1 //===-- AtomicExpandPass.cpp - Expand atomic instructions -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a pass (at IR level) to replace atomic instructions with 11 // either (intrinsic-based) load-linked/store-conditional loops or AtomicCmpXchg. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/Passes.h" 16 #include "llvm/IR/Function.h" 17 #include "llvm/IR/IRBuilder.h" 18 #include "llvm/IR/InstIterator.h" 19 #include "llvm/IR/Instructions.h" 20 #include "llvm/IR/Intrinsics.h" 21 #include "llvm/IR/Module.h" 22 #include "llvm/Support/Debug.h" 23 #include "llvm/Target/TargetLowering.h" 24 #include "llvm/Target/TargetMachine.h" 25 #include "llvm/Target/TargetSubtargetInfo.h" 26 27 using namespace llvm; 28 29 #define DEBUG_TYPE "atomic-expand" 30 31 namespace { 32 class AtomicExpand: public FunctionPass { 33 const TargetMachine *TM; 34 const TargetLowering *TLI; 35 public: 36 static char ID; // Pass identification, replacement for typeid 37 explicit AtomicExpand(const TargetMachine *TM = nullptr) 38 : FunctionPass(ID), TM(TM), TLI(nullptr) { 39 initializeAtomicExpandPass(*PassRegistry::getPassRegistry()); 40 } 41 42 bool runOnFunction(Function &F) override; 43 44 private: 45 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order, 46 bool IsStore, bool IsLoad); 47 bool expandAtomicLoad(LoadInst *LI); 48 bool expandAtomicLoadToLL(LoadInst *LI); 49 bool expandAtomicLoadToCmpXchg(LoadInst *LI); 50 bool expandAtomicStore(StoreInst *SI); 51 bool expandAtomicRMW(AtomicRMWInst *AI); 52 bool expandAtomicRMWToLLSC(AtomicRMWInst *AI); 53 bool expandAtomicRMWToCmpXchg(AtomicRMWInst *AI); 54 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); 55 bool isIdempotentRMW(AtomicRMWInst *AI); 56 bool simplifyIdempotentRMW(AtomicRMWInst *AI); 57 }; 58 } 59 60 char AtomicExpand::ID = 0; 61 char &llvm::AtomicExpandID = AtomicExpand::ID; 62 INITIALIZE_TM_PASS(AtomicExpand, "atomic-expand", 63 "Expand Atomic calls in terms of either load-linked & store-conditional or cmpxchg", 64 false, false) 65 66 FunctionPass *llvm::createAtomicExpandPass(const TargetMachine *TM) { 67 return new AtomicExpand(TM); 68 } 69 70 bool AtomicExpand::runOnFunction(Function &F) { 71 if (!TM || !TM->getSubtargetImpl(F)->enableAtomicExpand()) 72 return false; 73 TLI = TM->getSubtargetImpl(F)->getTargetLowering(); 74 75 SmallVector<Instruction *, 1> AtomicInsts; 76 77 // Changing control-flow while iterating through it is a bad idea, so gather a 78 // list of all atomic instructions before we start. 79 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) { 80 if (I->isAtomic()) 81 AtomicInsts.push_back(&*I); 82 } 83 84 bool MadeChange = false; 85 for (auto I : AtomicInsts) { 86 auto LI = dyn_cast<LoadInst>(I); 87 auto SI = dyn_cast<StoreInst>(I); 88 auto RMWI = dyn_cast<AtomicRMWInst>(I); 89 auto CASI = dyn_cast<AtomicCmpXchgInst>(I); 90 assert((LI || SI || RMWI || CASI || isa<FenceInst>(I)) && 91 "Unknown atomic instruction"); 92 93 auto FenceOrdering = Monotonic; 94 bool IsStore, IsLoad; 95 if (TLI->getInsertFencesForAtomic()) { 96 if (LI && isAtLeastAcquire(LI->getOrdering())) { 97 FenceOrdering = LI->getOrdering(); 98 LI->setOrdering(Monotonic); 99 IsStore = false; 100 IsLoad = true; 101 } else if (SI && isAtLeastRelease(SI->getOrdering())) { 102 FenceOrdering = SI->getOrdering(); 103 SI->setOrdering(Monotonic); 104 IsStore = true; 105 IsLoad = false; 106 } else if (RMWI && (isAtLeastRelease(RMWI->getOrdering()) || 107 isAtLeastAcquire(RMWI->getOrdering()))) { 108 FenceOrdering = RMWI->getOrdering(); 109 RMWI->setOrdering(Monotonic); 110 IsStore = IsLoad = true; 111 } else if (CASI && !TLI->hasLoadLinkedStoreConditional() && 112 (isAtLeastRelease(CASI->getSuccessOrdering()) || 113 isAtLeastAcquire(CASI->getSuccessOrdering()))) { 114 // If a compare and swap is lowered to LL/SC, we can do smarter fence 115 // insertion, with a stronger one on the success path than on the 116 // failure path. As a result, fence insertion is directly done by 117 // expandAtomicCmpXchg in that case. 118 FenceOrdering = CASI->getSuccessOrdering(); 119 CASI->setSuccessOrdering(Monotonic); 120 CASI->setFailureOrdering(Monotonic); 121 IsStore = IsLoad = true; 122 } 123 124 if (FenceOrdering != Monotonic) { 125 MadeChange |= bracketInstWithFences(I, FenceOrdering, IsStore, IsLoad); 126 } 127 } 128 129 if (LI && TLI->shouldExpandAtomicLoadInIR(LI)) { 130 MadeChange |= expandAtomicLoad(LI); 131 } else if (SI && TLI->shouldExpandAtomicStoreInIR(SI)) { 132 MadeChange |= expandAtomicStore(SI); 133 } else if (RMWI) { 134 // There are two different ways of expanding RMW instructions: 135 // - into a load if it is idempotent 136 // - into a Cmpxchg/LL-SC loop otherwise 137 // we try them in that order. 138 MadeChange |= 139 (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) || 140 (TLI->shouldExpandAtomicRMWInIR(RMWI) && expandAtomicRMW(RMWI)); 141 } else if (CASI && TLI->hasLoadLinkedStoreConditional()) { 142 MadeChange |= expandAtomicCmpXchg(CASI); 143 } 144 } 145 return MadeChange; 146 } 147 148 bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order, 149 bool IsStore, bool IsLoad) { 150 IRBuilder<> Builder(I); 151 152 auto LeadingFence = TLI->emitLeadingFence(Builder, Order, IsStore, IsLoad); 153 154 auto TrailingFence = TLI->emitTrailingFence(Builder, Order, IsStore, IsLoad); 155 // The trailing fence is emitted before the instruction instead of after 156 // because there is no easy way of setting Builder insertion point after 157 // an instruction. So we must erase it from the BB, and insert it back 158 // in the right place. 159 // We have a guard here because not every atomic operation generates a 160 // trailing fence. 161 if (TrailingFence) { 162 TrailingFence->removeFromParent(); 163 TrailingFence->insertAfter(I); 164 } 165 166 return (LeadingFence || TrailingFence); 167 } 168 169 bool AtomicExpand::expandAtomicLoad(LoadInst *LI) { 170 if (TLI->hasLoadLinkedStoreConditional()) 171 return expandAtomicLoadToLL(LI); 172 else 173 return expandAtomicLoadToCmpXchg(LI); 174 } 175 176 bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) { 177 IRBuilder<> Builder(LI); 178 179 // On some architectures, load-linked instructions are atomic for larger 180 // sizes than normal loads. For example, the only 64-bit load guaranteed 181 // to be single-copy atomic by ARM is an ldrexd (A3.5.3). 182 Value *Val = 183 TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering()); 184 185 LI->replaceAllUsesWith(Val); 186 LI->eraseFromParent(); 187 188 return true; 189 } 190 191 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) { 192 IRBuilder<> Builder(LI); 193 AtomicOrdering Order = LI->getOrdering(); 194 Value *Addr = LI->getPointerOperand(); 195 Type *Ty = cast<PointerType>(Addr->getType())->getElementType(); 196 Constant *DummyVal = Constant::getNullValue(Ty); 197 198 Value *Pair = Builder.CreateAtomicCmpXchg( 199 Addr, DummyVal, DummyVal, Order, 200 AtomicCmpXchgInst::getStrongestFailureOrdering(Order)); 201 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded"); 202 203 LI->replaceAllUsesWith(Loaded); 204 LI->eraseFromParent(); 205 206 return true; 207 } 208 209 bool AtomicExpand::expandAtomicStore(StoreInst *SI) { 210 // This function is only called on atomic stores that are too large to be 211 // atomic if implemented as a native store. So we replace them by an 212 // atomic swap, that can be implemented for example as a ldrex/strex on ARM 213 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. 214 // It is the responsibility of the target to only return true in 215 // shouldExpandAtomicRMW in cases where this is required and possible. 216 IRBuilder<> Builder(SI); 217 AtomicRMWInst *AI = 218 Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(), 219 SI->getValueOperand(), SI->getOrdering()); 220 SI->eraseFromParent(); 221 222 // Now we have an appropriate swap instruction, lower it as usual. 223 return expandAtomicRMW(AI); 224 } 225 226 bool AtomicExpand::expandAtomicRMW(AtomicRMWInst *AI) { 227 if (TLI->hasLoadLinkedStoreConditional()) 228 return expandAtomicRMWToLLSC(AI); 229 else 230 return expandAtomicRMWToCmpXchg(AI); 231 } 232 233 /// Emit IR to implement the given atomicrmw operation on values in registers, 234 /// returning the new value. 235 static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder, 236 Value *Loaded, Value *Inc) { 237 Value *NewVal; 238 switch (Op) { 239 case AtomicRMWInst::Xchg: 240 return Inc; 241 case AtomicRMWInst::Add: 242 return Builder.CreateAdd(Loaded, Inc, "new"); 243 case AtomicRMWInst::Sub: 244 return Builder.CreateSub(Loaded, Inc, "new"); 245 case AtomicRMWInst::And: 246 return Builder.CreateAnd(Loaded, Inc, "new"); 247 case AtomicRMWInst::Nand: 248 return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new"); 249 case AtomicRMWInst::Or: 250 return Builder.CreateOr(Loaded, Inc, "new"); 251 case AtomicRMWInst::Xor: 252 return Builder.CreateXor(Loaded, Inc, "new"); 253 case AtomicRMWInst::Max: 254 NewVal = Builder.CreateICmpSGT(Loaded, Inc); 255 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 256 case AtomicRMWInst::Min: 257 NewVal = Builder.CreateICmpSLE(Loaded, Inc); 258 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 259 case AtomicRMWInst::UMax: 260 NewVal = Builder.CreateICmpUGT(Loaded, Inc); 261 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 262 case AtomicRMWInst::UMin: 263 NewVal = Builder.CreateICmpULE(Loaded, Inc); 264 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 265 default: 266 llvm_unreachable("Unknown atomic op"); 267 } 268 } 269 270 bool AtomicExpand::expandAtomicRMWToLLSC(AtomicRMWInst *AI) { 271 AtomicOrdering MemOpOrder = AI->getOrdering(); 272 Value *Addr = AI->getPointerOperand(); 273 BasicBlock *BB = AI->getParent(); 274 Function *F = BB->getParent(); 275 LLVMContext &Ctx = F->getContext(); 276 277 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 278 // 279 // The standard expansion we produce is: 280 // [...] 281 // fence? 282 // atomicrmw.start: 283 // %loaded = @load.linked(%addr) 284 // %new = some_op iN %loaded, %incr 285 // %stored = @store_conditional(%new, %addr) 286 // %try_again = icmp i32 ne %stored, 0 287 // br i1 %try_again, label %loop, label %atomicrmw.end 288 // atomicrmw.end: 289 // fence? 290 // [...] 291 BasicBlock *ExitBB = BB->splitBasicBlock(AI, "atomicrmw.end"); 292 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 293 294 // This grabs the DebugLoc from AI. 295 IRBuilder<> Builder(AI); 296 297 // The split call above "helpfully" added a branch at the end of BB (to the 298 // wrong place), but we might want a fence too. It's easiest to just remove 299 // the branch entirely. 300 std::prev(BB->end())->eraseFromParent(); 301 Builder.SetInsertPoint(BB); 302 Builder.CreateBr(LoopBB); 303 304 // Start the main loop block now that we've taken care of the preliminaries. 305 Builder.SetInsertPoint(LoopBB); 306 Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); 307 308 Value *NewVal = 309 performAtomicOp(AI->getOperation(), Builder, Loaded, AI->getValOperand()); 310 311 Value *StoreSuccess = 312 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); 313 Value *TryAgain = Builder.CreateICmpNE( 314 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); 315 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); 316 317 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 318 319 AI->replaceAllUsesWith(Loaded); 320 AI->eraseFromParent(); 321 322 return true; 323 } 324 325 bool AtomicExpand::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI) { 326 AtomicOrdering MemOpOrder = 327 AI->getOrdering() == Unordered ? Monotonic : AI->getOrdering(); 328 Value *Addr = AI->getPointerOperand(); 329 BasicBlock *BB = AI->getParent(); 330 Function *F = BB->getParent(); 331 LLVMContext &Ctx = F->getContext(); 332 333 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 334 // 335 // The standard expansion we produce is: 336 // [...] 337 // %init_loaded = load atomic iN* %addr 338 // br label %loop 339 // loop: 340 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] 341 // %new = some_op iN %loaded, %incr 342 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new 343 // %new_loaded = extractvalue { iN, i1 } %pair, 0 344 // %success = extractvalue { iN, i1 } %pair, 1 345 // br i1 %success, label %atomicrmw.end, label %loop 346 // atomicrmw.end: 347 // [...] 348 BasicBlock *ExitBB = BB->splitBasicBlock(AI, "atomicrmw.end"); 349 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 350 351 // This grabs the DebugLoc from AI. 352 IRBuilder<> Builder(AI); 353 354 // The split call above "helpfully" added a branch at the end of BB (to the 355 // wrong place), but we want a load. It's easiest to just remove 356 // the branch entirely. 357 std::prev(BB->end())->eraseFromParent(); 358 Builder.SetInsertPoint(BB); 359 LoadInst *InitLoaded = Builder.CreateLoad(Addr); 360 // Atomics require at least natural alignment. 361 InitLoaded->setAlignment(AI->getType()->getPrimitiveSizeInBits()); 362 Builder.CreateBr(LoopBB); 363 364 // Start the main loop block now that we've taken care of the preliminaries. 365 Builder.SetInsertPoint(LoopBB); 366 PHINode *Loaded = Builder.CreatePHI(AI->getType(), 2, "loaded"); 367 Loaded->addIncoming(InitLoaded, BB); 368 369 Value *NewVal = 370 performAtomicOp(AI->getOperation(), Builder, Loaded, AI->getValOperand()); 371 372 Value *Pair = Builder.CreateAtomicCmpXchg( 373 Addr, Loaded, NewVal, MemOpOrder, 374 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder)); 375 Value *NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 376 Loaded->addIncoming(NewLoaded, LoopBB); 377 378 Value *Success = Builder.CreateExtractValue(Pair, 1, "success"); 379 Builder.CreateCondBr(Success, ExitBB, LoopBB); 380 381 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 382 383 AI->replaceAllUsesWith(NewLoaded); 384 AI->eraseFromParent(); 385 386 return true; 387 } 388 389 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 390 AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); 391 AtomicOrdering FailureOrder = CI->getFailureOrdering(); 392 Value *Addr = CI->getPointerOperand(); 393 BasicBlock *BB = CI->getParent(); 394 Function *F = BB->getParent(); 395 LLVMContext &Ctx = F->getContext(); 396 // If getInsertFencesForAtomic() returns true, then the target does not want 397 // to deal with memory orders, and emitLeading/TrailingFence should take care 398 // of everything. Otherwise, emitLeading/TrailingFence are no-op and we 399 // should preserve the ordering. 400 AtomicOrdering MemOpOrder = 401 TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder; 402 403 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord 404 // 405 // The full expansion we produce is: 406 // [...] 407 // fence? 408 // cmpxchg.start: 409 // %loaded = @load.linked(%addr) 410 // %should_store = icmp eq %loaded, %desired 411 // br i1 %should_store, label %cmpxchg.trystore, 412 // label %cmpxchg.failure 413 // cmpxchg.trystore: 414 // %stored = @store_conditional(%new, %addr) 415 // %success = icmp eq i32 %stored, 0 416 // br i1 %success, label %cmpxchg.success, label %loop/%cmpxchg.failure 417 // cmpxchg.success: 418 // fence? 419 // br label %cmpxchg.end 420 // cmpxchg.failure: 421 // fence? 422 // br label %cmpxchg.end 423 // cmpxchg.end: 424 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] 425 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 426 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 427 // [...] 428 BasicBlock *ExitBB = BB->splitBasicBlock(CI, "cmpxchg.end"); 429 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); 430 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, FailureBB); 431 auto TryStoreBB = BasicBlock::Create(Ctx, "cmpxchg.trystore", F, SuccessBB); 432 auto LoopBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, TryStoreBB); 433 434 // This grabs the DebugLoc from CI 435 IRBuilder<> Builder(CI); 436 437 // The split call above "helpfully" added a branch at the end of BB (to the 438 // wrong place), but we might want a fence too. It's easiest to just remove 439 // the branch entirely. 440 std::prev(BB->end())->eraseFromParent(); 441 Builder.SetInsertPoint(BB); 442 TLI->emitLeadingFence(Builder, SuccessOrder, /*IsStore=*/true, 443 /*IsLoad=*/true); 444 Builder.CreateBr(LoopBB); 445 446 // Start the main loop block now that we've taken care of the preliminaries. 447 Builder.SetInsertPoint(LoopBB); 448 Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); 449 Value *ShouldStore = 450 Builder.CreateICmpEQ(Loaded, CI->getCompareOperand(), "should_store"); 451 452 // If the the cmpxchg doesn't actually need any ordering when it fails, we can 453 // jump straight past that fence instruction (if it exists). 454 Builder.CreateCondBr(ShouldStore, TryStoreBB, FailureBB); 455 456 Builder.SetInsertPoint(TryStoreBB); 457 Value *StoreSuccess = TLI->emitStoreConditional( 458 Builder, CI->getNewValOperand(), Addr, MemOpOrder); 459 StoreSuccess = Builder.CreateICmpEQ( 460 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); 461 Builder.CreateCondBr(StoreSuccess, SuccessBB, 462 CI->isWeak() ? FailureBB : LoopBB); 463 464 // Make sure later instructions don't get reordered with a fence if necessary. 465 Builder.SetInsertPoint(SuccessBB); 466 TLI->emitTrailingFence(Builder, SuccessOrder, /*IsStore=*/true, 467 /*IsLoad=*/true); 468 Builder.CreateBr(ExitBB); 469 470 Builder.SetInsertPoint(FailureBB); 471 TLI->emitTrailingFence(Builder, FailureOrder, /*IsStore=*/true, 472 /*IsLoad=*/true); 473 Builder.CreateBr(ExitBB); 474 475 // Finally, we have control-flow based knowledge of whether the cmpxchg 476 // succeeded or not. We expose this to later passes by converting any 477 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate PHI. 478 479 // Setup the builder so we can create any PHIs we need. 480 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 481 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2); 482 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); 483 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); 484 485 // Look for any users of the cmpxchg that are just comparing the loaded value 486 // against the desired one, and replace them with the CFG-derived version. 487 SmallVector<ExtractValueInst *, 2> PrunedInsts; 488 for (auto User : CI->users()) { 489 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); 490 if (!EV) 491 continue; 492 493 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && 494 "weird extraction from { iN, i1 }"); 495 496 if (EV->getIndices()[0] == 0) 497 EV->replaceAllUsesWith(Loaded); 498 else 499 EV->replaceAllUsesWith(Success); 500 501 PrunedInsts.push_back(EV); 502 } 503 504 // We can remove the instructions now we're no longer iterating through them. 505 for (auto EV : PrunedInsts) 506 EV->eraseFromParent(); 507 508 if (!CI->use_empty()) { 509 // Some use of the full struct return that we don't understand has happened, 510 // so we've got to reconstruct it properly. 511 Value *Res; 512 Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0); 513 Res = Builder.CreateInsertValue(Res, Success, 1); 514 515 CI->replaceAllUsesWith(Res); 516 } 517 518 CI->eraseFromParent(); 519 return true; 520 } 521 522 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) { 523 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand()); 524 if(!C) 525 return false; 526 527 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 528 switch(Op) { 529 case AtomicRMWInst::Add: 530 case AtomicRMWInst::Sub: 531 case AtomicRMWInst::Or: 532 case AtomicRMWInst::Xor: 533 return C->isZero(); 534 case AtomicRMWInst::And: 535 return C->isMinusOne(); 536 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/... 537 default: 538 return false; 539 } 540 } 541 542 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) { 543 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { 544 if (TLI->shouldExpandAtomicLoadInIR(ResultingLoad)) 545 expandAtomicLoad(ResultingLoad); 546 return true; 547 } 548 return false; 549 } 550