable to widen operation"); 888 889 PartwordMaskValues PMV = 890 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 891 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 892 893 Value *ValOperand_Shifted = 894 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 895 PMV.ShiftAmt, "ValOperand_Shifted"); 896 897 Value *NewOperand; 898 899 if (Op == AtomicRMWInst::And) 900 NewOperand = 901 Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand"); 902 else 903 NewOperand = ValOperand_Shifted; 904 905 AtomicRMWInst *NewAI = 906 Builder.CreateAtomicRMW(Op, PMV.AlignedAddr, NewOperand, 907 PMV.AlignedAddrAlignment, AI->getOrdering()); 908 909 Value *FinalOldResult = extractMaskedValue(Builder, NewAI, PMV); 910 AI->replaceAllUsesWith(FinalOldResult); 911 AI->eraseFromParent(); 912 return NewAI; 913 } 914 915 bool AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) { 916 // The basic idea here is that we're expanding a cmpxchg of a 917 // smaller memory size up to a word-sized cmpxchg. To do this, we 918 // need to add a retry-loop for strong cmpxchg, so that 919 // modifications to other parts of the word don't cause a spurious 920 // failure. 921 922 // This generates code like the following: 923 // [[Setup mask values PMV.*]] 924 // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt 925 // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt 926 // %InitLoaded = load i32* %addr 927 // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask 928 // br partword.cmpxchg.loop 929 // partword.cmpxchg.loop: 930 // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ], 931 // [ %OldVal_MaskOut, %partword.cmpxchg.failure ] 932 // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted 933 // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted 934 // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp, 935 // i32 %FullWord_NewVal success_ordering failure_ordering 936 // %OldVal = extractvalue { i32, i1 } %NewCI, 0 937 // %Success = extractvalue { i32, i1 } %NewCI, 1 938 // br i1 %Success, label %partword.cmpxchg.end, 939 // label %partword.cmpxchg.failure 940 // partword.cmpxchg.failure: 941 // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask 942 // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut 943 // br i1 %ShouldContinue, label %partword.cmpxchg.loop, 944 // label %partword.cmpxchg.end 945 // partword.cmpxchg.end: 946 // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt 947 // %FinalOldVal = trunc i32 %tmp1 to i8 948 // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0 949 // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1 950 951 Value *Addr = CI->getPointerOperand(); 952 Value *Cmp = CI->getCompareOperand(); 953 Value *NewVal = CI->getNewValOperand(); 954 955 BasicBlock *BB = CI->getParent(); 956 Function *F = BB->getParent(); 957 IRBuilder<> Builder(CI); 958 LLVMContext &Ctx = Builder.getContext(); 959 960 BasicBlock *EndBB = 961 BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end"); 962 auto FailureBB = 963 BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB); 964 auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB); 965 966 // The split call above "helpfully" added a branch at the end of BB 967 // (to the wrong place). 968 std::prev(BB->end())->eraseFromParent(); 969 Builder.SetInsertPoint(BB); 970 971 PartwordMaskValues PMV = 972 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr, 973 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 974 975 // Shift the incoming values over, into the right location in the word. 976 Value *NewVal_Shifted = 977 Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt); 978 Value *Cmp_Shifted = 979 Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt); 980 981 // Load the entire current word, and mask into place the expected and new 982 // values 983 LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr); 984 InitLoaded->setVolatile(CI->isVolatile()); 985 Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask); 986 Builder.CreateBr(LoopBB); 987 988 // partword.cmpxchg.loop: 989 Builder.SetInsertPoint(LoopBB); 990 PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2); 991 Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB); 992 993 // Mask/Or the expected and new values into place in the loaded word. 994 Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted); 995 Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted); 996 AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg( 997 PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, PMV.AlignedAddrAlignment, 998 CI->getSuccessOrdering(), CI->getFailureOrdering(), CI->getSyncScopeID()); 999 NewCI->setVolatile(CI->isVolatile()); 1000 // When we're building a strong cmpxchg, we need a loop, so you 1001 // might think we could use a weak cmpxchg inside. But, using strong 1002 // allows the below comparison for ShouldContinue, and we're 1003 // expecting the underlying cmpxchg to be a machine instruction, 1004 // which is strong anyways. 1005 NewCI->setWeak(CI->isWeak()); 1006 1007 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 1008 Value *Success = Builder.CreateExtractValue(NewCI, 1); 1009 1010 if (CI->isWeak()) 1011 Builder.CreateBr(EndBB); 1012 else 1013 Builder.CreateCondBr(Success, EndBB, FailureBB); 1014 1015 // partword.cmpxchg.failure: 1016 Builder.SetInsertPoint(FailureBB); 1017 // Upon failure, verify that the masked-out part of the loaded value 1018 // has been modified. If it didn't, abort the cmpxchg, since the 1019 // masked-in part must've. 1020 Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask); 1021 Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut); 1022 Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB); 1023 1024 // Add the second value to the phi from above 1025 Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB); 1026 1027 // partword.cmpxchg.end: 1028 Builder.SetInsertPoint(CI); 1029 1030 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV); 1031 Value *Res = UndefValue::get(CI->getType()); 1032 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 1033 Res = Builder.CreateInsertValue(Res, Success, 1); 1034 1035 CI->replaceAllUsesWith(Res); 1036 CI->eraseFromParent(); 1037 return true; 1038 } 1039 1040 void AtomicExpand::expandAtomicOpToLLSC( 1041 Instruction *I, Type *ResultType, Value *Addr, Align AddrAlign, 1042 AtomicOrdering MemOpOrder, 1043 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { 1044 IRBuilder<> Builder(I); 1045 Value *Loaded = insertRMWLLSCLoop(Builder, ResultType, Addr, AddrAlign, 1046 MemOpOrder, PerformOp); 1047 1048 I->replaceAllUsesWith(Loaded); 1049 I->eraseFromParent(); 1050 } 1051 1052 void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) { 1053 IRBuilder<> Builder(AI); 1054 1055 PartwordMaskValues PMV = 1056 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 1057 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1058 1059 // The value operand must be sign-extended for signed min/max so that the 1060 // target's signed comparison instructions can be used. Otherwise, just 1061 // zero-ext. 1062 Instruction::CastOps CastOp = Instruction::ZExt; 1063 AtomicRMWInst::BinOp RMWOp = AI->getOperation(); 1064 if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min) 1065 CastOp = Instruction::SExt; 1066 1067 Value *ValOperand_Shifted = Builder.CreateShl( 1068 Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType), 1069 PMV.ShiftAmt, "ValOperand_Shifted"); 1070 Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic( 1071 Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt, 1072 AI->getOrdering()); 1073 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV); 1074 AI->replaceAllUsesWith(FinalOldResult); 1075 AI->eraseFromParent(); 1076 } 1077 1078 void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI) { 1079 IRBuilder<> Builder(CI); 1080 1081 PartwordMaskValues PMV = createMaskInstrs( 1082 Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(), 1083 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1084 1085 Value *CmpVal_Shifted = Builder.CreateShl( 1086 Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt, 1087 "CmpVal_Shifted"); 1088 Value *NewVal_Shifted = Builder.CreateShl( 1089 Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt, 1090 "NewVal_Shifted"); 1091 Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic( 1092 Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask, 1093 CI->getMergedOrdering()); 1094 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV); 1095 Value *Res = UndefValue::get(CI->getType()); 1096 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 1097 Value *Success = Builder.CreateICmpEQ( 1098 CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success"); 1099 Res = Builder.CreateInsertValue(Res, Success, 1); 1100 1101 CI->replaceAllUsesWith(Res); 1102 CI->eraseFromParent(); 1103 } 1104 1105 Value *AtomicExpand::insertRMWLLSCLoop( 1106 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, 1107 AtomicOrdering MemOpOrder, 1108 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { 1109 LLVMContext &Ctx = Builder.getContext(); 1110 BasicBlock *BB = Builder.GetInsertBlock(); 1111 Function *F = BB->getParent(); 1112 1113 assert(AddrAlign >= 1114 F->getParent()->getDataLayout().getTypeStoreSize(ResultTy) && 1115 "Expected at least natural alignment at this point."); 1116 1117 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1118 // 1119 // The standard expansion we produce is: 1120 // [...] 1121 // atomicrmw.start: 1122 // %loaded = @load.linked(%addr) 1123 // %new = some_op iN %loaded, %incr 1124 // %stored = @store_conditional(%new, %addr) 1125 // %try_again = icmp i32 ne %stored, 0 1126 // br i1 %try_again, label %loop, label %atomicrmw.end 1127 // atomicrmw.end: 1128 // [...] 1129 BasicBlock *ExitBB = 1130 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1131 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1132 1133 // The split call above "helpfully" added a branch at the end of BB (to the 1134 // wrong place). 1135 std::prev(BB->end())->eraseFromParent(); 1136 Builder.SetInsertPoint(BB); 1137 Builder.CreateBr(LoopBB); 1138 1139 // Start the main loop block now that we've taken care of the preliminaries. 1140 Builder.SetInsertPoint(LoopBB); 1141 Value *Loaded = TLI->emitLoadLinked(Builder, ResultTy, Addr, MemOpOrder); 1142 1143 Value *NewVal = PerformOp(Builder, Loaded); 1144 1145 Value *StoreSuccess = 1146 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); 1147 Value *TryAgain = Builder.CreateICmpNE( 1148 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); 1149 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); 1150 1151 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1152 return Loaded; 1153 } 1154 1155 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of 1156 /// the equivalent bitwidth. We used to not support pointer cmpxchg in the 1157 /// IR. As a migration step, we convert back to what use to be the standard 1158 /// way to represent a pointer cmpxchg so that we can update backends one by 1159 /// one. 1160 AtomicCmpXchgInst * 1161 AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) { 1162 auto *M = CI->getModule(); 1163 Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(), 1164 M->getDataLayout()); 1165 1166 IRBuilder<> Builder(CI); 1167 1168 Value *Addr = CI->getPointerOperand(); 1169 Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace()); 1170 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 1171 1172 Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy); 1173 Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy); 1174 1175 auto *NewCI = Builder.CreateAtomicCmpXchg( 1176 NewAddr, NewCmp, NewNewVal, CI->getAlign(), CI->getSuccessOrdering(), 1177 CI->getFailureOrdering(), CI->getSyncScopeID()); 1178 NewCI->setVolatile(CI->isVolatile()); 1179 NewCI->setWeak(CI->isWeak()); 1180 LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n"); 1181 1182 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 1183 Value *Succ = Builder.CreateExtractValue(NewCI, 1); 1184 1185 OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType()); 1186 1187 Value *Res = UndefValue::get(CI->getType()); 1188 Res = Builder.CreateInsertValue(Res, OldVal, 0); 1189 Res = Builder.CreateInsertValue(Res, Succ, 1); 1190 1191 CI->replaceAllUsesWith(Res); 1192 CI->eraseFromParent(); 1193 return NewCI; 1194 } 1195 1196 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1197 AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); 1198 AtomicOrdering FailureOrder = CI->getFailureOrdering(); 1199 Value *Addr = CI->getPointerOperand(); 1200 BasicBlock *BB = CI->getParent(); 1201 Function *F = BB->getParent(); 1202 LLVMContext &Ctx = F->getContext(); 1203 // If shouldInsertFencesForAtomic() returns true, then the target does not 1204 // want to deal with memory orders, and emitLeading/TrailingFence should take 1205 // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we 1206 // should preserve the ordering. 1207 bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI); 1208 AtomicOrdering MemOpOrder = ShouldInsertFencesForAtomic 1209 ? AtomicOrdering::Monotonic 1210 : CI->getMergedOrdering(); 1211 1212 // In implementations which use a barrier to achieve release semantics, we can 1213 // delay emitting this barrier until we know a store is actually going to be 1214 // attempted. The cost of this delay is that we need 2 copies of the block 1215 // emitting the load-linked, affecting code size. 1216 // 1217 // Ideally, this logic would be unconditional except for the minsize check 1218 // since in other cases the extra blocks naturally collapse down to the 1219 // minimal loop. Unfortunately, this puts too much stress on later 1220 // optimisations so we avoid emitting the extra logic in those cases too. 1221 bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic && 1222 SuccessOrder != AtomicOrdering::Monotonic && 1223 SuccessOrder != AtomicOrdering::Acquire && 1224 !F->hasMinSize(); 1225 1226 // There's no overhead for sinking the release barrier in a weak cmpxchg, so 1227 // do it even on minsize. 1228 bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak(); 1229 1230 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord 1231 // 1232 // The full expansion we produce is: 1233 // [...] 1234 // %aligned.addr = ... 1235 // cmpxchg.start: 1236 // %unreleasedload = @load.linked(%aligned.addr) 1237 // %unreleasedload.extract = extract value from %unreleasedload 1238 // %should_store = icmp eq %unreleasedload.extract, %desired 1239 // br i1 %should_store, label %cmpxchg.releasingstore, 1240 // label %cmpxchg.nostore 1241 // cmpxchg.releasingstore: 1242 // fence? 1243 // br label cmpxchg.trystore 1244 // cmpxchg.trystore: 1245 // %loaded.trystore = phi [%unreleasedload, %cmpxchg.releasingstore], 1246 // [%releasedload, %cmpxchg.releasedload] 1247 // %updated.new = insert %new into %loaded.trystore 1248 // %stored = @store_conditional(%updated.new, %aligned.addr) 1249 // %success = icmp eq i32 %stored, 0 1250 // br i1 %success, label %cmpxchg.success, 1251 // label %cmpxchg.releasedload/%cmpxchg.failure 1252 // cmpxchg.releasedload: 1253 // %releasedload = @load.linked(%aligned.addr) 1254 // %releasedload.extract = extract value from %releasedload 1255 // %should_store = icmp eq %releasedload.extract, %desired 1256 // br i1 %should_store, label %cmpxchg.trystore, 1257 // label %cmpxchg.failure 1258 // cmpxchg.success: 1259 // fence? 1260 // br label %cmpxchg.end 1261 // cmpxchg.nostore: 1262 // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start], 1263 // [%releasedload, 1264 // %cmpxchg.releasedload/%cmpxchg.trystore] 1265 // @load_linked_fail_balance()? 1266 // br label %cmpxchg.failure 1267 // cmpxchg.failure: 1268 // fence? 1269 // br label %cmpxchg.end 1270 // cmpxchg.end: 1271 // %loaded.exit = phi [%loaded.nostore, %cmpxchg.failure], 1272 // [%loaded.trystore, %cmpxchg.trystore] 1273 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] 1274 // %loaded = extract value from %loaded.exit 1275 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 1276 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 1277 // [...] 1278 BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end"); 1279 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); 1280 auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB); 1281 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB); 1282 auto ReleasedLoadBB = 1283 BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB); 1284 auto TryStoreBB = 1285 BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB); 1286 auto ReleasingStoreBB = 1287 BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB); 1288 auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB); 1289 1290 // This grabs the DebugLoc from CI 1291 IRBuilder<> Builder(CI); 1292 1293 // The split call above "helpfully" added a branch at the end of BB (to the 1294 // wrong place), but we might want a fence too. It's easiest to just remove 1295 // the branch entirely. 1296 std::prev(BB->end())->eraseFromParent(); 1297 Builder.SetInsertPoint(BB); 1298 if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier) 1299 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1300 1301 PartwordMaskValues PMV = 1302 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr, 1303 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1304 Builder.CreateBr(StartBB); 1305 1306 // Start the main loop block now that we've taken care of the preliminaries. 1307 Builder.SetInsertPoint(StartBB); 1308 Value *UnreleasedLoad = 1309 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder); 1310 Value *UnreleasedLoadExtract = 1311 extractMaskedValue(Builder, UnreleasedLoad, PMV); 1312 Value *ShouldStore = Builder.CreateICmpEQ( 1313 UnreleasedLoadExtract, CI->getCompareOperand(), "should_store"); 1314 1315 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1316 // jump straight past that fence instruction (if it exists). 1317 Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB); 1318 1319 Builder.SetInsertPoint(ReleasingStoreBB); 1320 if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier) 1321 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1322 Builder.CreateBr(TryStoreBB); 1323 1324 Builder.SetInsertPoint(TryStoreBB); 1325 PHINode *LoadedTryStore = 1326 Builder.CreatePHI(PMV.WordType, 2, "loaded.trystore"); 1327 LoadedTryStore->addIncoming(UnreleasedLoad, ReleasingStoreBB); 1328 Value *NewValueInsert = 1329 insertMaskedValue(Builder, LoadedTryStore, CI->getNewValOperand(), PMV); 1330 Value *StoreSuccess = TLI->emitStoreConditional(Builder, NewValueInsert, 1331 PMV.AlignedAddr, MemOpOrder); 1332 StoreSuccess = Builder.CreateICmpEQ( 1333 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); 1334 BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB; 1335 Builder.CreateCondBr(StoreSuccess, SuccessBB, 1336 CI->isWeak() ? FailureBB : RetryBB); 1337 1338 Builder.SetInsertPoint(ReleasedLoadBB); 1339 Value *SecondLoad; 1340 if (HasReleasedLoadBB) { 1341 SecondLoad = 1342 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder); 1343 Value *SecondLoadExtract = extractMaskedValue(Builder, SecondLoad, PMV); 1344 ShouldStore = Builder.CreateICmpEQ(SecondLoadExtract, 1345 CI->getCompareOperand(), "should_store"); 1346 1347 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1348 // jump straight past that fence instruction (if it exists). 1349 Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB); 1350 // Update PHI node in TryStoreBB. 1351 LoadedTryStore->addIncoming(SecondLoad, ReleasedLoadBB); 1352 } else 1353 Builder.CreateUnreachable(); 1354 1355 // Make sure later instructions don't get reordered with a fence if 1356 // necessary. 1357 Builder.SetInsertPoint(SuccessBB); 1358 if (ShouldInsertFencesForAtomic) 1359 TLI->emitTrailingFence(Builder, CI, SuccessOrder); 1360 Builder.CreateBr(ExitBB); 1361 1362 Builder.SetInsertPoint(NoStoreBB); 1363 PHINode *LoadedNoStore = 1364 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.nostore"); 1365 LoadedNoStore->addIncoming(UnreleasedLoad, StartBB); 1366 if (HasReleasedLoadBB) 1367 LoadedNoStore->addIncoming(SecondLoad, ReleasedLoadBB); 1368 1369 // In the failing case, where we don't execute the store-conditional, the 1370 // target might want to balance out the load-linked with a dedicated 1371 // instruction (e.g., on ARM, clearing the exclusive monitor). 1372 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 1373 Builder.CreateBr(FailureBB); 1374 1375 Builder.SetInsertPoint(FailureBB); 1376 PHINode *LoadedFailure = 1377 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.failure"); 1378 LoadedFailure->addIncoming(LoadedNoStore, NoStoreBB); 1379 if (CI->isWeak()) 1380 LoadedFailure->addIncoming(LoadedTryStore, TryStoreBB); 1381 if (ShouldInsertFencesForAtomic) 1382 TLI->emitTrailingFence(Builder, CI, FailureOrder); 1383 Builder.CreateBr(ExitBB); 1384 1385 // Finally, we have control-flow based knowledge of whether the cmpxchg 1386 // succeeded or not. We expose this to later passes by converting any 1387 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate 1388 // PHI. 1389 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1390 PHINode *LoadedExit = 1391 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.exit"); 1392 LoadedExit->addIncoming(LoadedTryStore, SuccessBB); 1393 LoadedExit->addIncoming(LoadedFailure, FailureBB); 1394 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2, "success"); 1395 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); 1396 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); 1397 1398 // This is the "exit value" from the cmpxchg expansion. It may be of 1399 // a type wider than the one in the cmpxchg instruction. 1400 Value *LoadedFull = LoadedExit; 1401 1402 Builder.SetInsertPoint(ExitBB, std::next(Success->getIterator())); 1403 Value *Loaded = extractMaskedValue(Builder, LoadedFull, PMV); 1404 1405 // Look for any users of the cmpxchg that are just comparing the loaded value 1406 // against the desired one, and replace them with the CFG-derived version. 1407 SmallVector<ExtractValueInst *, 2> PrunedInsts; 1408 for (auto User : CI->users()) { 1409 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); 1410 if (!EV) 1411 continue; 1412 1413 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && 1414 "weird extraction from { iN, i1 }"); 1415 1416 if (EV->getIndices()[0] == 0) 1417 EV->replaceAllUsesWith(Loaded); 1418 else 1419 EV->replaceAllUsesWith(Success); 1420 1421 PrunedInsts.push_back(EV); 1422 } 1423 1424 // We can remove the instructions now we're no longer iterating through them. 1425 for (auto EV : PrunedInsts) 1426 EV->eraseFromParent(); 1427 1428 if (!CI->use_empty()) { 1429 // Some use of the full struct return that we don't understand has happened, 1430 // so we've got to reconstruct it properly. 1431 Value *Res; 1432 Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0); 1433 Res = Builder.CreateInsertValue(Res, Success, 1); 1434 1435 CI->replaceAllUsesWith(Res); 1436 } 1437 1438 CI->eraseFromParent(); 1439 return true; 1440 } 1441 1442 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst *RMWI) { 1443 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand()); 1444 if (!C) 1445 return false; 1446 1447 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 1448 switch (Op) { 1449 case AtomicRMWInst::Add: 1450 case AtomicRMWInst::Sub: 1451 case AtomicRMWInst::Or: 1452 case AtomicRMWInst::Xor: 1453 return C->isZero(); 1454 case AtomicRMWInst::And: 1455 return C->isMinusOne(); 1456 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/... 1457 default: 1458 return false; 1459 } 1460 } 1461 1462 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst *RMWI) { 1463 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { 1464 tryExpandAtomicLoad(ResultingLoad); 1465 return true; 1466 } 1467 return false; 1468 } 1469 1470 Value *AtomicExpand::insertRMWCmpXchgLoop( 1471 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, 1472 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 1473 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, 1474 CreateCmpXchgInstFun CreateCmpXchg) { 1475 LLVMContext &Ctx = Builder.getContext(); 1476 BasicBlock *BB = Builder.GetInsertBlock(); 1477 Function *F = BB->getParent(); 1478 1479 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1480 // 1481 // The standard expansion we produce is: 1482 // [...] 1483 // %init_loaded = load atomic iN* %addr 1484 // br label %loop 1485 // loop: 1486 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] 1487 // %new = some_op iN %loaded, %incr 1488 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new 1489 // %new_loaded = extractvalue { iN, i1 } %pair, 0 1490 // %success = extractvalue { iN, i1 } %pair, 1 1491 // br i1 %success, label %atomicrmw.end, label %loop 1492 // atomicrmw.end: 1493 // [...] 1494 BasicBlock *ExitBB = 1495 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1496 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1497 1498 // The split call above "helpfully" added a branch at the end of BB (to the 1499 // wrong place), but we want a load. It's easiest to just remove 1500 // the branch entirely. 1501 std::prev(BB->end())->eraseFromParent(); 1502 Builder.SetInsertPoint(BB); 1503 LoadInst *InitLoaded = Builder.CreateAlignedLoad(ResultTy, Addr, AddrAlign); 1504 Builder.CreateBr(LoopBB); 1505 1506 // Start the main loop block now that we've taken care of the preliminaries. 1507 Builder.SetInsertPoint(LoopBB); 1508 PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded"); 1509 Loaded->addIncoming(InitLoaded, BB); 1510 1511 Value *NewVal = PerformOp(Builder, Loaded); 1512 1513 Value *NewLoaded = nullptr; 1514 Value *Success = nullptr; 1515 1516 CreateCmpXchg(Builder, Addr, Loaded, NewVal, AddrAlign, 1517 MemOpOrder == AtomicOrdering::Unordered 1518 ? AtomicOrdering::Monotonic 1519 : MemOpOrder, 1520 SSID, Success, NewLoaded); 1521 assert(Success && NewLoaded); 1522 1523 Loaded->addIncoming(NewLoaded, LoopBB); 1524 1525 Builder.CreateCondBr(Success, ExitBB, LoopBB); 1526 1527 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1528 return NewLoaded; 1529 } 1530 1531 bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1532 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 1533 unsigned ValueSize = getAtomicOpSize(CI); 1534 1535 switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) { 1536 default: 1537 llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg"); 1538 case TargetLoweringBase::AtomicExpansionKind::None: 1539 if (ValueSize < MinCASSize) 1540 return expandPartwordCmpXchg(CI); 1541 return false; 1542 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 1543 return expandAtomicCmpXchg(CI); 1544 } 1545 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: 1546 expandAtomicCmpXchgToMaskedIntrinsic(CI); 1547 return true; 1548 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 1549 return lowerAtomicCmpXchgInst(CI); 1550 } 1551 } 1552 1553 // Note: This function is exposed externally by AtomicExpandUtils.h 1554 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 1555 CreateCmpXchgInstFun CreateCmpXchg) { 1556 IRBuilder<> Builder(AI); 1557 Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop( 1558 Builder, AI->getType(), AI->getPointerOperand(), AI->getAlign(), 1559 AI->getOrdering(), AI->getSyncScopeID(), 1560 [&](IRBuilder<> &Builder, Value *Loaded) { 1561 return performAtomicOp(AI->getOperation(), Builder, Loaded, 1562 AI->getValOperand()); 1563 }, 1564 CreateCmpXchg); 1565 1566 AI->replaceAllUsesWith(Loaded); 1567 AI->eraseFromParent(); 1568 return true; 1569 } 1570 1571 // In order to use one of the sized library calls such as 1572 // __atomic_fetch_add_4, the alignment must be sufficient, the size 1573 // must be one of the potentially-specialized sizes, and the value 1574 // type must actually exist in C on the target (otherwise, the 1575 // function wouldn't actually be defined.) 1576 static bool canUseSizedAtomicCall(unsigned Size, Align Alignment, 1577 const DataLayout &DL) { 1578 // TODO: "LargestSize" is an approximation for "largest type that 1579 // you can express in C". It seems to be the case that int128 is 1580 // supported on all 64-bit platforms, otherwise only up to 64-bit 1581 // integers are supported. If we get this wrong, then we'll try to 1582 // call a sized libcall that doesn't actually exist. There should 1583 // really be some more reliable way in LLVM of determining integer 1584 // sizes which are valid in the target's C ABI... 1585 unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8; 1586 return Alignment >= Size && 1587 (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) && 1588 Size <= LargestSize; 1589 } 1590 1591 void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) { 1592 static const RTLIB::Libcall Libcalls[6] = { 1593 RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2, 1594 RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16}; 1595 unsigned Size = getAtomicOpSize(I); 1596 1597 bool expanded = expandAtomicOpToLibcall( 1598 I, Size, I->getAlign(), I->getPointerOperand(), nullptr, nullptr, 1599 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1600 if (!expanded) 1601 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Load"); 1602 } 1603 1604 void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) { 1605 static const RTLIB::Libcall Libcalls[6] = { 1606 RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2, 1607 RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16}; 1608 unsigned Size = getAtomicOpSize(I); 1609 1610 bool expanded = expandAtomicOpToLibcall( 1611 I, Size, I->getAlign(), I->getPointerOperand(), I->getValueOperand(), 1612 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1613 if (!expanded) 1614 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Store"); 1615 } 1616 1617 void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) { 1618 static const RTLIB::Libcall Libcalls[6] = { 1619 RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1, 1620 RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4, 1621 RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16}; 1622 unsigned Size = getAtomicOpSize(I); 1623 1624 bool expanded = expandAtomicOpToLibcall( 1625 I, Size, I->getAlign(), I->getPointerOperand(), I->getNewValOperand(), 1626 I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(), 1627 Libcalls); 1628 if (!expanded) 1629 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for CAS"); 1630 } 1631 1632 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) { 1633 static const RTLIB::Libcall LibcallsXchg[6] = { 1634 RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1, 1635 RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4, 1636 RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16}; 1637 static const RTLIB::Libcall LibcallsAdd[6] = { 1638 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1, 1639 RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4, 1640 RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16}; 1641 static const RTLIB::Libcall LibcallsSub[6] = { 1642 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1, 1643 RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4, 1644 RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16}; 1645 static const RTLIB::Libcall LibcallsAnd[6] = { 1646 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1, 1647 RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4, 1648 RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16}; 1649 static const RTLIB::Libcall LibcallsOr[6] = { 1650 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1, 1651 RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4, 1652 RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16}; 1653 static const RTLIB::Libcall LibcallsXor[6] = { 1654 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1, 1655 RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4, 1656 RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16}; 1657 static const RTLIB::Libcall LibcallsNand[6] = { 1658 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1, 1659 RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4, 1660 RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16}; 1661 1662 switch (Op) { 1663 case AtomicRMWInst::BAD_BINOP: 1664 llvm_unreachable("Should not have BAD_BINOP."); 1665 case AtomicRMWInst::Xchg: 1666 return makeArrayRef(LibcallsXchg); 1667 case AtomicRMWInst::Add: 1668 return makeArrayRef(LibcallsAdd); 1669 case AtomicRMWInst::Sub: 1670 return makeArrayRef(LibcallsSub); 1671 case AtomicRMWInst::And: 1672 return makeArrayRef(LibcallsAnd); 1673 case AtomicRMWInst::Or: 1674 return makeArrayRef(LibcallsOr); 1675 case AtomicRMWInst::Xor: 1676 return makeArrayRef(LibcallsXor); 1677 case AtomicRMWInst::Nand: 1678 return makeArrayRef(LibcallsNand); 1679 case AtomicRMWInst::Max: 1680 case AtomicRMWInst::Min: 1681 case AtomicRMWInst::UMax: 1682 case AtomicRMWInst::UMin: 1683 case AtomicRMWInst::FAdd: 1684 case AtomicRMWInst::FSub: 1685 // No atomic libcalls are available for max/min/umax/umin. 1686 return {}; 1687 } 1688 llvm_unreachable("Unexpected AtomicRMW operation."); 1689 } 1690 1691 void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) { 1692 ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation()); 1693 1694 unsigned Size = getAtomicOpSize(I); 1695 1696 bool Success = false; 1697 if (!Libcalls.empty()) 1698 Success = expandAtomicOpToLibcall( 1699 I, Size, I->getAlign(), I->getPointerOperand(), I->getValOperand(), 1700 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1701 1702 // The expansion failed: either there were no libcalls at all for 1703 // the operation (min/max), or there were only size-specialized 1704 // libcalls (add/sub/etc) and we needed a generic. So, expand to a 1705 // CAS libcall, via a CAS loop, instead. 1706 if (!Success) { 1707 expandAtomicRMWToCmpXchg( 1708 I, [this](IRBuilder<> &Builder, Value *Addr, Value *Loaded, 1709 Value *NewVal, Align Alignment, AtomicOrdering MemOpOrder, 1710 SyncScope::ID SSID, Value *&Success, Value *&NewLoaded) { 1711 // Create the CAS instruction normally... 1712 AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg( 1713 Addr, Loaded, NewVal, Alignment, MemOpOrder, 1714 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID); 1715 Success = Builder.CreateExtractValue(Pair, 1, "success"); 1716 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 1717 1718 // ...and then expand the CAS into a libcall. 1719 expandAtomicCASToLibcall(Pair); 1720 }); 1721 } 1722 } 1723 1724 // A helper routine for the above expandAtomic*ToLibcall functions. 1725 // 1726 // 'Libcalls' contains an array of enum values for the particular 1727 // ATOMIC libcalls to be emitted. All of the other arguments besides 1728 // 'I' are extracted from the Instruction subclass by the 1729 // caller. Depending on the particular call, some will be null. 1730 bool AtomicExpand::expandAtomicOpToLibcall( 1731 Instruction *I, unsigned Size, Align Alignment, Value *PointerOperand, 1732 Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering, 1733 AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) { 1734 assert(Libcalls.size() == 6); 1735 1736 LLVMContext &Ctx = I->getContext(); 1737 Module *M = I->getModule(); 1738 const DataLayout &DL = M->getDataLayout(); 1739 IRBuilder<> Builder(I); 1740 IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front()); 1741 1742 bool UseSizedLibcall = canUseSizedAtomicCall(Size, Alignment, DL); 1743 Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8); 1744 1745 const Align AllocaAlignment = DL.getPrefTypeAlign(SizedIntTy); 1746 1747 // TODO: the "order" argument type is "int", not int32. So 1748 // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints. 1749 ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size); 1750 assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO"); 1751 Constant *OrderingVal = 1752 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering)); 1753 Constant *Ordering2Val = nullptr; 1754 if (CASExpected) { 1755 assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO"); 1756 Ordering2Val = 1757 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2)); 1758 } 1759 bool HasResult = I->getType() != Type::getVoidTy(Ctx); 1760 1761 RTLIB::Libcall RTLibType; 1762 if (UseSizedLibcall) { 1763 switch (Size) { 1764 case 1: 1765 RTLibType = Libcalls[1]; 1766 break; 1767 case 2: 1768 RTLibType = Libcalls[2]; 1769 break; 1770 case 4: 1771 RTLibType = Libcalls[3]; 1772 break; 1773 case 8: 1774 RTLibType = Libcalls[4]; 1775 break; 1776 case 16: 1777 RTLibType = Libcalls[5]; 1778 break; 1779 } 1780 } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) { 1781 RTLibType = Libcalls[0]; 1782 } else { 1783 // Can't use sized function, and there's no generic for this 1784 // operation, so give up. 1785 return false; 1786 } 1787 1788 if (!TLI->getLibcallName(RTLibType)) { 1789 // This target does not implement the requested atomic libcall so give up. 1790 return false; 1791 } 1792 1793 // Build up the function call. There's two kinds. First, the sized 1794 // variants. These calls are going to be one of the following (with 1795 // N=1,2,4,8,16): 1796 // iN __atomic_load_N(iN *ptr, int ordering) 1797 // void __atomic_store_N(iN *ptr, iN val, int ordering) 1798 // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering) 1799 // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired, 1800 // int success_order, int failure_order) 1801 // 1802 // Note that these functions can be used for non-integer atomic 1803 // operations, the values just need to be bitcast to integers on the 1804 // way in and out. 1805 // 1806 // And, then, the generic variants. They look like the following: 1807 // void __atomic_load(size_t size, void *ptr, void *ret, int ordering) 1808 // void __atomic_store(size_t size, void *ptr, void *val, int ordering) 1809 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, 1810 // int ordering) 1811 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, 1812 // void *desired, int success_order, 1813 // int failure_order) 1814 // 1815 // The different signatures are built up depending on the 1816 // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult' 1817 // variables. 1818 1819 AllocaInst *AllocaCASExpected = nullptr; 1820 Value *AllocaCASExpected_i8 = nullptr; 1821 AllocaInst *AllocaValue = nullptr; 1822 Value *AllocaValue_i8 = nullptr; 1823 AllocaInst *AllocaResult = nullptr; 1824 Value *AllocaResult_i8 = nullptr; 1825 1826 Type *ResultTy; 1827 SmallVector<Value *, 6> Args; 1828 AttributeList Attr; 1829 1830 // 'size' argument. 1831 if (!UseSizedLibcall) { 1832 // Note, getIntPtrType is assumed equivalent to size_t. 1833 Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size)); 1834 } 1835 1836 // 'ptr' argument. 1837 // note: This assumes all address spaces share a common libfunc 1838 // implementation and that addresses are convertable. For systems without 1839 // that property, we'd need to extend this mechanism to support AS-specific 1840 // families of atomic intrinsics. 1841 auto PtrTypeAS = PointerOperand->getType()->getPointerAddressSpace(); 1842 Value *PtrVal = 1843 Builder.CreateBitCast(PointerOperand, Type::getInt8PtrTy(Ctx, PtrTypeAS)); 1844 PtrVal = Builder.CreateAddrSpaceCast(PtrVal, Type::getInt8PtrTy(Ctx)); 1845 Args.push_back(PtrVal); 1846 1847 // 'expected' argument, if present. 1848 if (CASExpected) { 1849 AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType()); 1850 AllocaCASExpected->setAlignment(AllocaAlignment); 1851 unsigned AllocaAS = AllocaCASExpected->getType()->getPointerAddressSpace(); 1852 1853 AllocaCASExpected_i8 = Builder.CreateBitCast( 1854 AllocaCASExpected, Type::getInt8PtrTy(Ctx, AllocaAS)); 1855 Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64); 1856 Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment); 1857 Args.push_back(AllocaCASExpected_i8); 1858 } 1859 1860 // 'val' argument ('desired' for cas), if present. 1861 if (ValueOperand) { 1862 if (UseSizedLibcall) { 1863 Value *IntValue = 1864 Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy); 1865 Args.push_back(IntValue); 1866 } else { 1867 AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType()); 1868 AllocaValue->setAlignment(AllocaAlignment); 1869 AllocaValue_i8 = 1870 Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx)); 1871 Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64); 1872 Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment); 1873 Args.push_back(AllocaValue_i8); 1874 } 1875 } 1876 1877 // 'ret' argument. 1878 if (!CASExpected && HasResult && !UseSizedLibcall) { 1879 AllocaResult = AllocaBuilder.CreateAlloca(I->getType()); 1880 AllocaResult->setAlignment(AllocaAlignment); 1881 unsigned AllocaAS = AllocaResult->getType()->getPointerAddressSpace(); 1882 AllocaResult_i8 = 1883 Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx, AllocaAS)); 1884 Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64); 1885 Args.push_back(AllocaResult_i8); 1886 } 1887 1888 // 'ordering' ('success_order' for cas) argument. 1889 Args.push_back(OrderingVal); 1890 1891 // 'failure_order' argument, if present. 1892 if (Ordering2Val) 1893 Args.push_back(Ordering2Val); 1894 1895 // Now, the return type. 1896 if (CASExpected) { 1897 ResultTy = Type::getInt1Ty(Ctx); 1898 Attr = Attr.addRetAttribute(Ctx, Attribute::ZExt); 1899 } else if (HasResult && UseSizedLibcall) 1900 ResultTy = SizedIntTy; 1901 else 1902 ResultTy = Type::getVoidTy(Ctx); 1903 1904 // Done with setting up arguments and return types, create the call: 1905 SmallVector<Type *, 6> ArgTys; 1906 for (Value *Arg : Args) 1907 ArgTys.push_back(Arg->getType()); 1908 FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false); 1909 FunctionCallee LibcallFn = 1910 M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr); 1911 CallInst *Call = Builder.CreateCall(LibcallFn, Args); 1912 Call->setAttributes(Attr); 1913 Value *Result = Call; 1914 1915 // And then, extract the results... 1916 if (ValueOperand && !UseSizedLibcall) 1917 Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64); 1918 1919 if (CASExpected) { 1920 // The final result from the CAS is {load of 'expected' alloca, bool result 1921 // from call} 1922 Type *FinalResultTy = I->getType(); 1923 Value *V = UndefValue::get(FinalResultTy); 1924 Value *ExpectedOut = Builder.CreateAlignedLoad( 1925 CASExpected->getType(), AllocaCASExpected, AllocaAlignment); 1926 Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64); 1927 V = Builder.CreateInsertValue(V, ExpectedOut, 0); 1928 V = Builder.CreateInsertValue(V, Result, 1); 1929 I->replaceAllUsesWith(V); 1930 } else if (HasResult) { 1931 Value *V; 1932 if (UseSizedLibcall) 1933 V = Builder.CreateBitOrPointerCast(Result, I->getType()); 1934 else { 1935 V = Builder.CreateAlignedLoad(I->getType(), AllocaResult, 1936 AllocaAlignment); 1937 Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64); 1938 } 1939 I->replaceAllUsesWith(V); 1940 } 1941 I->eraseFromParent(); 1942 return true; 1943 } 1944