1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass (at IR level) to replace atomic instructions with 10 // __atomic_* library calls, or target specific instruction which implement the 11 // same semantics in a way which better fits the target backend. This can 12 // include the use of (intrinsic-based) load-linked/store-conditional loops, 13 // AtomicCmpXchg, or type coercions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/STLFunctionalExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/CodeGen/AtomicExpandUtils.h" 22 #include "llvm/CodeGen/RuntimeLibcalls.h" 23 #include "llvm/CodeGen/TargetLowering.h" 24 #include "llvm/CodeGen/TargetPassConfig.h" 25 #include "llvm/CodeGen/TargetSubtargetInfo.h" 26 #include "llvm/CodeGen/ValueTypes.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Constant.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/IRBuilder.h" 35 #include "llvm/IR/InstIterator.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Type.h" 40 #include "llvm/IR/User.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/InitializePasses.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/AtomicOrdering.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Target/TargetMachine.h" 50 #include <cassert> 51 #include <cstdint> 52 #include <iterator> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "atomic-expand" 57 58 namespace { 59 60 class AtomicExpand : public FunctionPass { 61 const TargetLowering *TLI = nullptr; 62 63 public: 64 static char ID; // Pass identification, replacement for typeid 65 66 AtomicExpand() : FunctionPass(ID) { 67 initializeAtomicExpandPass(*PassRegistry::getPassRegistry()); 68 } 69 70 bool runOnFunction(Function &F) override; 71 72 private: 73 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order); 74 IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL); 75 LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI); 76 bool tryExpandAtomicLoad(LoadInst *LI); 77 bool expandAtomicLoadToLL(LoadInst *LI); 78 bool expandAtomicLoadToCmpXchg(LoadInst *LI); 79 StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI); 80 void expandAtomicStore(StoreInst *SI); 81 bool tryExpandAtomicRMW(AtomicRMWInst *AI); 82 AtomicRMWInst *convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI); 83 Value * 84 insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr, 85 Align AddrAlign, AtomicOrdering MemOpOrder, 86 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); 87 void 88 expandAtomicOpToLLSC(Instruction *I, Type *ResultTy, Value *Addr, 89 Align AddrAlign, AtomicOrdering MemOpOrder, 90 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); 91 void expandPartwordAtomicRMW( 92 AtomicRMWInst *I, TargetLoweringBase::AtomicExpansionKind ExpansionKind); 93 AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI); 94 bool expandPartwordCmpXchg(AtomicCmpXchgInst *I); 95 void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI); 96 void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI); 97 98 AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI); 99 static Value * 100 insertRMWCmpXchgLoop(IRBuilder<> &Builder, Type *ResultType, Value *Addr, 101 Align AddrAlign, AtomicOrdering MemOpOrder, 102 SyncScope::ID SSID, 103 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, 104 CreateCmpXchgInstFun CreateCmpXchg); 105 bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI); 106 107 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); 108 bool isIdempotentRMW(AtomicRMWInst *RMWI); 109 bool simplifyIdempotentRMW(AtomicRMWInst *RMWI); 110 111 bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, Align Alignment, 112 Value *PointerOperand, Value *ValueOperand, 113 Value *CASExpected, AtomicOrdering Ordering, 114 AtomicOrdering Ordering2, 115 ArrayRef<RTLIB::Libcall> Libcalls); 116 void expandAtomicLoadToLibcall(LoadInst *LI); 117 void expandAtomicStoreToLibcall(StoreInst *LI); 118 void expandAtomicRMWToLibcall(AtomicRMWInst *I); 119 void expandAtomicCASToLibcall(AtomicCmpXchgInst *I); 120 121 friend bool 122 llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 123 CreateCmpXchgInstFun CreateCmpXchg); 124 }; 125 126 } // end anonymous namespace 127 128 char AtomicExpand::ID = 0; 129 130 char &llvm::AtomicExpandID = AtomicExpand::ID; 131 132 INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions", false, 133 false) 134 135 FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); } 136 137 // Helper functions to retrieve the size of atomic instructions. 138 static unsigned getAtomicOpSize(LoadInst *LI) { 139 const DataLayout &DL = LI->getModule()->getDataLayout(); 140 return DL.getTypeStoreSize(LI->getType()); 141 } 142 143 static unsigned getAtomicOpSize(StoreInst *SI) { 144 const DataLayout &DL = SI->getModule()->getDataLayout(); 145 return DL.getTypeStoreSize(SI->getValueOperand()->getType()); 146 } 147 148 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) { 149 const DataLayout &DL = RMWI->getModule()->getDataLayout(); 150 return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); 151 } 152 153 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) { 154 const DataLayout &DL = CASI->getModule()->getDataLayout(); 155 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); 156 } 157 158 // Determine if a particular atomic operation has a supported size, 159 // and is of appropriate alignment, to be passed through for target 160 // lowering. (Versus turning into a __atomic libcall) 161 template <typename Inst> 162 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) { 163 unsigned Size = getAtomicOpSize(I); 164 Align Alignment = I->getAlign(); 165 return Alignment >= Size && 166 Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8; 167 } 168 169 bool AtomicExpand::runOnFunction(Function &F) { 170 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 171 if (!TPC) 172 return false; 173 174 auto &TM = TPC->getTM<TargetMachine>(); 175 if (!TM.getSubtargetImpl(F)->enableAtomicExpand()) 176 return false; 177 TLI = TM.getSubtargetImpl(F)->getTargetLowering(); 178 179 SmallVector<Instruction *, 1> AtomicInsts; 180 181 // Changing control-flow while iterating through it is a bad idea, so gather a 182 // list of all atomic instructions before we start. 183 for (Instruction &I : instructions(F)) 184 if (I.isAtomic() && !isa<FenceInst>(&I)) 185 AtomicInsts.push_back(&I); 186 187 bool MadeChange = false; 188 for (auto I : AtomicInsts) { 189 auto LI = dyn_cast<LoadInst>(I); 190 auto SI = dyn_cast<StoreInst>(I); 191 auto RMWI = dyn_cast<AtomicRMWInst>(I); 192 auto CASI = dyn_cast<AtomicCmpXchgInst>(I); 193 assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction"); 194 195 // If the Size/Alignment is not supported, replace with a libcall. 196 if (LI) { 197 if (!atomicSizeSupported(TLI, LI)) { 198 expandAtomicLoadToLibcall(LI); 199 MadeChange = true; 200 continue; 201 } 202 } else if (SI) { 203 if (!atomicSizeSupported(TLI, SI)) { 204 expandAtomicStoreToLibcall(SI); 205 MadeChange = true; 206 continue; 207 } 208 } else if (RMWI) { 209 if (!atomicSizeSupported(TLI, RMWI)) { 210 expandAtomicRMWToLibcall(RMWI); 211 MadeChange = true; 212 continue; 213 } 214 } else if (CASI) { 215 if (!atomicSizeSupported(TLI, CASI)) { 216 expandAtomicCASToLibcall(CASI); 217 MadeChange = true; 218 continue; 219 } 220 } 221 222 if (TLI->shouldInsertFencesForAtomic(I)) { 223 auto FenceOrdering = AtomicOrdering::Monotonic; 224 if (LI && isAcquireOrStronger(LI->getOrdering())) { 225 FenceOrdering = LI->getOrdering(); 226 LI->setOrdering(AtomicOrdering::Monotonic); 227 } else if (SI && isReleaseOrStronger(SI->getOrdering())) { 228 FenceOrdering = SI->getOrdering(); 229 SI->setOrdering(AtomicOrdering::Monotonic); 230 } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) || 231 isAcquireOrStronger(RMWI->getOrdering()))) { 232 FenceOrdering = RMWI->getOrdering(); 233 RMWI->setOrdering(AtomicOrdering::Monotonic); 234 } else if (CASI && 235 TLI->shouldExpandAtomicCmpXchgInIR(CASI) == 236 TargetLoweringBase::AtomicExpansionKind::None && 237 (isReleaseOrStronger(CASI->getSuccessOrdering()) || 238 isAcquireOrStronger(CASI->getSuccessOrdering()) || 239 isAcquireOrStronger(CASI->getFailureOrdering()))) { 240 // If a compare and swap is lowered to LL/SC, we can do smarter fence 241 // insertion, with a stronger one on the success path than on the 242 // failure path. As a result, fence insertion is directly done by 243 // expandAtomicCmpXchg in that case. 244 FenceOrdering = CASI->getMergedOrdering(); 245 CASI->setSuccessOrdering(AtomicOrdering::Monotonic); 246 CASI->setFailureOrdering(AtomicOrdering::Monotonic); 247 } 248 249 if (FenceOrdering != AtomicOrdering::Monotonic) { 250 MadeChange |= bracketInstWithFences(I, FenceOrdering); 251 } 252 } 253 254 if (LI) { 255 if (LI->getType()->isFloatingPointTy()) { 256 // TODO: add a TLI hook to control this so that each target can 257 // convert to lowering the original type one at a time. 258 LI = convertAtomicLoadToIntegerType(LI); 259 assert(LI->getType()->isIntegerTy() && "invariant broken"); 260 MadeChange = true; 261 } 262 263 MadeChange |= tryExpandAtomicLoad(LI); 264 } else if (SI) { 265 if (SI->getValueOperand()->getType()->isFloatingPointTy()) { 266 // TODO: add a TLI hook to control this so that each target can 267 // convert to lowering the original type one at a time. 268 SI = convertAtomicStoreToIntegerType(SI); 269 assert(SI->getValueOperand()->getType()->isIntegerTy() && 270 "invariant broken"); 271 MadeChange = true; 272 } 273 274 if (TLI->shouldExpandAtomicStoreInIR(SI)) { 275 expandAtomicStore(SI); 276 MadeChange = true; 277 } 278 } else if (RMWI) { 279 // There are two different ways of expanding RMW instructions: 280 // - into a load if it is idempotent 281 // - into a Cmpxchg/LL-SC loop otherwise 282 // we try them in that order. 283 284 if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) { 285 MadeChange = true; 286 } else { 287 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 288 if (Op == AtomicRMWInst::Xchg && 289 RMWI->getValOperand()->getType()->isFloatingPointTy()) { 290 // TODO: add a TLI hook to control this so that each target can 291 // convert to lowering the original type one at a time. 292 RMWI = convertAtomicXchgToIntegerType(RMWI); 293 assert(RMWI->getValOperand()->getType()->isIntegerTy() && 294 "invariant broken"); 295 MadeChange = true; 296 } 297 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 298 unsigned ValueSize = getAtomicOpSize(RMWI); 299 if (ValueSize < MinCASSize && 300 (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 301 Op == AtomicRMWInst::And)) { 302 RMWI = widenPartwordAtomicRMW(RMWI); 303 MadeChange = true; 304 } 305 306 MadeChange |= tryExpandAtomicRMW(RMWI); 307 } 308 } else if (CASI) { 309 // TODO: when we're ready to make the change at the IR level, we can 310 // extend convertCmpXchgToInteger for floating point too. 311 assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() && 312 "unimplemented - floating point not legal at IR level"); 313 if (CASI->getCompareOperand()->getType()->isPointerTy()) { 314 // TODO: add a TLI hook to control this so that each target can 315 // convert to lowering the original type one at a time. 316 CASI = convertCmpXchgToIntegerType(CASI); 317 assert(CASI->getCompareOperand()->getType()->isIntegerTy() && 318 "invariant broken"); 319 MadeChange = true; 320 } 321 322 MadeChange |= tryExpandAtomicCmpXchg(CASI); 323 } 324 } 325 return MadeChange; 326 } 327 328 bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) { 329 IRBuilder<> Builder(I); 330 331 auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order); 332 333 auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order); 334 // We have a guard here because not every atomic operation generates a 335 // trailing fence. 336 if (TrailingFence) 337 TrailingFence->moveAfter(I); 338 339 return (LeadingFence || TrailingFence); 340 } 341 342 /// Get the iX type with the same bitwidth as T. 343 IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T, 344 const DataLayout &DL) { 345 EVT VT = TLI->getMemValueType(DL, T); 346 unsigned BitWidth = VT.getStoreSizeInBits(); 347 assert(BitWidth == VT.getSizeInBits() && "must be a power of two"); 348 return IntegerType::get(T->getContext(), BitWidth); 349 } 350 351 /// Convert an atomic load of a non-integral type to an integer load of the 352 /// equivalent bitwidth. See the function comment on 353 /// convertAtomicStoreToIntegerType for background. 354 LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) { 355 auto *M = LI->getModule(); 356 Type *NewTy = getCorrespondingIntegerType(LI->getType(), M->getDataLayout()); 357 358 IRBuilder<> Builder(LI); 359 360 Value *Addr = LI->getPointerOperand(); 361 Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace()); 362 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 363 364 auto *NewLI = Builder.CreateLoad(NewTy, NewAddr); 365 NewLI->setAlignment(LI->getAlign()); 366 NewLI->setVolatile(LI->isVolatile()); 367 NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID()); 368 LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n"); 369 370 Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType()); 371 LI->replaceAllUsesWith(NewVal); 372 LI->eraseFromParent(); 373 return NewLI; 374 } 375 376 AtomicRMWInst * 377 AtomicExpand::convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI) { 378 auto *M = RMWI->getModule(); 379 Type *NewTy = 380 getCorrespondingIntegerType(RMWI->getType(), M->getDataLayout()); 381 382 IRBuilder<> Builder(RMWI); 383 384 Value *Addr = RMWI->getPointerOperand(); 385 Value *Val = RMWI->getValOperand(); 386 Type *PT = PointerType::get(NewTy, RMWI->getPointerAddressSpace()); 387 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 388 Value *NewVal = Builder.CreateBitCast(Val, NewTy); 389 390 auto *NewRMWI = 391 Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, NewAddr, NewVal, 392 RMWI->getAlign(), RMWI->getOrdering()); 393 NewRMWI->setVolatile(RMWI->isVolatile()); 394 LLVM_DEBUG(dbgs() << "Replaced " << *RMWI << " with " << *NewRMWI << "\n"); 395 396 Value *NewRVal = Builder.CreateBitCast(NewRMWI, RMWI->getType()); 397 RMWI->replaceAllUsesWith(NewRVal); 398 RMWI->eraseFromParent(); 399 return NewRMWI; 400 } 401 402 bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) { 403 switch (TLI->shouldExpandAtomicLoadInIR(LI)) { 404 case TargetLoweringBase::AtomicExpansionKind::None: 405 return false; 406 case TargetLoweringBase::AtomicExpansionKind::LLSC: 407 expandAtomicOpToLLSC( 408 LI, LI->getType(), LI->getPointerOperand(), LI->getAlign(), 409 LI->getOrdering(), 410 [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; }); 411 return true; 412 case TargetLoweringBase::AtomicExpansionKind::LLOnly: 413 return expandAtomicLoadToLL(LI); 414 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: 415 return expandAtomicLoadToCmpXchg(LI); 416 default: 417 llvm_unreachable("Unhandled case in tryExpandAtomicLoad"); 418 } 419 } 420 421 bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) { 422 IRBuilder<> Builder(LI); 423 424 // On some architectures, load-linked instructions are atomic for larger 425 // sizes than normal loads. For example, the only 64-bit load guaranteed 426 // to be single-copy atomic by ARM is an ldrexd (A3.5.3). 427 Value *Val = TLI->emitLoadLinked(Builder, LI->getType(), 428 LI->getPointerOperand(), LI->getOrdering()); 429 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 430 431 LI->replaceAllUsesWith(Val); 432 LI->eraseFromParent(); 433 434 return true; 435 } 436 437 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) { 438 IRBuilder<> Builder(LI); 439 AtomicOrdering Order = LI->getOrdering(); 440 if (Order == AtomicOrdering::Unordered) 441 Order = AtomicOrdering::Monotonic; 442 443 Value *Addr = LI->getPointerOperand(); 444 Type *Ty = LI->getType(); 445 Constant *DummyVal = Constant::getNullValue(Ty); 446 447 Value *Pair = Builder.CreateAtomicCmpXchg( 448 Addr, DummyVal, DummyVal, LI->getAlign(), Order, 449 AtomicCmpXchgInst::getStrongestFailureOrdering(Order)); 450 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded"); 451 452 LI->replaceAllUsesWith(Loaded); 453 LI->eraseFromParent(); 454 455 return true; 456 } 457 458 /// Convert an atomic store of a non-integral type to an integer store of the 459 /// equivalent bitwidth. We used to not support floating point or vector 460 /// atomics in the IR at all. The backends learned to deal with the bitcast 461 /// idiom because that was the only way of expressing the notion of a atomic 462 /// float or vector store. The long term plan is to teach each backend to 463 /// instruction select from the original atomic store, but as a migration 464 /// mechanism, we convert back to the old format which the backends understand. 465 /// Each backend will need individual work to recognize the new format. 466 StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) { 467 IRBuilder<> Builder(SI); 468 auto *M = SI->getModule(); 469 Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(), 470 M->getDataLayout()); 471 Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy); 472 473 Value *Addr = SI->getPointerOperand(); 474 Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace()); 475 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 476 477 StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr); 478 NewSI->setAlignment(SI->getAlign()); 479 NewSI->setVolatile(SI->isVolatile()); 480 NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID()); 481 LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n"); 482 SI->eraseFromParent(); 483 return NewSI; 484 } 485 486 void AtomicExpand::expandAtomicStore(StoreInst *SI) { 487 // This function is only called on atomic stores that are too large to be 488 // atomic if implemented as a native store. So we replace them by an 489 // atomic swap, that can be implemented for example as a ldrex/strex on ARM 490 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. 491 // It is the responsibility of the target to only signal expansion via 492 // shouldExpandAtomicRMW in cases where this is required and possible. 493 IRBuilder<> Builder(SI); 494 AtomicRMWInst *AI = Builder.CreateAtomicRMW( 495 AtomicRMWInst::Xchg, SI->getPointerOperand(), SI->getValueOperand(), 496 SI->getAlign(), SI->getOrdering()); 497 SI->eraseFromParent(); 498 499 // Now we have an appropriate swap instruction, lower it as usual. 500 tryExpandAtomicRMW(AI); 501 } 502 503 static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr, 504 Value *Loaded, Value *NewVal, Align AddrAlign, 505 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 506 Value *&Success, Value *&NewLoaded) { 507 Type *OrigTy = NewVal->getType(); 508 509 // This code can go away when cmpxchg supports FP types. 510 bool NeedBitcast = OrigTy->isFloatingPointTy(); 511 if (NeedBitcast) { 512 IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits()); 513 unsigned AS = Addr->getType()->getPointerAddressSpace(); 514 Addr = Builder.CreateBitCast(Addr, IntTy->getPointerTo(AS)); 515 NewVal = Builder.CreateBitCast(NewVal, IntTy); 516 Loaded = Builder.CreateBitCast(Loaded, IntTy); 517 } 518 519 Value *Pair = Builder.CreateAtomicCmpXchg( 520 Addr, Loaded, NewVal, AddrAlign, MemOpOrder, 521 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID); 522 Success = Builder.CreateExtractValue(Pair, 1, "success"); 523 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 524 525 if (NeedBitcast) 526 NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy); 527 } 528 529 /// Emit IR to implement the given atomicrmw operation on values in registers, 530 /// returning the new value. 531 static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder, 532 Value *Loaded, Value *Inc) { 533 Value *NewVal; 534 switch (Op) { 535 case AtomicRMWInst::Xchg: 536 return Inc; 537 case AtomicRMWInst::Add: 538 return Builder.CreateAdd(Loaded, Inc, "new"); 539 case AtomicRMWInst::Sub: 540 return Builder.CreateSub(Loaded, Inc, "new"); 541 case AtomicRMWInst::And: 542 return Builder.CreateAnd(Loaded, Inc, "new"); 543 case AtomicRMWInst::Nand: 544 return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new"); 545 case AtomicRMWInst::Or: 546 return Builder.CreateOr(Loaded, Inc, "new"); 547 case AtomicRMWInst::Xor: 548 return Builder.CreateXor(Loaded, Inc, "new"); 549 case AtomicRMWInst::Max: 550 NewVal = Builder.CreateICmpSGT(Loaded, Inc); 551 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 552 case AtomicRMWInst::Min: 553 NewVal = Builder.CreateICmpSLE(Loaded, Inc); 554 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 555 case AtomicRMWInst::UMax: 556 NewVal = Builder.CreateICmpUGT(Loaded, Inc); 557 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 558 case AtomicRMWInst::UMin: 559 NewVal = Builder.CreateICmpULE(Loaded, Inc); 560 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 561 case AtomicRMWInst::FAdd: 562 return Builder.CreateFAdd(Loaded, Inc, "new"); 563 case AtomicRMWInst::FSub: 564 return Builder.CreateFSub(Loaded, Inc, "new"); 565 default: 566 llvm_unreachable("Unknown atomic op"); 567 } 568 } 569 570 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) { 571 LLVMContext &Ctx = AI->getModule()->getContext(); 572 TargetLowering::AtomicExpansionKind Kind = TLI->shouldExpandAtomicRMWInIR(AI); 573 switch (Kind) { 574 case TargetLoweringBase::AtomicExpansionKind::None: 575 return false; 576 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 577 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 578 unsigned ValueSize = getAtomicOpSize(AI); 579 if (ValueSize < MinCASSize) { 580 expandPartwordAtomicRMW(AI, 581 TargetLoweringBase::AtomicExpansionKind::LLSC); 582 } else { 583 auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) { 584 return performAtomicOp(AI->getOperation(), Builder, Loaded, 585 AI->getValOperand()); 586 }; 587 expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(), 588 AI->getAlign(), AI->getOrdering(), PerformOp); 589 } 590 return true; 591 } 592 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: { 593 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 594 unsigned ValueSize = getAtomicOpSize(AI); 595 if (ValueSize < MinCASSize) { 596 // TODO: Handle atomicrmw fadd/fsub 597 if (AI->getType()->isFloatingPointTy()) 598 return false; 599 600 expandPartwordAtomicRMW(AI, 601 TargetLoweringBase::AtomicExpansionKind::CmpXChg); 602 } else { 603 SmallVector<StringRef> SSNs; 604 Ctx.getSyncScopeNames(SSNs); 605 auto MemScope = SSNs[AI->getSyncScopeID()].empty() 606 ? "system" 607 : SSNs[AI->getSyncScopeID()]; 608 OptimizationRemarkEmitter ORE(AI->getFunction()); 609 ORE.emit([&]() { 610 return OptimizationRemark(DEBUG_TYPE, "Passed", AI) 611 << "A compare and swap loop was generated for an atomic " 612 << AI->getOperationName(AI->getOperation()) << " operation at " 613 << MemScope << " memory scope"; 614 }); 615 expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun); 616 } 617 return true; 618 } 619 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: { 620 expandAtomicRMWToMaskedIntrinsic(AI); 621 return true; 622 } 623 case TargetLoweringBase::AtomicExpansionKind::BitTestIntrinsic: { 624 TLI->emitBitTestAtomicRMWIntrinsic(AI); 625 return true; 626 } 627 default: 628 llvm_unreachable("Unhandled case in tryExpandAtomicRMW"); 629 } 630 } 631 632 namespace { 633 634 struct PartwordMaskValues { 635 // These three fields are guaranteed to be set by createMaskInstrs. 636 Type *WordType = nullptr; 637 Type *ValueType = nullptr; 638 Value *AlignedAddr = nullptr; 639 Align AlignedAddrAlignment; 640 // The remaining fields can be null. 641 Value *ShiftAmt = nullptr; 642 Value *Mask = nullptr; 643 Value *Inv_Mask = nullptr; 644 }; 645 646 LLVM_ATTRIBUTE_UNUSED 647 raw_ostream &operator<<(raw_ostream &O, const PartwordMaskValues &PMV) { 648 auto PrintObj = [&O](auto *V) { 649 if (V) 650 O << *V; 651 else 652 O << "nullptr"; 653 O << '\n'; 654 }; 655 O << "PartwordMaskValues {\n"; 656 O << " WordType: "; 657 PrintObj(PMV.WordType); 658 O << " ValueType: "; 659 PrintObj(PMV.ValueType); 660 O << " AlignedAddr: "; 661 PrintObj(PMV.AlignedAddr); 662 O << " AlignedAddrAlignment: " << PMV.AlignedAddrAlignment.value() << '\n'; 663 O << " ShiftAmt: "; 664 PrintObj(PMV.ShiftAmt); 665 O << " Mask: "; 666 PrintObj(PMV.Mask); 667 O << " Inv_Mask: "; 668 PrintObj(PMV.Inv_Mask); 669 O << "}\n"; 670 return O; 671 } 672 673 } // end anonymous namespace 674 675 /// This is a helper function which builds instructions to provide 676 /// values necessary for partword atomic operations. It takes an 677 /// incoming address, Addr, and ValueType, and constructs the address, 678 /// shift-amounts and masks needed to work with a larger value of size 679 /// WordSize. 680 /// 681 /// AlignedAddr: Addr rounded down to a multiple of WordSize 682 /// 683 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded 684 /// from AlignAddr for it to have the same value as if 685 /// ValueType was loaded from Addr. 686 /// 687 /// Mask: Value to mask with the value loaded from AlignAddr to 688 /// include only the part that would've been loaded from Addr. 689 /// 690 /// Inv_Mask: The inverse of Mask. 691 static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I, 692 Type *ValueType, Value *Addr, 693 Align AddrAlign, 694 unsigned MinWordSize) { 695 PartwordMaskValues PMV; 696 697 Module *M = I->getModule(); 698 LLVMContext &Ctx = M->getContext(); 699 const DataLayout &DL = M->getDataLayout(); 700 unsigned ValueSize = DL.getTypeStoreSize(ValueType); 701 702 PMV.ValueType = ValueType; 703 PMV.WordType = MinWordSize > ValueSize ? Type::getIntNTy(Ctx, MinWordSize * 8) 704 : ValueType; 705 if (PMV.ValueType == PMV.WordType) { 706 PMV.AlignedAddr = Addr; 707 PMV.AlignedAddrAlignment = AddrAlign; 708 PMV.ShiftAmt = ConstantInt::get(PMV.ValueType, 0); 709 PMV.Mask = ConstantInt::get(PMV.ValueType, ~0, /*isSigned*/ true); 710 return PMV; 711 } 712 713 assert(ValueSize < MinWordSize); 714 715 Type *WordPtrType = 716 PMV.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace()); 717 718 // TODO: we could skip some of this if AddrAlign >= MinWordSize. 719 Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx)); 720 PMV.AlignedAddr = Builder.CreateIntToPtr( 721 Builder.CreateAnd(AddrInt, ~(uint64_t)(MinWordSize - 1)), WordPtrType, 722 "AlignedAddr"); 723 PMV.AlignedAddrAlignment = Align(MinWordSize); 724 725 Value *PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1, "PtrLSB"); 726 if (DL.isLittleEndian()) { 727 // turn bytes into bits 728 PMV.ShiftAmt = Builder.CreateShl(PtrLSB, 3); 729 } else { 730 // turn bytes into bits, and count from the other side. 731 PMV.ShiftAmt = Builder.CreateShl( 732 Builder.CreateXor(PtrLSB, MinWordSize - ValueSize), 3); 733 } 734 735 PMV.ShiftAmt = Builder.CreateTrunc(PMV.ShiftAmt, PMV.WordType, "ShiftAmt"); 736 PMV.Mask = Builder.CreateShl( 737 ConstantInt::get(PMV.WordType, (1 << (ValueSize * 8)) - 1), PMV.ShiftAmt, 738 "Mask"); 739 PMV.Inv_Mask = Builder.CreateNot(PMV.Mask, "Inv_Mask"); 740 return PMV; 741 } 742 743 static Value *extractMaskedValue(IRBuilder<> &Builder, Value *WideWord, 744 const PartwordMaskValues &PMV) { 745 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch"); 746 if (PMV.WordType == PMV.ValueType) 747 return WideWord; 748 749 Value *Shift = Builder.CreateLShr(WideWord, PMV.ShiftAmt, "shifted"); 750 Value *Trunc = Builder.CreateTrunc(Shift, PMV.ValueType, "extracted"); 751 return Trunc; 752 } 753 754 static Value *insertMaskedValue(IRBuilder<> &Builder, Value *WideWord, 755 Value *Updated, const PartwordMaskValues &PMV) { 756 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch"); 757 assert(Updated->getType() == PMV.ValueType && "Value type mismatch"); 758 if (PMV.WordType == PMV.ValueType) 759 return Updated; 760 761 Value *ZExt = Builder.CreateZExt(Updated, PMV.WordType, "extended"); 762 Value *Shift = 763 Builder.CreateShl(ZExt, PMV.ShiftAmt, "shifted", /*HasNUW*/ true); 764 Value *And = Builder.CreateAnd(WideWord, PMV.Inv_Mask, "unmasked"); 765 Value *Or = Builder.CreateOr(And, Shift, "inserted"); 766 return Or; 767 } 768 769 /// Emit IR to implement a masked version of a given atomicrmw 770 /// operation. (That is, only the bits under the Mask should be 771 /// affected by the operation) 772 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op, 773 IRBuilder<> &Builder, Value *Loaded, 774 Value *Shifted_Inc, Value *Inc, 775 const PartwordMaskValues &PMV) { 776 // TODO: update to use 777 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order 778 // to merge bits from two values without requiring PMV.Inv_Mask. 779 switch (Op) { 780 case AtomicRMWInst::Xchg: { 781 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 782 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc); 783 return FinalVal; 784 } 785 case AtomicRMWInst::Or: 786 case AtomicRMWInst::Xor: 787 case AtomicRMWInst::And: 788 llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW"); 789 case AtomicRMWInst::Add: 790 case AtomicRMWInst::Sub: 791 case AtomicRMWInst::Nand: { 792 // The other arithmetic ops need to be masked into place. 793 Value *NewVal = performAtomicOp(Op, Builder, Loaded, Shifted_Inc); 794 Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask); 795 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 796 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked); 797 return FinalVal; 798 } 799 case AtomicRMWInst::Max: 800 case AtomicRMWInst::Min: 801 case AtomicRMWInst::UMax: 802 case AtomicRMWInst::UMin: { 803 // Finally, comparison ops will operate on the full value, so 804 // truncate down to the original size, and expand out again after 805 // doing the operation. 806 Value *Loaded_Extract = extractMaskedValue(Builder, Loaded, PMV); 807 Value *NewVal = performAtomicOp(Op, Builder, Loaded_Extract, Inc); 808 Value *FinalVal = insertMaskedValue(Builder, Loaded, NewVal, PMV); 809 return FinalVal; 810 } 811 default: 812 llvm_unreachable("Unknown atomic op"); 813 } 814 } 815 816 /// Expand a sub-word atomicrmw operation into an appropriate 817 /// word-sized operation. 818 /// 819 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same 820 /// way as a typical atomicrmw expansion. The only difference here is 821 /// that the operation inside of the loop may operate upon only a 822 /// part of the value. 823 void AtomicExpand::expandPartwordAtomicRMW( 824 AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) { 825 AtomicOrdering MemOpOrder = AI->getOrdering(); 826 SyncScope::ID SSID = AI->getSyncScopeID(); 827 828 IRBuilder<> Builder(AI); 829 830 PartwordMaskValues PMV = 831 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 832 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 833 834 Value *ValOperand_Shifted = 835 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 836 PMV.ShiftAmt, "ValOperand_Shifted"); 837 838 auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) { 839 return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded, 840 ValOperand_Shifted, AI->getValOperand(), PMV); 841 }; 842 843 Value *OldResult; 844 if (ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg) { 845 OldResult = insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, 846 PMV.AlignedAddrAlignment, MemOpOrder, SSID, 847 PerformPartwordOp, createCmpXchgInstFun); 848 } else { 849 assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::LLSC); 850 OldResult = insertRMWLLSCLoop(Builder, PMV.WordType, PMV.AlignedAddr, 851 PMV.AlignedAddrAlignment, MemOpOrder, 852 PerformPartwordOp); 853 } 854 855 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV); 856 AI->replaceAllUsesWith(FinalOldResult); 857 AI->eraseFromParent(); 858 } 859 860 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width. 861 AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) { 862 IRBuilder<> Builder(AI); 863 AtomicRMWInst::BinOp Op = AI->getOperation(); 864 865 assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 866 Op == AtomicRMWInst::And) && 867 "Unable to widen operation"); 868 869 PartwordMaskValues PMV = 870 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 871 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 872 873 Value *ValOperand_Shifted = 874 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 875 PMV.ShiftAmt, "ValOperand_Shifted"); 876 877 Value *NewOperand; 878 879 if (Op == AtomicRMWInst::And) 880 NewOperand = 881 Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand"); 882 else 883 NewOperand = ValOperand_Shifted; 884 885 AtomicRMWInst *NewAI = 886 Builder.CreateAtomicRMW(Op, PMV.AlignedAddr, NewOperand, 887 PMV.AlignedAddrAlignment, AI->getOrdering()); 888 889 Value *FinalOldResult = extractMaskedValue(Builder, NewAI, PMV); 890 AI->replaceAllUsesWith(FinalOldResult); 891 AI->eraseFromParent(); 892 return NewAI; 893 } 894 895 bool AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) { 896 // The basic idea here is that we're expanding a cmpxchg of a 897 // smaller memory size up to a word-sized cmpxchg. To do this, we 898 // need to add a retry-loop for strong cmpxchg, so that 899 // modifications to other parts of the word don't cause a spurious 900 // failure. 901 902 // This generates code like the following: 903 // [[Setup mask values PMV.*]] 904 // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt 905 // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt 906 // %InitLoaded = load i32* %addr 907 // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask 908 // br partword.cmpxchg.loop 909 // partword.cmpxchg.loop: 910 // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ], 911 // [ %OldVal_MaskOut, %partword.cmpxchg.failure ] 912 // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted 913 // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted 914 // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp, 915 // i32 %FullWord_NewVal success_ordering failure_ordering 916 // %OldVal = extractvalue { i32, i1 } %NewCI, 0 917 // %Success = extractvalue { i32, i1 } %NewCI, 1 918 // br i1 %Success, label %partword.cmpxchg.end, 919 // label %partword.cmpxchg.failure 920 // partword.cmpxchg.failure: 921 // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask 922 // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut 923 // br i1 %ShouldContinue, label %partword.cmpxchg.loop, 924 // label %partword.cmpxchg.end 925 // partword.cmpxchg.end: 926 // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt 927 // %FinalOldVal = trunc i32 %tmp1 to i8 928 // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0 929 // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1 930 931 Value *Addr = CI->getPointerOperand(); 932 Value *Cmp = CI->getCompareOperand(); 933 Value *NewVal = CI->getNewValOperand(); 934 935 BasicBlock *BB = CI->getParent(); 936 Function *F = BB->getParent(); 937 IRBuilder<> Builder(CI); 938 LLVMContext &Ctx = Builder.getContext(); 939 940 BasicBlock *EndBB = 941 BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end"); 942 auto FailureBB = 943 BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB); 944 auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB); 945 946 // The split call above "helpfully" added a branch at the end of BB 947 // (to the wrong place). 948 std::prev(BB->end())->eraseFromParent(); 949 Builder.SetInsertPoint(BB); 950 951 PartwordMaskValues PMV = 952 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr, 953 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 954 955 // Shift the incoming values over, into the right location in the word. 956 Value *NewVal_Shifted = 957 Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt); 958 Value *Cmp_Shifted = 959 Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt); 960 961 // Load the entire current word, and mask into place the expected and new 962 // values 963 LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr); 964 InitLoaded->setVolatile(CI->isVolatile()); 965 Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask); 966 Builder.CreateBr(LoopBB); 967 968 // partword.cmpxchg.loop: 969 Builder.SetInsertPoint(LoopBB); 970 PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2); 971 Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB); 972 973 // Mask/Or the expected and new values into place in the loaded word. 974 Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted); 975 Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted); 976 AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg( 977 PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, PMV.AlignedAddrAlignment, 978 CI->getSuccessOrdering(), CI->getFailureOrdering(), CI->getSyncScopeID()); 979 NewCI->setVolatile(CI->isVolatile()); 980 // When we're building a strong cmpxchg, we need a loop, so you 981 // might think we could use a weak cmpxchg inside. But, using strong 982 // allows the below comparison for ShouldContinue, and we're 983 // expecting the underlying cmpxchg to be a machine instruction, 984 // which is strong anyways. 985 NewCI->setWeak(CI->isWeak()); 986 987 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 988 Value *Success = Builder.CreateExtractValue(NewCI, 1); 989 990 if (CI->isWeak()) 991 Builder.CreateBr(EndBB); 992 else 993 Builder.CreateCondBr(Success, EndBB, FailureBB); 994 995 // partword.cmpxchg.failure: 996 Builder.SetInsertPoint(FailureBB); 997 // Upon failure, verify that the masked-out part of the loaded value 998 // has been modified. If it didn't, abort the cmpxchg, since the 999 // masked-in part must've. 1000 Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask); 1001 Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut); 1002 Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB); 1003 1004 // Add the second value to the phi from above 1005 Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB); 1006 1007 // partword.cmpxchg.end: 1008 Builder.SetInsertPoint(CI); 1009 1010 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV); 1011 Value *Res = UndefValue::get(CI->getType()); 1012 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 1013 Res = Builder.CreateInsertValue(Res, Success, 1); 1014 1015 CI->replaceAllUsesWith(Res); 1016 CI->eraseFromParent(); 1017 return true; 1018 } 1019 1020 void AtomicExpand::expandAtomicOpToLLSC( 1021 Instruction *I, Type *ResultType, Value *Addr, Align AddrAlign, 1022 AtomicOrdering MemOpOrder, 1023 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { 1024 IRBuilder<> Builder(I); 1025 Value *Loaded = insertRMWLLSCLoop(Builder, ResultType, Addr, AddrAlign, 1026 MemOpOrder, PerformOp); 1027 1028 I->replaceAllUsesWith(Loaded); 1029 I->eraseFromParent(); 1030 } 1031 1032 void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) { 1033 IRBuilder<> Builder(AI); 1034 1035 PartwordMaskValues PMV = 1036 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 1037 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1038 1039 // The value operand must be sign-extended for signed min/max so that the 1040 // target's signed comparison instructions can be used. Otherwise, just 1041 // zero-ext. 1042 Instruction::CastOps CastOp = Instruction::ZExt; 1043 AtomicRMWInst::BinOp RMWOp = AI->getOperation(); 1044 if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min) 1045 CastOp = Instruction::SExt; 1046 1047 Value *ValOperand_Shifted = Builder.CreateShl( 1048 Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType), 1049 PMV.ShiftAmt, "ValOperand_Shifted"); 1050 Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic( 1051 Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt, 1052 AI->getOrdering()); 1053 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV); 1054 AI->replaceAllUsesWith(FinalOldResult); 1055 AI->eraseFromParent(); 1056 } 1057 1058 void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI) { 1059 IRBuilder<> Builder(CI); 1060 1061 PartwordMaskValues PMV = createMaskInstrs( 1062 Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(), 1063 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1064 1065 Value *CmpVal_Shifted = Builder.CreateShl( 1066 Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt, 1067 "CmpVal_Shifted"); 1068 Value *NewVal_Shifted = Builder.CreateShl( 1069 Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt, 1070 "NewVal_Shifted"); 1071 Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic( 1072 Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask, 1073 CI->getMergedOrdering()); 1074 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV); 1075 Value *Res = UndefValue::get(CI->getType()); 1076 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 1077 Value *Success = Builder.CreateICmpEQ( 1078 CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success"); 1079 Res = Builder.CreateInsertValue(Res, Success, 1); 1080 1081 CI->replaceAllUsesWith(Res); 1082 CI->eraseFromParent(); 1083 } 1084 1085 Value *AtomicExpand::insertRMWLLSCLoop( 1086 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, 1087 AtomicOrdering MemOpOrder, 1088 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { 1089 LLVMContext &Ctx = Builder.getContext(); 1090 BasicBlock *BB = Builder.GetInsertBlock(); 1091 Function *F = BB->getParent(); 1092 1093 assert(AddrAlign >= 1094 F->getParent()->getDataLayout().getTypeStoreSize(ResultTy) && 1095 "Expected at least natural alignment at this point."); 1096 1097 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1098 // 1099 // The standard expansion we produce is: 1100 // [...] 1101 // atomicrmw.start: 1102 // %loaded = @load.linked(%addr) 1103 // %new = some_op iN %loaded, %incr 1104 // %stored = @store_conditional(%new, %addr) 1105 // %try_again = icmp i32 ne %stored, 0 1106 // br i1 %try_again, label %loop, label %atomicrmw.end 1107 // atomicrmw.end: 1108 // [...] 1109 BasicBlock *ExitBB = 1110 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1111 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1112 1113 // The split call above "helpfully" added a branch at the end of BB (to the 1114 // wrong place). 1115 std::prev(BB->end())->eraseFromParent(); 1116 Builder.SetInsertPoint(BB); 1117 Builder.CreateBr(LoopBB); 1118 1119 // Start the main loop block now that we've taken care of the preliminaries. 1120 Builder.SetInsertPoint(LoopBB); 1121 Value *Loaded = TLI->emitLoadLinked(Builder, ResultTy, Addr, MemOpOrder); 1122 1123 Value *NewVal = PerformOp(Builder, Loaded); 1124 1125 Value *StoreSuccess = 1126 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); 1127 Value *TryAgain = Builder.CreateICmpNE( 1128 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); 1129 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); 1130 1131 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1132 return Loaded; 1133 } 1134 1135 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of 1136 /// the equivalent bitwidth. We used to not support pointer cmpxchg in the 1137 /// IR. As a migration step, we convert back to what use to be the standard 1138 /// way to represent a pointer cmpxchg so that we can update backends one by 1139 /// one. 1140 AtomicCmpXchgInst * 1141 AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) { 1142 auto *M = CI->getModule(); 1143 Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(), 1144 M->getDataLayout()); 1145 1146 IRBuilder<> Builder(CI); 1147 1148 Value *Addr = CI->getPointerOperand(); 1149 Type *PT = PointerType::get(NewTy, Addr->getType()->getPointerAddressSpace()); 1150 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 1151 1152 Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy); 1153 Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy); 1154 1155 auto *NewCI = Builder.CreateAtomicCmpXchg( 1156 NewAddr, NewCmp, NewNewVal, CI->getAlign(), CI->getSuccessOrdering(), 1157 CI->getFailureOrdering(), CI->getSyncScopeID()); 1158 NewCI->setVolatile(CI->isVolatile()); 1159 NewCI->setWeak(CI->isWeak()); 1160 LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n"); 1161 1162 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 1163 Value *Succ = Builder.CreateExtractValue(NewCI, 1); 1164 1165 OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType()); 1166 1167 Value *Res = UndefValue::get(CI->getType()); 1168 Res = Builder.CreateInsertValue(Res, OldVal, 0); 1169 Res = Builder.CreateInsertValue(Res, Succ, 1); 1170 1171 CI->replaceAllUsesWith(Res); 1172 CI->eraseFromParent(); 1173 return NewCI; 1174 } 1175 1176 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1177 AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); 1178 AtomicOrdering FailureOrder = CI->getFailureOrdering(); 1179 Value *Addr = CI->getPointerOperand(); 1180 BasicBlock *BB = CI->getParent(); 1181 Function *F = BB->getParent(); 1182 LLVMContext &Ctx = F->getContext(); 1183 // If shouldInsertFencesForAtomic() returns true, then the target does not 1184 // want to deal with memory orders, and emitLeading/TrailingFence should take 1185 // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we 1186 // should preserve the ordering. 1187 bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI); 1188 AtomicOrdering MemOpOrder = ShouldInsertFencesForAtomic 1189 ? AtomicOrdering::Monotonic 1190 : CI->getMergedOrdering(); 1191 1192 // In implementations which use a barrier to achieve release semantics, we can 1193 // delay emitting this barrier until we know a store is actually going to be 1194 // attempted. The cost of this delay is that we need 2 copies of the block 1195 // emitting the load-linked, affecting code size. 1196 // 1197 // Ideally, this logic would be unconditional except for the minsize check 1198 // since in other cases the extra blocks naturally collapse down to the 1199 // minimal loop. Unfortunately, this puts too much stress on later 1200 // optimisations so we avoid emitting the extra logic in those cases too. 1201 bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic && 1202 SuccessOrder != AtomicOrdering::Monotonic && 1203 SuccessOrder != AtomicOrdering::Acquire && 1204 !F->hasMinSize(); 1205 1206 // There's no overhead for sinking the release barrier in a weak cmpxchg, so 1207 // do it even on minsize. 1208 bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak(); 1209 1210 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord 1211 // 1212 // The full expansion we produce is: 1213 // [...] 1214 // %aligned.addr = ... 1215 // cmpxchg.start: 1216 // %unreleasedload = @load.linked(%aligned.addr) 1217 // %unreleasedload.extract = extract value from %unreleasedload 1218 // %should_store = icmp eq %unreleasedload.extract, %desired 1219 // br i1 %should_store, label %cmpxchg.releasingstore, 1220 // label %cmpxchg.nostore 1221 // cmpxchg.releasingstore: 1222 // fence? 1223 // br label cmpxchg.trystore 1224 // cmpxchg.trystore: 1225 // %loaded.trystore = phi [%unreleasedload, %cmpxchg.releasingstore], 1226 // [%releasedload, %cmpxchg.releasedload] 1227 // %updated.new = insert %new into %loaded.trystore 1228 // %stored = @store_conditional(%updated.new, %aligned.addr) 1229 // %success = icmp eq i32 %stored, 0 1230 // br i1 %success, label %cmpxchg.success, 1231 // label %cmpxchg.releasedload/%cmpxchg.failure 1232 // cmpxchg.releasedload: 1233 // %releasedload = @load.linked(%aligned.addr) 1234 // %releasedload.extract = extract value from %releasedload 1235 // %should_store = icmp eq %releasedload.extract, %desired 1236 // br i1 %should_store, label %cmpxchg.trystore, 1237 // label %cmpxchg.failure 1238 // cmpxchg.success: 1239 // fence? 1240 // br label %cmpxchg.end 1241 // cmpxchg.nostore: 1242 // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start], 1243 // [%releasedload, 1244 // %cmpxchg.releasedload/%cmpxchg.trystore] 1245 // @load_linked_fail_balance()? 1246 // br label %cmpxchg.failure 1247 // cmpxchg.failure: 1248 // fence? 1249 // br label %cmpxchg.end 1250 // cmpxchg.end: 1251 // %loaded.exit = phi [%loaded.nostore, %cmpxchg.failure], 1252 // [%loaded.trystore, %cmpxchg.trystore] 1253 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] 1254 // %loaded = extract value from %loaded.exit 1255 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 1256 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 1257 // [...] 1258 BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end"); 1259 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); 1260 auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB); 1261 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB); 1262 auto ReleasedLoadBB = 1263 BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB); 1264 auto TryStoreBB = 1265 BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB); 1266 auto ReleasingStoreBB = 1267 BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB); 1268 auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB); 1269 1270 // This grabs the DebugLoc from CI 1271 IRBuilder<> Builder(CI); 1272 1273 // The split call above "helpfully" added a branch at the end of BB (to the 1274 // wrong place), but we might want a fence too. It's easiest to just remove 1275 // the branch entirely. 1276 std::prev(BB->end())->eraseFromParent(); 1277 Builder.SetInsertPoint(BB); 1278 if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier) 1279 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1280 1281 PartwordMaskValues PMV = 1282 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr, 1283 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1284 Builder.CreateBr(StartBB); 1285 1286 // Start the main loop block now that we've taken care of the preliminaries. 1287 Builder.SetInsertPoint(StartBB); 1288 Value *UnreleasedLoad = 1289 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder); 1290 Value *UnreleasedLoadExtract = 1291 extractMaskedValue(Builder, UnreleasedLoad, PMV); 1292 Value *ShouldStore = Builder.CreateICmpEQ( 1293 UnreleasedLoadExtract, CI->getCompareOperand(), "should_store"); 1294 1295 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1296 // jump straight past that fence instruction (if it exists). 1297 Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB); 1298 1299 Builder.SetInsertPoint(ReleasingStoreBB); 1300 if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier) 1301 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1302 Builder.CreateBr(TryStoreBB); 1303 1304 Builder.SetInsertPoint(TryStoreBB); 1305 PHINode *LoadedTryStore = 1306 Builder.CreatePHI(PMV.WordType, 2, "loaded.trystore"); 1307 LoadedTryStore->addIncoming(UnreleasedLoad, ReleasingStoreBB); 1308 Value *NewValueInsert = 1309 insertMaskedValue(Builder, LoadedTryStore, CI->getNewValOperand(), PMV); 1310 Value *StoreSuccess = TLI->emitStoreConditional(Builder, NewValueInsert, 1311 PMV.AlignedAddr, MemOpOrder); 1312 StoreSuccess = Builder.CreateICmpEQ( 1313 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); 1314 BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB; 1315 Builder.CreateCondBr(StoreSuccess, SuccessBB, 1316 CI->isWeak() ? FailureBB : RetryBB); 1317 1318 Builder.SetInsertPoint(ReleasedLoadBB); 1319 Value *SecondLoad; 1320 if (HasReleasedLoadBB) { 1321 SecondLoad = 1322 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder); 1323 Value *SecondLoadExtract = extractMaskedValue(Builder, SecondLoad, PMV); 1324 ShouldStore = Builder.CreateICmpEQ(SecondLoadExtract, 1325 CI->getCompareOperand(), "should_store"); 1326 1327 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1328 // jump straight past that fence instruction (if it exists). 1329 Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB); 1330 // Update PHI node in TryStoreBB. 1331 LoadedTryStore->addIncoming(SecondLoad, ReleasedLoadBB); 1332 } else 1333 Builder.CreateUnreachable(); 1334 1335 // Make sure later instructions don't get reordered with a fence if 1336 // necessary. 1337 Builder.SetInsertPoint(SuccessBB); 1338 if (ShouldInsertFencesForAtomic) 1339 TLI->emitTrailingFence(Builder, CI, SuccessOrder); 1340 Builder.CreateBr(ExitBB); 1341 1342 Builder.SetInsertPoint(NoStoreBB); 1343 PHINode *LoadedNoStore = 1344 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.nostore"); 1345 LoadedNoStore->addIncoming(UnreleasedLoad, StartBB); 1346 if (HasReleasedLoadBB) 1347 LoadedNoStore->addIncoming(SecondLoad, ReleasedLoadBB); 1348 1349 // In the failing case, where we don't execute the store-conditional, the 1350 // target might want to balance out the load-linked with a dedicated 1351 // instruction (e.g., on ARM, clearing the exclusive monitor). 1352 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 1353 Builder.CreateBr(FailureBB); 1354 1355 Builder.SetInsertPoint(FailureBB); 1356 PHINode *LoadedFailure = 1357 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.failure"); 1358 LoadedFailure->addIncoming(LoadedNoStore, NoStoreBB); 1359 if (CI->isWeak()) 1360 LoadedFailure->addIncoming(LoadedTryStore, TryStoreBB); 1361 if (ShouldInsertFencesForAtomic) 1362 TLI->emitTrailingFence(Builder, CI, FailureOrder); 1363 Builder.CreateBr(ExitBB); 1364 1365 // Finally, we have control-flow based knowledge of whether the cmpxchg 1366 // succeeded or not. We expose this to later passes by converting any 1367 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate 1368 // PHI. 1369 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1370 PHINode *LoadedExit = 1371 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.exit"); 1372 LoadedExit->addIncoming(LoadedTryStore, SuccessBB); 1373 LoadedExit->addIncoming(LoadedFailure, FailureBB); 1374 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2, "success"); 1375 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); 1376 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); 1377 1378 // This is the "exit value" from the cmpxchg expansion. It may be of 1379 // a type wider than the one in the cmpxchg instruction. 1380 Value *LoadedFull = LoadedExit; 1381 1382 Builder.SetInsertPoint(ExitBB, std::next(Success->getIterator())); 1383 Value *Loaded = extractMaskedValue(Builder, LoadedFull, PMV); 1384 1385 // Look for any users of the cmpxchg that are just comparing the loaded value 1386 // against the desired one, and replace them with the CFG-derived version. 1387 SmallVector<ExtractValueInst *, 2> PrunedInsts; 1388 for (auto User : CI->users()) { 1389 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); 1390 if (!EV) 1391 continue; 1392 1393 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && 1394 "weird extraction from { iN, i1 }"); 1395 1396 if (EV->getIndices()[0] == 0) 1397 EV->replaceAllUsesWith(Loaded); 1398 else 1399 EV->replaceAllUsesWith(Success); 1400 1401 PrunedInsts.push_back(EV); 1402 } 1403 1404 // We can remove the instructions now we're no longer iterating through them. 1405 for (auto EV : PrunedInsts) 1406 EV->eraseFromParent(); 1407 1408 if (!CI->use_empty()) { 1409 // Some use of the full struct return that we don't understand has happened, 1410 // so we've got to reconstruct it properly. 1411 Value *Res; 1412 Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0); 1413 Res = Builder.CreateInsertValue(Res, Success, 1); 1414 1415 CI->replaceAllUsesWith(Res); 1416 } 1417 1418 CI->eraseFromParent(); 1419 return true; 1420 } 1421 1422 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst *RMWI) { 1423 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand()); 1424 if (!C) 1425 return false; 1426 1427 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 1428 switch (Op) { 1429 case AtomicRMWInst::Add: 1430 case AtomicRMWInst::Sub: 1431 case AtomicRMWInst::Or: 1432 case AtomicRMWInst::Xor: 1433 return C->isZero(); 1434 case AtomicRMWInst::And: 1435 return C->isMinusOne(); 1436 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/... 1437 default: 1438 return false; 1439 } 1440 } 1441 1442 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst *RMWI) { 1443 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { 1444 tryExpandAtomicLoad(ResultingLoad); 1445 return true; 1446 } 1447 return false; 1448 } 1449 1450 Value *AtomicExpand::insertRMWCmpXchgLoop( 1451 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, 1452 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 1453 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, 1454 CreateCmpXchgInstFun CreateCmpXchg) { 1455 LLVMContext &Ctx = Builder.getContext(); 1456 BasicBlock *BB = Builder.GetInsertBlock(); 1457 Function *F = BB->getParent(); 1458 1459 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1460 // 1461 // The standard expansion we produce is: 1462 // [...] 1463 // %init_loaded = load atomic iN* %addr 1464 // br label %loop 1465 // loop: 1466 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] 1467 // %new = some_op iN %loaded, %incr 1468 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new 1469 // %new_loaded = extractvalue { iN, i1 } %pair, 0 1470 // %success = extractvalue { iN, i1 } %pair, 1 1471 // br i1 %success, label %atomicrmw.end, label %loop 1472 // atomicrmw.end: 1473 // [...] 1474 BasicBlock *ExitBB = 1475 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1476 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1477 1478 // The split call above "helpfully" added a branch at the end of BB (to the 1479 // wrong place), but we want a load. It's easiest to just remove 1480 // the branch entirely. 1481 std::prev(BB->end())->eraseFromParent(); 1482 Builder.SetInsertPoint(BB); 1483 LoadInst *InitLoaded = Builder.CreateAlignedLoad(ResultTy, Addr, AddrAlign); 1484 Builder.CreateBr(LoopBB); 1485 1486 // Start the main loop block now that we've taken care of the preliminaries. 1487 Builder.SetInsertPoint(LoopBB); 1488 PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded"); 1489 Loaded->addIncoming(InitLoaded, BB); 1490 1491 Value *NewVal = PerformOp(Builder, Loaded); 1492 1493 Value *NewLoaded = nullptr; 1494 Value *Success = nullptr; 1495 1496 CreateCmpXchg(Builder, Addr, Loaded, NewVal, AddrAlign, 1497 MemOpOrder == AtomicOrdering::Unordered 1498 ? AtomicOrdering::Monotonic 1499 : MemOpOrder, 1500 SSID, Success, NewLoaded); 1501 assert(Success && NewLoaded); 1502 1503 Loaded->addIncoming(NewLoaded, LoopBB); 1504 1505 Builder.CreateCondBr(Success, ExitBB, LoopBB); 1506 1507 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1508 return NewLoaded; 1509 } 1510 1511 bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1512 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 1513 unsigned ValueSize = getAtomicOpSize(CI); 1514 1515 switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) { 1516 default: 1517 llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg"); 1518 case TargetLoweringBase::AtomicExpansionKind::None: 1519 if (ValueSize < MinCASSize) 1520 return expandPartwordCmpXchg(CI); 1521 return false; 1522 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 1523 return expandAtomicCmpXchg(CI); 1524 } 1525 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: 1526 expandAtomicCmpXchgToMaskedIntrinsic(CI); 1527 return true; 1528 } 1529 } 1530 1531 // Note: This function is exposed externally by AtomicExpandUtils.h 1532 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 1533 CreateCmpXchgInstFun CreateCmpXchg) { 1534 IRBuilder<> Builder(AI); 1535 Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop( 1536 Builder, AI->getType(), AI->getPointerOperand(), AI->getAlign(), 1537 AI->getOrdering(), AI->getSyncScopeID(), 1538 [&](IRBuilder<> &Builder, Value *Loaded) { 1539 return performAtomicOp(AI->getOperation(), Builder, Loaded, 1540 AI->getValOperand()); 1541 }, 1542 CreateCmpXchg); 1543 1544 AI->replaceAllUsesWith(Loaded); 1545 AI->eraseFromParent(); 1546 return true; 1547 } 1548 1549 // In order to use one of the sized library calls such as 1550 // __atomic_fetch_add_4, the alignment must be sufficient, the size 1551 // must be one of the potentially-specialized sizes, and the value 1552 // type must actually exist in C on the target (otherwise, the 1553 // function wouldn't actually be defined.) 1554 static bool canUseSizedAtomicCall(unsigned Size, Align Alignment, 1555 const DataLayout &DL) { 1556 // TODO: "LargestSize" is an approximation for "largest type that 1557 // you can express in C". It seems to be the case that int128 is 1558 // supported on all 64-bit platforms, otherwise only up to 64-bit 1559 // integers are supported. If we get this wrong, then we'll try to 1560 // call a sized libcall that doesn't actually exist. There should 1561 // really be some more reliable way in LLVM of determining integer 1562 // sizes which are valid in the target's C ABI... 1563 unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8; 1564 return Alignment >= Size && 1565 (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) && 1566 Size <= LargestSize; 1567 } 1568 1569 void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) { 1570 static const RTLIB::Libcall Libcalls[6] = { 1571 RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2, 1572 RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16}; 1573 unsigned Size = getAtomicOpSize(I); 1574 1575 bool expanded = expandAtomicOpToLibcall( 1576 I, Size, I->getAlign(), I->getPointerOperand(), nullptr, nullptr, 1577 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1578 if (!expanded) 1579 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Load"); 1580 } 1581 1582 void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) { 1583 static const RTLIB::Libcall Libcalls[6] = { 1584 RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2, 1585 RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16}; 1586 unsigned Size = getAtomicOpSize(I); 1587 1588 bool expanded = expandAtomicOpToLibcall( 1589 I, Size, I->getAlign(), I->getPointerOperand(), I->getValueOperand(), 1590 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1591 if (!expanded) 1592 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Store"); 1593 } 1594 1595 void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) { 1596 static const RTLIB::Libcall Libcalls[6] = { 1597 RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1, 1598 RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4, 1599 RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16}; 1600 unsigned Size = getAtomicOpSize(I); 1601 1602 bool expanded = expandAtomicOpToLibcall( 1603 I, Size, I->getAlign(), I->getPointerOperand(), I->getNewValOperand(), 1604 I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(), 1605 Libcalls); 1606 if (!expanded) 1607 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for CAS"); 1608 } 1609 1610 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) { 1611 static const RTLIB::Libcall LibcallsXchg[6] = { 1612 RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1, 1613 RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4, 1614 RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16}; 1615 static const RTLIB::Libcall LibcallsAdd[6] = { 1616 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1, 1617 RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4, 1618 RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16}; 1619 static const RTLIB::Libcall LibcallsSub[6] = { 1620 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1, 1621 RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4, 1622 RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16}; 1623 static const RTLIB::Libcall LibcallsAnd[6] = { 1624 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1, 1625 RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4, 1626 RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16}; 1627 static const RTLIB::Libcall LibcallsOr[6] = { 1628 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1, 1629 RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4, 1630 RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16}; 1631 static const RTLIB::Libcall LibcallsXor[6] = { 1632 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1, 1633 RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4, 1634 RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16}; 1635 static const RTLIB::Libcall LibcallsNand[6] = { 1636 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1, 1637 RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4, 1638 RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16}; 1639 1640 switch (Op) { 1641 case AtomicRMWInst::BAD_BINOP: 1642 llvm_unreachable("Should not have BAD_BINOP."); 1643 case AtomicRMWInst::Xchg: 1644 return makeArrayRef(LibcallsXchg); 1645 case AtomicRMWInst::Add: 1646 return makeArrayRef(LibcallsAdd); 1647 case AtomicRMWInst::Sub: 1648 return makeArrayRef(LibcallsSub); 1649 case AtomicRMWInst::And: 1650 return makeArrayRef(LibcallsAnd); 1651 case AtomicRMWInst::Or: 1652 return makeArrayRef(LibcallsOr); 1653 case AtomicRMWInst::Xor: 1654 return makeArrayRef(LibcallsXor); 1655 case AtomicRMWInst::Nand: 1656 return makeArrayRef(LibcallsNand); 1657 case AtomicRMWInst::Max: 1658 case AtomicRMWInst::Min: 1659 case AtomicRMWInst::UMax: 1660 case AtomicRMWInst::UMin: 1661 case AtomicRMWInst::FAdd: 1662 case AtomicRMWInst::FSub: 1663 // No atomic libcalls are available for max/min/umax/umin. 1664 return {}; 1665 } 1666 llvm_unreachable("Unexpected AtomicRMW operation."); 1667 } 1668 1669 void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) { 1670 ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation()); 1671 1672 unsigned Size = getAtomicOpSize(I); 1673 1674 bool Success = false; 1675 if (!Libcalls.empty()) 1676 Success = expandAtomicOpToLibcall( 1677 I, Size, I->getAlign(), I->getPointerOperand(), I->getValOperand(), 1678 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1679 1680 // The expansion failed: either there were no libcalls at all for 1681 // the operation (min/max), or there were only size-specialized 1682 // libcalls (add/sub/etc) and we needed a generic. So, expand to a 1683 // CAS libcall, via a CAS loop, instead. 1684 if (!Success) { 1685 expandAtomicRMWToCmpXchg( 1686 I, [this](IRBuilder<> &Builder, Value *Addr, Value *Loaded, 1687 Value *NewVal, Align Alignment, AtomicOrdering MemOpOrder, 1688 SyncScope::ID SSID, Value *&Success, Value *&NewLoaded) { 1689 // Create the CAS instruction normally... 1690 AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg( 1691 Addr, Loaded, NewVal, Alignment, MemOpOrder, 1692 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID); 1693 Success = Builder.CreateExtractValue(Pair, 1, "success"); 1694 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 1695 1696 // ...and then expand the CAS into a libcall. 1697 expandAtomicCASToLibcall(Pair); 1698 }); 1699 } 1700 } 1701 1702 // A helper routine for the above expandAtomic*ToLibcall functions. 1703 // 1704 // 'Libcalls' contains an array of enum values for the particular 1705 // ATOMIC libcalls to be emitted. All of the other arguments besides 1706 // 'I' are extracted from the Instruction subclass by the 1707 // caller. Depending on the particular call, some will be null. 1708 bool AtomicExpand::expandAtomicOpToLibcall( 1709 Instruction *I, unsigned Size, Align Alignment, Value *PointerOperand, 1710 Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering, 1711 AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) { 1712 assert(Libcalls.size() == 6); 1713 1714 LLVMContext &Ctx = I->getContext(); 1715 Module *M = I->getModule(); 1716 const DataLayout &DL = M->getDataLayout(); 1717 IRBuilder<> Builder(I); 1718 IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front()); 1719 1720 bool UseSizedLibcall = canUseSizedAtomicCall(Size, Alignment, DL); 1721 Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8); 1722 1723 const Align AllocaAlignment = DL.getPrefTypeAlign(SizedIntTy); 1724 1725 // TODO: the "order" argument type is "int", not int32. So 1726 // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints. 1727 ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size); 1728 assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO"); 1729 Constant *OrderingVal = 1730 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering)); 1731 Constant *Ordering2Val = nullptr; 1732 if (CASExpected) { 1733 assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO"); 1734 Ordering2Val = 1735 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2)); 1736 } 1737 bool HasResult = I->getType() != Type::getVoidTy(Ctx); 1738 1739 RTLIB::Libcall RTLibType; 1740 if (UseSizedLibcall) { 1741 switch (Size) { 1742 case 1: 1743 RTLibType = Libcalls[1]; 1744 break; 1745 case 2: 1746 RTLibType = Libcalls[2]; 1747 break; 1748 case 4: 1749 RTLibType = Libcalls[3]; 1750 break; 1751 case 8: 1752 RTLibType = Libcalls[4]; 1753 break; 1754 case 16: 1755 RTLibType = Libcalls[5]; 1756 break; 1757 } 1758 } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) { 1759 RTLibType = Libcalls[0]; 1760 } else { 1761 // Can't use sized function, and there's no generic for this 1762 // operation, so give up. 1763 return false; 1764 } 1765 1766 if (!TLI->getLibcallName(RTLibType)) { 1767 // This target does not implement the requested atomic libcall so give up. 1768 return false; 1769 } 1770 1771 // Build up the function call. There's two kinds. First, the sized 1772 // variants. These calls are going to be one of the following (with 1773 // N=1,2,4,8,16): 1774 // iN __atomic_load_N(iN *ptr, int ordering) 1775 // void __atomic_store_N(iN *ptr, iN val, int ordering) 1776 // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering) 1777 // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired, 1778 // int success_order, int failure_order) 1779 // 1780 // Note that these functions can be used for non-integer atomic 1781 // operations, the values just need to be bitcast to integers on the 1782 // way in and out. 1783 // 1784 // And, then, the generic variants. They look like the following: 1785 // void __atomic_load(size_t size, void *ptr, void *ret, int ordering) 1786 // void __atomic_store(size_t size, void *ptr, void *val, int ordering) 1787 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, 1788 // int ordering) 1789 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, 1790 // void *desired, int success_order, 1791 // int failure_order) 1792 // 1793 // The different signatures are built up depending on the 1794 // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult' 1795 // variables. 1796 1797 AllocaInst *AllocaCASExpected = nullptr; 1798 Value *AllocaCASExpected_i8 = nullptr; 1799 AllocaInst *AllocaValue = nullptr; 1800 Value *AllocaValue_i8 = nullptr; 1801 AllocaInst *AllocaResult = nullptr; 1802 Value *AllocaResult_i8 = nullptr; 1803 1804 Type *ResultTy; 1805 SmallVector<Value *, 6> Args; 1806 AttributeList Attr; 1807 1808 // 'size' argument. 1809 if (!UseSizedLibcall) { 1810 // Note, getIntPtrType is assumed equivalent to size_t. 1811 Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size)); 1812 } 1813 1814 // 'ptr' argument. 1815 // note: This assumes all address spaces share a common libfunc 1816 // implementation and that addresses are convertable. For systems without 1817 // that property, we'd need to extend this mechanism to support AS-specific 1818 // families of atomic intrinsics. 1819 auto PtrTypeAS = PointerOperand->getType()->getPointerAddressSpace(); 1820 Value *PtrVal = 1821 Builder.CreateBitCast(PointerOperand, Type::getInt8PtrTy(Ctx, PtrTypeAS)); 1822 PtrVal = Builder.CreateAddrSpaceCast(PtrVal, Type::getInt8PtrTy(Ctx)); 1823 Args.push_back(PtrVal); 1824 1825 // 'expected' argument, if present. 1826 if (CASExpected) { 1827 AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType()); 1828 AllocaCASExpected->setAlignment(AllocaAlignment); 1829 unsigned AllocaAS = AllocaCASExpected->getType()->getPointerAddressSpace(); 1830 1831 AllocaCASExpected_i8 = Builder.CreateBitCast( 1832 AllocaCASExpected, Type::getInt8PtrTy(Ctx, AllocaAS)); 1833 Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64); 1834 Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment); 1835 Args.push_back(AllocaCASExpected_i8); 1836 } 1837 1838 // 'val' argument ('desired' for cas), if present. 1839 if (ValueOperand) { 1840 if (UseSizedLibcall) { 1841 Value *IntValue = 1842 Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy); 1843 Args.push_back(IntValue); 1844 } else { 1845 AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType()); 1846 AllocaValue->setAlignment(AllocaAlignment); 1847 AllocaValue_i8 = 1848 Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx)); 1849 Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64); 1850 Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment); 1851 Args.push_back(AllocaValue_i8); 1852 } 1853 } 1854 1855 // 'ret' argument. 1856 if (!CASExpected && HasResult && !UseSizedLibcall) { 1857 AllocaResult = AllocaBuilder.CreateAlloca(I->getType()); 1858 AllocaResult->setAlignment(AllocaAlignment); 1859 unsigned AllocaAS = AllocaResult->getType()->getPointerAddressSpace(); 1860 AllocaResult_i8 = 1861 Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx, AllocaAS)); 1862 Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64); 1863 Args.push_back(AllocaResult_i8); 1864 } 1865 1866 // 'ordering' ('success_order' for cas) argument. 1867 Args.push_back(OrderingVal); 1868 1869 // 'failure_order' argument, if present. 1870 if (Ordering2Val) 1871 Args.push_back(Ordering2Val); 1872 1873 // Now, the return type. 1874 if (CASExpected) { 1875 ResultTy = Type::getInt1Ty(Ctx); 1876 Attr = Attr.addRetAttribute(Ctx, Attribute::ZExt); 1877 } else if (HasResult && UseSizedLibcall) 1878 ResultTy = SizedIntTy; 1879 else 1880 ResultTy = Type::getVoidTy(Ctx); 1881 1882 // Done with setting up arguments and return types, create the call: 1883 SmallVector<Type *, 6> ArgTys; 1884 for (Value *Arg : Args) 1885 ArgTys.push_back(Arg->getType()); 1886 FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false); 1887 FunctionCallee LibcallFn = 1888 M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr); 1889 CallInst *Call = Builder.CreateCall(LibcallFn, Args); 1890 Call->setAttributes(Attr); 1891 Value *Result = Call; 1892 1893 // And then, extract the results... 1894 if (ValueOperand && !UseSizedLibcall) 1895 Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64); 1896 1897 if (CASExpected) { 1898 // The final result from the CAS is {load of 'expected' alloca, bool result 1899 // from call} 1900 Type *FinalResultTy = I->getType(); 1901 Value *V = UndefValue::get(FinalResultTy); 1902 Value *ExpectedOut = Builder.CreateAlignedLoad( 1903 CASExpected->getType(), AllocaCASExpected, AllocaAlignment); 1904 Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64); 1905 V = Builder.CreateInsertValue(V, ExpectedOut, 0); 1906 V = Builder.CreateInsertValue(V, Result, 1); 1907 I->replaceAllUsesWith(V); 1908 } else if (HasResult) { 1909 Value *V; 1910 if (UseSizedLibcall) 1911 V = Builder.CreateBitOrPointerCast(Result, I->getType()); 1912 else { 1913 V = Builder.CreateAlignedLoad(I->getType(), AllocaResult, 1914 AllocaAlignment); 1915 Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64); 1916 } 1917 I->replaceAllUsesWith(V); 1918 } 1919 I->eraseFromParent(); 1920 return true; 1921 } 1922