1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass (at IR level) to replace atomic instructions with 10 // __atomic_* library calls, or target specific instruction which implement the 11 // same semantics in a way which better fits the target backend. This can 12 // include the use of (intrinsic-based) load-linked/store-conditional loops, 13 // AtomicCmpXchg, or type coercions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/CodeGen/AtomicExpandUtils.h" 22 #include "llvm/CodeGen/RuntimeLibcalls.h" 23 #include "llvm/CodeGen/TargetLowering.h" 24 #include "llvm/CodeGen/TargetPassConfig.h" 25 #include "llvm/CodeGen/TargetSubtargetInfo.h" 26 #include "llvm/CodeGen/ValueTypes.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Constant.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/IRBuilder.h" 35 #include "llvm/IR/InstIterator.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Type.h" 40 #include "llvm/IR/User.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/InitializePasses.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/AtomicOrdering.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Target/TargetMachine.h" 50 #include <cassert> 51 #include <cstdint> 52 #include <iterator> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "atomic-expand" 57 58 namespace { 59 60 class AtomicExpand: public FunctionPass { 61 const TargetLowering *TLI = nullptr; 62 63 public: 64 static char ID; // Pass identification, replacement for typeid 65 66 AtomicExpand() : FunctionPass(ID) { 67 initializeAtomicExpandPass(*PassRegistry::getPassRegistry()); 68 } 69 70 bool runOnFunction(Function &F) override; 71 72 private: 73 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order); 74 IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL); 75 LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI); 76 bool tryExpandAtomicLoad(LoadInst *LI); 77 bool expandAtomicLoadToLL(LoadInst *LI); 78 bool expandAtomicLoadToCmpXchg(LoadInst *LI); 79 StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI); 80 bool expandAtomicStore(StoreInst *SI); 81 bool tryExpandAtomicRMW(AtomicRMWInst *AI); 82 AtomicRMWInst *convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI); 83 Value * 84 insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr, 85 Align AddrAlign, AtomicOrdering MemOpOrder, 86 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); 87 void expandAtomicOpToLLSC( 88 Instruction *I, Type *ResultTy, Value *Addr, Align AddrAlign, 89 AtomicOrdering MemOpOrder, 90 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); 91 void expandPartwordAtomicRMW( 92 AtomicRMWInst *I, 93 TargetLoweringBase::AtomicExpansionKind ExpansionKind); 94 AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI); 95 bool expandPartwordCmpXchg(AtomicCmpXchgInst *I); 96 void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI); 97 void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI); 98 99 AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI); 100 static Value *insertRMWCmpXchgLoop( 101 IRBuilder<> &Builder, Type *ResultType, Value *Addr, Align AddrAlign, 102 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 103 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, 104 CreateCmpXchgInstFun CreateCmpXchg); 105 bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI); 106 107 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); 108 bool isIdempotentRMW(AtomicRMWInst *RMWI); 109 bool simplifyIdempotentRMW(AtomicRMWInst *RMWI); 110 111 bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, Align Alignment, 112 Value *PointerOperand, Value *ValueOperand, 113 Value *CASExpected, AtomicOrdering Ordering, 114 AtomicOrdering Ordering2, 115 ArrayRef<RTLIB::Libcall> Libcalls); 116 void expandAtomicLoadToLibcall(LoadInst *LI); 117 void expandAtomicStoreToLibcall(StoreInst *LI); 118 void expandAtomicRMWToLibcall(AtomicRMWInst *I); 119 void expandAtomicCASToLibcall(AtomicCmpXchgInst *I); 120 121 friend bool 122 llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 123 CreateCmpXchgInstFun CreateCmpXchg); 124 }; 125 126 } // end anonymous namespace 127 128 char AtomicExpand::ID = 0; 129 130 char &llvm::AtomicExpandID = AtomicExpand::ID; 131 132 INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions", 133 false, false) 134 135 FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); } 136 137 // Helper functions to retrieve the size of atomic instructions. 138 static unsigned getAtomicOpSize(LoadInst *LI) { 139 const DataLayout &DL = LI->getModule()->getDataLayout(); 140 return DL.getTypeStoreSize(LI->getType()); 141 } 142 143 static unsigned getAtomicOpSize(StoreInst *SI) { 144 const DataLayout &DL = SI->getModule()->getDataLayout(); 145 return DL.getTypeStoreSize(SI->getValueOperand()->getType()); 146 } 147 148 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) { 149 const DataLayout &DL = RMWI->getModule()->getDataLayout(); 150 return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); 151 } 152 153 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) { 154 const DataLayout &DL = CASI->getModule()->getDataLayout(); 155 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); 156 } 157 158 // Determine if a particular atomic operation has a supported size, 159 // and is of appropriate alignment, to be passed through for target 160 // lowering. (Versus turning into a __atomic libcall) 161 template <typename Inst> 162 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) { 163 unsigned Size = getAtomicOpSize(I); 164 Align Alignment = I->getAlign(); 165 return Alignment >= Size && 166 Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8; 167 } 168 169 bool AtomicExpand::runOnFunction(Function &F) { 170 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 171 if (!TPC) 172 return false; 173 174 auto &TM = TPC->getTM<TargetMachine>(); 175 if (!TM.getSubtargetImpl(F)->enableAtomicExpand()) 176 return false; 177 TLI = TM.getSubtargetImpl(F)->getTargetLowering(); 178 179 SmallVector<Instruction *, 1> AtomicInsts; 180 181 // Changing control-flow while iterating through it is a bad idea, so gather a 182 // list of all atomic instructions before we start. 183 for (Instruction &I : instructions(F)) 184 if (I.isAtomic() && !isa<FenceInst>(&I)) 185 AtomicInsts.push_back(&I); 186 187 bool MadeChange = false; 188 for (auto I : AtomicInsts) { 189 auto LI = dyn_cast<LoadInst>(I); 190 auto SI = dyn_cast<StoreInst>(I); 191 auto RMWI = dyn_cast<AtomicRMWInst>(I); 192 auto CASI = dyn_cast<AtomicCmpXchgInst>(I); 193 assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction"); 194 195 // If the Size/Alignment is not supported, replace with a libcall. 196 if (LI) { 197 if (!atomicSizeSupported(TLI, LI)) { 198 expandAtomicLoadToLibcall(LI); 199 MadeChange = true; 200 continue; 201 } 202 } else if (SI) { 203 if (!atomicSizeSupported(TLI, SI)) { 204 expandAtomicStoreToLibcall(SI); 205 MadeChange = true; 206 continue; 207 } 208 } else if (RMWI) { 209 if (!atomicSizeSupported(TLI, RMWI)) { 210 expandAtomicRMWToLibcall(RMWI); 211 MadeChange = true; 212 continue; 213 } 214 } else if (CASI) { 215 if (!atomicSizeSupported(TLI, CASI)) { 216 expandAtomicCASToLibcall(CASI); 217 MadeChange = true; 218 continue; 219 } 220 } 221 222 if (TLI->shouldInsertFencesForAtomic(I)) { 223 auto FenceOrdering = AtomicOrdering::Monotonic; 224 if (LI && isAcquireOrStronger(LI->getOrdering())) { 225 FenceOrdering = LI->getOrdering(); 226 LI->setOrdering(AtomicOrdering::Monotonic); 227 } else if (SI && isReleaseOrStronger(SI->getOrdering())) { 228 FenceOrdering = SI->getOrdering(); 229 SI->setOrdering(AtomicOrdering::Monotonic); 230 } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) || 231 isAcquireOrStronger(RMWI->getOrdering()))) { 232 FenceOrdering = RMWI->getOrdering(); 233 RMWI->setOrdering(AtomicOrdering::Monotonic); 234 } else if (CASI && 235 TLI->shouldExpandAtomicCmpXchgInIR(CASI) == 236 TargetLoweringBase::AtomicExpansionKind::None && 237 (isReleaseOrStronger(CASI->getSuccessOrdering()) || 238 isAcquireOrStronger(CASI->getSuccessOrdering()) || 239 isAcquireOrStronger(CASI->getFailureOrdering()))) { 240 // If a compare and swap is lowered to LL/SC, we can do smarter fence 241 // insertion, with a stronger one on the success path than on the 242 // failure path. As a result, fence insertion is directly done by 243 // expandAtomicCmpXchg in that case. 244 FenceOrdering = CASI->getMergedOrdering(); 245 CASI->setSuccessOrdering(AtomicOrdering::Monotonic); 246 CASI->setFailureOrdering(AtomicOrdering::Monotonic); 247 } 248 249 if (FenceOrdering != AtomicOrdering::Monotonic) { 250 MadeChange |= bracketInstWithFences(I, FenceOrdering); 251 } 252 } 253 254 if (LI) { 255 if (LI->getType()->isFloatingPointTy()) { 256 // TODO: add a TLI hook to control this so that each target can 257 // convert to lowering the original type one at a time. 258 LI = convertAtomicLoadToIntegerType(LI); 259 assert(LI->getType()->isIntegerTy() && "invariant broken"); 260 MadeChange = true; 261 } 262 263 MadeChange |= tryExpandAtomicLoad(LI); 264 } else if (SI) { 265 if (SI->getValueOperand()->getType()->isFloatingPointTy()) { 266 // TODO: add a TLI hook to control this so that each target can 267 // convert to lowering the original type one at a time. 268 SI = convertAtomicStoreToIntegerType(SI); 269 assert(SI->getValueOperand()->getType()->isIntegerTy() && 270 "invariant broken"); 271 MadeChange = true; 272 } 273 274 if (TLI->shouldExpandAtomicStoreInIR(SI)) 275 MadeChange |= expandAtomicStore(SI); 276 } else if (RMWI) { 277 // There are two different ways of expanding RMW instructions: 278 // - into a load if it is idempotent 279 // - into a Cmpxchg/LL-SC loop otherwise 280 // we try them in that order. 281 282 if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) { 283 MadeChange = true; 284 } else { 285 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 286 if (Op == AtomicRMWInst::Xchg && 287 RMWI->getValOperand()->getType()->isFloatingPointTy()) { 288 // TODO: add a TLI hook to control this so that each target can 289 // convert to lowering the original type one at a time. 290 RMWI = convertAtomicXchgToIntegerType(RMWI); 291 assert(RMWI->getValOperand()->getType()->isIntegerTy() && 292 "invariant broken"); 293 MadeChange = true; 294 } 295 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 296 unsigned ValueSize = getAtomicOpSize(RMWI); 297 if (ValueSize < MinCASSize && 298 (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 299 Op == AtomicRMWInst::And)) { 300 RMWI = widenPartwordAtomicRMW(RMWI); 301 MadeChange = true; 302 } 303 304 MadeChange |= tryExpandAtomicRMW(RMWI); 305 } 306 } else if (CASI) { 307 // TODO: when we're ready to make the change at the IR level, we can 308 // extend convertCmpXchgToInteger for floating point too. 309 assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() && 310 "unimplemented - floating point not legal at IR level"); 311 if (CASI->getCompareOperand()->getType()->isPointerTy() ) { 312 // TODO: add a TLI hook to control this so that each target can 313 // convert to lowering the original type one at a time. 314 CASI = convertCmpXchgToIntegerType(CASI); 315 assert(CASI->getCompareOperand()->getType()->isIntegerTy() && 316 "invariant broken"); 317 MadeChange = true; 318 } 319 320 MadeChange |= tryExpandAtomicCmpXchg(CASI); 321 } 322 } 323 return MadeChange; 324 } 325 326 bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) { 327 IRBuilder<> Builder(I); 328 329 auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order); 330 331 auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order); 332 // We have a guard here because not every atomic operation generates a 333 // trailing fence. 334 if (TrailingFence) 335 TrailingFence->moveAfter(I); 336 337 return (LeadingFence || TrailingFence); 338 } 339 340 /// Get the iX type with the same bitwidth as T. 341 IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T, 342 const DataLayout &DL) { 343 EVT VT = TLI->getMemValueType(DL, T); 344 unsigned BitWidth = VT.getStoreSizeInBits(); 345 assert(BitWidth == VT.getSizeInBits() && "must be a power of two"); 346 return IntegerType::get(T->getContext(), BitWidth); 347 } 348 349 /// Convert an atomic load of a non-integral type to an integer load of the 350 /// equivalent bitwidth. See the function comment on 351 /// convertAtomicStoreToIntegerType for background. 352 LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) { 353 auto *M = LI->getModule(); 354 Type *NewTy = getCorrespondingIntegerType(LI->getType(), 355 M->getDataLayout()); 356 357 IRBuilder<> Builder(LI); 358 359 Value *Addr = LI->getPointerOperand(); 360 Type *PT = PointerType::get(NewTy, 361 Addr->getType()->getPointerAddressSpace()); 362 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 363 364 auto *NewLI = Builder.CreateLoad(NewTy, NewAddr); 365 NewLI->setAlignment(LI->getAlign()); 366 NewLI->setVolatile(LI->isVolatile()); 367 NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID()); 368 LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n"); 369 370 Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType()); 371 LI->replaceAllUsesWith(NewVal); 372 LI->eraseFromParent(); 373 return NewLI; 374 } 375 376 AtomicRMWInst * 377 AtomicExpand::convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI) { 378 auto *M = RMWI->getModule(); 379 Type *NewTy = 380 getCorrespondingIntegerType(RMWI->getType(), M->getDataLayout()); 381 382 IRBuilder<> Builder(RMWI); 383 384 Value *Addr = RMWI->getPointerOperand(); 385 Value *Val = RMWI->getValOperand(); 386 Type *PT = PointerType::get(NewTy, RMWI->getPointerAddressSpace()); 387 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 388 Value *NewVal = Builder.CreateBitCast(Val, NewTy); 389 390 auto *NewRMWI = 391 Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, NewAddr, NewVal, 392 RMWI->getAlign(), RMWI->getOrdering()); 393 NewRMWI->setVolatile(RMWI->isVolatile()); 394 LLVM_DEBUG(dbgs() << "Replaced " << *RMWI << " with " << *NewRMWI << "\n"); 395 396 Value *NewRVal = Builder.CreateBitCast(NewRMWI, RMWI->getType()); 397 RMWI->replaceAllUsesWith(NewRVal); 398 RMWI->eraseFromParent(); 399 return NewRMWI; 400 } 401 402 bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) { 403 switch (TLI->shouldExpandAtomicLoadInIR(LI)) { 404 case TargetLoweringBase::AtomicExpansionKind::None: 405 return false; 406 case TargetLoweringBase::AtomicExpansionKind::LLSC: 407 expandAtomicOpToLLSC( 408 LI, LI->getType(), LI->getPointerOperand(), LI->getAlign(), 409 LI->getOrdering(), 410 [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; }); 411 return true; 412 case TargetLoweringBase::AtomicExpansionKind::LLOnly: 413 return expandAtomicLoadToLL(LI); 414 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: 415 return expandAtomicLoadToCmpXchg(LI); 416 default: 417 llvm_unreachable("Unhandled case in tryExpandAtomicLoad"); 418 } 419 } 420 421 bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) { 422 IRBuilder<> Builder(LI); 423 424 // On some architectures, load-linked instructions are atomic for larger 425 // sizes than normal loads. For example, the only 64-bit load guaranteed 426 // to be single-copy atomic by ARM is an ldrexd (A3.5.3). 427 Value *Val = TLI->emitLoadLinked(Builder, LI->getType(), 428 LI->getPointerOperand(), LI->getOrdering()); 429 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 430 431 LI->replaceAllUsesWith(Val); 432 LI->eraseFromParent(); 433 434 return true; 435 } 436 437 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) { 438 IRBuilder<> Builder(LI); 439 AtomicOrdering Order = LI->getOrdering(); 440 if (Order == AtomicOrdering::Unordered) 441 Order = AtomicOrdering::Monotonic; 442 443 Value *Addr = LI->getPointerOperand(); 444 Type *Ty = LI->getType(); 445 Constant *DummyVal = Constant::getNullValue(Ty); 446 447 Value *Pair = Builder.CreateAtomicCmpXchg( 448 Addr, DummyVal, DummyVal, LI->getAlign(), Order, 449 AtomicCmpXchgInst::getStrongestFailureOrdering(Order)); 450 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded"); 451 452 LI->replaceAllUsesWith(Loaded); 453 LI->eraseFromParent(); 454 455 return true; 456 } 457 458 /// Convert an atomic store of a non-integral type to an integer store of the 459 /// equivalent bitwidth. We used to not support floating point or vector 460 /// atomics in the IR at all. The backends learned to deal with the bitcast 461 /// idiom because that was the only way of expressing the notion of a atomic 462 /// float or vector store. The long term plan is to teach each backend to 463 /// instruction select from the original atomic store, but as a migration 464 /// mechanism, we convert back to the old format which the backends understand. 465 /// Each backend will need individual work to recognize the new format. 466 StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) { 467 IRBuilder<> Builder(SI); 468 auto *M = SI->getModule(); 469 Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(), 470 M->getDataLayout()); 471 Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy); 472 473 Value *Addr = SI->getPointerOperand(); 474 Type *PT = PointerType::get(NewTy, 475 Addr->getType()->getPointerAddressSpace()); 476 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 477 478 StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr); 479 NewSI->setAlignment(SI->getAlign()); 480 NewSI->setVolatile(SI->isVolatile()); 481 NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID()); 482 LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n"); 483 SI->eraseFromParent(); 484 return NewSI; 485 } 486 487 bool AtomicExpand::expandAtomicStore(StoreInst *SI) { 488 // This function is only called on atomic stores that are too large to be 489 // atomic if implemented as a native store. So we replace them by an 490 // atomic swap, that can be implemented for example as a ldrex/strex on ARM 491 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. 492 // It is the responsibility of the target to only signal expansion via 493 // shouldExpandAtomicRMW in cases where this is required and possible. 494 IRBuilder<> Builder(SI); 495 AtomicRMWInst *AI = Builder.CreateAtomicRMW( 496 AtomicRMWInst::Xchg, SI->getPointerOperand(), SI->getValueOperand(), 497 SI->getAlign(), SI->getOrdering()); 498 SI->eraseFromParent(); 499 500 // Now we have an appropriate swap instruction, lower it as usual. 501 return tryExpandAtomicRMW(AI); 502 } 503 504 static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr, 505 Value *Loaded, Value *NewVal, Align AddrAlign, 506 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 507 Value *&Success, Value *&NewLoaded) { 508 Type *OrigTy = NewVal->getType(); 509 510 // This code can go away when cmpxchg supports FP types. 511 bool NeedBitcast = OrigTy->isFloatingPointTy(); 512 if (NeedBitcast) { 513 IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits()); 514 unsigned AS = Addr->getType()->getPointerAddressSpace(); 515 Addr = Builder.CreateBitCast(Addr, IntTy->getPointerTo(AS)); 516 NewVal = Builder.CreateBitCast(NewVal, IntTy); 517 Loaded = Builder.CreateBitCast(Loaded, IntTy); 518 } 519 520 Value *Pair = Builder.CreateAtomicCmpXchg( 521 Addr, Loaded, NewVal, AddrAlign, MemOpOrder, 522 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID); 523 Success = Builder.CreateExtractValue(Pair, 1, "success"); 524 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 525 526 if (NeedBitcast) 527 NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy); 528 } 529 530 /// Emit IR to implement the given atomicrmw operation on values in registers, 531 /// returning the new value. 532 static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder, 533 Value *Loaded, Value *Inc) { 534 Value *NewVal; 535 switch (Op) { 536 case AtomicRMWInst::Xchg: 537 return Inc; 538 case AtomicRMWInst::Add: 539 return Builder.CreateAdd(Loaded, Inc, "new"); 540 case AtomicRMWInst::Sub: 541 return Builder.CreateSub(Loaded, Inc, "new"); 542 case AtomicRMWInst::And: 543 return Builder.CreateAnd(Loaded, Inc, "new"); 544 case AtomicRMWInst::Nand: 545 return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new"); 546 case AtomicRMWInst::Or: 547 return Builder.CreateOr(Loaded, Inc, "new"); 548 case AtomicRMWInst::Xor: 549 return Builder.CreateXor(Loaded, Inc, "new"); 550 case AtomicRMWInst::Max: 551 NewVal = Builder.CreateICmpSGT(Loaded, Inc); 552 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 553 case AtomicRMWInst::Min: 554 NewVal = Builder.CreateICmpSLE(Loaded, Inc); 555 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 556 case AtomicRMWInst::UMax: 557 NewVal = Builder.CreateICmpUGT(Loaded, Inc); 558 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 559 case AtomicRMWInst::UMin: 560 NewVal = Builder.CreateICmpULE(Loaded, Inc); 561 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 562 case AtomicRMWInst::FAdd: 563 return Builder.CreateFAdd(Loaded, Inc, "new"); 564 case AtomicRMWInst::FSub: 565 return Builder.CreateFSub(Loaded, Inc, "new"); 566 default: 567 llvm_unreachable("Unknown atomic op"); 568 } 569 } 570 571 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) { 572 LLVMContext &Ctx = AI->getModule()->getContext(); 573 TargetLowering::AtomicExpansionKind Kind = TLI->shouldExpandAtomicRMWInIR(AI); 574 switch (Kind) { 575 case TargetLoweringBase::AtomicExpansionKind::None: 576 return false; 577 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 578 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 579 unsigned ValueSize = getAtomicOpSize(AI); 580 if (ValueSize < MinCASSize) { 581 expandPartwordAtomicRMW(AI, 582 TargetLoweringBase::AtomicExpansionKind::LLSC); 583 } else { 584 auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) { 585 return performAtomicOp(AI->getOperation(), Builder, Loaded, 586 AI->getValOperand()); 587 }; 588 expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(), 589 AI->getAlign(), AI->getOrdering(), PerformOp); 590 } 591 return true; 592 } 593 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: { 594 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 595 unsigned ValueSize = getAtomicOpSize(AI); 596 if (ValueSize < MinCASSize) { 597 // TODO: Handle atomicrmw fadd/fsub 598 if (AI->getType()->isFloatingPointTy()) 599 return false; 600 601 expandPartwordAtomicRMW(AI, 602 TargetLoweringBase::AtomicExpansionKind::CmpXChg); 603 } else { 604 SmallVector<StringRef> SSNs; 605 Ctx.getSyncScopeNames(SSNs); 606 auto MemScope = SSNs[AI->getSyncScopeID()].empty() 607 ? "system" 608 : SSNs[AI->getSyncScopeID()]; 609 OptimizationRemarkEmitter ORE(AI->getFunction()); 610 ORE.emit([&]() { 611 return OptimizationRemark(DEBUG_TYPE, "Passed", AI) 612 << "A compare and swap loop was generated for an atomic " 613 << AI->getOperationName(AI->getOperation()) << " operation at " 614 << MemScope << " memory scope"; 615 }); 616 expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun); 617 } 618 return true; 619 } 620 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: { 621 expandAtomicRMWToMaskedIntrinsic(AI); 622 return true; 623 } 624 case TargetLoweringBase::AtomicExpansionKind::BitTestIntrinsic: { 625 TLI->emitBitTestAtomicRMWIntrinsic(AI); 626 return true; 627 } 628 default: 629 llvm_unreachable("Unhandled case in tryExpandAtomicRMW"); 630 } 631 } 632 633 namespace { 634 635 struct PartwordMaskValues { 636 // These three fields are guaranteed to be set by createMaskInstrs. 637 Type *WordType = nullptr; 638 Type *ValueType = nullptr; 639 Value *AlignedAddr = nullptr; 640 Align AlignedAddrAlignment; 641 // The remaining fields can be null. 642 Value *ShiftAmt = nullptr; 643 Value *Mask = nullptr; 644 Value *Inv_Mask = nullptr; 645 }; 646 647 LLVM_ATTRIBUTE_UNUSED 648 raw_ostream &operator<<(raw_ostream &O, const PartwordMaskValues &PMV) { 649 auto PrintObj = [&O](auto *V) { 650 if (V) 651 O << *V; 652 else 653 O << "nullptr"; 654 O << '\n'; 655 }; 656 O << "PartwordMaskValues {\n"; 657 O << " WordType: "; 658 PrintObj(PMV.WordType); 659 O << " ValueType: "; 660 PrintObj(PMV.ValueType); 661 O << " AlignedAddr: "; 662 PrintObj(PMV.AlignedAddr); 663 O << " AlignedAddrAlignment: " << PMV.AlignedAddrAlignment.value() << '\n'; 664 O << " ShiftAmt: "; 665 PrintObj(PMV.ShiftAmt); 666 O << " Mask: "; 667 PrintObj(PMV.Mask); 668 O << " Inv_Mask: "; 669 PrintObj(PMV.Inv_Mask); 670 O << "}\n"; 671 return O; 672 } 673 674 } // end anonymous namespace 675 676 /// This is a helper function which builds instructions to provide 677 /// values necessary for partword atomic operations. It takes an 678 /// incoming address, Addr, and ValueType, and constructs the address, 679 /// shift-amounts and masks needed to work with a larger value of size 680 /// WordSize. 681 /// 682 /// AlignedAddr: Addr rounded down to a multiple of WordSize 683 /// 684 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded 685 /// from AlignAddr for it to have the same value as if 686 /// ValueType was loaded from Addr. 687 /// 688 /// Mask: Value to mask with the value loaded from AlignAddr to 689 /// include only the part that would've been loaded from Addr. 690 /// 691 /// Inv_Mask: The inverse of Mask. 692 static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I, 693 Type *ValueType, Value *Addr, 694 Align AddrAlign, 695 unsigned MinWordSize) { 696 PartwordMaskValues PMV; 697 698 Module *M = I->getModule(); 699 LLVMContext &Ctx = M->getContext(); 700 const DataLayout &DL = M->getDataLayout(); 701 unsigned ValueSize = DL.getTypeStoreSize(ValueType); 702 703 PMV.ValueType = ValueType; 704 PMV.WordType = MinWordSize > ValueSize ? Type::getIntNTy(Ctx, MinWordSize * 8) 705 : ValueType; 706 if (PMV.ValueType == PMV.WordType) { 707 PMV.AlignedAddr = Addr; 708 PMV.AlignedAddrAlignment = AddrAlign; 709 PMV.ShiftAmt = ConstantInt::get(PMV.ValueType, 0); 710 PMV.Mask = ConstantInt::get(PMV.ValueType, ~0); 711 return PMV; 712 } 713 714 assert(ValueSize < MinWordSize); 715 716 Type *WordPtrType = 717 PMV.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace()); 718 719 // TODO: we could skip some of this if AddrAlign >= MinWordSize. 720 Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx)); 721 PMV.AlignedAddr = Builder.CreateIntToPtr( 722 Builder.CreateAnd(AddrInt, ~(uint64_t)(MinWordSize - 1)), WordPtrType, 723 "AlignedAddr"); 724 PMV.AlignedAddrAlignment = Align(MinWordSize); 725 726 Value *PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1, "PtrLSB"); 727 if (DL.isLittleEndian()) { 728 // turn bytes into bits 729 PMV.ShiftAmt = Builder.CreateShl(PtrLSB, 3); 730 } else { 731 // turn bytes into bits, and count from the other side. 732 PMV.ShiftAmt = Builder.CreateShl( 733 Builder.CreateXor(PtrLSB, MinWordSize - ValueSize), 3); 734 } 735 736 PMV.ShiftAmt = Builder.CreateTrunc(PMV.ShiftAmt, PMV.WordType, "ShiftAmt"); 737 PMV.Mask = Builder.CreateShl( 738 ConstantInt::get(PMV.WordType, (1 << (ValueSize * 8)) - 1), PMV.ShiftAmt, 739 "Mask"); 740 PMV.Inv_Mask = Builder.CreateNot(PMV.Mask, "Inv_Mask"); 741 return PMV; 742 } 743 744 static Value *extractMaskedValue(IRBuilder<> &Builder, Value *WideWord, 745 const PartwordMaskValues &PMV) { 746 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch"); 747 if (PMV.WordType == PMV.ValueType) 748 return WideWord; 749 750 Value *Shift = Builder.CreateLShr(WideWord, PMV.ShiftAmt, "shifted"); 751 Value *Trunc = Builder.CreateTrunc(Shift, PMV.ValueType, "extracted"); 752 return Trunc; 753 } 754 755 static Value *insertMaskedValue(IRBuilder<> &Builder, Value *WideWord, 756 Value *Updated, const PartwordMaskValues &PMV) { 757 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch"); 758 assert(Updated->getType() == PMV.ValueType && "Value type mismatch"); 759 if (PMV.WordType == PMV.ValueType) 760 return Updated; 761 762 Value *ZExt = Builder.CreateZExt(Updated, PMV.WordType, "extended"); 763 Value *Shift = 764 Builder.CreateShl(ZExt, PMV.ShiftAmt, "shifted", /*HasNUW*/ true); 765 Value *And = Builder.CreateAnd(WideWord, PMV.Inv_Mask, "unmasked"); 766 Value *Or = Builder.CreateOr(And, Shift, "inserted"); 767 return Or; 768 } 769 770 /// Emit IR to implement a masked version of a given atomicrmw 771 /// operation. (That is, only the bits under the Mask should be 772 /// affected by the operation) 773 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op, 774 IRBuilder<> &Builder, Value *Loaded, 775 Value *Shifted_Inc, Value *Inc, 776 const PartwordMaskValues &PMV) { 777 // TODO: update to use 778 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order 779 // to merge bits from two values without requiring PMV.Inv_Mask. 780 switch (Op) { 781 case AtomicRMWInst::Xchg: { 782 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 783 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc); 784 return FinalVal; 785 } 786 case AtomicRMWInst::Or: 787 case AtomicRMWInst::Xor: 788 case AtomicRMWInst::And: 789 llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW"); 790 case AtomicRMWInst::Add: 791 case AtomicRMWInst::Sub: 792 case AtomicRMWInst::Nand: { 793 // The other arithmetic ops need to be masked into place. 794 Value *NewVal = performAtomicOp(Op, Builder, Loaded, Shifted_Inc); 795 Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask); 796 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 797 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked); 798 return FinalVal; 799 } 800 case AtomicRMWInst::Max: 801 case AtomicRMWInst::Min: 802 case AtomicRMWInst::UMax: 803 case AtomicRMWInst::UMin: { 804 // Finally, comparison ops will operate on the full value, so 805 // truncate down to the original size, and expand out again after 806 // doing the operation. 807 Value *Loaded_Extract = extractMaskedValue(Builder, Loaded, PMV); 808 Value *NewVal = performAtomicOp(Op, Builder, Loaded_Extract, Inc); 809 Value *FinalVal = insertMaskedValue(Builder, Loaded, NewVal, PMV); 810 return FinalVal; 811 } 812 default: 813 llvm_unreachable("Unknown atomic op"); 814 } 815 } 816 817 /// Expand a sub-word atomicrmw operation into an appropriate 818 /// word-sized operation. 819 /// 820 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same 821 /// way as a typical atomicrmw expansion. The only difference here is 822 /// that the operation inside of the loop may operate upon only a 823 /// part of the value. 824 void AtomicExpand::expandPartwordAtomicRMW( 825 AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) { 826 AtomicOrdering MemOpOrder = AI->getOrdering(); 827 SyncScope::ID SSID = AI->getSyncScopeID(); 828 829 IRBuilder<> Builder(AI); 830 831 PartwordMaskValues PMV = 832 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 833 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 834 835 Value *ValOperand_Shifted = 836 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 837 PMV.ShiftAmt, "ValOperand_Shifted"); 838 839 auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) { 840 return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded, 841 ValOperand_Shifted, AI->getValOperand(), PMV); 842 }; 843 844 Value *OldResult; 845 if (ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg) { 846 OldResult = insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, 847 PMV.AlignedAddrAlignment, MemOpOrder, 848 SSID, PerformPartwordOp, 849 createCmpXchgInstFun); 850 } else { 851 assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::LLSC); 852 OldResult = insertRMWLLSCLoop(Builder, PMV.WordType, PMV.AlignedAddr, 853 PMV.AlignedAddrAlignment, MemOpOrder, 854 PerformPartwordOp); 855 } 856 857 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV); 858 AI->replaceAllUsesWith(FinalOldResult); 859 AI->eraseFromParent(); 860 } 861 862 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width. 863 AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) { 864 IRBuilder<> Builder(AI); 865 AtomicRMWInst::BinOp Op = AI->getOperation(); 866 867 assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 868 Op == AtomicRMWInst::And) && 869 "Unable to widen operation"); 870 871 PartwordMaskValues PMV = 872 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 873 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 874 875 Value *ValOperand_Shifted = 876 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 877 PMV.ShiftAmt, "ValOperand_Shifted"); 878 879 Value *NewOperand; 880 881 if (Op == AtomicRMWInst::And) 882 NewOperand = 883 Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand"); 884 else 885 NewOperand = ValOperand_Shifted; 886 887 AtomicRMWInst *NewAI = 888 Builder.CreateAtomicRMW(Op, PMV.AlignedAddr, NewOperand, 889 PMV.AlignedAddrAlignment, AI->getOrdering()); 890 891 Value *FinalOldResult = extractMaskedValue(Builder, NewAI, PMV); 892 AI->replaceAllUsesWith(FinalOldResult); 893 AI->eraseFromParent(); 894 return NewAI; 895 } 896 897 bool AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) { 898 // The basic idea here is that we're expanding a cmpxchg of a 899 // smaller memory size up to a word-sized cmpxchg. To do this, we 900 // need to add a retry-loop for strong cmpxchg, so that 901 // modifications to other parts of the word don't cause a spurious 902 // failure. 903 904 // This generates code like the following: 905 // [[Setup mask values PMV.*]] 906 // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt 907 // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt 908 // %InitLoaded = load i32* %addr 909 // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask 910 // br partword.cmpxchg.loop 911 // partword.cmpxchg.loop: 912 // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ], 913 // [ %OldVal_MaskOut, %partword.cmpxchg.failure ] 914 // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted 915 // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted 916 // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp, 917 // i32 %FullWord_NewVal success_ordering failure_ordering 918 // %OldVal = extractvalue { i32, i1 } %NewCI, 0 919 // %Success = extractvalue { i32, i1 } %NewCI, 1 920 // br i1 %Success, label %partword.cmpxchg.end, 921 // label %partword.cmpxchg.failure 922 // partword.cmpxchg.failure: 923 // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask 924 // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut 925 // br i1 %ShouldContinue, label %partword.cmpxchg.loop, 926 // label %partword.cmpxchg.end 927 // partword.cmpxchg.end: 928 // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt 929 // %FinalOldVal = trunc i32 %tmp1 to i8 930 // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0 931 // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1 932 933 Value *Addr = CI->getPointerOperand(); 934 Value *Cmp = CI->getCompareOperand(); 935 Value *NewVal = CI->getNewValOperand(); 936 937 BasicBlock *BB = CI->getParent(); 938 Function *F = BB->getParent(); 939 IRBuilder<> Builder(CI); 940 LLVMContext &Ctx = Builder.getContext(); 941 942 BasicBlock *EndBB = 943 BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end"); 944 auto FailureBB = 945 BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB); 946 auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB); 947 948 // The split call above "helpfully" added a branch at the end of BB 949 // (to the wrong place). 950 std::prev(BB->end())->eraseFromParent(); 951 Builder.SetInsertPoint(BB); 952 953 PartwordMaskValues PMV = 954 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr, 955 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 956 957 // Shift the incoming values over, into the right location in the word. 958 Value *NewVal_Shifted = 959 Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt); 960 Value *Cmp_Shifted = 961 Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt); 962 963 // Load the entire current word, and mask into place the expected and new 964 // values 965 LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr); 966 InitLoaded->setVolatile(CI->isVolatile()); 967 Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask); 968 Builder.CreateBr(LoopBB); 969 970 // partword.cmpxchg.loop: 971 Builder.SetInsertPoint(LoopBB); 972 PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2); 973 Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB); 974 975 // Mask/Or the expected and new values into place in the loaded word. 976 Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted); 977 Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted); 978 AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg( 979 PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, PMV.AlignedAddrAlignment, 980 CI->getSuccessOrdering(), CI->getFailureOrdering(), CI->getSyncScopeID()); 981 NewCI->setVolatile(CI->isVolatile()); 982 // When we're building a strong cmpxchg, we need a loop, so you 983 // might think we could use a weak cmpxchg inside. But, using strong 984 // allows the below comparison for ShouldContinue, and we're 985 // expecting the underlying cmpxchg to be a machine instruction, 986 // which is strong anyways. 987 NewCI->setWeak(CI->isWeak()); 988 989 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 990 Value *Success = Builder.CreateExtractValue(NewCI, 1); 991 992 if (CI->isWeak()) 993 Builder.CreateBr(EndBB); 994 else 995 Builder.CreateCondBr(Success, EndBB, FailureBB); 996 997 // partword.cmpxchg.failure: 998 Builder.SetInsertPoint(FailureBB); 999 // Upon failure, verify that the masked-out part of the loaded value 1000 // has been modified. If it didn't, abort the cmpxchg, since the 1001 // masked-in part must've. 1002 Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask); 1003 Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut); 1004 Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB); 1005 1006 // Add the second value to the phi from above 1007 Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB); 1008 1009 // partword.cmpxchg.end: 1010 Builder.SetInsertPoint(CI); 1011 1012 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV); 1013 Value *Res = UndefValue::get(CI->getType()); 1014 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 1015 Res = Builder.CreateInsertValue(Res, Success, 1); 1016 1017 CI->replaceAllUsesWith(Res); 1018 CI->eraseFromParent(); 1019 return true; 1020 } 1021 1022 void AtomicExpand::expandAtomicOpToLLSC( 1023 Instruction *I, Type *ResultType, Value *Addr, Align AddrAlign, 1024 AtomicOrdering MemOpOrder, 1025 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { 1026 IRBuilder<> Builder(I); 1027 Value *Loaded = insertRMWLLSCLoop(Builder, ResultType, Addr, AddrAlign, 1028 MemOpOrder, PerformOp); 1029 1030 I->replaceAllUsesWith(Loaded); 1031 I->eraseFromParent(); 1032 } 1033 1034 void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) { 1035 IRBuilder<> Builder(AI); 1036 1037 PartwordMaskValues PMV = 1038 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 1039 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1040 1041 // The value operand must be sign-extended for signed min/max so that the 1042 // target's signed comparison instructions can be used. Otherwise, just 1043 // zero-ext. 1044 Instruction::CastOps CastOp = Instruction::ZExt; 1045 AtomicRMWInst::BinOp RMWOp = AI->getOperation(); 1046 if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min) 1047 CastOp = Instruction::SExt; 1048 1049 Value *ValOperand_Shifted = Builder.CreateShl( 1050 Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType), 1051 PMV.ShiftAmt, "ValOperand_Shifted"); 1052 Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic( 1053 Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt, 1054 AI->getOrdering()); 1055 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV); 1056 AI->replaceAllUsesWith(FinalOldResult); 1057 AI->eraseFromParent(); 1058 } 1059 1060 void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI) { 1061 IRBuilder<> Builder(CI); 1062 1063 PartwordMaskValues PMV = createMaskInstrs( 1064 Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(), 1065 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1066 1067 Value *CmpVal_Shifted = Builder.CreateShl( 1068 Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt, 1069 "CmpVal_Shifted"); 1070 Value *NewVal_Shifted = Builder.CreateShl( 1071 Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt, 1072 "NewVal_Shifted"); 1073 Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic( 1074 Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask, 1075 CI->getMergedOrdering()); 1076 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV); 1077 Value *Res = UndefValue::get(CI->getType()); 1078 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 1079 Value *Success = Builder.CreateICmpEQ( 1080 CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success"); 1081 Res = Builder.CreateInsertValue(Res, Success, 1); 1082 1083 CI->replaceAllUsesWith(Res); 1084 CI->eraseFromParent(); 1085 } 1086 1087 Value *AtomicExpand::insertRMWLLSCLoop( 1088 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, 1089 AtomicOrdering MemOpOrder, 1090 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { 1091 LLVMContext &Ctx = Builder.getContext(); 1092 BasicBlock *BB = Builder.GetInsertBlock(); 1093 Function *F = BB->getParent(); 1094 1095 assert(AddrAlign >= 1096 F->getParent()->getDataLayout().getTypeStoreSize(ResultTy) && 1097 "Expected at least natural alignment at this point."); 1098 1099 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1100 // 1101 // The standard expansion we produce is: 1102 // [...] 1103 // atomicrmw.start: 1104 // %loaded = @load.linked(%addr) 1105 // %new = some_op iN %loaded, %incr 1106 // %stored = @store_conditional(%new, %addr) 1107 // %try_again = icmp i32 ne %stored, 0 1108 // br i1 %try_again, label %loop, label %atomicrmw.end 1109 // atomicrmw.end: 1110 // [...] 1111 BasicBlock *ExitBB = 1112 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1113 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1114 1115 // The split call above "helpfully" added a branch at the end of BB (to the 1116 // wrong place). 1117 std::prev(BB->end())->eraseFromParent(); 1118 Builder.SetInsertPoint(BB); 1119 Builder.CreateBr(LoopBB); 1120 1121 // Start the main loop block now that we've taken care of the preliminaries. 1122 Builder.SetInsertPoint(LoopBB); 1123 Value *Loaded = TLI->emitLoadLinked(Builder, ResultTy, Addr, MemOpOrder); 1124 1125 Value *NewVal = PerformOp(Builder, Loaded); 1126 1127 Value *StoreSuccess = 1128 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); 1129 Value *TryAgain = Builder.CreateICmpNE( 1130 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); 1131 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); 1132 1133 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1134 return Loaded; 1135 } 1136 1137 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of 1138 /// the equivalent bitwidth. We used to not support pointer cmpxchg in the 1139 /// IR. As a migration step, we convert back to what use to be the standard 1140 /// way to represent a pointer cmpxchg so that we can update backends one by 1141 /// one. 1142 AtomicCmpXchgInst *AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) { 1143 auto *M = CI->getModule(); 1144 Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(), 1145 M->getDataLayout()); 1146 1147 IRBuilder<> Builder(CI); 1148 1149 Value *Addr = CI->getPointerOperand(); 1150 Type *PT = PointerType::get(NewTy, 1151 Addr->getType()->getPointerAddressSpace()); 1152 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 1153 1154 Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy); 1155 Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy); 1156 1157 auto *NewCI = Builder.CreateAtomicCmpXchg( 1158 NewAddr, NewCmp, NewNewVal, CI->getAlign(), CI->getSuccessOrdering(), 1159 CI->getFailureOrdering(), CI->getSyncScopeID()); 1160 NewCI->setVolatile(CI->isVolatile()); 1161 NewCI->setWeak(CI->isWeak()); 1162 LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n"); 1163 1164 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 1165 Value *Succ = Builder.CreateExtractValue(NewCI, 1); 1166 1167 OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType()); 1168 1169 Value *Res = UndefValue::get(CI->getType()); 1170 Res = Builder.CreateInsertValue(Res, OldVal, 0); 1171 Res = Builder.CreateInsertValue(Res, Succ, 1); 1172 1173 CI->replaceAllUsesWith(Res); 1174 CI->eraseFromParent(); 1175 return NewCI; 1176 } 1177 1178 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1179 AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); 1180 AtomicOrdering FailureOrder = CI->getFailureOrdering(); 1181 Value *Addr = CI->getPointerOperand(); 1182 BasicBlock *BB = CI->getParent(); 1183 Function *F = BB->getParent(); 1184 LLVMContext &Ctx = F->getContext(); 1185 // If shouldInsertFencesForAtomic() returns true, then the target does not 1186 // want to deal with memory orders, and emitLeading/TrailingFence should take 1187 // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we 1188 // should preserve the ordering. 1189 bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI); 1190 AtomicOrdering MemOpOrder = ShouldInsertFencesForAtomic 1191 ? AtomicOrdering::Monotonic 1192 : CI->getMergedOrdering(); 1193 1194 // In implementations which use a barrier to achieve release semantics, we can 1195 // delay emitting this barrier until we know a store is actually going to be 1196 // attempted. The cost of this delay is that we need 2 copies of the block 1197 // emitting the load-linked, affecting code size. 1198 // 1199 // Ideally, this logic would be unconditional except for the minsize check 1200 // since in other cases the extra blocks naturally collapse down to the 1201 // minimal loop. Unfortunately, this puts too much stress on later 1202 // optimisations so we avoid emitting the extra logic in those cases too. 1203 bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic && 1204 SuccessOrder != AtomicOrdering::Monotonic && 1205 SuccessOrder != AtomicOrdering::Acquire && 1206 !F->hasMinSize(); 1207 1208 // There's no overhead for sinking the release barrier in a weak cmpxchg, so 1209 // do it even on minsize. 1210 bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak(); 1211 1212 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord 1213 // 1214 // The full expansion we produce is: 1215 // [...] 1216 // %aligned.addr = ... 1217 // cmpxchg.start: 1218 // %unreleasedload = @load.linked(%aligned.addr) 1219 // %unreleasedload.extract = extract value from %unreleasedload 1220 // %should_store = icmp eq %unreleasedload.extract, %desired 1221 // br i1 %should_store, label %cmpxchg.releasingstore, 1222 // label %cmpxchg.nostore 1223 // cmpxchg.releasingstore: 1224 // fence? 1225 // br label cmpxchg.trystore 1226 // cmpxchg.trystore: 1227 // %loaded.trystore = phi [%unreleasedload, %cmpxchg.releasingstore], 1228 // [%releasedload, %cmpxchg.releasedload] 1229 // %updated.new = insert %new into %loaded.trystore 1230 // %stored = @store_conditional(%updated.new, %aligned.addr) 1231 // %success = icmp eq i32 %stored, 0 1232 // br i1 %success, label %cmpxchg.success, 1233 // label %cmpxchg.releasedload/%cmpxchg.failure 1234 // cmpxchg.releasedload: 1235 // %releasedload = @load.linked(%aligned.addr) 1236 // %releasedload.extract = extract value from %releasedload 1237 // %should_store = icmp eq %releasedload.extract, %desired 1238 // br i1 %should_store, label %cmpxchg.trystore, 1239 // label %cmpxchg.failure 1240 // cmpxchg.success: 1241 // fence? 1242 // br label %cmpxchg.end 1243 // cmpxchg.nostore: 1244 // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start], 1245 // [%releasedload, 1246 // %cmpxchg.releasedload/%cmpxchg.trystore] 1247 // @load_linked_fail_balance()? 1248 // br label %cmpxchg.failure 1249 // cmpxchg.failure: 1250 // fence? 1251 // br label %cmpxchg.end 1252 // cmpxchg.end: 1253 // %loaded.exit = phi [%loaded.nostore, %cmpxchg.failure], 1254 // [%loaded.trystore, %cmpxchg.trystore] 1255 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] 1256 // %loaded = extract value from %loaded.exit 1257 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 1258 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 1259 // [...] 1260 BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end"); 1261 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); 1262 auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB); 1263 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB); 1264 auto ReleasedLoadBB = 1265 BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB); 1266 auto TryStoreBB = 1267 BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB); 1268 auto ReleasingStoreBB = 1269 BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB); 1270 auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB); 1271 1272 // This grabs the DebugLoc from CI 1273 IRBuilder<> Builder(CI); 1274 1275 // The split call above "helpfully" added a branch at the end of BB (to the 1276 // wrong place), but we might want a fence too. It's easiest to just remove 1277 // the branch entirely. 1278 std::prev(BB->end())->eraseFromParent(); 1279 Builder.SetInsertPoint(BB); 1280 if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier) 1281 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1282 1283 PartwordMaskValues PMV = 1284 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr, 1285 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1286 Builder.CreateBr(StartBB); 1287 1288 // Start the main loop block now that we've taken care of the preliminaries. 1289 Builder.SetInsertPoint(StartBB); 1290 Value *UnreleasedLoad = 1291 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder); 1292 Value *UnreleasedLoadExtract = 1293 extractMaskedValue(Builder, UnreleasedLoad, PMV); 1294 Value *ShouldStore = Builder.CreateICmpEQ( 1295 UnreleasedLoadExtract, CI->getCompareOperand(), "should_store"); 1296 1297 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1298 // jump straight past that fence instruction (if it exists). 1299 Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB); 1300 1301 Builder.SetInsertPoint(ReleasingStoreBB); 1302 if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier) 1303 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1304 Builder.CreateBr(TryStoreBB); 1305 1306 Builder.SetInsertPoint(TryStoreBB); 1307 PHINode *LoadedTryStore = 1308 Builder.CreatePHI(PMV.WordType, 2, "loaded.trystore"); 1309 LoadedTryStore->addIncoming(UnreleasedLoad, ReleasingStoreBB); 1310 Value *NewValueInsert = 1311 insertMaskedValue(Builder, LoadedTryStore, CI->getNewValOperand(), PMV); 1312 Value *StoreSuccess = 1313 TLI->emitStoreConditional(Builder, NewValueInsert, PMV.AlignedAddr, 1314 MemOpOrder); 1315 StoreSuccess = Builder.CreateICmpEQ( 1316 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); 1317 BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB; 1318 Builder.CreateCondBr(StoreSuccess, SuccessBB, 1319 CI->isWeak() ? FailureBB : RetryBB); 1320 1321 Builder.SetInsertPoint(ReleasedLoadBB); 1322 Value *SecondLoad; 1323 if (HasReleasedLoadBB) { 1324 SecondLoad = 1325 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder); 1326 Value *SecondLoadExtract = extractMaskedValue(Builder, SecondLoad, PMV); 1327 ShouldStore = Builder.CreateICmpEQ(SecondLoadExtract, 1328 CI->getCompareOperand(), "should_store"); 1329 1330 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1331 // jump straight past that fence instruction (if it exists). 1332 Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB); 1333 // Update PHI node in TryStoreBB. 1334 LoadedTryStore->addIncoming(SecondLoad, ReleasedLoadBB); 1335 } else 1336 Builder.CreateUnreachable(); 1337 1338 // Make sure later instructions don't get reordered with a fence if 1339 // necessary. 1340 Builder.SetInsertPoint(SuccessBB); 1341 if (ShouldInsertFencesForAtomic) 1342 TLI->emitTrailingFence(Builder, CI, SuccessOrder); 1343 Builder.CreateBr(ExitBB); 1344 1345 Builder.SetInsertPoint(NoStoreBB); 1346 PHINode *LoadedNoStore = 1347 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.nostore"); 1348 LoadedNoStore->addIncoming(UnreleasedLoad, StartBB); 1349 if (HasReleasedLoadBB) 1350 LoadedNoStore->addIncoming(SecondLoad, ReleasedLoadBB); 1351 1352 // In the failing case, where we don't execute the store-conditional, the 1353 // target might want to balance out the load-linked with a dedicated 1354 // instruction (e.g., on ARM, clearing the exclusive monitor). 1355 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 1356 Builder.CreateBr(FailureBB); 1357 1358 Builder.SetInsertPoint(FailureBB); 1359 PHINode *LoadedFailure = 1360 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.failure"); 1361 LoadedFailure->addIncoming(LoadedNoStore, NoStoreBB); 1362 if (CI->isWeak()) 1363 LoadedFailure->addIncoming(LoadedTryStore, TryStoreBB); 1364 if (ShouldInsertFencesForAtomic) 1365 TLI->emitTrailingFence(Builder, CI, FailureOrder); 1366 Builder.CreateBr(ExitBB); 1367 1368 // Finally, we have control-flow based knowledge of whether the cmpxchg 1369 // succeeded or not. We expose this to later passes by converting any 1370 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate 1371 // PHI. 1372 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1373 PHINode *LoadedExit = 1374 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.exit"); 1375 LoadedExit->addIncoming(LoadedTryStore, SuccessBB); 1376 LoadedExit->addIncoming(LoadedFailure, FailureBB); 1377 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2, "success"); 1378 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); 1379 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); 1380 1381 // This is the "exit value" from the cmpxchg expansion. It may be of 1382 // a type wider than the one in the cmpxchg instruction. 1383 Value *LoadedFull = LoadedExit; 1384 1385 Builder.SetInsertPoint(ExitBB, std::next(Success->getIterator())); 1386 Value *Loaded = extractMaskedValue(Builder, LoadedFull, PMV); 1387 1388 // Look for any users of the cmpxchg that are just comparing the loaded value 1389 // against the desired one, and replace them with the CFG-derived version. 1390 SmallVector<ExtractValueInst *, 2> PrunedInsts; 1391 for (auto User : CI->users()) { 1392 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); 1393 if (!EV) 1394 continue; 1395 1396 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && 1397 "weird extraction from { iN, i1 }"); 1398 1399 if (EV->getIndices()[0] == 0) 1400 EV->replaceAllUsesWith(Loaded); 1401 else 1402 EV->replaceAllUsesWith(Success); 1403 1404 PrunedInsts.push_back(EV); 1405 } 1406 1407 // We can remove the instructions now we're no longer iterating through them. 1408 for (auto EV : PrunedInsts) 1409 EV->eraseFromParent(); 1410 1411 if (!CI->use_empty()) { 1412 // Some use of the full struct return that we don't understand has happened, 1413 // so we've got to reconstruct it properly. 1414 Value *Res; 1415 Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0); 1416 Res = Builder.CreateInsertValue(Res, Success, 1); 1417 1418 CI->replaceAllUsesWith(Res); 1419 } 1420 1421 CI->eraseFromParent(); 1422 return true; 1423 } 1424 1425 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) { 1426 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand()); 1427 if(!C) 1428 return false; 1429 1430 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 1431 switch(Op) { 1432 case AtomicRMWInst::Add: 1433 case AtomicRMWInst::Sub: 1434 case AtomicRMWInst::Or: 1435 case AtomicRMWInst::Xor: 1436 return C->isZero(); 1437 case AtomicRMWInst::And: 1438 return C->isMinusOne(); 1439 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/... 1440 default: 1441 return false; 1442 } 1443 } 1444 1445 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) { 1446 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { 1447 tryExpandAtomicLoad(ResultingLoad); 1448 return true; 1449 } 1450 return false; 1451 } 1452 1453 Value *AtomicExpand::insertRMWCmpXchgLoop( 1454 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, 1455 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 1456 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, 1457 CreateCmpXchgInstFun CreateCmpXchg) { 1458 LLVMContext &Ctx = Builder.getContext(); 1459 BasicBlock *BB = Builder.GetInsertBlock(); 1460 Function *F = BB->getParent(); 1461 1462 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1463 // 1464 // The standard expansion we produce is: 1465 // [...] 1466 // %init_loaded = load atomic iN* %addr 1467 // br label %loop 1468 // loop: 1469 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] 1470 // %new = some_op iN %loaded, %incr 1471 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new 1472 // %new_loaded = extractvalue { iN, i1 } %pair, 0 1473 // %success = extractvalue { iN, i1 } %pair, 1 1474 // br i1 %success, label %atomicrmw.end, label %loop 1475 // atomicrmw.end: 1476 // [...] 1477 BasicBlock *ExitBB = 1478 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1479 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1480 1481 // The split call above "helpfully" added a branch at the end of BB (to the 1482 // wrong place), but we want a load. It's easiest to just remove 1483 // the branch entirely. 1484 std::prev(BB->end())->eraseFromParent(); 1485 Builder.SetInsertPoint(BB); 1486 LoadInst *InitLoaded = Builder.CreateAlignedLoad(ResultTy, Addr, AddrAlign); 1487 Builder.CreateBr(LoopBB); 1488 1489 // Start the main loop block now that we've taken care of the preliminaries. 1490 Builder.SetInsertPoint(LoopBB); 1491 PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded"); 1492 Loaded->addIncoming(InitLoaded, BB); 1493 1494 Value *NewVal = PerformOp(Builder, Loaded); 1495 1496 Value *NewLoaded = nullptr; 1497 Value *Success = nullptr; 1498 1499 CreateCmpXchg(Builder, Addr, Loaded, NewVal, AddrAlign, 1500 MemOpOrder == AtomicOrdering::Unordered 1501 ? AtomicOrdering::Monotonic 1502 : MemOpOrder, 1503 SSID, Success, NewLoaded); 1504 assert(Success && NewLoaded); 1505 1506 Loaded->addIncoming(NewLoaded, LoopBB); 1507 1508 Builder.CreateCondBr(Success, ExitBB, LoopBB); 1509 1510 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1511 return NewLoaded; 1512 } 1513 1514 bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1515 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 1516 unsigned ValueSize = getAtomicOpSize(CI); 1517 1518 switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) { 1519 default: 1520 llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg"); 1521 case TargetLoweringBase::AtomicExpansionKind::None: 1522 if (ValueSize < MinCASSize) 1523 return expandPartwordCmpXchg(CI); 1524 return false; 1525 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 1526 return expandAtomicCmpXchg(CI); 1527 } 1528 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: 1529 expandAtomicCmpXchgToMaskedIntrinsic(CI); 1530 return true; 1531 } 1532 } 1533 1534 // Note: This function is exposed externally by AtomicExpandUtils.h 1535 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 1536 CreateCmpXchgInstFun CreateCmpXchg) { 1537 IRBuilder<> Builder(AI); 1538 Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop( 1539 Builder, AI->getType(), AI->getPointerOperand(), AI->getAlign(), 1540 AI->getOrdering(), AI->getSyncScopeID(), 1541 [&](IRBuilder<> &Builder, Value *Loaded) { 1542 return performAtomicOp(AI->getOperation(), Builder, Loaded, 1543 AI->getValOperand()); 1544 }, 1545 CreateCmpXchg); 1546 1547 AI->replaceAllUsesWith(Loaded); 1548 AI->eraseFromParent(); 1549 return true; 1550 } 1551 1552 // In order to use one of the sized library calls such as 1553 // __atomic_fetch_add_4, the alignment must be sufficient, the size 1554 // must be one of the potentially-specialized sizes, and the value 1555 // type must actually exist in C on the target (otherwise, the 1556 // function wouldn't actually be defined.) 1557 static bool canUseSizedAtomicCall(unsigned Size, Align Alignment, 1558 const DataLayout &DL) { 1559 // TODO: "LargestSize" is an approximation for "largest type that 1560 // you can express in C". It seems to be the case that int128 is 1561 // supported on all 64-bit platforms, otherwise only up to 64-bit 1562 // integers are supported. If we get this wrong, then we'll try to 1563 // call a sized libcall that doesn't actually exist. There should 1564 // really be some more reliable way in LLVM of determining integer 1565 // sizes which are valid in the target's C ABI... 1566 unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8; 1567 return Alignment >= Size && 1568 (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) && 1569 Size <= LargestSize; 1570 } 1571 1572 void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) { 1573 static const RTLIB::Libcall Libcalls[6] = { 1574 RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2, 1575 RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16}; 1576 unsigned Size = getAtomicOpSize(I); 1577 1578 bool expanded = expandAtomicOpToLibcall( 1579 I, Size, I->getAlign(), I->getPointerOperand(), nullptr, nullptr, 1580 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1581 if (!expanded) 1582 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Load"); 1583 } 1584 1585 void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) { 1586 static const RTLIB::Libcall Libcalls[6] = { 1587 RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2, 1588 RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16}; 1589 unsigned Size = getAtomicOpSize(I); 1590 1591 bool expanded = expandAtomicOpToLibcall( 1592 I, Size, I->getAlign(), I->getPointerOperand(), I->getValueOperand(), 1593 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1594 if (!expanded) 1595 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Store"); 1596 } 1597 1598 void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) { 1599 static const RTLIB::Libcall Libcalls[6] = { 1600 RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1, 1601 RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4, 1602 RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16}; 1603 unsigned Size = getAtomicOpSize(I); 1604 1605 bool expanded = expandAtomicOpToLibcall( 1606 I, Size, I->getAlign(), I->getPointerOperand(), I->getNewValOperand(), 1607 I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(), 1608 Libcalls); 1609 if (!expanded) 1610 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for CAS"); 1611 } 1612 1613 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) { 1614 static const RTLIB::Libcall LibcallsXchg[6] = { 1615 RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1, 1616 RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4, 1617 RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16}; 1618 static const RTLIB::Libcall LibcallsAdd[6] = { 1619 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1, 1620 RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4, 1621 RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16}; 1622 static const RTLIB::Libcall LibcallsSub[6] = { 1623 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1, 1624 RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4, 1625 RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16}; 1626 static const RTLIB::Libcall LibcallsAnd[6] = { 1627 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1, 1628 RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4, 1629 RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16}; 1630 static const RTLIB::Libcall LibcallsOr[6] = { 1631 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1, 1632 RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4, 1633 RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16}; 1634 static const RTLIB::Libcall LibcallsXor[6] = { 1635 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1, 1636 RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4, 1637 RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16}; 1638 static const RTLIB::Libcall LibcallsNand[6] = { 1639 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1, 1640 RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4, 1641 RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16}; 1642 1643 switch (Op) { 1644 case AtomicRMWInst::BAD_BINOP: 1645 llvm_unreachable("Should not have BAD_BINOP."); 1646 case AtomicRMWInst::Xchg: 1647 return makeArrayRef(LibcallsXchg); 1648 case AtomicRMWInst::Add: 1649 return makeArrayRef(LibcallsAdd); 1650 case AtomicRMWInst::Sub: 1651 return makeArrayRef(LibcallsSub); 1652 case AtomicRMWInst::And: 1653 return makeArrayRef(LibcallsAnd); 1654 case AtomicRMWInst::Or: 1655 return makeArrayRef(LibcallsOr); 1656 case AtomicRMWInst::Xor: 1657 return makeArrayRef(LibcallsXor); 1658 case AtomicRMWInst::Nand: 1659 return makeArrayRef(LibcallsNand); 1660 case AtomicRMWInst::Max: 1661 case AtomicRMWInst::Min: 1662 case AtomicRMWInst::UMax: 1663 case AtomicRMWInst::UMin: 1664 case AtomicRMWInst::FAdd: 1665 case AtomicRMWInst::FSub: 1666 // No atomic libcalls are available for max/min/umax/umin. 1667 return {}; 1668 } 1669 llvm_unreachable("Unexpected AtomicRMW operation."); 1670 } 1671 1672 void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) { 1673 ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation()); 1674 1675 unsigned Size = getAtomicOpSize(I); 1676 1677 bool Success = false; 1678 if (!Libcalls.empty()) 1679 Success = expandAtomicOpToLibcall( 1680 I, Size, I->getAlign(), I->getPointerOperand(), I->getValOperand(), 1681 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1682 1683 // The expansion failed: either there were no libcalls at all for 1684 // the operation (min/max), or there were only size-specialized 1685 // libcalls (add/sub/etc) and we needed a generic. So, expand to a 1686 // CAS libcall, via a CAS loop, instead. 1687 if (!Success) { 1688 expandAtomicRMWToCmpXchg( 1689 I, [this](IRBuilder<> &Builder, Value *Addr, Value *Loaded, 1690 Value *NewVal, Align Alignment, AtomicOrdering MemOpOrder, 1691 SyncScope::ID SSID, Value *&Success, Value *&NewLoaded) { 1692 // Create the CAS instruction normally... 1693 AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg( 1694 Addr, Loaded, NewVal, Alignment, MemOpOrder, 1695 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID); 1696 Success = Builder.CreateExtractValue(Pair, 1, "success"); 1697 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 1698 1699 // ...and then expand the CAS into a libcall. 1700 expandAtomicCASToLibcall(Pair); 1701 }); 1702 } 1703 } 1704 1705 // A helper routine for the above expandAtomic*ToLibcall functions. 1706 // 1707 // 'Libcalls' contains an array of enum values for the particular 1708 // ATOMIC libcalls to be emitted. All of the other arguments besides 1709 // 'I' are extracted from the Instruction subclass by the 1710 // caller. Depending on the particular call, some will be null. 1711 bool AtomicExpand::expandAtomicOpToLibcall( 1712 Instruction *I, unsigned Size, Align Alignment, Value *PointerOperand, 1713 Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering, 1714 AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) { 1715 assert(Libcalls.size() == 6); 1716 1717 LLVMContext &Ctx = I->getContext(); 1718 Module *M = I->getModule(); 1719 const DataLayout &DL = M->getDataLayout(); 1720 IRBuilder<> Builder(I); 1721 IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front()); 1722 1723 bool UseSizedLibcall = canUseSizedAtomicCall(Size, Alignment, DL); 1724 Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8); 1725 1726 const Align AllocaAlignment = DL.getPrefTypeAlign(SizedIntTy); 1727 1728 // TODO: the "order" argument type is "int", not int32. So 1729 // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints. 1730 ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size); 1731 assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO"); 1732 Constant *OrderingVal = 1733 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering)); 1734 Constant *Ordering2Val = nullptr; 1735 if (CASExpected) { 1736 assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO"); 1737 Ordering2Val = 1738 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2)); 1739 } 1740 bool HasResult = I->getType() != Type::getVoidTy(Ctx); 1741 1742 RTLIB::Libcall RTLibType; 1743 if (UseSizedLibcall) { 1744 switch (Size) { 1745 case 1: RTLibType = Libcalls[1]; break; 1746 case 2: RTLibType = Libcalls[2]; break; 1747 case 4: RTLibType = Libcalls[3]; break; 1748 case 8: RTLibType = Libcalls[4]; break; 1749 case 16: RTLibType = Libcalls[5]; break; 1750 } 1751 } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) { 1752 RTLibType = Libcalls[0]; 1753 } else { 1754 // Can't use sized function, and there's no generic for this 1755 // operation, so give up. 1756 return false; 1757 } 1758 1759 if (!TLI->getLibcallName(RTLibType)) { 1760 // This target does not implement the requested atomic libcall so give up. 1761 return false; 1762 } 1763 1764 // Build up the function call. There's two kinds. First, the sized 1765 // variants. These calls are going to be one of the following (with 1766 // N=1,2,4,8,16): 1767 // iN __atomic_load_N(iN *ptr, int ordering) 1768 // void __atomic_store_N(iN *ptr, iN val, int ordering) 1769 // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering) 1770 // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired, 1771 // int success_order, int failure_order) 1772 // 1773 // Note that these functions can be used for non-integer atomic 1774 // operations, the values just need to be bitcast to integers on the 1775 // way in and out. 1776 // 1777 // And, then, the generic variants. They look like the following: 1778 // void __atomic_load(size_t size, void *ptr, void *ret, int ordering) 1779 // void __atomic_store(size_t size, void *ptr, void *val, int ordering) 1780 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, 1781 // int ordering) 1782 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, 1783 // void *desired, int success_order, 1784 // int failure_order) 1785 // 1786 // The different signatures are built up depending on the 1787 // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult' 1788 // variables. 1789 1790 AllocaInst *AllocaCASExpected = nullptr; 1791 Value *AllocaCASExpected_i8 = nullptr; 1792 AllocaInst *AllocaValue = nullptr; 1793 Value *AllocaValue_i8 = nullptr; 1794 AllocaInst *AllocaResult = nullptr; 1795 Value *AllocaResult_i8 = nullptr; 1796 1797 Type *ResultTy; 1798 SmallVector<Value *, 6> Args; 1799 AttributeList Attr; 1800 1801 // 'size' argument. 1802 if (!UseSizedLibcall) { 1803 // Note, getIntPtrType is assumed equivalent to size_t. 1804 Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size)); 1805 } 1806 1807 // 'ptr' argument. 1808 // note: This assumes all address spaces share a common libfunc 1809 // implementation and that addresses are convertable. For systems without 1810 // that property, we'd need to extend this mechanism to support AS-specific 1811 // families of atomic intrinsics. 1812 auto PtrTypeAS = PointerOperand->getType()->getPointerAddressSpace(); 1813 Value *PtrVal = Builder.CreateBitCast(PointerOperand, 1814 Type::getInt8PtrTy(Ctx, PtrTypeAS)); 1815 PtrVal = Builder.CreateAddrSpaceCast(PtrVal, Type::getInt8PtrTy(Ctx)); 1816 Args.push_back(PtrVal); 1817 1818 // 'expected' argument, if present. 1819 if (CASExpected) { 1820 AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType()); 1821 AllocaCASExpected->setAlignment(AllocaAlignment); 1822 unsigned AllocaAS = AllocaCASExpected->getType()->getPointerAddressSpace(); 1823 1824 AllocaCASExpected_i8 = 1825 Builder.CreateBitCast(AllocaCASExpected, 1826 Type::getInt8PtrTy(Ctx, AllocaAS)); 1827 Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64); 1828 Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment); 1829 Args.push_back(AllocaCASExpected_i8); 1830 } 1831 1832 // 'val' argument ('desired' for cas), if present. 1833 if (ValueOperand) { 1834 if (UseSizedLibcall) { 1835 Value *IntValue = 1836 Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy); 1837 Args.push_back(IntValue); 1838 } else { 1839 AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType()); 1840 AllocaValue->setAlignment(AllocaAlignment); 1841 AllocaValue_i8 = 1842 Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx)); 1843 Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64); 1844 Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment); 1845 Args.push_back(AllocaValue_i8); 1846 } 1847 } 1848 1849 // 'ret' argument. 1850 if (!CASExpected && HasResult && !UseSizedLibcall) { 1851 AllocaResult = AllocaBuilder.CreateAlloca(I->getType()); 1852 AllocaResult->setAlignment(AllocaAlignment); 1853 unsigned AllocaAS = AllocaResult->getType()->getPointerAddressSpace(); 1854 AllocaResult_i8 = 1855 Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx, AllocaAS)); 1856 Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64); 1857 Args.push_back(AllocaResult_i8); 1858 } 1859 1860 // 'ordering' ('success_order' for cas) argument. 1861 Args.push_back(OrderingVal); 1862 1863 // 'failure_order' argument, if present. 1864 if (Ordering2Val) 1865 Args.push_back(Ordering2Val); 1866 1867 // Now, the return type. 1868 if (CASExpected) { 1869 ResultTy = Type::getInt1Ty(Ctx); 1870 Attr = Attr.addRetAttribute(Ctx, Attribute::ZExt); 1871 } else if (HasResult && UseSizedLibcall) 1872 ResultTy = SizedIntTy; 1873 else 1874 ResultTy = Type::getVoidTy(Ctx); 1875 1876 // Done with setting up arguments and return types, create the call: 1877 SmallVector<Type *, 6> ArgTys; 1878 for (Value *Arg : Args) 1879 ArgTys.push_back(Arg->getType()); 1880 FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false); 1881 FunctionCallee LibcallFn = 1882 M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr); 1883 CallInst *Call = Builder.CreateCall(LibcallFn, Args); 1884 Call->setAttributes(Attr); 1885 Value *Result = Call; 1886 1887 // And then, extract the results... 1888 if (ValueOperand && !UseSizedLibcall) 1889 Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64); 1890 1891 if (CASExpected) { 1892 // The final result from the CAS is {load of 'expected' alloca, bool result 1893 // from call} 1894 Type *FinalResultTy = I->getType(); 1895 Value *V = UndefValue::get(FinalResultTy); 1896 Value *ExpectedOut = Builder.CreateAlignedLoad( 1897 CASExpected->getType(), AllocaCASExpected, AllocaAlignment); 1898 Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64); 1899 V = Builder.CreateInsertValue(V, ExpectedOut, 0); 1900 V = Builder.CreateInsertValue(V, Result, 1); 1901 I->replaceAllUsesWith(V); 1902 } else if (HasResult) { 1903 Value *V; 1904 if (UseSizedLibcall) 1905 V = Builder.CreateBitOrPointerCast(Result, I->getType()); 1906 else { 1907 V = Builder.CreateAlignedLoad(I->getType(), AllocaResult, 1908 AllocaAlignment); 1909 Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64); 1910 } 1911 I->replaceAllUsesWith(V); 1912 } 1913 I->eraseFromParent(); 1914 return true; 1915 } 1916