1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass (at IR level) to replace atomic instructions with 10 // __atomic_* library calls, or target specific instruction which implement the 11 // same semantics in a way which better fits the target backend. This can 12 // include the use of (intrinsic-based) load-linked/store-conditional loops, 13 // AtomicCmpXchg, or type coercions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/CodeGen/AtomicExpandUtils.h" 22 #include "llvm/CodeGen/RuntimeLibcalls.h" 23 #include "llvm/CodeGen/TargetLowering.h" 24 #include "llvm/CodeGen/TargetPassConfig.h" 25 #include "llvm/CodeGen/TargetSubtargetInfo.h" 26 #include "llvm/CodeGen/ValueTypes.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Constant.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/IRBuilder.h" 35 #include "llvm/IR/InstIterator.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Type.h" 40 #include "llvm/IR/User.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/InitializePasses.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/AtomicOrdering.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Target/TargetMachine.h" 50 #include <cassert> 51 #include <cstdint> 52 #include <iterator> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "atomic-expand" 57 58 namespace { 59 60 class AtomicExpand: public FunctionPass { 61 const TargetLowering *TLI = nullptr; 62 OptimizationRemarkEmitter *ORE; 63 64 public: 65 static char ID; // Pass identification, replacement for typeid 66 67 AtomicExpand() : FunctionPass(ID) { 68 initializeAtomicExpandPass(*PassRegistry::getPassRegistry()); 69 } 70 71 bool runOnFunction(Function &F) override; 72 73 private: 74 void getAnalysisUsage(AnalysisUsage &AU) const override; 75 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order); 76 IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL); 77 LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI); 78 bool tryExpandAtomicLoad(LoadInst *LI); 79 bool expandAtomicLoadToLL(LoadInst *LI); 80 bool expandAtomicLoadToCmpXchg(LoadInst *LI); 81 StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI); 82 bool expandAtomicStore(StoreInst *SI); 83 bool tryExpandAtomicRMW(AtomicRMWInst *AI); 84 AtomicRMWInst *convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI); 85 Value * 86 insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr, 87 Align AddrAlign, AtomicOrdering MemOpOrder, 88 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); 89 void expandAtomicOpToLLSC( 90 Instruction *I, Type *ResultTy, Value *Addr, Align AddrAlign, 91 AtomicOrdering MemOpOrder, 92 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); 93 void expandPartwordAtomicRMW( 94 AtomicRMWInst *I, 95 TargetLoweringBase::AtomicExpansionKind ExpansionKind); 96 AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI); 97 bool expandPartwordCmpXchg(AtomicCmpXchgInst *I); 98 void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI); 99 void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI); 100 101 AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI); 102 static Value *insertRMWCmpXchgLoop( 103 IRBuilder<> &Builder, Type *ResultType, Value *Addr, Align AddrAlign, 104 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 105 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, 106 CreateCmpXchgInstFun CreateCmpXchg); 107 bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI); 108 109 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); 110 bool isIdempotentRMW(AtomicRMWInst *RMWI); 111 bool simplifyIdempotentRMW(AtomicRMWInst *RMWI); 112 113 bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, Align Alignment, 114 Value *PointerOperand, Value *ValueOperand, 115 Value *CASExpected, AtomicOrdering Ordering, 116 AtomicOrdering Ordering2, 117 ArrayRef<RTLIB::Libcall> Libcalls); 118 void expandAtomicLoadToLibcall(LoadInst *LI); 119 void expandAtomicStoreToLibcall(StoreInst *LI); 120 void expandAtomicRMWToLibcall(AtomicRMWInst *I); 121 void expandAtomicCASToLibcall(AtomicCmpXchgInst *I); 122 123 friend bool 124 llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 125 CreateCmpXchgInstFun CreateCmpXchg); 126 }; 127 128 } // end anonymous namespace 129 130 char AtomicExpand::ID = 0; 131 132 char &llvm::AtomicExpandID = AtomicExpand::ID; 133 134 INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions", 135 false, false) 136 137 FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); } 138 139 // Helper functions to retrieve the size of atomic instructions. 140 static unsigned getAtomicOpSize(LoadInst *LI) { 141 const DataLayout &DL = LI->getModule()->getDataLayout(); 142 return DL.getTypeStoreSize(LI->getType()); 143 } 144 145 static unsigned getAtomicOpSize(StoreInst *SI) { 146 const DataLayout &DL = SI->getModule()->getDataLayout(); 147 return DL.getTypeStoreSize(SI->getValueOperand()->getType()); 148 } 149 150 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) { 151 const DataLayout &DL = RMWI->getModule()->getDataLayout(); 152 return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); 153 } 154 155 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) { 156 const DataLayout &DL = CASI->getModule()->getDataLayout(); 157 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); 158 } 159 160 // Determine if a particular atomic operation has a supported size, 161 // and is of appropriate alignment, to be passed through for target 162 // lowering. (Versus turning into a __atomic libcall) 163 template <typename Inst> 164 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) { 165 unsigned Size = getAtomicOpSize(I); 166 Align Alignment = I->getAlign(); 167 return Alignment >= Size && 168 Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8; 169 } 170 171 void AtomicExpand::getAnalysisUsage(AnalysisUsage &AU) const { 172 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 173 } 174 175 bool AtomicExpand::runOnFunction(Function &F) { 176 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 177 if (!TPC) 178 return false; 179 180 ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 181 auto &TM = TPC->getTM<TargetMachine>(); 182 if (!TM.getSubtargetImpl(F)->enableAtomicExpand()) 183 return false; 184 TLI = TM.getSubtargetImpl(F)->getTargetLowering(); 185 186 SmallVector<Instruction *, 1> AtomicInsts; 187 188 // Changing control-flow while iterating through it is a bad idea, so gather a 189 // list of all atomic instructions before we start. 190 for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) { 191 Instruction *I = &*II; 192 if (I->isAtomic() && !isa<FenceInst>(I)) 193 AtomicInsts.push_back(I); 194 } 195 196 bool MadeChange = false; 197 for (auto I : AtomicInsts) { 198 auto LI = dyn_cast<LoadInst>(I); 199 auto SI = dyn_cast<StoreInst>(I); 200 auto RMWI = dyn_cast<AtomicRMWInst>(I); 201 auto CASI = dyn_cast<AtomicCmpXchgInst>(I); 202 assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction"); 203 204 // If the Size/Alignment is not supported, replace with a libcall. 205 if (LI) { 206 if (!atomicSizeSupported(TLI, LI)) { 207 expandAtomicLoadToLibcall(LI); 208 MadeChange = true; 209 continue; 210 } 211 } else if (SI) { 212 if (!atomicSizeSupported(TLI, SI)) { 213 expandAtomicStoreToLibcall(SI); 214 MadeChange = true; 215 continue; 216 } 217 } else if (RMWI) { 218 if (!atomicSizeSupported(TLI, RMWI)) { 219 expandAtomicRMWToLibcall(RMWI); 220 MadeChange = true; 221 continue; 222 } 223 } else if (CASI) { 224 if (!atomicSizeSupported(TLI, CASI)) { 225 expandAtomicCASToLibcall(CASI); 226 MadeChange = true; 227 continue; 228 } 229 } 230 231 if (TLI->shouldInsertFencesForAtomic(I)) { 232 auto FenceOrdering = AtomicOrdering::Monotonic; 233 if (LI && isAcquireOrStronger(LI->getOrdering())) { 234 FenceOrdering = LI->getOrdering(); 235 LI->setOrdering(AtomicOrdering::Monotonic); 236 } else if (SI && isReleaseOrStronger(SI->getOrdering())) { 237 FenceOrdering = SI->getOrdering(); 238 SI->setOrdering(AtomicOrdering::Monotonic); 239 } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) || 240 isAcquireOrStronger(RMWI->getOrdering()))) { 241 FenceOrdering = RMWI->getOrdering(); 242 RMWI->setOrdering(AtomicOrdering::Monotonic); 243 } else if (CASI && 244 TLI->shouldExpandAtomicCmpXchgInIR(CASI) == 245 TargetLoweringBase::AtomicExpansionKind::None && 246 (isReleaseOrStronger(CASI->getSuccessOrdering()) || 247 isAcquireOrStronger(CASI->getSuccessOrdering()) || 248 isAcquireOrStronger(CASI->getFailureOrdering()))) { 249 // If a compare and swap is lowered to LL/SC, we can do smarter fence 250 // insertion, with a stronger one on the success path than on the 251 // failure path. As a result, fence insertion is directly done by 252 // expandAtomicCmpXchg in that case. 253 FenceOrdering = CASI->getMergedOrdering(); 254 CASI->setSuccessOrdering(AtomicOrdering::Monotonic); 255 CASI->setFailureOrdering(AtomicOrdering::Monotonic); 256 } 257 258 if (FenceOrdering != AtomicOrdering::Monotonic) { 259 MadeChange |= bracketInstWithFences(I, FenceOrdering); 260 } 261 } 262 263 if (LI) { 264 if (LI->getType()->isFloatingPointTy()) { 265 // TODO: add a TLI hook to control this so that each target can 266 // convert to lowering the original type one at a time. 267 LI = convertAtomicLoadToIntegerType(LI); 268 assert(LI->getType()->isIntegerTy() && "invariant broken"); 269 MadeChange = true; 270 } 271 272 MadeChange |= tryExpandAtomicLoad(LI); 273 } else if (SI) { 274 if (SI->getValueOperand()->getType()->isFloatingPointTy()) { 275 // TODO: add a TLI hook to control this so that each target can 276 // convert to lowering the original type one at a time. 277 SI = convertAtomicStoreToIntegerType(SI); 278 assert(SI->getValueOperand()->getType()->isIntegerTy() && 279 "invariant broken"); 280 MadeChange = true; 281 } 282 283 if (TLI->shouldExpandAtomicStoreInIR(SI)) 284 MadeChange |= expandAtomicStore(SI); 285 } else if (RMWI) { 286 // There are two different ways of expanding RMW instructions: 287 // - into a load if it is idempotent 288 // - into a Cmpxchg/LL-SC loop otherwise 289 // we try them in that order. 290 291 if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) { 292 MadeChange = true; 293 } else { 294 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 295 if (Op == AtomicRMWInst::Xchg && 296 RMWI->getValOperand()->getType()->isFloatingPointTy()) { 297 // TODO: add a TLI hook to control this so that each target can 298 // convert to lowering the original type one at a time. 299 RMWI = convertAtomicXchgToIntegerType(RMWI); 300 assert(RMWI->getValOperand()->getType()->isIntegerTy() && 301 "invariant broken"); 302 MadeChange = true; 303 } 304 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 305 unsigned ValueSize = getAtomicOpSize(RMWI); 306 if (ValueSize < MinCASSize && 307 (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 308 Op == AtomicRMWInst::And)) { 309 RMWI = widenPartwordAtomicRMW(RMWI); 310 MadeChange = true; 311 } 312 313 MadeChange |= tryExpandAtomicRMW(RMWI); 314 } 315 } else if (CASI) { 316 // TODO: when we're ready to make the change at the IR level, we can 317 // extend convertCmpXchgToInteger for floating point too. 318 assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() && 319 "unimplemented - floating point not legal at IR level"); 320 if (CASI->getCompareOperand()->getType()->isPointerTy() ) { 321 // TODO: add a TLI hook to control this so that each target can 322 // convert to lowering the original type one at a time. 323 CASI = convertCmpXchgToIntegerType(CASI); 324 assert(CASI->getCompareOperand()->getType()->isIntegerTy() && 325 "invariant broken"); 326 MadeChange = true; 327 } 328 329 MadeChange |= tryExpandAtomicCmpXchg(CASI); 330 } 331 } 332 return MadeChange; 333 } 334 335 bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) { 336 IRBuilder<> Builder(I); 337 338 auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order); 339 340 auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order); 341 // We have a guard here because not every atomic operation generates a 342 // trailing fence. 343 if (TrailingFence) 344 TrailingFence->moveAfter(I); 345 346 return (LeadingFence || TrailingFence); 347 } 348 349 /// Get the iX type with the same bitwidth as T. 350 IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T, 351 const DataLayout &DL) { 352 EVT VT = TLI->getMemValueType(DL, T); 353 unsigned BitWidth = VT.getStoreSizeInBits(); 354 assert(BitWidth == VT.getSizeInBits() && "must be a power of two"); 355 return IntegerType::get(T->getContext(), BitWidth); 356 } 357 358 /// Convert an atomic load of a non-integral type to an integer load of the 359 /// equivalent bitwidth. See the function comment on 360 /// convertAtomicStoreToIntegerType for background. 361 LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) { 362 auto *M = LI->getModule(); 363 Type *NewTy = getCorrespondingIntegerType(LI->getType(), 364 M->getDataLayout()); 365 366 IRBuilder<> Builder(LI); 367 368 Value *Addr = LI->getPointerOperand(); 369 Type *PT = PointerType::get(NewTy, 370 Addr->getType()->getPointerAddressSpace()); 371 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 372 373 auto *NewLI = Builder.CreateLoad(NewTy, NewAddr); 374 NewLI->setAlignment(LI->getAlign()); 375 NewLI->setVolatile(LI->isVolatile()); 376 NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID()); 377 LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n"); 378 379 Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType()); 380 LI->replaceAllUsesWith(NewVal); 381 LI->eraseFromParent(); 382 return NewLI; 383 } 384 385 AtomicRMWInst * 386 AtomicExpand::convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI) { 387 auto *M = RMWI->getModule(); 388 Type *NewTy = 389 getCorrespondingIntegerType(RMWI->getType(), M->getDataLayout()); 390 391 IRBuilder<> Builder(RMWI); 392 393 Value *Addr = RMWI->getPointerOperand(); 394 Value *Val = RMWI->getValOperand(); 395 Type *PT = PointerType::get(NewTy, RMWI->getPointerAddressSpace()); 396 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 397 Value *NewVal = Builder.CreateBitCast(Val, NewTy); 398 399 auto *NewRMWI = 400 Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, NewAddr, NewVal, 401 RMWI->getAlign(), RMWI->getOrdering()); 402 NewRMWI->setVolatile(RMWI->isVolatile()); 403 LLVM_DEBUG(dbgs() << "Replaced " << *RMWI << " with " << *NewRMWI << "\n"); 404 405 Value *NewRVal = Builder.CreateBitCast(NewRMWI, RMWI->getType()); 406 RMWI->replaceAllUsesWith(NewRVal); 407 RMWI->eraseFromParent(); 408 return NewRMWI; 409 } 410 411 bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) { 412 switch (TLI->shouldExpandAtomicLoadInIR(LI)) { 413 case TargetLoweringBase::AtomicExpansionKind::None: 414 return false; 415 case TargetLoweringBase::AtomicExpansionKind::LLSC: 416 expandAtomicOpToLLSC( 417 LI, LI->getType(), LI->getPointerOperand(), LI->getAlign(), 418 LI->getOrdering(), 419 [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; }); 420 return true; 421 case TargetLoweringBase::AtomicExpansionKind::LLOnly: 422 return expandAtomicLoadToLL(LI); 423 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: 424 return expandAtomicLoadToCmpXchg(LI); 425 default: 426 llvm_unreachable("Unhandled case in tryExpandAtomicLoad"); 427 } 428 } 429 430 bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) { 431 IRBuilder<> Builder(LI); 432 433 // On some architectures, load-linked instructions are atomic for larger 434 // sizes than normal loads. For example, the only 64-bit load guaranteed 435 // to be single-copy atomic by ARM is an ldrexd (A3.5.3). 436 Value *Val = TLI->emitLoadLinked(Builder, LI->getType(), 437 LI->getPointerOperand(), LI->getOrdering()); 438 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 439 440 LI->replaceAllUsesWith(Val); 441 LI->eraseFromParent(); 442 443 return true; 444 } 445 446 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) { 447 IRBuilder<> Builder(LI); 448 AtomicOrdering Order = LI->getOrdering(); 449 if (Order == AtomicOrdering::Unordered) 450 Order = AtomicOrdering::Monotonic; 451 452 Value *Addr = LI->getPointerOperand(); 453 Type *Ty = LI->getType(); 454 Constant *DummyVal = Constant::getNullValue(Ty); 455 456 Value *Pair = Builder.CreateAtomicCmpXchg( 457 Addr, DummyVal, DummyVal, LI->getAlign(), Order, 458 AtomicCmpXchgInst::getStrongestFailureOrdering(Order)); 459 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded"); 460 461 LI->replaceAllUsesWith(Loaded); 462 LI->eraseFromParent(); 463 464 return true; 465 } 466 467 /// Convert an atomic store of a non-integral type to an integer store of the 468 /// equivalent bitwidth. We used to not support floating point or vector 469 /// atomics in the IR at all. The backends learned to deal with the bitcast 470 /// idiom because that was the only way of expressing the notion of a atomic 471 /// float or vector store. The long term plan is to teach each backend to 472 /// instruction select from the original atomic store, but as a migration 473 /// mechanism, we convert back to the old format which the backends understand. 474 /// Each backend will need individual work to recognize the new format. 475 StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) { 476 IRBuilder<> Builder(SI); 477 auto *M = SI->getModule(); 478 Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(), 479 M->getDataLayout()); 480 Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy); 481 482 Value *Addr = SI->getPointerOperand(); 483 Type *PT = PointerType::get(NewTy, 484 Addr->getType()->getPointerAddressSpace()); 485 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 486 487 StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr); 488 NewSI->setAlignment(SI->getAlign()); 489 NewSI->setVolatile(SI->isVolatile()); 490 NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID()); 491 LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n"); 492 SI->eraseFromParent(); 493 return NewSI; 494 } 495 496 bool AtomicExpand::expandAtomicStore(StoreInst *SI) { 497 // This function is only called on atomic stores that are too large to be 498 // atomic if implemented as a native store. So we replace them by an 499 // atomic swap, that can be implemented for example as a ldrex/strex on ARM 500 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. 501 // It is the responsibility of the target to only signal expansion via 502 // shouldExpandAtomicRMW in cases where this is required and possible. 503 IRBuilder<> Builder(SI); 504 AtomicRMWInst *AI = Builder.CreateAtomicRMW( 505 AtomicRMWInst::Xchg, SI->getPointerOperand(), SI->getValueOperand(), 506 SI->getAlign(), SI->getOrdering()); 507 SI->eraseFromParent(); 508 509 // Now we have an appropriate swap instruction, lower it as usual. 510 return tryExpandAtomicRMW(AI); 511 } 512 513 static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr, 514 Value *Loaded, Value *NewVal, Align AddrAlign, 515 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 516 Value *&Success, Value *&NewLoaded) { 517 Type *OrigTy = NewVal->getType(); 518 519 // This code can go away when cmpxchg supports FP types. 520 bool NeedBitcast = OrigTy->isFloatingPointTy(); 521 if (NeedBitcast) { 522 IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits()); 523 unsigned AS = Addr->getType()->getPointerAddressSpace(); 524 Addr = Builder.CreateBitCast(Addr, IntTy->getPointerTo(AS)); 525 NewVal = Builder.CreateBitCast(NewVal, IntTy); 526 Loaded = Builder.CreateBitCast(Loaded, IntTy); 527 } 528 529 Value *Pair = Builder.CreateAtomicCmpXchg( 530 Addr, Loaded, NewVal, AddrAlign, MemOpOrder, 531 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID); 532 Success = Builder.CreateExtractValue(Pair, 1, "success"); 533 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 534 535 if (NeedBitcast) 536 NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy); 537 } 538 539 /// Emit IR to implement the given atomicrmw operation on values in registers, 540 /// returning the new value. 541 static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder, 542 Value *Loaded, Value *Inc) { 543 Value *NewVal; 544 switch (Op) { 545 case AtomicRMWInst::Xchg: 546 return Inc; 547 case AtomicRMWInst::Add: 548 return Builder.CreateAdd(Loaded, Inc, "new"); 549 case AtomicRMWInst::Sub: 550 return Builder.CreateSub(Loaded, Inc, "new"); 551 case AtomicRMWInst::And: 552 return Builder.CreateAnd(Loaded, Inc, "new"); 553 case AtomicRMWInst::Nand: 554 return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new"); 555 case AtomicRMWInst::Or: 556 return Builder.CreateOr(Loaded, Inc, "new"); 557 case AtomicRMWInst::Xor: 558 return Builder.CreateXor(Loaded, Inc, "new"); 559 case AtomicRMWInst::Max: 560 NewVal = Builder.CreateICmpSGT(Loaded, Inc); 561 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 562 case AtomicRMWInst::Min: 563 NewVal = Builder.CreateICmpSLE(Loaded, Inc); 564 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 565 case AtomicRMWInst::UMax: 566 NewVal = Builder.CreateICmpUGT(Loaded, Inc); 567 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 568 case AtomicRMWInst::UMin: 569 NewVal = Builder.CreateICmpULE(Loaded, Inc); 570 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 571 case AtomicRMWInst::FAdd: 572 return Builder.CreateFAdd(Loaded, Inc, "new"); 573 case AtomicRMWInst::FSub: 574 return Builder.CreateFSub(Loaded, Inc, "new"); 575 default: 576 llvm_unreachable("Unknown atomic op"); 577 } 578 } 579 580 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) { 581 LLVMContext &Ctx = AI->getModule()->getContext(); 582 TargetLowering::AtomicExpansionKind Kind = TLI->shouldExpandAtomicRMWInIR(AI); 583 switch (Kind) { 584 case TargetLoweringBase::AtomicExpansionKind::None: 585 return false; 586 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 587 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 588 unsigned ValueSize = getAtomicOpSize(AI); 589 if (ValueSize < MinCASSize) { 590 expandPartwordAtomicRMW(AI, 591 TargetLoweringBase::AtomicExpansionKind::LLSC); 592 } else { 593 auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) { 594 return performAtomicOp(AI->getOperation(), Builder, Loaded, 595 AI->getValOperand()); 596 }; 597 expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(), 598 AI->getAlign(), AI->getOrdering(), PerformOp); 599 } 600 return true; 601 } 602 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: { 603 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 604 unsigned ValueSize = getAtomicOpSize(AI); 605 if (ValueSize < MinCASSize) { 606 // TODO: Handle atomicrmw fadd/fsub 607 if (AI->getType()->isFloatingPointTy()) 608 return false; 609 610 expandPartwordAtomicRMW(AI, 611 TargetLoweringBase::AtomicExpansionKind::CmpXChg); 612 } else { 613 SmallVector<StringRef> SSNs; 614 Ctx.getSyncScopeNames(SSNs); 615 auto MemScope = SSNs[AI->getSyncScopeID()].empty() 616 ? "system" 617 : SSNs[AI->getSyncScopeID()]; 618 ORE->emit([&]() { 619 return OptimizationRemark(DEBUG_TYPE, "Passed", AI->getFunction()) 620 << "A compare and swap loop was generated for an atomic " 621 << AI->getOperationName(AI->getOperation()) << " operation at " 622 << MemScope << " memory scope"; 623 }); 624 expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun); 625 } 626 return true; 627 } 628 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: { 629 expandAtomicRMWToMaskedIntrinsic(AI); 630 return true; 631 } 632 default: 633 llvm_unreachable("Unhandled case in tryExpandAtomicRMW"); 634 } 635 } 636 637 namespace { 638 639 struct PartwordMaskValues { 640 // These three fields are guaranteed to be set by createMaskInstrs. 641 Type *WordType = nullptr; 642 Type *ValueType = nullptr; 643 Value *AlignedAddr = nullptr; 644 Align AlignedAddrAlignment; 645 // The remaining fields can be null. 646 Value *ShiftAmt = nullptr; 647 Value *Mask = nullptr; 648 Value *Inv_Mask = nullptr; 649 }; 650 651 LLVM_ATTRIBUTE_UNUSED 652 raw_ostream &operator<<(raw_ostream &O, const PartwordMaskValues &PMV) { 653 auto PrintObj = [&O](auto *V) { 654 if (V) 655 O << *V; 656 else 657 O << "nullptr"; 658 O << '\n'; 659 }; 660 O << "PartwordMaskValues {\n"; 661 O << " WordType: "; 662 PrintObj(PMV.WordType); 663 O << " ValueType: "; 664 PrintObj(PMV.ValueType); 665 O << " AlignedAddr: "; 666 PrintObj(PMV.AlignedAddr); 667 O << " AlignedAddrAlignment: " << PMV.AlignedAddrAlignment.value() << '\n'; 668 O << " ShiftAmt: "; 669 PrintObj(PMV.ShiftAmt); 670 O << " Mask: "; 671 PrintObj(PMV.Mask); 672 O << " Inv_Mask: "; 673 PrintObj(PMV.Inv_Mask); 674 O << "}\n"; 675 return O; 676 } 677 678 } // end anonymous namespace 679 680 /// This is a helper function which builds instructions to provide 681 /// values necessary for partword atomic operations. It takes an 682 /// incoming address, Addr, and ValueType, and constructs the address, 683 /// shift-amounts and masks needed to work with a larger value of size 684 /// WordSize. 685 /// 686 /// AlignedAddr: Addr rounded down to a multiple of WordSize 687 /// 688 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded 689 /// from AlignAddr for it to have the same value as if 690 /// ValueType was loaded from Addr. 691 /// 692 /// Mask: Value to mask with the value loaded from AlignAddr to 693 /// include only the part that would've been loaded from Addr. 694 /// 695 /// Inv_Mask: The inverse of Mask. 696 static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I, 697 Type *ValueType, Value *Addr, 698 Align AddrAlign, 699 unsigned MinWordSize) { 700 PartwordMaskValues PMV; 701 702 Module *M = I->getModule(); 703 LLVMContext &Ctx = M->getContext(); 704 const DataLayout &DL = M->getDataLayout(); 705 unsigned ValueSize = DL.getTypeStoreSize(ValueType); 706 707 PMV.ValueType = ValueType; 708 PMV.WordType = MinWordSize > ValueSize ? Type::getIntNTy(Ctx, MinWordSize * 8) 709 : ValueType; 710 if (PMV.ValueType == PMV.WordType) { 711 PMV.AlignedAddr = Addr; 712 PMV.AlignedAddrAlignment = AddrAlign; 713 PMV.ShiftAmt = ConstantInt::get(PMV.ValueType, 0); 714 PMV.Mask = ConstantInt::get(PMV.ValueType, ~0); 715 return PMV; 716 } 717 718 assert(ValueSize < MinWordSize); 719 720 Type *WordPtrType = 721 PMV.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace()); 722 723 // TODO: we could skip some of this if AddrAlign >= MinWordSize. 724 Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx)); 725 PMV.AlignedAddr = Builder.CreateIntToPtr( 726 Builder.CreateAnd(AddrInt, ~(uint64_t)(MinWordSize - 1)), WordPtrType, 727 "AlignedAddr"); 728 PMV.AlignedAddrAlignment = Align(MinWordSize); 729 730 Value *PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1, "PtrLSB"); 731 if (DL.isLittleEndian()) { 732 // turn bytes into bits 733 PMV.ShiftAmt = Builder.CreateShl(PtrLSB, 3); 734 } else { 735 // turn bytes into bits, and count from the other side. 736 PMV.ShiftAmt = Builder.CreateShl( 737 Builder.CreateXor(PtrLSB, MinWordSize - ValueSize), 3); 738 } 739 740 PMV.ShiftAmt = Builder.CreateTrunc(PMV.ShiftAmt, PMV.WordType, "ShiftAmt"); 741 PMV.Mask = Builder.CreateShl( 742 ConstantInt::get(PMV.WordType, (1 << (ValueSize * 8)) - 1), PMV.ShiftAmt, 743 "Mask"); 744 PMV.Inv_Mask = Builder.CreateNot(PMV.Mask, "Inv_Mask"); 745 return PMV; 746 } 747 748 static Value *extractMaskedValue(IRBuilder<> &Builder, Value *WideWord, 749 const PartwordMaskValues &PMV) { 750 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch"); 751 if (PMV.WordType == PMV.ValueType) 752 return WideWord; 753 754 Value *Shift = Builder.CreateLShr(WideWord, PMV.ShiftAmt, "shifted"); 755 Value *Trunc = Builder.CreateTrunc(Shift, PMV.ValueType, "extracted"); 756 return Trunc; 757 } 758 759 static Value *insertMaskedValue(IRBuilder<> &Builder, Value *WideWord, 760 Value *Updated, const PartwordMaskValues &PMV) { 761 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch"); 762 assert(Updated->getType() == PMV.ValueType && "Value type mismatch"); 763 if (PMV.WordType == PMV.ValueType) 764 return Updated; 765 766 Value *ZExt = Builder.CreateZExt(Updated, PMV.WordType, "extended"); 767 Value *Shift = 768 Builder.CreateShl(ZExt, PMV.ShiftAmt, "shifted", /*HasNUW*/ true); 769 Value *And = Builder.CreateAnd(WideWord, PMV.Inv_Mask, "unmasked"); 770 Value *Or = Builder.CreateOr(And, Shift, "inserted"); 771 return Or; 772 } 773 774 /// Emit IR to implement a masked version of a given atomicrmw 775 /// operation. (That is, only the bits under the Mask should be 776 /// affected by the operation) 777 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op, 778 IRBuilder<> &Builder, Value *Loaded, 779 Value *Shifted_Inc, Value *Inc, 780 const PartwordMaskValues &PMV) { 781 // TODO: update to use 782 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order 783 // to merge bits from two values without requiring PMV.Inv_Mask. 784 switch (Op) { 785 case AtomicRMWInst::Xchg: { 786 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 787 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc); 788 return FinalVal; 789 } 790 case AtomicRMWInst::Or: 791 case AtomicRMWInst::Xor: 792 case AtomicRMWInst::And: 793 llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW"); 794 case AtomicRMWInst::Add: 795 case AtomicRMWInst::Sub: 796 case AtomicRMWInst::Nand: { 797 // The other arithmetic ops need to be masked into place. 798 Value *NewVal = performAtomicOp(Op, Builder, Loaded, Shifted_Inc); 799 Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask); 800 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 801 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked); 802 return FinalVal; 803 } 804 case AtomicRMWInst::Max: 805 case AtomicRMWInst::Min: 806 case AtomicRMWInst::UMax: 807 case AtomicRMWInst::UMin: { 808 // Finally, comparison ops will operate on the full value, so 809 // truncate down to the original size, and expand out again after 810 // doing the operation. 811 Value *Loaded_Extract = extractMaskedValue(Builder, Loaded, PMV); 812 Value *NewVal = performAtomicOp(Op, Builder, Loaded_Extract, Inc); 813 Value *FinalVal = insertMaskedValue(Builder, Loaded, NewVal, PMV); 814 return FinalVal; 815 } 816 default: 817 llvm_unreachable("Unknown atomic op"); 818 } 819 } 820 821 /// Expand a sub-word atomicrmw operation into an appropriate 822 /// word-sized operation. 823 /// 824 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same 825 /// way as a typical atomicrmw expansion. The only difference here is 826 /// that the operation inside of the loop may operate upon only a 827 /// part of the value. 828 void AtomicExpand::expandPartwordAtomicRMW( 829 AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) { 830 AtomicOrdering MemOpOrder = AI->getOrdering(); 831 SyncScope::ID SSID = AI->getSyncScopeID(); 832 833 IRBuilder<> Builder(AI); 834 835 PartwordMaskValues PMV = 836 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 837 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 838 839 Value *ValOperand_Shifted = 840 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 841 PMV.ShiftAmt, "ValOperand_Shifted"); 842 843 auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) { 844 return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded, 845 ValOperand_Shifted, AI->getValOperand(), PMV); 846 }; 847 848 Value *OldResult; 849 if (ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg) { 850 OldResult = insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, 851 PMV.AlignedAddrAlignment, MemOpOrder, 852 SSID, PerformPartwordOp, 853 createCmpXchgInstFun); 854 } else { 855 assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::LLSC); 856 OldResult = insertRMWLLSCLoop(Builder, PMV.WordType, PMV.AlignedAddr, 857 PMV.AlignedAddrAlignment, MemOpOrder, 858 PerformPartwordOp); 859 } 860 861 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV); 862 AI->replaceAllUsesWith(FinalOldResult); 863 AI->eraseFromParent(); 864 } 865 866 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width. 867 AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) { 868 IRBuilder<> Builder(AI); 869 AtomicRMWInst::BinOp Op = AI->getOperation(); 870 871 assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 872 Op == AtomicRMWInst::And) && 873 "Unable to widen operation"); 874 875 PartwordMaskValues PMV = 876 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 877 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 878 879 Value *ValOperand_Shifted = 880 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 881 PMV.ShiftAmt, "ValOperand_Shifted"); 882 883 Value *NewOperand; 884 885 if (Op == AtomicRMWInst::And) 886 NewOperand = 887 Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand"); 888 else 889 NewOperand = ValOperand_Shifted; 890 891 AtomicRMWInst *NewAI = 892 Builder.CreateAtomicRMW(Op, PMV.AlignedAddr, NewOperand, 893 PMV.AlignedAddrAlignment, AI->getOrdering()); 894 895 Value *FinalOldResult = extractMaskedValue(Builder, NewAI, PMV); 896 AI->replaceAllUsesWith(FinalOldResult); 897 AI->eraseFromParent(); 898 return NewAI; 899 } 900 901 bool AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) { 902 // The basic idea here is that we're expanding a cmpxchg of a 903 // smaller memory size up to a word-sized cmpxchg. To do this, we 904 // need to add a retry-loop for strong cmpxchg, so that 905 // modifications to other parts of the word don't cause a spurious 906 // failure. 907 908 // This generates code like the following: 909 // [[Setup mask values PMV.*]] 910 // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt 911 // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt 912 // %InitLoaded = load i32* %addr 913 // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask 914 // br partword.cmpxchg.loop 915 // partword.cmpxchg.loop: 916 // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ], 917 // [ %OldVal_MaskOut, %partword.cmpxchg.failure ] 918 // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted 919 // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted 920 // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp, 921 // i32 %FullWord_NewVal success_ordering failure_ordering 922 // %OldVal = extractvalue { i32, i1 } %NewCI, 0 923 // %Success = extractvalue { i32, i1 } %NewCI, 1 924 // br i1 %Success, label %partword.cmpxchg.end, 925 // label %partword.cmpxchg.failure 926 // partword.cmpxchg.failure: 927 // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask 928 // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut 929 // br i1 %ShouldContinue, label %partword.cmpxchg.loop, 930 // label %partword.cmpxchg.end 931 // partword.cmpxchg.end: 932 // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt 933 // %FinalOldVal = trunc i32 %tmp1 to i8 934 // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0 935 // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1 936 937 Value *Addr = CI->getPointerOperand(); 938 Value *Cmp = CI->getCompareOperand(); 939 Value *NewVal = CI->getNewValOperand(); 940 941 BasicBlock *BB = CI->getParent(); 942 Function *F = BB->getParent(); 943 IRBuilder<> Builder(CI); 944 LLVMContext &Ctx = Builder.getContext(); 945 946 BasicBlock *EndBB = 947 BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end"); 948 auto FailureBB = 949 BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB); 950 auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB); 951 952 // The split call above "helpfully" added a branch at the end of BB 953 // (to the wrong place). 954 std::prev(BB->end())->eraseFromParent(); 955 Builder.SetInsertPoint(BB); 956 957 PartwordMaskValues PMV = 958 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr, 959 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 960 961 // Shift the incoming values over, into the right location in the word. 962 Value *NewVal_Shifted = 963 Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt); 964 Value *Cmp_Shifted = 965 Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt); 966 967 // Load the entire current word, and mask into place the expected and new 968 // values 969 LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr); 970 InitLoaded->setVolatile(CI->isVolatile()); 971 Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask); 972 Builder.CreateBr(LoopBB); 973 974 // partword.cmpxchg.loop: 975 Builder.SetInsertPoint(LoopBB); 976 PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2); 977 Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB); 978 979 // Mask/Or the expected and new values into place in the loaded word. 980 Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted); 981 Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted); 982 AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg( 983 PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, PMV.AlignedAddrAlignment, 984 CI->getSuccessOrdering(), CI->getFailureOrdering(), CI->getSyncScopeID()); 985 NewCI->setVolatile(CI->isVolatile()); 986 // When we're building a strong cmpxchg, we need a loop, so you 987 // might think we could use a weak cmpxchg inside. But, using strong 988 // allows the below comparison for ShouldContinue, and we're 989 // expecting the underlying cmpxchg to be a machine instruction, 990 // which is strong anyways. 991 NewCI->setWeak(CI->isWeak()); 992 993 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 994 Value *Success = Builder.CreateExtractValue(NewCI, 1); 995 996 if (CI->isWeak()) 997 Builder.CreateBr(EndBB); 998 else 999 Builder.CreateCondBr(Success, EndBB, FailureBB); 1000 1001 // partword.cmpxchg.failure: 1002 Builder.SetInsertPoint(FailureBB); 1003 // Upon failure, verify that the masked-out part of the loaded value 1004 // has been modified. If it didn't, abort the cmpxchg, since the 1005 // masked-in part must've. 1006 Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask); 1007 Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut); 1008 Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB); 1009 1010 // Add the second value to the phi from above 1011 Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB); 1012 1013 // partword.cmpxchg.end: 1014 Builder.SetInsertPoint(CI); 1015 1016 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV); 1017 Value *Res = UndefValue::get(CI->getType()); 1018 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 1019 Res = Builder.CreateInsertValue(Res, Success, 1); 1020 1021 CI->replaceAllUsesWith(Res); 1022 CI->eraseFromParent(); 1023 return true; 1024 } 1025 1026 void AtomicExpand::expandAtomicOpToLLSC( 1027 Instruction *I, Type *ResultType, Value *Addr, Align AddrAlign, 1028 AtomicOrdering MemOpOrder, 1029 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { 1030 IRBuilder<> Builder(I); 1031 Value *Loaded = insertRMWLLSCLoop(Builder, ResultType, Addr, AddrAlign, 1032 MemOpOrder, PerformOp); 1033 1034 I->replaceAllUsesWith(Loaded); 1035 I->eraseFromParent(); 1036 } 1037 1038 void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) { 1039 IRBuilder<> Builder(AI); 1040 1041 PartwordMaskValues PMV = 1042 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 1043 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1044 1045 // The value operand must be sign-extended for signed min/max so that the 1046 // target's signed comparison instructions can be used. Otherwise, just 1047 // zero-ext. 1048 Instruction::CastOps CastOp = Instruction::ZExt; 1049 AtomicRMWInst::BinOp RMWOp = AI->getOperation(); 1050 if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min) 1051 CastOp = Instruction::SExt; 1052 1053 Value *ValOperand_Shifted = Builder.CreateShl( 1054 Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType), 1055 PMV.ShiftAmt, "ValOperand_Shifted"); 1056 Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic( 1057 Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt, 1058 AI->getOrdering()); 1059 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV); 1060 AI->replaceAllUsesWith(FinalOldResult); 1061 AI->eraseFromParent(); 1062 } 1063 1064 void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI) { 1065 IRBuilder<> Builder(CI); 1066 1067 PartwordMaskValues PMV = createMaskInstrs( 1068 Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(), 1069 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1070 1071 Value *CmpVal_Shifted = Builder.CreateShl( 1072 Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt, 1073 "CmpVal_Shifted"); 1074 Value *NewVal_Shifted = Builder.CreateShl( 1075 Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt, 1076 "NewVal_Shifted"); 1077 Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic( 1078 Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask, 1079 CI->getMergedOrdering()); 1080 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV); 1081 Value *Res = UndefValue::get(CI->getType()); 1082 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 1083 Value *Success = Builder.CreateICmpEQ( 1084 CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success"); 1085 Res = Builder.CreateInsertValue(Res, Success, 1); 1086 1087 CI->replaceAllUsesWith(Res); 1088 CI->eraseFromParent(); 1089 } 1090 1091 Value *AtomicExpand::insertRMWLLSCLoop( 1092 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, 1093 AtomicOrdering MemOpOrder, 1094 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { 1095 LLVMContext &Ctx = Builder.getContext(); 1096 BasicBlock *BB = Builder.GetInsertBlock(); 1097 Function *F = BB->getParent(); 1098 1099 assert(AddrAlign >= 1100 F->getParent()->getDataLayout().getTypeStoreSize(ResultTy) && 1101 "Expected at least natural alignment at this point."); 1102 1103 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1104 // 1105 // The standard expansion we produce is: 1106 // [...] 1107 // atomicrmw.start: 1108 // %loaded = @load.linked(%addr) 1109 // %new = some_op iN %loaded, %incr 1110 // %stored = @store_conditional(%new, %addr) 1111 // %try_again = icmp i32 ne %stored, 0 1112 // br i1 %try_again, label %loop, label %atomicrmw.end 1113 // atomicrmw.end: 1114 // [...] 1115 BasicBlock *ExitBB = 1116 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1117 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1118 1119 // The split call above "helpfully" added a branch at the end of BB (to the 1120 // wrong place). 1121 std::prev(BB->end())->eraseFromParent(); 1122 Builder.SetInsertPoint(BB); 1123 Builder.CreateBr(LoopBB); 1124 1125 // Start the main loop block now that we've taken care of the preliminaries. 1126 Builder.SetInsertPoint(LoopBB); 1127 Value *Loaded = TLI->emitLoadLinked(Builder, ResultTy, Addr, MemOpOrder); 1128 1129 Value *NewVal = PerformOp(Builder, Loaded); 1130 1131 Value *StoreSuccess = 1132 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); 1133 Value *TryAgain = Builder.CreateICmpNE( 1134 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); 1135 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); 1136 1137 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1138 return Loaded; 1139 } 1140 1141 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of 1142 /// the equivalent bitwidth. We used to not support pointer cmpxchg in the 1143 /// IR. As a migration step, we convert back to what use to be the standard 1144 /// way to represent a pointer cmpxchg so that we can update backends one by 1145 /// one. 1146 AtomicCmpXchgInst *AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) { 1147 auto *M = CI->getModule(); 1148 Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(), 1149 M->getDataLayout()); 1150 1151 IRBuilder<> Builder(CI); 1152 1153 Value *Addr = CI->getPointerOperand(); 1154 Type *PT = PointerType::get(NewTy, 1155 Addr->getType()->getPointerAddressSpace()); 1156 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 1157 1158 Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy); 1159 Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy); 1160 1161 auto *NewCI = Builder.CreateAtomicCmpXchg( 1162 NewAddr, NewCmp, NewNewVal, CI->getAlign(), CI->getSuccessOrdering(), 1163 CI->getFailureOrdering(), CI->getSyncScopeID()); 1164 NewCI->setVolatile(CI->isVolatile()); 1165 NewCI->setWeak(CI->isWeak()); 1166 LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n"); 1167 1168 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 1169 Value *Succ = Builder.CreateExtractValue(NewCI, 1); 1170 1171 OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType()); 1172 1173 Value *Res = UndefValue::get(CI->getType()); 1174 Res = Builder.CreateInsertValue(Res, OldVal, 0); 1175 Res = Builder.CreateInsertValue(Res, Succ, 1); 1176 1177 CI->replaceAllUsesWith(Res); 1178 CI->eraseFromParent(); 1179 return NewCI; 1180 } 1181 1182 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1183 AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); 1184 AtomicOrdering FailureOrder = CI->getFailureOrdering(); 1185 Value *Addr = CI->getPointerOperand(); 1186 BasicBlock *BB = CI->getParent(); 1187 Function *F = BB->getParent(); 1188 LLVMContext &Ctx = F->getContext(); 1189 // If shouldInsertFencesForAtomic() returns true, then the target does not 1190 // want to deal with memory orders, and emitLeading/TrailingFence should take 1191 // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we 1192 // should preserve the ordering. 1193 bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI); 1194 AtomicOrdering MemOpOrder = ShouldInsertFencesForAtomic 1195 ? AtomicOrdering::Monotonic 1196 : CI->getMergedOrdering(); 1197 1198 // In implementations which use a barrier to achieve release semantics, we can 1199 // delay emitting this barrier until we know a store is actually going to be 1200 // attempted. The cost of this delay is that we need 2 copies of the block 1201 // emitting the load-linked, affecting code size. 1202 // 1203 // Ideally, this logic would be unconditional except for the minsize check 1204 // since in other cases the extra blocks naturally collapse down to the 1205 // minimal loop. Unfortunately, this puts too much stress on later 1206 // optimisations so we avoid emitting the extra logic in those cases too. 1207 bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic && 1208 SuccessOrder != AtomicOrdering::Monotonic && 1209 SuccessOrder != AtomicOrdering::Acquire && 1210 !F->hasMinSize(); 1211 1212 // There's no overhead for sinking the release barrier in a weak cmpxchg, so 1213 // do it even on minsize. 1214 bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak(); 1215 1216 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord 1217 // 1218 // The full expansion we produce is: 1219 // [...] 1220 // %aligned.addr = ... 1221 // cmpxchg.start: 1222 // %unreleasedload = @load.linked(%aligned.addr) 1223 // %unreleasedload.extract = extract value from %unreleasedload 1224 // %should_store = icmp eq %unreleasedload.extract, %desired 1225 // br i1 %should_store, label %cmpxchg.releasingstore, 1226 // label %cmpxchg.nostore 1227 // cmpxchg.releasingstore: 1228 // fence? 1229 // br label cmpxchg.trystore 1230 // cmpxchg.trystore: 1231 // %loaded.trystore = phi [%unreleasedload, %cmpxchg.releasingstore], 1232 // [%releasedload, %cmpxchg.releasedload] 1233 // %updated.new = insert %new into %loaded.trystore 1234 // %stored = @store_conditional(%updated.new, %aligned.addr) 1235 // %success = icmp eq i32 %stored, 0 1236 // br i1 %success, label %cmpxchg.success, 1237 // label %cmpxchg.releasedload/%cmpxchg.failure 1238 // cmpxchg.releasedload: 1239 // %releasedload = @load.linked(%aligned.addr) 1240 // %releasedload.extract = extract value from %releasedload 1241 // %should_store = icmp eq %releasedload.extract, %desired 1242 // br i1 %should_store, label %cmpxchg.trystore, 1243 // label %cmpxchg.failure 1244 // cmpxchg.success: 1245 // fence? 1246 // br label %cmpxchg.end 1247 // cmpxchg.nostore: 1248 // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start], 1249 // [%releasedload, 1250 // %cmpxchg.releasedload/%cmpxchg.trystore] 1251 // @load_linked_fail_balance()? 1252 // br label %cmpxchg.failure 1253 // cmpxchg.failure: 1254 // fence? 1255 // br label %cmpxchg.end 1256 // cmpxchg.end: 1257 // %loaded.exit = phi [%loaded.nostore, %cmpxchg.failure], 1258 // [%loaded.trystore, %cmpxchg.trystore] 1259 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] 1260 // %loaded = extract value from %loaded.exit 1261 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 1262 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 1263 // [...] 1264 BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end"); 1265 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); 1266 auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB); 1267 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB); 1268 auto ReleasedLoadBB = 1269 BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB); 1270 auto TryStoreBB = 1271 BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB); 1272 auto ReleasingStoreBB = 1273 BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB); 1274 auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB); 1275 1276 // This grabs the DebugLoc from CI 1277 IRBuilder<> Builder(CI); 1278 1279 // The split call above "helpfully" added a branch at the end of BB (to the 1280 // wrong place), but we might want a fence too. It's easiest to just remove 1281 // the branch entirely. 1282 std::prev(BB->end())->eraseFromParent(); 1283 Builder.SetInsertPoint(BB); 1284 if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier) 1285 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1286 1287 PartwordMaskValues PMV = 1288 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr, 1289 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1290 Builder.CreateBr(StartBB); 1291 1292 // Start the main loop block now that we've taken care of the preliminaries. 1293 Builder.SetInsertPoint(StartBB); 1294 Value *UnreleasedLoad = 1295 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder); 1296 Value *UnreleasedLoadExtract = 1297 extractMaskedValue(Builder, UnreleasedLoad, PMV); 1298 Value *ShouldStore = Builder.CreateICmpEQ( 1299 UnreleasedLoadExtract, CI->getCompareOperand(), "should_store"); 1300 1301 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1302 // jump straight past that fence instruction (if it exists). 1303 Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB); 1304 1305 Builder.SetInsertPoint(ReleasingStoreBB); 1306 if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier) 1307 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1308 Builder.CreateBr(TryStoreBB); 1309 1310 Builder.SetInsertPoint(TryStoreBB); 1311 PHINode *LoadedTryStore = 1312 Builder.CreatePHI(PMV.WordType, 2, "loaded.trystore"); 1313 LoadedTryStore->addIncoming(UnreleasedLoad, ReleasingStoreBB); 1314 Value *NewValueInsert = 1315 insertMaskedValue(Builder, LoadedTryStore, CI->getNewValOperand(), PMV); 1316 Value *StoreSuccess = 1317 TLI->emitStoreConditional(Builder, NewValueInsert, PMV.AlignedAddr, 1318 MemOpOrder); 1319 StoreSuccess = Builder.CreateICmpEQ( 1320 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); 1321 BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB; 1322 Builder.CreateCondBr(StoreSuccess, SuccessBB, 1323 CI->isWeak() ? FailureBB : RetryBB); 1324 1325 Builder.SetInsertPoint(ReleasedLoadBB); 1326 Value *SecondLoad; 1327 if (HasReleasedLoadBB) { 1328 SecondLoad = 1329 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder); 1330 Value *SecondLoadExtract = extractMaskedValue(Builder, SecondLoad, PMV); 1331 ShouldStore = Builder.CreateICmpEQ(SecondLoadExtract, 1332 CI->getCompareOperand(), "should_store"); 1333 1334 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1335 // jump straight past that fence instruction (if it exists). 1336 Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB); 1337 // Update PHI node in TryStoreBB. 1338 LoadedTryStore->addIncoming(SecondLoad, ReleasedLoadBB); 1339 } else 1340 Builder.CreateUnreachable(); 1341 1342 // Make sure later instructions don't get reordered with a fence if 1343 // necessary. 1344 Builder.SetInsertPoint(SuccessBB); 1345 if (ShouldInsertFencesForAtomic) 1346 TLI->emitTrailingFence(Builder, CI, SuccessOrder); 1347 Builder.CreateBr(ExitBB); 1348 1349 Builder.SetInsertPoint(NoStoreBB); 1350 PHINode *LoadedNoStore = 1351 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.nostore"); 1352 LoadedNoStore->addIncoming(UnreleasedLoad, StartBB); 1353 if (HasReleasedLoadBB) 1354 LoadedNoStore->addIncoming(SecondLoad, ReleasedLoadBB); 1355 1356 // In the failing case, where we don't execute the store-conditional, the 1357 // target might want to balance out the load-linked with a dedicated 1358 // instruction (e.g., on ARM, clearing the exclusive monitor). 1359 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 1360 Builder.CreateBr(FailureBB); 1361 1362 Builder.SetInsertPoint(FailureBB); 1363 PHINode *LoadedFailure = 1364 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.failure"); 1365 LoadedFailure->addIncoming(LoadedNoStore, NoStoreBB); 1366 if (CI->isWeak()) 1367 LoadedFailure->addIncoming(LoadedTryStore, TryStoreBB); 1368 if (ShouldInsertFencesForAtomic) 1369 TLI->emitTrailingFence(Builder, CI, FailureOrder); 1370 Builder.CreateBr(ExitBB); 1371 1372 // Finally, we have control-flow based knowledge of whether the cmpxchg 1373 // succeeded or not. We expose this to later passes by converting any 1374 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate 1375 // PHI. 1376 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1377 PHINode *LoadedExit = 1378 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.exit"); 1379 LoadedExit->addIncoming(LoadedTryStore, SuccessBB); 1380 LoadedExit->addIncoming(LoadedFailure, FailureBB); 1381 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2, "success"); 1382 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); 1383 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); 1384 1385 // This is the "exit value" from the cmpxchg expansion. It may be of 1386 // a type wider than the one in the cmpxchg instruction. 1387 Value *LoadedFull = LoadedExit; 1388 1389 Builder.SetInsertPoint(ExitBB, std::next(Success->getIterator())); 1390 Value *Loaded = extractMaskedValue(Builder, LoadedFull, PMV); 1391 1392 // Look for any users of the cmpxchg that are just comparing the loaded value 1393 // against the desired one, and replace them with the CFG-derived version. 1394 SmallVector<ExtractValueInst *, 2> PrunedInsts; 1395 for (auto User : CI->users()) { 1396 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); 1397 if (!EV) 1398 continue; 1399 1400 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && 1401 "weird extraction from { iN, i1 }"); 1402 1403 if (EV->getIndices()[0] == 0) 1404 EV->replaceAllUsesWith(Loaded); 1405 else 1406 EV->replaceAllUsesWith(Success); 1407 1408 PrunedInsts.push_back(EV); 1409 } 1410 1411 // We can remove the instructions now we're no longer iterating through them. 1412 for (auto EV : PrunedInsts) 1413 EV->eraseFromParent(); 1414 1415 if (!CI->use_empty()) { 1416 // Some use of the full struct return that we don't understand has happened, 1417 // so we've got to reconstruct it properly. 1418 Value *Res; 1419 Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0); 1420 Res = Builder.CreateInsertValue(Res, Success, 1); 1421 1422 CI->replaceAllUsesWith(Res); 1423 } 1424 1425 CI->eraseFromParent(); 1426 return true; 1427 } 1428 1429 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) { 1430 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand()); 1431 if(!C) 1432 return false; 1433 1434 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 1435 switch(Op) { 1436 case AtomicRMWInst::Add: 1437 case AtomicRMWInst::Sub: 1438 case AtomicRMWInst::Or: 1439 case AtomicRMWInst::Xor: 1440 return C->isZero(); 1441 case AtomicRMWInst::And: 1442 return C->isMinusOne(); 1443 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/... 1444 default: 1445 return false; 1446 } 1447 } 1448 1449 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) { 1450 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { 1451 tryExpandAtomicLoad(ResultingLoad); 1452 return true; 1453 } 1454 return false; 1455 } 1456 1457 Value *AtomicExpand::insertRMWCmpXchgLoop( 1458 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, 1459 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 1460 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, 1461 CreateCmpXchgInstFun CreateCmpXchg) { 1462 LLVMContext &Ctx = Builder.getContext(); 1463 BasicBlock *BB = Builder.GetInsertBlock(); 1464 Function *F = BB->getParent(); 1465 1466 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1467 // 1468 // The standard expansion we produce is: 1469 // [...] 1470 // %init_loaded = load atomic iN* %addr 1471 // br label %loop 1472 // loop: 1473 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] 1474 // %new = some_op iN %loaded, %incr 1475 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new 1476 // %new_loaded = extractvalue { iN, i1 } %pair, 0 1477 // %success = extractvalue { iN, i1 } %pair, 1 1478 // br i1 %success, label %atomicrmw.end, label %loop 1479 // atomicrmw.end: 1480 // [...] 1481 BasicBlock *ExitBB = 1482 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1483 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1484 1485 // The split call above "helpfully" added a branch at the end of BB (to the 1486 // wrong place), but we want a load. It's easiest to just remove 1487 // the branch entirely. 1488 std::prev(BB->end())->eraseFromParent(); 1489 Builder.SetInsertPoint(BB); 1490 LoadInst *InitLoaded = Builder.CreateAlignedLoad(ResultTy, Addr, AddrAlign); 1491 Builder.CreateBr(LoopBB); 1492 1493 // Start the main loop block now that we've taken care of the preliminaries. 1494 Builder.SetInsertPoint(LoopBB); 1495 PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded"); 1496 Loaded->addIncoming(InitLoaded, BB); 1497 1498 Value *NewVal = PerformOp(Builder, Loaded); 1499 1500 Value *NewLoaded = nullptr; 1501 Value *Success = nullptr; 1502 1503 CreateCmpXchg(Builder, Addr, Loaded, NewVal, AddrAlign, 1504 MemOpOrder == AtomicOrdering::Unordered 1505 ? AtomicOrdering::Monotonic 1506 : MemOpOrder, 1507 SSID, Success, NewLoaded); 1508 assert(Success && NewLoaded); 1509 1510 Loaded->addIncoming(NewLoaded, LoopBB); 1511 1512 Builder.CreateCondBr(Success, ExitBB, LoopBB); 1513 1514 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1515 return NewLoaded; 1516 } 1517 1518 bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1519 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 1520 unsigned ValueSize = getAtomicOpSize(CI); 1521 1522 switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) { 1523 default: 1524 llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg"); 1525 case TargetLoweringBase::AtomicExpansionKind::None: 1526 if (ValueSize < MinCASSize) 1527 return expandPartwordCmpXchg(CI); 1528 return false; 1529 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 1530 return expandAtomicCmpXchg(CI); 1531 } 1532 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: 1533 expandAtomicCmpXchgToMaskedIntrinsic(CI); 1534 return true; 1535 } 1536 } 1537 1538 // Note: This function is exposed externally by AtomicExpandUtils.h 1539 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 1540 CreateCmpXchgInstFun CreateCmpXchg) { 1541 IRBuilder<> Builder(AI); 1542 Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop( 1543 Builder, AI->getType(), AI->getPointerOperand(), AI->getAlign(), 1544 AI->getOrdering(), AI->getSyncScopeID(), 1545 [&](IRBuilder<> &Builder, Value *Loaded) { 1546 return performAtomicOp(AI->getOperation(), Builder, Loaded, 1547 AI->getValOperand()); 1548 }, 1549 CreateCmpXchg); 1550 1551 AI->replaceAllUsesWith(Loaded); 1552 AI->eraseFromParent(); 1553 return true; 1554 } 1555 1556 // In order to use one of the sized library calls such as 1557 // __atomic_fetch_add_4, the alignment must be sufficient, the size 1558 // must be one of the potentially-specialized sizes, and the value 1559 // type must actually exist in C on the target (otherwise, the 1560 // function wouldn't actually be defined.) 1561 static bool canUseSizedAtomicCall(unsigned Size, Align Alignment, 1562 const DataLayout &DL) { 1563 // TODO: "LargestSize" is an approximation for "largest type that 1564 // you can express in C". It seems to be the case that int128 is 1565 // supported on all 64-bit platforms, otherwise only up to 64-bit 1566 // integers are supported. If we get this wrong, then we'll try to 1567 // call a sized libcall that doesn't actually exist. There should 1568 // really be some more reliable way in LLVM of determining integer 1569 // sizes which are valid in the target's C ABI... 1570 unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8; 1571 return Alignment >= Size && 1572 (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) && 1573 Size <= LargestSize; 1574 } 1575 1576 void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) { 1577 static const RTLIB::Libcall Libcalls[6] = { 1578 RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2, 1579 RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16}; 1580 unsigned Size = getAtomicOpSize(I); 1581 1582 bool expanded = expandAtomicOpToLibcall( 1583 I, Size, I->getAlign(), I->getPointerOperand(), nullptr, nullptr, 1584 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1585 if (!expanded) 1586 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Load"); 1587 } 1588 1589 void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) { 1590 static const RTLIB::Libcall Libcalls[6] = { 1591 RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2, 1592 RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16}; 1593 unsigned Size = getAtomicOpSize(I); 1594 1595 bool expanded = expandAtomicOpToLibcall( 1596 I, Size, I->getAlign(), I->getPointerOperand(), I->getValueOperand(), 1597 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1598 if (!expanded) 1599 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Store"); 1600 } 1601 1602 void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) { 1603 static const RTLIB::Libcall Libcalls[6] = { 1604 RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1, 1605 RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4, 1606 RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16}; 1607 unsigned Size = getAtomicOpSize(I); 1608 1609 bool expanded = expandAtomicOpToLibcall( 1610 I, Size, I->getAlign(), I->getPointerOperand(), I->getNewValOperand(), 1611 I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(), 1612 Libcalls); 1613 if (!expanded) 1614 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for CAS"); 1615 } 1616 1617 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) { 1618 static const RTLIB::Libcall LibcallsXchg[6] = { 1619 RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1, 1620 RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4, 1621 RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16}; 1622 static const RTLIB::Libcall LibcallsAdd[6] = { 1623 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1, 1624 RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4, 1625 RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16}; 1626 static const RTLIB::Libcall LibcallsSub[6] = { 1627 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1, 1628 RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4, 1629 RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16}; 1630 static const RTLIB::Libcall LibcallsAnd[6] = { 1631 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1, 1632 RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4, 1633 RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16}; 1634 static const RTLIB::Libcall LibcallsOr[6] = { 1635 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1, 1636 RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4, 1637 RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16}; 1638 static const RTLIB::Libcall LibcallsXor[6] = { 1639 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1, 1640 RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4, 1641 RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16}; 1642 static const RTLIB::Libcall LibcallsNand[6] = { 1643 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1, 1644 RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4, 1645 RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16}; 1646 1647 switch (Op) { 1648 case AtomicRMWInst::BAD_BINOP: 1649 llvm_unreachable("Should not have BAD_BINOP."); 1650 case AtomicRMWInst::Xchg: 1651 return makeArrayRef(LibcallsXchg); 1652 case AtomicRMWInst::Add: 1653 return makeArrayRef(LibcallsAdd); 1654 case AtomicRMWInst::Sub: 1655 return makeArrayRef(LibcallsSub); 1656 case AtomicRMWInst::And: 1657 return makeArrayRef(LibcallsAnd); 1658 case AtomicRMWInst::Or: 1659 return makeArrayRef(LibcallsOr); 1660 case AtomicRMWInst::Xor: 1661 return makeArrayRef(LibcallsXor); 1662 case AtomicRMWInst::Nand: 1663 return makeArrayRef(LibcallsNand); 1664 case AtomicRMWInst::Max: 1665 case AtomicRMWInst::Min: 1666 case AtomicRMWInst::UMax: 1667 case AtomicRMWInst::UMin: 1668 case AtomicRMWInst::FAdd: 1669 case AtomicRMWInst::FSub: 1670 // No atomic libcalls are available for max/min/umax/umin. 1671 return {}; 1672 } 1673 llvm_unreachable("Unexpected AtomicRMW operation."); 1674 } 1675 1676 void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) { 1677 ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation()); 1678 1679 unsigned Size = getAtomicOpSize(I); 1680 1681 bool Success = false; 1682 if (!Libcalls.empty()) 1683 Success = expandAtomicOpToLibcall( 1684 I, Size, I->getAlign(), I->getPointerOperand(), I->getValOperand(), 1685 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1686 1687 // The expansion failed: either there were no libcalls at all for 1688 // the operation (min/max), or there were only size-specialized 1689 // libcalls (add/sub/etc) and we needed a generic. So, expand to a 1690 // CAS libcall, via a CAS loop, instead. 1691 if (!Success) { 1692 expandAtomicRMWToCmpXchg( 1693 I, [this](IRBuilder<> &Builder, Value *Addr, Value *Loaded, 1694 Value *NewVal, Align Alignment, AtomicOrdering MemOpOrder, 1695 SyncScope::ID SSID, Value *&Success, Value *&NewLoaded) { 1696 // Create the CAS instruction normally... 1697 AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg( 1698 Addr, Loaded, NewVal, Alignment, MemOpOrder, 1699 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID); 1700 Success = Builder.CreateExtractValue(Pair, 1, "success"); 1701 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 1702 1703 // ...and then expand the CAS into a libcall. 1704 expandAtomicCASToLibcall(Pair); 1705 }); 1706 } 1707 } 1708 1709 // A helper routine for the above expandAtomic*ToLibcall functions. 1710 // 1711 // 'Libcalls' contains an array of enum values for the particular 1712 // ATOMIC libcalls to be emitted. All of the other arguments besides 1713 // 'I' are extracted from the Instruction subclass by the 1714 // caller. Depending on the particular call, some will be null. 1715 bool AtomicExpand::expandAtomicOpToLibcall( 1716 Instruction *I, unsigned Size, Align Alignment, Value *PointerOperand, 1717 Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering, 1718 AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) { 1719 assert(Libcalls.size() == 6); 1720 1721 LLVMContext &Ctx = I->getContext(); 1722 Module *M = I->getModule(); 1723 const DataLayout &DL = M->getDataLayout(); 1724 IRBuilder<> Builder(I); 1725 IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front()); 1726 1727 bool UseSizedLibcall = canUseSizedAtomicCall(Size, Alignment, DL); 1728 Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8); 1729 1730 const Align AllocaAlignment = DL.getPrefTypeAlign(SizedIntTy); 1731 1732 // TODO: the "order" argument type is "int", not int32. So 1733 // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints. 1734 ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size); 1735 assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO"); 1736 Constant *OrderingVal = 1737 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering)); 1738 Constant *Ordering2Val = nullptr; 1739 if (CASExpected) { 1740 assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO"); 1741 Ordering2Val = 1742 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2)); 1743 } 1744 bool HasResult = I->getType() != Type::getVoidTy(Ctx); 1745 1746 RTLIB::Libcall RTLibType; 1747 if (UseSizedLibcall) { 1748 switch (Size) { 1749 case 1: RTLibType = Libcalls[1]; break; 1750 case 2: RTLibType = Libcalls[2]; break; 1751 case 4: RTLibType = Libcalls[3]; break; 1752 case 8: RTLibType = Libcalls[4]; break; 1753 case 16: RTLibType = Libcalls[5]; break; 1754 } 1755 } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) { 1756 RTLibType = Libcalls[0]; 1757 } else { 1758 // Can't use sized function, and there's no generic for this 1759 // operation, so give up. 1760 return false; 1761 } 1762 1763 if (!TLI->getLibcallName(RTLibType)) { 1764 // This target does not implement the requested atomic libcall so give up. 1765 return false; 1766 } 1767 1768 // Build up the function call. There's two kinds. First, the sized 1769 // variants. These calls are going to be one of the following (with 1770 // N=1,2,4,8,16): 1771 // iN __atomic_load_N(iN *ptr, int ordering) 1772 // void __atomic_store_N(iN *ptr, iN val, int ordering) 1773 // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering) 1774 // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired, 1775 // int success_order, int failure_order) 1776 // 1777 // Note that these functions can be used for non-integer atomic 1778 // operations, the values just need to be bitcast to integers on the 1779 // way in and out. 1780 // 1781 // And, then, the generic variants. They look like the following: 1782 // void __atomic_load(size_t size, void *ptr, void *ret, int ordering) 1783 // void __atomic_store(size_t size, void *ptr, void *val, int ordering) 1784 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, 1785 // int ordering) 1786 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, 1787 // void *desired, int success_order, 1788 // int failure_order) 1789 // 1790 // The different signatures are built up depending on the 1791 // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult' 1792 // variables. 1793 1794 AllocaInst *AllocaCASExpected = nullptr; 1795 Value *AllocaCASExpected_i8 = nullptr; 1796 AllocaInst *AllocaValue = nullptr; 1797 Value *AllocaValue_i8 = nullptr; 1798 AllocaInst *AllocaResult = nullptr; 1799 Value *AllocaResult_i8 = nullptr; 1800 1801 Type *ResultTy; 1802 SmallVector<Value *, 6> Args; 1803 AttributeList Attr; 1804 1805 // 'size' argument. 1806 if (!UseSizedLibcall) { 1807 // Note, getIntPtrType is assumed equivalent to size_t. 1808 Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size)); 1809 } 1810 1811 // 'ptr' argument. 1812 // note: This assumes all address spaces share a common libfunc 1813 // implementation and that addresses are convertable. For systems without 1814 // that property, we'd need to extend this mechanism to support AS-specific 1815 // families of atomic intrinsics. 1816 auto PtrTypeAS = PointerOperand->getType()->getPointerAddressSpace(); 1817 Value *PtrVal = Builder.CreateBitCast(PointerOperand, 1818 Type::getInt8PtrTy(Ctx, PtrTypeAS)); 1819 PtrVal = Builder.CreateAddrSpaceCast(PtrVal, Type::getInt8PtrTy(Ctx)); 1820 Args.push_back(PtrVal); 1821 1822 // 'expected' argument, if present. 1823 if (CASExpected) { 1824 AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType()); 1825 AllocaCASExpected->setAlignment(AllocaAlignment); 1826 unsigned AllocaAS = AllocaCASExpected->getType()->getPointerAddressSpace(); 1827 1828 AllocaCASExpected_i8 = 1829 Builder.CreateBitCast(AllocaCASExpected, 1830 Type::getInt8PtrTy(Ctx, AllocaAS)); 1831 Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64); 1832 Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment); 1833 Args.push_back(AllocaCASExpected_i8); 1834 } 1835 1836 // 'val' argument ('desired' for cas), if present. 1837 if (ValueOperand) { 1838 if (UseSizedLibcall) { 1839 Value *IntValue = 1840 Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy); 1841 Args.push_back(IntValue); 1842 } else { 1843 AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType()); 1844 AllocaValue->setAlignment(AllocaAlignment); 1845 AllocaValue_i8 = 1846 Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx)); 1847 Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64); 1848 Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment); 1849 Args.push_back(AllocaValue_i8); 1850 } 1851 } 1852 1853 // 'ret' argument. 1854 if (!CASExpected && HasResult && !UseSizedLibcall) { 1855 AllocaResult = AllocaBuilder.CreateAlloca(I->getType()); 1856 AllocaResult->setAlignment(AllocaAlignment); 1857 unsigned AllocaAS = AllocaResult->getType()->getPointerAddressSpace(); 1858 AllocaResult_i8 = 1859 Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx, AllocaAS)); 1860 Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64); 1861 Args.push_back(AllocaResult_i8); 1862 } 1863 1864 // 'ordering' ('success_order' for cas) argument. 1865 Args.push_back(OrderingVal); 1866 1867 // 'failure_order' argument, if present. 1868 if (Ordering2Val) 1869 Args.push_back(Ordering2Val); 1870 1871 // Now, the return type. 1872 if (CASExpected) { 1873 ResultTy = Type::getInt1Ty(Ctx); 1874 Attr = Attr.addAttribute(Ctx, AttributeList::ReturnIndex, Attribute::ZExt); 1875 } else if (HasResult && UseSizedLibcall) 1876 ResultTy = SizedIntTy; 1877 else 1878 ResultTy = Type::getVoidTy(Ctx); 1879 1880 // Done with setting up arguments and return types, create the call: 1881 SmallVector<Type *, 6> ArgTys; 1882 for (Value *Arg : Args) 1883 ArgTys.push_back(Arg->getType()); 1884 FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false); 1885 FunctionCallee LibcallFn = 1886 M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr); 1887 CallInst *Call = Builder.CreateCall(LibcallFn, Args); 1888 Call->setAttributes(Attr); 1889 Value *Result = Call; 1890 1891 // And then, extract the results... 1892 if (ValueOperand && !UseSizedLibcall) 1893 Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64); 1894 1895 if (CASExpected) { 1896 // The final result from the CAS is {load of 'expected' alloca, bool result 1897 // from call} 1898 Type *FinalResultTy = I->getType(); 1899 Value *V = UndefValue::get(FinalResultTy); 1900 Value *ExpectedOut = Builder.CreateAlignedLoad( 1901 CASExpected->getType(), AllocaCASExpected, AllocaAlignment); 1902 Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64); 1903 V = Builder.CreateInsertValue(V, ExpectedOut, 0); 1904 V = Builder.CreateInsertValue(V, Result, 1); 1905 I->replaceAllUsesWith(V); 1906 } else if (HasResult) { 1907 Value *V; 1908 if (UseSizedLibcall) 1909 V = Builder.CreateBitOrPointerCast(Result, I->getType()); 1910 else { 1911 V = Builder.CreateAlignedLoad(I->getType(), AllocaResult, 1912 AllocaAlignment); 1913 Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64); 1914 } 1915 I->replaceAllUsesWith(V); 1916 } 1917 I->eraseFromParent(); 1918 return true; 1919 } 1920