1 //===-- AtomicExpandPass.cpp - Expand atomic instructions -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a pass (at IR level) to replace atomic instructions with 11 // either (intrinsic-based) load-linked/store-conditional loops or 12 // AtomicCmpXchg. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/AtomicExpandUtils.h" 17 #include "llvm/CodeGen/Passes.h" 18 #include "llvm/IR/Function.h" 19 #include "llvm/IR/IRBuilder.h" 20 #include "llvm/IR/InstIterator.h" 21 #include "llvm/IR/Instructions.h" 22 #include "llvm/IR/Intrinsics.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Target/TargetLowering.h" 26 #include "llvm/Target/TargetMachine.h" 27 #include "llvm/Target/TargetSubtargetInfo.h" 28 29 using namespace llvm; 30 31 #define DEBUG_TYPE "atomic-expand" 32 33 namespace { 34 class AtomicExpand: public FunctionPass { 35 const TargetMachine *TM; 36 const TargetLowering *TLI; 37 public: 38 static char ID; // Pass identification, replacement for typeid 39 explicit AtomicExpand(const TargetMachine *TM = nullptr) 40 : FunctionPass(ID), TM(TM), TLI(nullptr) { 41 initializeAtomicExpandPass(*PassRegistry::getPassRegistry()); 42 } 43 44 bool runOnFunction(Function &F) override; 45 46 private: 47 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order, 48 bool IsStore, bool IsLoad); 49 bool tryExpandAtomicLoad(LoadInst *LI); 50 bool expandAtomicLoadToLL(LoadInst *LI); 51 bool expandAtomicLoadToCmpXchg(LoadInst *LI); 52 bool expandAtomicStore(StoreInst *SI); 53 bool tryExpandAtomicRMW(AtomicRMWInst *AI); 54 bool expandAtomicRMWToLLSC(AtomicRMWInst *AI); 55 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); 56 bool isIdempotentRMW(AtomicRMWInst *AI); 57 bool simplifyIdempotentRMW(AtomicRMWInst *AI); 58 }; 59 } 60 61 char AtomicExpand::ID = 0; 62 char &llvm::AtomicExpandID = AtomicExpand::ID; 63 INITIALIZE_TM_PASS(AtomicExpand, "atomic-expand", 64 "Expand Atomic calls in terms of either load-linked & store-conditional or cmpxchg", 65 false, false) 66 67 FunctionPass *llvm::createAtomicExpandPass(const TargetMachine *TM) { 68 return new AtomicExpand(TM); 69 } 70 71 bool AtomicExpand::runOnFunction(Function &F) { 72 if (!TM || !TM->getSubtargetImpl(F)->enableAtomicExpand()) 73 return false; 74 TLI = TM->getSubtargetImpl(F)->getTargetLowering(); 75 76 SmallVector<Instruction *, 1> AtomicInsts; 77 78 // Changing control-flow while iterating through it is a bad idea, so gather a 79 // list of all atomic instructions before we start. 80 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) { 81 if (I->isAtomic()) 82 AtomicInsts.push_back(&*I); 83 } 84 85 bool MadeChange = false; 86 for (auto I : AtomicInsts) { 87 auto LI = dyn_cast<LoadInst>(I); 88 auto SI = dyn_cast<StoreInst>(I); 89 auto RMWI = dyn_cast<AtomicRMWInst>(I); 90 auto CASI = dyn_cast<AtomicCmpXchgInst>(I); 91 assert((LI || SI || RMWI || CASI || isa<FenceInst>(I)) && 92 "Unknown atomic instruction"); 93 94 auto FenceOrdering = Monotonic; 95 bool IsStore, IsLoad; 96 if (TLI->getInsertFencesForAtomic()) { 97 if (LI && isAtLeastAcquire(LI->getOrdering())) { 98 FenceOrdering = LI->getOrdering(); 99 LI->setOrdering(Monotonic); 100 IsStore = false; 101 IsLoad = true; 102 } else if (SI && isAtLeastRelease(SI->getOrdering())) { 103 FenceOrdering = SI->getOrdering(); 104 SI->setOrdering(Monotonic); 105 IsStore = true; 106 IsLoad = false; 107 } else if (RMWI && (isAtLeastRelease(RMWI->getOrdering()) || 108 isAtLeastAcquire(RMWI->getOrdering()))) { 109 FenceOrdering = RMWI->getOrdering(); 110 RMWI->setOrdering(Monotonic); 111 IsStore = IsLoad = true; 112 } else if (CASI && !TLI->shouldExpandAtomicCmpXchgInIR(CASI) && 113 (isAtLeastRelease(CASI->getSuccessOrdering()) || 114 isAtLeastAcquire(CASI->getSuccessOrdering()))) { 115 // If a compare and swap is lowered to LL/SC, we can do smarter fence 116 // insertion, with a stronger one on the success path than on the 117 // failure path. As a result, fence insertion is directly done by 118 // expandAtomicCmpXchg in that case. 119 FenceOrdering = CASI->getSuccessOrdering(); 120 CASI->setSuccessOrdering(Monotonic); 121 CASI->setFailureOrdering(Monotonic); 122 IsStore = IsLoad = true; 123 } 124 125 if (FenceOrdering != Monotonic) { 126 MadeChange |= bracketInstWithFences(I, FenceOrdering, IsStore, IsLoad); 127 } 128 } 129 130 if (LI) { 131 MadeChange |= tryExpandAtomicLoad(LI); 132 } else if (SI && TLI->shouldExpandAtomicStoreInIR(SI)) { 133 MadeChange |= expandAtomicStore(SI); 134 } else if (RMWI) { 135 // There are two different ways of expanding RMW instructions: 136 // - into a load if it is idempotent 137 // - into a Cmpxchg/LL-SC loop otherwise 138 // we try them in that order. 139 140 if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) { 141 MadeChange = true; 142 } else { 143 MadeChange |= tryExpandAtomicRMW(RMWI); 144 } 145 } else if (CASI && TLI->shouldExpandAtomicCmpXchgInIR(CASI)) { 146 MadeChange |= expandAtomicCmpXchg(CASI); 147 } 148 } 149 return MadeChange; 150 } 151 152 bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order, 153 bool IsStore, bool IsLoad) { 154 IRBuilder<> Builder(I); 155 156 auto LeadingFence = TLI->emitLeadingFence(Builder, Order, IsStore, IsLoad); 157 158 auto TrailingFence = TLI->emitTrailingFence(Builder, Order, IsStore, IsLoad); 159 // The trailing fence is emitted before the instruction instead of after 160 // because there is no easy way of setting Builder insertion point after 161 // an instruction. So we must erase it from the BB, and insert it back 162 // in the right place. 163 // We have a guard here because not every atomic operation generates a 164 // trailing fence. 165 if (TrailingFence) { 166 TrailingFence->removeFromParent(); 167 TrailingFence->insertAfter(I); 168 } 169 170 return (LeadingFence || TrailingFence); 171 } 172 173 bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) { 174 switch (TLI->shouldExpandAtomicLoadInIR(LI)) { 175 case TargetLoweringBase::AtomicExpansionKind::None: 176 return false; 177 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 178 return expandAtomicLoadToLL(LI); 179 } 180 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: { 181 return expandAtomicLoadToCmpXchg(LI); 182 } 183 } 184 llvm_unreachable("Unhandled case in tryExpandAtomicLoad"); 185 } 186 187 bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) { 188 IRBuilder<> Builder(LI); 189 190 // On some architectures, load-linked instructions are atomic for larger 191 // sizes than normal loads. For example, the only 64-bit load guaranteed 192 // to be single-copy atomic by ARM is an ldrexd (A3.5.3). 193 Value *Val = 194 TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering()); 195 196 LI->replaceAllUsesWith(Val); 197 LI->eraseFromParent(); 198 199 return true; 200 } 201 202 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) { 203 IRBuilder<> Builder(LI); 204 AtomicOrdering Order = LI->getOrdering(); 205 Value *Addr = LI->getPointerOperand(); 206 Type *Ty = cast<PointerType>(Addr->getType())->getElementType(); 207 Constant *DummyVal = Constant::getNullValue(Ty); 208 209 Value *Pair = Builder.CreateAtomicCmpXchg( 210 Addr, DummyVal, DummyVal, Order, 211 AtomicCmpXchgInst::getStrongestFailureOrdering(Order)); 212 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded"); 213 214 LI->replaceAllUsesWith(Loaded); 215 LI->eraseFromParent(); 216 217 return true; 218 } 219 220 bool AtomicExpand::expandAtomicStore(StoreInst *SI) { 221 // This function is only called on atomic stores that are too large to be 222 // atomic if implemented as a native store. So we replace them by an 223 // atomic swap, that can be implemented for example as a ldrex/strex on ARM 224 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. 225 // It is the responsibility of the target to only signal expansion via 226 // shouldExpandAtomicRMW in cases where this is required and possible. 227 IRBuilder<> Builder(SI); 228 AtomicRMWInst *AI = 229 Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(), 230 SI->getValueOperand(), SI->getOrdering()); 231 SI->eraseFromParent(); 232 233 // Now we have an appropriate swap instruction, lower it as usual. 234 return tryExpandAtomicRMW(AI); 235 } 236 237 static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr, 238 Value *Loaded, Value *NewVal, 239 AtomicOrdering MemOpOrder, 240 Value *&Success, Value *&NewLoaded) { 241 Value* Pair = Builder.CreateAtomicCmpXchg( 242 Addr, Loaded, NewVal, MemOpOrder, 243 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder)); 244 Success = Builder.CreateExtractValue(Pair, 1, "success"); 245 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 246 } 247 248 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) { 249 switch (TLI->shouldExpandAtomicRMWInIR(AI)) { 250 case TargetLoweringBase::AtomicExpansionKind::None: 251 return false; 252 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 253 return expandAtomicRMWToLLSC(AI); 254 } 255 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: { 256 return expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun); 257 } 258 } 259 llvm_unreachable("Unhandled case in tryExpandAtomicRMW"); 260 } 261 262 /// Emit IR to implement the given atomicrmw operation on values in registers, 263 /// returning the new value. 264 static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder, 265 Value *Loaded, Value *Inc) { 266 Value *NewVal; 267 switch (Op) { 268 case AtomicRMWInst::Xchg: 269 return Inc; 270 case AtomicRMWInst::Add: 271 return Builder.CreateAdd(Loaded, Inc, "new"); 272 case AtomicRMWInst::Sub: 273 return Builder.CreateSub(Loaded, Inc, "new"); 274 case AtomicRMWInst::And: 275 return Builder.CreateAnd(Loaded, Inc, "new"); 276 case AtomicRMWInst::Nand: 277 return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new"); 278 case AtomicRMWInst::Or: 279 return Builder.CreateOr(Loaded, Inc, "new"); 280 case AtomicRMWInst::Xor: 281 return Builder.CreateXor(Loaded, Inc, "new"); 282 case AtomicRMWInst::Max: 283 NewVal = Builder.CreateICmpSGT(Loaded, Inc); 284 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 285 case AtomicRMWInst::Min: 286 NewVal = Builder.CreateICmpSLE(Loaded, Inc); 287 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 288 case AtomicRMWInst::UMax: 289 NewVal = Builder.CreateICmpUGT(Loaded, Inc); 290 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 291 case AtomicRMWInst::UMin: 292 NewVal = Builder.CreateICmpULE(Loaded, Inc); 293 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 294 default: 295 llvm_unreachable("Unknown atomic op"); 296 } 297 } 298 299 bool AtomicExpand::expandAtomicRMWToLLSC(AtomicRMWInst *AI) { 300 AtomicOrdering MemOpOrder = AI->getOrdering(); 301 Value *Addr = AI->getPointerOperand(); 302 BasicBlock *BB = AI->getParent(); 303 Function *F = BB->getParent(); 304 LLVMContext &Ctx = F->getContext(); 305 306 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 307 // 308 // The standard expansion we produce is: 309 // [...] 310 // fence? 311 // atomicrmw.start: 312 // %loaded = @load.linked(%addr) 313 // %new = some_op iN %loaded, %incr 314 // %stored = @store_conditional(%new, %addr) 315 // %try_again = icmp i32 ne %stored, 0 316 // br i1 %try_again, label %loop, label %atomicrmw.end 317 // atomicrmw.end: 318 // fence? 319 // [...] 320 BasicBlock *ExitBB = BB->splitBasicBlock(AI, "atomicrmw.end"); 321 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 322 323 // This grabs the DebugLoc from AI. 324 IRBuilder<> Builder(AI); 325 326 // The split call above "helpfully" added a branch at the end of BB (to the 327 // wrong place), but we might want a fence too. It's easiest to just remove 328 // the branch entirely. 329 std::prev(BB->end())->eraseFromParent(); 330 Builder.SetInsertPoint(BB); 331 Builder.CreateBr(LoopBB); 332 333 // Start the main loop block now that we've taken care of the preliminaries. 334 Builder.SetInsertPoint(LoopBB); 335 Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); 336 337 Value *NewVal = 338 performAtomicOp(AI->getOperation(), Builder, Loaded, AI->getValOperand()); 339 340 Value *StoreSuccess = 341 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); 342 Value *TryAgain = Builder.CreateICmpNE( 343 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); 344 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); 345 346 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 347 348 AI->replaceAllUsesWith(Loaded); 349 AI->eraseFromParent(); 350 351 return true; 352 } 353 354 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 355 AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); 356 AtomicOrdering FailureOrder = CI->getFailureOrdering(); 357 Value *Addr = CI->getPointerOperand(); 358 BasicBlock *BB = CI->getParent(); 359 Function *F = BB->getParent(); 360 LLVMContext &Ctx = F->getContext(); 361 // If getInsertFencesForAtomic() returns true, then the target does not want 362 // to deal with memory orders, and emitLeading/TrailingFence should take care 363 // of everything. Otherwise, emitLeading/TrailingFence are no-op and we 364 // should preserve the ordering. 365 AtomicOrdering MemOpOrder = 366 TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder; 367 368 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord 369 // 370 // The full expansion we produce is: 371 // [...] 372 // fence? 373 // cmpxchg.start: 374 // %loaded = @load.linked(%addr) 375 // %should_store = icmp eq %loaded, %desired 376 // br i1 %should_store, label %cmpxchg.trystore, 377 // label %cmpxchg.nostore 378 // cmpxchg.trystore: 379 // %stored = @store_conditional(%new, %addr) 380 // %success = icmp eq i32 %stored, 0 381 // br i1 %success, label %cmpxchg.success, label %loop/%cmpxchg.failure 382 // cmpxchg.success: 383 // fence? 384 // br label %cmpxchg.end 385 // cmpxchg.nostore: 386 // @load_linked_fail_balance()? 387 // br label %cmpxchg.failure 388 // cmpxchg.failure: 389 // fence? 390 // br label %cmpxchg.end 391 // cmpxchg.end: 392 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] 393 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 394 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 395 // [...] 396 BasicBlock *ExitBB = BB->splitBasicBlock(CI, "cmpxchg.end"); 397 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); 398 auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB); 399 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB); 400 auto TryStoreBB = BasicBlock::Create(Ctx, "cmpxchg.trystore", F, SuccessBB); 401 auto LoopBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, TryStoreBB); 402 403 // This grabs the DebugLoc from CI 404 IRBuilder<> Builder(CI); 405 406 // The split call above "helpfully" added a branch at the end of BB (to the 407 // wrong place), but we might want a fence too. It's easiest to just remove 408 // the branch entirely. 409 std::prev(BB->end())->eraseFromParent(); 410 Builder.SetInsertPoint(BB); 411 TLI->emitLeadingFence(Builder, SuccessOrder, /*IsStore=*/true, 412 /*IsLoad=*/true); 413 Builder.CreateBr(LoopBB); 414 415 // Start the main loop block now that we've taken care of the preliminaries. 416 Builder.SetInsertPoint(LoopBB); 417 Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); 418 Value *ShouldStore = 419 Builder.CreateICmpEQ(Loaded, CI->getCompareOperand(), "should_store"); 420 421 // If the cmpxchg doesn't actually need any ordering when it fails, we can 422 // jump straight past that fence instruction (if it exists). 423 Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB); 424 425 Builder.SetInsertPoint(TryStoreBB); 426 Value *StoreSuccess = TLI->emitStoreConditional( 427 Builder, CI->getNewValOperand(), Addr, MemOpOrder); 428 StoreSuccess = Builder.CreateICmpEQ( 429 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); 430 Builder.CreateCondBr(StoreSuccess, SuccessBB, 431 CI->isWeak() ? FailureBB : LoopBB); 432 433 // Make sure later instructions don't get reordered with a fence if necessary. 434 Builder.SetInsertPoint(SuccessBB); 435 TLI->emitTrailingFence(Builder, SuccessOrder, /*IsStore=*/true, 436 /*IsLoad=*/true); 437 Builder.CreateBr(ExitBB); 438 439 Builder.SetInsertPoint(NoStoreBB); 440 // In the failing case, where we don't execute the store-conditional, the 441 // target might want to balance out the load-linked with a dedicated 442 // instruction (e.g., on ARM, clearing the exclusive monitor). 443 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 444 Builder.CreateBr(FailureBB); 445 446 Builder.SetInsertPoint(FailureBB); 447 TLI->emitTrailingFence(Builder, FailureOrder, /*IsStore=*/true, 448 /*IsLoad=*/true); 449 Builder.CreateBr(ExitBB); 450 451 // Finally, we have control-flow based knowledge of whether the cmpxchg 452 // succeeded or not. We expose this to later passes by converting any 453 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate PHI. 454 455 // Setup the builder so we can create any PHIs we need. 456 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 457 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2); 458 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); 459 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); 460 461 // Look for any users of the cmpxchg that are just comparing the loaded value 462 // against the desired one, and replace them with the CFG-derived version. 463 SmallVector<ExtractValueInst *, 2> PrunedInsts; 464 for (auto User : CI->users()) { 465 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); 466 if (!EV) 467 continue; 468 469 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && 470 "weird extraction from { iN, i1 }"); 471 472 if (EV->getIndices()[0] == 0) 473 EV->replaceAllUsesWith(Loaded); 474 else 475 EV->replaceAllUsesWith(Success); 476 477 PrunedInsts.push_back(EV); 478 } 479 480 // We can remove the instructions now we're no longer iterating through them. 481 for (auto EV : PrunedInsts) 482 EV->eraseFromParent(); 483 484 if (!CI->use_empty()) { 485 // Some use of the full struct return that we don't understand has happened, 486 // so we've got to reconstruct it properly. 487 Value *Res; 488 Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0); 489 Res = Builder.CreateInsertValue(Res, Success, 1); 490 491 CI->replaceAllUsesWith(Res); 492 } 493 494 CI->eraseFromParent(); 495 return true; 496 } 497 498 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) { 499 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand()); 500 if(!C) 501 return false; 502 503 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 504 switch(Op) { 505 case AtomicRMWInst::Add: 506 case AtomicRMWInst::Sub: 507 case AtomicRMWInst::Or: 508 case AtomicRMWInst::Xor: 509 return C->isZero(); 510 case AtomicRMWInst::And: 511 return C->isMinusOne(); 512 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/... 513 default: 514 return false; 515 } 516 } 517 518 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) { 519 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { 520 tryExpandAtomicLoad(ResultingLoad); 521 return true; 522 } 523 return false; 524 } 525 526 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 527 CreateCmpXchgInstFun CreateCmpXchg) { 528 assert(AI); 529 530 AtomicOrdering MemOpOrder = 531 AI->getOrdering() == Unordered ? Monotonic : AI->getOrdering(); 532 Value *Addr = AI->getPointerOperand(); 533 BasicBlock *BB = AI->getParent(); 534 Function *F = BB->getParent(); 535 LLVMContext &Ctx = F->getContext(); 536 537 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 538 // 539 // The standard expansion we produce is: 540 // [...] 541 // %init_loaded = load atomic iN* %addr 542 // br label %loop 543 // loop: 544 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] 545 // %new = some_op iN %loaded, %incr 546 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new 547 // %new_loaded = extractvalue { iN, i1 } %pair, 0 548 // %success = extractvalue { iN, i1 } %pair, 1 549 // br i1 %success, label %atomicrmw.end, label %loop 550 // atomicrmw.end: 551 // [...] 552 BasicBlock *ExitBB = BB->splitBasicBlock(AI, "atomicrmw.end"); 553 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 554 555 // This grabs the DebugLoc from AI. 556 IRBuilder<> Builder(AI); 557 558 // The split call above "helpfully" added a branch at the end of BB (to the 559 // wrong place), but we want a load. It's easiest to just remove 560 // the branch entirely. 561 std::prev(BB->end())->eraseFromParent(); 562 Builder.SetInsertPoint(BB); 563 LoadInst *InitLoaded = Builder.CreateLoad(Addr); 564 // Atomics require at least natural alignment. 565 InitLoaded->setAlignment(AI->getType()->getPrimitiveSizeInBits() / 8); 566 Builder.CreateBr(LoopBB); 567 568 // Start the main loop block now that we've taken care of the preliminaries. 569 Builder.SetInsertPoint(LoopBB); 570 PHINode *Loaded = Builder.CreatePHI(AI->getType(), 2, "loaded"); 571 Loaded->addIncoming(InitLoaded, BB); 572 573 Value *NewVal = 574 performAtomicOp(AI->getOperation(), Builder, Loaded, AI->getValOperand()); 575 576 Value *NewLoaded = nullptr; 577 Value *Success = nullptr; 578 579 CreateCmpXchg(Builder, Addr, Loaded, NewVal, MemOpOrder, 580 Success, NewLoaded); 581 assert(Success && NewLoaded); 582 583 Loaded->addIncoming(NewLoaded, LoopBB); 584 585 Builder.CreateCondBr(Success, ExitBB, LoopBB); 586 587 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 588 589 AI->replaceAllUsesWith(NewLoaded); 590 AI->eraseFromParent(); 591 592 return true; 593 } 594