1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass (at IR level) to replace atomic instructions with 10 // __atomic_* library calls, or target specific instruction which implement the 11 // same semantics in a way which better fits the target backend. This can 12 // include the use of (intrinsic-based) load-linked/store-conditional loops, 13 // AtomicCmpXchg, or type coercions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/STLFunctionalExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/CodeGen/AtomicExpandUtils.h" 22 #include "llvm/CodeGen/RuntimeLibcalls.h" 23 #include "llvm/CodeGen/TargetLowering.h" 24 #include "llvm/CodeGen/TargetPassConfig.h" 25 #include "llvm/CodeGen/TargetSubtargetInfo.h" 26 #include "llvm/CodeGen/ValueTypes.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Constant.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/IRBuilder.h" 35 #include "llvm/IR/InstIterator.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Type.h" 40 #include "llvm/IR/User.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/InitializePasses.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/AtomicOrdering.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Target/TargetMachine.h" 50 #include <cassert> 51 #include <cstdint> 52 #include <iterator> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "atomic-expand" 57 58 namespace { 59 60 class AtomicExpand : public FunctionPass { 61 const TargetLowering *TLI = nullptr; 62 63 public: 64 static char ID; // Pass identification, replacement for typeid 65 66 AtomicExpand() : FunctionPass(ID) { 67 initializeAtomicExpandPass(*PassRegistry::getPassRegistry()); 68 } 69 70 bool runOnFunction(Function &F) override; 71 72 private: 73 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order); 74 IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL); 75 LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI); 76 bool tryExpandAtomicLoad(LoadInst *LI); 77 bool expandAtomicLoadToLL(LoadInst *LI); 78 bool expandAtomicLoadToCmpXchg(LoadInst *LI); 79 StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI); 80 bool tryExpandAtomicStore(StoreInst *SI); 81 void expandAtomicStore(StoreInst *SI); 82 bool tryExpandAtomicRMW(AtomicRMWInst *AI); 83 AtomicRMWInst *convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI); 84 Value * 85 insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr, 86 Align AddrAlign, AtomicOrdering MemOpOrder, 87 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); 88 void 89 expandAtomicOpToLLSC(Instruction *I, Type *ResultTy, Value *Addr, 90 Align AddrAlign, AtomicOrdering MemOpOrder, 91 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); 92 void expandPartwordAtomicRMW( 93 AtomicRMWInst *I, TargetLoweringBase::AtomicExpansionKind ExpansionKind); 94 AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI); 95 bool expandPartwordCmpXchg(AtomicCmpXchgInst *I); 96 void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI); 97 void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI); 98 99 AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI); 100 static Value * 101 insertRMWCmpXchgLoop(IRBuilder<> &Builder, Type *ResultType, Value *Addr, 102 Align AddrAlign, AtomicOrdering MemOpOrder, 103 SyncScope::ID SSID, 104 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, 105 CreateCmpXchgInstFun CreateCmpXchg); 106 bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI); 107 108 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); 109 bool isIdempotentRMW(AtomicRMWInst *RMWI); 110 bool simplifyIdempotentRMW(AtomicRMWInst *RMWI); 111 112 bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, Align Alignment, 113 Value *PointerOperand, Value *ValueOperand, 114 Value *CASExpected, AtomicOrdering Ordering, 115 AtomicOrdering Ordering2, 116 ArrayRef<RTLIB::Libcall> Libcalls); 117 void expandAtomicLoadToLibcall(LoadInst *LI); 118 void expandAtomicStoreToLibcall(StoreInst *LI); 119 void expandAtomicRMWToLibcall(AtomicRMWInst *I); 120 void expandAtomicCASToLibcall(AtomicCmpXchgInst *I); 121 122 friend bool 123 llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 124 CreateCmpXchgInstFun CreateCmpXchg); 125 }; 126 127 } // end anonymous namespace 128 129 char AtomicExpand::ID = 0; 130 131 char &llvm::AtomicExpandID = AtomicExpand::ID; 132 133 INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions", false, 134 false) 135 136 FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); } 137 138 // Helper functions to retrieve the size of atomic instructions. 139 static unsigned getAtomicOpSize(LoadInst *LI) { 140 const DataLayout &DL = LI->getModule()->getDataLayout(); 141 return DL.getTypeStoreSize(LI->getType()); 142 } 143 144 static unsigned getAtomicOpSize(StoreInst *SI) { 145 const DataLayout &DL = SI->getModule()->getDataLayout(); 146 return DL.getTypeStoreSize(SI->getValueOperand()->getType()); 147 } 148 149 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) { 150 const DataLayout &DL = RMWI->getModule()->getDataLayout(); 151 return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); 152 } 153 154 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) { 155 const DataLayout &DL = CASI->getModule()->getDataLayout(); 156 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); 157 } 158 159 // Determine if a particular atomic operation has a supported size, 160 // and is of appropriate alignment, to be passed through for target 161 // lowering. (Versus turning into a __atomic libcall) 162 template <typename Inst> 163 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) { 164 unsigned Size = getAtomicOpSize(I); 165 Align Alignment = I->getAlign(); 166 return Alignment >= Size && 167 Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8; 168 } 169 170 bool AtomicExpand::runOnFunction(Function &F) { 171 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 172 if (!TPC) 173 return false; 174 175 auto &TM = TPC->getTM<TargetMachine>(); 176 if (!TM.getSubtargetImpl(F)->enableAtomicExpand()) 177 return false; 178 TLI = TM.getSubtargetImpl(F)->getTargetLowering(); 179 180 SmallVector<Instruction *, 1> AtomicInsts; 181 182 // Changing control-flow while iterating through it is a bad idea, so gather a 183 // list of all atomic instructions before we start. 184 for (Instruction &I : instructions(F)) 185 if (I.isAtomic() && !isa<FenceInst>(&I)) 186 AtomicInsts.push_back(&I); 187 188 bool MadeChange = false; 189 for (auto I : AtomicInsts) { 190 auto LI = dyn_cast<LoadInst>(I); 191 auto SI = dyn_cast<StoreInst>(I); 192 auto RMWI = dyn_cast<AtomicRMWInst>(I); 193 auto CASI = dyn_cast<AtomicCmpXchgInst>(I); 194 assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction"); 195 196 // If the Size/Alignment is not supported, replace with a libcall. 197 if (LI) { 198 if (!atomicSizeSupported(TLI, LI)) { 199 expandAtomicLoadToLibcall(LI); 200 MadeChange = true; 201 continue; 202 } 203 } else if (SI) { 204 if (!atomicSizeSupported(TLI, SI)) { 205 expandAtomicStoreToLibcall(SI); 206 MadeChange = true; 207 continue; 208 } 209 } else if (RMWI) { 210 if (!atomicSizeSupported(TLI, RMWI)) { 211 expandAtomicRMWToLibcall(RMWI); 212 MadeChange = true; 213 continue; 214 } 215 } else if (CASI) { 216 if (!atomicSizeSupported(TLI, CASI)) { 217 expandAtomicCASToLibcall(CASI); 218 MadeChange = true; 219 continue; 220 } 221 } 222 223 if (TLI->shouldInsertFencesForAtomic(I)) { 224 auto FenceOrdering = AtomicOrdering::Monotonic; 225 if (LI && isAcquireOrStronger(LI->getOrdering())) { 226 FenceOrdering = LI->getOrdering(); 227 LI->setOrdering(AtomicOrdering::Monotonic); 228 } else if (SI && isReleaseOrStronger(SI->getOrdering())) { 229 FenceOrdering = SI->getOrdering(); 230 SI->setOrdering(AtomicOrdering::Monotonic); 231 } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) || 232 isAcquireOrStronger(RMWI->getOrdering()))) { 233 FenceOrdering = RMWI->getOrdering(); 234 RMWI->setOrdering(AtomicOrdering::Monotonic); 235 } else if (CASI && 236 TLI->shouldExpandAtomicCmpXchgInIR(CASI) == 237 TargetLoweringBase::AtomicExpansionKind::None && 238 (isReleaseOrStronger(CASI->getSuccessOrdering()) || 239 isAcquireOrStronger(CASI->getSuccessOrdering()) || 240 isAcquireOrStronger(CASI->getFailureOrdering()))) { 241 // If a compare and swap is lowered to LL/SC, we can do smarter fence 242 // insertion, with a stronger one on the success path than on the 243 // failure path. As a result, fence insertion is directly done by 244 // expandAtomicCmpXchg in that case. 245 FenceOrdering = CASI->getMergedOrdering(); 246 CASI->setSuccessOrdering(AtomicOrdering::Monotonic); 247 CASI->setFailureOrdering(AtomicOrdering::Monotonic); 248 } 249 250 if (FenceOrdering != AtomicOrdering::Monotonic) { 251 MadeChange |= bracketInstWithFences(I, FenceOrdering); 252 } 253 } 254 255 if (LI) { 256 if (LI->getType()->isFloatingPointTy()) { 257 // TODO: add a TLI hook to control this so that each target can 258 // convert to lowering the original type one at a time. 259 LI = convertAtomicLoadToIntegerType(LI); 260 assert(LI->getType()->isIntegerTy() && "invariant broken"); 261 MadeChange = true; 262 } 263 264 MadeChange |= tryExpandAtomicLoad(LI); 265 } else if (SI) { 266 if (SI->getValueOperand()->getType()->isFloatingPointTy()) { 267 // TODO: add a TLI hook to control this so that each target can 268 // convert to lowering the original type one at a time. 269 SI = convertAtomicStoreToIntegerType(SI); 270 assert(SI->getValueOperand()->getType()->isIntegerTy() && 271 "invariant broken"); 272 MadeChange = true; 273 } 274 275 if (tryExpandAtomicStore(SI)) 276 MadeChange = true; 277 } else if (RMWI) { 278 // There are two different ways of expanding RMW instructions: 279 // - into a load if it is idempotent 280 // - into a Cmpxchg/LL-SC loop otherwise 281 // we try them in that order. 282 283 if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) { 284 MadeChange = true; 285 } else { 286 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 287 if (Op == AtomicRMWInst::Xchg && 288 RMWI->getValOperand()->getType()->isFloatingPointTy()) { 289 // TODO: add a TLI hook to control this so that each target can 290 // convert to lowering the original type one at a time. 291 RMWI = convertAtomicXchgToIntegerType(RMWI); 292 assert(RMWI->getValOperand()->getType()->isIntegerTy() && 293 "invariant broken"); 294 MadeChange = true; 295 } 296 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 297 unsigned ValueSize = getAtomicOpSize(RMWI); 298 if (ValueSize < MinCASSize && 299 (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 300 Op == AtomicRMWInst::And)) { 301 RMWI = widenPartwordAtomicRMW(RMWI); 302 MadeChange = true; 303 } 304 305 MadeChange |= tryExpandAtomicRMW(RMWI); 306 } 307 } else if (CASI) { 308 // TODO: when we're ready to make the change at the IR level, we can 309 // extend convertCmpXchgToInteger for floating point too. 310 assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() && 311 "unimplemented - floating point not legal at IR level"); 312 if (CASI->getCompareOperand()->getType()->isPointerTy()) { 313 // TODO: add a TLI hook to control this so that each target can 314 // convert to lowering the original type one at a time. 315 CASI = convertCmpXchgToIntegerType(CASI); 316 assert(CASI->getCompareOperand()->getType()->isIntegerTy() && 317 "invariant broken"); 318 MadeChange = true; 319 } 320 321 MadeChange |= tryExpandAtomicCmpXchg(CASI); 322 } 323 } 324 return MadeChange; 325 } 326 327 bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) { 328 IRBuilder<> Builder(I); 329 330 auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order); 331 332 auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order); 333 // We have a guard here because not every atomic operation generates a 334 // trailing fence. 335 if (TrailingFence) 336 TrailingFence->moveAfter(I); 337 338 return (LeadingFence || TrailingFence); 339 } 340 341 /// Get the iX type with the same bitwidth as T. 342 IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T, 343 const DataLayout &DL) { 344 EVT VT = TLI->getMemValueType(DL, T); 345 unsigned BitWidth = VT.getStoreSizeInBits(); 346 assert(BitWidth == VT.getSizeInBits() && "must be a power of two"); 347 return IntegerType::get(T->getContext(), BitWidth); 348 } 349 350 /// Convert an atomic load of a non-integral type to an integer load of the 351 /// equivalent bitwidth. See the function comment on 352 /// convertAtomicStoreToIntegerType for background. 353 LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) { 354 auto *M = LI->getModule(); 355 Type *NewTy = getCorrespondingIntegerType(LI->getType(), M->getDataLayout()); 356 357 IRBuilder<> Builder(LI); 358 359 Value *Addr = LI->getPointerOperand(); 360 Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace()); 361 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 362 363 auto *NewLI = Builder.CreateLoad(NewTy, NewAddr); 364 NewLI->setAlignment(LI->getAlign()); 365 NewLI->setVolatile(LI->isVolatile()); 366 NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID()); 367 LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n"); 368 369 Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType()); 370 LI->replaceAllUsesWith(NewVal); 371 LI->eraseFromParent(); 372 return NewLI; 373 } 374 375 AtomicRMWInst * 376 AtomicExpand::convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI) { 377 auto *M = RMWI->getModule(); 378 Type *NewTy = 379 getCorrespondingIntegerType(RMWI->getType(), M->getDataLayout()); 380 381 IRBuilder<> Builder(RMWI); 382 383 Value *Addr = RMWI->getPointerOperand(); 384 Value *Val = RMWI->getValOperand(); 385 Type *PT = PointerType::get(NewTy, RMWI->getPointerAddressSpace()); 386 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 387 Value *NewVal = Builder.CreateBitCast(Val, NewTy); 388 389 auto *NewRMWI = 390 Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, NewAddr, NewVal, 391 RMWI->getAlign(), RMWI->getOrdering()); 392 NewRMWI->setVolatile(RMWI->isVolatile()); 393 LLVM_DEBUG(dbgs() << "Replaced " << *RMWI << " with " << *NewRMWI << "\n"); 394 395 Value *NewRVal = Builder.CreateBitCast(NewRMWI, RMWI->getType()); 396 RMWI->replaceAllUsesWith(NewRVal); 397 RMWI->eraseFromParent(); 398 return NewRMWI; 399 } 400 401 bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) { 402 switch (TLI->shouldExpandAtomicLoadInIR(LI)) { 403 case TargetLoweringBase::AtomicExpansionKind::None: 404 return false; 405 case TargetLoweringBase::AtomicExpansionKind::LLSC: 406 expandAtomicOpToLLSC( 407 LI, LI->getType(), LI->getPointerOperand(), LI->getAlign(), 408 LI->getOrdering(), 409 [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; }); 410 return true; 411 case TargetLoweringBase::AtomicExpansionKind::LLOnly: 412 return expandAtomicLoadToLL(LI); 413 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: 414 return expandAtomicLoadToCmpXchg(LI); 415 default: 416 llvm_unreachable("Unhandled case in tryExpandAtomicLoad"); 417 } 418 } 419 420 bool AtomicExpand::tryExpandAtomicStore(StoreInst *SI) { 421 switch (TLI->shouldExpandAtomicStoreInIR(SI)) { 422 case TargetLoweringBase::AtomicExpansionKind::None: 423 return false; 424 case TargetLoweringBase::AtomicExpansionKind::Expand: 425 expandAtomicStore(SI); 426 return true; 427 default: 428 llvm_unreachable("Unhandled case in tryExpandAtomicStore"); 429 } 430 } 431 432 bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) { 433 IRBuilder<> Builder(LI); 434 435 // On some architectures, load-linked instructions are atomic for larger 436 // sizes than normal loads. For example, the only 64-bit load guaranteed 437 // to be single-copy atomic by ARM is an ldrexd (A3.5.3). 438 Value *Val = TLI->emitLoadLinked(Builder, LI->getType(), 439 LI->getPointerOperand(), LI->getOrdering()); 440 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 441 442 LI->replaceAllUsesWith(Val); 443 LI->eraseFromParent(); 444 445 return true; 446 } 447 448 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) { 449 IRBuilder<> Builder(LI); 450 AtomicOrdering Order = LI->getOrdering(); 451 if (Order == AtomicOrdering::Unordered) 452 Order = AtomicOrdering::Monotonic; 453 454 Value *Addr = LI->getPointerOperand(); 455 Type *Ty = LI->getType(); 456 Constant *DummyVal = Constant::getNullValue(Ty); 457 458 Value *Pair = Builder.CreateAtomicCmpXchg( 459 Addr, DummyVal, DummyVal, LI->getAlign(), Order, 460 AtomicCmpXchgInst::getStrongestFailureOrdering(Order)); 461 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded"); 462 463 LI->replaceAllUsesWith(Loaded); 464 LI->eraseFromParent(); 465 466 return true; 467 } 468 469 /// Convert an atomic store of a non-integral type to an integer store of the 470 /// equivalent bitwidth. We used to not support floating point or vector 471 /// atomics in the IR at all. The backends learned to deal with the bitcast 472 /// idiom because that was the only way of expressing the notion of a atomic 473 /// float or vector store. The long term plan is to teach each backend to 474 /// instruction select from the original atomic store, but as a migration 475 /// mechanism, we convert back to the old format which the backends understand. 476 /// Each backend will need individual work to recognize the new format. 477 StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) { 478 IRBuilder<> Builder(SI); 479 auto *M = SI->getModule(); 480 Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(), 481 M->getDataLayout()); 482 Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy); 483 484 Value *Addr = SI->getPointerOperand(); 485 Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace()); 486 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 487 488 StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr); 489 NewSI->setAlignment(SI->getAlign()); 490 NewSI->setVolatile(SI->isVolatile()); 491 NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID()); 492 LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n"); 493 SI->eraseFromParent(); 494 return NewSI; 495 } 496 497 void AtomicExpand::expandAtomicStore(StoreInst *SI) { 498 // This function is only called on atomic stores that are too large to be 499 // atomic if implemented as a native store. So we replace them by an 500 // atomic swap, that can be implemented for example as a ldrex/strex on ARM 501 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. 502 // It is the responsibility of the target to only signal expansion via 503 // shouldExpandAtomicRMW in cases where this is required and possible. 504 IRBuilder<> Builder(SI); 505 AtomicRMWInst *AI = Builder.CreateAtomicRMW( 506 AtomicRMWInst::Xchg, SI->getPointerOperand(), SI->getValueOperand(), 507 SI->getAlign(), SI->getOrdering()); 508 SI->eraseFromParent(); 509 510 // Now we have an appropriate swap instruction, lower it as usual. 511 tryExpandAtomicRMW(AI); 512 } 513 514 static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr, 515 Value *Loaded, Value *NewVal, Align AddrAlign, 516 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 517 Value *&Success, Value *&NewLoaded) { 518 Type *OrigTy = NewVal->getType(); 519 520 // This code can go away when cmpxchg supports FP types. 521 bool NeedBitcast = OrigTy->isFloatingPointTy(); 522 if (NeedBitcast) { 523 IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits()); 524 unsigned AS = Addr->getType()->getPointerAddressSpace(); 525 Addr = Builder.CreateBitCast(Addr, IntTy->getPointerTo(AS)); 526 NewVal = Builder.CreateBitCast(NewVal, IntTy); 527 Loaded = Builder.CreateBitCast(Loaded, IntTy); 528 } 529 530 Value *Pair = Builder.CreateAtomicCmpXchg( 531 Addr, Loaded, NewVal, AddrAlign, MemOpOrder, 532 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID); 533 Success = Builder.CreateExtractValue(Pair, 1, "success"); 534 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 535 536 if (NeedBitcast) 537 NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy); 538 } 539 540 /// Emit IR to implement the given atomicrmw operation on values in registers, 541 /// returning the new value. 542 static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder, 543 Value *Loaded, Value *Inc) { 544 Value *NewVal; 545 switch (Op) { 546 case AtomicRMWInst::Xchg: 547 return Inc; 548 case AtomicRMWInst::Add: 549 return Builder.CreateAdd(Loaded, Inc, "new"); 550 case AtomicRMWInst::Sub: 551 return Builder.CreateSub(Loaded, Inc, "new"); 552 case AtomicRMWInst::And: 553 return Builder.CreateAnd(Loaded, Inc, "new"); 554 case AtomicRMWInst::Nand: 555 return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new"); 556 case AtomicRMWInst::Or: 557 return Builder.CreateOr(Loaded, Inc, "new"); 558 case AtomicRMWInst::Xor: 559 return Builder.CreateXor(Loaded, Inc, "new"); 560 case AtomicRMWInst::Max: 561 NewVal = Builder.CreateICmpSGT(Loaded, Inc); 562 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 563 case AtomicRMWInst::Min: 564 NewVal = Builder.CreateICmpSLE(Loaded, Inc); 565 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 566 case AtomicRMWInst::UMax: 567 NewVal = Builder.CreateICmpUGT(Loaded, Inc); 568 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 569 case AtomicRMWInst::UMin: 570 NewVal = Builder.CreateICmpULE(Loaded, Inc); 571 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 572 case AtomicRMWInst::FAdd: 573 return Builder.CreateFAdd(Loaded, Inc, "new"); 574 case AtomicRMWInst::FSub: 575 return Builder.CreateFSub(Loaded, Inc, "new"); 576 default: 577 llvm_unreachable("Unknown atomic op"); 578 } 579 } 580 581 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) { 582 LLVMContext &Ctx = AI->getModule()->getContext(); 583 TargetLowering::AtomicExpansionKind Kind = TLI->shouldExpandAtomicRMWInIR(AI); 584 switch (Kind) { 585 case TargetLoweringBase::AtomicExpansionKind::None: 586 return false; 587 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 588 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 589 unsigned ValueSize = getAtomicOpSize(AI); 590 if (ValueSize < MinCASSize) { 591 expandPartwordAtomicRMW(AI, 592 TargetLoweringBase::AtomicExpansionKind::LLSC); 593 } else { 594 auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) { 595 return performAtomicOp(AI->getOperation(), Builder, Loaded, 596 AI->getValOperand()); 597 }; 598 expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(), 599 AI->getAlign(), AI->getOrdering(), PerformOp); 600 } 601 return true; 602 } 603 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: { 604 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 605 unsigned ValueSize = getAtomicOpSize(AI); 606 if (ValueSize < MinCASSize) { 607 // TODO: Handle atomicrmw fadd/fsub 608 if (AI->getType()->isFloatingPointTy()) 609 return false; 610 611 expandPartwordAtomicRMW(AI, 612 TargetLoweringBase::AtomicExpansionKind::CmpXChg); 613 } else { 614 SmallVector<StringRef> SSNs; 615 Ctx.getSyncScopeNames(SSNs); 616 auto MemScope = SSNs[AI->getSyncScopeID()].empty() 617 ? "system" 618 : SSNs[AI->getSyncScopeID()]; 619 OptimizationRemarkEmitter ORE(AI->getFunction()); 620 ORE.emit([&]() { 621 return OptimizationRemark(DEBUG_TYPE, "Passed", AI) 622 << "A compare and swap loop was generated for an atomic " 623 << AI->getOperationName(AI->getOperation()) << " operation at " 624 << MemScope << " memory scope"; 625 }); 626 expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun); 627 } 628 return true; 629 } 630 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: { 631 expandAtomicRMWToMaskedIntrinsic(AI); 632 return true; 633 } 634 case TargetLoweringBase::AtomicExpansionKind::BitTestIntrinsic: { 635 TLI->emitBitTestAtomicRMWIntrinsic(AI); 636 return true; 637 } 638 default: 639 llvm_unreachable("Unhandled case in tryExpandAtomicRMW"); 640 } 641 } 642 643 namespace { 644 645 struct PartwordMaskValues { 646 // These three fields are guaranteed to be set by createMaskInstrs. 647 Type *WordType = nullptr; 648 Type *ValueType = nullptr; 649 Value *AlignedAddr = nullptr; 650 Align AlignedAddrAlignment; 651 // The remaining fields can be null. 652 Value *ShiftAmt = nullptr; 653 Value *Mask = nullptr; 654 Value *Inv_Mask = nullptr; 655 }; 656 657 LLVM_ATTRIBUTE_UNUSED 658 raw_ostream &operator<<(raw_ostream &O, const PartwordMaskValues &PMV) { 659 auto PrintObj = [&O](auto *V) { 660 if (V) 661 O << *V; 662 else 663 O << "nullptr"; 664 O << '\n'; 665 }; 666 O << "PartwordMaskValues {\n"; 667 O << " WordType: "; 668 PrintObj(PMV.WordType); 669 O << " ValueType: "; 670 PrintObj(PMV.ValueType); 671 O << " AlignedAddr: "; 672 PrintObj(PMV.AlignedAddr); 673 O << " AlignedAddrAlignment: " << PMV.AlignedAddrAlignment.value() << '\n'; 674 O << " ShiftAmt: "; 675 PrintObj(PMV.ShiftAmt); 676 O << " Mask: "; 677 PrintObj(PMV.Mask); 678 O << " Inv_Mask: "; 679 PrintObj(PMV.Inv_Mask); 680 O << "}\n"; 681 return O; 682 } 683 684 } // end anonymous namespace 685 686 /// This is a helper function which builds instructions to provide 687 /// values necessary for partword atomic operations. It takes an 688 /// incoming address, Addr, and ValueType, and constructs the address, 689 /// shift-amounts and masks needed to work with a larger value of size 690 /// WordSize. 691 /// 692 /// AlignedAddr: Addr rounded down to a multiple of WordSize 693 /// 694 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded 695 /// from AlignAddr for it to have the same value as if 696 /// ValueType was loaded from Addr. 697 /// 698 /// Mask: Value to mask with the value loaded from AlignAddr to 699 /// include only the part that would've been loaded from Addr. 700 /// 701 /// Inv_Mask: The inverse of Mask. 702 static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I, 703 Type *ValueType, Value *Addr, 704 Align AddrAlign, 705 unsigned MinWordSize) { 706 PartwordMaskValues PMV; 707 708 Module *M = I->getModule(); 709 LLVMContext &Ctx = M->getContext(); 710 const DataLayout &DL = M->getDataLayout(); 711 unsigned ValueSize = DL.getTypeStoreSize(ValueType); 712 713 PMV.ValueType = ValueType; 714 PMV.WordType = MinWordSize > ValueSize ? Type::getIntNTy(Ctx, MinWordSize * 8) 715 : ValueType; 716 if (PMV.ValueType == PMV.WordType) { 717 PMV.AlignedAddr = Addr; 718 PMV.AlignedAddrAlignment = AddrAlign; 719 PMV.ShiftAmt = ConstantInt::get(PMV.ValueType, 0); 720 PMV.Mask = ConstantInt::get(PMV.ValueType, ~0, /*isSigned*/ true); 721 return PMV; 722 } 723 724 assert(ValueSize < MinWordSize); 725 726 Type *WordPtrType = 727 PMV.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace()); 728 729 // TODO: we could skip some of this if AddrAlign >= MinWordSize. 730 Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx)); 731 PMV.AlignedAddr = Builder.CreateIntToPtr( 732 Builder.CreateAnd(AddrInt, ~(uint64_t)(MinWordSize - 1)), WordPtrType, 733 "AlignedAddr"); 734 PMV.AlignedAddrAlignment = Align(MinWordSize); 735 736 Value *PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1, "PtrLSB"); 737 if (DL.isLittleEndian()) { 738 // turn bytes into bits 739 PMV.ShiftAmt = Builder.CreateShl(PtrLSB, 3); 740 } else { 741 // turn bytes into bits, and count from the other side. 742 PMV.ShiftAmt = Builder.CreateShl( 743 Builder.CreateXor(PtrLSB, MinWordSize - ValueSize), 3); 744 } 745 746 PMV.ShiftAmt = Builder.CreateTrunc(PMV.ShiftAmt, PMV.WordType, "ShiftAmt"); 747 PMV.Mask = Builder.CreateShl( 748 ConstantInt::get(PMV.WordType, (1 << (ValueSize * 8)) - 1), PMV.ShiftAmt, 749 "Mask"); 750 PMV.Inv_Mask = Builder.CreateNot(PMV.Mask, "Inv_Mask"); 751 return PMV; 752 } 753 754 static Value *extractMaskedValue(IRBuilder<> &Builder, Value *WideWord, 755 const PartwordMaskValues &PMV) { 756 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch"); 757 if (PMV.WordType == PMV.ValueType) 758 return WideWord; 759 760 Value *Shift = Builder.CreateLShr(WideWord, PMV.ShiftAmt, "shifted"); 761 Value *Trunc = Builder.CreateTrunc(Shift, PMV.ValueType, "extracted"); 762 return Trunc; 763 } 764 765 static Value *insertMaskedValue(IRBuilder<> &Builder, Value *WideWord, 766 Value *Updated, const PartwordMaskValues &PMV) { 767 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch"); 768 assert(Updated->getType() == PMV.ValueType && "Value type mismatch"); 769 if (PMV.WordType == PMV.ValueType) 770 return Updated; 771 772 Value *ZExt = Builder.CreateZExt(Updated, PMV.WordType, "extended"); 773 Value *Shift = 774 Builder.CreateShl(ZExt, PMV.ShiftAmt, "shifted", /*HasNUW*/ true); 775 Value *And = Builder.CreateAnd(WideWord, PMV.Inv_Mask, "unmasked"); 776 Value *Or = Builder.CreateOr(And, Shift, "inserted"); 777 return Or; 778 } 779 780 /// Emit IR to implement a masked version of a given atomicrmw 781 /// operation. (That is, only the bits under the Mask should be 782 /// affected by the operation) 783 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op, 784 IRBuilder<> &Builder, Value *Loaded, 785 Value *Shifted_Inc, Value *Inc, 786 const PartwordMaskValues &PMV) { 787 // TODO: update to use 788 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order 789 // to merge bits from two values without requiring PMV.Inv_Mask. 790 switch (Op) { 791 case AtomicRMWInst::Xchg: { 792 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 793 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc); 794 return FinalVal; 795 } 796 case AtomicRMWInst::Or: 797 case AtomicRMWInst::Xor: 798 case AtomicRMWInst::And: 799 llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW"); 800 case AtomicRMWInst::Add: 801 case AtomicRMWInst::Sub: 802 case AtomicRMWInst::Nand: { 803 // The other arithmetic ops need to be masked into place. 804 Value *NewVal = performAtomicOp(Op, Builder, Loaded, Shifted_Inc); 805 Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask); 806 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 807 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked); 808 return FinalVal; 809 } 810 case AtomicRMWInst::Max: 811 case AtomicRMWInst::Min: 812 case AtomicRMWInst::UMax: 813 case AtomicRMWInst::UMin: { 814 // Finally, comparison ops will operate on the full value, so 815 // truncate down to the original size, and expand out again after 816 // doing the operation. 817 Value *Loaded_Extract = extractMaskedValue(Builder, Loaded, PMV); 818 Value *NewVal = performAtomicOp(Op, Builder, Loaded_Extract, Inc); 819 Value *FinalVal = insertMaskedValue(Builder, Loaded, NewVal, PMV); 820 return FinalVal; 821 } 822 default: 823 llvm_unreachable("Unknown atomic op"); 824 } 825 } 826 827 /// Expand a sub-word atomicrmw operation into an appropriate 828 /// word-sized operation. 829 /// 830 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same 831 /// way as a typical atomicrmw expansion. The only difference here is 832 /// that the operation inside of the loop may operate upon only a 833 /// part of the value. 834 void AtomicExpand::expandPartwordAtomicRMW( 835 AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) { 836 AtomicOrdering MemOpOrder = AI->getOrdering(); 837 SyncScope::ID SSID = AI->getSyncScopeID(); 838 839 IRBuilder<> Builder(AI); 840 841 PartwordMaskValues PMV = 842 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 843 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 844 845 Value *ValOperand_Shifted = 846 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 847 PMV.ShiftAmt, "ValOperand_Shifted"); 848 849 auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) { 850 return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded, 851 ValOperand_Shifted, AI->getValOperand(), PMV); 852 }; 853 854 Value *OldResult; 855 if (ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg) { 856 OldResult = insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, 857 PMV.AlignedAddrAlignment, MemOpOrder, SSID, 858 PerformPartwordOp, createCmpXchgInstFun); 859 } else { 860 assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::LLSC); 861 OldResult = insertRMWLLSCLoop(Builder, PMV.WordType, PMV.AlignedAddr, 862 PMV.AlignedAddrAlignment, MemOpOrder, 863 PerformPartwordOp); 864 } 865 866 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV); 867 AI->replaceAllUsesWith(FinalOldResult); 868 AI->eraseFromParent(); 869 } 870 871 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width. 872 AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) { 873 IRBuilder<> Builder(AI); 874 AtomicRMWInst::BinOp Op = AI->getOperation(); 875 876 assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 877 Op == AtomicRMWInst::And) && 878 "Unable to widen operation"); 879 880 PartwordMaskValues PMV = 881 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 882 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 883 884 Value *ValOperand_Shifted = 885 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 886 PMV.ShiftAmt, "ValOperand_Shifted"); 887 888 Value *NewOperand; 889 890 if (Op == AtomicRMWInst::And) 891 NewOperand = 892 Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand"); 893 else 894 NewOperand = ValOperand_Shifted; 895 896 AtomicRMWInst *NewAI = 897 Builder.CreateAtomicRMW(Op, PMV.AlignedAddr, NewOperand, 898 PMV.AlignedAddrAlignment, AI->getOrdering()); 899 900 Value *FinalOldResult = extractMaskedValue(Builder, NewAI, PMV); 901 AI->replaceAllUsesWith(FinalOldResult); 902 AI->eraseFromParent(); 903 return NewAI; 904 } 905 906 bool AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) { 907 // The basic idea here is that we're expanding a cmpxchg of a 908 // smaller memory size up to a word-sized cmpxchg. To do this, we 909 // need to add a retry-loop for strong cmpxchg, so that 910 // modifications to other parts of the word don't cause a spurious 911 // failure. 912 913 // This generates code like the following: 914 // [[Setup mask values PMV.*]] 915 // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt 916 // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt 917 // %InitLoaded = load i32* %addr 918 // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask 919 // br partword.cmpxchg.loop 920 // partword.cmpxchg.loop: 921 // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ], 922 // [ %OldVal_MaskOut, %partword.cmpxchg.failure ] 923 // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted 924 // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted 925 // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp, 926 // i32 %FullWord_NewVal success_ordering failure_ordering 927 // %OldVal = extractvalue { i32, i1 } %NewCI, 0 928 // %Success = extractvalue { i32, i1 } %NewCI, 1 929 // br i1 %Success, label %partword.cmpxchg.end, 930 // label %partword.cmpxchg.failure 931 // partword.cmpxchg.failure: 932 // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask 933 // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut 934 // br i1 %ShouldContinue, label %partword.cmpxchg.loop, 935 // label %partword.cmpxchg.end 936 // partword.cmpxchg.end: 937 // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt 938 // %FinalOldVal = trunc i32 %tmp1 to i8 939 // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0 940 // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1 941 942 Value *Addr = CI->getPointerOperand(); 943 Value *Cmp = CI->getCompareOperand(); 944 Value *NewVal = CI->getNewValOperand(); 945 946 BasicBlock *BB = CI->getParent(); 947 Function *F = BB->getParent(); 948 IRBuilder<> Builder(CI); 949 LLVMContext &Ctx = Builder.getContext(); 950 951 BasicBlock *EndBB = 952 BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end"); 953 auto FailureBB = 954 BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB); 955 auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB); 956 957 // The split call above "helpfully" added a branch at the end of BB 958 // (to the wrong place). 959 std::prev(BB->end())->eraseFromParent(); 960 Builder.SetInsertPoint(BB); 961 962 PartwordMaskValues PMV = 963 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr, 964 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 965 966 // Shift the incoming values over, into the right location in the word. 967 Value *NewVal_Shifted = 968 Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt); 969 Value *Cmp_Shifted = 970 Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt); 971 972 // Load the entire current word, and mask into place the expected and new 973 // values 974 LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr); 975 InitLoaded->setVolatile(CI->isVolatile()); 976 Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask); 977 Builder.CreateBr(LoopBB); 978 979 // partword.cmpxchg.loop: 980 Builder.SetInsertPoint(LoopBB); 981 PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2); 982 Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB); 983 984 // Mask/Or the expected and new values into place in the loaded word. 985 Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted); 986 Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted); 987 AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg( 988 PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, PMV.AlignedAddrAlignment, 989 CI->getSuccessOrdering(), CI->getFailureOrdering(), CI->getSyncScopeID()); 990 NewCI->setVolatile(CI->isVolatile()); 991 // When we're building a strong cmpxchg, we need a loop, so you 992 // might think we could use a weak cmpxchg inside. But, using strong 993 // allows the below comparison for ShouldContinue, and we're 994 // expecting the underlying cmpxchg to be a machine instruction, 995 // which is strong anyways. 996 NewCI->setWeak(CI->isWeak()); 997 998 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 999 Value *Success = Builder.CreateExtractValue(NewCI, 1); 1000 1001 if (CI->isWeak()) 1002 Builder.CreateBr(EndBB); 1003 else 1004 Builder.CreateCondBr(Success, EndBB, FailureBB); 1005 1006 // partword.cmpxchg.failure: 1007 Builder.SetInsertPoint(FailureBB); 1008 // Upon failure, verify that the masked-out part of the loaded value 1009 // has been modified. If it didn't, abort the cmpxchg, since the 1010 // masked-in part must've. 1011 Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask); 1012 Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut); 1013 Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB); 1014 1015 // Add the second value to the phi from above 1016 Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB); 1017 1018 // partword.cmpxchg.end: 1019 Builder.SetInsertPoint(CI); 1020 1021 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV); 1022 Value *Res = UndefValue::get(CI->getType()); 1023 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 1024 Res = Builder.CreateInsertValue(Res, Success, 1); 1025 1026 CI->replaceAllUsesWith(Res); 1027 CI->eraseFromParent(); 1028 return true; 1029 } 1030 1031 void AtomicExpand::expandAtomicOpToLLSC( 1032 Instruction *I, Type *ResultType, Value *Addr, Align AddrAlign, 1033 AtomicOrdering MemOpOrder, 1034 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { 1035 IRBuilder<> Builder(I); 1036 Value *Loaded = insertRMWLLSCLoop(Builder, ResultType, Addr, AddrAlign, 1037 MemOpOrder, PerformOp); 1038 1039 I->replaceAllUsesWith(Loaded); 1040 I->eraseFromParent(); 1041 } 1042 1043 void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) { 1044 IRBuilder<> Builder(AI); 1045 1046 PartwordMaskValues PMV = 1047 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 1048 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1049 1050 // The value operand must be sign-extended for signed min/max so that the 1051 // target's signed comparison instructions can be used. Otherwise, just 1052 // zero-ext. 1053 Instruction::CastOps CastOp = Instruction::ZExt; 1054 AtomicRMWInst::BinOp RMWOp = AI->getOperation(); 1055 if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min) 1056 CastOp = Instruction::SExt; 1057 1058 Value *ValOperand_Shifted = Builder.CreateShl( 1059 Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType), 1060 PMV.ShiftAmt, "ValOperand_Shifted"); 1061 Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic( 1062 Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt, 1063 AI->getOrdering()); 1064 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV); 1065 AI->replaceAllUsesWith(FinalOldResult); 1066 AI->eraseFromParent(); 1067 } 1068 1069 void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI) { 1070 IRBuilder<> Builder(CI); 1071 1072 PartwordMaskValues PMV = createMaskInstrs( 1073 Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(), 1074 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1075 1076 Value *CmpVal_Shifted = Builder.CreateShl( 1077 Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt, 1078 "CmpVal_Shifted"); 1079 Value *NewVal_Shifted = Builder.CreateShl( 1080 Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt, 1081 "NewVal_Shifted"); 1082 Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic( 1083 Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask, 1084 CI->getMergedOrdering()); 1085 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV); 1086 Value *Res = UndefValue::get(CI->getType()); 1087 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 1088 Value *Success = Builder.CreateICmpEQ( 1089 CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success"); 1090 Res = Builder.CreateInsertValue(Res, Success, 1); 1091 1092 CI->replaceAllUsesWith(Res); 1093 CI->eraseFromParent(); 1094 } 1095 1096 Value *AtomicExpand::insertRMWLLSCLoop( 1097 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, 1098 AtomicOrdering MemOpOrder, 1099 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { 1100 LLVMContext &Ctx = Builder.getContext(); 1101 BasicBlock *BB = Builder.GetInsertBlock(); 1102 Function *F = BB->getParent(); 1103 1104 assert(AddrAlign >= 1105 F->getParent()->getDataLayout().getTypeStoreSize(ResultTy) && 1106 "Expected at least natural alignment at this point."); 1107 1108 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1109 // 1110 // The standard expansion we produce is: 1111 // [...] 1112 // atomicrmw.start: 1113 // %loaded = @load.linked(%addr) 1114 // %new = some_op iN %loaded, %incr 1115 // %stored = @store_conditional(%new, %addr) 1116 // %try_again = icmp i32 ne %stored, 0 1117 // br i1 %try_again, label %loop, label %atomicrmw.end 1118 // atomicrmw.end: 1119 // [...] 1120 BasicBlock *ExitBB = 1121 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1122 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1123 1124 // The split call above "helpfully" added a branch at the end of BB (to the 1125 // wrong place). 1126 std::prev(BB->end())->eraseFromParent(); 1127 Builder.SetInsertPoint(BB); 1128 Builder.CreateBr(LoopBB); 1129 1130 // Start the main loop block now that we've taken care of the preliminaries. 1131 Builder.SetInsertPoint(LoopBB); 1132 Value *Loaded = TLI->emitLoadLinked(Builder, ResultTy, Addr, MemOpOrder); 1133 1134 Value *NewVal = PerformOp(Builder, Loaded); 1135 1136 Value *StoreSuccess = 1137 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); 1138 Value *TryAgain = Builder.CreateICmpNE( 1139 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); 1140 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); 1141 1142 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1143 return Loaded; 1144 } 1145 1146 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of 1147 /// the equivalent bitwidth. We used to not support pointer cmpxchg in the 1148 /// IR. As a migration step, we convert back to what use to be the standard 1149 /// way to represent a pointer cmpxchg so that we can update backends one by 1150 /// one. 1151 AtomicCmpXchgInst * 1152 AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) { 1153 auto *M = CI->getModule(); 1154 Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(), 1155 M->getDataLayout()); 1156 1157 IRBuilder<> Builder(CI); 1158 1159 Value *Addr = CI->getPointerOperand(); 1160 Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace()); 1161 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 1162 1163 Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy); 1164 Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy); 1165 1166 auto *NewCI = Builder.CreateAtomicCmpXchg( 1167 NewAddr, NewCmp, NewNewVal, CI->getAlign(), CI->getSuccessOrdering(), 1168 CI->getFailureOrdering(), CI->getSyncScopeID()); 1169 NewCI->setVolatile(CI->isVolatile()); 1170 NewCI->setWeak(CI->isWeak()); 1171 LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n"); 1172 1173 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 1174 Value *Succ = Builder.CreateExtractValue(NewCI, 1); 1175 1176 OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType()); 1177 1178 Value *Res = UndefValue::get(CI->getType()); 1179 Res = Builder.CreateInsertValue(Res, OldVal, 0); 1180 Res = Builder.CreateInsertValue(Res, Succ, 1); 1181 1182 CI->replaceAllUsesWith(Res); 1183 CI->eraseFromParent(); 1184 return NewCI; 1185 } 1186 1187 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1188 AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); 1189 AtomicOrdering FailureOrder = CI->getFailureOrdering(); 1190 Value *Addr = CI->getPointerOperand(); 1191 BasicBlock *BB = CI->getParent(); 1192 Function *F = BB->getParent(); 1193 LLVMContext &Ctx = F->getContext(); 1194 // If shouldInsertFencesForAtomic() returns true, then the target does not 1195 // want to deal with memory orders, and emitLeading/TrailingFence should take 1196 // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we 1197 // should preserve the ordering. 1198 bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI); 1199 AtomicOrdering MemOpOrder = ShouldInsertFencesForAtomic 1200 ? AtomicOrdering::Monotonic 1201 : CI->getMergedOrdering(); 1202 1203 // In implementations which use a barrier to achieve release semantics, we can 1204 // delay emitting this barrier until we know a store is actually going to be 1205 // attempted. The cost of this delay is that we need 2 copies of the block 1206 // emitting the load-linked, affecting code size. 1207 // 1208 // Ideally, this logic would be unconditional except for the minsize check 1209 // since in other cases the extra blocks naturally collapse down to the 1210 // minimal loop. Unfortunately, this puts too much stress on later 1211 // optimisations so we avoid emitting the extra logic in those cases too. 1212 bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic && 1213 SuccessOrder != AtomicOrdering::Monotonic && 1214 SuccessOrder != AtomicOrdering::Acquire && 1215 !F->hasMinSize(); 1216 1217 // There's no overhead for sinking the release barrier in a weak cmpxchg, so 1218 // do it even on minsize. 1219 bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak(); 1220 1221 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord 1222 // 1223 // The full expansion we produce is: 1224 // [...] 1225 // %aligned.addr = ... 1226 // cmpxchg.start: 1227 // %unreleasedload = @load.linked(%aligned.addr) 1228 // %unreleasedload.extract = extract value from %unreleasedload 1229 // %should_store = icmp eq %unreleasedload.extract, %desired 1230 // br i1 %should_store, label %cmpxchg.releasingstore, 1231 // label %cmpxchg.nostore 1232 // cmpxchg.releasingstore: 1233 // fence? 1234 // br label cmpxchg.trystore 1235 // cmpxchg.trystore: 1236 // %loaded.trystore = phi [%unreleasedload, %cmpxchg.releasingstore], 1237 // [%releasedload, %cmpxchg.releasedload] 1238 // %updated.new = insert %new into %loaded.trystore 1239 // %stored = @store_conditional(%updated.new, %aligned.addr) 1240 // %success = icmp eq i32 %stored, 0 1241 // br i1 %success, label %cmpxchg.success, 1242 // label %cmpxchg.releasedload/%cmpxchg.failure 1243 // cmpxchg.releasedload: 1244 // %releasedload = @load.linked(%aligned.addr) 1245 // %releasedload.extract = extract value from %releasedload 1246 // %should_store = icmp eq %releasedload.extract, %desired 1247 // br i1 %should_store, label %cmpxchg.trystore, 1248 // label %cmpxchg.failure 1249 // cmpxchg.success: 1250 // fence? 1251 // br label %cmpxchg.end 1252 // cmpxchg.nostore: 1253 // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start], 1254 // [%releasedload, 1255 // %cmpxchg.releasedload/%cmpxchg.trystore] 1256 // @load_linked_fail_balance()? 1257 // br label %cmpxchg.failure 1258 // cmpxchg.failure: 1259 // fence? 1260 // br label %cmpxchg.end 1261 // cmpxchg.end: 1262 // %loaded.exit = phi [%loaded.nostore, %cmpxchg.failure], 1263 // [%loaded.trystore, %cmpxchg.trystore] 1264 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] 1265 // %loaded = extract value from %loaded.exit 1266 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 1267 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 1268 // [...] 1269 BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end"); 1270 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); 1271 auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB); 1272 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB); 1273 auto ReleasedLoadBB = 1274 BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB); 1275 auto TryStoreBB = 1276 BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB); 1277 auto ReleasingStoreBB = 1278 BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB); 1279 auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB); 1280 1281 // This grabs the DebugLoc from CI 1282 IRBuilder<> Builder(CI); 1283 1284 // The split call above "helpfully" added a branch at the end of BB (to the 1285 // wrong place), but we might want a fence too. It's easiest to just remove 1286 // the branch entirely. 1287 std::prev(BB->end())->eraseFromParent(); 1288 Builder.SetInsertPoint(BB); 1289 if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier) 1290 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1291 1292 PartwordMaskValues PMV = 1293 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr, 1294 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1295 Builder.CreateBr(StartBB); 1296 1297 // Start the main loop block now that we've taken care of the preliminaries. 1298 Builder.SetInsertPoint(StartBB); 1299 Value *UnreleasedLoad = 1300 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder); 1301 Value *UnreleasedLoadExtract = 1302 extractMaskedValue(Builder, UnreleasedLoad, PMV); 1303 Value *ShouldStore = Builder.CreateICmpEQ( 1304 UnreleasedLoadExtract, CI->getCompareOperand(), "should_store"); 1305 1306 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1307 // jump straight past that fence instruction (if it exists). 1308 Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB); 1309 1310 Builder.SetInsertPoint(ReleasingStoreBB); 1311 if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier) 1312 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1313 Builder.CreateBr(TryStoreBB); 1314 1315 Builder.SetInsertPoint(TryStoreBB); 1316 PHINode *LoadedTryStore = 1317 Builder.CreatePHI(PMV.WordType, 2, "loaded.trystore"); 1318 LoadedTryStore->addIncoming(UnreleasedLoad, ReleasingStoreBB); 1319 Value *NewValueInsert = 1320 insertMaskedValue(Builder, LoadedTryStore, CI->getNewValOperand(), PMV); 1321 Value *StoreSuccess = TLI->emitStoreConditional(Builder, NewValueInsert, 1322 PMV.AlignedAddr, MemOpOrder); 1323 StoreSuccess = Builder.CreateICmpEQ( 1324 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); 1325 BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB; 1326 Builder.CreateCondBr(StoreSuccess, SuccessBB, 1327 CI->isWeak() ? FailureBB : RetryBB); 1328 1329 Builder.SetInsertPoint(ReleasedLoadBB); 1330 Value *SecondLoad; 1331 if (HasReleasedLoadBB) { 1332 SecondLoad = 1333 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder); 1334 Value *SecondLoadExtract = extractMaskedValue(Builder, SecondLoad, PMV); 1335 ShouldStore = Builder.CreateICmpEQ(SecondLoadExtract, 1336 CI->getCompareOperand(), "should_store"); 1337 1338 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1339 // jump straight past that fence instruction (if it exists). 1340 Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB); 1341 // Update PHI node in TryStoreBB. 1342 LoadedTryStore->addIncoming(SecondLoad, ReleasedLoadBB); 1343 } else 1344 Builder.CreateUnreachable(); 1345 1346 // Make sure later instructions don't get reordered with a fence if 1347 // necessary. 1348 Builder.SetInsertPoint(SuccessBB); 1349 if (ShouldInsertFencesForAtomic) 1350 TLI->emitTrailingFence(Builder, CI, SuccessOrder); 1351 Builder.CreateBr(ExitBB); 1352 1353 Builder.SetInsertPoint(NoStoreBB); 1354 PHINode *LoadedNoStore = 1355 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.nostore"); 1356 LoadedNoStore->addIncoming(UnreleasedLoad, StartBB); 1357 if (HasReleasedLoadBB) 1358 LoadedNoStore->addIncoming(SecondLoad, ReleasedLoadBB); 1359 1360 // In the failing case, where we don't execute the store-conditional, the 1361 // target might want to balance out the load-linked with a dedicated 1362 // instruction (e.g., on ARM, clearing the exclusive monitor). 1363 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 1364 Builder.CreateBr(FailureBB); 1365 1366 Builder.SetInsertPoint(FailureBB); 1367 PHINode *LoadedFailure = 1368 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.failure"); 1369 LoadedFailure->addIncoming(LoadedNoStore, NoStoreBB); 1370 if (CI->isWeak()) 1371 LoadedFailure->addIncoming(LoadedTryStore, TryStoreBB); 1372 if (ShouldInsertFencesForAtomic) 1373 TLI->emitTrailingFence(Builder, CI, FailureOrder); 1374 Builder.CreateBr(ExitBB); 1375 1376 // Finally, we have control-flow based knowledge of whether the cmpxchg 1377 // succeeded or not. We expose this to later passes by converting any 1378 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate 1379 // PHI. 1380 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1381 PHINode *LoadedExit = 1382 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.exit"); 1383 LoadedExit->addIncoming(LoadedTryStore, SuccessBB); 1384 LoadedExit->addIncoming(LoadedFailure, FailureBB); 1385 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2, "success"); 1386 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); 1387 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); 1388 1389 // This is the "exit value" from the cmpxchg expansion. It may be of 1390 // a type wider than the one in the cmpxchg instruction. 1391 Value *LoadedFull = LoadedExit; 1392 1393 Builder.SetInsertPoint(ExitBB, std::next(Success->getIterator())); 1394 Value *Loaded = extractMaskedValue(Builder, LoadedFull, PMV); 1395 1396 // Look for any users of the cmpxchg that are just comparing the loaded value 1397 // against the desired one, and replace them with the CFG-derived version. 1398 SmallVector<ExtractValueInst *, 2> PrunedInsts; 1399 for (auto User : CI->users()) { 1400 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); 1401 if (!EV) 1402 continue; 1403 1404 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && 1405 "weird extraction from { iN, i1 }"); 1406 1407 if (EV->getIndices()[0] == 0) 1408 EV->replaceAllUsesWith(Loaded); 1409 else 1410 EV->replaceAllUsesWith(Success); 1411 1412 PrunedInsts.push_back(EV); 1413 } 1414 1415 // We can remove the instructions now we're no longer iterating through them. 1416 for (auto EV : PrunedInsts) 1417 EV->eraseFromParent(); 1418 1419 if (!CI->use_empty()) { 1420 // Some use of the full struct return that we don't understand has happened, 1421 // so we've got to reconstruct it properly. 1422 Value *Res; 1423 Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0); 1424 Res = Builder.CreateInsertValue(Res, Success, 1); 1425 1426 CI->replaceAllUsesWith(Res); 1427 } 1428 1429 CI->eraseFromParent(); 1430 return true; 1431 } 1432 1433 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst *RMWI) { 1434 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand()); 1435 if (!C) 1436 return false; 1437 1438 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 1439 switch (Op) { 1440 case AtomicRMWInst::Add: 1441 case AtomicRMWInst::Sub: 1442 case AtomicRMWInst::Or: 1443 case AtomicRMWInst::Xor: 1444 return C->isZero(); 1445 case AtomicRMWInst::And: 1446 return C->isMinusOne(); 1447 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/... 1448 default: 1449 return false; 1450 } 1451 } 1452 1453 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst *RMWI) { 1454 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { 1455 tryExpandAtomicLoad(ResultingLoad); 1456 return true; 1457 } 1458 return false; 1459 } 1460 1461 Value *AtomicExpand::insertRMWCmpXchgLoop( 1462 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, 1463 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 1464 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, 1465 CreateCmpXchgInstFun CreateCmpXchg) { 1466 LLVMContext &Ctx = Builder.getContext(); 1467 BasicBlock *BB = Builder.GetInsertBlock(); 1468 Function *F = BB->getParent(); 1469 1470 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1471 // 1472 // The standard expansion we produce is: 1473 // [...] 1474 // %init_loaded = load atomic iN* %addr 1475 // br label %loop 1476 // loop: 1477 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] 1478 // %new = some_op iN %loaded, %incr 1479 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new 1480 // %new_loaded = extractvalue { iN, i1 } %pair, 0 1481 // %success = extractvalue { iN, i1 } %pair, 1 1482 // br i1 %success, label %atomicrmw.end, label %loop 1483 // atomicrmw.end: 1484 // [...] 1485 BasicBlock *ExitBB = 1486 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1487 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1488 1489 // The split call above "helpfully" added a branch at the end of BB (to the 1490 // wrong place), but we want a load. It's easiest to just remove 1491 // the branch entirely. 1492 std::prev(BB->end())->eraseFromParent(); 1493 Builder.SetInsertPoint(BB); 1494 LoadInst *InitLoaded = Builder.CreateAlignedLoad(ResultTy, Addr, AddrAlign); 1495 Builder.CreateBr(LoopBB); 1496 1497 // Start the main loop block now that we've taken care of the preliminaries. 1498 Builder.SetInsertPoint(LoopBB); 1499 PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded"); 1500 Loaded->addIncoming(InitLoaded, BB); 1501 1502 Value *NewVal = PerformOp(Builder, Loaded); 1503 1504 Value *NewLoaded = nullptr; 1505 Value *Success = nullptr; 1506 1507 CreateCmpXchg(Builder, Addr, Loaded, NewVal, AddrAlign, 1508 MemOpOrder == AtomicOrdering::Unordered 1509 ? AtomicOrdering::Monotonic 1510 : MemOpOrder, 1511 SSID, Success, NewLoaded); 1512 assert(Success && NewLoaded); 1513 1514 Loaded->addIncoming(NewLoaded, LoopBB); 1515 1516 Builder.CreateCondBr(Success, ExitBB, LoopBB); 1517 1518 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1519 return NewLoaded; 1520 } 1521 1522 bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1523 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 1524 unsigned ValueSize = getAtomicOpSize(CI); 1525 1526 switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) { 1527 default: 1528 llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg"); 1529 case TargetLoweringBase::AtomicExpansionKind::None: 1530 if (ValueSize < MinCASSize) 1531 return expandPartwordCmpXchg(CI); 1532 return false; 1533 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 1534 return expandAtomicCmpXchg(CI); 1535 } 1536 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: 1537 expandAtomicCmpXchgToMaskedIntrinsic(CI); 1538 return true; 1539 } 1540 } 1541 1542 // Note: This function is exposed externally by AtomicExpandUtils.h 1543 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 1544 CreateCmpXchgInstFun CreateCmpXchg) { 1545 IRBuilder<> Builder(AI); 1546 Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop( 1547 Builder, AI->getType(), AI->getPointerOperand(), AI->getAlign(), 1548 AI->getOrdering(), AI->getSyncScopeID(), 1549 [&](IRBuilder<> &Builder, Value *Loaded) { 1550 return performAtomicOp(AI->getOperation(), Builder, Loaded, 1551 AI->getValOperand()); 1552 }, 1553 CreateCmpXchg); 1554 1555 AI->replaceAllUsesWith(Loaded); 1556 AI->eraseFromParent(); 1557 return true; 1558 } 1559 1560 // In order to use one of the sized library calls such as 1561 // __atomic_fetch_add_4, the alignment must be sufficient, the size 1562 // must be one of the potentially-specialized sizes, and the value 1563 // type must actually exist in C on the target (otherwise, the 1564 // function wouldn't actually be defined.) 1565 static bool canUseSizedAtomicCall(unsigned Size, Align Alignment, 1566 const DataLayout &DL) { 1567 // TODO: "LargestSize" is an approximation for "largest type that 1568 // you can express in C". It seems to be the case that int128 is 1569 // supported on all 64-bit platforms, otherwise only up to 64-bit 1570 // integers are supported. If we get this wrong, then we'll try to 1571 // call a sized libcall that doesn't actually exist. There should 1572 // really be some more reliable way in LLVM of determining integer 1573 // sizes which are valid in the target's C ABI... 1574 unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8; 1575 return Alignment >= Size && 1576 (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) && 1577 Size <= LargestSize; 1578 } 1579 1580 void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) { 1581 static const RTLIB::Libcall Libcalls[6] = { 1582 RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2, 1583 RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16}; 1584 unsigned Size = getAtomicOpSize(I); 1585 1586 bool expanded = expandAtomicOpToLibcall( 1587 I, Size, I->getAlign(), I->getPointerOperand(), nullptr, nullptr, 1588 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1589 if (!expanded) 1590 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Load"); 1591 } 1592 1593 void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) { 1594 static const RTLIB::Libcall Libcalls[6] = { 1595 RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2, 1596 RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16}; 1597 unsigned Size = getAtomicOpSize(I); 1598 1599 bool expanded = expandAtomicOpToLibcall( 1600 I, Size, I->getAlign(), I->getPointerOperand(), I->getValueOperand(), 1601 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1602 if (!expanded) 1603 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Store"); 1604 } 1605 1606 void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) { 1607 static const RTLIB::Libcall Libcalls[6] = { 1608 RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1, 1609 RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4, 1610 RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16}; 1611 unsigned Size = getAtomicOpSize(I); 1612 1613 bool expanded = expandAtomicOpToLibcall( 1614 I, Size, I->getAlign(), I->getPointerOperand(), I->getNewValOperand(), 1615 I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(), 1616 Libcalls); 1617 if (!expanded) 1618 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for CAS"); 1619 } 1620 1621 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) { 1622 static const RTLIB::Libcall LibcallsXchg[6] = { 1623 RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1, 1624 RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4, 1625 RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16}; 1626 static const RTLIB::Libcall LibcallsAdd[6] = { 1627 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1, 1628 RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4, 1629 RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16}; 1630 static const RTLIB::Libcall LibcallsSub[6] = { 1631 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1, 1632 RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4, 1633 RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16}; 1634 static const RTLIB::Libcall LibcallsAnd[6] = { 1635 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1, 1636 RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4, 1637 RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16}; 1638 static const RTLIB::Libcall LibcallsOr[6] = { 1639 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1, 1640 RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4, 1641 RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16}; 1642 static const RTLIB::Libcall LibcallsXor[6] = { 1643 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1, 1644 RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4, 1645 RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16}; 1646 static const RTLIB::Libcall LibcallsNand[6] = { 1647 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1, 1648 RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4, 1649 RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16}; 1650 1651 switch (Op) { 1652 case AtomicRMWInst::BAD_BINOP: 1653 llvm_unreachable("Should not have BAD_BINOP."); 1654 case AtomicRMWInst::Xchg: 1655 return makeArrayRef(LibcallsXchg); 1656 case AtomicRMWInst::Add: 1657 return makeArrayRef(LibcallsAdd); 1658 case AtomicRMWInst::Sub: 1659 return makeArrayRef(LibcallsSub); 1660 case AtomicRMWInst::And: 1661 return makeArrayRef(LibcallsAnd); 1662 case AtomicRMWInst::Or: 1663 return makeArrayRef(LibcallsOr); 1664 case AtomicRMWInst::Xor: 1665 return makeArrayRef(LibcallsXor); 1666 case AtomicRMWInst::Nand: 1667 return makeArrayRef(LibcallsNand); 1668 case AtomicRMWInst::Max: 1669 case AtomicRMWInst::Min: 1670 case AtomicRMWInst::UMax: 1671 case AtomicRMWInst::UMin: 1672 case AtomicRMWInst::FAdd: 1673 case AtomicRMWInst::FSub: 1674 // No atomic libcalls are available for max/min/umax/umin. 1675 return {}; 1676 } 1677 llvm_unreachable("Unexpected AtomicRMW operation."); 1678 } 1679 1680 void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) { 1681 ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation()); 1682 1683 unsigned Size = getAtomicOpSize(I); 1684 1685 bool Success = false; 1686 if (!Libcalls.empty()) 1687 Success = expandAtomicOpToLibcall( 1688 I, Size, I->getAlign(), I->getPointerOperand(), I->getValOperand(), 1689 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1690 1691 // The expansion failed: either there were no libcalls at all for 1692 // the operation (min/max), or there were only size-specialized 1693 // libcalls (add/sub/etc) and we needed a generic. So, expand to a 1694 // CAS libcall, via a CAS loop, instead. 1695 if (!Success) { 1696 expandAtomicRMWToCmpXchg( 1697 I, [this](IRBuilder<> &Builder, Value *Addr, Value *Loaded, 1698 Value *NewVal, Align Alignment, AtomicOrdering MemOpOrder, 1699 SyncScope::ID SSID, Value *&Success, Value *&NewLoaded) { 1700 // Create the CAS instruction normally... 1701 AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg( 1702 Addr, Loaded, NewVal, Alignment, MemOpOrder, 1703 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID); 1704 Success = Builder.CreateExtractValue(Pair, 1, "success"); 1705 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 1706 1707 // ...and then expand the CAS into a libcall. 1708 expandAtomicCASToLibcall(Pair); 1709 }); 1710 } 1711 } 1712 1713 // A helper routine for the above expandAtomic*ToLibcall functions. 1714 // 1715 // 'Libcalls' contains an array of enum values for the particular 1716 // ATOMIC libcalls to be emitted. All of the other arguments besides 1717 // 'I' are extracted from the Instruction subclass by the 1718 // caller. Depending on the particular call, some will be null. 1719 bool AtomicExpand::expandAtomicOpToLibcall( 1720 Instruction *I, unsigned Size, Align Alignment, Value *PointerOperand, 1721 Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering, 1722 AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) { 1723 assert(Libcalls.size() == 6); 1724 1725 LLVMContext &Ctx = I->getContext(); 1726 Module *M = I->getModule(); 1727 const DataLayout &DL = M->getDataLayout(); 1728 IRBuilder<> Builder(I); 1729 IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front()); 1730 1731 bool UseSizedLibcall = canUseSizedAtomicCall(Size, Alignment, DL); 1732 Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8); 1733 1734 const Align AllocaAlignment = DL.getPrefTypeAlign(SizedIntTy); 1735 1736 // TODO: the "order" argument type is "int", not int32. So 1737 // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints. 1738 ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size); 1739 assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO"); 1740 Constant *OrderingVal = 1741 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering)); 1742 Constant *Ordering2Val = nullptr; 1743 if (CASExpected) { 1744 assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO"); 1745 Ordering2Val = 1746 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2)); 1747 } 1748 bool HasResult = I->getType() != Type::getVoidTy(Ctx); 1749 1750 RTLIB::Libcall RTLibType; 1751 if (UseSizedLibcall) { 1752 switch (Size) { 1753 case 1: 1754 RTLibType = Libcalls[1]; 1755 break; 1756 case 2: 1757 RTLibType = Libcalls[2]; 1758 break; 1759 case 4: 1760 RTLibType = Libcalls[3]; 1761 break; 1762 case 8: 1763 RTLibType = Libcalls[4]; 1764 break; 1765 case 16: 1766 RTLibType = Libcalls[5]; 1767 break; 1768 } 1769 } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) { 1770 RTLibType = Libcalls[0]; 1771 } else { 1772 // Can't use sized function, and there's no generic for this 1773 // operation, so give up. 1774 return false; 1775 } 1776 1777 if (!TLI->getLibcallName(RTLibType)) { 1778 // This target does not implement the requested atomic libcall so give up. 1779 return false; 1780 } 1781 1782 // Build up the function call. There's two kinds. First, the sized 1783 // variants. These calls are going to be one of the following (with 1784 // N=1,2,4,8,16): 1785 // iN __atomic_load_N(iN *ptr, int ordering) 1786 // void __atomic_store_N(iN *ptr, iN val, int ordering) 1787 // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering) 1788 // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired, 1789 // int success_order, int failure_order) 1790 // 1791 // Note that these functions can be used for non-integer atomic 1792 // operations, the values just need to be bitcast to integers on the 1793 // way in and out. 1794 // 1795 // And, then, the generic variants. They look like the following: 1796 // void __atomic_load(size_t size, void *ptr, void *ret, int ordering) 1797 // void __atomic_store(size_t size, void *ptr, void *val, int ordering) 1798 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, 1799 // int ordering) 1800 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, 1801 // void *desired, int success_order, 1802 // int failure_order) 1803 // 1804 // The different signatures are built up depending on the 1805 // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult' 1806 // variables. 1807 1808 AllocaInst *AllocaCASExpected = nullptr; 1809 Value *AllocaCASExpected_i8 = nullptr; 1810 AllocaInst *AllocaValue = nullptr; 1811 Value *AllocaValue_i8 = nullptr; 1812 AllocaInst *AllocaResult = nullptr; 1813 Value *AllocaResult_i8 = nullptr; 1814 1815 Type *ResultTy; 1816 SmallVector<Value *, 6> Args; 1817 AttributeList Attr; 1818 1819 // 'size' argument. 1820 if (!UseSizedLibcall) { 1821 // Note, getIntPtrType is assumed equivalent to size_t. 1822 Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size)); 1823 } 1824 1825 // 'ptr' argument. 1826 // note: This assumes all address spaces share a common libfunc 1827 // implementation and that addresses are convertable. For systems without 1828 // that property, we'd need to extend this mechanism to support AS-specific 1829 // families of atomic intrinsics. 1830 auto PtrTypeAS = PointerOperand->getType()->getPointerAddressSpace(); 1831 Value *PtrVal = 1832 Builder.CreateBitCast(PointerOperand, Type::getInt8PtrTy(Ctx, PtrTypeAS)); 1833 PtrVal = Builder.CreateAddrSpaceCast(PtrVal, Type::getInt8PtrTy(Ctx)); 1834 Args.push_back(PtrVal); 1835 1836 // 'expected' argument, if present. 1837 if (CASExpected) { 1838 AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType()); 1839 AllocaCASExpected->setAlignment(AllocaAlignment); 1840 unsigned AllocaAS = AllocaCASExpected->getType()->getPointerAddressSpace(); 1841 1842 AllocaCASExpected_i8 = Builder.CreateBitCast( 1843 AllocaCASExpected, Type::getInt8PtrTy(Ctx, AllocaAS)); 1844 Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64); 1845 Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment); 1846 Args.push_back(AllocaCASExpected_i8); 1847 } 1848 1849 // 'val' argument ('desired' for cas), if present. 1850 if (ValueOperand) { 1851 if (UseSizedLibcall) { 1852 Value *IntValue = 1853 Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy); 1854 Args.push_back(IntValue); 1855 } else { 1856 AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType()); 1857 AllocaValue->setAlignment(AllocaAlignment); 1858 AllocaValue_i8 = 1859 Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx)); 1860 Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64); 1861 Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment); 1862 Args.push_back(AllocaValue_i8); 1863 } 1864 } 1865 1866 // 'ret' argument. 1867 if (!CASExpected && HasResult && !UseSizedLibcall) { 1868 AllocaResult = AllocaBuilder.CreateAlloca(I->getType()); 1869 AllocaResult->setAlignment(AllocaAlignment); 1870 unsigned AllocaAS = AllocaResult->getType()->getPointerAddressSpace(); 1871 AllocaResult_i8 = 1872 Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx, AllocaAS)); 1873 Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64); 1874 Args.push_back(AllocaResult_i8); 1875 } 1876 1877 // 'ordering' ('success_order' for cas) argument. 1878 Args.push_back(OrderingVal); 1879 1880 // 'failure_order' argument, if present. 1881 if (Ordering2Val) 1882 Args.push_back(Ordering2Val); 1883 1884 // Now, the return type. 1885 if (CASExpected) { 1886 ResultTy = Type::getInt1Ty(Ctx); 1887 Attr = Attr.addRetAttribute(Ctx, Attribute::ZExt); 1888 } else if (HasResult && UseSizedLibcall) 1889 ResultTy = SizedIntTy; 1890 else 1891 ResultTy = Type::getVoidTy(Ctx); 1892 1893 // Done with setting up arguments and return types, create the call: 1894 SmallVector<Type *, 6> ArgTys; 1895 for (Value *Arg : Args) 1896 ArgTys.push_back(Arg->getType()); 1897 FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false); 1898 FunctionCallee LibcallFn = 1899 M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr); 1900 CallInst *Call = Builder.CreateCall(LibcallFn, Args); 1901 Call->setAttributes(Attr); 1902 Value *Result = Call; 1903 1904 // And then, extract the results... 1905 if (ValueOperand && !UseSizedLibcall) 1906 Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64); 1907 1908 if (CASExpected) { 1909 // The final result from the CAS is {load of 'expected' alloca, bool result 1910 // from call} 1911 Type *FinalResultTy = I->getType(); 1912 Value *V = UndefValue::get(FinalResultTy); 1913 Value *ExpectedOut = Builder.CreateAlignedLoad( 1914 CASExpected->getType(), AllocaCASExpected, AllocaAlignment); 1915 Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64); 1916 V = Builder.CreateInsertValue(V, ExpectedOut, 0); 1917 V = Builder.CreateInsertValue(V, Result, 1); 1918 I->replaceAllUsesWith(V); 1919 } else if (HasResult) { 1920 Value *V; 1921 if (UseSizedLibcall) 1922 V = Builder.CreateBitOrPointerCast(Result, I->getType()); 1923 else { 1924 V = Builder.CreateAlignedLoad(I->getType(), AllocaResult, 1925 AllocaAlignment); 1926 Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64); 1927 } 1928 I->replaceAllUsesWith(V); 1929 } 1930 I->eraseFromParent(); 1931 return true; 1932 } 1933