1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass (at IR level) to replace atomic instructions with 10 // __atomic_* library calls, or target specific instruction which implement the 11 // same semantics in a way which better fits the target backend. This can 12 // include the use of (intrinsic-based) load-linked/store-conditional loops, 13 // AtomicCmpXchg, or type coercions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/CodeGen/AtomicExpandUtils.h" 21 #include "llvm/CodeGen/RuntimeLibcalls.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetPassConfig.h" 24 #include "llvm/CodeGen/TargetSubtargetInfo.h" 25 #include "llvm/CodeGen/ValueTypes.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/Constant.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/InstIterator.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/IR/User.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/AtomicOrdering.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include <cassert> 49 #include <cstdint> 50 #include <iterator> 51 52 using namespace llvm; 53 54 #define DEBUG_TYPE "atomic-expand" 55 56 namespace { 57 58 class AtomicExpand: public FunctionPass { 59 const TargetLowering *TLI = nullptr; 60 61 public: 62 static char ID; // Pass identification, replacement for typeid 63 64 AtomicExpand() : FunctionPass(ID) { 65 initializeAtomicExpandPass(*PassRegistry::getPassRegistry()); 66 } 67 68 bool runOnFunction(Function &F) override; 69 70 private: 71 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order); 72 IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL); 73 LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI); 74 bool tryExpandAtomicLoad(LoadInst *LI); 75 bool expandAtomicLoadToLL(LoadInst *LI); 76 bool expandAtomicLoadToCmpXchg(LoadInst *LI); 77 StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI); 78 bool expandAtomicStore(StoreInst *SI); 79 bool tryExpandAtomicRMW(AtomicRMWInst *AI); 80 Value * 81 insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr, 82 AtomicOrdering MemOpOrder, 83 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); 84 void expandAtomicOpToLLSC( 85 Instruction *I, Type *ResultTy, Value *Addr, AtomicOrdering MemOpOrder, 86 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); 87 void expandPartwordAtomicRMW( 88 AtomicRMWInst *I, 89 TargetLoweringBase::AtomicExpansionKind ExpansionKind); 90 AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI); 91 void expandPartwordCmpXchg(AtomicCmpXchgInst *I); 92 void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI); 93 void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI); 94 95 AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI); 96 static Value *insertRMWCmpXchgLoop( 97 IRBuilder<> &Builder, Type *ResultType, Value *Addr, 98 AtomicOrdering MemOpOrder, 99 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, 100 CreateCmpXchgInstFun CreateCmpXchg); 101 bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI); 102 103 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); 104 bool isIdempotentRMW(AtomicRMWInst *RMWI); 105 bool simplifyIdempotentRMW(AtomicRMWInst *RMWI); 106 107 bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, unsigned Align, 108 Value *PointerOperand, Value *ValueOperand, 109 Value *CASExpected, AtomicOrdering Ordering, 110 AtomicOrdering Ordering2, 111 ArrayRef<RTLIB::Libcall> Libcalls); 112 void expandAtomicLoadToLibcall(LoadInst *LI); 113 void expandAtomicStoreToLibcall(StoreInst *LI); 114 void expandAtomicRMWToLibcall(AtomicRMWInst *I); 115 void expandAtomicCASToLibcall(AtomicCmpXchgInst *I); 116 117 friend bool 118 llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 119 CreateCmpXchgInstFun CreateCmpXchg); 120 }; 121 122 } // end anonymous namespace 123 124 char AtomicExpand::ID = 0; 125 126 char &llvm::AtomicExpandID = AtomicExpand::ID; 127 128 INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions", 129 false, false) 130 131 FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); } 132 133 // Helper functions to retrieve the size of atomic instructions. 134 static unsigned getAtomicOpSize(LoadInst *LI) { 135 const DataLayout &DL = LI->getModule()->getDataLayout(); 136 return DL.getTypeStoreSize(LI->getType()); 137 } 138 139 static unsigned getAtomicOpSize(StoreInst *SI) { 140 const DataLayout &DL = SI->getModule()->getDataLayout(); 141 return DL.getTypeStoreSize(SI->getValueOperand()->getType()); 142 } 143 144 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) { 145 const DataLayout &DL = RMWI->getModule()->getDataLayout(); 146 return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); 147 } 148 149 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) { 150 const DataLayout &DL = CASI->getModule()->getDataLayout(); 151 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); 152 } 153 154 // Helper functions to retrieve the alignment of atomic instructions. 155 static unsigned getAtomicOpAlign(LoadInst *LI) { 156 unsigned Align = LI->getAlignment(); 157 // In the future, if this IR restriction is relaxed, we should 158 // return DataLayout::getABITypeAlignment when there's no align 159 // value. 160 assert(Align != 0 && "An atomic LoadInst always has an explicit alignment"); 161 return Align; 162 } 163 164 static unsigned getAtomicOpAlign(StoreInst *SI) { 165 unsigned Align = SI->getAlignment(); 166 // In the future, if this IR restriction is relaxed, we should 167 // return DataLayout::getABITypeAlignment when there's no align 168 // value. 169 assert(Align != 0 && "An atomic StoreInst always has an explicit alignment"); 170 return Align; 171 } 172 173 static unsigned getAtomicOpAlign(AtomicRMWInst *RMWI) { 174 // TODO(PR27168): This instruction has no alignment attribute, but unlike the 175 // default alignment for load/store, the default here is to assume 176 // it has NATURAL alignment, not DataLayout-specified alignment. 177 const DataLayout &DL = RMWI->getModule()->getDataLayout(); 178 return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); 179 } 180 181 static unsigned getAtomicOpAlign(AtomicCmpXchgInst *CASI) { 182 // TODO(PR27168): same comment as above. 183 const DataLayout &DL = CASI->getModule()->getDataLayout(); 184 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); 185 } 186 187 // Determine if a particular atomic operation has a supported size, 188 // and is of appropriate alignment, to be passed through for target 189 // lowering. (Versus turning into a __atomic libcall) 190 template <typename Inst> 191 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) { 192 unsigned Size = getAtomicOpSize(I); 193 unsigned Align = getAtomicOpAlign(I); 194 return Align >= Size && Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8; 195 } 196 197 bool AtomicExpand::runOnFunction(Function &F) { 198 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 199 if (!TPC) 200 return false; 201 202 auto &TM = TPC->getTM<TargetMachine>(); 203 if (!TM.getSubtargetImpl(F)->enableAtomicExpand()) 204 return false; 205 TLI = TM.getSubtargetImpl(F)->getTargetLowering(); 206 207 SmallVector<Instruction *, 1> AtomicInsts; 208 209 // Changing control-flow while iterating through it is a bad idea, so gather a 210 // list of all atomic instructions before we start. 211 for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) { 212 Instruction *I = &*II; 213 if (I->isAtomic() && !isa<FenceInst>(I)) 214 AtomicInsts.push_back(I); 215 } 216 217 bool MadeChange = false; 218 for (auto I : AtomicInsts) { 219 auto LI = dyn_cast<LoadInst>(I); 220 auto SI = dyn_cast<StoreInst>(I); 221 auto RMWI = dyn_cast<AtomicRMWInst>(I); 222 auto CASI = dyn_cast<AtomicCmpXchgInst>(I); 223 assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction"); 224 225 // If the Size/Alignment is not supported, replace with a libcall. 226 if (LI) { 227 if (!atomicSizeSupported(TLI, LI)) { 228 expandAtomicLoadToLibcall(LI); 229 MadeChange = true; 230 continue; 231 } 232 } else if (SI) { 233 if (!atomicSizeSupported(TLI, SI)) { 234 expandAtomicStoreToLibcall(SI); 235 MadeChange = true; 236 continue; 237 } 238 } else if (RMWI) { 239 if (!atomicSizeSupported(TLI, RMWI)) { 240 expandAtomicRMWToLibcall(RMWI); 241 MadeChange = true; 242 continue; 243 } 244 } else if (CASI) { 245 if (!atomicSizeSupported(TLI, CASI)) { 246 expandAtomicCASToLibcall(CASI); 247 MadeChange = true; 248 continue; 249 } 250 } 251 252 if (TLI->shouldInsertFencesForAtomic(I)) { 253 auto FenceOrdering = AtomicOrdering::Monotonic; 254 if (LI && isAcquireOrStronger(LI->getOrdering())) { 255 FenceOrdering = LI->getOrdering(); 256 LI->setOrdering(AtomicOrdering::Monotonic); 257 } else if (SI && isReleaseOrStronger(SI->getOrdering())) { 258 FenceOrdering = SI->getOrdering(); 259 SI->setOrdering(AtomicOrdering::Monotonic); 260 } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) || 261 isAcquireOrStronger(RMWI->getOrdering()))) { 262 FenceOrdering = RMWI->getOrdering(); 263 RMWI->setOrdering(AtomicOrdering::Monotonic); 264 } else if (CASI && 265 TLI->shouldExpandAtomicCmpXchgInIR(CASI) == 266 TargetLoweringBase::AtomicExpansionKind::None && 267 (isReleaseOrStronger(CASI->getSuccessOrdering()) || 268 isAcquireOrStronger(CASI->getSuccessOrdering()))) { 269 // If a compare and swap is lowered to LL/SC, we can do smarter fence 270 // insertion, with a stronger one on the success path than on the 271 // failure path. As a result, fence insertion is directly done by 272 // expandAtomicCmpXchg in that case. 273 FenceOrdering = CASI->getSuccessOrdering(); 274 CASI->setSuccessOrdering(AtomicOrdering::Monotonic); 275 CASI->setFailureOrdering(AtomicOrdering::Monotonic); 276 } 277 278 if (FenceOrdering != AtomicOrdering::Monotonic) { 279 MadeChange |= bracketInstWithFences(I, FenceOrdering); 280 } 281 } 282 283 if (LI) { 284 if (LI->getType()->isFloatingPointTy()) { 285 // TODO: add a TLI hook to control this so that each target can 286 // convert to lowering the original type one at a time. 287 LI = convertAtomicLoadToIntegerType(LI); 288 assert(LI->getType()->isIntegerTy() && "invariant broken"); 289 MadeChange = true; 290 } 291 292 MadeChange |= tryExpandAtomicLoad(LI); 293 } else if (SI) { 294 if (SI->getValueOperand()->getType()->isFloatingPointTy()) { 295 // TODO: add a TLI hook to control this so that each target can 296 // convert to lowering the original type one at a time. 297 SI = convertAtomicStoreToIntegerType(SI); 298 assert(SI->getValueOperand()->getType()->isIntegerTy() && 299 "invariant broken"); 300 MadeChange = true; 301 } 302 303 if (TLI->shouldExpandAtomicStoreInIR(SI)) 304 MadeChange |= expandAtomicStore(SI); 305 } else if (RMWI) { 306 // There are two different ways of expanding RMW instructions: 307 // - into a load if it is idempotent 308 // - into a Cmpxchg/LL-SC loop otherwise 309 // we try them in that order. 310 311 if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) { 312 MadeChange = true; 313 } else { 314 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 315 unsigned ValueSize = getAtomicOpSize(RMWI); 316 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 317 if (ValueSize < MinCASSize && 318 (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 319 Op == AtomicRMWInst::And)) { 320 RMWI = widenPartwordAtomicRMW(RMWI); 321 MadeChange = true; 322 } 323 324 MadeChange |= tryExpandAtomicRMW(RMWI); 325 } 326 } else if (CASI) { 327 // TODO: when we're ready to make the change at the IR level, we can 328 // extend convertCmpXchgToInteger for floating point too. 329 assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() && 330 "unimplemented - floating point not legal at IR level"); 331 if (CASI->getCompareOperand()->getType()->isPointerTy() ) { 332 // TODO: add a TLI hook to control this so that each target can 333 // convert to lowering the original type one at a time. 334 CASI = convertCmpXchgToIntegerType(CASI); 335 assert(CASI->getCompareOperand()->getType()->isIntegerTy() && 336 "invariant broken"); 337 MadeChange = true; 338 } 339 340 MadeChange |= tryExpandAtomicCmpXchg(CASI); 341 } 342 } 343 return MadeChange; 344 } 345 346 bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) { 347 IRBuilder<> Builder(I); 348 349 auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order); 350 351 auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order); 352 // We have a guard here because not every atomic operation generates a 353 // trailing fence. 354 if (TrailingFence) 355 TrailingFence->moveAfter(I); 356 357 return (LeadingFence || TrailingFence); 358 } 359 360 /// Get the iX type with the same bitwidth as T. 361 IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T, 362 const DataLayout &DL) { 363 EVT VT = TLI->getValueType(DL, T); 364 unsigned BitWidth = VT.getStoreSizeInBits(); 365 assert(BitWidth == VT.getSizeInBits() && "must be a power of two"); 366 return IntegerType::get(T->getContext(), BitWidth); 367 } 368 369 /// Convert an atomic load of a non-integral type to an integer load of the 370 /// equivalent bitwidth. See the function comment on 371 /// convertAtomicStoreToIntegerType for background. 372 LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) { 373 auto *M = LI->getModule(); 374 Type *NewTy = getCorrespondingIntegerType(LI->getType(), 375 M->getDataLayout()); 376 377 IRBuilder<> Builder(LI); 378 379 Value *Addr = LI->getPointerOperand(); 380 Type *PT = PointerType::get(NewTy, 381 Addr->getType()->getPointerAddressSpace()); 382 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 383 384 auto *NewLI = Builder.CreateLoad(NewTy, NewAddr); 385 NewLI->setAlignment(LI->getAlignment()); 386 NewLI->setVolatile(LI->isVolatile()); 387 NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID()); 388 LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n"); 389 390 Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType()); 391 LI->replaceAllUsesWith(NewVal); 392 LI->eraseFromParent(); 393 return NewLI; 394 } 395 396 bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) { 397 switch (TLI->shouldExpandAtomicLoadInIR(LI)) { 398 case TargetLoweringBase::AtomicExpansionKind::None: 399 return false; 400 case TargetLoweringBase::AtomicExpansionKind::LLSC: 401 expandAtomicOpToLLSC( 402 LI, LI->getType(), LI->getPointerOperand(), LI->getOrdering(), 403 [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; }); 404 return true; 405 case TargetLoweringBase::AtomicExpansionKind::LLOnly: 406 return expandAtomicLoadToLL(LI); 407 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: 408 return expandAtomicLoadToCmpXchg(LI); 409 default: 410 llvm_unreachable("Unhandled case in tryExpandAtomicLoad"); 411 } 412 } 413 414 bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) { 415 IRBuilder<> Builder(LI); 416 417 // On some architectures, load-linked instructions are atomic for larger 418 // sizes than normal loads. For example, the only 64-bit load guaranteed 419 // to be single-copy atomic by ARM is an ldrexd (A3.5.3). 420 Value *Val = 421 TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering()); 422 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 423 424 LI->replaceAllUsesWith(Val); 425 LI->eraseFromParent(); 426 427 return true; 428 } 429 430 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) { 431 IRBuilder<> Builder(LI); 432 AtomicOrdering Order = LI->getOrdering(); 433 if (Order == AtomicOrdering::Unordered) 434 Order = AtomicOrdering::Monotonic; 435 436 Value *Addr = LI->getPointerOperand(); 437 Type *Ty = cast<PointerType>(Addr->getType())->getElementType(); 438 Constant *DummyVal = Constant::getNullValue(Ty); 439 440 Value *Pair = Builder.CreateAtomicCmpXchg( 441 Addr, DummyVal, DummyVal, Order, 442 AtomicCmpXchgInst::getStrongestFailureOrdering(Order)); 443 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded"); 444 445 LI->replaceAllUsesWith(Loaded); 446 LI->eraseFromParent(); 447 448 return true; 449 } 450 451 /// Convert an atomic store of a non-integral type to an integer store of the 452 /// equivalent bitwidth. We used to not support floating point or vector 453 /// atomics in the IR at all. The backends learned to deal with the bitcast 454 /// idiom because that was the only way of expressing the notion of a atomic 455 /// float or vector store. The long term plan is to teach each backend to 456 /// instruction select from the original atomic store, but as a migration 457 /// mechanism, we convert back to the old format which the backends understand. 458 /// Each backend will need individual work to recognize the new format. 459 StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) { 460 IRBuilder<> Builder(SI); 461 auto *M = SI->getModule(); 462 Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(), 463 M->getDataLayout()); 464 Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy); 465 466 Value *Addr = SI->getPointerOperand(); 467 Type *PT = PointerType::get(NewTy, 468 Addr->getType()->getPointerAddressSpace()); 469 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 470 471 StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr); 472 NewSI->setAlignment(SI->getAlignment()); 473 NewSI->setVolatile(SI->isVolatile()); 474 NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID()); 475 LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n"); 476 SI->eraseFromParent(); 477 return NewSI; 478 } 479 480 bool AtomicExpand::expandAtomicStore(StoreInst *SI) { 481 // This function is only called on atomic stores that are too large to be 482 // atomic if implemented as a native store. So we replace them by an 483 // atomic swap, that can be implemented for example as a ldrex/strex on ARM 484 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. 485 // It is the responsibility of the target to only signal expansion via 486 // shouldExpandAtomicRMW in cases where this is required and possible. 487 IRBuilder<> Builder(SI); 488 AtomicRMWInst *AI = 489 Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(), 490 SI->getValueOperand(), SI->getOrdering()); 491 SI->eraseFromParent(); 492 493 // Now we have an appropriate swap instruction, lower it as usual. 494 return tryExpandAtomicRMW(AI); 495 } 496 497 static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr, 498 Value *Loaded, Value *NewVal, 499 AtomicOrdering MemOpOrder, 500 Value *&Success, Value *&NewLoaded) { 501 Type *OrigTy = NewVal->getType(); 502 503 // This code can go away when cmpxchg supports FP types. 504 bool NeedBitcast = OrigTy->isFloatingPointTy(); 505 if (NeedBitcast) { 506 IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits()); 507 unsigned AS = Addr->getType()->getPointerAddressSpace(); 508 Addr = Builder.CreateBitCast(Addr, IntTy->getPointerTo(AS)); 509 NewVal = Builder.CreateBitCast(NewVal, IntTy); 510 Loaded = Builder.CreateBitCast(Loaded, IntTy); 511 } 512 513 Value* Pair = Builder.CreateAtomicCmpXchg( 514 Addr, Loaded, NewVal, MemOpOrder, 515 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder)); 516 Success = Builder.CreateExtractValue(Pair, 1, "success"); 517 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 518 519 if (NeedBitcast) 520 NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy); 521 } 522 523 /// Emit IR to implement the given atomicrmw operation on values in registers, 524 /// returning the new value. 525 static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder, 526 Value *Loaded, Value *Inc) { 527 Value *NewVal; 528 switch (Op) { 529 case AtomicRMWInst::Xchg: 530 return Inc; 531 case AtomicRMWInst::Add: 532 return Builder.CreateAdd(Loaded, Inc, "new"); 533 case AtomicRMWInst::Sub: 534 return Builder.CreateSub(Loaded, Inc, "new"); 535 case AtomicRMWInst::And: 536 return Builder.CreateAnd(Loaded, Inc, "new"); 537 case AtomicRMWInst::Nand: 538 return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new"); 539 case AtomicRMWInst::Or: 540 return Builder.CreateOr(Loaded, Inc, "new"); 541 case AtomicRMWInst::Xor: 542 return Builder.CreateXor(Loaded, Inc, "new"); 543 case AtomicRMWInst::Max: 544 NewVal = Builder.CreateICmpSGT(Loaded, Inc); 545 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 546 case AtomicRMWInst::Min: 547 NewVal = Builder.CreateICmpSLE(Loaded, Inc); 548 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 549 case AtomicRMWInst::UMax: 550 NewVal = Builder.CreateICmpUGT(Loaded, Inc); 551 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 552 case AtomicRMWInst::UMin: 553 NewVal = Builder.CreateICmpULE(Loaded, Inc); 554 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 555 case AtomicRMWInst::FAdd: 556 return Builder.CreateFAdd(Loaded, Inc, "new"); 557 case AtomicRMWInst::FSub: 558 return Builder.CreateFSub(Loaded, Inc, "new"); 559 default: 560 llvm_unreachable("Unknown atomic op"); 561 } 562 } 563 564 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) { 565 switch (TLI->shouldExpandAtomicRMWInIR(AI)) { 566 case TargetLoweringBase::AtomicExpansionKind::None: 567 return false; 568 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 569 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 570 unsigned ValueSize = getAtomicOpSize(AI); 571 if (ValueSize < MinCASSize) { 572 llvm_unreachable( 573 "MinCmpXchgSizeInBits not yet supported for LL/SC architectures."); 574 } else { 575 auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) { 576 return performAtomicOp(AI->getOperation(), Builder, Loaded, 577 AI->getValOperand()); 578 }; 579 expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(), 580 AI->getOrdering(), PerformOp); 581 } 582 return true; 583 } 584 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: { 585 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 586 unsigned ValueSize = getAtomicOpSize(AI); 587 if (ValueSize < MinCASSize) { 588 expandPartwordAtomicRMW(AI, 589 TargetLoweringBase::AtomicExpansionKind::CmpXChg); 590 } else { 591 expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun); 592 } 593 return true; 594 } 595 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: { 596 expandAtomicRMWToMaskedIntrinsic(AI); 597 return true; 598 } 599 default: 600 llvm_unreachable("Unhandled case in tryExpandAtomicRMW"); 601 } 602 } 603 604 namespace { 605 606 /// Result values from createMaskInstrs helper. 607 struct PartwordMaskValues { 608 Type *WordType; 609 Type *ValueType; 610 Value *AlignedAddr; 611 Value *ShiftAmt; 612 Value *Mask; 613 Value *Inv_Mask; 614 }; 615 616 } // end anonymous namespace 617 618 /// This is a helper function which builds instructions to provide 619 /// values necessary for partword atomic operations. It takes an 620 /// incoming address, Addr, and ValueType, and constructs the address, 621 /// shift-amounts and masks needed to work with a larger value of size 622 /// WordSize. 623 /// 624 /// AlignedAddr: Addr rounded down to a multiple of WordSize 625 /// 626 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded 627 /// from AlignAddr for it to have the same value as if 628 /// ValueType was loaded from Addr. 629 /// 630 /// Mask: Value to mask with the value loaded from AlignAddr to 631 /// include only the part that would've been loaded from Addr. 632 /// 633 /// Inv_Mask: The inverse of Mask. 634 static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I, 635 Type *ValueType, Value *Addr, 636 unsigned WordSize) { 637 PartwordMaskValues Ret; 638 639 BasicBlock *BB = I->getParent(); 640 Function *F = BB->getParent(); 641 Module *M = I->getModule(); 642 643 LLVMContext &Ctx = F->getContext(); 644 const DataLayout &DL = M->getDataLayout(); 645 646 unsigned ValueSize = DL.getTypeStoreSize(ValueType); 647 648 assert(ValueSize < WordSize); 649 650 Ret.ValueType = ValueType; 651 Ret.WordType = Type::getIntNTy(Ctx, WordSize * 8); 652 653 Type *WordPtrType = 654 Ret.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace()); 655 656 Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx)); 657 Ret.AlignedAddr = Builder.CreateIntToPtr( 658 Builder.CreateAnd(AddrInt, ~(uint64_t)(WordSize - 1)), WordPtrType, 659 "AlignedAddr"); 660 661 Value *PtrLSB = Builder.CreateAnd(AddrInt, WordSize - 1, "PtrLSB"); 662 if (DL.isLittleEndian()) { 663 // turn bytes into bits 664 Ret.ShiftAmt = Builder.CreateShl(PtrLSB, 3); 665 } else { 666 // turn bytes into bits, and count from the other side. 667 Ret.ShiftAmt = 668 Builder.CreateShl(Builder.CreateXor(PtrLSB, WordSize - ValueSize), 3); 669 } 670 671 Ret.ShiftAmt = Builder.CreateTrunc(Ret.ShiftAmt, Ret.WordType, "ShiftAmt"); 672 Ret.Mask = Builder.CreateShl( 673 ConstantInt::get(Ret.WordType, (1 << ValueSize * 8) - 1), Ret.ShiftAmt, 674 "Mask"); 675 Ret.Inv_Mask = Builder.CreateNot(Ret.Mask, "Inv_Mask"); 676 677 return Ret; 678 } 679 680 /// Emit IR to implement a masked version of a given atomicrmw 681 /// operation. (That is, only the bits under the Mask should be 682 /// affected by the operation) 683 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op, 684 IRBuilder<> &Builder, Value *Loaded, 685 Value *Shifted_Inc, Value *Inc, 686 const PartwordMaskValues &PMV) { 687 // TODO: update to use 688 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order 689 // to merge bits from two values without requiring PMV.Inv_Mask. 690 switch (Op) { 691 case AtomicRMWInst::Xchg: { 692 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 693 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc); 694 return FinalVal; 695 } 696 case AtomicRMWInst::Or: 697 case AtomicRMWInst::Xor: 698 case AtomicRMWInst::And: 699 llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW"); 700 case AtomicRMWInst::Add: 701 case AtomicRMWInst::Sub: 702 case AtomicRMWInst::Nand: { 703 // The other arithmetic ops need to be masked into place. 704 Value *NewVal = performAtomicOp(Op, Builder, Loaded, Shifted_Inc); 705 Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask); 706 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 707 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked); 708 return FinalVal; 709 } 710 case AtomicRMWInst::Max: 711 case AtomicRMWInst::Min: 712 case AtomicRMWInst::UMax: 713 case AtomicRMWInst::UMin: { 714 // Finally, comparison ops will operate on the full value, so 715 // truncate down to the original size, and expand out again after 716 // doing the operation. 717 Value *Loaded_Shiftdown = Builder.CreateTrunc( 718 Builder.CreateLShr(Loaded, PMV.ShiftAmt), PMV.ValueType); 719 Value *NewVal = performAtomicOp(Op, Builder, Loaded_Shiftdown, Inc); 720 Value *NewVal_Shiftup = Builder.CreateShl( 721 Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt); 722 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 723 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shiftup); 724 return FinalVal; 725 } 726 default: 727 llvm_unreachable("Unknown atomic op"); 728 } 729 } 730 731 /// Expand a sub-word atomicrmw operation into an appropriate 732 /// word-sized operation. 733 /// 734 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same 735 /// way as a typical atomicrmw expansion. The only difference here is 736 /// that the operation inside of the loop must operate only upon a 737 /// part of the value. 738 void AtomicExpand::expandPartwordAtomicRMW( 739 AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) { 740 assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg); 741 742 AtomicOrdering MemOpOrder = AI->getOrdering(); 743 744 IRBuilder<> Builder(AI); 745 746 PartwordMaskValues PMV = 747 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 748 TLI->getMinCmpXchgSizeInBits() / 8); 749 750 Value *ValOperand_Shifted = 751 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 752 PMV.ShiftAmt, "ValOperand_Shifted"); 753 754 auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) { 755 return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded, 756 ValOperand_Shifted, AI->getValOperand(), PMV); 757 }; 758 759 // TODO: When we're ready to support LLSC conversions too, use 760 // insertRMWLLSCLoop here for ExpansionKind==LLSC. 761 Value *OldResult = 762 insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder, 763 PerformPartwordOp, createCmpXchgInstFun); 764 Value *FinalOldResult = Builder.CreateTrunc( 765 Builder.CreateLShr(OldResult, PMV.ShiftAmt), PMV.ValueType); 766 AI->replaceAllUsesWith(FinalOldResult); 767 AI->eraseFromParent(); 768 } 769 770 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width. 771 AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) { 772 IRBuilder<> Builder(AI); 773 AtomicRMWInst::BinOp Op = AI->getOperation(); 774 775 assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 776 Op == AtomicRMWInst::And) && 777 "Unable to widen operation"); 778 779 PartwordMaskValues PMV = 780 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 781 TLI->getMinCmpXchgSizeInBits() / 8); 782 783 Value *ValOperand_Shifted = 784 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 785 PMV.ShiftAmt, "ValOperand_Shifted"); 786 787 Value *NewOperand; 788 789 if (Op == AtomicRMWInst::And) 790 NewOperand = 791 Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand"); 792 else 793 NewOperand = ValOperand_Shifted; 794 795 AtomicRMWInst *NewAI = Builder.CreateAtomicRMW(Op, PMV.AlignedAddr, 796 NewOperand, AI->getOrdering()); 797 798 Value *FinalOldResult = Builder.CreateTrunc( 799 Builder.CreateLShr(NewAI, PMV.ShiftAmt), PMV.ValueType); 800 AI->replaceAllUsesWith(FinalOldResult); 801 AI->eraseFromParent(); 802 return NewAI; 803 } 804 805 void AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) { 806 // The basic idea here is that we're expanding a cmpxchg of a 807 // smaller memory size up to a word-sized cmpxchg. To do this, we 808 // need to add a retry-loop for strong cmpxchg, so that 809 // modifications to other parts of the word don't cause a spurious 810 // failure. 811 812 // This generates code like the following: 813 // [[Setup mask values PMV.*]] 814 // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt 815 // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt 816 // %InitLoaded = load i32* %addr 817 // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask 818 // br partword.cmpxchg.loop 819 // partword.cmpxchg.loop: 820 // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ], 821 // [ %OldVal_MaskOut, %partword.cmpxchg.failure ] 822 // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted 823 // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted 824 // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp, 825 // i32 %FullWord_NewVal success_ordering failure_ordering 826 // %OldVal = extractvalue { i32, i1 } %NewCI, 0 827 // %Success = extractvalue { i32, i1 } %NewCI, 1 828 // br i1 %Success, label %partword.cmpxchg.end, 829 // label %partword.cmpxchg.failure 830 // partword.cmpxchg.failure: 831 // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask 832 // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut 833 // br i1 %ShouldContinue, label %partword.cmpxchg.loop, 834 // label %partword.cmpxchg.end 835 // partword.cmpxchg.end: 836 // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt 837 // %FinalOldVal = trunc i32 %tmp1 to i8 838 // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0 839 // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1 840 841 Value *Addr = CI->getPointerOperand(); 842 Value *Cmp = CI->getCompareOperand(); 843 Value *NewVal = CI->getNewValOperand(); 844 845 BasicBlock *BB = CI->getParent(); 846 Function *F = BB->getParent(); 847 IRBuilder<> Builder(CI); 848 LLVMContext &Ctx = Builder.getContext(); 849 850 const int WordSize = TLI->getMinCmpXchgSizeInBits() / 8; 851 852 BasicBlock *EndBB = 853 BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end"); 854 auto FailureBB = 855 BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB); 856 auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB); 857 858 // The split call above "helpfully" added a branch at the end of BB 859 // (to the wrong place). 860 std::prev(BB->end())->eraseFromParent(); 861 Builder.SetInsertPoint(BB); 862 863 PartwordMaskValues PMV = createMaskInstrs( 864 Builder, CI, CI->getCompareOperand()->getType(), Addr, WordSize); 865 866 // Shift the incoming values over, into the right location in the word. 867 Value *NewVal_Shifted = 868 Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt); 869 Value *Cmp_Shifted = 870 Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt); 871 872 // Load the entire current word, and mask into place the expected and new 873 // values 874 LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr); 875 InitLoaded->setVolatile(CI->isVolatile()); 876 Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask); 877 Builder.CreateBr(LoopBB); 878 879 // partword.cmpxchg.loop: 880 Builder.SetInsertPoint(LoopBB); 881 PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2); 882 Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB); 883 884 // Mask/Or the expected and new values into place in the loaded word. 885 Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted); 886 Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted); 887 AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg( 888 PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, CI->getSuccessOrdering(), 889 CI->getFailureOrdering(), CI->getSyncScopeID()); 890 NewCI->setVolatile(CI->isVolatile()); 891 // When we're building a strong cmpxchg, we need a loop, so you 892 // might think we could use a weak cmpxchg inside. But, using strong 893 // allows the below comparison for ShouldContinue, and we're 894 // expecting the underlying cmpxchg to be a machine instruction, 895 // which is strong anyways. 896 NewCI->setWeak(CI->isWeak()); 897 898 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 899 Value *Success = Builder.CreateExtractValue(NewCI, 1); 900 901 if (CI->isWeak()) 902 Builder.CreateBr(EndBB); 903 else 904 Builder.CreateCondBr(Success, EndBB, FailureBB); 905 906 // partword.cmpxchg.failure: 907 Builder.SetInsertPoint(FailureBB); 908 // Upon failure, verify that the masked-out part of the loaded value 909 // has been modified. If it didn't, abort the cmpxchg, since the 910 // masked-in part must've. 911 Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask); 912 Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut); 913 Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB); 914 915 // Add the second value to the phi from above 916 Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB); 917 918 // partword.cmpxchg.end: 919 Builder.SetInsertPoint(CI); 920 921 Value *FinalOldVal = Builder.CreateTrunc( 922 Builder.CreateLShr(OldVal, PMV.ShiftAmt), PMV.ValueType); 923 Value *Res = UndefValue::get(CI->getType()); 924 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 925 Res = Builder.CreateInsertValue(Res, Success, 1); 926 927 CI->replaceAllUsesWith(Res); 928 CI->eraseFromParent(); 929 } 930 931 void AtomicExpand::expandAtomicOpToLLSC( 932 Instruction *I, Type *ResultType, Value *Addr, AtomicOrdering MemOpOrder, 933 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { 934 IRBuilder<> Builder(I); 935 Value *Loaded = 936 insertRMWLLSCLoop(Builder, ResultType, Addr, MemOpOrder, PerformOp); 937 938 I->replaceAllUsesWith(Loaded); 939 I->eraseFromParent(); 940 } 941 942 void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) { 943 IRBuilder<> Builder(AI); 944 945 PartwordMaskValues PMV = 946 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 947 TLI->getMinCmpXchgSizeInBits() / 8); 948 949 // The value operand must be sign-extended for signed min/max so that the 950 // target's signed comparison instructions can be used. Otherwise, just 951 // zero-ext. 952 Instruction::CastOps CastOp = Instruction::ZExt; 953 AtomicRMWInst::BinOp RMWOp = AI->getOperation(); 954 if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min) 955 CastOp = Instruction::SExt; 956 957 Value *ValOperand_Shifted = Builder.CreateShl( 958 Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType), 959 PMV.ShiftAmt, "ValOperand_Shifted"); 960 Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic( 961 Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt, 962 AI->getOrdering()); 963 Value *FinalOldResult = Builder.CreateTrunc( 964 Builder.CreateLShr(OldResult, PMV.ShiftAmt), PMV.ValueType); 965 AI->replaceAllUsesWith(FinalOldResult); 966 AI->eraseFromParent(); 967 } 968 969 void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI) { 970 IRBuilder<> Builder(CI); 971 972 PartwordMaskValues PMV = createMaskInstrs( 973 Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(), 974 TLI->getMinCmpXchgSizeInBits() / 8); 975 976 Value *CmpVal_Shifted = Builder.CreateShl( 977 Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt, 978 "CmpVal_Shifted"); 979 Value *NewVal_Shifted = Builder.CreateShl( 980 Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt, 981 "NewVal_Shifted"); 982 Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic( 983 Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask, 984 CI->getSuccessOrdering()); 985 Value *FinalOldVal = Builder.CreateTrunc( 986 Builder.CreateLShr(OldVal, PMV.ShiftAmt), PMV.ValueType); 987 988 Value *Res = UndefValue::get(CI->getType()); 989 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 990 Value *Success = Builder.CreateICmpEQ( 991 CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success"); 992 Res = Builder.CreateInsertValue(Res, Success, 1); 993 994 CI->replaceAllUsesWith(Res); 995 CI->eraseFromParent(); 996 } 997 998 Value *AtomicExpand::insertRMWLLSCLoop( 999 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, 1000 AtomicOrdering MemOpOrder, 1001 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { 1002 LLVMContext &Ctx = Builder.getContext(); 1003 BasicBlock *BB = Builder.GetInsertBlock(); 1004 Function *F = BB->getParent(); 1005 1006 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1007 // 1008 // The standard expansion we produce is: 1009 // [...] 1010 // atomicrmw.start: 1011 // %loaded = @load.linked(%addr) 1012 // %new = some_op iN %loaded, %incr 1013 // %stored = @store_conditional(%new, %addr) 1014 // %try_again = icmp i32 ne %stored, 0 1015 // br i1 %try_again, label %loop, label %atomicrmw.end 1016 // atomicrmw.end: 1017 // [...] 1018 BasicBlock *ExitBB = 1019 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1020 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1021 1022 // The split call above "helpfully" added a branch at the end of BB (to the 1023 // wrong place). 1024 std::prev(BB->end())->eraseFromParent(); 1025 Builder.SetInsertPoint(BB); 1026 Builder.CreateBr(LoopBB); 1027 1028 // Start the main loop block now that we've taken care of the preliminaries. 1029 Builder.SetInsertPoint(LoopBB); 1030 Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); 1031 1032 Value *NewVal = PerformOp(Builder, Loaded); 1033 1034 Value *StoreSuccess = 1035 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); 1036 Value *TryAgain = Builder.CreateICmpNE( 1037 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); 1038 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); 1039 1040 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1041 return Loaded; 1042 } 1043 1044 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of 1045 /// the equivalent bitwidth. We used to not support pointer cmpxchg in the 1046 /// IR. As a migration step, we convert back to what use to be the standard 1047 /// way to represent a pointer cmpxchg so that we can update backends one by 1048 /// one. 1049 AtomicCmpXchgInst *AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) { 1050 auto *M = CI->getModule(); 1051 Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(), 1052 M->getDataLayout()); 1053 1054 IRBuilder<> Builder(CI); 1055 1056 Value *Addr = CI->getPointerOperand(); 1057 Type *PT = PointerType::get(NewTy, 1058 Addr->getType()->getPointerAddressSpace()); 1059 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 1060 1061 Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy); 1062 Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy); 1063 1064 1065 auto *NewCI = Builder.CreateAtomicCmpXchg(NewAddr, NewCmp, NewNewVal, 1066 CI->getSuccessOrdering(), 1067 CI->getFailureOrdering(), 1068 CI->getSyncScopeID()); 1069 NewCI->setVolatile(CI->isVolatile()); 1070 NewCI->setWeak(CI->isWeak()); 1071 LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n"); 1072 1073 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 1074 Value *Succ = Builder.CreateExtractValue(NewCI, 1); 1075 1076 OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType()); 1077 1078 Value *Res = UndefValue::get(CI->getType()); 1079 Res = Builder.CreateInsertValue(Res, OldVal, 0); 1080 Res = Builder.CreateInsertValue(Res, Succ, 1); 1081 1082 CI->replaceAllUsesWith(Res); 1083 CI->eraseFromParent(); 1084 return NewCI; 1085 } 1086 1087 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1088 AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); 1089 AtomicOrdering FailureOrder = CI->getFailureOrdering(); 1090 Value *Addr = CI->getPointerOperand(); 1091 BasicBlock *BB = CI->getParent(); 1092 Function *F = BB->getParent(); 1093 LLVMContext &Ctx = F->getContext(); 1094 // If shouldInsertFencesForAtomic() returns true, then the target does not 1095 // want to deal with memory orders, and emitLeading/TrailingFence should take 1096 // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we 1097 // should preserve the ordering. 1098 bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI); 1099 AtomicOrdering MemOpOrder = 1100 ShouldInsertFencesForAtomic ? AtomicOrdering::Monotonic : SuccessOrder; 1101 1102 // In implementations which use a barrier to achieve release semantics, we can 1103 // delay emitting this barrier until we know a store is actually going to be 1104 // attempted. The cost of this delay is that we need 2 copies of the block 1105 // emitting the load-linked, affecting code size. 1106 // 1107 // Ideally, this logic would be unconditional except for the minsize check 1108 // since in other cases the extra blocks naturally collapse down to the 1109 // minimal loop. Unfortunately, this puts too much stress on later 1110 // optimisations so we avoid emitting the extra logic in those cases too. 1111 bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic && 1112 SuccessOrder != AtomicOrdering::Monotonic && 1113 SuccessOrder != AtomicOrdering::Acquire && 1114 !F->optForMinSize(); 1115 1116 // There's no overhead for sinking the release barrier in a weak cmpxchg, so 1117 // do it even on minsize. 1118 bool UseUnconditionalReleaseBarrier = F->optForMinSize() && !CI->isWeak(); 1119 1120 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord 1121 // 1122 // The full expansion we produce is: 1123 // [...] 1124 // cmpxchg.start: 1125 // %unreleasedload = @load.linked(%addr) 1126 // %should_store = icmp eq %unreleasedload, %desired 1127 // br i1 %should_store, label %cmpxchg.fencedstore, 1128 // label %cmpxchg.nostore 1129 // cmpxchg.releasingstore: 1130 // fence? 1131 // br label cmpxchg.trystore 1132 // cmpxchg.trystore: 1133 // %loaded.trystore = phi [%unreleasedload, %releasingstore], 1134 // [%releasedload, %cmpxchg.releasedload] 1135 // %stored = @store_conditional(%new, %addr) 1136 // %success = icmp eq i32 %stored, 0 1137 // br i1 %success, label %cmpxchg.success, 1138 // label %cmpxchg.releasedload/%cmpxchg.failure 1139 // cmpxchg.releasedload: 1140 // %releasedload = @load.linked(%addr) 1141 // %should_store = icmp eq %releasedload, %desired 1142 // br i1 %should_store, label %cmpxchg.trystore, 1143 // label %cmpxchg.failure 1144 // cmpxchg.success: 1145 // fence? 1146 // br label %cmpxchg.end 1147 // cmpxchg.nostore: 1148 // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start], 1149 // [%releasedload, 1150 // %cmpxchg.releasedload/%cmpxchg.trystore] 1151 // @load_linked_fail_balance()? 1152 // br label %cmpxchg.failure 1153 // cmpxchg.failure: 1154 // fence? 1155 // br label %cmpxchg.end 1156 // cmpxchg.end: 1157 // %loaded = phi [%loaded.nostore, %cmpxchg.failure], 1158 // [%loaded.trystore, %cmpxchg.trystore] 1159 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] 1160 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 1161 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 1162 // [...] 1163 BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end"); 1164 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); 1165 auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB); 1166 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB); 1167 auto ReleasedLoadBB = 1168 BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB); 1169 auto TryStoreBB = 1170 BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB); 1171 auto ReleasingStoreBB = 1172 BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB); 1173 auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB); 1174 1175 // This grabs the DebugLoc from CI 1176 IRBuilder<> Builder(CI); 1177 1178 // The split call above "helpfully" added a branch at the end of BB (to the 1179 // wrong place), but we might want a fence too. It's easiest to just remove 1180 // the branch entirely. 1181 std::prev(BB->end())->eraseFromParent(); 1182 Builder.SetInsertPoint(BB); 1183 if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier) 1184 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1185 Builder.CreateBr(StartBB); 1186 1187 // Start the main loop block now that we've taken care of the preliminaries. 1188 Builder.SetInsertPoint(StartBB); 1189 Value *UnreleasedLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); 1190 Value *ShouldStore = Builder.CreateICmpEQ( 1191 UnreleasedLoad, CI->getCompareOperand(), "should_store"); 1192 1193 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1194 // jump straight past that fence instruction (if it exists). 1195 Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB); 1196 1197 Builder.SetInsertPoint(ReleasingStoreBB); 1198 if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier) 1199 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1200 Builder.CreateBr(TryStoreBB); 1201 1202 Builder.SetInsertPoint(TryStoreBB); 1203 Value *StoreSuccess = TLI->emitStoreConditional( 1204 Builder, CI->getNewValOperand(), Addr, MemOpOrder); 1205 StoreSuccess = Builder.CreateICmpEQ( 1206 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); 1207 BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB; 1208 Builder.CreateCondBr(StoreSuccess, SuccessBB, 1209 CI->isWeak() ? FailureBB : RetryBB); 1210 1211 Builder.SetInsertPoint(ReleasedLoadBB); 1212 Value *SecondLoad; 1213 if (HasReleasedLoadBB) { 1214 SecondLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); 1215 ShouldStore = Builder.CreateICmpEQ(SecondLoad, CI->getCompareOperand(), 1216 "should_store"); 1217 1218 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1219 // jump straight past that fence instruction (if it exists). 1220 Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB); 1221 } else 1222 Builder.CreateUnreachable(); 1223 1224 // Make sure later instructions don't get reordered with a fence if 1225 // necessary. 1226 Builder.SetInsertPoint(SuccessBB); 1227 if (ShouldInsertFencesForAtomic) 1228 TLI->emitTrailingFence(Builder, CI, SuccessOrder); 1229 Builder.CreateBr(ExitBB); 1230 1231 Builder.SetInsertPoint(NoStoreBB); 1232 // In the failing case, where we don't execute the store-conditional, the 1233 // target might want to balance out the load-linked with a dedicated 1234 // instruction (e.g., on ARM, clearing the exclusive monitor). 1235 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 1236 Builder.CreateBr(FailureBB); 1237 1238 Builder.SetInsertPoint(FailureBB); 1239 if (ShouldInsertFencesForAtomic) 1240 TLI->emitTrailingFence(Builder, CI, FailureOrder); 1241 Builder.CreateBr(ExitBB); 1242 1243 // Finally, we have control-flow based knowledge of whether the cmpxchg 1244 // succeeded or not. We expose this to later passes by converting any 1245 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate 1246 // PHI. 1247 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1248 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2); 1249 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); 1250 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); 1251 1252 // Setup the builder so we can create any PHIs we need. 1253 Value *Loaded; 1254 if (!HasReleasedLoadBB) 1255 Loaded = UnreleasedLoad; 1256 else { 1257 Builder.SetInsertPoint(TryStoreBB, TryStoreBB->begin()); 1258 PHINode *TryStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2); 1259 TryStoreLoaded->addIncoming(UnreleasedLoad, ReleasingStoreBB); 1260 TryStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB); 1261 1262 Builder.SetInsertPoint(NoStoreBB, NoStoreBB->begin()); 1263 PHINode *NoStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2); 1264 NoStoreLoaded->addIncoming(UnreleasedLoad, StartBB); 1265 NoStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB); 1266 1267 Builder.SetInsertPoint(ExitBB, ++ExitBB->begin()); 1268 PHINode *ExitLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2); 1269 ExitLoaded->addIncoming(TryStoreLoaded, SuccessBB); 1270 ExitLoaded->addIncoming(NoStoreLoaded, FailureBB); 1271 1272 Loaded = ExitLoaded; 1273 } 1274 1275 // Look for any users of the cmpxchg that are just comparing the loaded value 1276 // against the desired one, and replace them with the CFG-derived version. 1277 SmallVector<ExtractValueInst *, 2> PrunedInsts; 1278 for (auto User : CI->users()) { 1279 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); 1280 if (!EV) 1281 continue; 1282 1283 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && 1284 "weird extraction from { iN, i1 }"); 1285 1286 if (EV->getIndices()[0] == 0) 1287 EV->replaceAllUsesWith(Loaded); 1288 else 1289 EV->replaceAllUsesWith(Success); 1290 1291 PrunedInsts.push_back(EV); 1292 } 1293 1294 // We can remove the instructions now we're no longer iterating through them. 1295 for (auto EV : PrunedInsts) 1296 EV->eraseFromParent(); 1297 1298 if (!CI->use_empty()) { 1299 // Some use of the full struct return that we don't understand has happened, 1300 // so we've got to reconstruct it properly. 1301 Value *Res; 1302 Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0); 1303 Res = Builder.CreateInsertValue(Res, Success, 1); 1304 1305 CI->replaceAllUsesWith(Res); 1306 } 1307 1308 CI->eraseFromParent(); 1309 return true; 1310 } 1311 1312 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) { 1313 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand()); 1314 if(!C) 1315 return false; 1316 1317 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 1318 switch(Op) { 1319 case AtomicRMWInst::Add: 1320 case AtomicRMWInst::Sub: 1321 case AtomicRMWInst::Or: 1322 case AtomicRMWInst::Xor: 1323 return C->isZero(); 1324 case AtomicRMWInst::And: 1325 return C->isMinusOne(); 1326 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/... 1327 default: 1328 return false; 1329 } 1330 } 1331 1332 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) { 1333 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { 1334 tryExpandAtomicLoad(ResultingLoad); 1335 return true; 1336 } 1337 return false; 1338 } 1339 1340 Value *AtomicExpand::insertRMWCmpXchgLoop( 1341 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, 1342 AtomicOrdering MemOpOrder, 1343 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, 1344 CreateCmpXchgInstFun CreateCmpXchg) { 1345 LLVMContext &Ctx = Builder.getContext(); 1346 BasicBlock *BB = Builder.GetInsertBlock(); 1347 Function *F = BB->getParent(); 1348 1349 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1350 // 1351 // The standard expansion we produce is: 1352 // [...] 1353 // %init_loaded = load atomic iN* %addr 1354 // br label %loop 1355 // loop: 1356 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] 1357 // %new = some_op iN %loaded, %incr 1358 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new 1359 // %new_loaded = extractvalue { iN, i1 } %pair, 0 1360 // %success = extractvalue { iN, i1 } %pair, 1 1361 // br i1 %success, label %atomicrmw.end, label %loop 1362 // atomicrmw.end: 1363 // [...] 1364 BasicBlock *ExitBB = 1365 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1366 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1367 1368 // The split call above "helpfully" added a branch at the end of BB (to the 1369 // wrong place), but we want a load. It's easiest to just remove 1370 // the branch entirely. 1371 std::prev(BB->end())->eraseFromParent(); 1372 Builder.SetInsertPoint(BB); 1373 LoadInst *InitLoaded = Builder.CreateLoad(ResultTy, Addr); 1374 // Atomics require at least natural alignment. 1375 InitLoaded->setAlignment(ResultTy->getPrimitiveSizeInBits() / 8); 1376 Builder.CreateBr(LoopBB); 1377 1378 // Start the main loop block now that we've taken care of the preliminaries. 1379 Builder.SetInsertPoint(LoopBB); 1380 PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded"); 1381 Loaded->addIncoming(InitLoaded, BB); 1382 1383 Value *NewVal = PerformOp(Builder, Loaded); 1384 1385 Value *NewLoaded = nullptr; 1386 Value *Success = nullptr; 1387 1388 CreateCmpXchg(Builder, Addr, Loaded, NewVal, 1389 MemOpOrder == AtomicOrdering::Unordered 1390 ? AtomicOrdering::Monotonic 1391 : MemOpOrder, 1392 Success, NewLoaded); 1393 assert(Success && NewLoaded); 1394 1395 Loaded->addIncoming(NewLoaded, LoopBB); 1396 1397 Builder.CreateCondBr(Success, ExitBB, LoopBB); 1398 1399 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1400 return NewLoaded; 1401 } 1402 1403 bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1404 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 1405 unsigned ValueSize = getAtomicOpSize(CI); 1406 1407 switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) { 1408 default: 1409 llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg"); 1410 case TargetLoweringBase::AtomicExpansionKind::None: 1411 if (ValueSize < MinCASSize) 1412 expandPartwordCmpXchg(CI); 1413 return false; 1414 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 1415 assert(ValueSize >= MinCASSize && 1416 "MinCmpXchgSizeInBits not yet supported for LL/SC expansions."); 1417 return expandAtomicCmpXchg(CI); 1418 } 1419 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: 1420 expandAtomicCmpXchgToMaskedIntrinsic(CI); 1421 return true; 1422 } 1423 } 1424 1425 // Note: This function is exposed externally by AtomicExpandUtils.h 1426 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 1427 CreateCmpXchgInstFun CreateCmpXchg) { 1428 IRBuilder<> Builder(AI); 1429 Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop( 1430 Builder, AI->getType(), AI->getPointerOperand(), AI->getOrdering(), 1431 [&](IRBuilder<> &Builder, Value *Loaded) { 1432 return performAtomicOp(AI->getOperation(), Builder, Loaded, 1433 AI->getValOperand()); 1434 }, 1435 CreateCmpXchg); 1436 1437 AI->replaceAllUsesWith(Loaded); 1438 AI->eraseFromParent(); 1439 return true; 1440 } 1441 1442 // In order to use one of the sized library calls such as 1443 // __atomic_fetch_add_4, the alignment must be sufficient, the size 1444 // must be one of the potentially-specialized sizes, and the value 1445 // type must actually exist in C on the target (otherwise, the 1446 // function wouldn't actually be defined.) 1447 static bool canUseSizedAtomicCall(unsigned Size, unsigned Align, 1448 const DataLayout &DL) { 1449 // TODO: "LargestSize" is an approximation for "largest type that 1450 // you can express in C". It seems to be the case that int128 is 1451 // supported on all 64-bit platforms, otherwise only up to 64-bit 1452 // integers are supported. If we get this wrong, then we'll try to 1453 // call a sized libcall that doesn't actually exist. There should 1454 // really be some more reliable way in LLVM of determining integer 1455 // sizes which are valid in the target's C ABI... 1456 unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8; 1457 return Align >= Size && 1458 (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) && 1459 Size <= LargestSize; 1460 } 1461 1462 void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) { 1463 static const RTLIB::Libcall Libcalls[6] = { 1464 RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2, 1465 RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16}; 1466 unsigned Size = getAtomicOpSize(I); 1467 unsigned Align = getAtomicOpAlign(I); 1468 1469 bool expanded = expandAtomicOpToLibcall( 1470 I, Size, Align, I->getPointerOperand(), nullptr, nullptr, 1471 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1472 (void)expanded; 1473 assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Load"); 1474 } 1475 1476 void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) { 1477 static const RTLIB::Libcall Libcalls[6] = { 1478 RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2, 1479 RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16}; 1480 unsigned Size = getAtomicOpSize(I); 1481 unsigned Align = getAtomicOpAlign(I); 1482 1483 bool expanded = expandAtomicOpToLibcall( 1484 I, Size, Align, I->getPointerOperand(), I->getValueOperand(), nullptr, 1485 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1486 (void)expanded; 1487 assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Store"); 1488 } 1489 1490 void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) { 1491 static const RTLIB::Libcall Libcalls[6] = { 1492 RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1, 1493 RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4, 1494 RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16}; 1495 unsigned Size = getAtomicOpSize(I); 1496 unsigned Align = getAtomicOpAlign(I); 1497 1498 bool expanded = expandAtomicOpToLibcall( 1499 I, Size, Align, I->getPointerOperand(), I->getNewValOperand(), 1500 I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(), 1501 Libcalls); 1502 (void)expanded; 1503 assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor CAS"); 1504 } 1505 1506 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) { 1507 static const RTLIB::Libcall LibcallsXchg[6] = { 1508 RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1, 1509 RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4, 1510 RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16}; 1511 static const RTLIB::Libcall LibcallsAdd[6] = { 1512 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1, 1513 RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4, 1514 RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16}; 1515 static const RTLIB::Libcall LibcallsSub[6] = { 1516 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1, 1517 RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4, 1518 RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16}; 1519 static const RTLIB::Libcall LibcallsAnd[6] = { 1520 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1, 1521 RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4, 1522 RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16}; 1523 static const RTLIB::Libcall LibcallsOr[6] = { 1524 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1, 1525 RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4, 1526 RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16}; 1527 static const RTLIB::Libcall LibcallsXor[6] = { 1528 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1, 1529 RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4, 1530 RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16}; 1531 static const RTLIB::Libcall LibcallsNand[6] = { 1532 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1, 1533 RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4, 1534 RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16}; 1535 1536 switch (Op) { 1537 case AtomicRMWInst::BAD_BINOP: 1538 llvm_unreachable("Should not have BAD_BINOP."); 1539 case AtomicRMWInst::Xchg: 1540 return makeArrayRef(LibcallsXchg); 1541 case AtomicRMWInst::Add: 1542 return makeArrayRef(LibcallsAdd); 1543 case AtomicRMWInst::Sub: 1544 return makeArrayRef(LibcallsSub); 1545 case AtomicRMWInst::And: 1546 return makeArrayRef(LibcallsAnd); 1547 case AtomicRMWInst::Or: 1548 return makeArrayRef(LibcallsOr); 1549 case AtomicRMWInst::Xor: 1550 return makeArrayRef(LibcallsXor); 1551 case AtomicRMWInst::Nand: 1552 return makeArrayRef(LibcallsNand); 1553 case AtomicRMWInst::Max: 1554 case AtomicRMWInst::Min: 1555 case AtomicRMWInst::UMax: 1556 case AtomicRMWInst::UMin: 1557 case AtomicRMWInst::FAdd: 1558 case AtomicRMWInst::FSub: 1559 // No atomic libcalls are available for max/min/umax/umin. 1560 return {}; 1561 } 1562 llvm_unreachable("Unexpected AtomicRMW operation."); 1563 } 1564 1565 void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) { 1566 ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation()); 1567 1568 unsigned Size = getAtomicOpSize(I); 1569 unsigned Align = getAtomicOpAlign(I); 1570 1571 bool Success = false; 1572 if (!Libcalls.empty()) 1573 Success = expandAtomicOpToLibcall( 1574 I, Size, Align, I->getPointerOperand(), I->getValOperand(), nullptr, 1575 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1576 1577 // The expansion failed: either there were no libcalls at all for 1578 // the operation (min/max), or there were only size-specialized 1579 // libcalls (add/sub/etc) and we needed a generic. So, expand to a 1580 // CAS libcall, via a CAS loop, instead. 1581 if (!Success) { 1582 expandAtomicRMWToCmpXchg(I, [this](IRBuilder<> &Builder, Value *Addr, 1583 Value *Loaded, Value *NewVal, 1584 AtomicOrdering MemOpOrder, 1585 Value *&Success, Value *&NewLoaded) { 1586 // Create the CAS instruction normally... 1587 AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg( 1588 Addr, Loaded, NewVal, MemOpOrder, 1589 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder)); 1590 Success = Builder.CreateExtractValue(Pair, 1, "success"); 1591 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 1592 1593 // ...and then expand the CAS into a libcall. 1594 expandAtomicCASToLibcall(Pair); 1595 }); 1596 } 1597 } 1598 1599 // A helper routine for the above expandAtomic*ToLibcall functions. 1600 // 1601 // 'Libcalls' contains an array of enum values for the particular 1602 // ATOMIC libcalls to be emitted. All of the other arguments besides 1603 // 'I' are extracted from the Instruction subclass by the 1604 // caller. Depending on the particular call, some will be null. 1605 bool AtomicExpand::expandAtomicOpToLibcall( 1606 Instruction *I, unsigned Size, unsigned Align, Value *PointerOperand, 1607 Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering, 1608 AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) { 1609 assert(Libcalls.size() == 6); 1610 1611 LLVMContext &Ctx = I->getContext(); 1612 Module *M = I->getModule(); 1613 const DataLayout &DL = M->getDataLayout(); 1614 IRBuilder<> Builder(I); 1615 IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front()); 1616 1617 bool UseSizedLibcall = canUseSizedAtomicCall(Size, Align, DL); 1618 Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8); 1619 1620 unsigned AllocaAlignment = DL.getPrefTypeAlignment(SizedIntTy); 1621 1622 // TODO: the "order" argument type is "int", not int32. So 1623 // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints. 1624 ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size); 1625 assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO"); 1626 Constant *OrderingVal = 1627 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering)); 1628 Constant *Ordering2Val = nullptr; 1629 if (CASExpected) { 1630 assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO"); 1631 Ordering2Val = 1632 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2)); 1633 } 1634 bool HasResult = I->getType() != Type::getVoidTy(Ctx); 1635 1636 RTLIB::Libcall RTLibType; 1637 if (UseSizedLibcall) { 1638 switch (Size) { 1639 case 1: RTLibType = Libcalls[1]; break; 1640 case 2: RTLibType = Libcalls[2]; break; 1641 case 4: RTLibType = Libcalls[3]; break; 1642 case 8: RTLibType = Libcalls[4]; break; 1643 case 16: RTLibType = Libcalls[5]; break; 1644 } 1645 } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) { 1646 RTLibType = Libcalls[0]; 1647 } else { 1648 // Can't use sized function, and there's no generic for this 1649 // operation, so give up. 1650 return false; 1651 } 1652 1653 // Build up the function call. There's two kinds. First, the sized 1654 // variants. These calls are going to be one of the following (with 1655 // N=1,2,4,8,16): 1656 // iN __atomic_load_N(iN *ptr, int ordering) 1657 // void __atomic_store_N(iN *ptr, iN val, int ordering) 1658 // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering) 1659 // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired, 1660 // int success_order, int failure_order) 1661 // 1662 // Note that these functions can be used for non-integer atomic 1663 // operations, the values just need to be bitcast to integers on the 1664 // way in and out. 1665 // 1666 // And, then, the generic variants. They look like the following: 1667 // void __atomic_load(size_t size, void *ptr, void *ret, int ordering) 1668 // void __atomic_store(size_t size, void *ptr, void *val, int ordering) 1669 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, 1670 // int ordering) 1671 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, 1672 // void *desired, int success_order, 1673 // int failure_order) 1674 // 1675 // The different signatures are built up depending on the 1676 // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult' 1677 // variables. 1678 1679 AllocaInst *AllocaCASExpected = nullptr; 1680 Value *AllocaCASExpected_i8 = nullptr; 1681 AllocaInst *AllocaValue = nullptr; 1682 Value *AllocaValue_i8 = nullptr; 1683 AllocaInst *AllocaResult = nullptr; 1684 Value *AllocaResult_i8 = nullptr; 1685 1686 Type *ResultTy; 1687 SmallVector<Value *, 6> Args; 1688 AttributeList Attr; 1689 1690 // 'size' argument. 1691 if (!UseSizedLibcall) { 1692 // Note, getIntPtrType is assumed equivalent to size_t. 1693 Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size)); 1694 } 1695 1696 // 'ptr' argument. 1697 // note: This assumes all address spaces share a common libfunc 1698 // implementation and that addresses are convertable. For systems without 1699 // that property, we'd need to extend this mechanism to support AS-specific 1700 // families of atomic intrinsics. 1701 auto PtrTypeAS = PointerOperand->getType()->getPointerAddressSpace(); 1702 Value *PtrVal = Builder.CreateBitCast(PointerOperand, 1703 Type::getInt8PtrTy(Ctx, PtrTypeAS)); 1704 PtrVal = Builder.CreateAddrSpaceCast(PtrVal, Type::getInt8PtrTy(Ctx)); 1705 Args.push_back(PtrVal); 1706 1707 // 'expected' argument, if present. 1708 if (CASExpected) { 1709 AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType()); 1710 AllocaCASExpected->setAlignment(AllocaAlignment); 1711 AllocaCASExpected_i8 = 1712 Builder.CreateBitCast(AllocaCASExpected, Type::getInt8PtrTy(Ctx)); 1713 Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64); 1714 Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment); 1715 Args.push_back(AllocaCASExpected_i8); 1716 } 1717 1718 // 'val' argument ('desired' for cas), if present. 1719 if (ValueOperand) { 1720 if (UseSizedLibcall) { 1721 Value *IntValue = 1722 Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy); 1723 Args.push_back(IntValue); 1724 } else { 1725 AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType()); 1726 AllocaValue->setAlignment(AllocaAlignment); 1727 AllocaValue_i8 = 1728 Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx)); 1729 Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64); 1730 Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment); 1731 Args.push_back(AllocaValue_i8); 1732 } 1733 } 1734 1735 // 'ret' argument. 1736 if (!CASExpected && HasResult && !UseSizedLibcall) { 1737 AllocaResult = AllocaBuilder.CreateAlloca(I->getType()); 1738 AllocaResult->setAlignment(AllocaAlignment); 1739 AllocaResult_i8 = 1740 Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx)); 1741 Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64); 1742 Args.push_back(AllocaResult_i8); 1743 } 1744 1745 // 'ordering' ('success_order' for cas) argument. 1746 Args.push_back(OrderingVal); 1747 1748 // 'failure_order' argument, if present. 1749 if (Ordering2Val) 1750 Args.push_back(Ordering2Val); 1751 1752 // Now, the return type. 1753 if (CASExpected) { 1754 ResultTy = Type::getInt1Ty(Ctx); 1755 Attr = Attr.addAttribute(Ctx, AttributeList::ReturnIndex, Attribute::ZExt); 1756 } else if (HasResult && UseSizedLibcall) 1757 ResultTy = SizedIntTy; 1758 else 1759 ResultTy = Type::getVoidTy(Ctx); 1760 1761 // Done with setting up arguments and return types, create the call: 1762 SmallVector<Type *, 6> ArgTys; 1763 for (Value *Arg : Args) 1764 ArgTys.push_back(Arg->getType()); 1765 FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false); 1766 FunctionCallee LibcallFn = 1767 M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr); 1768 CallInst *Call = Builder.CreateCall(LibcallFn, Args); 1769 Call->setAttributes(Attr); 1770 Value *Result = Call; 1771 1772 // And then, extract the results... 1773 if (ValueOperand && !UseSizedLibcall) 1774 Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64); 1775 1776 if (CASExpected) { 1777 // The final result from the CAS is {load of 'expected' alloca, bool result 1778 // from call} 1779 Type *FinalResultTy = I->getType(); 1780 Value *V = UndefValue::get(FinalResultTy); 1781 Value *ExpectedOut = Builder.CreateAlignedLoad( 1782 CASExpected->getType(), AllocaCASExpected, AllocaAlignment); 1783 Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64); 1784 V = Builder.CreateInsertValue(V, ExpectedOut, 0); 1785 V = Builder.CreateInsertValue(V, Result, 1); 1786 I->replaceAllUsesWith(V); 1787 } else if (HasResult) { 1788 Value *V; 1789 if (UseSizedLibcall) 1790 V = Builder.CreateBitOrPointerCast(Result, I->getType()); 1791 else { 1792 V = Builder.CreateAlignedLoad(I->getType(), AllocaResult, 1793 AllocaAlignment); 1794 Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64); 1795 } 1796 I->replaceAllUsesWith(V); 1797 } 1798 I->eraseFromParent(); 1799 return true; 1800 } 1801