1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass (at IR level) to replace atomic instructions with 10 // __atomic_* library calls, or target specific instruction which implement the 11 // same semantics in a way which better fits the target backend. This can 12 // include the use of (intrinsic-based) load-linked/store-conditional loops, 13 // AtomicCmpXchg, or type coercions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/STLFunctionalExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/CodeGen/AtomicExpandUtils.h" 22 #include "llvm/CodeGen/RuntimeLibcalls.h" 23 #include "llvm/CodeGen/TargetLowering.h" 24 #include "llvm/CodeGen/TargetPassConfig.h" 25 #include "llvm/CodeGen/TargetSubtargetInfo.h" 26 #include "llvm/CodeGen/ValueTypes.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Constant.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/IRBuilder.h" 35 #include "llvm/IR/InstIterator.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Type.h" 40 #include "llvm/IR/User.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/InitializePasses.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/AtomicOrdering.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Target/TargetMachine.h" 50 #include "llvm/Transforms/Utils/LowerAtomic.h" 51 #include <cassert> 52 #include <cstdint> 53 #include <iterator> 54 55 using namespace llvm; 56 57 #define DEBUG_TYPE "atomic-expand" 58 59 namespace { 60 61 class AtomicExpand : public FunctionPass { 62 const TargetLowering *TLI = nullptr; 63 64 public: 65 static char ID; // Pass identification, replacement for typeid 66 67 AtomicExpand() : FunctionPass(ID) { 68 initializeAtomicExpandPass(*PassRegistry::getPassRegistry()); 69 } 70 71 bool runOnFunction(Function &F) override; 72 73 private: 74 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order); 75 IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL); 76 LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI); 77 bool tryExpandAtomicLoad(LoadInst *LI); 78 bool expandAtomicLoadToLL(LoadInst *LI); 79 bool expandAtomicLoadToCmpXchg(LoadInst *LI); 80 StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI); 81 bool tryExpandAtomicStore(StoreInst *SI); 82 void expandAtomicStore(StoreInst *SI); 83 bool tryExpandAtomicRMW(AtomicRMWInst *AI); 84 AtomicRMWInst *convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI); 85 Value * 86 insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr, 87 Align AddrAlign, AtomicOrdering MemOpOrder, 88 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); 89 void 90 expandAtomicOpToLLSC(Instruction *I, Type *ResultTy, Value *Addr, 91 Align AddrAlign, AtomicOrdering MemOpOrder, 92 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); 93 void expandPartwordAtomicRMW( 94 AtomicRMWInst *I, TargetLoweringBase::AtomicExpansionKind ExpansionKind); 95 AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI); 96 bool expandPartwordCmpXchg(AtomicCmpXchgInst *I); 97 void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI); 98 void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI); 99 100 AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI); 101 static Value * 102 insertRMWCmpXchgLoop(IRBuilder<> &Builder, Type *ResultType, Value *Addr, 103 Align AddrAlign, AtomicOrdering MemOpOrder, 104 SyncScope::ID SSID, 105 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, 106 CreateCmpXchgInstFun CreateCmpXchg); 107 bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI); 108 109 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); 110 bool isIdempotentRMW(AtomicRMWInst *RMWI); 111 bool simplifyIdempotentRMW(AtomicRMWInst *RMWI); 112 113 bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, Align Alignment, 114 Value *PointerOperand, Value *ValueOperand, 115 Value *CASExpected, AtomicOrdering Ordering, 116 AtomicOrdering Ordering2, 117 ArrayRef<RTLIB::Libcall> Libcalls); 118 void expandAtomicLoadToLibcall(LoadInst *LI); 119 void expandAtomicStoreToLibcall(StoreInst *LI); 120 void expandAtomicRMWToLibcall(AtomicRMWInst *I); 121 void expandAtomicCASToLibcall(AtomicCmpXchgInst *I); 122 123 friend bool 124 llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 125 CreateCmpXchgInstFun CreateCmpXchg); 126 }; 127 128 } // end anonymous namespace 129 130 char AtomicExpand::ID = 0; 131 132 char &llvm::AtomicExpandID = AtomicExpand::ID; 133 134 INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions", false, 135 false) 136 137 FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); } 138 139 // Helper functions to retrieve the size of atomic instructions. 140 static unsigned getAtomicOpSize(LoadInst *LI) { 141 const DataLayout &DL = LI->getModule()->getDataLayout(); 142 return DL.getTypeStoreSize(LI->getType()); 143 } 144 145 static unsigned getAtomicOpSize(StoreInst *SI) { 146 const DataLayout &DL = SI->getModule()->getDataLayout(); 147 return DL.getTypeStoreSize(SI->getValueOperand()->getType()); 148 } 149 150 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) { 151 const DataLayout &DL = RMWI->getModule()->getDataLayout(); 152 return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); 153 } 154 155 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) { 156 const DataLayout &DL = CASI->getModule()->getDataLayout(); 157 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); 158 } 159 160 // Determine if a particular atomic operation has a supported size, 161 // and is of appropriate alignment, to be passed through for target 162 // lowering. (Versus turning into a __atomic libcall) 163 template <typename Inst> 164 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) { 165 unsigned Size = getAtomicOpSize(I); 166 Align Alignment = I->getAlign(); 167 return Alignment >= Size && 168 Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8; 169 } 170 171 bool AtomicExpand::runOnFunction(Function &F) { 172 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 173 if (!TPC) 174 return false; 175 176 auto &TM = TPC->getTM<TargetMachine>(); 177 if (!TM.getSubtargetImpl(F)->enableAtomicExpand()) 178 return false; 179 TLI = TM.getSubtargetImpl(F)->getTargetLowering(); 180 181 SmallVector<Instruction *, 1> AtomicInsts; 182 183 // Changing control-flow while iterating through it is a bad idea, so gather a 184 // list of all atomic instructions before we start. 185 for (Instruction &I : instructions(F)) 186 if (I.isAtomic() && !isa<FenceInst>(&I)) 187 AtomicInsts.push_back(&I); 188 189 bool MadeChange = false; 190 for (auto I : AtomicInsts) { 191 auto LI = dyn_cast<LoadInst>(I); 192 auto SI = dyn_cast<StoreInst>(I); 193 auto RMWI = dyn_cast<AtomicRMWInst>(I); 194 auto CASI = dyn_cast<AtomicCmpXchgInst>(I); 195 assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction"); 196 197 // If the Size/Alignment is not supported, replace with a libcall. 198 if (LI) { 199 if (!atomicSizeSupported(TLI, LI)) { 200 expandAtomicLoadToLibcall(LI); 201 MadeChange = true; 202 continue; 203 } 204 } else if (SI) { 205 if (!atomicSizeSupported(TLI, SI)) { 206 expandAtomicStoreToLibcall(SI); 207 MadeChange = true; 208 continue; 209 } 210 } else if (RMWI) { 211 if (!atomicSizeSupported(TLI, RMWI)) { 212 expandAtomicRMWToLibcall(RMWI); 213 MadeChange = true; 214 continue; 215 } 216 } else if (CASI) { 217 if (!atomicSizeSupported(TLI, CASI)) { 218 expandAtomicCASToLibcall(CASI); 219 MadeChange = true; 220 continue; 221 } 222 } 223 224 if (TLI->shouldInsertFencesForAtomic(I)) { 225 auto FenceOrdering = AtomicOrdering::Monotonic; 226 if (LI && isAcquireOrStronger(LI->getOrdering())) { 227 FenceOrdering = LI->getOrdering(); 228 LI->setOrdering(AtomicOrdering::Monotonic); 229 } else if (SI && isReleaseOrStronger(SI->getOrdering())) { 230 FenceOrdering = SI->getOrdering(); 231 SI->setOrdering(AtomicOrdering::Monotonic); 232 } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) || 233 isAcquireOrStronger(RMWI->getOrdering()))) { 234 FenceOrdering = RMWI->getOrdering(); 235 RMWI->setOrdering(AtomicOrdering::Monotonic); 236 } else if (CASI && 237 TLI->shouldExpandAtomicCmpXchgInIR(CASI) == 238 TargetLoweringBase::AtomicExpansionKind::None && 239 (isReleaseOrStronger(CASI->getSuccessOrdering()) || 240 isAcquireOrStronger(CASI->getSuccessOrdering()) || 241 isAcquireOrStronger(CASI->getFailureOrdering()))) { 242 // If a compare and swap is lowered to LL/SC, we can do smarter fence 243 // insertion, with a stronger one on the success path than on the 244 // failure path. As a result, fence insertion is directly done by 245 // expandAtomicCmpXchg in that case. 246 FenceOrdering = CASI->getMergedOrdering(); 247 CASI->setSuccessOrdering(AtomicOrdering::Monotonic); 248 CASI->setFailureOrdering(AtomicOrdering::Monotonic); 249 } 250 251 if (FenceOrdering != AtomicOrdering::Monotonic) { 252 MadeChange |= bracketInstWithFences(I, FenceOrdering); 253 } 254 } 255 256 if (LI) { 257 if (TLI->shouldCastAtomicLoadInIR(LI) == 258 TargetLoweringBase::AtomicExpansionKind::CastToInteger) { 259 // TODO: add a TLI hook to control this so that each target can 260 // convert to lowering the original type one at a time. 261 LI = convertAtomicLoadToIntegerType(LI); 262 assert(LI->getType()->isIntegerTy() && "invariant broken"); 263 MadeChange = true; 264 } 265 266 MadeChange |= tryExpandAtomicLoad(LI); 267 } else if (SI) { 268 if (TLI->shouldCastAtomicStoreInIR(SI) == 269 TargetLoweringBase::AtomicExpansionKind::CastToInteger) { 270 // TODO: add a TLI hook to control this so that each target can 271 // convert to lowering the original type one at a time. 272 SI = convertAtomicStoreToIntegerType(SI); 273 assert(SI->getValueOperand()->getType()->isIntegerTy() && 274 "invariant broken"); 275 MadeChange = true; 276 } 277 278 if (tryExpandAtomicStore(SI)) 279 MadeChange = true; 280 } else if (RMWI) { 281 // There are two different ways of expanding RMW instructions: 282 // - into a load if it is idempotent 283 // - into a Cmpxchg/LL-SC loop otherwise 284 // we try them in that order. 285 286 if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) { 287 MadeChange = true; 288 } else { 289 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 290 if (TLI->shouldCastAtomicRMWIInIR(RMWI) == 291 TargetLoweringBase::AtomicExpansionKind::CastToInteger) { 292 // TODO: add a TLI hook to control this so that each target can 293 // convert to lowering the original type one at a time. 294 RMWI = convertAtomicXchgToIntegerType(RMWI); 295 assert(RMWI->getValOperand()->getType()->isIntegerTy() && 296 "invariant broken"); 297 MadeChange = true; 298 } 299 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 300 unsigned ValueSize = getAtomicOpSize(RMWI); 301 if (ValueSize < MinCASSize && 302 (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 303 Op == AtomicRMWInst::And)) { 304 RMWI = widenPartwordAtomicRMW(RMWI); 305 MadeChange = true; 306 } 307 308 MadeChange |= tryExpandAtomicRMW(RMWI); 309 } 310 } else if (CASI) { 311 // TODO: when we're ready to make the change at the IR level, we can 312 // extend convertCmpXchgToInteger for floating point too. 313 assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() && 314 "unimplemented - floating point not legal at IR level"); 315 if (CASI->getCompareOperand()->getType()->isPointerTy()) { 316 // TODO: add a TLI hook to control this so that each target can 317 // convert to lowering the original type one at a time. 318 CASI = convertCmpXchgToIntegerType(CASI); 319 assert(CASI->getCompareOperand()->getType()->isIntegerTy() && 320 "invariant broken"); 321 MadeChange = true; 322 } 323 324 MadeChange |= tryExpandAtomicCmpXchg(CASI); 325 } 326 } 327 return MadeChange; 328 } 329 330 bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) { 331 IRBuilder<> Builder(I); 332 333 auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order); 334 335 auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order); 336 // We have a guard here because not every atomic operation generates a 337 // trailing fence. 338 if (TrailingFence) 339 TrailingFence->moveAfter(I); 340 341 return (LeadingFence || TrailingFence); 342 } 343 344 /// Get the iX type with the same bitwidth as T. 345 IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T, 346 const DataLayout &DL) { 347 EVT VT = TLI->getMemValueType(DL, T); 348 unsigned BitWidth = VT.getStoreSizeInBits(); 349 assert(BitWidth == VT.getSizeInBits() && "must be a power of two"); 350 return IntegerType::get(T->getContext(), BitWidth); 351 } 352 353 /// Convert an atomic load of a non-integral type to an integer load of the 354 /// equivalent bitwidth. See the function comment on 355 /// convertAtomicStoreToIntegerType for background. 356 LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) { 357 auto *M = LI->getModule(); 358 Type *NewTy = getCorrespondingIntegerType(LI->getType(), M->getDataLayout()); 359 360 IRBuilder<> Builder(LI); 361 362 Value *Addr = LI->getPointerOperand(); 363 Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace()); 364 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 365 366 auto *NewLI = Builder.CreateLoad(NewTy, NewAddr); 367 NewLI->setAlignment(LI->getAlign()); 368 NewLI->setVolatile(LI->isVolatile()); 369 NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID()); 370 LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n"); 371 372 Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType()); 373 LI->replaceAllUsesWith(NewVal); 374 LI->eraseFromParent(); 375 return NewLI; 376 } 377 378 AtomicRMWInst * 379 AtomicExpand::convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI) { 380 auto *M = RMWI->getModule(); 381 Type *NewTy = 382 getCorrespondingIntegerType(RMWI->getType(), M->getDataLayout()); 383 384 IRBuilder<> Builder(RMWI); 385 386 Value *Addr = RMWI->getPointerOperand(); 387 Value *Val = RMWI->getValOperand(); 388 Type *PT = PointerType::get(NewTy, RMWI->getPointerAddressSpace()); 389 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 390 Value *NewVal = Val->getType()->isPointerTy() 391 ? Builder.CreatePtrToInt(Val, NewTy) 392 : Builder.CreateBitCast(Val, NewTy); 393 394 auto *NewRMWI = 395 Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, NewAddr, NewVal, 396 RMWI->getAlign(), RMWI->getOrdering()); 397 NewRMWI->setVolatile(RMWI->isVolatile()); 398 LLVM_DEBUG(dbgs() << "Replaced " << *RMWI << " with " << *NewRMWI << "\n"); 399 400 Value *NewRVal = RMWI->getType()->isPointerTy() 401 ? Builder.CreateIntToPtr(NewRMWI, RMWI->getType()) 402 : Builder.CreateBitCast(NewRMWI, RMWI->getType()); 403 RMWI->replaceAllUsesWith(NewRVal); 404 RMWI->eraseFromParent(); 405 return NewRMWI; 406 } 407 408 bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) { 409 switch (TLI->shouldExpandAtomicLoadInIR(LI)) { 410 case TargetLoweringBase::AtomicExpansionKind::None: 411 return false; 412 case TargetLoweringBase::AtomicExpansionKind::LLSC: 413 expandAtomicOpToLLSC( 414 LI, LI->getType(), LI->getPointerOperand(), LI->getAlign(), 415 LI->getOrdering(), 416 [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; }); 417 return true; 418 case TargetLoweringBase::AtomicExpansionKind::LLOnly: 419 return expandAtomicLoadToLL(LI); 420 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: 421 return expandAtomicLoadToCmpXchg(LI); 422 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 423 LI->setAtomic(AtomicOrdering::NotAtomic); 424 return true; 425 default: 426 llvm_unreachable("Unhandled case in tryExpandAtomicLoad"); 427 } 428 } 429 430 bool AtomicExpand::tryExpandAtomicStore(StoreInst *SI) { 431 switch (TLI->shouldExpandAtomicStoreInIR(SI)) { 432 case TargetLoweringBase::AtomicExpansionKind::None: 433 return false; 434 case TargetLoweringBase::AtomicExpansionKind::Expand: 435 expandAtomicStore(SI); 436 return true; 437 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 438 SI->setAtomic(AtomicOrdering::NotAtomic); 439 return true; 440 default: 441 llvm_unreachable("Unhandled case in tryExpandAtomicStore"); 442 } 443 } 444 445 bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) { 446 IRBuilder<> Builder(LI); 447 448 // On some architectures, load-linked instructions are atomic for larger 449 // sizes than normal loads. For example, the only 64-bit load guaranteed 450 // to be single-copy atomic by ARM is an ldrexd (A3.5.3). 451 Value *Val = TLI->emitLoadLinked(Builder, LI->getType(), 452 LI->getPointerOperand(), LI->getOrdering()); 453 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 454 455 LI->replaceAllUsesWith(Val); 456 LI->eraseFromParent(); 457 458 return true; 459 } 460 461 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) { 462 IRBuilder<> Builder(LI); 463 AtomicOrdering Order = LI->getOrdering(); 464 if (Order == AtomicOrdering::Unordered) 465 Order = AtomicOrdering::Monotonic; 466 467 Value *Addr = LI->getPointerOperand(); 468 Type *Ty = LI->getType(); 469 Constant *DummyVal = Constant::getNullValue(Ty); 470 471 Value *Pair = Builder.CreateAtomicCmpXchg( 472 Addr, DummyVal, DummyVal, LI->getAlign(), Order, 473 AtomicCmpXchgInst::getStrongestFailureOrdering(Order)); 474 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded"); 475 476 LI->replaceAllUsesWith(Loaded); 477 LI->eraseFromParent(); 478 479 return true; 480 } 481 482 /// Convert an atomic store of a non-integral type to an integer store of the 483 /// equivalent bitwidth. We used to not support floating point or vector 484 /// atomics in the IR at all. The backends learned to deal with the bitcast 485 /// idiom because that was the only way of expressing the notion of a atomic 486 /// float or vector store. The long term plan is to teach each backend to 487 /// instruction select from the original atomic store, but as a migration 488 /// mechanism, we convert back to the old format which the backends understand. 489 /// Each backend will need individual work to recognize the new format. 490 StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) { 491 IRBuilder<> Builder(SI); 492 auto *M = SI->getModule(); 493 Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(), 494 M->getDataLayout()); 495 Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy); 496 497 Value *Addr = SI->getPointerOperand(); 498 Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace()); 499 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 500 501 StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr); 502 NewSI->setAlignment(SI->getAlign()); 503 NewSI->setVolatile(SI->isVolatile()); 504 NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID()); 505 LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n"); 506 SI->eraseFromParent(); 507 return NewSI; 508 } 509 510 void AtomicExpand::expandAtomicStore(StoreInst *SI) { 511 // This function is only called on atomic stores that are too large to be 512 // atomic if implemented as a native store. So we replace them by an 513 // atomic swap, that can be implemented for example as a ldrex/strex on ARM 514 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. 515 // It is the responsibility of the target to only signal expansion via 516 // shouldExpandAtomicRMW in cases where this is required and possible. 517 IRBuilder<> Builder(SI); 518 AtomicRMWInst *AI = Builder.CreateAtomicRMW( 519 AtomicRMWInst::Xchg, SI->getPointerOperand(), SI->getValueOperand(), 520 SI->getAlign(), SI->getOrdering()); 521 SI->eraseFromParent(); 522 523 // Now we have an appropriate swap instruction, lower it as usual. 524 tryExpandAtomicRMW(AI); 525 } 526 527 static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr, 528 Value *Loaded, Value *NewVal, Align AddrAlign, 529 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 530 Value *&Success, Value *&NewLoaded) { 531 Type *OrigTy = NewVal->getType(); 532 533 // This code can go away when cmpxchg supports FP types. 534 assert(!OrigTy->isPointerTy()); 535 bool NeedBitcast = OrigTy->isFloatingPointTy(); 536 if (NeedBitcast) { 537 IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits()); 538 unsigned AS = Addr->getType()->getPointerAddressSpace(); 539 Addr = Builder.CreateBitCast(Addr, IntTy->getPointerTo(AS)); 540 NewVal = Builder.CreateBitCast(NewVal, IntTy); 541 Loaded = Builder.CreateBitCast(Loaded, IntTy); 542 } 543 544 Value *Pair = Builder.CreateAtomicCmpXchg( 545 Addr, Loaded, NewVal, AddrAlign, MemOpOrder, 546 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID); 547 Success = Builder.CreateExtractValue(Pair, 1, "success"); 548 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 549 550 if (NeedBitcast) 551 NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy); 552 } 553 554 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) { 555 LLVMContext &Ctx = AI->getModule()->getContext(); 556 TargetLowering::AtomicExpansionKind Kind = TLI->shouldExpandAtomicRMWInIR(AI); 557 switch (Kind) { 558 case TargetLoweringBase::AtomicExpansionKind::None: 559 return false; 560 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 561 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 562 unsigned ValueSize = getAtomicOpSize(AI); 563 if (ValueSize < MinCASSize) { 564 expandPartwordAtomicRMW(AI, 565 TargetLoweringBase::AtomicExpansionKind::LLSC); 566 } else { 567 auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) { 568 return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded, 569 AI->getValOperand()); 570 }; 571 expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(), 572 AI->getAlign(), AI->getOrdering(), PerformOp); 573 } 574 return true; 575 } 576 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: { 577 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 578 unsigned ValueSize = getAtomicOpSize(AI); 579 if (ValueSize < MinCASSize) { 580 // TODO: Handle atomicrmw fadd/fsub 581 if (AI->getType()->isFloatingPointTy()) 582 return false; 583 584 expandPartwordAtomicRMW(AI, 585 TargetLoweringBase::AtomicExpansionKind::CmpXChg); 586 } else { 587 SmallVector<StringRef> SSNs; 588 Ctx.getSyncScopeNames(SSNs); 589 auto MemScope = SSNs[AI->getSyncScopeID()].empty() 590 ? "system" 591 : SSNs[AI->getSyncScopeID()]; 592 OptimizationRemarkEmitter ORE(AI->getFunction()); 593 ORE.emit([&]() { 594 return OptimizationRemark(DEBUG_TYPE, "Passed", AI) 595 << "A compare and swap loop was generated for an atomic " 596 << AI->getOperationName(AI->getOperation()) << " operation at " 597 << MemScope << " memory scope"; 598 }); 599 expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun); 600 } 601 return true; 602 } 603 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: { 604 expandAtomicRMWToMaskedIntrinsic(AI); 605 return true; 606 } 607 case TargetLoweringBase::AtomicExpansionKind::BitTestIntrinsic: { 608 TLI->emitBitTestAtomicRMWIntrinsic(AI); 609 return true; 610 } 611 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 612 return lowerAtomicRMWInst(AI); 613 default: 614 llvm_unreachable("Unhandled case in tryExpandAtomicRMW"); 615 } 616 } 617 618 namespace { 619 620 struct PartwordMaskValues { 621 // These three fields are guaranteed to be set by createMaskInstrs. 622 Type *WordType = nullptr; 623 Type *ValueType = nullptr; 624 Value *AlignedAddr = nullptr; 625 Align AlignedAddrAlignment; 626 // The remaining fields can be null. 627 Value *ShiftAmt = nullptr; 628 Value *Mask = nullptr; 629 Value *Inv_Mask = nullptr; 630 }; 631 632 LLVM_ATTRIBUTE_UNUSED 633 raw_ostream &operator<<(raw_ostream &O, const PartwordMaskValues &PMV) { 634 auto PrintObj = [&O](auto *V) { 635 if (V) 636 O << *V; 637 else 638 O << "nullptr"; 639 O << '\n'; 640 }; 641 O << "PartwordMaskValues {\n"; 642 O << " WordType: "; 643 PrintObj(PMV.WordType); 644 O << " ValueType: "; 645 PrintObj(PMV.ValueType); 646 O << " AlignedAddr: "; 647 PrintObj(PMV.AlignedAddr); 648 O << " AlignedAddrAlignment: " << PMV.AlignedAddrAlignment.value() << '\n'; 649 O << " ShiftAmt: "; 650 PrintObj(PMV.ShiftAmt); 651 O << " Mask: "; 652 PrintObj(PMV.Mask); 653 O << " Inv_Mask: "; 654 PrintObj(PMV.Inv_Mask); 655 O << "}\n"; 656 return O; 657 } 658 659 } // end anonymous namespace 660 661 /// This is a helper function which builds instructions to provide 662 /// values necessary for partword atomic operations. It takes an 663 /// incoming address, Addr, and ValueType, and constructs the address, 664 /// shift-amounts and masks needed to work with a larger value of size 665 /// WordSize. 666 /// 667 /// AlignedAddr: Addr rounded down to a multiple of WordSize 668 /// 669 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded 670 /// from AlignAddr for it to have the same value as if 671 /// ValueType was loaded from Addr. 672 /// 673 /// Mask: Value to mask with the value loaded from AlignAddr to 674 /// include only the part that would've been loaded from Addr. 675 /// 676 /// Inv_Mask: The inverse of Mask. 677 static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I, 678 Type *ValueType, Value *Addr, 679 Align AddrAlign, 680 unsigned MinWordSize) { 681 PartwordMaskValues PMV; 682 683 Module *M = I->getModule(); 684 LLVMContext &Ctx = M->getContext(); 685 const DataLayout &DL = M->getDataLayout(); 686 unsigned ValueSize = DL.getTypeStoreSize(ValueType); 687 688 PMV.ValueType = ValueType; 689 PMV.WordType = MinWordSize > ValueSize ? Type::getIntNTy(Ctx, MinWordSize * 8) 690 : ValueType; 691 if (PMV.ValueType == PMV.WordType) { 692 PMV.AlignedAddr = Addr; 693 PMV.AlignedAddrAlignment = AddrAlign; 694 PMV.ShiftAmt = ConstantInt::get(PMV.ValueType, 0); 695 PMV.Mask = ConstantInt::get(PMV.ValueType, ~0, /*isSigned*/ true); 696 return PMV; 697 } 698 699 assert(ValueSize < MinWordSize); 700 701 Type *WordPtrType = 702 PMV.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace()); 703 704 // TODO: we could skip some of this if AddrAlign >= MinWordSize. 705 Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx)); 706 PMV.AlignedAddr = Builder.CreateIntToPtr( 707 Builder.CreateAnd(AddrInt, ~(uint64_t)(MinWordSize - 1)), WordPtrType, 708 "AlignedAddr"); 709 PMV.AlignedAddrAlignment = Align(MinWordSize); 710 711 Value *PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1, "PtrLSB"); 712 if (DL.isLittleEndian()) { 713 // turn bytes into bits 714 PMV.ShiftAmt = Builder.CreateShl(PtrLSB, 3); 715 } else { 716 // turn bytes into bits, and count from the other side. 717 PMV.ShiftAmt = Builder.CreateShl( 718 Builder.CreateXor(PtrLSB, MinWordSize - ValueSize), 3); 719 } 720 721 PMV.ShiftAmt = Builder.CreateTrunc(PMV.ShiftAmt, PMV.WordType, "ShiftAmt"); 722 PMV.Mask = Builder.CreateShl( 723 ConstantInt::get(PMV.WordType, (1 << (ValueSize * 8)) - 1), PMV.ShiftAmt, 724 "Mask"); 725 PMV.Inv_Mask = Builder.CreateNot(PMV.Mask, "Inv_Mask"); 726 return PMV; 727 } 728 729 static Value *extractMaskedValue(IRBuilder<> &Builder, Value *WideWord, 730 const PartwordMaskValues &PMV) { 731 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch"); 732 if (PMV.WordType == PMV.ValueType) 733 return WideWord; 734 735 Value *Shift = Builder.CreateLShr(WideWord, PMV.ShiftAmt, "shifted"); 736 Value *Trunc = Builder.CreateTrunc(Shift, PMV.ValueType, "extracted"); 737 return Trunc; 738 } 739 740 static Value *insertMaskedValue(IRBuilder<> &Builder, Value *WideWord, 741 Value *Updated, const PartwordMaskValues &PMV) { 742 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch"); 743 assert(Updated->getType() == PMV.ValueType && "Value type mismatch"); 744 if (PMV.WordType == PMV.ValueType) 745 return Updated; 746 747 Value *ZExt = Builder.CreateZExt(Updated, PMV.WordType, "extended"); 748 Value *Shift = 749 Builder.CreateShl(ZExt, PMV.ShiftAmt, "shifted", /*HasNUW*/ true); 750 Value *And = Builder.CreateAnd(WideWord, PMV.Inv_Mask, "unmasked"); 751 Value *Or = Builder.CreateOr(And, Shift, "inserted"); 752 return Or; 753 } 754 755 /// Emit IR to implement a masked version of a given atomicrmw 756 /// operation. (That is, only the bits under the Mask should be 757 /// affected by the operation) 758 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op, 759 IRBuilder<> &Builder, Value *Loaded, 760 Value *Shifted_Inc, Value *Inc, 761 const PartwordMaskValues &PMV) { 762 // TODO: update to use 763 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order 764 // to merge bits from two values without requiring PMV.Inv_Mask. 765 switch (Op) { 766 case AtomicRMWInst::Xchg: { 767 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 768 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc); 769 return FinalVal; 770 } 771 case AtomicRMWInst::Or: 772 case AtomicRMWInst::Xor: 773 case AtomicRMWInst::And: 774 llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW"); 775 case AtomicRMWInst::Add: 776 case AtomicRMWInst::Sub: 777 case AtomicRMWInst::Nand: { 778 // The other arithmetic ops need to be masked into place. 779 Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded, Shifted_Inc); 780 Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask); 781 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 782 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked); 783 return FinalVal; 784 } 785 case AtomicRMWInst::Max: 786 case AtomicRMWInst::Min: 787 case AtomicRMWInst::UMax: 788 case AtomicRMWInst::UMin: { 789 // Finally, comparison ops will operate on the full value, so 790 // truncate down to the original size, and expand out again after 791 // doing the operation. 792 Value *Loaded_Extract = extractMaskedValue(Builder, Loaded, PMV); 793 Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded_Extract, Inc); 794 Value *FinalVal = insertMaskedValue(Builder, Loaded, NewVal, PMV); 795 return FinalVal; 796 } 797 default: 798 llvm_unreachable("Unknown atomic op"); 799 } 800 } 801 802 /// Expand a sub-word atomicrmw operation into an appropriate 803 /// word-sized operation. 804 /// 805 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same 806 /// way as a typical atomicrmw expansion. The only difference here is 807 /// that the operation inside of the loop may operate upon only a 808 /// part of the value. 809 void AtomicExpand::expandPartwordAtomicRMW( 810 AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) { 811 AtomicOrdering MemOpOrder = AI->getOrdering(); 812 SyncScope::ID SSID = AI->getSyncScopeID(); 813 814 IRBuilder<> Builder(AI); 815 816 PartwordMaskValues PMV = 817 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 818 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 819 820 Value *ValOperand_Shifted = 821 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 822 PMV.ShiftAmt, "ValOperand_Shifted"); 823 824 auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) { 825 return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded, 826 ValOperand_Shifted, AI->getValOperand(), PMV); 827 }; 828 829 Value *OldResult; 830 if (ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg) { 831 OldResult = insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, 832 PMV.AlignedAddrAlignment, MemOpOrder, SSID, 833 PerformPartwordOp, createCmpXchgInstFun); 834 } else { 835 assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::LLSC); 836 OldResult = insertRMWLLSCLoop(Builder, PMV.WordType, PMV.AlignedAddr, 837 PMV.AlignedAddrAlignment, MemOpOrder, 838 PerformPartwordOp); 839 } 840 841 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV); 842 AI->replaceAllUsesWith(FinalOldResult); 843 AI->eraseFromParent(); 844 } 845 846 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width. 847 AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) { 848 IRBuilder<> Builder(AI); 849 AtomicRMWInst::BinOp Op = AI->getOperation(); 850 851 assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 852 Op == AtomicRMWInst::And) && 853 "Unable to widen operation"); 854 855 PartwordMaskValues PMV = 856 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 857 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 858 859 Value *ValOperand_Shifted = 860 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 861 PMV.ShiftAmt, "ValOperand_Shifted"); 862 863 Value *NewOperand; 864 865 if (Op == AtomicRMWInst::And) 866 NewOperand = 867 Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand"); 868 else 869 NewOperand = ValOperand_Shifted; 870 871 AtomicRMWInst *NewAI = 872 Builder.CreateAtomicRMW(Op, PMV.AlignedAddr, NewOperand, 873 PMV.AlignedAddrAlignment, AI->getOrdering()); 874 875 Value *FinalOldResult = extractMaskedValue(Builder, NewAI, PMV); 876 AI->replaceAllUsesWith(FinalOldResult); 877 AI->eraseFromParent(); 878 return NewAI; 879 } 880 881 bool AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) { 882 // The basic idea here is that we're expanding a cmpxchg of a 883 // smaller memory size up to a word-sized cmpxchg. To do this, we 884 // need to add a retry-loop for strong cmpxchg, so that 885 // modifications to other parts of the word don't cause a spurious 886 // failure. 887 888 // This generates code like the following: 889 // [[Setup mask values PMV.*]] 890 // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt 891 // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt 892 // %InitLoaded = load i32* %addr 893 // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask 894 // br partword.cmpxchg.loop 895 // partword.cmpxchg.loop: 896 // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ], 897 // [ %OldVal_MaskOut, %partword.cmpxchg.failure ] 898 // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted 899 // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted 900 // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp, 901 // i32 %FullWord_NewVal success_ordering failure_ordering 902 // %OldVal = extractvalue { i32, i1 } %NewCI, 0 903 // %Success = extractvalue { i32, i1 } %NewCI, 1 904 // br i1 %Success, label %partword.cmpxchg.end, 905 // label %partword.cmpxchg.failure 906 // partword.cmpxchg.failure: 907 // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask 908 // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut 909 // br i1 %ShouldContinue, label %partword.cmpxchg.loop, 910 // label %partword.cmpxchg.end 911 // partword.cmpxchg.end: 912 // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt 913 // %FinalOldVal = trunc i32 %tmp1 to i8 914 // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0 915 // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1 916 917 Value *Addr = CI->getPointerOperand(); 918 Value *Cmp = CI->getCompareOperand(); 919 Value *NewVal = CI->getNewValOperand(); 920 921 BasicBlock *BB = CI->getParent(); 922 Function *F = BB->getParent(); 923 IRBuilder<> Builder(CI); 924 LLVMContext &Ctx = Builder.getContext(); 925 926 BasicBlock *EndBB = 927 BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end"); 928 auto FailureBB = 929 BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB); 930 auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB); 931 932 // The split call above "helpfully" added a branch at the end of BB 933 // (to the wrong place). 934 std::prev(BB->end())->eraseFromParent(); 935 Builder.SetInsertPoint(BB); 936 937 PartwordMaskValues PMV = 938 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr, 939 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 940 941 // Shift the incoming values over, into the right location in the word. 942 Value *NewVal_Shifted = 943 Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt); 944 Value *Cmp_Shifted = 945 Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt); 946 947 // Load the entire current word, and mask into place the expected and new 948 // values 949 LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr); 950 InitLoaded->setVolatile(CI->isVolatile()); 951 Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask); 952 Builder.CreateBr(LoopBB); 953 954 // partword.cmpxchg.loop: 955 Builder.SetInsertPoint(LoopBB); 956 PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2); 957 Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB); 958 959 // Mask/Or the expected and new values into place in the loaded word. 960 Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted); 961 Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted); 962 AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg( 963 PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, PMV.AlignedAddrAlignment, 964 CI->getSuccessOrdering(), CI->getFailureOrdering(), CI->getSyncScopeID()); 965 NewCI->setVolatile(CI->isVolatile()); 966 // When we're building a strong cmpxchg, we need a loop, so you 967 // might think we could use a weak cmpxchg inside. But, using strong 968 // allows the below comparison for ShouldContinue, and we're 969 // expecting the underlying cmpxchg to be a machine instruction, 970 // which is strong anyways. 971 NewCI->setWeak(CI->isWeak()); 972 973 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 974 Value *Success = Builder.CreateExtractValue(NewCI, 1); 975 976 if (CI->isWeak()) 977 Builder.CreateBr(EndBB); 978 else 979 Builder.CreateCondBr(Success, EndBB, FailureBB); 980 981 // partword.cmpxchg.failure: 982 Builder.SetInsertPoint(FailureBB); 983 // Upon failure, verify that the masked-out part of the loaded value 984 // has been modified. If it didn't, abort the cmpxchg, since the 985 // masked-in part must've. 986 Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask); 987 Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut); 988 Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB); 989 990 // Add the second value to the phi from above 991 Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB); 992 993 // partword.cmpxchg.end: 994 Builder.SetInsertPoint(CI); 995 996 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV); 997 Value *Res = UndefValue::get(CI->getType()); 998 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 999 Res = Builder.CreateInsertValue(Res, Success, 1); 1000 1001 CI->replaceAllUsesWith(Res); 1002 CI->eraseFromParent(); 1003 return true; 1004 } 1005 1006 void AtomicExpand::expandAtomicOpToLLSC( 1007 Instruction *I, Type *ResultType, Value *Addr, Align AddrAlign, 1008 AtomicOrdering MemOpOrder, 1009 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { 1010 IRBuilder<> Builder(I); 1011 Value *Loaded = insertRMWLLSCLoop(Builder, ResultType, Addr, AddrAlign, 1012 MemOpOrder, PerformOp); 1013 1014 I->replaceAllUsesWith(Loaded); 1015 I->eraseFromParent(); 1016 } 1017 1018 void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) { 1019 IRBuilder<> Builder(AI); 1020 1021 PartwordMaskValues PMV = 1022 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 1023 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1024 1025 // The value operand must be sign-extended for signed min/max so that the 1026 // target's signed comparison instructions can be used. Otherwise, just 1027 // zero-ext. 1028 Instruction::CastOps CastOp = Instruction::ZExt; 1029 AtomicRMWInst::BinOp RMWOp = AI->getOperation(); 1030 if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min) 1031 CastOp = Instruction::SExt; 1032 1033 Value *ValOperand_Shifted = Builder.CreateShl( 1034 Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType), 1035 PMV.ShiftAmt, "ValOperand_Shifted"); 1036 Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic( 1037 Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt, 1038 AI->getOrdering()); 1039 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV); 1040 AI->replaceAllUsesWith(FinalOldResult); 1041 AI->eraseFromParent(); 1042 } 1043 1044 void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI) { 1045 IRBuilder<> Builder(CI); 1046 1047 PartwordMaskValues PMV = createMaskInstrs( 1048 Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(), 1049 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1050 1051 Value *CmpVal_Shifted = Builder.CreateShl( 1052 Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt, 1053 "CmpVal_Shifted"); 1054 Value *NewVal_Shifted = Builder.CreateShl( 1055 Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt, 1056 "NewVal_Shifted"); 1057 Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic( 1058 Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask, 1059 CI->getMergedOrdering()); 1060 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV); 1061 Value *Res = UndefValue::get(CI->getType()); 1062 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 1063 Value *Success = Builder.CreateICmpEQ( 1064 CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success"); 1065 Res = Builder.CreateInsertValue(Res, Success, 1); 1066 1067 CI->replaceAllUsesWith(Res); 1068 CI->eraseFromParent(); 1069 } 1070 1071 Value *AtomicExpand::insertRMWLLSCLoop( 1072 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, 1073 AtomicOrdering MemOpOrder, 1074 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { 1075 LLVMContext &Ctx = Builder.getContext(); 1076 BasicBlock *BB = Builder.GetInsertBlock(); 1077 Function *F = BB->getParent(); 1078 1079 assert(AddrAlign >= 1080 F->getParent()->getDataLayout().getTypeStoreSize(ResultTy) && 1081 "Expected at least natural alignment at this point."); 1082 1083 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1084 // 1085 // The standard expansion we produce is: 1086 // [...] 1087 // atomicrmw.start: 1088 // %loaded = @load.linked(%addr) 1089 // %new = some_op iN %loaded, %incr 1090 // %stored = @store_conditional(%new, %addr) 1091 // %try_again = icmp i32 ne %stored, 0 1092 // br i1 %try_again, label %loop, label %atomicrmw.end 1093 // atomicrmw.end: 1094 // [...] 1095 BasicBlock *ExitBB = 1096 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1097 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1098 1099 // The split call above "helpfully" added a branch at the end of BB (to the 1100 // wrong place). 1101 std::prev(BB->end())->eraseFromParent(); 1102 Builder.SetInsertPoint(BB); 1103 Builder.CreateBr(LoopBB); 1104 1105 // Start the main loop block now that we've taken care of the preliminaries. 1106 Builder.SetInsertPoint(LoopBB); 1107 Value *Loaded = TLI->emitLoadLinked(Builder, ResultTy, Addr, MemOpOrder); 1108 1109 Value *NewVal = PerformOp(Builder, Loaded); 1110 1111 Value *StoreSuccess = 1112 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); 1113 Value *TryAgain = Builder.CreateICmpNE( 1114 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); 1115 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); 1116 1117 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1118 return Loaded; 1119 } 1120 1121 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of 1122 /// the equivalent bitwidth. We used to not support pointer cmpxchg in the 1123 /// IR. As a migration step, we convert back to what use to be the standard 1124 /// way to represent a pointer cmpxchg so that we can update backends one by 1125 /// one. 1126 AtomicCmpXchgInst * 1127 AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) { 1128 auto *M = CI->getModule(); 1129 Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(), 1130 M->getDataLayout()); 1131 1132 IRBuilder<> Builder(CI); 1133 1134 Value *Addr = CI->getPointerOperand(); 1135 Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace()); 1136 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 1137 1138 Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy); 1139 Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy); 1140 1141 auto *NewCI = Builder.CreateAtomicCmpXchg( 1142 NewAddr, NewCmp, NewNewVal, CI->getAlign(), CI->getSuccessOrdering(), 1143 CI->getFailureOrdering(), CI->getSyncScopeID()); 1144 NewCI->setVolatile(CI->isVolatile()); 1145 NewCI->setWeak(CI->isWeak()); 1146 LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n"); 1147 1148 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 1149 Value *Succ = Builder.CreateExtractValue(NewCI, 1); 1150 1151 OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType()); 1152 1153 Value *Res = UndefValue::get(CI->getType()); 1154 Res = Builder.CreateInsertValue(Res, OldVal, 0); 1155 Res = Builder.CreateInsertValue(Res, Succ, 1); 1156 1157 CI->replaceAllUsesWith(Res); 1158 CI->eraseFromParent(); 1159 return NewCI; 1160 } 1161 1162 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1163 AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); 1164 AtomicOrdering FailureOrder = CI->getFailureOrdering(); 1165 Value *Addr = CI->getPointerOperand(); 1166 BasicBlock *BB = CI->getParent(); 1167 Function *F = BB->getParent(); 1168 LLVMContext &Ctx = F->getContext(); 1169 // If shouldInsertFencesForAtomic() returns true, then the target does not 1170 // want to deal with memory orders, and emitLeading/TrailingFence should take 1171 // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we 1172 // should preserve the ordering. 1173 bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI); 1174 AtomicOrdering MemOpOrder = ShouldInsertFencesForAtomic 1175 ? AtomicOrdering::Monotonic 1176 : CI->getMergedOrdering(); 1177 1178 // In implementations which use a barrier to achieve release semantics, we can 1179 // delay emitting this barrier until we know a store is actually going to be 1180 // attempted. The cost of this delay is that we need 2 copies of the block 1181 // emitting the load-linked, affecting code size. 1182 // 1183 // Ideally, this logic would be unconditional except for the minsize check 1184 // since in other cases the extra blocks naturally collapse down to the 1185 // minimal loop. Unfortunately, this puts too much stress on later 1186 // optimisations so we avoid emitting the extra logic in those cases too. 1187 bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic && 1188 SuccessOrder != AtomicOrdering::Monotonic && 1189 SuccessOrder != AtomicOrdering::Acquire && 1190 !F->hasMinSize(); 1191 1192 // There's no overhead for sinking the release barrier in a weak cmpxchg, so 1193 // do it even on minsize. 1194 bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak(); 1195 1196 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord 1197 // 1198 // The full expansion we produce is: 1199 // [...] 1200 // %aligned.addr = ... 1201 // cmpxchg.start: 1202 // %unreleasedload = @load.linked(%aligned.addr) 1203 // %unreleasedload.extract = extract value from %unreleasedload 1204 // %should_store = icmp eq %unreleasedload.extract, %desired 1205 // br i1 %should_store, label %cmpxchg.releasingstore, 1206 // label %cmpxchg.nostore 1207 // cmpxchg.releasingstore: 1208 // fence? 1209 // br label cmpxchg.trystore 1210 // cmpxchg.trystore: 1211 // %loaded.trystore = phi [%unreleasedload, %cmpxchg.releasingstore], 1212 // [%releasedload, %cmpxchg.releasedload] 1213 // %updated.new = insert %new into %loaded.trystore 1214 // %stored = @store_conditional(%updated.new, %aligned.addr) 1215 // %success = icmp eq i32 %stored, 0 1216 // br i1 %success, label %cmpxchg.success, 1217 // label %cmpxchg.releasedload/%cmpxchg.failure 1218 // cmpxchg.releasedload: 1219 // %releasedload = @load.linked(%aligned.addr) 1220 // %releasedload.extract = extract value from %releasedload 1221 // %should_store = icmp eq %releasedload.extract, %desired 1222 // br i1 %should_store, label %cmpxchg.trystore, 1223 // label %cmpxchg.failure 1224 // cmpxchg.success: 1225 // fence? 1226 // br label %cmpxchg.end 1227 // cmpxchg.nostore: 1228 // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start], 1229 // [%releasedload, 1230 // %cmpxchg.releasedload/%cmpxchg.trystore] 1231 // @load_linked_fail_balance()? 1232 // br label %cmpxchg.failure 1233 // cmpxchg.failure: 1234 // fence? 1235 // br label %cmpxchg.end 1236 // cmpxchg.end: 1237 // %loaded.exit = phi [%loaded.nostore, %cmpxchg.failure], 1238 // [%loaded.trystore, %cmpxchg.trystore] 1239 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] 1240 // %loaded = extract value from %loaded.exit 1241 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 1242 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 1243 // [...] 1244 BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end"); 1245 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); 1246 auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB); 1247 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB); 1248 auto ReleasedLoadBB = 1249 BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB); 1250 auto TryStoreBB = 1251 BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB); 1252 auto ReleasingStoreBB = 1253 BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB); 1254 auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB); 1255 1256 // This grabs the DebugLoc from CI 1257 IRBuilder<> Builder(CI); 1258 1259 // The split call above "helpfully" added a branch at the end of BB (to the 1260 // wrong place), but we might want a fence too. It's easiest to just remove 1261 // the branch entirely. 1262 std::prev(BB->end())->eraseFromParent(); 1263 Builder.SetInsertPoint(BB); 1264 if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier) 1265 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1266 1267 PartwordMaskValues PMV = 1268 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr, 1269 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1270 Builder.CreateBr(StartBB); 1271 1272 // Start the main loop block now that we've taken care of the preliminaries. 1273 Builder.SetInsertPoint(StartBB); 1274 Value *UnreleasedLoad = 1275 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder); 1276 Value *UnreleasedLoadExtract = 1277 extractMaskedValue(Builder, UnreleasedLoad, PMV); 1278 Value *ShouldStore = Builder.CreateICmpEQ( 1279 UnreleasedLoadExtract, CI->getCompareOperand(), "should_store"); 1280 1281 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1282 // jump straight past that fence instruction (if it exists). 1283 Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB); 1284 1285 Builder.SetInsertPoint(ReleasingStoreBB); 1286 if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier) 1287 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1288 Builder.CreateBr(TryStoreBB); 1289 1290 Builder.SetInsertPoint(TryStoreBB); 1291 PHINode *LoadedTryStore = 1292 Builder.CreatePHI(PMV.WordType, 2, "loaded.trystore"); 1293 LoadedTryStore->addIncoming(UnreleasedLoad, ReleasingStoreBB); 1294 Value *NewValueInsert = 1295 insertMaskedValue(Builder, LoadedTryStore, CI->getNewValOperand(), PMV); 1296 Value *StoreSuccess = TLI->emitStoreConditional(Builder, NewValueInsert, 1297 PMV.AlignedAddr, MemOpOrder); 1298 StoreSuccess = Builder.CreateICmpEQ( 1299 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); 1300 BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB; 1301 Builder.CreateCondBr(StoreSuccess, SuccessBB, 1302 CI->isWeak() ? FailureBB : RetryBB); 1303 1304 Builder.SetInsertPoint(ReleasedLoadBB); 1305 Value *SecondLoad; 1306 if (HasReleasedLoadBB) { 1307 SecondLoad = 1308 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder); 1309 Value *SecondLoadExtract = extractMaskedValue(Builder, SecondLoad, PMV); 1310 ShouldStore = Builder.CreateICmpEQ(SecondLoadExtract, 1311 CI->getCompareOperand(), "should_store"); 1312 1313 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1314 // jump straight past that fence instruction (if it exists). 1315 Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB); 1316 // Update PHI node in TryStoreBB. 1317 LoadedTryStore->addIncoming(SecondLoad, ReleasedLoadBB); 1318 } else 1319 Builder.CreateUnreachable(); 1320 1321 // Make sure later instructions don't get reordered with a fence if 1322 // necessary. 1323 Builder.SetInsertPoint(SuccessBB); 1324 if (ShouldInsertFencesForAtomic) 1325 TLI->emitTrailingFence(Builder, CI, SuccessOrder); 1326 Builder.CreateBr(ExitBB); 1327 1328 Builder.SetInsertPoint(NoStoreBB); 1329 PHINode *LoadedNoStore = 1330 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.nostore"); 1331 LoadedNoStore->addIncoming(UnreleasedLoad, StartBB); 1332 if (HasReleasedLoadBB) 1333 LoadedNoStore->addIncoming(SecondLoad, ReleasedLoadBB); 1334 1335 // In the failing case, where we don't execute the store-conditional, the 1336 // target might want to balance out the load-linked with a dedicated 1337 // instruction (e.g., on ARM, clearing the exclusive monitor). 1338 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 1339 Builder.CreateBr(FailureBB); 1340 1341 Builder.SetInsertPoint(FailureBB); 1342 PHINode *LoadedFailure = 1343 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.failure"); 1344 LoadedFailure->addIncoming(LoadedNoStore, NoStoreBB); 1345 if (CI->isWeak()) 1346 LoadedFailure->addIncoming(LoadedTryStore, TryStoreBB); 1347 if (ShouldInsertFencesForAtomic) 1348 TLI->emitTrailingFence(Builder, CI, FailureOrder); 1349 Builder.CreateBr(ExitBB); 1350 1351 // Finally, we have control-flow based knowledge of whether the cmpxchg 1352 // succeeded or not. We expose this to later passes by converting any 1353 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate 1354 // PHI. 1355 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1356 PHINode *LoadedExit = 1357 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.exit"); 1358 LoadedExit->addIncoming(LoadedTryStore, SuccessBB); 1359 LoadedExit->addIncoming(LoadedFailure, FailureBB); 1360 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2, "success"); 1361 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); 1362 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); 1363 1364 // This is the "exit value" from the cmpxchg expansion. It may be of 1365 // a type wider than the one in the cmpxchg instruction. 1366 Value *LoadedFull = LoadedExit; 1367 1368 Builder.SetInsertPoint(ExitBB, std::next(Success->getIterator())); 1369 Value *Loaded = extractMaskedValue(Builder, LoadedFull, PMV); 1370 1371 // Look for any users of the cmpxchg that are just comparing the loaded value 1372 // against the desired one, and replace them with the CFG-derived version. 1373 SmallVector<ExtractValueInst *, 2> PrunedInsts; 1374 for (auto User : CI->users()) { 1375 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); 1376 if (!EV) 1377 continue; 1378 1379 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && 1380 "weird extraction from { iN, i1 }"); 1381 1382 if (EV->getIndices()[0] == 0) 1383 EV->replaceAllUsesWith(Loaded); 1384 else 1385 EV->replaceAllUsesWith(Success); 1386 1387 PrunedInsts.push_back(EV); 1388 } 1389 1390 // We can remove the instructions now we're no longer iterating through them. 1391 for (auto EV : PrunedInsts) 1392 EV->eraseFromParent(); 1393 1394 if (!CI->use_empty()) { 1395 // Some use of the full struct return that we don't understand has happened, 1396 // so we've got to reconstruct it properly. 1397 Value *Res; 1398 Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0); 1399 Res = Builder.CreateInsertValue(Res, Success, 1); 1400 1401 CI->replaceAllUsesWith(Res); 1402 } 1403 1404 CI->eraseFromParent(); 1405 return true; 1406 } 1407 1408 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst *RMWI) { 1409 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand()); 1410 if (!C) 1411 return false; 1412 1413 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 1414 switch (Op) { 1415 case AtomicRMWInst::Add: 1416 case AtomicRMWInst::Sub: 1417 case AtomicRMWInst::Or: 1418 case AtomicRMWInst::Xor: 1419 return C->isZero(); 1420 case AtomicRMWInst::And: 1421 return C->isMinusOne(); 1422 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/... 1423 default: 1424 return false; 1425 } 1426 } 1427 1428 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst *RMWI) { 1429 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { 1430 tryExpandAtomicLoad(ResultingLoad); 1431 return true; 1432 } 1433 return false; 1434 } 1435 1436 Value *AtomicExpand::insertRMWCmpXchgLoop( 1437 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, 1438 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 1439 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, 1440 CreateCmpXchgInstFun CreateCmpXchg) { 1441 LLVMContext &Ctx = Builder.getContext(); 1442 BasicBlock *BB = Builder.GetInsertBlock(); 1443 Function *F = BB->getParent(); 1444 1445 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1446 // 1447 // The standard expansion we produce is: 1448 // [...] 1449 // %init_loaded = load atomic iN* %addr 1450 // br label %loop 1451 // loop: 1452 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] 1453 // %new = some_op iN %loaded, %incr 1454 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new 1455 // %new_loaded = extractvalue { iN, i1 } %pair, 0 1456 // %success = extractvalue { iN, i1 } %pair, 1 1457 // br i1 %success, label %atomicrmw.end, label %loop 1458 // atomicrmw.end: 1459 // [...] 1460 BasicBlock *ExitBB = 1461 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1462 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1463 1464 // The split call above "helpfully" added a branch at the end of BB (to the 1465 // wrong place), but we want a load. It's easiest to just remove 1466 // the branch entirely. 1467 std::prev(BB->end())->eraseFromParent(); 1468 Builder.SetInsertPoint(BB); 1469 LoadInst *InitLoaded = Builder.CreateAlignedLoad(ResultTy, Addr, AddrAlign); 1470 Builder.CreateBr(LoopBB); 1471 1472 // Start the main loop block now that we've taken care of the preliminaries. 1473 Builder.SetInsertPoint(LoopBB); 1474 PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded"); 1475 Loaded->addIncoming(InitLoaded, BB); 1476 1477 Value *NewVal = PerformOp(Builder, Loaded); 1478 1479 Value *NewLoaded = nullptr; 1480 Value *Success = nullptr; 1481 1482 CreateCmpXchg(Builder, Addr, Loaded, NewVal, AddrAlign, 1483 MemOpOrder == AtomicOrdering::Unordered 1484 ? AtomicOrdering::Monotonic 1485 : MemOpOrder, 1486 SSID, Success, NewLoaded); 1487 assert(Success && NewLoaded); 1488 1489 Loaded->addIncoming(NewLoaded, LoopBB); 1490 1491 Builder.CreateCondBr(Success, ExitBB, LoopBB); 1492 1493 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1494 return NewLoaded; 1495 } 1496 1497 bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1498 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 1499 unsigned ValueSize = getAtomicOpSize(CI); 1500 1501 switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) { 1502 default: 1503 llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg"); 1504 case TargetLoweringBase::AtomicExpansionKind::None: 1505 if (ValueSize < MinCASSize) 1506 return expandPartwordCmpXchg(CI); 1507 return false; 1508 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 1509 return expandAtomicCmpXchg(CI); 1510 } 1511 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: 1512 expandAtomicCmpXchgToMaskedIntrinsic(CI); 1513 return true; 1514 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 1515 return lowerAtomicCmpXchgInst(CI); 1516 } 1517 } 1518 1519 // Note: This function is exposed externally by AtomicExpandUtils.h 1520 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 1521 CreateCmpXchgInstFun CreateCmpXchg) { 1522 IRBuilder<> Builder(AI); 1523 Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop( 1524 Builder, AI->getType(), AI->getPointerOperand(), AI->getAlign(), 1525 AI->getOrdering(), AI->getSyncScopeID(), 1526 [&](IRBuilder<> &Builder, Value *Loaded) { 1527 return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded, 1528 AI->getValOperand()); 1529 }, 1530 CreateCmpXchg); 1531 1532 AI->replaceAllUsesWith(Loaded); 1533 AI->eraseFromParent(); 1534 return true; 1535 } 1536 1537 // In order to use one of the sized library calls such as 1538 // __atomic_fetch_add_4, the alignment must be sufficient, the size 1539 // must be one of the potentially-specialized sizes, and the value 1540 // type must actually exist in C on the target (otherwise, the 1541 // function wouldn't actually be defined.) 1542 static bool canUseSizedAtomicCall(unsigned Size, Align Alignment, 1543 const DataLayout &DL) { 1544 // TODO: "LargestSize" is an approximation for "largest type that 1545 // you can express in C". It seems to be the case that int128 is 1546 // supported on all 64-bit platforms, otherwise only up to 64-bit 1547 // integers are supported. If we get this wrong, then we'll try to 1548 // call a sized libcall that doesn't actually exist. There should 1549 // really be some more reliable way in LLVM of determining integer 1550 // sizes which are valid in the target's C ABI... 1551 unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8; 1552 return Alignment >= Size && 1553 (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) && 1554 Size <= LargestSize; 1555 } 1556 1557 void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) { 1558 static const RTLIB::Libcall Libcalls[6] = { 1559 RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2, 1560 RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16}; 1561 unsigned Size = getAtomicOpSize(I); 1562 1563 bool expanded = expandAtomicOpToLibcall( 1564 I, Size, I->getAlign(), I->getPointerOperand(), nullptr, nullptr, 1565 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1566 if (!expanded) 1567 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Load"); 1568 } 1569 1570 void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) { 1571 static const RTLIB::Libcall Libcalls[6] = { 1572 RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2, 1573 RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16}; 1574 unsigned Size = getAtomicOpSize(I); 1575 1576 bool expanded = expandAtomicOpToLibcall( 1577 I, Size, I->getAlign(), I->getPointerOperand(), I->getValueOperand(), 1578 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1579 if (!expanded) 1580 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Store"); 1581 } 1582 1583 void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) { 1584 static const RTLIB::Libcall Libcalls[6] = { 1585 RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1, 1586 RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4, 1587 RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16}; 1588 unsigned Size = getAtomicOpSize(I); 1589 1590 bool expanded = expandAtomicOpToLibcall( 1591 I, Size, I->getAlign(), I->getPointerOperand(), I->getNewValOperand(), 1592 I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(), 1593 Libcalls); 1594 if (!expanded) 1595 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for CAS"); 1596 } 1597 1598 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) { 1599 static const RTLIB::Libcall LibcallsXchg[6] = { 1600 RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1, 1601 RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4, 1602 RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16}; 1603 static const RTLIB::Libcall LibcallsAdd[6] = { 1604 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1, 1605 RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4, 1606 RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16}; 1607 static const RTLIB::Libcall LibcallsSub[6] = { 1608 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1, 1609 RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4, 1610 RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16}; 1611 static const RTLIB::Libcall LibcallsAnd[6] = { 1612 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1, 1613 RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4, 1614 RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16}; 1615 static const RTLIB::Libcall LibcallsOr[6] = { 1616 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1, 1617 RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4, 1618 RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16}; 1619 static const RTLIB::Libcall LibcallsXor[6] = { 1620 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1, 1621 RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4, 1622 RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16}; 1623 static const RTLIB::Libcall LibcallsNand[6] = { 1624 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1, 1625 RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4, 1626 RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16}; 1627 1628 switch (Op) { 1629 case AtomicRMWInst::BAD_BINOP: 1630 llvm_unreachable("Should not have BAD_BINOP."); 1631 case AtomicRMWInst::Xchg: 1632 return makeArrayRef(LibcallsXchg); 1633 case AtomicRMWInst::Add: 1634 return makeArrayRef(LibcallsAdd); 1635 case AtomicRMWInst::Sub: 1636 return makeArrayRef(LibcallsSub); 1637 case AtomicRMWInst::And: 1638 return makeArrayRef(LibcallsAnd); 1639 case AtomicRMWInst::Or: 1640 return makeArrayRef(LibcallsOr); 1641 case AtomicRMWInst::Xor: 1642 return makeArrayRef(LibcallsXor); 1643 case AtomicRMWInst::Nand: 1644 return makeArrayRef(LibcallsNand); 1645 case AtomicRMWInst::Max: 1646 case AtomicRMWInst::Min: 1647 case AtomicRMWInst::UMax: 1648 case AtomicRMWInst::UMin: 1649 case AtomicRMWInst::FAdd: 1650 case AtomicRMWInst::FSub: 1651 // No atomic libcalls are available for max/min/umax/umin. 1652 return {}; 1653 } 1654 llvm_unreachable("Unexpected AtomicRMW operation."); 1655 } 1656 1657 void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) { 1658 ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation()); 1659 1660 unsigned Size = getAtomicOpSize(I); 1661 1662 bool Success = false; 1663 if (!Libcalls.empty()) 1664 Success = expandAtomicOpToLibcall( 1665 I, Size, I->getAlign(), I->getPointerOperand(), I->getValOperand(), 1666 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1667 1668 // The expansion failed: either there were no libcalls at all for 1669 // the operation (min/max), or there were only size-specialized 1670 // libcalls (add/sub/etc) and we needed a generic. So, expand to a 1671 // CAS libcall, via a CAS loop, instead. 1672 if (!Success) { 1673 expandAtomicRMWToCmpXchg( 1674 I, [this](IRBuilder<> &Builder, Value *Addr, Value *Loaded, 1675 Value *NewVal, Align Alignment, AtomicOrdering MemOpOrder, 1676 SyncScope::ID SSID, Value *&Success, Value *&NewLoaded) { 1677 // Create the CAS instruction normally... 1678 AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg( 1679 Addr, Loaded, NewVal, Alignment, MemOpOrder, 1680 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID); 1681 Success = Builder.CreateExtractValue(Pair, 1, "success"); 1682 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 1683 1684 // ...and then expand the CAS into a libcall. 1685 expandAtomicCASToLibcall(Pair); 1686 }); 1687 } 1688 } 1689 1690 // A helper routine for the above expandAtomic*ToLibcall functions. 1691 // 1692 // 'Libcalls' contains an array of enum values for the particular 1693 // ATOMIC libcalls to be emitted. All of the other arguments besides 1694 // 'I' are extracted from the Instruction subclass by the 1695 // caller. Depending on the particular call, some will be null. 1696 bool AtomicExpand::expandAtomicOpToLibcall( 1697 Instruction *I, unsigned Size, Align Alignment, Value *PointerOperand, 1698 Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering, 1699 AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) { 1700 assert(Libcalls.size() == 6); 1701 1702 LLVMContext &Ctx = I->getContext(); 1703 Module *M = I->getModule(); 1704 const DataLayout &DL = M->getDataLayout(); 1705 IRBuilder<> Builder(I); 1706 IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front()); 1707 1708 bool UseSizedLibcall = canUseSizedAtomicCall(Size, Alignment, DL); 1709 Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8); 1710 1711 const Align AllocaAlignment = DL.getPrefTypeAlign(SizedIntTy); 1712 1713 // TODO: the "order" argument type is "int", not int32. So 1714 // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints. 1715 ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size); 1716 assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO"); 1717 Constant *OrderingVal = 1718 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering)); 1719 Constant *Ordering2Val = nullptr; 1720 if (CASExpected) { 1721 assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO"); 1722 Ordering2Val = 1723 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2)); 1724 } 1725 bool HasResult = I->getType() != Type::getVoidTy(Ctx); 1726 1727 RTLIB::Libcall RTLibType; 1728 if (UseSizedLibcall) { 1729 switch (Size) { 1730 case 1: 1731 RTLibType = Libcalls[1]; 1732 break; 1733 case 2: 1734 RTLibType = Libcalls[2]; 1735 break; 1736 case 4: 1737 RTLibType = Libcalls[3]; 1738 break; 1739 case 8: 1740 RTLibType = Libcalls[4]; 1741 break; 1742 case 16: 1743 RTLibType = Libcalls[5]; 1744 break; 1745 } 1746 } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) { 1747 RTLibType = Libcalls[0]; 1748 } else { 1749 // Can't use sized function, and there's no generic for this 1750 // operation, so give up. 1751 return false; 1752 } 1753 1754 if (!TLI->getLibcallName(RTLibType)) { 1755 // This target does not implement the requested atomic libcall so give up. 1756 return false; 1757 } 1758 1759 // Build up the function call. There's two kinds. First, the sized 1760 // variants. These calls are going to be one of the following (with 1761 // N=1,2,4,8,16): 1762 // iN __atomic_load_N(iN *ptr, int ordering) 1763 // void __atomic_store_N(iN *ptr, iN val, int ordering) 1764 // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering) 1765 // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired, 1766 // int success_order, int failure_order) 1767 // 1768 // Note that these functions can be used for non-integer atomic 1769 // operations, the values just need to be bitcast to integers on the 1770 // way in and out. 1771 // 1772 // And, then, the generic variants. They look like the following: 1773 // void __atomic_load(size_t size, void *ptr, void *ret, int ordering) 1774 // void __atomic_store(size_t size, void *ptr, void *val, int ordering) 1775 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, 1776 // int ordering) 1777 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, 1778 // void *desired, int success_order, 1779 // int failure_order) 1780 // 1781 // The different signatures are built up depending on the 1782 // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult' 1783 // variables. 1784 1785 AllocaInst *AllocaCASExpected = nullptr; 1786 Value *AllocaCASExpected_i8 = nullptr; 1787 AllocaInst *AllocaValue = nullptr; 1788 Value *AllocaValue_i8 = nullptr; 1789 AllocaInst *AllocaResult = nullptr; 1790 Value *AllocaResult_i8 = nullptr; 1791 1792 Type *ResultTy; 1793 SmallVector<Value *, 6> Args; 1794 AttributeList Attr; 1795 1796 // 'size' argument. 1797 if (!UseSizedLibcall) { 1798 // Note, getIntPtrType is assumed equivalent to size_t. 1799 Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size)); 1800 } 1801 1802 // 'ptr' argument. 1803 // note: This assumes all address spaces share a common libfunc 1804 // implementation and that addresses are convertable. For systems without 1805 // that property, we'd need to extend this mechanism to support AS-specific 1806 // families of atomic intrinsics. 1807 auto PtrTypeAS = PointerOperand->getType()->getPointerAddressSpace(); 1808 Value *PtrVal = 1809 Builder.CreateBitCast(PointerOperand, Type::getInt8PtrTy(Ctx, PtrTypeAS)); 1810 PtrVal = Builder.CreateAddrSpaceCast(PtrVal, Type::getInt8PtrTy(Ctx)); 1811 Args.push_back(PtrVal); 1812 1813 // 'expected' argument, if present. 1814 if (CASExpected) { 1815 AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType()); 1816 AllocaCASExpected->setAlignment(AllocaAlignment); 1817 unsigned AllocaAS = AllocaCASExpected->getType()->getPointerAddressSpace(); 1818 1819 AllocaCASExpected_i8 = Builder.CreateBitCast( 1820 AllocaCASExpected, Type::getInt8PtrTy(Ctx, AllocaAS)); 1821 Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64); 1822 Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment); 1823 Args.push_back(AllocaCASExpected_i8); 1824 } 1825 1826 // 'val' argument ('desired' for cas), if present. 1827 if (ValueOperand) { 1828 if (UseSizedLibcall) { 1829 Value *IntValue = 1830 Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy); 1831 Args.push_back(IntValue); 1832 } else { 1833 AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType()); 1834 AllocaValue->setAlignment(AllocaAlignment); 1835 AllocaValue_i8 = 1836 Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx)); 1837 Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64); 1838 Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment); 1839 Args.push_back(AllocaValue_i8); 1840 } 1841 } 1842 1843 // 'ret' argument. 1844 if (!CASExpected && HasResult && !UseSizedLibcall) { 1845 AllocaResult = AllocaBuilder.CreateAlloca(I->getType()); 1846 AllocaResult->setAlignment(AllocaAlignment); 1847 unsigned AllocaAS = AllocaResult->getType()->getPointerAddressSpace(); 1848 AllocaResult_i8 = 1849 Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx, AllocaAS)); 1850 Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64); 1851 Args.push_back(AllocaResult_i8); 1852 } 1853 1854 // 'ordering' ('success_order' for cas) argument. 1855 Args.push_back(OrderingVal); 1856 1857 // 'failure_order' argument, if present. 1858 if (Ordering2Val) 1859 Args.push_back(Ordering2Val); 1860 1861 // Now, the return type. 1862 if (CASExpected) { 1863 ResultTy = Type::getInt1Ty(Ctx); 1864 Attr = Attr.addRetAttribute(Ctx, Attribute::ZExt); 1865 } else if (HasResult && UseSizedLibcall) 1866 ResultTy = SizedIntTy; 1867 else 1868 ResultTy = Type::getVoidTy(Ctx); 1869 1870 // Done with setting up arguments and return types, create the call: 1871 SmallVector<Type *, 6> ArgTys; 1872 for (Value *Arg : Args) 1873 ArgTys.push_back(Arg->getType()); 1874 FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false); 1875 FunctionCallee LibcallFn = 1876 M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr); 1877 CallInst *Call = Builder.CreateCall(LibcallFn, Args); 1878 Call->setAttributes(Attr); 1879 Value *Result = Call; 1880 1881 // And then, extract the results... 1882 if (ValueOperand && !UseSizedLibcall) 1883 Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64); 1884 1885 if (CASExpected) { 1886 // The final result from the CAS is {load of 'expected' alloca, bool result 1887 // from call} 1888 Type *FinalResultTy = I->getType(); 1889 Value *V = UndefValue::get(FinalResultTy); 1890 Value *ExpectedOut = Builder.CreateAlignedLoad( 1891 CASExpected->getType(), AllocaCASExpected, AllocaAlignment); 1892 Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64); 1893 V = Builder.CreateInsertValue(V, ExpectedOut, 0); 1894 V = Builder.CreateInsertValue(V, Result, 1); 1895 I->replaceAllUsesWith(V); 1896 } else if (HasResult) { 1897 Value *V; 1898 if (UseSizedLibcall) 1899 V = Builder.CreateBitOrPointerCast(Result, I->getType()); 1900 else { 1901 V = Builder.CreateAlignedLoad(I->getType(), AllocaResult, 1902 AllocaAlignment); 1903 Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64); 1904 } 1905 I->replaceAllUsesWith(V); 1906 } 1907 I->eraseFromParent(); 1908 return true; 1909 } 1910