1 //===-- AtomicExpandPass.cpp - Expand atomic instructions -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a pass (at IR level) to replace atomic instructions with 11 // __atomic_* library calls, or target specific instruction which implement the 12 // same semantics in a way which better fits the target backend. This can 13 // include the use of (intrinsic-based) load-linked/store-conditional loops, 14 // AtomicCmpXchg, or type coercions. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/CodeGen/AtomicExpandUtils.h" 19 #include "llvm/CodeGen/Passes.h" 20 #include "llvm/IR/Function.h" 21 #include "llvm/IR/IRBuilder.h" 22 #include "llvm/IR/InstIterator.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/Intrinsics.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/Target/TargetLowering.h" 29 #include "llvm/Target/TargetMachine.h" 30 #include "llvm/Target/TargetSubtargetInfo.h" 31 32 using namespace llvm; 33 34 #define DEBUG_TYPE "atomic-expand" 35 36 namespace { 37 class AtomicExpand: public FunctionPass { 38 const TargetMachine *TM; 39 const TargetLowering *TLI; 40 public: 41 static char ID; // Pass identification, replacement for typeid 42 explicit AtomicExpand(const TargetMachine *TM = nullptr) 43 : FunctionPass(ID), TM(TM), TLI(nullptr) { 44 initializeAtomicExpandPass(*PassRegistry::getPassRegistry()); 45 } 46 47 bool runOnFunction(Function &F) override; 48 49 private: 50 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order); 51 IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL); 52 LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI); 53 bool tryExpandAtomicLoad(LoadInst *LI); 54 bool expandAtomicLoadToLL(LoadInst *LI); 55 bool expandAtomicLoadToCmpXchg(LoadInst *LI); 56 StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI); 57 bool expandAtomicStore(StoreInst *SI); 58 bool tryExpandAtomicRMW(AtomicRMWInst *AI); 59 Value * 60 insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr, 61 AtomicOrdering MemOpOrder, 62 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); 63 void expandAtomicOpToLLSC( 64 Instruction *I, Type *ResultTy, Value *Addr, AtomicOrdering MemOpOrder, 65 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); 66 void expandPartwordAtomicRMW( 67 AtomicRMWInst *I, 68 TargetLoweringBase::AtomicExpansionKind ExpansionKind); 69 void expandPartwordCmpXchg(AtomicCmpXchgInst *I); 70 71 AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI); 72 static Value *insertRMWCmpXchgLoop( 73 IRBuilder<> &Builder, Type *ResultType, Value *Addr, 74 AtomicOrdering MemOpOrder, 75 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, 76 CreateCmpXchgInstFun CreateCmpXchg); 77 78 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); 79 bool isIdempotentRMW(AtomicRMWInst *AI); 80 bool simplifyIdempotentRMW(AtomicRMWInst *AI); 81 82 bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, unsigned Align, 83 Value *PointerOperand, Value *ValueOperand, 84 Value *CASExpected, AtomicOrdering Ordering, 85 AtomicOrdering Ordering2, 86 ArrayRef<RTLIB::Libcall> Libcalls); 87 void expandAtomicLoadToLibcall(LoadInst *LI); 88 void expandAtomicStoreToLibcall(StoreInst *LI); 89 void expandAtomicRMWToLibcall(AtomicRMWInst *I); 90 void expandAtomicCASToLibcall(AtomicCmpXchgInst *I); 91 92 friend bool 93 llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 94 CreateCmpXchgInstFun CreateCmpXchg); 95 }; 96 } 97 98 char AtomicExpand::ID = 0; 99 char &llvm::AtomicExpandID = AtomicExpand::ID; 100 INITIALIZE_TM_PASS(AtomicExpand, "atomic-expand", "Expand Atomic instructions", 101 false, false) 102 103 FunctionPass *llvm::createAtomicExpandPass(const TargetMachine *TM) { 104 return new AtomicExpand(TM); 105 } 106 107 namespace { 108 // Helper functions to retrieve the size of atomic instructions. 109 unsigned getAtomicOpSize(LoadInst *LI) { 110 const DataLayout &DL = LI->getModule()->getDataLayout(); 111 return DL.getTypeStoreSize(LI->getType()); 112 } 113 114 unsigned getAtomicOpSize(StoreInst *SI) { 115 const DataLayout &DL = SI->getModule()->getDataLayout(); 116 return DL.getTypeStoreSize(SI->getValueOperand()->getType()); 117 } 118 119 unsigned getAtomicOpSize(AtomicRMWInst *RMWI) { 120 const DataLayout &DL = RMWI->getModule()->getDataLayout(); 121 return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); 122 } 123 124 unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) { 125 const DataLayout &DL = CASI->getModule()->getDataLayout(); 126 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); 127 } 128 129 // Helper functions to retrieve the alignment of atomic instructions. 130 unsigned getAtomicOpAlign(LoadInst *LI) { 131 unsigned Align = LI->getAlignment(); 132 // In the future, if this IR restriction is relaxed, we should 133 // return DataLayout::getABITypeAlignment when there's no align 134 // value. 135 assert(Align != 0 && "An atomic LoadInst always has an explicit alignment"); 136 return Align; 137 } 138 139 unsigned getAtomicOpAlign(StoreInst *SI) { 140 unsigned Align = SI->getAlignment(); 141 // In the future, if this IR restriction is relaxed, we should 142 // return DataLayout::getABITypeAlignment when there's no align 143 // value. 144 assert(Align != 0 && "An atomic StoreInst always has an explicit alignment"); 145 return Align; 146 } 147 148 unsigned getAtomicOpAlign(AtomicRMWInst *RMWI) { 149 // TODO(PR27168): This instruction has no alignment attribute, but unlike the 150 // default alignment for load/store, the default here is to assume 151 // it has NATURAL alignment, not DataLayout-specified alignment. 152 const DataLayout &DL = RMWI->getModule()->getDataLayout(); 153 return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); 154 } 155 156 unsigned getAtomicOpAlign(AtomicCmpXchgInst *CASI) { 157 // TODO(PR27168): same comment as above. 158 const DataLayout &DL = CASI->getModule()->getDataLayout(); 159 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); 160 } 161 162 // Determine if a particular atomic operation has a supported size, 163 // and is of appropriate alignment, to be passed through for target 164 // lowering. (Versus turning into a __atomic libcall) 165 template <typename Inst> 166 bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) { 167 unsigned Size = getAtomicOpSize(I); 168 unsigned Align = getAtomicOpAlign(I); 169 return Align >= Size && Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8; 170 } 171 172 } // end anonymous namespace 173 174 bool AtomicExpand::runOnFunction(Function &F) { 175 if (!TM || !TM->getSubtargetImpl(F)->enableAtomicExpand()) 176 return false; 177 TLI = TM->getSubtargetImpl(F)->getTargetLowering(); 178 179 SmallVector<Instruction *, 1> AtomicInsts; 180 181 // Changing control-flow while iterating through it is a bad idea, so gather a 182 // list of all atomic instructions before we start. 183 for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) { 184 Instruction *I = &*II; 185 if (I->isAtomic() && !isa<FenceInst>(I)) 186 AtomicInsts.push_back(I); 187 } 188 189 bool MadeChange = false; 190 for (auto I : AtomicInsts) { 191 auto LI = dyn_cast<LoadInst>(I); 192 auto SI = dyn_cast<StoreInst>(I); 193 auto RMWI = dyn_cast<AtomicRMWInst>(I); 194 auto CASI = dyn_cast<AtomicCmpXchgInst>(I); 195 assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction"); 196 197 // If the Size/Alignment is not supported, replace with a libcall. 198 if (LI) { 199 if (!atomicSizeSupported(TLI, LI)) { 200 expandAtomicLoadToLibcall(LI); 201 MadeChange = true; 202 continue; 203 } 204 } else if (SI) { 205 if (!atomicSizeSupported(TLI, SI)) { 206 expandAtomicStoreToLibcall(SI); 207 MadeChange = true; 208 continue; 209 } 210 } else if (RMWI) { 211 if (!atomicSizeSupported(TLI, RMWI)) { 212 expandAtomicRMWToLibcall(RMWI); 213 MadeChange = true; 214 continue; 215 } 216 } else if (CASI) { 217 if (!atomicSizeSupported(TLI, CASI)) { 218 expandAtomicCASToLibcall(CASI); 219 MadeChange = true; 220 continue; 221 } 222 } 223 224 if (TLI->shouldInsertFencesForAtomic(I)) { 225 auto FenceOrdering = AtomicOrdering::Monotonic; 226 if (LI && isAcquireOrStronger(LI->getOrdering())) { 227 FenceOrdering = LI->getOrdering(); 228 LI->setOrdering(AtomicOrdering::Monotonic); 229 } else if (SI && isReleaseOrStronger(SI->getOrdering())) { 230 FenceOrdering = SI->getOrdering(); 231 SI->setOrdering(AtomicOrdering::Monotonic); 232 } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) || 233 isAcquireOrStronger(RMWI->getOrdering()))) { 234 FenceOrdering = RMWI->getOrdering(); 235 RMWI->setOrdering(AtomicOrdering::Monotonic); 236 } else if (CASI && !TLI->shouldExpandAtomicCmpXchgInIR(CASI) && 237 (isReleaseOrStronger(CASI->getSuccessOrdering()) || 238 isAcquireOrStronger(CASI->getSuccessOrdering()))) { 239 // If a compare and swap is lowered to LL/SC, we can do smarter fence 240 // insertion, with a stronger one on the success path than on the 241 // failure path. As a result, fence insertion is directly done by 242 // expandAtomicCmpXchg in that case. 243 FenceOrdering = CASI->getSuccessOrdering(); 244 CASI->setSuccessOrdering(AtomicOrdering::Monotonic); 245 CASI->setFailureOrdering(AtomicOrdering::Monotonic); 246 } 247 248 if (FenceOrdering != AtomicOrdering::Monotonic) { 249 MadeChange |= bracketInstWithFences(I, FenceOrdering); 250 } 251 } 252 253 if (LI) { 254 if (LI->getType()->isFloatingPointTy()) { 255 // TODO: add a TLI hook to control this so that each target can 256 // convert to lowering the original type one at a time. 257 LI = convertAtomicLoadToIntegerType(LI); 258 assert(LI->getType()->isIntegerTy() && "invariant broken"); 259 MadeChange = true; 260 } 261 262 MadeChange |= tryExpandAtomicLoad(LI); 263 } else if (SI) { 264 if (SI->getValueOperand()->getType()->isFloatingPointTy()) { 265 // TODO: add a TLI hook to control this so that each target can 266 // convert to lowering the original type one at a time. 267 SI = convertAtomicStoreToIntegerType(SI); 268 assert(SI->getValueOperand()->getType()->isIntegerTy() && 269 "invariant broken"); 270 MadeChange = true; 271 } 272 273 if (TLI->shouldExpandAtomicStoreInIR(SI)) 274 MadeChange |= expandAtomicStore(SI); 275 } else if (RMWI) { 276 // There are two different ways of expanding RMW instructions: 277 // - into a load if it is idempotent 278 // - into a Cmpxchg/LL-SC loop otherwise 279 // we try them in that order. 280 281 if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) { 282 MadeChange = true; 283 } else { 284 MadeChange |= tryExpandAtomicRMW(RMWI); 285 } 286 } else if (CASI) { 287 // TODO: when we're ready to make the change at the IR level, we can 288 // extend convertCmpXchgToInteger for floating point too. 289 assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() && 290 "unimplemented - floating point not legal at IR level"); 291 if (CASI->getCompareOperand()->getType()->isPointerTy() ) { 292 // TODO: add a TLI hook to control this so that each target can 293 // convert to lowering the original type one at a time. 294 CASI = convertCmpXchgToIntegerType(CASI); 295 assert(CASI->getCompareOperand()->getType()->isIntegerTy() && 296 "invariant broken"); 297 MadeChange = true; 298 } 299 300 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 301 unsigned ValueSize = getAtomicOpSize(CASI); 302 if (ValueSize < MinCASSize) { 303 assert(!TLI->shouldExpandAtomicCmpXchgInIR(CASI) && 304 "MinCmpXchgSizeInBits not yet supported for LL/SC expansions."); 305 expandPartwordCmpXchg(CASI); 306 } else { 307 if (TLI->shouldExpandAtomicCmpXchgInIR(CASI)) 308 MadeChange |= expandAtomicCmpXchg(CASI); 309 } 310 } 311 } 312 return MadeChange; 313 } 314 315 bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) { 316 IRBuilder<> Builder(I); 317 318 auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order); 319 320 auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order); 321 // The trailing fence is emitted before the instruction instead of after 322 // because there is no easy way of setting Builder insertion point after 323 // an instruction. So we must erase it from the BB, and insert it back 324 // in the right place. 325 // We have a guard here because not every atomic operation generates a 326 // trailing fence. 327 if (TrailingFence) { 328 TrailingFence->removeFromParent(); 329 TrailingFence->insertAfter(I); 330 } 331 332 return (LeadingFence || TrailingFence); 333 } 334 335 /// Get the iX type with the same bitwidth as T. 336 IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T, 337 const DataLayout &DL) { 338 EVT VT = TLI->getValueType(DL, T); 339 unsigned BitWidth = VT.getStoreSizeInBits(); 340 assert(BitWidth == VT.getSizeInBits() && "must be a power of two"); 341 return IntegerType::get(T->getContext(), BitWidth); 342 } 343 344 /// Convert an atomic load of a non-integral type to an integer load of the 345 /// equivalent bitwidth. See the function comment on 346 /// convertAtomicStoreToIntegerType for background. 347 LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) { 348 auto *M = LI->getModule(); 349 Type *NewTy = getCorrespondingIntegerType(LI->getType(), 350 M->getDataLayout()); 351 352 IRBuilder<> Builder(LI); 353 354 Value *Addr = LI->getPointerOperand(); 355 Type *PT = PointerType::get(NewTy, 356 Addr->getType()->getPointerAddressSpace()); 357 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 358 359 auto *NewLI = Builder.CreateLoad(NewAddr); 360 NewLI->setAlignment(LI->getAlignment()); 361 NewLI->setVolatile(LI->isVolatile()); 362 NewLI->setAtomic(LI->getOrdering(), LI->getSynchScope()); 363 DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n"); 364 365 Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType()); 366 LI->replaceAllUsesWith(NewVal); 367 LI->eraseFromParent(); 368 return NewLI; 369 } 370 371 bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) { 372 switch (TLI->shouldExpandAtomicLoadInIR(LI)) { 373 case TargetLoweringBase::AtomicExpansionKind::None: 374 return false; 375 case TargetLoweringBase::AtomicExpansionKind::LLSC: 376 expandAtomicOpToLLSC( 377 LI, LI->getType(), LI->getPointerOperand(), LI->getOrdering(), 378 [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; }); 379 return true; 380 case TargetLoweringBase::AtomicExpansionKind::LLOnly: 381 return expandAtomicLoadToLL(LI); 382 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: 383 return expandAtomicLoadToCmpXchg(LI); 384 } 385 llvm_unreachable("Unhandled case in tryExpandAtomicLoad"); 386 } 387 388 bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) { 389 IRBuilder<> Builder(LI); 390 391 // On some architectures, load-linked instructions are atomic for larger 392 // sizes than normal loads. For example, the only 64-bit load guaranteed 393 // to be single-copy atomic by ARM is an ldrexd (A3.5.3). 394 Value *Val = 395 TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering()); 396 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 397 398 LI->replaceAllUsesWith(Val); 399 LI->eraseFromParent(); 400 401 return true; 402 } 403 404 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) { 405 IRBuilder<> Builder(LI); 406 AtomicOrdering Order = LI->getOrdering(); 407 Value *Addr = LI->getPointerOperand(); 408 Type *Ty = cast<PointerType>(Addr->getType())->getElementType(); 409 Constant *DummyVal = Constant::getNullValue(Ty); 410 411 Value *Pair = Builder.CreateAtomicCmpXchg( 412 Addr, DummyVal, DummyVal, Order, 413 AtomicCmpXchgInst::getStrongestFailureOrdering(Order)); 414 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded"); 415 416 LI->replaceAllUsesWith(Loaded); 417 LI->eraseFromParent(); 418 419 return true; 420 } 421 422 /// Convert an atomic store of a non-integral type to an integer store of the 423 /// equivalent bitwidth. We used to not support floating point or vector 424 /// atomics in the IR at all. The backends learned to deal with the bitcast 425 /// idiom because that was the only way of expressing the notion of a atomic 426 /// float or vector store. The long term plan is to teach each backend to 427 /// instruction select from the original atomic store, but as a migration 428 /// mechanism, we convert back to the old format which the backends understand. 429 /// Each backend will need individual work to recognize the new format. 430 StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) { 431 IRBuilder<> Builder(SI); 432 auto *M = SI->getModule(); 433 Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(), 434 M->getDataLayout()); 435 Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy); 436 437 Value *Addr = SI->getPointerOperand(); 438 Type *PT = PointerType::get(NewTy, 439 Addr->getType()->getPointerAddressSpace()); 440 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 441 442 StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr); 443 NewSI->setAlignment(SI->getAlignment()); 444 NewSI->setVolatile(SI->isVolatile()); 445 NewSI->setAtomic(SI->getOrdering(), SI->getSynchScope()); 446 DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n"); 447 SI->eraseFromParent(); 448 return NewSI; 449 } 450 451 bool AtomicExpand::expandAtomicStore(StoreInst *SI) { 452 // This function is only called on atomic stores that are too large to be 453 // atomic if implemented as a native store. So we replace them by an 454 // atomic swap, that can be implemented for example as a ldrex/strex on ARM 455 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. 456 // It is the responsibility of the target to only signal expansion via 457 // shouldExpandAtomicRMW in cases where this is required and possible. 458 IRBuilder<> Builder(SI); 459 AtomicRMWInst *AI = 460 Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(), 461 SI->getValueOperand(), SI->getOrdering()); 462 SI->eraseFromParent(); 463 464 // Now we have an appropriate swap instruction, lower it as usual. 465 return tryExpandAtomicRMW(AI); 466 } 467 468 static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr, 469 Value *Loaded, Value *NewVal, 470 AtomicOrdering MemOpOrder, 471 Value *&Success, Value *&NewLoaded) { 472 Value* Pair = Builder.CreateAtomicCmpXchg( 473 Addr, Loaded, NewVal, MemOpOrder, 474 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder)); 475 Success = Builder.CreateExtractValue(Pair, 1, "success"); 476 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 477 } 478 479 /// Emit IR to implement the given atomicrmw operation on values in registers, 480 /// returning the new value. 481 static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder, 482 Value *Loaded, Value *Inc) { 483 Value *NewVal; 484 switch (Op) { 485 case AtomicRMWInst::Xchg: 486 return Inc; 487 case AtomicRMWInst::Add: 488 return Builder.CreateAdd(Loaded, Inc, "new"); 489 case AtomicRMWInst::Sub: 490 return Builder.CreateSub(Loaded, Inc, "new"); 491 case AtomicRMWInst::And: 492 return Builder.CreateAnd(Loaded, Inc, "new"); 493 case AtomicRMWInst::Nand: 494 return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new"); 495 case AtomicRMWInst::Or: 496 return Builder.CreateOr(Loaded, Inc, "new"); 497 case AtomicRMWInst::Xor: 498 return Builder.CreateXor(Loaded, Inc, "new"); 499 case AtomicRMWInst::Max: 500 NewVal = Builder.CreateICmpSGT(Loaded, Inc); 501 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 502 case AtomicRMWInst::Min: 503 NewVal = Builder.CreateICmpSLE(Loaded, Inc); 504 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 505 case AtomicRMWInst::UMax: 506 NewVal = Builder.CreateICmpUGT(Loaded, Inc); 507 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 508 case AtomicRMWInst::UMin: 509 NewVal = Builder.CreateICmpULE(Loaded, Inc); 510 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 511 default: 512 llvm_unreachable("Unknown atomic op"); 513 } 514 } 515 516 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) { 517 switch (TLI->shouldExpandAtomicRMWInIR(AI)) { 518 case TargetLoweringBase::AtomicExpansionKind::None: 519 return false; 520 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 521 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 522 unsigned ValueSize = getAtomicOpSize(AI); 523 if (ValueSize < MinCASSize) { 524 llvm_unreachable( 525 "MinCmpXchgSizeInBits not yet supported for LL/SC architectures."); 526 } else { 527 auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) { 528 return performAtomicOp(AI->getOperation(), Builder, Loaded, 529 AI->getValOperand()); 530 }; 531 expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(), 532 AI->getOrdering(), PerformOp); 533 } 534 return true; 535 } 536 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: { 537 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 538 unsigned ValueSize = getAtomicOpSize(AI); 539 if (ValueSize < MinCASSize) { 540 expandPartwordAtomicRMW(AI, 541 TargetLoweringBase::AtomicExpansionKind::CmpXChg); 542 } else { 543 expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun); 544 } 545 return true; 546 } 547 default: 548 llvm_unreachable("Unhandled case in tryExpandAtomicRMW"); 549 } 550 } 551 552 namespace { 553 554 /// Result values from createMaskInstrs helper. 555 struct PartwordMaskValues { 556 Type *WordType; 557 Type *ValueType; 558 Value *AlignedAddr; 559 Value *ShiftAmt; 560 Value *Mask; 561 Value *Inv_Mask; 562 }; 563 } // end anonymous namespace 564 565 /// This is a helper function which builds instructions to provide 566 /// values necessary for partword atomic operations. It takes an 567 /// incoming address, Addr, and ValueType, and constructs the address, 568 /// shift-amounts and masks needed to work with a larger value of size 569 /// WordSize. 570 /// 571 /// AlignedAddr: Addr rounded down to a multiple of WordSize 572 /// 573 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded 574 /// from AlignAddr for it to have the same value as if 575 /// ValueType was loaded from Addr. 576 /// 577 /// Mask: Value to mask with the value loaded from AlignAddr to 578 /// include only the part that would've been loaded from Addr. 579 /// 580 /// Inv_Mask: The inverse of Mask. 581 582 static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I, 583 Type *ValueType, Value *Addr, 584 unsigned WordSize) { 585 PartwordMaskValues Ret; 586 587 BasicBlock *BB = I->getParent(); 588 Function *F = BB->getParent(); 589 Module *M = I->getModule(); 590 591 LLVMContext &Ctx = F->getContext(); 592 const DataLayout &DL = M->getDataLayout(); 593 594 unsigned ValueSize = DL.getTypeStoreSize(ValueType); 595 596 assert(ValueSize < WordSize); 597 598 Ret.ValueType = ValueType; 599 Ret.WordType = Type::getIntNTy(Ctx, WordSize * 8); 600 601 Type *WordPtrType = 602 Ret.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace()); 603 604 Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx)); 605 Ret.AlignedAddr = Builder.CreateIntToPtr( 606 Builder.CreateAnd(AddrInt, ~(uint64_t)(WordSize - 1)), WordPtrType, 607 "AlignedAddr"); 608 609 Value *PtrLSB = Builder.CreateAnd(AddrInt, WordSize - 1, "PtrLSB"); 610 if (DL.isLittleEndian()) { 611 // turn bytes into bits 612 Ret.ShiftAmt = Builder.CreateShl(PtrLSB, 3); 613 } else { 614 // turn bytes into bits, and count from the other side. 615 Ret.ShiftAmt = 616 Builder.CreateShl(Builder.CreateXor(PtrLSB, WordSize - ValueSize), 3); 617 } 618 619 Ret.ShiftAmt = Builder.CreateTrunc(Ret.ShiftAmt, Ret.WordType, "ShiftAmt"); 620 Ret.Mask = Builder.CreateShl( 621 ConstantInt::get(Ret.WordType, (1 << ValueSize * 8) - 1), Ret.ShiftAmt, 622 "Mask"); 623 Ret.Inv_Mask = Builder.CreateNot(Ret.Mask, "Inv_Mask"); 624 625 return Ret; 626 } 627 628 /// Emit IR to implement a masked version of a given atomicrmw 629 /// operation. (That is, only the bits under the Mask should be 630 /// affected by the operation) 631 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op, 632 IRBuilder<> &Builder, Value *Loaded, 633 Value *Shifted_Inc, Value *Inc, 634 const PartwordMaskValues &PMV) { 635 switch (Op) { 636 case AtomicRMWInst::Xchg: { 637 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 638 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc); 639 return FinalVal; 640 } 641 case AtomicRMWInst::Or: 642 case AtomicRMWInst::Xor: 643 // Or/Xor won't affect any other bits, so can just be done 644 // directly. 645 return performAtomicOp(Op, Builder, Loaded, Shifted_Inc); 646 case AtomicRMWInst::Add: 647 case AtomicRMWInst::Sub: 648 case AtomicRMWInst::And: 649 case AtomicRMWInst::Nand: { 650 // The other arithmetic ops need to be masked into place. 651 Value *NewVal = performAtomicOp(Op, Builder, Loaded, Shifted_Inc); 652 Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask); 653 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 654 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked); 655 return FinalVal; 656 } 657 case AtomicRMWInst::Max: 658 case AtomicRMWInst::Min: 659 case AtomicRMWInst::UMax: 660 case AtomicRMWInst::UMin: { 661 // Finally, comparison ops will operate on the full value, so 662 // truncate down to the original size, and expand out again after 663 // doing the operation. 664 Value *Loaded_Shiftdown = Builder.CreateTrunc( 665 Builder.CreateLShr(Loaded, PMV.ShiftAmt), PMV.ValueType); 666 Value *NewVal = performAtomicOp(Op, Builder, Loaded_Shiftdown, Inc); 667 Value *NewVal_Shiftup = Builder.CreateShl( 668 Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt); 669 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 670 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shiftup); 671 return FinalVal; 672 } 673 default: 674 llvm_unreachable("Unknown atomic op"); 675 } 676 } 677 678 /// Expand a sub-word atomicrmw operation into an appropriate 679 /// word-sized operation. 680 /// 681 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same 682 /// way as a typical atomicrmw expansion. The only difference here is 683 /// that the operation inside of the loop must operate only upon a 684 /// part of the value. 685 void AtomicExpand::expandPartwordAtomicRMW( 686 AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) { 687 688 assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg); 689 690 AtomicOrdering MemOpOrder = AI->getOrdering(); 691 692 IRBuilder<> Builder(AI); 693 694 PartwordMaskValues PMV = 695 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 696 TLI->getMinCmpXchgSizeInBits() / 8); 697 698 Value *ValOperand_Shifted = 699 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 700 PMV.ShiftAmt, "ValOperand_Shifted"); 701 702 auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) { 703 return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded, 704 ValOperand_Shifted, AI->getValOperand(), PMV); 705 }; 706 707 // TODO: When we're ready to support LLSC conversions too, use 708 // insertRMWLLSCLoop here for ExpansionKind==LLSC. 709 Value *OldResult = 710 insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder, 711 PerformPartwordOp, createCmpXchgInstFun); 712 Value *FinalOldResult = Builder.CreateTrunc( 713 Builder.CreateLShr(OldResult, PMV.ShiftAmt), PMV.ValueType); 714 AI->replaceAllUsesWith(FinalOldResult); 715 AI->eraseFromParent(); 716 } 717 718 void AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) { 719 // The basic idea here is that we're expanding a cmpxchg of a 720 // smaller memory size up to a word-sized cmpxchg. To do this, we 721 // need to add a retry-loop for strong cmpxchg, so that 722 // modifications to other parts of the word don't cause a spurious 723 // failure. 724 725 // This generates code like the following: 726 // [[Setup mask values PMV.*]] 727 // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt 728 // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt 729 // %InitLoaded = load i32* %addr 730 // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask 731 // br partword.cmpxchg.loop 732 // partword.cmpxchg.loop: 733 // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ], 734 // [ %OldVal_MaskOut, %partword.cmpxchg.failure ] 735 // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted 736 // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted 737 // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp, 738 // i32 %FullWord_NewVal success_ordering failure_ordering 739 // %OldVal = extractvalue { i32, i1 } %NewCI, 0 740 // %Success = extractvalue { i32, i1 } %NewCI, 1 741 // br i1 %Success, label %partword.cmpxchg.end, 742 // label %partword.cmpxchg.failure 743 // partword.cmpxchg.failure: 744 // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask 745 // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut 746 // br i1 %ShouldContinue, label %partword.cmpxchg.loop, 747 // label %partword.cmpxchg.end 748 // partword.cmpxchg.end: 749 // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt 750 // %FinalOldVal = trunc i32 %tmp1 to i8 751 // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0 752 // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1 753 754 Value *Addr = CI->getPointerOperand(); 755 Value *Cmp = CI->getCompareOperand(); 756 Value *NewVal = CI->getNewValOperand(); 757 758 BasicBlock *BB = CI->getParent(); 759 Function *F = BB->getParent(); 760 IRBuilder<> Builder(CI); 761 LLVMContext &Ctx = Builder.getContext(); 762 763 const int WordSize = TLI->getMinCmpXchgSizeInBits() / 8; 764 765 BasicBlock *EndBB = 766 BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end"); 767 auto FailureBB = 768 BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB); 769 auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB); 770 771 // The split call above "helpfully" added a branch at the end of BB 772 // (to the wrong place). 773 std::prev(BB->end())->eraseFromParent(); 774 Builder.SetInsertPoint(BB); 775 776 PartwordMaskValues PMV = createMaskInstrs( 777 Builder, CI, CI->getCompareOperand()->getType(), Addr, WordSize); 778 779 // Shift the incoming values over, into the right location in the word. 780 Value *NewVal_Shifted = 781 Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt); 782 Value *Cmp_Shifted = 783 Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt); 784 785 // Load the entire current word, and mask into place the expected and new 786 // values 787 LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr); 788 InitLoaded->setVolatile(CI->isVolatile()); 789 Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask); 790 Builder.CreateBr(LoopBB); 791 792 // partword.cmpxchg.loop: 793 Builder.SetInsertPoint(LoopBB); 794 PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2); 795 Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB); 796 797 // Mask/Or the expected and new values into place in the loaded word. 798 Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted); 799 Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted); 800 AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg( 801 PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, CI->getSuccessOrdering(), 802 CI->getFailureOrdering(), CI->getSynchScope()); 803 NewCI->setVolatile(CI->isVolatile()); 804 // When we're building a strong cmpxchg, we need a loop, so you 805 // might think we could use a weak cmpxchg inside. But, using strong 806 // allows the below comparison for ShouldContinue, and we're 807 // expecting the underlying cmpxchg to be a machine instruction, 808 // which is strong anyways. 809 NewCI->setWeak(CI->isWeak()); 810 811 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 812 Value *Success = Builder.CreateExtractValue(NewCI, 1); 813 814 if (CI->isWeak()) 815 Builder.CreateBr(EndBB); 816 else 817 Builder.CreateCondBr(Success, EndBB, FailureBB); 818 819 // partword.cmpxchg.failure: 820 Builder.SetInsertPoint(FailureBB); 821 // Upon failure, verify that the masked-out part of the loaded value 822 // has been modified. If it didn't, abort the cmpxchg, since the 823 // masked-in part must've. 824 Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask); 825 Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut); 826 Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB); 827 828 // Add the second value to the phi from above 829 Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB); 830 831 // partword.cmpxchg.end: 832 Builder.SetInsertPoint(CI); 833 834 Value *FinalOldVal = Builder.CreateTrunc( 835 Builder.CreateLShr(OldVal, PMV.ShiftAmt), PMV.ValueType); 836 Value *Res = UndefValue::get(CI->getType()); 837 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 838 Res = Builder.CreateInsertValue(Res, Success, 1); 839 840 CI->replaceAllUsesWith(Res); 841 CI->eraseFromParent(); 842 } 843 844 void AtomicExpand::expandAtomicOpToLLSC( 845 Instruction *I, Type *ResultType, Value *Addr, AtomicOrdering MemOpOrder, 846 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { 847 IRBuilder<> Builder(I); 848 Value *Loaded = 849 insertRMWLLSCLoop(Builder, ResultType, Addr, MemOpOrder, PerformOp); 850 851 I->replaceAllUsesWith(Loaded); 852 I->eraseFromParent(); 853 } 854 855 Value *AtomicExpand::insertRMWLLSCLoop( 856 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, 857 AtomicOrdering MemOpOrder, 858 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { 859 LLVMContext &Ctx = Builder.getContext(); 860 BasicBlock *BB = Builder.GetInsertBlock(); 861 Function *F = BB->getParent(); 862 863 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 864 // 865 // The standard expansion we produce is: 866 // [...] 867 // atomicrmw.start: 868 // %loaded = @load.linked(%addr) 869 // %new = some_op iN %loaded, %incr 870 // %stored = @store_conditional(%new, %addr) 871 // %try_again = icmp i32 ne %stored, 0 872 // br i1 %try_again, label %loop, label %atomicrmw.end 873 // atomicrmw.end: 874 // [...] 875 BasicBlock *ExitBB = 876 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 877 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 878 879 // The split call above "helpfully" added a branch at the end of BB (to the 880 // wrong place). 881 std::prev(BB->end())->eraseFromParent(); 882 Builder.SetInsertPoint(BB); 883 Builder.CreateBr(LoopBB); 884 885 // Start the main loop block now that we've taken care of the preliminaries. 886 Builder.SetInsertPoint(LoopBB); 887 Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); 888 889 Value *NewVal = PerformOp(Builder, Loaded); 890 891 Value *StoreSuccess = 892 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); 893 Value *TryAgain = Builder.CreateICmpNE( 894 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); 895 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); 896 897 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 898 return Loaded; 899 } 900 901 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of 902 /// the equivalent bitwidth. We used to not support pointer cmpxchg in the 903 /// IR. As a migration step, we convert back to what use to be the standard 904 /// way to represent a pointer cmpxchg so that we can update backends one by 905 /// one. 906 AtomicCmpXchgInst *AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) { 907 auto *M = CI->getModule(); 908 Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(), 909 M->getDataLayout()); 910 911 IRBuilder<> Builder(CI); 912 913 Value *Addr = CI->getPointerOperand(); 914 Type *PT = PointerType::get(NewTy, 915 Addr->getType()->getPointerAddressSpace()); 916 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 917 918 Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy); 919 Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy); 920 921 922 auto *NewCI = Builder.CreateAtomicCmpXchg(NewAddr, NewCmp, NewNewVal, 923 CI->getSuccessOrdering(), 924 CI->getFailureOrdering(), 925 CI->getSynchScope()); 926 NewCI->setVolatile(CI->isVolatile()); 927 NewCI->setWeak(CI->isWeak()); 928 DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n"); 929 930 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 931 Value *Succ = Builder.CreateExtractValue(NewCI, 1); 932 933 OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType()); 934 935 Value *Res = UndefValue::get(CI->getType()); 936 Res = Builder.CreateInsertValue(Res, OldVal, 0); 937 Res = Builder.CreateInsertValue(Res, Succ, 1); 938 939 CI->replaceAllUsesWith(Res); 940 CI->eraseFromParent(); 941 return NewCI; 942 } 943 944 945 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 946 AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); 947 AtomicOrdering FailureOrder = CI->getFailureOrdering(); 948 Value *Addr = CI->getPointerOperand(); 949 BasicBlock *BB = CI->getParent(); 950 Function *F = BB->getParent(); 951 LLVMContext &Ctx = F->getContext(); 952 // If shouldInsertFencesForAtomic() returns true, then the target does not 953 // want to deal with memory orders, and emitLeading/TrailingFence should take 954 // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we 955 // should preserve the ordering. 956 bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI); 957 AtomicOrdering MemOpOrder = 958 ShouldInsertFencesForAtomic ? AtomicOrdering::Monotonic : SuccessOrder; 959 960 // In implementations which use a barrier to achieve release semantics, we can 961 // delay emitting this barrier until we know a store is actually going to be 962 // attempted. The cost of this delay is that we need 2 copies of the block 963 // emitting the load-linked, affecting code size. 964 // 965 // Ideally, this logic would be unconditional except for the minsize check 966 // since in other cases the extra blocks naturally collapse down to the 967 // minimal loop. Unfortunately, this puts too much stress on later 968 // optimisations so we avoid emitting the extra logic in those cases too. 969 bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic && 970 SuccessOrder != AtomicOrdering::Monotonic && 971 SuccessOrder != AtomicOrdering::Acquire && 972 !F->optForMinSize(); 973 974 // There's no overhead for sinking the release barrier in a weak cmpxchg, so 975 // do it even on minsize. 976 bool UseUnconditionalReleaseBarrier = F->optForMinSize() && !CI->isWeak(); 977 978 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord 979 // 980 // The full expansion we produce is: 981 // [...] 982 // cmpxchg.start: 983 // %unreleasedload = @load.linked(%addr) 984 // %should_store = icmp eq %unreleasedload, %desired 985 // br i1 %should_store, label %cmpxchg.fencedstore, 986 // label %cmpxchg.nostore 987 // cmpxchg.releasingstore: 988 // fence? 989 // br label cmpxchg.trystore 990 // cmpxchg.trystore: 991 // %loaded.trystore = phi [%unreleasedload, %releasingstore], 992 // [%releasedload, %cmpxchg.releasedload] 993 // %stored = @store_conditional(%new, %addr) 994 // %success = icmp eq i32 %stored, 0 995 // br i1 %success, label %cmpxchg.success, 996 // label %cmpxchg.releasedload/%cmpxchg.failure 997 // cmpxchg.releasedload: 998 // %releasedload = @load.linked(%addr) 999 // %should_store = icmp eq %releasedload, %desired 1000 // br i1 %should_store, label %cmpxchg.trystore, 1001 // label %cmpxchg.failure 1002 // cmpxchg.success: 1003 // fence? 1004 // br label %cmpxchg.end 1005 // cmpxchg.nostore: 1006 // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start], 1007 // [%releasedload, 1008 // %cmpxchg.releasedload/%cmpxchg.trystore] 1009 // @load_linked_fail_balance()? 1010 // br label %cmpxchg.failure 1011 // cmpxchg.failure: 1012 // fence? 1013 // br label %cmpxchg.end 1014 // cmpxchg.end: 1015 // %loaded = phi [%loaded.nostore, %cmpxchg.failure], 1016 // [%loaded.trystore, %cmpxchg.trystore] 1017 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] 1018 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 1019 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 1020 // [...] 1021 BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end"); 1022 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); 1023 auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB); 1024 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB); 1025 auto ReleasedLoadBB = 1026 BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB); 1027 auto TryStoreBB = 1028 BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB); 1029 auto ReleasingStoreBB = 1030 BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB); 1031 auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB); 1032 1033 // This grabs the DebugLoc from CI 1034 IRBuilder<> Builder(CI); 1035 1036 // The split call above "helpfully" added a branch at the end of BB (to the 1037 // wrong place), but we might want a fence too. It's easiest to just remove 1038 // the branch entirely. 1039 std::prev(BB->end())->eraseFromParent(); 1040 Builder.SetInsertPoint(BB); 1041 if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier) 1042 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1043 Builder.CreateBr(StartBB); 1044 1045 // Start the main loop block now that we've taken care of the preliminaries. 1046 Builder.SetInsertPoint(StartBB); 1047 Value *UnreleasedLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); 1048 Value *ShouldStore = Builder.CreateICmpEQ( 1049 UnreleasedLoad, CI->getCompareOperand(), "should_store"); 1050 1051 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1052 // jump straight past that fence instruction (if it exists). 1053 Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB); 1054 1055 Builder.SetInsertPoint(ReleasingStoreBB); 1056 if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier) 1057 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1058 Builder.CreateBr(TryStoreBB); 1059 1060 Builder.SetInsertPoint(TryStoreBB); 1061 Value *StoreSuccess = TLI->emitStoreConditional( 1062 Builder, CI->getNewValOperand(), Addr, MemOpOrder); 1063 StoreSuccess = Builder.CreateICmpEQ( 1064 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); 1065 BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB; 1066 Builder.CreateCondBr(StoreSuccess, SuccessBB, 1067 CI->isWeak() ? FailureBB : RetryBB); 1068 1069 Builder.SetInsertPoint(ReleasedLoadBB); 1070 Value *SecondLoad; 1071 if (HasReleasedLoadBB) { 1072 SecondLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); 1073 ShouldStore = Builder.CreateICmpEQ(SecondLoad, CI->getCompareOperand(), 1074 "should_store"); 1075 1076 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1077 // jump straight past that fence instruction (if it exists). 1078 Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB); 1079 } else 1080 Builder.CreateUnreachable(); 1081 1082 // Make sure later instructions don't get reordered with a fence if 1083 // necessary. 1084 Builder.SetInsertPoint(SuccessBB); 1085 if (ShouldInsertFencesForAtomic) 1086 TLI->emitTrailingFence(Builder, CI, SuccessOrder); 1087 Builder.CreateBr(ExitBB); 1088 1089 Builder.SetInsertPoint(NoStoreBB); 1090 // In the failing case, where we don't execute the store-conditional, the 1091 // target might want to balance out the load-linked with a dedicated 1092 // instruction (e.g., on ARM, clearing the exclusive monitor). 1093 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 1094 Builder.CreateBr(FailureBB); 1095 1096 Builder.SetInsertPoint(FailureBB); 1097 if (ShouldInsertFencesForAtomic) 1098 TLI->emitTrailingFence(Builder, CI, FailureOrder); 1099 Builder.CreateBr(ExitBB); 1100 1101 // Finally, we have control-flow based knowledge of whether the cmpxchg 1102 // succeeded or not. We expose this to later passes by converting any 1103 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate 1104 // PHI. 1105 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1106 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2); 1107 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); 1108 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); 1109 1110 // Setup the builder so we can create any PHIs we need. 1111 Value *Loaded; 1112 if (!HasReleasedLoadBB) 1113 Loaded = UnreleasedLoad; 1114 else { 1115 Builder.SetInsertPoint(TryStoreBB, TryStoreBB->begin()); 1116 PHINode *TryStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2); 1117 TryStoreLoaded->addIncoming(UnreleasedLoad, ReleasingStoreBB); 1118 TryStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB); 1119 1120 Builder.SetInsertPoint(NoStoreBB, NoStoreBB->begin()); 1121 PHINode *NoStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2); 1122 NoStoreLoaded->addIncoming(UnreleasedLoad, StartBB); 1123 NoStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB); 1124 1125 Builder.SetInsertPoint(ExitBB, ++ExitBB->begin()); 1126 PHINode *ExitLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2); 1127 ExitLoaded->addIncoming(TryStoreLoaded, SuccessBB); 1128 ExitLoaded->addIncoming(NoStoreLoaded, FailureBB); 1129 1130 Loaded = ExitLoaded; 1131 } 1132 1133 // Look for any users of the cmpxchg that are just comparing the loaded value 1134 // against the desired one, and replace them with the CFG-derived version. 1135 SmallVector<ExtractValueInst *, 2> PrunedInsts; 1136 for (auto User : CI->users()) { 1137 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); 1138 if (!EV) 1139 continue; 1140 1141 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && 1142 "weird extraction from { iN, i1 }"); 1143 1144 if (EV->getIndices()[0] == 0) 1145 EV->replaceAllUsesWith(Loaded); 1146 else 1147 EV->replaceAllUsesWith(Success); 1148 1149 PrunedInsts.push_back(EV); 1150 } 1151 1152 // We can remove the instructions now we're no longer iterating through them. 1153 for (auto EV : PrunedInsts) 1154 EV->eraseFromParent(); 1155 1156 if (!CI->use_empty()) { 1157 // Some use of the full struct return that we don't understand has happened, 1158 // so we've got to reconstruct it properly. 1159 Value *Res; 1160 Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0); 1161 Res = Builder.CreateInsertValue(Res, Success, 1); 1162 1163 CI->replaceAllUsesWith(Res); 1164 } 1165 1166 CI->eraseFromParent(); 1167 return true; 1168 } 1169 1170 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) { 1171 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand()); 1172 if(!C) 1173 return false; 1174 1175 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 1176 switch(Op) { 1177 case AtomicRMWInst::Add: 1178 case AtomicRMWInst::Sub: 1179 case AtomicRMWInst::Or: 1180 case AtomicRMWInst::Xor: 1181 return C->isZero(); 1182 case AtomicRMWInst::And: 1183 return C->isMinusOne(); 1184 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/... 1185 default: 1186 return false; 1187 } 1188 } 1189 1190 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) { 1191 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { 1192 tryExpandAtomicLoad(ResultingLoad); 1193 return true; 1194 } 1195 return false; 1196 } 1197 1198 Value *AtomicExpand::insertRMWCmpXchgLoop( 1199 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, 1200 AtomicOrdering MemOpOrder, 1201 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, 1202 CreateCmpXchgInstFun CreateCmpXchg) { 1203 LLVMContext &Ctx = Builder.getContext(); 1204 BasicBlock *BB = Builder.GetInsertBlock(); 1205 Function *F = BB->getParent(); 1206 1207 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1208 // 1209 // The standard expansion we produce is: 1210 // [...] 1211 // %init_loaded = load atomic iN* %addr 1212 // br label %loop 1213 // loop: 1214 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] 1215 // %new = some_op iN %loaded, %incr 1216 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new 1217 // %new_loaded = extractvalue { iN, i1 } %pair, 0 1218 // %success = extractvalue { iN, i1 } %pair, 1 1219 // br i1 %success, label %atomicrmw.end, label %loop 1220 // atomicrmw.end: 1221 // [...] 1222 BasicBlock *ExitBB = 1223 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1224 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1225 1226 // The split call above "helpfully" added a branch at the end of BB (to the 1227 // wrong place), but we want a load. It's easiest to just remove 1228 // the branch entirely. 1229 std::prev(BB->end())->eraseFromParent(); 1230 Builder.SetInsertPoint(BB); 1231 LoadInst *InitLoaded = Builder.CreateLoad(ResultTy, Addr); 1232 // Atomics require at least natural alignment. 1233 InitLoaded->setAlignment(ResultTy->getPrimitiveSizeInBits() / 8); 1234 Builder.CreateBr(LoopBB); 1235 1236 // Start the main loop block now that we've taken care of the preliminaries. 1237 Builder.SetInsertPoint(LoopBB); 1238 PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded"); 1239 Loaded->addIncoming(InitLoaded, BB); 1240 1241 Value *NewVal = PerformOp(Builder, Loaded); 1242 1243 Value *NewLoaded = nullptr; 1244 Value *Success = nullptr; 1245 1246 CreateCmpXchg(Builder, Addr, Loaded, NewVal, 1247 MemOpOrder == AtomicOrdering::Unordered 1248 ? AtomicOrdering::Monotonic 1249 : MemOpOrder, 1250 Success, NewLoaded); 1251 assert(Success && NewLoaded); 1252 1253 Loaded->addIncoming(NewLoaded, LoopBB); 1254 1255 Builder.CreateCondBr(Success, ExitBB, LoopBB); 1256 1257 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1258 return NewLoaded; 1259 } 1260 1261 // Note: This function is exposed externally by AtomicExpandUtils.h 1262 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 1263 CreateCmpXchgInstFun CreateCmpXchg) { 1264 IRBuilder<> Builder(AI); 1265 Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop( 1266 Builder, AI->getType(), AI->getPointerOperand(), AI->getOrdering(), 1267 [&](IRBuilder<> &Builder, Value *Loaded) { 1268 return performAtomicOp(AI->getOperation(), Builder, Loaded, 1269 AI->getValOperand()); 1270 }, 1271 CreateCmpXchg); 1272 1273 AI->replaceAllUsesWith(Loaded); 1274 AI->eraseFromParent(); 1275 return true; 1276 } 1277 1278 // In order to use one of the sized library calls such as 1279 // __atomic_fetch_add_4, the alignment must be sufficient, the size 1280 // must be one of the potentially-specialized sizes, and the value 1281 // type must actually exist in C on the target (otherwise, the 1282 // function wouldn't actually be defined.) 1283 static bool canUseSizedAtomicCall(unsigned Size, unsigned Align, 1284 const DataLayout &DL) { 1285 // TODO: "LargestSize" is an approximation for "largest type that 1286 // you can express in C". It seems to be the case that int128 is 1287 // supported on all 64-bit platforms, otherwise only up to 64-bit 1288 // integers are supported. If we get this wrong, then we'll try to 1289 // call a sized libcall that doesn't actually exist. There should 1290 // really be some more reliable way in LLVM of determining integer 1291 // sizes which are valid in the target's C ABI... 1292 unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8; 1293 return Align >= Size && 1294 (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) && 1295 Size <= LargestSize; 1296 } 1297 1298 void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) { 1299 static const RTLIB::Libcall Libcalls[6] = { 1300 RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2, 1301 RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16}; 1302 unsigned Size = getAtomicOpSize(I); 1303 unsigned Align = getAtomicOpAlign(I); 1304 1305 bool expanded = expandAtomicOpToLibcall( 1306 I, Size, Align, I->getPointerOperand(), nullptr, nullptr, 1307 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1308 (void)expanded; 1309 assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Load"); 1310 } 1311 1312 void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) { 1313 static const RTLIB::Libcall Libcalls[6] = { 1314 RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2, 1315 RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16}; 1316 unsigned Size = getAtomicOpSize(I); 1317 unsigned Align = getAtomicOpAlign(I); 1318 1319 bool expanded = expandAtomicOpToLibcall( 1320 I, Size, Align, I->getPointerOperand(), I->getValueOperand(), nullptr, 1321 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1322 (void)expanded; 1323 assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Store"); 1324 } 1325 1326 void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) { 1327 static const RTLIB::Libcall Libcalls[6] = { 1328 RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1, 1329 RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4, 1330 RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16}; 1331 unsigned Size = getAtomicOpSize(I); 1332 unsigned Align = getAtomicOpAlign(I); 1333 1334 bool expanded = expandAtomicOpToLibcall( 1335 I, Size, Align, I->getPointerOperand(), I->getNewValOperand(), 1336 I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(), 1337 Libcalls); 1338 (void)expanded; 1339 assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor CAS"); 1340 } 1341 1342 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) { 1343 static const RTLIB::Libcall LibcallsXchg[6] = { 1344 RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1, 1345 RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4, 1346 RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16}; 1347 static const RTLIB::Libcall LibcallsAdd[6] = { 1348 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1, 1349 RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4, 1350 RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16}; 1351 static const RTLIB::Libcall LibcallsSub[6] = { 1352 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1, 1353 RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4, 1354 RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16}; 1355 static const RTLIB::Libcall LibcallsAnd[6] = { 1356 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1, 1357 RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4, 1358 RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16}; 1359 static const RTLIB::Libcall LibcallsOr[6] = { 1360 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1, 1361 RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4, 1362 RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16}; 1363 static const RTLIB::Libcall LibcallsXor[6] = { 1364 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1, 1365 RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4, 1366 RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16}; 1367 static const RTLIB::Libcall LibcallsNand[6] = { 1368 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1, 1369 RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4, 1370 RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16}; 1371 1372 switch (Op) { 1373 case AtomicRMWInst::BAD_BINOP: 1374 llvm_unreachable("Should not have BAD_BINOP."); 1375 case AtomicRMWInst::Xchg: 1376 return makeArrayRef(LibcallsXchg); 1377 case AtomicRMWInst::Add: 1378 return makeArrayRef(LibcallsAdd); 1379 case AtomicRMWInst::Sub: 1380 return makeArrayRef(LibcallsSub); 1381 case AtomicRMWInst::And: 1382 return makeArrayRef(LibcallsAnd); 1383 case AtomicRMWInst::Or: 1384 return makeArrayRef(LibcallsOr); 1385 case AtomicRMWInst::Xor: 1386 return makeArrayRef(LibcallsXor); 1387 case AtomicRMWInst::Nand: 1388 return makeArrayRef(LibcallsNand); 1389 case AtomicRMWInst::Max: 1390 case AtomicRMWInst::Min: 1391 case AtomicRMWInst::UMax: 1392 case AtomicRMWInst::UMin: 1393 // No atomic libcalls are available for max/min/umax/umin. 1394 return {}; 1395 } 1396 llvm_unreachable("Unexpected AtomicRMW operation."); 1397 } 1398 1399 void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) { 1400 ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation()); 1401 1402 unsigned Size = getAtomicOpSize(I); 1403 unsigned Align = getAtomicOpAlign(I); 1404 1405 bool Success = false; 1406 if (!Libcalls.empty()) 1407 Success = expandAtomicOpToLibcall( 1408 I, Size, Align, I->getPointerOperand(), I->getValOperand(), nullptr, 1409 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1410 1411 // The expansion failed: either there were no libcalls at all for 1412 // the operation (min/max), or there were only size-specialized 1413 // libcalls (add/sub/etc) and we needed a generic. So, expand to a 1414 // CAS libcall, via a CAS loop, instead. 1415 if (!Success) { 1416 expandAtomicRMWToCmpXchg(I, [this](IRBuilder<> &Builder, Value *Addr, 1417 Value *Loaded, Value *NewVal, 1418 AtomicOrdering MemOpOrder, 1419 Value *&Success, Value *&NewLoaded) { 1420 // Create the CAS instruction normally... 1421 AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg( 1422 Addr, Loaded, NewVal, MemOpOrder, 1423 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder)); 1424 Success = Builder.CreateExtractValue(Pair, 1, "success"); 1425 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 1426 1427 // ...and then expand the CAS into a libcall. 1428 expandAtomicCASToLibcall(Pair); 1429 }); 1430 } 1431 } 1432 1433 // A helper routine for the above expandAtomic*ToLibcall functions. 1434 // 1435 // 'Libcalls' contains an array of enum values for the particular 1436 // ATOMIC libcalls to be emitted. All of the other arguments besides 1437 // 'I' are extracted from the Instruction subclass by the 1438 // caller. Depending on the particular call, some will be null. 1439 bool AtomicExpand::expandAtomicOpToLibcall( 1440 Instruction *I, unsigned Size, unsigned Align, Value *PointerOperand, 1441 Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering, 1442 AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) { 1443 assert(Libcalls.size() == 6); 1444 1445 LLVMContext &Ctx = I->getContext(); 1446 Module *M = I->getModule(); 1447 const DataLayout &DL = M->getDataLayout(); 1448 IRBuilder<> Builder(I); 1449 IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front()); 1450 1451 bool UseSizedLibcall = canUseSizedAtomicCall(Size, Align, DL); 1452 Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8); 1453 1454 unsigned AllocaAlignment = DL.getPrefTypeAlignment(SizedIntTy); 1455 1456 // TODO: the "order" argument type is "int", not int32. So 1457 // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints. 1458 ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size); 1459 assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO"); 1460 Constant *OrderingVal = 1461 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering)); 1462 Constant *Ordering2Val = nullptr; 1463 if (CASExpected) { 1464 assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO"); 1465 Ordering2Val = 1466 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2)); 1467 } 1468 bool HasResult = I->getType() != Type::getVoidTy(Ctx); 1469 1470 RTLIB::Libcall RTLibType; 1471 if (UseSizedLibcall) { 1472 switch (Size) { 1473 case 1: RTLibType = Libcalls[1]; break; 1474 case 2: RTLibType = Libcalls[2]; break; 1475 case 4: RTLibType = Libcalls[3]; break; 1476 case 8: RTLibType = Libcalls[4]; break; 1477 case 16: RTLibType = Libcalls[5]; break; 1478 } 1479 } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) { 1480 RTLibType = Libcalls[0]; 1481 } else { 1482 // Can't use sized function, and there's no generic for this 1483 // operation, so give up. 1484 return false; 1485 } 1486 1487 // Build up the function call. There's two kinds. First, the sized 1488 // variants. These calls are going to be one of the following (with 1489 // N=1,2,4,8,16): 1490 // iN __atomic_load_N(iN *ptr, int ordering) 1491 // void __atomic_store_N(iN *ptr, iN val, int ordering) 1492 // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering) 1493 // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired, 1494 // int success_order, int failure_order) 1495 // 1496 // Note that these functions can be used for non-integer atomic 1497 // operations, the values just need to be bitcast to integers on the 1498 // way in and out. 1499 // 1500 // And, then, the generic variants. They look like the following: 1501 // void __atomic_load(size_t size, void *ptr, void *ret, int ordering) 1502 // void __atomic_store(size_t size, void *ptr, void *val, int ordering) 1503 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, 1504 // int ordering) 1505 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, 1506 // void *desired, int success_order, 1507 // int failure_order) 1508 // 1509 // The different signatures are built up depending on the 1510 // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult' 1511 // variables. 1512 1513 AllocaInst *AllocaCASExpected = nullptr; 1514 Value *AllocaCASExpected_i8 = nullptr; 1515 AllocaInst *AllocaValue = nullptr; 1516 Value *AllocaValue_i8 = nullptr; 1517 AllocaInst *AllocaResult = nullptr; 1518 Value *AllocaResult_i8 = nullptr; 1519 1520 Type *ResultTy; 1521 SmallVector<Value *, 6> Args; 1522 AttributeList Attr; 1523 1524 // 'size' argument. 1525 if (!UseSizedLibcall) { 1526 // Note, getIntPtrType is assumed equivalent to size_t. 1527 Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size)); 1528 } 1529 1530 // 'ptr' argument. 1531 Value *PtrVal = 1532 Builder.CreateBitCast(PointerOperand, Type::getInt8PtrTy(Ctx)); 1533 Args.push_back(PtrVal); 1534 1535 // 'expected' argument, if present. 1536 if (CASExpected) { 1537 AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType()); 1538 AllocaCASExpected->setAlignment(AllocaAlignment); 1539 AllocaCASExpected_i8 = 1540 Builder.CreateBitCast(AllocaCASExpected, Type::getInt8PtrTy(Ctx)); 1541 Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64); 1542 Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment); 1543 Args.push_back(AllocaCASExpected_i8); 1544 } 1545 1546 // 'val' argument ('desired' for cas), if present. 1547 if (ValueOperand) { 1548 if (UseSizedLibcall) { 1549 Value *IntValue = 1550 Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy); 1551 Args.push_back(IntValue); 1552 } else { 1553 AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType()); 1554 AllocaValue->setAlignment(AllocaAlignment); 1555 AllocaValue_i8 = 1556 Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx)); 1557 Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64); 1558 Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment); 1559 Args.push_back(AllocaValue_i8); 1560 } 1561 } 1562 1563 // 'ret' argument. 1564 if (!CASExpected && HasResult && !UseSizedLibcall) { 1565 AllocaResult = AllocaBuilder.CreateAlloca(I->getType()); 1566 AllocaResult->setAlignment(AllocaAlignment); 1567 AllocaResult_i8 = 1568 Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx)); 1569 Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64); 1570 Args.push_back(AllocaResult_i8); 1571 } 1572 1573 // 'ordering' ('success_order' for cas) argument. 1574 Args.push_back(OrderingVal); 1575 1576 // 'failure_order' argument, if present. 1577 if (Ordering2Val) 1578 Args.push_back(Ordering2Val); 1579 1580 // Now, the return type. 1581 if (CASExpected) { 1582 ResultTy = Type::getInt1Ty(Ctx); 1583 Attr = Attr.addAttribute(Ctx, AttributeList::ReturnIndex, Attribute::ZExt); 1584 } else if (HasResult && UseSizedLibcall) 1585 ResultTy = SizedIntTy; 1586 else 1587 ResultTy = Type::getVoidTy(Ctx); 1588 1589 // Done with setting up arguments and return types, create the call: 1590 SmallVector<Type *, 6> ArgTys; 1591 for (Value *Arg : Args) 1592 ArgTys.push_back(Arg->getType()); 1593 FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false); 1594 Constant *LibcallFn = 1595 M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr); 1596 CallInst *Call = Builder.CreateCall(LibcallFn, Args); 1597 Call->setAttributes(Attr); 1598 Value *Result = Call; 1599 1600 // And then, extract the results... 1601 if (ValueOperand && !UseSizedLibcall) 1602 Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64); 1603 1604 if (CASExpected) { 1605 // The final result from the CAS is {load of 'expected' alloca, bool result 1606 // from call} 1607 Type *FinalResultTy = I->getType(); 1608 Value *V = UndefValue::get(FinalResultTy); 1609 Value *ExpectedOut = 1610 Builder.CreateAlignedLoad(AllocaCASExpected, AllocaAlignment); 1611 Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64); 1612 V = Builder.CreateInsertValue(V, ExpectedOut, 0); 1613 V = Builder.CreateInsertValue(V, Result, 1); 1614 I->replaceAllUsesWith(V); 1615 } else if (HasResult) { 1616 Value *V; 1617 if (UseSizedLibcall) 1618 V = Builder.CreateBitOrPointerCast(Result, I->getType()); 1619 else { 1620 V = Builder.CreateAlignedLoad(AllocaResult, AllocaAlignment); 1621 Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64); 1622 } 1623 I->replaceAllUsesWith(V); 1624 } 1625 I->eraseFromParent(); 1626 return true; 1627 } 1628