1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a pass (at IR level) to replace atomic instructions with
10 // __atomic_* library calls, or target specific instruction which implement the
11 // same semantics in a way which better fits the target backend.  This can
12 // include the use of (intrinsic-based) load-linked/store-conditional loops,
13 // AtomicCmpXchg, or type coercions.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/CodeGen/AtomicExpandUtils.h"
21 #include "llvm/CodeGen/RuntimeLibcalls.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetPassConfig.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/CodeGen/ValueTypes.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Constant.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/InstIterator.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/User.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/InitializePasses.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/AtomicOrdering.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include <cassert>
50 #include <cstdint>
51 #include <iterator>
52 
53 using namespace llvm;
54 
55 #define DEBUG_TYPE "atomic-expand"
56 
57 namespace {
58 
59   class AtomicExpand: public FunctionPass {
60     const TargetLowering *TLI = nullptr;
61 
62   public:
63     static char ID; // Pass identification, replacement for typeid
64 
65     AtomicExpand() : FunctionPass(ID) {
66       initializeAtomicExpandPass(*PassRegistry::getPassRegistry());
67     }
68 
69     bool runOnFunction(Function &F) override;
70 
71   private:
72     bool bracketInstWithFences(Instruction *I, AtomicOrdering Order);
73     IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL);
74     LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI);
75     bool tryExpandAtomicLoad(LoadInst *LI);
76     bool expandAtomicLoadToLL(LoadInst *LI);
77     bool expandAtomicLoadToCmpXchg(LoadInst *LI);
78     StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI);
79     bool expandAtomicStore(StoreInst *SI);
80     bool tryExpandAtomicRMW(AtomicRMWInst *AI);
81     Value *
82     insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
83                       AtomicOrdering MemOpOrder,
84                       function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
85     void expandAtomicOpToLLSC(
86         Instruction *I, Type *ResultTy, Value *Addr, AtomicOrdering MemOpOrder,
87         function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
88     void expandPartwordAtomicRMW(
89         AtomicRMWInst *I,
90         TargetLoweringBase::AtomicExpansionKind ExpansionKind);
91     AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI);
92     void expandPartwordCmpXchg(AtomicCmpXchgInst *I);
93     void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI);
94     void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI);
95 
96     AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI);
97     static Value *insertRMWCmpXchgLoop(
98         IRBuilder<> &Builder, Type *ResultType, Value *Addr,
99         AtomicOrdering MemOpOrder,
100         function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
101         CreateCmpXchgInstFun CreateCmpXchg);
102     bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI);
103 
104     bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI);
105     bool isIdempotentRMW(AtomicRMWInst *RMWI);
106     bool simplifyIdempotentRMW(AtomicRMWInst *RMWI);
107 
108     bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, Align Alignment,
109                                  Value *PointerOperand, Value *ValueOperand,
110                                  Value *CASExpected, AtomicOrdering Ordering,
111                                  AtomicOrdering Ordering2,
112                                  ArrayRef<RTLIB::Libcall> Libcalls);
113     void expandAtomicLoadToLibcall(LoadInst *LI);
114     void expandAtomicStoreToLibcall(StoreInst *LI);
115     void expandAtomicRMWToLibcall(AtomicRMWInst *I);
116     void expandAtomicCASToLibcall(AtomicCmpXchgInst *I);
117 
118     friend bool
119     llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
120                                    CreateCmpXchgInstFun CreateCmpXchg);
121   };
122 
123 } // end anonymous namespace
124 
125 char AtomicExpand::ID = 0;
126 
127 char &llvm::AtomicExpandID = AtomicExpand::ID;
128 
129 INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions",
130                 false, false)
131 
132 FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); }
133 
134 // Helper functions to retrieve the size of atomic instructions.
135 static unsigned getAtomicOpSize(LoadInst *LI) {
136   const DataLayout &DL = LI->getModule()->getDataLayout();
137   return DL.getTypeStoreSize(LI->getType());
138 }
139 
140 static unsigned getAtomicOpSize(StoreInst *SI) {
141   const DataLayout &DL = SI->getModule()->getDataLayout();
142   return DL.getTypeStoreSize(SI->getValueOperand()->getType());
143 }
144 
145 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) {
146   const DataLayout &DL = RMWI->getModule()->getDataLayout();
147   return DL.getTypeStoreSize(RMWI->getValOperand()->getType());
148 }
149 
150 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) {
151   const DataLayout &DL = CASI->getModule()->getDataLayout();
152   return DL.getTypeStoreSize(CASI->getCompareOperand()->getType());
153 }
154 
155 // Determine if a particular atomic operation has a supported size,
156 // and is of appropriate alignment, to be passed through for target
157 // lowering. (Versus turning into a __atomic libcall)
158 template <typename Inst>
159 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) {
160   unsigned Size = getAtomicOpSize(I);
161   Align Alignment = I->getAlign();
162   return Alignment >= Size &&
163          Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8;
164 }
165 
166 bool AtomicExpand::runOnFunction(Function &F) {
167   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
168   if (!TPC)
169     return false;
170 
171   auto &TM = TPC->getTM<TargetMachine>();
172   if (!TM.getSubtargetImpl(F)->enableAtomicExpand())
173     return false;
174   TLI = TM.getSubtargetImpl(F)->getTargetLowering();
175 
176   SmallVector<Instruction *, 1> AtomicInsts;
177 
178   // Changing control-flow while iterating through it is a bad idea, so gather a
179   // list of all atomic instructions before we start.
180   for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
181     Instruction *I = &*II;
182     if (I->isAtomic() && !isa<FenceInst>(I))
183       AtomicInsts.push_back(I);
184   }
185 
186   bool MadeChange = false;
187   for (auto I : AtomicInsts) {
188     auto LI = dyn_cast<LoadInst>(I);
189     auto SI = dyn_cast<StoreInst>(I);
190     auto RMWI = dyn_cast<AtomicRMWInst>(I);
191     auto CASI = dyn_cast<AtomicCmpXchgInst>(I);
192     assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction");
193 
194     // If the Size/Alignment is not supported, replace with a libcall.
195     if (LI) {
196       if (!atomicSizeSupported(TLI, LI)) {
197         expandAtomicLoadToLibcall(LI);
198         MadeChange = true;
199         continue;
200       }
201     } else if (SI) {
202       if (!atomicSizeSupported(TLI, SI)) {
203         expandAtomicStoreToLibcall(SI);
204         MadeChange = true;
205         continue;
206       }
207     } else if (RMWI) {
208       if (!atomicSizeSupported(TLI, RMWI)) {
209         expandAtomicRMWToLibcall(RMWI);
210         MadeChange = true;
211         continue;
212       }
213     } else if (CASI) {
214       if (!atomicSizeSupported(TLI, CASI)) {
215         expandAtomicCASToLibcall(CASI);
216         MadeChange = true;
217         continue;
218       }
219     }
220 
221     if (TLI->shouldInsertFencesForAtomic(I)) {
222       auto FenceOrdering = AtomicOrdering::Monotonic;
223       if (LI && isAcquireOrStronger(LI->getOrdering())) {
224         FenceOrdering = LI->getOrdering();
225         LI->setOrdering(AtomicOrdering::Monotonic);
226       } else if (SI && isReleaseOrStronger(SI->getOrdering())) {
227         FenceOrdering = SI->getOrdering();
228         SI->setOrdering(AtomicOrdering::Monotonic);
229       } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) ||
230                           isAcquireOrStronger(RMWI->getOrdering()))) {
231         FenceOrdering = RMWI->getOrdering();
232         RMWI->setOrdering(AtomicOrdering::Monotonic);
233       } else if (CASI &&
234                  TLI->shouldExpandAtomicCmpXchgInIR(CASI) ==
235                      TargetLoweringBase::AtomicExpansionKind::None &&
236                  (isReleaseOrStronger(CASI->getSuccessOrdering()) ||
237                   isAcquireOrStronger(CASI->getSuccessOrdering()))) {
238         // If a compare and swap is lowered to LL/SC, we can do smarter fence
239         // insertion, with a stronger one on the success path than on the
240         // failure path. As a result, fence insertion is directly done by
241         // expandAtomicCmpXchg in that case.
242         FenceOrdering = CASI->getSuccessOrdering();
243         CASI->setSuccessOrdering(AtomicOrdering::Monotonic);
244         CASI->setFailureOrdering(AtomicOrdering::Monotonic);
245       }
246 
247       if (FenceOrdering != AtomicOrdering::Monotonic) {
248         MadeChange |= bracketInstWithFences(I, FenceOrdering);
249       }
250     }
251 
252     if (LI) {
253       if (LI->getType()->isFloatingPointTy()) {
254         // TODO: add a TLI hook to control this so that each target can
255         // convert to lowering the original type one at a time.
256         LI = convertAtomicLoadToIntegerType(LI);
257         assert(LI->getType()->isIntegerTy() && "invariant broken");
258         MadeChange = true;
259       }
260 
261       MadeChange |= tryExpandAtomicLoad(LI);
262     } else if (SI) {
263       if (SI->getValueOperand()->getType()->isFloatingPointTy()) {
264         // TODO: add a TLI hook to control this so that each target can
265         // convert to lowering the original type one at a time.
266         SI = convertAtomicStoreToIntegerType(SI);
267         assert(SI->getValueOperand()->getType()->isIntegerTy() &&
268                "invariant broken");
269         MadeChange = true;
270       }
271 
272       if (TLI->shouldExpandAtomicStoreInIR(SI))
273         MadeChange |= expandAtomicStore(SI);
274     } else if (RMWI) {
275       // There are two different ways of expanding RMW instructions:
276       // - into a load if it is idempotent
277       // - into a Cmpxchg/LL-SC loop otherwise
278       // we try them in that order.
279 
280       if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) {
281         MadeChange = true;
282       } else {
283         unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
284         unsigned ValueSize = getAtomicOpSize(RMWI);
285         AtomicRMWInst::BinOp Op = RMWI->getOperation();
286         if (ValueSize < MinCASSize &&
287             (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
288              Op == AtomicRMWInst::And)) {
289           RMWI = widenPartwordAtomicRMW(RMWI);
290           MadeChange = true;
291         }
292 
293         MadeChange |= tryExpandAtomicRMW(RMWI);
294       }
295     } else if (CASI) {
296       // TODO: when we're ready to make the change at the IR level, we can
297       // extend convertCmpXchgToInteger for floating point too.
298       assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() &&
299              "unimplemented - floating point not legal at IR level");
300       if (CASI->getCompareOperand()->getType()->isPointerTy() ) {
301         // TODO: add a TLI hook to control this so that each target can
302         // convert to lowering the original type one at a time.
303         CASI = convertCmpXchgToIntegerType(CASI);
304         assert(CASI->getCompareOperand()->getType()->isIntegerTy() &&
305                "invariant broken");
306         MadeChange = true;
307       }
308 
309       MadeChange |= tryExpandAtomicCmpXchg(CASI);
310     }
311   }
312   return MadeChange;
313 }
314 
315 bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) {
316   IRBuilder<> Builder(I);
317 
318   auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order);
319 
320   auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order);
321   // We have a guard here because not every atomic operation generates a
322   // trailing fence.
323   if (TrailingFence)
324     TrailingFence->moveAfter(I);
325 
326   return (LeadingFence || TrailingFence);
327 }
328 
329 /// Get the iX type with the same bitwidth as T.
330 IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T,
331                                                        const DataLayout &DL) {
332   EVT VT = TLI->getMemValueType(DL, T);
333   unsigned BitWidth = VT.getStoreSizeInBits();
334   assert(BitWidth == VT.getSizeInBits() && "must be a power of two");
335   return IntegerType::get(T->getContext(), BitWidth);
336 }
337 
338 /// Convert an atomic load of a non-integral type to an integer load of the
339 /// equivalent bitwidth.  See the function comment on
340 /// convertAtomicStoreToIntegerType for background.
341 LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) {
342   auto *M = LI->getModule();
343   Type *NewTy = getCorrespondingIntegerType(LI->getType(),
344                                             M->getDataLayout());
345 
346   IRBuilder<> Builder(LI);
347 
348   Value *Addr = LI->getPointerOperand();
349   Type *PT = PointerType::get(NewTy,
350                               Addr->getType()->getPointerAddressSpace());
351   Value *NewAddr = Builder.CreateBitCast(Addr, PT);
352 
353   auto *NewLI = Builder.CreateLoad(NewTy, NewAddr);
354   NewLI->setAlignment(LI->getAlign());
355   NewLI->setVolatile(LI->isVolatile());
356   NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID());
357   LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n");
358 
359   Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType());
360   LI->replaceAllUsesWith(NewVal);
361   LI->eraseFromParent();
362   return NewLI;
363 }
364 
365 bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) {
366   switch (TLI->shouldExpandAtomicLoadInIR(LI)) {
367   case TargetLoweringBase::AtomicExpansionKind::None:
368     return false;
369   case TargetLoweringBase::AtomicExpansionKind::LLSC:
370     expandAtomicOpToLLSC(
371         LI, LI->getType(), LI->getPointerOperand(), LI->getOrdering(),
372         [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; });
373     return true;
374   case TargetLoweringBase::AtomicExpansionKind::LLOnly:
375     return expandAtomicLoadToLL(LI);
376   case TargetLoweringBase::AtomicExpansionKind::CmpXChg:
377     return expandAtomicLoadToCmpXchg(LI);
378   default:
379     llvm_unreachable("Unhandled case in tryExpandAtomicLoad");
380   }
381 }
382 
383 bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) {
384   IRBuilder<> Builder(LI);
385 
386   // On some architectures, load-linked instructions are atomic for larger
387   // sizes than normal loads. For example, the only 64-bit load guaranteed
388   // to be single-copy atomic by ARM is an ldrexd (A3.5.3).
389   Value *Val =
390       TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering());
391   TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
392 
393   LI->replaceAllUsesWith(Val);
394   LI->eraseFromParent();
395 
396   return true;
397 }
398 
399 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) {
400   IRBuilder<> Builder(LI);
401   AtomicOrdering Order = LI->getOrdering();
402   if (Order == AtomicOrdering::Unordered)
403     Order = AtomicOrdering::Monotonic;
404 
405   Value *Addr = LI->getPointerOperand();
406   Type *Ty = cast<PointerType>(Addr->getType())->getElementType();
407   Constant *DummyVal = Constant::getNullValue(Ty);
408 
409   Value *Pair = Builder.CreateAtomicCmpXchg(
410       Addr, DummyVal, DummyVal, Order,
411       AtomicCmpXchgInst::getStrongestFailureOrdering(Order));
412   Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded");
413 
414   LI->replaceAllUsesWith(Loaded);
415   LI->eraseFromParent();
416 
417   return true;
418 }
419 
420 /// Convert an atomic store of a non-integral type to an integer store of the
421 /// equivalent bitwidth.  We used to not support floating point or vector
422 /// atomics in the IR at all.  The backends learned to deal with the bitcast
423 /// idiom because that was the only way of expressing the notion of a atomic
424 /// float or vector store.  The long term plan is to teach each backend to
425 /// instruction select from the original atomic store, but as a migration
426 /// mechanism, we convert back to the old format which the backends understand.
427 /// Each backend will need individual work to recognize the new format.
428 StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) {
429   IRBuilder<> Builder(SI);
430   auto *M = SI->getModule();
431   Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(),
432                                             M->getDataLayout());
433   Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy);
434 
435   Value *Addr = SI->getPointerOperand();
436   Type *PT = PointerType::get(NewTy,
437                               Addr->getType()->getPointerAddressSpace());
438   Value *NewAddr = Builder.CreateBitCast(Addr, PT);
439 
440   StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr);
441   NewSI->setAlignment(SI->getAlign());
442   NewSI->setVolatile(SI->isVolatile());
443   NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID());
444   LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n");
445   SI->eraseFromParent();
446   return NewSI;
447 }
448 
449 bool AtomicExpand::expandAtomicStore(StoreInst *SI) {
450   // This function is only called on atomic stores that are too large to be
451   // atomic if implemented as a native store. So we replace them by an
452   // atomic swap, that can be implemented for example as a ldrex/strex on ARM
453   // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes.
454   // It is the responsibility of the target to only signal expansion via
455   // shouldExpandAtomicRMW in cases where this is required and possible.
456   IRBuilder<> Builder(SI);
457   AtomicRMWInst *AI =
458       Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(),
459                               SI->getValueOperand(), SI->getOrdering());
460   SI->eraseFromParent();
461 
462   // Now we have an appropriate swap instruction, lower it as usual.
463   return tryExpandAtomicRMW(AI);
464 }
465 
466 static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr,
467                                  Value *Loaded, Value *NewVal,
468                                  AtomicOrdering MemOpOrder,
469                                  Value *&Success, Value *&NewLoaded) {
470   Type *OrigTy = NewVal->getType();
471 
472   // This code can go away when cmpxchg supports FP types.
473   bool NeedBitcast = OrigTy->isFloatingPointTy();
474   if (NeedBitcast) {
475     IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits());
476     unsigned AS = Addr->getType()->getPointerAddressSpace();
477     Addr = Builder.CreateBitCast(Addr, IntTy->getPointerTo(AS));
478     NewVal = Builder.CreateBitCast(NewVal, IntTy);
479     Loaded = Builder.CreateBitCast(Loaded, IntTy);
480   }
481 
482   Value* Pair = Builder.CreateAtomicCmpXchg(
483       Addr, Loaded, NewVal, MemOpOrder,
484       AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder));
485   Success = Builder.CreateExtractValue(Pair, 1, "success");
486   NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
487 
488   if (NeedBitcast)
489     NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy);
490 }
491 
492 /// Emit IR to implement the given atomicrmw operation on values in registers,
493 /// returning the new value.
494 static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder,
495                               Value *Loaded, Value *Inc) {
496   Value *NewVal;
497   switch (Op) {
498   case AtomicRMWInst::Xchg:
499     return Inc;
500   case AtomicRMWInst::Add:
501     return Builder.CreateAdd(Loaded, Inc, "new");
502   case AtomicRMWInst::Sub:
503     return Builder.CreateSub(Loaded, Inc, "new");
504   case AtomicRMWInst::And:
505     return Builder.CreateAnd(Loaded, Inc, "new");
506   case AtomicRMWInst::Nand:
507     return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new");
508   case AtomicRMWInst::Or:
509     return Builder.CreateOr(Loaded, Inc, "new");
510   case AtomicRMWInst::Xor:
511     return Builder.CreateXor(Loaded, Inc, "new");
512   case AtomicRMWInst::Max:
513     NewVal = Builder.CreateICmpSGT(Loaded, Inc);
514     return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
515   case AtomicRMWInst::Min:
516     NewVal = Builder.CreateICmpSLE(Loaded, Inc);
517     return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
518   case AtomicRMWInst::UMax:
519     NewVal = Builder.CreateICmpUGT(Loaded, Inc);
520     return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
521   case AtomicRMWInst::UMin:
522     NewVal = Builder.CreateICmpULE(Loaded, Inc);
523     return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
524   case AtomicRMWInst::FAdd:
525     return Builder.CreateFAdd(Loaded, Inc, "new");
526   case AtomicRMWInst::FSub:
527     return Builder.CreateFSub(Loaded, Inc, "new");
528   default:
529     llvm_unreachable("Unknown atomic op");
530   }
531 }
532 
533 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) {
534   switch (TLI->shouldExpandAtomicRMWInIR(AI)) {
535   case TargetLoweringBase::AtomicExpansionKind::None:
536     return false;
537   case TargetLoweringBase::AtomicExpansionKind::LLSC: {
538     unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
539     unsigned ValueSize = getAtomicOpSize(AI);
540     if (ValueSize < MinCASSize) {
541       expandPartwordAtomicRMW(AI,
542                               TargetLoweringBase::AtomicExpansionKind::LLSC);
543     } else {
544       auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) {
545         return performAtomicOp(AI->getOperation(), Builder, Loaded,
546                                AI->getValOperand());
547       };
548       expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(),
549                            AI->getOrdering(), PerformOp);
550     }
551     return true;
552   }
553   case TargetLoweringBase::AtomicExpansionKind::CmpXChg: {
554     unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
555     unsigned ValueSize = getAtomicOpSize(AI);
556     if (ValueSize < MinCASSize) {
557       // TODO: Handle atomicrmw fadd/fsub
558       if (AI->getType()->isFloatingPointTy())
559         return false;
560 
561       expandPartwordAtomicRMW(AI,
562                               TargetLoweringBase::AtomicExpansionKind::CmpXChg);
563     } else {
564       expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun);
565     }
566     return true;
567   }
568   case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: {
569     expandAtomicRMWToMaskedIntrinsic(AI);
570     return true;
571   }
572   default:
573     llvm_unreachable("Unhandled case in tryExpandAtomicRMW");
574   }
575 }
576 
577 namespace {
578 
579 struct PartwordMaskValues {
580   // These three fields are guaranteed to be set by createMaskInstrs.
581   Type *WordType = nullptr;
582   Type *ValueType = nullptr;
583   Value *AlignedAddr = nullptr;
584   // The remaining fields can be null.
585   Value *ShiftAmt = nullptr;
586   Value *Mask = nullptr;
587   Value *Inv_Mask = nullptr;
588 };
589 
590 LLVM_ATTRIBUTE_UNUSED
591 raw_ostream &operator<<(raw_ostream &O, const PartwordMaskValues &PMV) {
592   auto PrintObj = [&O](auto *V) {
593     if (V)
594       O << *V;
595     else
596       O << "nullptr";
597     O << '\n';
598   };
599   O << "PartwordMaskValues {\n";
600   O << "  WordType: ";
601   PrintObj(PMV.WordType);
602   O << "  ValueType: ";
603   PrintObj(PMV.ValueType);
604   O << "  AlignedAddr: ";
605   PrintObj(PMV.AlignedAddr);
606   O << "  ShiftAmt: ";
607   PrintObj(PMV.ShiftAmt);
608   O << "  Mask: ";
609   PrintObj(PMV.Mask);
610   O << "  Inv_Mask: ";
611   PrintObj(PMV.Inv_Mask);
612   O << "}\n";
613   return O;
614 }
615 
616 } // end anonymous namespace
617 
618 /// This is a helper function which builds instructions to provide
619 /// values necessary for partword atomic operations. It takes an
620 /// incoming address, Addr, and ValueType, and constructs the address,
621 /// shift-amounts and masks needed to work with a larger value of size
622 /// WordSize.
623 ///
624 /// AlignedAddr: Addr rounded down to a multiple of WordSize
625 ///
626 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded
627 ///           from AlignAddr for it to have the same value as if
628 ///           ValueType was loaded from Addr.
629 ///
630 /// Mask: Value to mask with the value loaded from AlignAddr to
631 ///       include only the part that would've been loaded from Addr.
632 ///
633 /// Inv_Mask: The inverse of Mask.
634 static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I,
635                                            Type *ValueType, Value *Addr,
636                                            unsigned MinWordSize) {
637   PartwordMaskValues PMV;
638 
639   Module *M = I->getModule();
640   LLVMContext &Ctx = M->getContext();
641   const DataLayout &DL = M->getDataLayout();
642   unsigned ValueSize = DL.getTypeStoreSize(ValueType);
643 
644   PMV.ValueType = ValueType;
645   PMV.WordType = MinWordSize > ValueSize ? Type::getIntNTy(Ctx, MinWordSize * 8)
646                                          : ValueType;
647   if (PMV.ValueType == PMV.WordType) {
648     PMV.AlignedAddr = Addr;
649     return PMV;
650   }
651 
652   assert(ValueSize < MinWordSize);
653 
654   Type *WordPtrType =
655       PMV.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace());
656 
657   Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx));
658   PMV.AlignedAddr = Builder.CreateIntToPtr(
659       Builder.CreateAnd(AddrInt, ~(uint64_t)(MinWordSize - 1)), WordPtrType,
660       "AlignedAddr");
661 
662   Value *PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1, "PtrLSB");
663   if (DL.isLittleEndian()) {
664     // turn bytes into bits
665     PMV.ShiftAmt = Builder.CreateShl(PtrLSB, 3);
666   } else {
667     // turn bytes into bits, and count from the other side.
668     PMV.ShiftAmt = Builder.CreateShl(
669         Builder.CreateXor(PtrLSB, MinWordSize - ValueSize), 3);
670   }
671 
672   PMV.ShiftAmt = Builder.CreateTrunc(PMV.ShiftAmt, PMV.WordType, "ShiftAmt");
673   PMV.Mask = Builder.CreateShl(
674       ConstantInt::get(PMV.WordType, (1 << (ValueSize * 8)) - 1), PMV.ShiftAmt,
675       "Mask");
676   PMV.Inv_Mask = Builder.CreateNot(PMV.Mask, "Inv_Mask");
677   return PMV;
678 }
679 
680 static Value *extractMaskedValue(IRBuilder<> &Builder, Value *WideWord,
681                                  const PartwordMaskValues &PMV) {
682   assert(WideWord->getType() == PMV.WordType && "Widened type mismatch");
683   if (PMV.WordType == PMV.ValueType)
684     return WideWord;
685 
686   Value *Shift = Builder.CreateLShr(WideWord, PMV.ShiftAmt, "shifted");
687   Value *Trunc = Builder.CreateTrunc(Shift, PMV.ValueType, "extracted");
688   return Trunc;
689 }
690 
691 static Value *insertMaskedValue(IRBuilder<> &Builder, Value *WideWord,
692                                 Value *Updated, const PartwordMaskValues &PMV) {
693   assert(WideWord->getType() == PMV.WordType && "Widened type mismatch");
694   assert(Updated->getType() == PMV.ValueType && "Value type mismatch");
695   if (PMV.WordType == PMV.ValueType)
696     return Updated;
697 
698   Value *ZExt = Builder.CreateZExt(Updated, PMV.WordType, "extended");
699   Value *Shift =
700       Builder.CreateShl(ZExt, PMV.ShiftAmt, "shifted", /*HasNUW*/ true);
701   Value *And = Builder.CreateAnd(WideWord, PMV.Inv_Mask, "unmasked");
702   Value *Or = Builder.CreateOr(And, Shift, "inserted");
703   return Or;
704 }
705 
706 /// Emit IR to implement a masked version of a given atomicrmw
707 /// operation. (That is, only the bits under the Mask should be
708 /// affected by the operation)
709 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op,
710                                     IRBuilder<> &Builder, Value *Loaded,
711                                     Value *Shifted_Inc, Value *Inc,
712                                     const PartwordMaskValues &PMV) {
713   // TODO: update to use
714   // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order
715   // to merge bits from two values without requiring PMV.Inv_Mask.
716   switch (Op) {
717   case AtomicRMWInst::Xchg: {
718     Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
719     Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc);
720     return FinalVal;
721   }
722   case AtomicRMWInst::Or:
723   case AtomicRMWInst::Xor:
724   case AtomicRMWInst::And:
725     llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW");
726   case AtomicRMWInst::Add:
727   case AtomicRMWInst::Sub:
728   case AtomicRMWInst::Nand: {
729     // The other arithmetic ops need to be masked into place.
730     Value *NewVal = performAtomicOp(Op, Builder, Loaded, Shifted_Inc);
731     Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask);
732     Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
733     Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked);
734     return FinalVal;
735   }
736   case AtomicRMWInst::Max:
737   case AtomicRMWInst::Min:
738   case AtomicRMWInst::UMax:
739   case AtomicRMWInst::UMin: {
740     // Finally, comparison ops will operate on the full value, so
741     // truncate down to the original size, and expand out again after
742     // doing the operation.
743     Value *Loaded_Extract = extractMaskedValue(Builder, Loaded, PMV);
744     Value *NewVal = performAtomicOp(Op, Builder, Loaded_Extract, Inc);
745     Value *FinalVal = insertMaskedValue(Builder, Loaded, NewVal, PMV);
746     return FinalVal;
747   }
748   default:
749     llvm_unreachable("Unknown atomic op");
750   }
751 }
752 
753 /// Expand a sub-word atomicrmw operation into an appropriate
754 /// word-sized operation.
755 ///
756 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same
757 /// way as a typical atomicrmw expansion. The only difference here is
758 /// that the operation inside of the loop may operate upon only a
759 /// part of the value.
760 void AtomicExpand::expandPartwordAtomicRMW(
761     AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) {
762   AtomicOrdering MemOpOrder = AI->getOrdering();
763 
764   IRBuilder<> Builder(AI);
765 
766   PartwordMaskValues PMV =
767       createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
768                        TLI->getMinCmpXchgSizeInBits() / 8);
769 
770   Value *ValOperand_Shifted =
771       Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
772                         PMV.ShiftAmt, "ValOperand_Shifted");
773 
774   auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) {
775     return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded,
776                                  ValOperand_Shifted, AI->getValOperand(), PMV);
777   };
778 
779   Value *OldResult;
780   if (ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg) {
781     OldResult =
782         insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder,
783                              PerformPartwordOp, createCmpXchgInstFun);
784   } else {
785     assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::LLSC);
786     OldResult = insertRMWLLSCLoop(Builder, PMV.WordType, PMV.AlignedAddr,
787                                   MemOpOrder, PerformPartwordOp);
788   }
789 
790   Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV);
791   AI->replaceAllUsesWith(FinalOldResult);
792   AI->eraseFromParent();
793 }
794 
795 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width.
796 AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) {
797   IRBuilder<> Builder(AI);
798   AtomicRMWInst::BinOp Op = AI->getOperation();
799 
800   assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
801           Op == AtomicRMWInst::And) &&
802          "Unable to widen operation");
803 
804   PartwordMaskValues PMV =
805       createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
806                        TLI->getMinCmpXchgSizeInBits() / 8);
807 
808   Value *ValOperand_Shifted =
809       Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
810                         PMV.ShiftAmt, "ValOperand_Shifted");
811 
812   Value *NewOperand;
813 
814   if (Op == AtomicRMWInst::And)
815     NewOperand =
816         Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand");
817   else
818     NewOperand = ValOperand_Shifted;
819 
820   AtomicRMWInst *NewAI = Builder.CreateAtomicRMW(Op, PMV.AlignedAddr,
821                                                  NewOperand, AI->getOrdering());
822 
823   Value *FinalOldResult = extractMaskedValue(Builder, NewAI, PMV);
824   AI->replaceAllUsesWith(FinalOldResult);
825   AI->eraseFromParent();
826   return NewAI;
827 }
828 
829 void AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) {
830   // The basic idea here is that we're expanding a cmpxchg of a
831   // smaller memory size up to a word-sized cmpxchg. To do this, we
832   // need to add a retry-loop for strong cmpxchg, so that
833   // modifications to other parts of the word don't cause a spurious
834   // failure.
835 
836   // This generates code like the following:
837   //     [[Setup mask values PMV.*]]
838   //     %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt
839   //     %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt
840   //     %InitLoaded = load i32* %addr
841   //     %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask
842   //     br partword.cmpxchg.loop
843   // partword.cmpxchg.loop:
844   //     %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ],
845   //        [ %OldVal_MaskOut, %partword.cmpxchg.failure ]
846   //     %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted
847   //     %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted
848   //     %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp,
849   //        i32 %FullWord_NewVal success_ordering failure_ordering
850   //     %OldVal = extractvalue { i32, i1 } %NewCI, 0
851   //     %Success = extractvalue { i32, i1 } %NewCI, 1
852   //     br i1 %Success, label %partword.cmpxchg.end,
853   //        label %partword.cmpxchg.failure
854   // partword.cmpxchg.failure:
855   //     %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask
856   //     %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut
857   //     br i1 %ShouldContinue, label %partword.cmpxchg.loop,
858   //         label %partword.cmpxchg.end
859   // partword.cmpxchg.end:
860   //    %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt
861   //    %FinalOldVal = trunc i32 %tmp1 to i8
862   //    %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0
863   //    %Res = insertvalue { i8, i1 } %25, i1 %Success, 1
864 
865   Value *Addr = CI->getPointerOperand();
866   Value *Cmp = CI->getCompareOperand();
867   Value *NewVal = CI->getNewValOperand();
868 
869   BasicBlock *BB = CI->getParent();
870   Function *F = BB->getParent();
871   IRBuilder<> Builder(CI);
872   LLVMContext &Ctx = Builder.getContext();
873 
874   const int WordSize = TLI->getMinCmpXchgSizeInBits() / 8;
875 
876   BasicBlock *EndBB =
877       BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end");
878   auto FailureBB =
879       BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB);
880   auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB);
881 
882   // The split call above "helpfully" added a branch at the end of BB
883   // (to the wrong place).
884   std::prev(BB->end())->eraseFromParent();
885   Builder.SetInsertPoint(BB);
886 
887   PartwordMaskValues PMV = createMaskInstrs(
888       Builder, CI, CI->getCompareOperand()->getType(), Addr, WordSize);
889 
890   // Shift the incoming values over, into the right location in the word.
891   Value *NewVal_Shifted =
892       Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt);
893   Value *Cmp_Shifted =
894       Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt);
895 
896   // Load the entire current word, and mask into place the expected and new
897   // values
898   LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr);
899   InitLoaded->setVolatile(CI->isVolatile());
900   Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask);
901   Builder.CreateBr(LoopBB);
902 
903   // partword.cmpxchg.loop:
904   Builder.SetInsertPoint(LoopBB);
905   PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2);
906   Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB);
907 
908   // Mask/Or the expected and new values into place in the loaded word.
909   Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted);
910   Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted);
911   AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg(
912       PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, CI->getSuccessOrdering(),
913       CI->getFailureOrdering(), CI->getSyncScopeID());
914   NewCI->setVolatile(CI->isVolatile());
915   // When we're building a strong cmpxchg, we need a loop, so you
916   // might think we could use a weak cmpxchg inside. But, using strong
917   // allows the below comparison for ShouldContinue, and we're
918   // expecting the underlying cmpxchg to be a machine instruction,
919   // which is strong anyways.
920   NewCI->setWeak(CI->isWeak());
921 
922   Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
923   Value *Success = Builder.CreateExtractValue(NewCI, 1);
924 
925   if (CI->isWeak())
926     Builder.CreateBr(EndBB);
927   else
928     Builder.CreateCondBr(Success, EndBB, FailureBB);
929 
930   // partword.cmpxchg.failure:
931   Builder.SetInsertPoint(FailureBB);
932   // Upon failure, verify that the masked-out part of the loaded value
933   // has been modified.  If it didn't, abort the cmpxchg, since the
934   // masked-in part must've.
935   Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask);
936   Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut);
937   Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB);
938 
939   // Add the second value to the phi from above
940   Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB);
941 
942   // partword.cmpxchg.end:
943   Builder.SetInsertPoint(CI);
944 
945   Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV);
946   Value *Res = UndefValue::get(CI->getType());
947   Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
948   Res = Builder.CreateInsertValue(Res, Success, 1);
949 
950   CI->replaceAllUsesWith(Res);
951   CI->eraseFromParent();
952 }
953 
954 void AtomicExpand::expandAtomicOpToLLSC(
955     Instruction *I, Type *ResultType, Value *Addr, AtomicOrdering MemOpOrder,
956     function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
957   IRBuilder<> Builder(I);
958   Value *Loaded =
959       insertRMWLLSCLoop(Builder, ResultType, Addr, MemOpOrder, PerformOp);
960 
961   I->replaceAllUsesWith(Loaded);
962   I->eraseFromParent();
963 }
964 
965 void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) {
966   IRBuilder<> Builder(AI);
967 
968   PartwordMaskValues PMV =
969       createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
970                        TLI->getMinCmpXchgSizeInBits() / 8);
971 
972   // The value operand must be sign-extended for signed min/max so that the
973   // target's signed comparison instructions can be used. Otherwise, just
974   // zero-ext.
975   Instruction::CastOps CastOp = Instruction::ZExt;
976   AtomicRMWInst::BinOp RMWOp = AI->getOperation();
977   if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min)
978     CastOp = Instruction::SExt;
979 
980   Value *ValOperand_Shifted = Builder.CreateShl(
981       Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType),
982       PMV.ShiftAmt, "ValOperand_Shifted");
983   Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic(
984       Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt,
985       AI->getOrdering());
986   Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV);
987   AI->replaceAllUsesWith(FinalOldResult);
988   AI->eraseFromParent();
989 }
990 
991 void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI) {
992   IRBuilder<> Builder(CI);
993 
994   PartwordMaskValues PMV = createMaskInstrs(
995       Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(),
996       TLI->getMinCmpXchgSizeInBits() / 8);
997 
998   Value *CmpVal_Shifted = Builder.CreateShl(
999       Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt,
1000       "CmpVal_Shifted");
1001   Value *NewVal_Shifted = Builder.CreateShl(
1002       Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt,
1003       "NewVal_Shifted");
1004   Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic(
1005       Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask,
1006       CI->getSuccessOrdering());
1007   Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV);
1008   Value *Res = UndefValue::get(CI->getType());
1009   Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
1010   Value *Success = Builder.CreateICmpEQ(
1011       CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success");
1012   Res = Builder.CreateInsertValue(Res, Success, 1);
1013 
1014   CI->replaceAllUsesWith(Res);
1015   CI->eraseFromParent();
1016 }
1017 
1018 Value *AtomicExpand::insertRMWLLSCLoop(
1019     IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
1020     AtomicOrdering MemOpOrder,
1021     function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
1022   LLVMContext &Ctx = Builder.getContext();
1023   BasicBlock *BB = Builder.GetInsertBlock();
1024   Function *F = BB->getParent();
1025 
1026   // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1027   //
1028   // The standard expansion we produce is:
1029   //     [...]
1030   // atomicrmw.start:
1031   //     %loaded = @load.linked(%addr)
1032   //     %new = some_op iN %loaded, %incr
1033   //     %stored = @store_conditional(%new, %addr)
1034   //     %try_again = icmp i32 ne %stored, 0
1035   //     br i1 %try_again, label %loop, label %atomicrmw.end
1036   // atomicrmw.end:
1037   //     [...]
1038   BasicBlock *ExitBB =
1039       BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
1040   BasicBlock *LoopBB =  BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
1041 
1042   // The split call above "helpfully" added a branch at the end of BB (to the
1043   // wrong place).
1044   std::prev(BB->end())->eraseFromParent();
1045   Builder.SetInsertPoint(BB);
1046   Builder.CreateBr(LoopBB);
1047 
1048   // Start the main loop block now that we've taken care of the preliminaries.
1049   Builder.SetInsertPoint(LoopBB);
1050   Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
1051 
1052   Value *NewVal = PerformOp(Builder, Loaded);
1053 
1054   Value *StoreSuccess =
1055       TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder);
1056   Value *TryAgain = Builder.CreateICmpNE(
1057       StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain");
1058   Builder.CreateCondBr(TryAgain, LoopBB, ExitBB);
1059 
1060   Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1061   return Loaded;
1062 }
1063 
1064 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of
1065 /// the equivalent bitwidth.  We used to not support pointer cmpxchg in the
1066 /// IR.  As a migration step, we convert back to what use to be the standard
1067 /// way to represent a pointer cmpxchg so that we can update backends one by
1068 /// one.
1069 AtomicCmpXchgInst *AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) {
1070   auto *M = CI->getModule();
1071   Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(),
1072                                             M->getDataLayout());
1073 
1074   IRBuilder<> Builder(CI);
1075 
1076   Value *Addr = CI->getPointerOperand();
1077   Type *PT = PointerType::get(NewTy,
1078                               Addr->getType()->getPointerAddressSpace());
1079   Value *NewAddr = Builder.CreateBitCast(Addr, PT);
1080 
1081   Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy);
1082   Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy);
1083 
1084 
1085   auto *NewCI = Builder.CreateAtomicCmpXchg(NewAddr, NewCmp, NewNewVal,
1086                                             CI->getSuccessOrdering(),
1087                                             CI->getFailureOrdering(),
1088                                             CI->getSyncScopeID());
1089   NewCI->setVolatile(CI->isVolatile());
1090   NewCI->setWeak(CI->isWeak());
1091   LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n");
1092 
1093   Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
1094   Value *Succ = Builder.CreateExtractValue(NewCI, 1);
1095 
1096   OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType());
1097 
1098   Value *Res = UndefValue::get(CI->getType());
1099   Res = Builder.CreateInsertValue(Res, OldVal, 0);
1100   Res = Builder.CreateInsertValue(Res, Succ, 1);
1101 
1102   CI->replaceAllUsesWith(Res);
1103   CI->eraseFromParent();
1104   return NewCI;
1105 }
1106 
1107 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1108   AtomicOrdering SuccessOrder = CI->getSuccessOrdering();
1109   AtomicOrdering FailureOrder = CI->getFailureOrdering();
1110   Value *Addr = CI->getPointerOperand();
1111   BasicBlock *BB = CI->getParent();
1112   Function *F = BB->getParent();
1113   LLVMContext &Ctx = F->getContext();
1114   // If shouldInsertFencesForAtomic() returns true, then the target does not
1115   // want to deal with memory orders, and emitLeading/TrailingFence should take
1116   // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we
1117   // should preserve the ordering.
1118   bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI);
1119   AtomicOrdering MemOpOrder =
1120       ShouldInsertFencesForAtomic ? AtomicOrdering::Monotonic : SuccessOrder;
1121 
1122   // In implementations which use a barrier to achieve release semantics, we can
1123   // delay emitting this barrier until we know a store is actually going to be
1124   // attempted. The cost of this delay is that we need 2 copies of the block
1125   // emitting the load-linked, affecting code size.
1126   //
1127   // Ideally, this logic would be unconditional except for the minsize check
1128   // since in other cases the extra blocks naturally collapse down to the
1129   // minimal loop. Unfortunately, this puts too much stress on later
1130   // optimisations so we avoid emitting the extra logic in those cases too.
1131   bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic &&
1132                            SuccessOrder != AtomicOrdering::Monotonic &&
1133                            SuccessOrder != AtomicOrdering::Acquire &&
1134                            !F->hasMinSize();
1135 
1136   // There's no overhead for sinking the release barrier in a weak cmpxchg, so
1137   // do it even on minsize.
1138   bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak();
1139 
1140   // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord
1141   //
1142   // The full expansion we produce is:
1143   //     [...]
1144   // %aligned.addr = ...
1145   // cmpxchg.start:
1146   //     %unreleasedload = @load.linked(%aligned.addr)
1147   //     %unreleasedload.extract = extract value from %unreleasedload
1148   //     %should_store = icmp eq %unreleasedload.extract, %desired
1149   //     br i1 %should_store, label %cmpxchg.releasingstore,
1150   //                          label %cmpxchg.nostore
1151   // cmpxchg.releasingstore:
1152   //     fence?
1153   //     br label cmpxchg.trystore
1154   // cmpxchg.trystore:
1155   //     %loaded.trystore = phi [%unreleasedload, %cmpxchg.releasingstore],
1156   //                            [%releasedload, %cmpxchg.releasedload]
1157   //     %updated.new = insert %new into %loaded.trystore
1158   //     %stored = @store_conditional(%updated.new, %aligned.addr)
1159   //     %success = icmp eq i32 %stored, 0
1160   //     br i1 %success, label %cmpxchg.success,
1161   //                     label %cmpxchg.releasedload/%cmpxchg.failure
1162   // cmpxchg.releasedload:
1163   //     %releasedload = @load.linked(%aligned.addr)
1164   //     %releasedload.extract = extract value from %releasedload
1165   //     %should_store = icmp eq %releasedload.extract, %desired
1166   //     br i1 %should_store, label %cmpxchg.trystore,
1167   //                          label %cmpxchg.failure
1168   // cmpxchg.success:
1169   //     fence?
1170   //     br label %cmpxchg.end
1171   // cmpxchg.nostore:
1172   //     %loaded.nostore = phi [%unreleasedload, %cmpxchg.start],
1173   //                           [%releasedload,
1174   //                               %cmpxchg.releasedload/%cmpxchg.trystore]
1175   //     @load_linked_fail_balance()?
1176   //     br label %cmpxchg.failure
1177   // cmpxchg.failure:
1178   //     fence?
1179   //     br label %cmpxchg.end
1180   // cmpxchg.end:
1181   //     %loaded.exit = phi [%loaded.nostore, %cmpxchg.failure],
1182   //                        [%loaded.trystore, %cmpxchg.trystore]
1183   //     %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure]
1184   //     %loaded = extract value from %loaded.exit
1185   //     %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0
1186   //     %res = insertvalue { iN, i1 } %restmp, i1 %success, 1
1187   //     [...]
1188   BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end");
1189   auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB);
1190   auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB);
1191   auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB);
1192   auto ReleasedLoadBB =
1193       BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB);
1194   auto TryStoreBB =
1195       BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB);
1196   auto ReleasingStoreBB =
1197       BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB);
1198   auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB);
1199 
1200   // This grabs the DebugLoc from CI
1201   IRBuilder<> Builder(CI);
1202 
1203   // The split call above "helpfully" added a branch at the end of BB (to the
1204   // wrong place), but we might want a fence too. It's easiest to just remove
1205   // the branch entirely.
1206   std::prev(BB->end())->eraseFromParent();
1207   Builder.SetInsertPoint(BB);
1208   if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier)
1209     TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1210 
1211   PartwordMaskValues PMV =
1212       createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr,
1213                        TLI->getMinCmpXchgSizeInBits() / 8);
1214   Builder.CreateBr(StartBB);
1215 
1216   // Start the main loop block now that we've taken care of the preliminaries.
1217   Builder.SetInsertPoint(StartBB);
1218   Value *UnreleasedLoad =
1219       TLI->emitLoadLinked(Builder, PMV.AlignedAddr, MemOpOrder);
1220   Value *UnreleasedLoadExtract =
1221       extractMaskedValue(Builder, UnreleasedLoad, PMV);
1222   Value *ShouldStore = Builder.CreateICmpEQ(
1223       UnreleasedLoadExtract, CI->getCompareOperand(), "should_store");
1224 
1225   // If the cmpxchg doesn't actually need any ordering when it fails, we can
1226   // jump straight past that fence instruction (if it exists).
1227   Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB);
1228 
1229   Builder.SetInsertPoint(ReleasingStoreBB);
1230   if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier)
1231     TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1232   Builder.CreateBr(TryStoreBB);
1233 
1234   Builder.SetInsertPoint(TryStoreBB);
1235   PHINode *LoadedTryStore =
1236       Builder.CreatePHI(PMV.WordType, 2, "loaded.trystore");
1237   LoadedTryStore->addIncoming(UnreleasedLoad, ReleasingStoreBB);
1238   Value *NewValueInsert =
1239       insertMaskedValue(Builder, LoadedTryStore, CI->getNewValOperand(), PMV);
1240   Value *StoreSuccess =
1241       TLI->emitStoreConditional(Builder, NewValueInsert, Addr, MemOpOrder);
1242   StoreSuccess = Builder.CreateICmpEQ(
1243       StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success");
1244   BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB;
1245   Builder.CreateCondBr(StoreSuccess, SuccessBB,
1246                        CI->isWeak() ? FailureBB : RetryBB);
1247 
1248   Builder.SetInsertPoint(ReleasedLoadBB);
1249   Value *SecondLoad;
1250   if (HasReleasedLoadBB) {
1251     SecondLoad = TLI->emitLoadLinked(Builder, PMV.AlignedAddr, MemOpOrder);
1252     Value *SecondLoadExtract = extractMaskedValue(Builder, SecondLoad, PMV);
1253     ShouldStore = Builder.CreateICmpEQ(SecondLoadExtract,
1254                                        CI->getCompareOperand(), "should_store");
1255 
1256     // If the cmpxchg doesn't actually need any ordering when it fails, we can
1257     // jump straight past that fence instruction (if it exists).
1258     Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB);
1259     // Update PHI node in TryStoreBB.
1260     LoadedTryStore->addIncoming(SecondLoad, ReleasedLoadBB);
1261   } else
1262     Builder.CreateUnreachable();
1263 
1264   // Make sure later instructions don't get reordered with a fence if
1265   // necessary.
1266   Builder.SetInsertPoint(SuccessBB);
1267   if (ShouldInsertFencesForAtomic)
1268     TLI->emitTrailingFence(Builder, CI, SuccessOrder);
1269   Builder.CreateBr(ExitBB);
1270 
1271   Builder.SetInsertPoint(NoStoreBB);
1272   PHINode *LoadedNoStore =
1273       Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.nostore");
1274   LoadedNoStore->addIncoming(UnreleasedLoad, StartBB);
1275   if (HasReleasedLoadBB)
1276     LoadedNoStore->addIncoming(SecondLoad, ReleasedLoadBB);
1277 
1278   // In the failing case, where we don't execute the store-conditional, the
1279   // target might want to balance out the load-linked with a dedicated
1280   // instruction (e.g., on ARM, clearing the exclusive monitor).
1281   TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
1282   Builder.CreateBr(FailureBB);
1283 
1284   Builder.SetInsertPoint(FailureBB);
1285   PHINode *LoadedFailure =
1286       Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.failure");
1287   LoadedFailure->addIncoming(LoadedNoStore, NoStoreBB);
1288   if (CI->isWeak())
1289     LoadedFailure->addIncoming(LoadedTryStore, TryStoreBB);
1290   if (ShouldInsertFencesForAtomic)
1291     TLI->emitTrailingFence(Builder, CI, FailureOrder);
1292   Builder.CreateBr(ExitBB);
1293 
1294   // Finally, we have control-flow based knowledge of whether the cmpxchg
1295   // succeeded or not. We expose this to later passes by converting any
1296   // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate
1297   // PHI.
1298   Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1299   PHINode *LoadedExit =
1300       Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.exit");
1301   LoadedExit->addIncoming(LoadedTryStore, SuccessBB);
1302   LoadedExit->addIncoming(LoadedFailure, FailureBB);
1303   PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2, "success");
1304   Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB);
1305   Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB);
1306 
1307   // This is the "exit value" from the cmpxchg expansion. It may be of
1308   // a type wider than the one in the cmpxchg instruction.
1309   Value *LoadedFull = LoadedExit;
1310 
1311   Builder.SetInsertPoint(ExitBB, std::next(Success->getIterator()));
1312   Value *Loaded = extractMaskedValue(Builder, LoadedFull, PMV);
1313 
1314   // Look for any users of the cmpxchg that are just comparing the loaded value
1315   // against the desired one, and replace them with the CFG-derived version.
1316   SmallVector<ExtractValueInst *, 2> PrunedInsts;
1317   for (auto User : CI->users()) {
1318     ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User);
1319     if (!EV)
1320       continue;
1321 
1322     assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 &&
1323            "weird extraction from { iN, i1 }");
1324 
1325     if (EV->getIndices()[0] == 0)
1326       EV->replaceAllUsesWith(Loaded);
1327     else
1328       EV->replaceAllUsesWith(Success);
1329 
1330     PrunedInsts.push_back(EV);
1331   }
1332 
1333   // We can remove the instructions now we're no longer iterating through them.
1334   for (auto EV : PrunedInsts)
1335     EV->eraseFromParent();
1336 
1337   if (!CI->use_empty()) {
1338     // Some use of the full struct return that we don't understand has happened,
1339     // so we've got to reconstruct it properly.
1340     Value *Res;
1341     Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0);
1342     Res = Builder.CreateInsertValue(Res, Success, 1);
1343 
1344     CI->replaceAllUsesWith(Res);
1345   }
1346 
1347   CI->eraseFromParent();
1348   return true;
1349 }
1350 
1351 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) {
1352   auto C = dyn_cast<ConstantInt>(RMWI->getValOperand());
1353   if(!C)
1354     return false;
1355 
1356   AtomicRMWInst::BinOp Op = RMWI->getOperation();
1357   switch(Op) {
1358     case AtomicRMWInst::Add:
1359     case AtomicRMWInst::Sub:
1360     case AtomicRMWInst::Or:
1361     case AtomicRMWInst::Xor:
1362       return C->isZero();
1363     case AtomicRMWInst::And:
1364       return C->isMinusOne();
1365     // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/...
1366     default:
1367       return false;
1368   }
1369 }
1370 
1371 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) {
1372   if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) {
1373     tryExpandAtomicLoad(ResultingLoad);
1374     return true;
1375   }
1376   return false;
1377 }
1378 
1379 Value *AtomicExpand::insertRMWCmpXchgLoop(
1380     IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
1381     AtomicOrdering MemOpOrder,
1382     function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
1383     CreateCmpXchgInstFun CreateCmpXchg) {
1384   LLVMContext &Ctx = Builder.getContext();
1385   BasicBlock *BB = Builder.GetInsertBlock();
1386   Function *F = BB->getParent();
1387 
1388   // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1389   //
1390   // The standard expansion we produce is:
1391   //     [...]
1392   //     %init_loaded = load atomic iN* %addr
1393   //     br label %loop
1394   // loop:
1395   //     %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ]
1396   //     %new = some_op iN %loaded, %incr
1397   //     %pair = cmpxchg iN* %addr, iN %loaded, iN %new
1398   //     %new_loaded = extractvalue { iN, i1 } %pair, 0
1399   //     %success = extractvalue { iN, i1 } %pair, 1
1400   //     br i1 %success, label %atomicrmw.end, label %loop
1401   // atomicrmw.end:
1402   //     [...]
1403   BasicBlock *ExitBB =
1404       BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
1405   BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
1406 
1407   // The split call above "helpfully" added a branch at the end of BB (to the
1408   // wrong place), but we want a load. It's easiest to just remove
1409   // the branch entirely.
1410   std::prev(BB->end())->eraseFromParent();
1411   Builder.SetInsertPoint(BB);
1412   LoadInst *InitLoaded = Builder.CreateLoad(ResultTy, Addr);
1413   // Atomics require at least natural alignment.
1414   InitLoaded->setAlignment(Align(ResultTy->getPrimitiveSizeInBits() / 8));
1415   Builder.CreateBr(LoopBB);
1416 
1417   // Start the main loop block now that we've taken care of the preliminaries.
1418   Builder.SetInsertPoint(LoopBB);
1419   PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded");
1420   Loaded->addIncoming(InitLoaded, BB);
1421 
1422   Value *NewVal = PerformOp(Builder, Loaded);
1423 
1424   Value *NewLoaded = nullptr;
1425   Value *Success = nullptr;
1426 
1427   CreateCmpXchg(Builder, Addr, Loaded, NewVal,
1428                 MemOpOrder == AtomicOrdering::Unordered
1429                     ? AtomicOrdering::Monotonic
1430                     : MemOpOrder,
1431                 Success, NewLoaded);
1432   assert(Success && NewLoaded);
1433 
1434   Loaded->addIncoming(NewLoaded, LoopBB);
1435 
1436   Builder.CreateCondBr(Success, ExitBB, LoopBB);
1437 
1438   Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1439   return NewLoaded;
1440 }
1441 
1442 bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1443   unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
1444   unsigned ValueSize = getAtomicOpSize(CI);
1445 
1446   switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) {
1447   default:
1448     llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg");
1449   case TargetLoweringBase::AtomicExpansionKind::None:
1450     if (ValueSize < MinCASSize)
1451       expandPartwordCmpXchg(CI);
1452     return false;
1453   case TargetLoweringBase::AtomicExpansionKind::LLSC: {
1454     return expandAtomicCmpXchg(CI);
1455   }
1456   case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic:
1457     expandAtomicCmpXchgToMaskedIntrinsic(CI);
1458     return true;
1459   }
1460 }
1461 
1462 // Note: This function is exposed externally by AtomicExpandUtils.h
1463 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
1464                                     CreateCmpXchgInstFun CreateCmpXchg) {
1465   IRBuilder<> Builder(AI);
1466   Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop(
1467       Builder, AI->getType(), AI->getPointerOperand(), AI->getOrdering(),
1468       [&](IRBuilder<> &Builder, Value *Loaded) {
1469         return performAtomicOp(AI->getOperation(), Builder, Loaded,
1470                                AI->getValOperand());
1471       },
1472       CreateCmpXchg);
1473 
1474   AI->replaceAllUsesWith(Loaded);
1475   AI->eraseFromParent();
1476   return true;
1477 }
1478 
1479 // In order to use one of the sized library calls such as
1480 // __atomic_fetch_add_4, the alignment must be sufficient, the size
1481 // must be one of the potentially-specialized sizes, and the value
1482 // type must actually exist in C on the target (otherwise, the
1483 // function wouldn't actually be defined.)
1484 static bool canUseSizedAtomicCall(unsigned Size, Align Alignment,
1485                                   const DataLayout &DL) {
1486   // TODO: "LargestSize" is an approximation for "largest type that
1487   // you can express in C". It seems to be the case that int128 is
1488   // supported on all 64-bit platforms, otherwise only up to 64-bit
1489   // integers are supported. If we get this wrong, then we'll try to
1490   // call a sized libcall that doesn't actually exist. There should
1491   // really be some more reliable way in LLVM of determining integer
1492   // sizes which are valid in the target's C ABI...
1493   unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8;
1494   return Alignment >= Size &&
1495          (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) &&
1496          Size <= LargestSize;
1497 }
1498 
1499 void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) {
1500   static const RTLIB::Libcall Libcalls[6] = {
1501       RTLIB::ATOMIC_LOAD,   RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2,
1502       RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16};
1503   unsigned Size = getAtomicOpSize(I);
1504 
1505   bool expanded = expandAtomicOpToLibcall(
1506       I, Size, I->getAlign(), I->getPointerOperand(), nullptr, nullptr,
1507       I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1508   (void)expanded;
1509   assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Load");
1510 }
1511 
1512 void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) {
1513   static const RTLIB::Libcall Libcalls[6] = {
1514       RTLIB::ATOMIC_STORE,   RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2,
1515       RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16};
1516   unsigned Size = getAtomicOpSize(I);
1517 
1518   bool expanded = expandAtomicOpToLibcall(
1519       I, Size, I->getAlign(), I->getPointerOperand(), I->getValueOperand(),
1520       nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1521   (void)expanded;
1522   assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Store");
1523 }
1524 
1525 void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) {
1526   static const RTLIB::Libcall Libcalls[6] = {
1527       RTLIB::ATOMIC_COMPARE_EXCHANGE,   RTLIB::ATOMIC_COMPARE_EXCHANGE_1,
1528       RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4,
1529       RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16};
1530   unsigned Size = getAtomicOpSize(I);
1531 
1532   bool expanded = expandAtomicOpToLibcall(
1533       I, Size, I->getAlign(), I->getPointerOperand(), I->getNewValOperand(),
1534       I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(),
1535       Libcalls);
1536   (void)expanded;
1537   assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor CAS");
1538 }
1539 
1540 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) {
1541   static const RTLIB::Libcall LibcallsXchg[6] = {
1542       RTLIB::ATOMIC_EXCHANGE,   RTLIB::ATOMIC_EXCHANGE_1,
1543       RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4,
1544       RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16};
1545   static const RTLIB::Libcall LibcallsAdd[6] = {
1546       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_ADD_1,
1547       RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4,
1548       RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16};
1549   static const RTLIB::Libcall LibcallsSub[6] = {
1550       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_SUB_1,
1551       RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4,
1552       RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16};
1553   static const RTLIB::Libcall LibcallsAnd[6] = {
1554       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_AND_1,
1555       RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4,
1556       RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16};
1557   static const RTLIB::Libcall LibcallsOr[6] = {
1558       RTLIB::UNKNOWN_LIBCALL,   RTLIB::ATOMIC_FETCH_OR_1,
1559       RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4,
1560       RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16};
1561   static const RTLIB::Libcall LibcallsXor[6] = {
1562       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_XOR_1,
1563       RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4,
1564       RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16};
1565   static const RTLIB::Libcall LibcallsNand[6] = {
1566       RTLIB::UNKNOWN_LIBCALL,     RTLIB::ATOMIC_FETCH_NAND_1,
1567       RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4,
1568       RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16};
1569 
1570   switch (Op) {
1571   case AtomicRMWInst::BAD_BINOP:
1572     llvm_unreachable("Should not have BAD_BINOP.");
1573   case AtomicRMWInst::Xchg:
1574     return makeArrayRef(LibcallsXchg);
1575   case AtomicRMWInst::Add:
1576     return makeArrayRef(LibcallsAdd);
1577   case AtomicRMWInst::Sub:
1578     return makeArrayRef(LibcallsSub);
1579   case AtomicRMWInst::And:
1580     return makeArrayRef(LibcallsAnd);
1581   case AtomicRMWInst::Or:
1582     return makeArrayRef(LibcallsOr);
1583   case AtomicRMWInst::Xor:
1584     return makeArrayRef(LibcallsXor);
1585   case AtomicRMWInst::Nand:
1586     return makeArrayRef(LibcallsNand);
1587   case AtomicRMWInst::Max:
1588   case AtomicRMWInst::Min:
1589   case AtomicRMWInst::UMax:
1590   case AtomicRMWInst::UMin:
1591   case AtomicRMWInst::FAdd:
1592   case AtomicRMWInst::FSub:
1593     // No atomic libcalls are available for max/min/umax/umin.
1594     return {};
1595   }
1596   llvm_unreachable("Unexpected AtomicRMW operation.");
1597 }
1598 
1599 void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) {
1600   ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation());
1601 
1602   unsigned Size = getAtomicOpSize(I);
1603 
1604   bool Success = false;
1605   if (!Libcalls.empty())
1606     Success = expandAtomicOpToLibcall(
1607         I, Size, I->getAlign(), I->getPointerOperand(), I->getValOperand(),
1608         nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1609 
1610   // The expansion failed: either there were no libcalls at all for
1611   // the operation (min/max), or there were only size-specialized
1612   // libcalls (add/sub/etc) and we needed a generic. So, expand to a
1613   // CAS libcall, via a CAS loop, instead.
1614   if (!Success) {
1615     expandAtomicRMWToCmpXchg(I, [this](IRBuilder<> &Builder, Value *Addr,
1616                                        Value *Loaded, Value *NewVal,
1617                                        AtomicOrdering MemOpOrder,
1618                                        Value *&Success, Value *&NewLoaded) {
1619       // Create the CAS instruction normally...
1620       AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg(
1621           Addr, Loaded, NewVal, MemOpOrder,
1622           AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder));
1623       Success = Builder.CreateExtractValue(Pair, 1, "success");
1624       NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
1625 
1626       // ...and then expand the CAS into a libcall.
1627       expandAtomicCASToLibcall(Pair);
1628     });
1629   }
1630 }
1631 
1632 // A helper routine for the above expandAtomic*ToLibcall functions.
1633 //
1634 // 'Libcalls' contains an array of enum values for the particular
1635 // ATOMIC libcalls to be emitted. All of the other arguments besides
1636 // 'I' are extracted from the Instruction subclass by the
1637 // caller. Depending on the particular call, some will be null.
1638 bool AtomicExpand::expandAtomicOpToLibcall(
1639     Instruction *I, unsigned Size, Align Alignment, Value *PointerOperand,
1640     Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering,
1641     AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) {
1642   assert(Libcalls.size() == 6);
1643 
1644   LLVMContext &Ctx = I->getContext();
1645   Module *M = I->getModule();
1646   const DataLayout &DL = M->getDataLayout();
1647   IRBuilder<> Builder(I);
1648   IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front());
1649 
1650   bool UseSizedLibcall = canUseSizedAtomicCall(Size, Alignment, DL);
1651   Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8);
1652 
1653   const Align AllocaAlignment = DL.getPrefTypeAlign(SizedIntTy);
1654 
1655   // TODO: the "order" argument type is "int", not int32. So
1656   // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints.
1657   ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size);
1658   assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO");
1659   Constant *OrderingVal =
1660       ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering));
1661   Constant *Ordering2Val = nullptr;
1662   if (CASExpected) {
1663     assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO");
1664     Ordering2Val =
1665         ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2));
1666   }
1667   bool HasResult = I->getType() != Type::getVoidTy(Ctx);
1668 
1669   RTLIB::Libcall RTLibType;
1670   if (UseSizedLibcall) {
1671     switch (Size) {
1672     case 1: RTLibType = Libcalls[1]; break;
1673     case 2: RTLibType = Libcalls[2]; break;
1674     case 4: RTLibType = Libcalls[3]; break;
1675     case 8: RTLibType = Libcalls[4]; break;
1676     case 16: RTLibType = Libcalls[5]; break;
1677     }
1678   } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) {
1679     RTLibType = Libcalls[0];
1680   } else {
1681     // Can't use sized function, and there's no generic for this
1682     // operation, so give up.
1683     return false;
1684   }
1685 
1686   // Build up the function call. There's two kinds. First, the sized
1687   // variants.  These calls are going to be one of the following (with
1688   // N=1,2,4,8,16):
1689   //  iN    __atomic_load_N(iN *ptr, int ordering)
1690   //  void  __atomic_store_N(iN *ptr, iN val, int ordering)
1691   //  iN    __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering)
1692   //  bool  __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired,
1693   //                                    int success_order, int failure_order)
1694   //
1695   // Note that these functions can be used for non-integer atomic
1696   // operations, the values just need to be bitcast to integers on the
1697   // way in and out.
1698   //
1699   // And, then, the generic variants. They look like the following:
1700   //  void  __atomic_load(size_t size, void *ptr, void *ret, int ordering)
1701   //  void  __atomic_store(size_t size, void *ptr, void *val, int ordering)
1702   //  void  __atomic_exchange(size_t size, void *ptr, void *val, void *ret,
1703   //                          int ordering)
1704   //  bool  __atomic_compare_exchange(size_t size, void *ptr, void *expected,
1705   //                                  void *desired, int success_order,
1706   //                                  int failure_order)
1707   //
1708   // The different signatures are built up depending on the
1709   // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult'
1710   // variables.
1711 
1712   AllocaInst *AllocaCASExpected = nullptr;
1713   Value *AllocaCASExpected_i8 = nullptr;
1714   AllocaInst *AllocaValue = nullptr;
1715   Value *AllocaValue_i8 = nullptr;
1716   AllocaInst *AllocaResult = nullptr;
1717   Value *AllocaResult_i8 = nullptr;
1718 
1719   Type *ResultTy;
1720   SmallVector<Value *, 6> Args;
1721   AttributeList Attr;
1722 
1723   // 'size' argument.
1724   if (!UseSizedLibcall) {
1725     // Note, getIntPtrType is assumed equivalent to size_t.
1726     Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size));
1727   }
1728 
1729   // 'ptr' argument.
1730   // note: This assumes all address spaces share a common libfunc
1731   // implementation and that addresses are convertable.  For systems without
1732   // that property, we'd need to extend this mechanism to support AS-specific
1733   // families of atomic intrinsics.
1734   auto PtrTypeAS = PointerOperand->getType()->getPointerAddressSpace();
1735   Value *PtrVal = Builder.CreateBitCast(PointerOperand,
1736                                         Type::getInt8PtrTy(Ctx, PtrTypeAS));
1737   PtrVal = Builder.CreateAddrSpaceCast(PtrVal, Type::getInt8PtrTy(Ctx));
1738   Args.push_back(PtrVal);
1739 
1740   // 'expected' argument, if present.
1741   if (CASExpected) {
1742     AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType());
1743     AllocaCASExpected->setAlignment(AllocaAlignment);
1744     unsigned AllocaAS =  AllocaCASExpected->getType()->getPointerAddressSpace();
1745 
1746     AllocaCASExpected_i8 =
1747       Builder.CreateBitCast(AllocaCASExpected,
1748                             Type::getInt8PtrTy(Ctx, AllocaAS));
1749     Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64);
1750     Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment);
1751     Args.push_back(AllocaCASExpected_i8);
1752   }
1753 
1754   // 'val' argument ('desired' for cas), if present.
1755   if (ValueOperand) {
1756     if (UseSizedLibcall) {
1757       Value *IntValue =
1758           Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy);
1759       Args.push_back(IntValue);
1760     } else {
1761       AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType());
1762       AllocaValue->setAlignment(AllocaAlignment);
1763       AllocaValue_i8 =
1764           Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx));
1765       Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64);
1766       Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment);
1767       Args.push_back(AllocaValue_i8);
1768     }
1769   }
1770 
1771   // 'ret' argument.
1772   if (!CASExpected && HasResult && !UseSizedLibcall) {
1773     AllocaResult = AllocaBuilder.CreateAlloca(I->getType());
1774     AllocaResult->setAlignment(AllocaAlignment);
1775     unsigned AllocaAS =  AllocaResult->getType()->getPointerAddressSpace();
1776     AllocaResult_i8 =
1777       Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx, AllocaAS));
1778     Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64);
1779     Args.push_back(AllocaResult_i8);
1780   }
1781 
1782   // 'ordering' ('success_order' for cas) argument.
1783   Args.push_back(OrderingVal);
1784 
1785   // 'failure_order' argument, if present.
1786   if (Ordering2Val)
1787     Args.push_back(Ordering2Val);
1788 
1789   // Now, the return type.
1790   if (CASExpected) {
1791     ResultTy = Type::getInt1Ty(Ctx);
1792     Attr = Attr.addAttribute(Ctx, AttributeList::ReturnIndex, Attribute::ZExt);
1793   } else if (HasResult && UseSizedLibcall)
1794     ResultTy = SizedIntTy;
1795   else
1796     ResultTy = Type::getVoidTy(Ctx);
1797 
1798   // Done with setting up arguments and return types, create the call:
1799   SmallVector<Type *, 6> ArgTys;
1800   for (Value *Arg : Args)
1801     ArgTys.push_back(Arg->getType());
1802   FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false);
1803   FunctionCallee LibcallFn =
1804       M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr);
1805   CallInst *Call = Builder.CreateCall(LibcallFn, Args);
1806   Call->setAttributes(Attr);
1807   Value *Result = Call;
1808 
1809   // And then, extract the results...
1810   if (ValueOperand && !UseSizedLibcall)
1811     Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64);
1812 
1813   if (CASExpected) {
1814     // The final result from the CAS is {load of 'expected' alloca, bool result
1815     // from call}
1816     Type *FinalResultTy = I->getType();
1817     Value *V = UndefValue::get(FinalResultTy);
1818     Value *ExpectedOut = Builder.CreateAlignedLoad(
1819         CASExpected->getType(), AllocaCASExpected, AllocaAlignment);
1820     Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64);
1821     V = Builder.CreateInsertValue(V, ExpectedOut, 0);
1822     V = Builder.CreateInsertValue(V, Result, 1);
1823     I->replaceAllUsesWith(V);
1824   } else if (HasResult) {
1825     Value *V;
1826     if (UseSizedLibcall)
1827       V = Builder.CreateBitOrPointerCast(Result, I->getType());
1828     else {
1829       V = Builder.CreateAlignedLoad(I->getType(), AllocaResult,
1830                                     AllocaAlignment);
1831       Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64);
1832     }
1833     I->replaceAllUsesWith(V);
1834   }
1835   I->eraseFromParent();
1836   return true;
1837 }
1838