1 //===-- AtomicExpandPass.cpp - Expand atomic instructions -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a pass (at IR level) to replace atomic instructions with 11 // either (intrinsic-based) load-linked/store-conditional loops or 12 // AtomicCmpXchg. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/AtomicExpandUtils.h" 17 #include "llvm/CodeGen/Passes.h" 18 #include "llvm/IR/Function.h" 19 #include "llvm/IR/IRBuilder.h" 20 #include "llvm/IR/InstIterator.h" 21 #include "llvm/IR/Instructions.h" 22 #include "llvm/IR/Intrinsics.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Target/TargetLowering.h" 26 #include "llvm/Target/TargetMachine.h" 27 #include "llvm/Target/TargetSubtargetInfo.h" 28 29 using namespace llvm; 30 31 #define DEBUG_TYPE "atomic-expand" 32 33 namespace { 34 class AtomicExpand: public FunctionPass { 35 const TargetMachine *TM; 36 const TargetLowering *TLI; 37 public: 38 static char ID; // Pass identification, replacement for typeid 39 explicit AtomicExpand(const TargetMachine *TM = nullptr) 40 : FunctionPass(ID), TM(TM), TLI(nullptr) { 41 initializeAtomicExpandPass(*PassRegistry::getPassRegistry()); 42 } 43 44 bool runOnFunction(Function &F) override; 45 46 private: 47 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order, 48 bool IsStore, bool IsLoad); 49 bool expandAtomicLoad(LoadInst *LI); 50 bool expandAtomicLoadToLL(LoadInst *LI); 51 bool expandAtomicLoadToCmpXchg(LoadInst *LI); 52 bool expandAtomicStore(StoreInst *SI); 53 bool tryExpandAtomicRMW(AtomicRMWInst *AI); 54 bool expandAtomicRMWToLLSC(AtomicRMWInst *AI); 55 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); 56 bool isIdempotentRMW(AtomicRMWInst *AI); 57 bool simplifyIdempotentRMW(AtomicRMWInst *AI); 58 }; 59 } 60 61 char AtomicExpand::ID = 0; 62 char &llvm::AtomicExpandID = AtomicExpand::ID; 63 INITIALIZE_TM_PASS(AtomicExpand, "atomic-expand", 64 "Expand Atomic calls in terms of either load-linked & store-conditional or cmpxchg", 65 false, false) 66 67 FunctionPass *llvm::createAtomicExpandPass(const TargetMachine *TM) { 68 return new AtomicExpand(TM); 69 } 70 71 bool AtomicExpand::runOnFunction(Function &F) { 72 if (!TM || !TM->getSubtargetImpl(F)->enableAtomicExpand()) 73 return false; 74 TLI = TM->getSubtargetImpl(F)->getTargetLowering(); 75 76 SmallVector<Instruction *, 1> AtomicInsts; 77 78 // Changing control-flow while iterating through it is a bad idea, so gather a 79 // list of all atomic instructions before we start. 80 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) { 81 if (I->isAtomic()) 82 AtomicInsts.push_back(&*I); 83 } 84 85 bool MadeChange = false; 86 for (auto I : AtomicInsts) { 87 auto LI = dyn_cast<LoadInst>(I); 88 auto SI = dyn_cast<StoreInst>(I); 89 auto RMWI = dyn_cast<AtomicRMWInst>(I); 90 auto CASI = dyn_cast<AtomicCmpXchgInst>(I); 91 assert((LI || SI || RMWI || CASI || isa<FenceInst>(I)) && 92 "Unknown atomic instruction"); 93 94 auto FenceOrdering = Monotonic; 95 bool IsStore, IsLoad; 96 if (TLI->getInsertFencesForAtomic()) { 97 if (LI && isAtLeastAcquire(LI->getOrdering())) { 98 FenceOrdering = LI->getOrdering(); 99 LI->setOrdering(Monotonic); 100 IsStore = false; 101 IsLoad = true; 102 } else if (SI && isAtLeastRelease(SI->getOrdering())) { 103 FenceOrdering = SI->getOrdering(); 104 SI->setOrdering(Monotonic); 105 IsStore = true; 106 IsLoad = false; 107 } else if (RMWI && (isAtLeastRelease(RMWI->getOrdering()) || 108 isAtLeastAcquire(RMWI->getOrdering()))) { 109 FenceOrdering = RMWI->getOrdering(); 110 RMWI->setOrdering(Monotonic); 111 IsStore = IsLoad = true; 112 } else if (CASI && !TLI->hasLoadLinkedStoreConditional() && 113 (isAtLeastRelease(CASI->getSuccessOrdering()) || 114 isAtLeastAcquire(CASI->getSuccessOrdering()))) { 115 // If a compare and swap is lowered to LL/SC, we can do smarter fence 116 // insertion, with a stronger one on the success path than on the 117 // failure path. As a result, fence insertion is directly done by 118 // expandAtomicCmpXchg in that case. 119 FenceOrdering = CASI->getSuccessOrdering(); 120 CASI->setSuccessOrdering(Monotonic); 121 CASI->setFailureOrdering(Monotonic); 122 IsStore = IsLoad = true; 123 } 124 125 if (FenceOrdering != Monotonic) { 126 MadeChange |= bracketInstWithFences(I, FenceOrdering, IsStore, IsLoad); 127 } 128 } 129 130 if (LI && TLI->shouldExpandAtomicLoadInIR(LI)) { 131 MadeChange |= expandAtomicLoad(LI); 132 } else if (SI && TLI->shouldExpandAtomicStoreInIR(SI)) { 133 MadeChange |= expandAtomicStore(SI); 134 } else if (RMWI) { 135 // There are two different ways of expanding RMW instructions: 136 // - into a load if it is idempotent 137 // - into a Cmpxchg/LL-SC loop otherwise 138 // we try them in that order. 139 140 if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) { 141 MadeChange = true; 142 } else { 143 MadeChange |= tryExpandAtomicRMW(RMWI); 144 } 145 } else if (CASI && TLI->hasLoadLinkedStoreConditional()) { 146 MadeChange |= expandAtomicCmpXchg(CASI); 147 } 148 } 149 return MadeChange; 150 } 151 152 bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order, 153 bool IsStore, bool IsLoad) { 154 IRBuilder<> Builder(I); 155 156 auto LeadingFence = TLI->emitLeadingFence(Builder, Order, IsStore, IsLoad); 157 158 auto TrailingFence = TLI->emitTrailingFence(Builder, Order, IsStore, IsLoad); 159 // The trailing fence is emitted before the instruction instead of after 160 // because there is no easy way of setting Builder insertion point after 161 // an instruction. So we must erase it from the BB, and insert it back 162 // in the right place. 163 // We have a guard here because not every atomic operation generates a 164 // trailing fence. 165 if (TrailingFence) { 166 TrailingFence->removeFromParent(); 167 TrailingFence->insertAfter(I); 168 } 169 170 return (LeadingFence || TrailingFence); 171 } 172 173 bool AtomicExpand::expandAtomicLoad(LoadInst *LI) { 174 if (TLI->hasLoadLinkedStoreConditional()) 175 return expandAtomicLoadToLL(LI); 176 else 177 return expandAtomicLoadToCmpXchg(LI); 178 } 179 180 bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) { 181 IRBuilder<> Builder(LI); 182 183 // On some architectures, load-linked instructions are atomic for larger 184 // sizes than normal loads. For example, the only 64-bit load guaranteed 185 // to be single-copy atomic by ARM is an ldrexd (A3.5.3). 186 Value *Val = 187 TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering()); 188 189 LI->replaceAllUsesWith(Val); 190 LI->eraseFromParent(); 191 192 return true; 193 } 194 195 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) { 196 IRBuilder<> Builder(LI); 197 AtomicOrdering Order = LI->getOrdering(); 198 Value *Addr = LI->getPointerOperand(); 199 Type *Ty = cast<PointerType>(Addr->getType())->getElementType(); 200 Constant *DummyVal = Constant::getNullValue(Ty); 201 202 Value *Pair = Builder.CreateAtomicCmpXchg( 203 Addr, DummyVal, DummyVal, Order, 204 AtomicCmpXchgInst::getStrongestFailureOrdering(Order)); 205 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded"); 206 207 LI->replaceAllUsesWith(Loaded); 208 LI->eraseFromParent(); 209 210 return true; 211 } 212 213 bool AtomicExpand::expandAtomicStore(StoreInst *SI) { 214 // This function is only called on atomic stores that are too large to be 215 // atomic if implemented as a native store. So we replace them by an 216 // atomic swap, that can be implemented for example as a ldrex/strex on ARM 217 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. 218 // It is the responsibility of the target to only signal expansion via 219 // shouldExpandAtomicRMW in cases where this is required and possible. 220 IRBuilder<> Builder(SI); 221 AtomicRMWInst *AI = 222 Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(), 223 SI->getValueOperand(), SI->getOrdering()); 224 SI->eraseFromParent(); 225 226 // Now we have an appropriate swap instruction, lower it as usual. 227 return tryExpandAtomicRMW(AI); 228 } 229 230 static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr, 231 Value *Loaded, Value *NewVal, 232 AtomicOrdering MemOpOrder, 233 Value *&Success, Value *&NewLoaded) { 234 Value* Pair = Builder.CreateAtomicCmpXchg( 235 Addr, Loaded, NewVal, MemOpOrder, 236 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder)); 237 Success = Builder.CreateExtractValue(Pair, 1, "success"); 238 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 239 } 240 241 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) { 242 switch (TLI->shouldExpandAtomicRMWInIR(AI)) { 243 case TargetLoweringBase::AtomicRMWExpansionKind::None: 244 return false; 245 case TargetLoweringBase::AtomicRMWExpansionKind::LLSC: { 246 assert(TLI->hasLoadLinkedStoreConditional() && 247 "TargetLowering requested we expand AtomicRMW instruction into " 248 "load-linked/store-conditional combos, but such instructions aren't " 249 "supported"); 250 251 return expandAtomicRMWToLLSC(AI); 252 } 253 case TargetLoweringBase::AtomicRMWExpansionKind::CmpXChg: { 254 return expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun); 255 } 256 } 257 llvm_unreachable("Unhandled case in tryExpandAtomicRMW"); 258 } 259 260 /// Emit IR to implement the given atomicrmw operation on values in registers, 261 /// returning the new value. 262 static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder, 263 Value *Loaded, Value *Inc) { 264 Value *NewVal; 265 switch (Op) { 266 case AtomicRMWInst::Xchg: 267 return Inc; 268 case AtomicRMWInst::Add: 269 return Builder.CreateAdd(Loaded, Inc, "new"); 270 case AtomicRMWInst::Sub: 271 return Builder.CreateSub(Loaded, Inc, "new"); 272 case AtomicRMWInst::And: 273 return Builder.CreateAnd(Loaded, Inc, "new"); 274 case AtomicRMWInst::Nand: 275 return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new"); 276 case AtomicRMWInst::Or: 277 return Builder.CreateOr(Loaded, Inc, "new"); 278 case AtomicRMWInst::Xor: 279 return Builder.CreateXor(Loaded, Inc, "new"); 280 case AtomicRMWInst::Max: 281 NewVal = Builder.CreateICmpSGT(Loaded, Inc); 282 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 283 case AtomicRMWInst::Min: 284 NewVal = Builder.CreateICmpSLE(Loaded, Inc); 285 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 286 case AtomicRMWInst::UMax: 287 NewVal = Builder.CreateICmpUGT(Loaded, Inc); 288 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 289 case AtomicRMWInst::UMin: 290 NewVal = Builder.CreateICmpULE(Loaded, Inc); 291 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 292 default: 293 llvm_unreachable("Unknown atomic op"); 294 } 295 } 296 297 bool AtomicExpand::expandAtomicRMWToLLSC(AtomicRMWInst *AI) { 298 AtomicOrdering MemOpOrder = AI->getOrdering(); 299 Value *Addr = AI->getPointerOperand(); 300 BasicBlock *BB = AI->getParent(); 301 Function *F = BB->getParent(); 302 LLVMContext &Ctx = F->getContext(); 303 304 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 305 // 306 // The standard expansion we produce is: 307 // [...] 308 // fence? 309 // atomicrmw.start: 310 // %loaded = @load.linked(%addr) 311 // %new = some_op iN %loaded, %incr 312 // %stored = @store_conditional(%new, %addr) 313 // %try_again = icmp i32 ne %stored, 0 314 // br i1 %try_again, label %loop, label %atomicrmw.end 315 // atomicrmw.end: 316 // fence? 317 // [...] 318 BasicBlock *ExitBB = BB->splitBasicBlock(AI, "atomicrmw.end"); 319 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 320 321 // This grabs the DebugLoc from AI. 322 IRBuilder<> Builder(AI); 323 324 // The split call above "helpfully" added a branch at the end of BB (to the 325 // wrong place), but we might want a fence too. It's easiest to just remove 326 // the branch entirely. 327 std::prev(BB->end())->eraseFromParent(); 328 Builder.SetInsertPoint(BB); 329 Builder.CreateBr(LoopBB); 330 331 // Start the main loop block now that we've taken care of the preliminaries. 332 Builder.SetInsertPoint(LoopBB); 333 Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); 334 335 Value *NewVal = 336 performAtomicOp(AI->getOperation(), Builder, Loaded, AI->getValOperand()); 337 338 Value *StoreSuccess = 339 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); 340 Value *TryAgain = Builder.CreateICmpNE( 341 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); 342 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); 343 344 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 345 346 AI->replaceAllUsesWith(Loaded); 347 AI->eraseFromParent(); 348 349 return true; 350 } 351 352 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 353 AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); 354 AtomicOrdering FailureOrder = CI->getFailureOrdering(); 355 Value *Addr = CI->getPointerOperand(); 356 BasicBlock *BB = CI->getParent(); 357 Function *F = BB->getParent(); 358 LLVMContext &Ctx = F->getContext(); 359 // If getInsertFencesForAtomic() returns true, then the target does not want 360 // to deal with memory orders, and emitLeading/TrailingFence should take care 361 // of everything. Otherwise, emitLeading/TrailingFence are no-op and we 362 // should preserve the ordering. 363 AtomicOrdering MemOpOrder = 364 TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder; 365 366 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord 367 // 368 // The full expansion we produce is: 369 // [...] 370 // fence? 371 // cmpxchg.start: 372 // %loaded = @load.linked(%addr) 373 // %should_store = icmp eq %loaded, %desired 374 // br i1 %should_store, label %cmpxchg.trystore, 375 // label %cmpxchg.failure 376 // cmpxchg.trystore: 377 // %stored = @store_conditional(%new, %addr) 378 // %success = icmp eq i32 %stored, 0 379 // br i1 %success, label %cmpxchg.success, label %loop/%cmpxchg.failure 380 // cmpxchg.success: 381 // fence? 382 // br label %cmpxchg.end 383 // cmpxchg.failure: 384 // fence? 385 // br label %cmpxchg.end 386 // cmpxchg.end: 387 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] 388 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 389 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 390 // [...] 391 BasicBlock *ExitBB = BB->splitBasicBlock(CI, "cmpxchg.end"); 392 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); 393 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, FailureBB); 394 auto TryStoreBB = BasicBlock::Create(Ctx, "cmpxchg.trystore", F, SuccessBB); 395 auto LoopBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, TryStoreBB); 396 397 // This grabs the DebugLoc from CI 398 IRBuilder<> Builder(CI); 399 400 // The split call above "helpfully" added a branch at the end of BB (to the 401 // wrong place), but we might want a fence too. It's easiest to just remove 402 // the branch entirely. 403 std::prev(BB->end())->eraseFromParent(); 404 Builder.SetInsertPoint(BB); 405 TLI->emitLeadingFence(Builder, SuccessOrder, /*IsStore=*/true, 406 /*IsLoad=*/true); 407 Builder.CreateBr(LoopBB); 408 409 // Start the main loop block now that we've taken care of the preliminaries. 410 Builder.SetInsertPoint(LoopBB); 411 Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); 412 Value *ShouldStore = 413 Builder.CreateICmpEQ(Loaded, CI->getCompareOperand(), "should_store"); 414 415 // If the cmpxchg doesn't actually need any ordering when it fails, we can 416 // jump straight past that fence instruction (if it exists). 417 Builder.CreateCondBr(ShouldStore, TryStoreBB, FailureBB); 418 419 Builder.SetInsertPoint(TryStoreBB); 420 Value *StoreSuccess = TLI->emitStoreConditional( 421 Builder, CI->getNewValOperand(), Addr, MemOpOrder); 422 StoreSuccess = Builder.CreateICmpEQ( 423 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); 424 Builder.CreateCondBr(StoreSuccess, SuccessBB, 425 CI->isWeak() ? FailureBB : LoopBB); 426 427 // Make sure later instructions don't get reordered with a fence if necessary. 428 Builder.SetInsertPoint(SuccessBB); 429 TLI->emitTrailingFence(Builder, SuccessOrder, /*IsStore=*/true, 430 /*IsLoad=*/true); 431 Builder.CreateBr(ExitBB); 432 433 Builder.SetInsertPoint(FailureBB); 434 TLI->emitTrailingFence(Builder, FailureOrder, /*IsStore=*/true, 435 /*IsLoad=*/true); 436 Builder.CreateBr(ExitBB); 437 438 // Finally, we have control-flow based knowledge of whether the cmpxchg 439 // succeeded or not. We expose this to later passes by converting any 440 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate PHI. 441 442 // Setup the builder so we can create any PHIs we need. 443 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 444 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2); 445 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); 446 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); 447 448 // Look for any users of the cmpxchg that are just comparing the loaded value 449 // against the desired one, and replace them with the CFG-derived version. 450 SmallVector<ExtractValueInst *, 2> PrunedInsts; 451 for (auto User : CI->users()) { 452 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); 453 if (!EV) 454 continue; 455 456 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && 457 "weird extraction from { iN, i1 }"); 458 459 if (EV->getIndices()[0] == 0) 460 EV->replaceAllUsesWith(Loaded); 461 else 462 EV->replaceAllUsesWith(Success); 463 464 PrunedInsts.push_back(EV); 465 } 466 467 // We can remove the instructions now we're no longer iterating through them. 468 for (auto EV : PrunedInsts) 469 EV->eraseFromParent(); 470 471 if (!CI->use_empty()) { 472 // Some use of the full struct return that we don't understand has happened, 473 // so we've got to reconstruct it properly. 474 Value *Res; 475 Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0); 476 Res = Builder.CreateInsertValue(Res, Success, 1); 477 478 CI->replaceAllUsesWith(Res); 479 } 480 481 CI->eraseFromParent(); 482 return true; 483 } 484 485 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) { 486 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand()); 487 if(!C) 488 return false; 489 490 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 491 switch(Op) { 492 case AtomicRMWInst::Add: 493 case AtomicRMWInst::Sub: 494 case AtomicRMWInst::Or: 495 case AtomicRMWInst::Xor: 496 return C->isZero(); 497 case AtomicRMWInst::And: 498 return C->isMinusOne(); 499 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/... 500 default: 501 return false; 502 } 503 } 504 505 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) { 506 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { 507 if (TLI->shouldExpandAtomicLoadInIR(ResultingLoad)) 508 expandAtomicLoad(ResultingLoad); 509 return true; 510 } 511 return false; 512 } 513 514 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 515 CreateCmpXchgInstFun CreateCmpXchg) { 516 assert(AI); 517 518 AtomicOrdering MemOpOrder = 519 AI->getOrdering() == Unordered ? Monotonic : AI->getOrdering(); 520 Value *Addr = AI->getPointerOperand(); 521 BasicBlock *BB = AI->getParent(); 522 Function *F = BB->getParent(); 523 LLVMContext &Ctx = F->getContext(); 524 525 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 526 // 527 // The standard expansion we produce is: 528 // [...] 529 // %init_loaded = load atomic iN* %addr 530 // br label %loop 531 // loop: 532 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] 533 // %new = some_op iN %loaded, %incr 534 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new 535 // %new_loaded = extractvalue { iN, i1 } %pair, 0 536 // %success = extractvalue { iN, i1 } %pair, 1 537 // br i1 %success, label %atomicrmw.end, label %loop 538 // atomicrmw.end: 539 // [...] 540 BasicBlock *ExitBB = BB->splitBasicBlock(AI, "atomicrmw.end"); 541 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 542 543 // This grabs the DebugLoc from AI. 544 IRBuilder<> Builder(AI); 545 546 // The split call above "helpfully" added a branch at the end of BB (to the 547 // wrong place), but we want a load. It's easiest to just remove 548 // the branch entirely. 549 std::prev(BB->end())->eraseFromParent(); 550 Builder.SetInsertPoint(BB); 551 LoadInst *InitLoaded = Builder.CreateLoad(Addr); 552 // Atomics require at least natural alignment. 553 InitLoaded->setAlignment(AI->getType()->getPrimitiveSizeInBits() / 8); 554 Builder.CreateBr(LoopBB); 555 556 // Start the main loop block now that we've taken care of the preliminaries. 557 Builder.SetInsertPoint(LoopBB); 558 PHINode *Loaded = Builder.CreatePHI(AI->getType(), 2, "loaded"); 559 Loaded->addIncoming(InitLoaded, BB); 560 561 Value *NewVal = 562 performAtomicOp(AI->getOperation(), Builder, Loaded, AI->getValOperand()); 563 564 Value *NewLoaded = nullptr; 565 Value *Success = nullptr; 566 567 CreateCmpXchg(Builder, Addr, Loaded, NewVal, MemOpOrder, 568 Success, NewLoaded); 569 assert(Success && NewLoaded); 570 571 Loaded->addIncoming(NewLoaded, LoopBB); 572 573 Builder.CreateCondBr(Success, ExitBB, LoopBB); 574 575 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 576 577 AI->replaceAllUsesWith(NewLoaded); 578 AI->eraseFromParent(); 579 580 return true; 581 } 582