1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass (at IR level) to replace atomic instructions with 10 // __atomic_* library calls, or target specific instruction which implement the 11 // same semantics in a way which better fits the target backend. This can 12 // include the use of (intrinsic-based) load-linked/store-conditional loops, 13 // AtomicCmpXchg, or type coercions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/CodeGen/AtomicExpandUtils.h" 21 #include "llvm/CodeGen/RuntimeLibcalls.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetPassConfig.h" 24 #include "llvm/CodeGen/TargetSubtargetInfo.h" 25 #include "llvm/CodeGen/ValueTypes.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/Constant.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/InstIterator.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/IR/User.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/InitializePasses.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/AtomicOrdering.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include <cassert> 50 #include <cstdint> 51 #include <iterator> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "atomic-expand" 56 57 namespace { 58 59 class AtomicExpand: public FunctionPass { 60 const TargetLowering *TLI = nullptr; 61 62 public: 63 static char ID; // Pass identification, replacement for typeid 64 65 AtomicExpand() : FunctionPass(ID) { 66 initializeAtomicExpandPass(*PassRegistry::getPassRegistry()); 67 } 68 69 bool runOnFunction(Function &F) override; 70 71 private: 72 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order); 73 IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL); 74 LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI); 75 bool tryExpandAtomicLoad(LoadInst *LI); 76 bool expandAtomicLoadToLL(LoadInst *LI); 77 bool expandAtomicLoadToCmpXchg(LoadInst *LI); 78 StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI); 79 bool expandAtomicStore(StoreInst *SI); 80 bool tryExpandAtomicRMW(AtomicRMWInst *AI); 81 Value * 82 insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr, 83 AtomicOrdering MemOpOrder, 84 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); 85 void expandAtomicOpToLLSC( 86 Instruction *I, Type *ResultTy, Value *Addr, AtomicOrdering MemOpOrder, 87 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); 88 void expandPartwordAtomicRMW( 89 AtomicRMWInst *I, 90 TargetLoweringBase::AtomicExpansionKind ExpansionKind); 91 AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI); 92 void expandPartwordCmpXchg(AtomicCmpXchgInst *I); 93 void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI); 94 void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI); 95 96 AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI); 97 static Value *insertRMWCmpXchgLoop( 98 IRBuilder<> &Builder, Type *ResultType, Value *Addr, 99 AtomicOrdering MemOpOrder, 100 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, 101 CreateCmpXchgInstFun CreateCmpXchg); 102 bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI); 103 104 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); 105 bool isIdempotentRMW(AtomicRMWInst *RMWI); 106 bool simplifyIdempotentRMW(AtomicRMWInst *RMWI); 107 108 bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, unsigned Align, 109 Value *PointerOperand, Value *ValueOperand, 110 Value *CASExpected, AtomicOrdering Ordering, 111 AtomicOrdering Ordering2, 112 ArrayRef<RTLIB::Libcall> Libcalls); 113 void expandAtomicLoadToLibcall(LoadInst *LI); 114 void expandAtomicStoreToLibcall(StoreInst *LI); 115 void expandAtomicRMWToLibcall(AtomicRMWInst *I); 116 void expandAtomicCASToLibcall(AtomicCmpXchgInst *I); 117 118 friend bool 119 llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 120 CreateCmpXchgInstFun CreateCmpXchg); 121 }; 122 123 } // end anonymous namespace 124 125 char AtomicExpand::ID = 0; 126 127 char &llvm::AtomicExpandID = AtomicExpand::ID; 128 129 INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions", 130 false, false) 131 132 FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); } 133 134 // Helper functions to retrieve the size of atomic instructions. 135 static unsigned getAtomicOpSize(LoadInst *LI) { 136 const DataLayout &DL = LI->getModule()->getDataLayout(); 137 return DL.getTypeStoreSize(LI->getType()); 138 } 139 140 static unsigned getAtomicOpSize(StoreInst *SI) { 141 const DataLayout &DL = SI->getModule()->getDataLayout(); 142 return DL.getTypeStoreSize(SI->getValueOperand()->getType()); 143 } 144 145 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) { 146 const DataLayout &DL = RMWI->getModule()->getDataLayout(); 147 return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); 148 } 149 150 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) { 151 const DataLayout &DL = CASI->getModule()->getDataLayout(); 152 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); 153 } 154 155 // Helper functions to retrieve the alignment of atomic instructions. 156 static unsigned getAtomicOpAlign(LoadInst *LI) { 157 unsigned Align = LI->getAlignment(); 158 // In the future, if this IR restriction is relaxed, we should 159 // return DataLayout::getABITypeAlignment when there's no align 160 // value. 161 assert(Align != 0 && "An atomic LoadInst always has an explicit alignment"); 162 return Align; 163 } 164 165 static unsigned getAtomicOpAlign(StoreInst *SI) { 166 unsigned Align = SI->getAlignment(); 167 // In the future, if this IR restriction is relaxed, we should 168 // return DataLayout::getABITypeAlignment when there's no align 169 // value. 170 assert(Align != 0 && "An atomic StoreInst always has an explicit alignment"); 171 return Align; 172 } 173 174 static unsigned getAtomicOpAlign(AtomicRMWInst *RMWI) { 175 // TODO(PR27168): This instruction has no alignment attribute, but unlike the 176 // default alignment for load/store, the default here is to assume 177 // it has NATURAL alignment, not DataLayout-specified alignment. 178 const DataLayout &DL = RMWI->getModule()->getDataLayout(); 179 return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); 180 } 181 182 static unsigned getAtomicOpAlign(AtomicCmpXchgInst *CASI) { 183 // TODO(PR27168): same comment as above. 184 const DataLayout &DL = CASI->getModule()->getDataLayout(); 185 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); 186 } 187 188 // Determine if a particular atomic operation has a supported size, 189 // and is of appropriate alignment, to be passed through for target 190 // lowering. (Versus turning into a __atomic libcall) 191 template <typename Inst> 192 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) { 193 unsigned Size = getAtomicOpSize(I); 194 unsigned Align = getAtomicOpAlign(I); 195 return Align >= Size && Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8; 196 } 197 198 bool AtomicExpand::runOnFunction(Function &F) { 199 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 200 if (!TPC) 201 return false; 202 203 auto &TM = TPC->getTM<TargetMachine>(); 204 if (!TM.getSubtargetImpl(F)->enableAtomicExpand()) 205 return false; 206 TLI = TM.getSubtargetImpl(F)->getTargetLowering(); 207 208 SmallVector<Instruction *, 1> AtomicInsts; 209 210 // Changing control-flow while iterating through it is a bad idea, so gather a 211 // list of all atomic instructions before we start. 212 for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) { 213 Instruction *I = &*II; 214 if (I->isAtomic() && !isa<FenceInst>(I)) 215 AtomicInsts.push_back(I); 216 } 217 218 bool MadeChange = false; 219 for (auto I : AtomicInsts) { 220 auto LI = dyn_cast<LoadInst>(I); 221 auto SI = dyn_cast<StoreInst>(I); 222 auto RMWI = dyn_cast<AtomicRMWInst>(I); 223 auto CASI = dyn_cast<AtomicCmpXchgInst>(I); 224 assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction"); 225 226 // If the Size/Alignment is not supported, replace with a libcall. 227 if (LI) { 228 if (!atomicSizeSupported(TLI, LI)) { 229 expandAtomicLoadToLibcall(LI); 230 MadeChange = true; 231 continue; 232 } 233 } else if (SI) { 234 if (!atomicSizeSupported(TLI, SI)) { 235 expandAtomicStoreToLibcall(SI); 236 MadeChange = true; 237 continue; 238 } 239 } else if (RMWI) { 240 if (!atomicSizeSupported(TLI, RMWI)) { 241 expandAtomicRMWToLibcall(RMWI); 242 MadeChange = true; 243 continue; 244 } 245 } else if (CASI) { 246 if (!atomicSizeSupported(TLI, CASI)) { 247 expandAtomicCASToLibcall(CASI); 248 MadeChange = true; 249 continue; 250 } 251 } 252 253 if (TLI->shouldInsertFencesForAtomic(I)) { 254 auto FenceOrdering = AtomicOrdering::Monotonic; 255 if (LI && isAcquireOrStronger(LI->getOrdering())) { 256 FenceOrdering = LI->getOrdering(); 257 LI->setOrdering(AtomicOrdering::Monotonic); 258 } else if (SI && isReleaseOrStronger(SI->getOrdering())) { 259 FenceOrdering = SI->getOrdering(); 260 SI->setOrdering(AtomicOrdering::Monotonic); 261 } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) || 262 isAcquireOrStronger(RMWI->getOrdering()))) { 263 FenceOrdering = RMWI->getOrdering(); 264 RMWI->setOrdering(AtomicOrdering::Monotonic); 265 } else if (CASI && 266 TLI->shouldExpandAtomicCmpXchgInIR(CASI) == 267 TargetLoweringBase::AtomicExpansionKind::None && 268 (isReleaseOrStronger(CASI->getSuccessOrdering()) || 269 isAcquireOrStronger(CASI->getSuccessOrdering()))) { 270 // If a compare and swap is lowered to LL/SC, we can do smarter fence 271 // insertion, with a stronger one on the success path than on the 272 // failure path. As a result, fence insertion is directly done by 273 // expandAtomicCmpXchg in that case. 274 FenceOrdering = CASI->getSuccessOrdering(); 275 CASI->setSuccessOrdering(AtomicOrdering::Monotonic); 276 CASI->setFailureOrdering(AtomicOrdering::Monotonic); 277 } 278 279 if (FenceOrdering != AtomicOrdering::Monotonic) { 280 MadeChange |= bracketInstWithFences(I, FenceOrdering); 281 } 282 } 283 284 if (LI) { 285 if (LI->getType()->isFloatingPointTy()) { 286 // TODO: add a TLI hook to control this so that each target can 287 // convert to lowering the original type one at a time. 288 LI = convertAtomicLoadToIntegerType(LI); 289 assert(LI->getType()->isIntegerTy() && "invariant broken"); 290 MadeChange = true; 291 } 292 293 MadeChange |= tryExpandAtomicLoad(LI); 294 } else if (SI) { 295 if (SI->getValueOperand()->getType()->isFloatingPointTy()) { 296 // TODO: add a TLI hook to control this so that each target can 297 // convert to lowering the original type one at a time. 298 SI = convertAtomicStoreToIntegerType(SI); 299 assert(SI->getValueOperand()->getType()->isIntegerTy() && 300 "invariant broken"); 301 MadeChange = true; 302 } 303 304 if (TLI->shouldExpandAtomicStoreInIR(SI)) 305 MadeChange |= expandAtomicStore(SI); 306 } else if (RMWI) { 307 // There are two different ways of expanding RMW instructions: 308 // - into a load if it is idempotent 309 // - into a Cmpxchg/LL-SC loop otherwise 310 // we try them in that order. 311 312 if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) { 313 MadeChange = true; 314 } else { 315 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 316 unsigned ValueSize = getAtomicOpSize(RMWI); 317 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 318 if (ValueSize < MinCASSize && 319 (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 320 Op == AtomicRMWInst::And)) { 321 RMWI = widenPartwordAtomicRMW(RMWI); 322 MadeChange = true; 323 } 324 325 MadeChange |= tryExpandAtomicRMW(RMWI); 326 } 327 } else if (CASI) { 328 // TODO: when we're ready to make the change at the IR level, we can 329 // extend convertCmpXchgToInteger for floating point too. 330 assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() && 331 "unimplemented - floating point not legal at IR level"); 332 if (CASI->getCompareOperand()->getType()->isPointerTy() ) { 333 // TODO: add a TLI hook to control this so that each target can 334 // convert to lowering the original type one at a time. 335 CASI = convertCmpXchgToIntegerType(CASI); 336 assert(CASI->getCompareOperand()->getType()->isIntegerTy() && 337 "invariant broken"); 338 MadeChange = true; 339 } 340 341 MadeChange |= tryExpandAtomicCmpXchg(CASI); 342 } 343 } 344 return MadeChange; 345 } 346 347 bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) { 348 IRBuilder<> Builder(I); 349 350 auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order); 351 352 auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order); 353 // We have a guard here because not every atomic operation generates a 354 // trailing fence. 355 if (TrailingFence) 356 TrailingFence->moveAfter(I); 357 358 return (LeadingFence || TrailingFence); 359 } 360 361 /// Get the iX type with the same bitwidth as T. 362 IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T, 363 const DataLayout &DL) { 364 EVT VT = TLI->getMemValueType(DL, T); 365 unsigned BitWidth = VT.getStoreSizeInBits(); 366 assert(BitWidth == VT.getSizeInBits() && "must be a power of two"); 367 return IntegerType::get(T->getContext(), BitWidth); 368 } 369 370 /// Convert an atomic load of a non-integral type to an integer load of the 371 /// equivalent bitwidth. See the function comment on 372 /// convertAtomicStoreToIntegerType for background. 373 LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) { 374 auto *M = LI->getModule(); 375 Type *NewTy = getCorrespondingIntegerType(LI->getType(), 376 M->getDataLayout()); 377 378 IRBuilder<> Builder(LI); 379 380 Value *Addr = LI->getPointerOperand(); 381 Type *PT = PointerType::get(NewTy, 382 Addr->getType()->getPointerAddressSpace()); 383 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 384 385 auto *NewLI = Builder.CreateLoad(NewTy, NewAddr); 386 NewLI->setAlignment(LI->getAlign()); 387 NewLI->setVolatile(LI->isVolatile()); 388 NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID()); 389 LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n"); 390 391 Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType()); 392 LI->replaceAllUsesWith(NewVal); 393 LI->eraseFromParent(); 394 return NewLI; 395 } 396 397 bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) { 398 switch (TLI->shouldExpandAtomicLoadInIR(LI)) { 399 case TargetLoweringBase::AtomicExpansionKind::None: 400 return false; 401 case TargetLoweringBase::AtomicExpansionKind::LLSC: 402 expandAtomicOpToLLSC( 403 LI, LI->getType(), LI->getPointerOperand(), LI->getOrdering(), 404 [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; }); 405 return true; 406 case TargetLoweringBase::AtomicExpansionKind::LLOnly: 407 return expandAtomicLoadToLL(LI); 408 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: 409 return expandAtomicLoadToCmpXchg(LI); 410 default: 411 llvm_unreachable("Unhandled case in tryExpandAtomicLoad"); 412 } 413 } 414 415 bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) { 416 IRBuilder<> Builder(LI); 417 418 // On some architectures, load-linked instructions are atomic for larger 419 // sizes than normal loads. For example, the only 64-bit load guaranteed 420 // to be single-copy atomic by ARM is an ldrexd (A3.5.3). 421 Value *Val = 422 TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering()); 423 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 424 425 LI->replaceAllUsesWith(Val); 426 LI->eraseFromParent(); 427 428 return true; 429 } 430 431 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) { 432 IRBuilder<> Builder(LI); 433 AtomicOrdering Order = LI->getOrdering(); 434 if (Order == AtomicOrdering::Unordered) 435 Order = AtomicOrdering::Monotonic; 436 437 Value *Addr = LI->getPointerOperand(); 438 Type *Ty = cast<PointerType>(Addr->getType())->getElementType(); 439 Constant *DummyVal = Constant::getNullValue(Ty); 440 441 Value *Pair = Builder.CreateAtomicCmpXchg( 442 Addr, DummyVal, DummyVal, Order, 443 AtomicCmpXchgInst::getStrongestFailureOrdering(Order)); 444 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded"); 445 446 LI->replaceAllUsesWith(Loaded); 447 LI->eraseFromParent(); 448 449 return true; 450 } 451 452 /// Convert an atomic store of a non-integral type to an integer store of the 453 /// equivalent bitwidth. We used to not support floating point or vector 454 /// atomics in the IR at all. The backends learned to deal with the bitcast 455 /// idiom because that was the only way of expressing the notion of a atomic 456 /// float or vector store. The long term plan is to teach each backend to 457 /// instruction select from the original atomic store, but as a migration 458 /// mechanism, we convert back to the old format which the backends understand. 459 /// Each backend will need individual work to recognize the new format. 460 StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) { 461 IRBuilder<> Builder(SI); 462 auto *M = SI->getModule(); 463 Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(), 464 M->getDataLayout()); 465 Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy); 466 467 Value *Addr = SI->getPointerOperand(); 468 Type *PT = PointerType::get(NewTy, 469 Addr->getType()->getPointerAddressSpace()); 470 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 471 472 StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr); 473 NewSI->setAlignment(SI->getAlign()); 474 NewSI->setVolatile(SI->isVolatile()); 475 NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID()); 476 LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n"); 477 SI->eraseFromParent(); 478 return NewSI; 479 } 480 481 bool AtomicExpand::expandAtomicStore(StoreInst *SI) { 482 // This function is only called on atomic stores that are too large to be 483 // atomic if implemented as a native store. So we replace them by an 484 // atomic swap, that can be implemented for example as a ldrex/strex on ARM 485 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. 486 // It is the responsibility of the target to only signal expansion via 487 // shouldExpandAtomicRMW in cases where this is required and possible. 488 IRBuilder<> Builder(SI); 489 AtomicRMWInst *AI = 490 Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(), 491 SI->getValueOperand(), SI->getOrdering()); 492 SI->eraseFromParent(); 493 494 // Now we have an appropriate swap instruction, lower it as usual. 495 return tryExpandAtomicRMW(AI); 496 } 497 498 static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr, 499 Value *Loaded, Value *NewVal, 500 AtomicOrdering MemOpOrder, 501 Value *&Success, Value *&NewLoaded) { 502 Type *OrigTy = NewVal->getType(); 503 504 // This code can go away when cmpxchg supports FP types. 505 bool NeedBitcast = OrigTy->isFloatingPointTy(); 506 if (NeedBitcast) { 507 IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits()); 508 unsigned AS = Addr->getType()->getPointerAddressSpace(); 509 Addr = Builder.CreateBitCast(Addr, IntTy->getPointerTo(AS)); 510 NewVal = Builder.CreateBitCast(NewVal, IntTy); 511 Loaded = Builder.CreateBitCast(Loaded, IntTy); 512 } 513 514 Value* Pair = Builder.CreateAtomicCmpXchg( 515 Addr, Loaded, NewVal, MemOpOrder, 516 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder)); 517 Success = Builder.CreateExtractValue(Pair, 1, "success"); 518 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 519 520 if (NeedBitcast) 521 NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy); 522 } 523 524 /// Emit IR to implement the given atomicrmw operation on values in registers, 525 /// returning the new value. 526 static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder, 527 Value *Loaded, Value *Inc) { 528 Value *NewVal; 529 switch (Op) { 530 case AtomicRMWInst::Xchg: 531 return Inc; 532 case AtomicRMWInst::Add: 533 return Builder.CreateAdd(Loaded, Inc, "new"); 534 case AtomicRMWInst::Sub: 535 return Builder.CreateSub(Loaded, Inc, "new"); 536 case AtomicRMWInst::And: 537 return Builder.CreateAnd(Loaded, Inc, "new"); 538 case AtomicRMWInst::Nand: 539 return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new"); 540 case AtomicRMWInst::Or: 541 return Builder.CreateOr(Loaded, Inc, "new"); 542 case AtomicRMWInst::Xor: 543 return Builder.CreateXor(Loaded, Inc, "new"); 544 case AtomicRMWInst::Max: 545 NewVal = Builder.CreateICmpSGT(Loaded, Inc); 546 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 547 case AtomicRMWInst::Min: 548 NewVal = Builder.CreateICmpSLE(Loaded, Inc); 549 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 550 case AtomicRMWInst::UMax: 551 NewVal = Builder.CreateICmpUGT(Loaded, Inc); 552 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 553 case AtomicRMWInst::UMin: 554 NewVal = Builder.CreateICmpULE(Loaded, Inc); 555 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 556 case AtomicRMWInst::FAdd: 557 return Builder.CreateFAdd(Loaded, Inc, "new"); 558 case AtomicRMWInst::FSub: 559 return Builder.CreateFSub(Loaded, Inc, "new"); 560 default: 561 llvm_unreachable("Unknown atomic op"); 562 } 563 } 564 565 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) { 566 switch (TLI->shouldExpandAtomicRMWInIR(AI)) { 567 case TargetLoweringBase::AtomicExpansionKind::None: 568 return false; 569 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 570 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 571 unsigned ValueSize = getAtomicOpSize(AI); 572 if (ValueSize < MinCASSize) { 573 expandPartwordAtomicRMW(AI, 574 TargetLoweringBase::AtomicExpansionKind::LLSC); 575 } else { 576 auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) { 577 return performAtomicOp(AI->getOperation(), Builder, Loaded, 578 AI->getValOperand()); 579 }; 580 expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(), 581 AI->getOrdering(), PerformOp); 582 } 583 return true; 584 } 585 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: { 586 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 587 unsigned ValueSize = getAtomicOpSize(AI); 588 if (ValueSize < MinCASSize) { 589 // TODO: Handle atomicrmw fadd/fsub 590 if (AI->getType()->isFloatingPointTy()) 591 return false; 592 593 expandPartwordAtomicRMW(AI, 594 TargetLoweringBase::AtomicExpansionKind::CmpXChg); 595 } else { 596 expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun); 597 } 598 return true; 599 } 600 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: { 601 expandAtomicRMWToMaskedIntrinsic(AI); 602 return true; 603 } 604 default: 605 llvm_unreachable("Unhandled case in tryExpandAtomicRMW"); 606 } 607 } 608 609 namespace { 610 611 struct PartwordMaskValues { 612 // These three fields are guaranteed to be set by createMaskInstrs. 613 Type *WordType = nullptr; 614 Type *ValueType = nullptr; 615 Value *AlignedAddr = nullptr; 616 // The remaining fields can be null. 617 Value *ShiftAmt = nullptr; 618 Value *Mask = nullptr; 619 Value *Inv_Mask = nullptr; 620 }; 621 622 LLVM_ATTRIBUTE_UNUSED 623 raw_ostream &operator<<(raw_ostream &O, const PartwordMaskValues &PMV) { 624 auto PrintObj = [&O](auto *V) { 625 if (V) 626 O << *V; 627 else 628 O << "nullptr"; 629 O << '\n'; 630 }; 631 O << "PartwordMaskValues {\n"; 632 O << " WordType: "; 633 PrintObj(PMV.WordType); 634 O << " ValueType: "; 635 PrintObj(PMV.ValueType); 636 O << " AlignedAddr: "; 637 PrintObj(PMV.AlignedAddr); 638 O << " ShiftAmt: "; 639 PrintObj(PMV.ShiftAmt); 640 O << " Mask: "; 641 PrintObj(PMV.Mask); 642 O << " Inv_Mask: "; 643 PrintObj(PMV.Inv_Mask); 644 O << "}\n"; 645 return O; 646 } 647 648 } // end anonymous namespace 649 650 /// This is a helper function which builds instructions to provide 651 /// values necessary for partword atomic operations. It takes an 652 /// incoming address, Addr, and ValueType, and constructs the address, 653 /// shift-amounts and masks needed to work with a larger value of size 654 /// WordSize. 655 /// 656 /// AlignedAddr: Addr rounded down to a multiple of WordSize 657 /// 658 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded 659 /// from AlignAddr for it to have the same value as if 660 /// ValueType was loaded from Addr. 661 /// 662 /// Mask: Value to mask with the value loaded from AlignAddr to 663 /// include only the part that would've been loaded from Addr. 664 /// 665 /// Inv_Mask: The inverse of Mask. 666 static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I, 667 Type *ValueType, Value *Addr, 668 unsigned MinWordSize) { 669 PartwordMaskValues PMV; 670 671 Module *M = I->getModule(); 672 LLVMContext &Ctx = M->getContext(); 673 const DataLayout &DL = M->getDataLayout(); 674 unsigned ValueSize = DL.getTypeStoreSize(ValueType); 675 676 PMV.ValueType = ValueType; 677 PMV.WordType = MinWordSize > ValueSize ? Type::getIntNTy(Ctx, MinWordSize * 8) 678 : ValueType; 679 if (PMV.ValueType == PMV.WordType) { 680 PMV.AlignedAddr = Addr; 681 return PMV; 682 } 683 684 assert(ValueSize < MinWordSize); 685 686 Type *WordPtrType = 687 PMV.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace()); 688 689 Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx)); 690 PMV.AlignedAddr = Builder.CreateIntToPtr( 691 Builder.CreateAnd(AddrInt, ~(uint64_t)(MinWordSize - 1)), WordPtrType, 692 "AlignedAddr"); 693 694 Value *PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1, "PtrLSB"); 695 if (DL.isLittleEndian()) { 696 // turn bytes into bits 697 PMV.ShiftAmt = Builder.CreateShl(PtrLSB, 3); 698 } else { 699 // turn bytes into bits, and count from the other side. 700 PMV.ShiftAmt = Builder.CreateShl( 701 Builder.CreateXor(PtrLSB, MinWordSize - ValueSize), 3); 702 } 703 704 PMV.ShiftAmt = Builder.CreateTrunc(PMV.ShiftAmt, PMV.WordType, "ShiftAmt"); 705 PMV.Mask = Builder.CreateShl( 706 ConstantInt::get(PMV.WordType, (1 << (ValueSize * 8)) - 1), PMV.ShiftAmt, 707 "Mask"); 708 PMV.Inv_Mask = Builder.CreateNot(PMV.Mask, "Inv_Mask"); 709 return PMV; 710 } 711 712 static Value *extractMaskedValue(IRBuilder<> &Builder, Value *WideWord, 713 const PartwordMaskValues &PMV) { 714 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch"); 715 if (PMV.WordType == PMV.ValueType) 716 return WideWord; 717 718 Value *Shift = Builder.CreateLShr(WideWord, PMV.ShiftAmt, "shifted"); 719 Value *Trunc = Builder.CreateTrunc(Shift, PMV.ValueType, "extracted"); 720 return Trunc; 721 } 722 723 static Value *insertMaskedValue(IRBuilder<> &Builder, Value *WideWord, 724 Value *Updated, const PartwordMaskValues &PMV) { 725 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch"); 726 assert(Updated->getType() == PMV.ValueType && "Value type mismatch"); 727 if (PMV.WordType == PMV.ValueType) 728 return Updated; 729 730 Value *ZExt = Builder.CreateZExt(Updated, PMV.WordType, "extended"); 731 Value *Shift = 732 Builder.CreateShl(ZExt, PMV.ShiftAmt, "shifted", /*HasNUW*/ true); 733 Value *And = Builder.CreateAnd(WideWord, PMV.Inv_Mask, "unmasked"); 734 Value *Or = Builder.CreateOr(And, Shift, "inserted"); 735 return Or; 736 } 737 738 /// Emit IR to implement a masked version of a given atomicrmw 739 /// operation. (That is, only the bits under the Mask should be 740 /// affected by the operation) 741 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op, 742 IRBuilder<> &Builder, Value *Loaded, 743 Value *Shifted_Inc, Value *Inc, 744 const PartwordMaskValues &PMV) { 745 // TODO: update to use 746 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order 747 // to merge bits from two values without requiring PMV.Inv_Mask. 748 switch (Op) { 749 case AtomicRMWInst::Xchg: { 750 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 751 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc); 752 return FinalVal; 753 } 754 case AtomicRMWInst::Or: 755 case AtomicRMWInst::Xor: 756 case AtomicRMWInst::And: 757 llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW"); 758 case AtomicRMWInst::Add: 759 case AtomicRMWInst::Sub: 760 case AtomicRMWInst::Nand: { 761 // The other arithmetic ops need to be masked into place. 762 Value *NewVal = performAtomicOp(Op, Builder, Loaded, Shifted_Inc); 763 Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask); 764 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 765 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked); 766 return FinalVal; 767 } 768 case AtomicRMWInst::Max: 769 case AtomicRMWInst::Min: 770 case AtomicRMWInst::UMax: 771 case AtomicRMWInst::UMin: { 772 // Finally, comparison ops will operate on the full value, so 773 // truncate down to the original size, and expand out again after 774 // doing the operation. 775 Value *Loaded_Extract = extractMaskedValue(Builder, Loaded, PMV); 776 Value *NewVal = performAtomicOp(Op, Builder, Loaded_Extract, Inc); 777 Value *FinalVal = insertMaskedValue(Builder, Loaded, NewVal, PMV); 778 return FinalVal; 779 } 780 default: 781 llvm_unreachable("Unknown atomic op"); 782 } 783 } 784 785 /// Expand a sub-word atomicrmw operation into an appropriate 786 /// word-sized operation. 787 /// 788 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same 789 /// way as a typical atomicrmw expansion. The only difference here is 790 /// that the operation inside of the loop may operate upon only a 791 /// part of the value. 792 void AtomicExpand::expandPartwordAtomicRMW( 793 AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) { 794 AtomicOrdering MemOpOrder = AI->getOrdering(); 795 796 IRBuilder<> Builder(AI); 797 798 PartwordMaskValues PMV = 799 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 800 TLI->getMinCmpXchgSizeInBits() / 8); 801 802 Value *ValOperand_Shifted = 803 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 804 PMV.ShiftAmt, "ValOperand_Shifted"); 805 806 auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) { 807 return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded, 808 ValOperand_Shifted, AI->getValOperand(), PMV); 809 }; 810 811 Value *OldResult; 812 if (ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg) { 813 OldResult = 814 insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder, 815 PerformPartwordOp, createCmpXchgInstFun); 816 } else { 817 assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::LLSC); 818 OldResult = insertRMWLLSCLoop(Builder, PMV.WordType, PMV.AlignedAddr, 819 MemOpOrder, PerformPartwordOp); 820 } 821 822 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV); 823 AI->replaceAllUsesWith(FinalOldResult); 824 AI->eraseFromParent(); 825 } 826 827 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width. 828 AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) { 829 IRBuilder<> Builder(AI); 830 AtomicRMWInst::BinOp Op = AI->getOperation(); 831 832 assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 833 Op == AtomicRMWInst::And) && 834 "Unable to widen operation"); 835 836 PartwordMaskValues PMV = 837 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 838 TLI->getMinCmpXchgSizeInBits() / 8); 839 840 Value *ValOperand_Shifted = 841 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 842 PMV.ShiftAmt, "ValOperand_Shifted"); 843 844 Value *NewOperand; 845 846 if (Op == AtomicRMWInst::And) 847 NewOperand = 848 Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand"); 849 else 850 NewOperand = ValOperand_Shifted; 851 852 AtomicRMWInst *NewAI = Builder.CreateAtomicRMW(Op, PMV.AlignedAddr, 853 NewOperand, AI->getOrdering()); 854 855 Value *FinalOldResult = extractMaskedValue(Builder, NewAI, PMV); 856 AI->replaceAllUsesWith(FinalOldResult); 857 AI->eraseFromParent(); 858 return NewAI; 859 } 860 861 void AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) { 862 // The basic idea here is that we're expanding a cmpxchg of a 863 // smaller memory size up to a word-sized cmpxchg. To do this, we 864 // need to add a retry-loop for strong cmpxchg, so that 865 // modifications to other parts of the word don't cause a spurious 866 // failure. 867 868 // This generates code like the following: 869 // [[Setup mask values PMV.*]] 870 // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt 871 // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt 872 // %InitLoaded = load i32* %addr 873 // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask 874 // br partword.cmpxchg.loop 875 // partword.cmpxchg.loop: 876 // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ], 877 // [ %OldVal_MaskOut, %partword.cmpxchg.failure ] 878 // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted 879 // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted 880 // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp, 881 // i32 %FullWord_NewVal success_ordering failure_ordering 882 // %OldVal = extractvalue { i32, i1 } %NewCI, 0 883 // %Success = extractvalue { i32, i1 } %NewCI, 1 884 // br i1 %Success, label %partword.cmpxchg.end, 885 // label %partword.cmpxchg.failure 886 // partword.cmpxchg.failure: 887 // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask 888 // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut 889 // br i1 %ShouldContinue, label %partword.cmpxchg.loop, 890 // label %partword.cmpxchg.end 891 // partword.cmpxchg.end: 892 // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt 893 // %FinalOldVal = trunc i32 %tmp1 to i8 894 // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0 895 // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1 896 897 Value *Addr = CI->getPointerOperand(); 898 Value *Cmp = CI->getCompareOperand(); 899 Value *NewVal = CI->getNewValOperand(); 900 901 BasicBlock *BB = CI->getParent(); 902 Function *F = BB->getParent(); 903 IRBuilder<> Builder(CI); 904 LLVMContext &Ctx = Builder.getContext(); 905 906 const int WordSize = TLI->getMinCmpXchgSizeInBits() / 8; 907 908 BasicBlock *EndBB = 909 BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end"); 910 auto FailureBB = 911 BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB); 912 auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB); 913 914 // The split call above "helpfully" added a branch at the end of BB 915 // (to the wrong place). 916 std::prev(BB->end())->eraseFromParent(); 917 Builder.SetInsertPoint(BB); 918 919 PartwordMaskValues PMV = createMaskInstrs( 920 Builder, CI, CI->getCompareOperand()->getType(), Addr, WordSize); 921 922 // Shift the incoming values over, into the right location in the word. 923 Value *NewVal_Shifted = 924 Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt); 925 Value *Cmp_Shifted = 926 Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt); 927 928 // Load the entire current word, and mask into place the expected and new 929 // values 930 LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr); 931 InitLoaded->setVolatile(CI->isVolatile()); 932 Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask); 933 Builder.CreateBr(LoopBB); 934 935 // partword.cmpxchg.loop: 936 Builder.SetInsertPoint(LoopBB); 937 PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2); 938 Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB); 939 940 // Mask/Or the expected and new values into place in the loaded word. 941 Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted); 942 Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted); 943 AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg( 944 PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, CI->getSuccessOrdering(), 945 CI->getFailureOrdering(), CI->getSyncScopeID()); 946 NewCI->setVolatile(CI->isVolatile()); 947 // When we're building a strong cmpxchg, we need a loop, so you 948 // might think we could use a weak cmpxchg inside. But, using strong 949 // allows the below comparison for ShouldContinue, and we're 950 // expecting the underlying cmpxchg to be a machine instruction, 951 // which is strong anyways. 952 NewCI->setWeak(CI->isWeak()); 953 954 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 955 Value *Success = Builder.CreateExtractValue(NewCI, 1); 956 957 if (CI->isWeak()) 958 Builder.CreateBr(EndBB); 959 else 960 Builder.CreateCondBr(Success, EndBB, FailureBB); 961 962 // partword.cmpxchg.failure: 963 Builder.SetInsertPoint(FailureBB); 964 // Upon failure, verify that the masked-out part of the loaded value 965 // has been modified. If it didn't, abort the cmpxchg, since the 966 // masked-in part must've. 967 Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask); 968 Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut); 969 Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB); 970 971 // Add the second value to the phi from above 972 Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB); 973 974 // partword.cmpxchg.end: 975 Builder.SetInsertPoint(CI); 976 977 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV); 978 Value *Res = UndefValue::get(CI->getType()); 979 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 980 Res = Builder.CreateInsertValue(Res, Success, 1); 981 982 CI->replaceAllUsesWith(Res); 983 CI->eraseFromParent(); 984 } 985 986 void AtomicExpand::expandAtomicOpToLLSC( 987 Instruction *I, Type *ResultType, Value *Addr, AtomicOrdering MemOpOrder, 988 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { 989 IRBuilder<> Builder(I); 990 Value *Loaded = 991 insertRMWLLSCLoop(Builder, ResultType, Addr, MemOpOrder, PerformOp); 992 993 I->replaceAllUsesWith(Loaded); 994 I->eraseFromParent(); 995 } 996 997 void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) { 998 IRBuilder<> Builder(AI); 999 1000 PartwordMaskValues PMV = 1001 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 1002 TLI->getMinCmpXchgSizeInBits() / 8); 1003 1004 // The value operand must be sign-extended for signed min/max so that the 1005 // target's signed comparison instructions can be used. Otherwise, just 1006 // zero-ext. 1007 Instruction::CastOps CastOp = Instruction::ZExt; 1008 AtomicRMWInst::BinOp RMWOp = AI->getOperation(); 1009 if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min) 1010 CastOp = Instruction::SExt; 1011 1012 Value *ValOperand_Shifted = Builder.CreateShl( 1013 Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType), 1014 PMV.ShiftAmt, "ValOperand_Shifted"); 1015 Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic( 1016 Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt, 1017 AI->getOrdering()); 1018 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV); 1019 AI->replaceAllUsesWith(FinalOldResult); 1020 AI->eraseFromParent(); 1021 } 1022 1023 void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI) { 1024 IRBuilder<> Builder(CI); 1025 1026 PartwordMaskValues PMV = createMaskInstrs( 1027 Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(), 1028 TLI->getMinCmpXchgSizeInBits() / 8); 1029 1030 Value *CmpVal_Shifted = Builder.CreateShl( 1031 Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt, 1032 "CmpVal_Shifted"); 1033 Value *NewVal_Shifted = Builder.CreateShl( 1034 Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt, 1035 "NewVal_Shifted"); 1036 Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic( 1037 Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask, 1038 CI->getSuccessOrdering()); 1039 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV); 1040 Value *Res = UndefValue::get(CI->getType()); 1041 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 1042 Value *Success = Builder.CreateICmpEQ( 1043 CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success"); 1044 Res = Builder.CreateInsertValue(Res, Success, 1); 1045 1046 CI->replaceAllUsesWith(Res); 1047 CI->eraseFromParent(); 1048 } 1049 1050 Value *AtomicExpand::insertRMWLLSCLoop( 1051 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, 1052 AtomicOrdering MemOpOrder, 1053 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { 1054 LLVMContext &Ctx = Builder.getContext(); 1055 BasicBlock *BB = Builder.GetInsertBlock(); 1056 Function *F = BB->getParent(); 1057 1058 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1059 // 1060 // The standard expansion we produce is: 1061 // [...] 1062 // atomicrmw.start: 1063 // %loaded = @load.linked(%addr) 1064 // %new = some_op iN %loaded, %incr 1065 // %stored = @store_conditional(%new, %addr) 1066 // %try_again = icmp i32 ne %stored, 0 1067 // br i1 %try_again, label %loop, label %atomicrmw.end 1068 // atomicrmw.end: 1069 // [...] 1070 BasicBlock *ExitBB = 1071 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1072 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1073 1074 // The split call above "helpfully" added a branch at the end of BB (to the 1075 // wrong place). 1076 std::prev(BB->end())->eraseFromParent(); 1077 Builder.SetInsertPoint(BB); 1078 Builder.CreateBr(LoopBB); 1079 1080 // Start the main loop block now that we've taken care of the preliminaries. 1081 Builder.SetInsertPoint(LoopBB); 1082 Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); 1083 1084 Value *NewVal = PerformOp(Builder, Loaded); 1085 1086 Value *StoreSuccess = 1087 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); 1088 Value *TryAgain = Builder.CreateICmpNE( 1089 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); 1090 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); 1091 1092 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1093 return Loaded; 1094 } 1095 1096 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of 1097 /// the equivalent bitwidth. We used to not support pointer cmpxchg in the 1098 /// IR. As a migration step, we convert back to what use to be the standard 1099 /// way to represent a pointer cmpxchg so that we can update backends one by 1100 /// one. 1101 AtomicCmpXchgInst *AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) { 1102 auto *M = CI->getModule(); 1103 Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(), 1104 M->getDataLayout()); 1105 1106 IRBuilder<> Builder(CI); 1107 1108 Value *Addr = CI->getPointerOperand(); 1109 Type *PT = PointerType::get(NewTy, 1110 Addr->getType()->getPointerAddressSpace()); 1111 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 1112 1113 Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy); 1114 Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy); 1115 1116 1117 auto *NewCI = Builder.CreateAtomicCmpXchg(NewAddr, NewCmp, NewNewVal, 1118 CI->getSuccessOrdering(), 1119 CI->getFailureOrdering(), 1120 CI->getSyncScopeID()); 1121 NewCI->setVolatile(CI->isVolatile()); 1122 NewCI->setWeak(CI->isWeak()); 1123 LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n"); 1124 1125 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 1126 Value *Succ = Builder.CreateExtractValue(NewCI, 1); 1127 1128 OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType()); 1129 1130 Value *Res = UndefValue::get(CI->getType()); 1131 Res = Builder.CreateInsertValue(Res, OldVal, 0); 1132 Res = Builder.CreateInsertValue(Res, Succ, 1); 1133 1134 CI->replaceAllUsesWith(Res); 1135 CI->eraseFromParent(); 1136 return NewCI; 1137 } 1138 1139 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1140 AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); 1141 AtomicOrdering FailureOrder = CI->getFailureOrdering(); 1142 Value *Addr = CI->getPointerOperand(); 1143 BasicBlock *BB = CI->getParent(); 1144 Function *F = BB->getParent(); 1145 LLVMContext &Ctx = F->getContext(); 1146 // If shouldInsertFencesForAtomic() returns true, then the target does not 1147 // want to deal with memory orders, and emitLeading/TrailingFence should take 1148 // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we 1149 // should preserve the ordering. 1150 bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI); 1151 AtomicOrdering MemOpOrder = 1152 ShouldInsertFencesForAtomic ? AtomicOrdering::Monotonic : SuccessOrder; 1153 1154 // In implementations which use a barrier to achieve release semantics, we can 1155 // delay emitting this barrier until we know a store is actually going to be 1156 // attempted. The cost of this delay is that we need 2 copies of the block 1157 // emitting the load-linked, affecting code size. 1158 // 1159 // Ideally, this logic would be unconditional except for the minsize check 1160 // since in other cases the extra blocks naturally collapse down to the 1161 // minimal loop. Unfortunately, this puts too much stress on later 1162 // optimisations so we avoid emitting the extra logic in those cases too. 1163 bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic && 1164 SuccessOrder != AtomicOrdering::Monotonic && 1165 SuccessOrder != AtomicOrdering::Acquire && 1166 !F->hasMinSize(); 1167 1168 // There's no overhead for sinking the release barrier in a weak cmpxchg, so 1169 // do it even on minsize. 1170 bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak(); 1171 1172 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord 1173 // 1174 // The full expansion we produce is: 1175 // [...] 1176 // %aligned.addr = ... 1177 // cmpxchg.start: 1178 // %unreleasedload = @load.linked(%aligned.addr) 1179 // %unreleasedload.extract = extract value from %unreleasedload 1180 // %should_store = icmp eq %unreleasedload.extract, %desired 1181 // br i1 %should_store, label %cmpxchg.releasingstore, 1182 // label %cmpxchg.nostore 1183 // cmpxchg.releasingstore: 1184 // fence? 1185 // br label cmpxchg.trystore 1186 // cmpxchg.trystore: 1187 // %loaded.trystore = phi [%unreleasedload, %cmpxchg.releasingstore], 1188 // [%releasedload, %cmpxchg.releasedload] 1189 // %updated.new = insert %new into %loaded.trystore 1190 // %stored = @store_conditional(%updated.new, %aligned.addr) 1191 // %success = icmp eq i32 %stored, 0 1192 // br i1 %success, label %cmpxchg.success, 1193 // label %cmpxchg.releasedload/%cmpxchg.failure 1194 // cmpxchg.releasedload: 1195 // %releasedload = @load.linked(%aligned.addr) 1196 // %releasedload.extract = extract value from %releasedload 1197 // %should_store = icmp eq %releasedload.extract, %desired 1198 // br i1 %should_store, label %cmpxchg.trystore, 1199 // label %cmpxchg.failure 1200 // cmpxchg.success: 1201 // fence? 1202 // br label %cmpxchg.end 1203 // cmpxchg.nostore: 1204 // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start], 1205 // [%releasedload, 1206 // %cmpxchg.releasedload/%cmpxchg.trystore] 1207 // @load_linked_fail_balance()? 1208 // br label %cmpxchg.failure 1209 // cmpxchg.failure: 1210 // fence? 1211 // br label %cmpxchg.end 1212 // cmpxchg.end: 1213 // %loaded.exit = phi [%loaded.nostore, %cmpxchg.failure], 1214 // [%loaded.trystore, %cmpxchg.trystore] 1215 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] 1216 // %loaded = extract value from %loaded.exit 1217 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 1218 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 1219 // [...] 1220 BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end"); 1221 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); 1222 auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB); 1223 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB); 1224 auto ReleasedLoadBB = 1225 BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB); 1226 auto TryStoreBB = 1227 BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB); 1228 auto ReleasingStoreBB = 1229 BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB); 1230 auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB); 1231 1232 // This grabs the DebugLoc from CI 1233 IRBuilder<> Builder(CI); 1234 1235 // The split call above "helpfully" added a branch at the end of BB (to the 1236 // wrong place), but we might want a fence too. It's easiest to just remove 1237 // the branch entirely. 1238 std::prev(BB->end())->eraseFromParent(); 1239 Builder.SetInsertPoint(BB); 1240 if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier) 1241 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1242 1243 PartwordMaskValues PMV = 1244 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr, 1245 TLI->getMinCmpXchgSizeInBits() / 8); 1246 Builder.CreateBr(StartBB); 1247 1248 // Start the main loop block now that we've taken care of the preliminaries. 1249 Builder.SetInsertPoint(StartBB); 1250 Value *UnreleasedLoad = 1251 TLI->emitLoadLinked(Builder, PMV.AlignedAddr, MemOpOrder); 1252 Value *UnreleasedLoadExtract = 1253 extractMaskedValue(Builder, UnreleasedLoad, PMV); 1254 Value *ShouldStore = Builder.CreateICmpEQ( 1255 UnreleasedLoadExtract, CI->getCompareOperand(), "should_store"); 1256 1257 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1258 // jump straight past that fence instruction (if it exists). 1259 Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB); 1260 1261 Builder.SetInsertPoint(ReleasingStoreBB); 1262 if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier) 1263 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1264 Builder.CreateBr(TryStoreBB); 1265 1266 Builder.SetInsertPoint(TryStoreBB); 1267 PHINode *LoadedTryStore = 1268 Builder.CreatePHI(PMV.WordType, 2, "loaded.trystore"); 1269 LoadedTryStore->addIncoming(UnreleasedLoad, ReleasingStoreBB); 1270 Value *NewValueInsert = 1271 insertMaskedValue(Builder, LoadedTryStore, CI->getNewValOperand(), PMV); 1272 Value *StoreSuccess = 1273 TLI->emitStoreConditional(Builder, NewValueInsert, Addr, MemOpOrder); 1274 StoreSuccess = Builder.CreateICmpEQ( 1275 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); 1276 BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB; 1277 Builder.CreateCondBr(StoreSuccess, SuccessBB, 1278 CI->isWeak() ? FailureBB : RetryBB); 1279 1280 Builder.SetInsertPoint(ReleasedLoadBB); 1281 Value *SecondLoad; 1282 if (HasReleasedLoadBB) { 1283 SecondLoad = TLI->emitLoadLinked(Builder, PMV.AlignedAddr, MemOpOrder); 1284 Value *SecondLoadExtract = extractMaskedValue(Builder, SecondLoad, PMV); 1285 ShouldStore = Builder.CreateICmpEQ(SecondLoadExtract, 1286 CI->getCompareOperand(), "should_store"); 1287 1288 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1289 // jump straight past that fence instruction (if it exists). 1290 Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB); 1291 // Update PHI node in TryStoreBB. 1292 LoadedTryStore->addIncoming(SecondLoad, ReleasedLoadBB); 1293 } else 1294 Builder.CreateUnreachable(); 1295 1296 // Make sure later instructions don't get reordered with a fence if 1297 // necessary. 1298 Builder.SetInsertPoint(SuccessBB); 1299 if (ShouldInsertFencesForAtomic) 1300 TLI->emitTrailingFence(Builder, CI, SuccessOrder); 1301 Builder.CreateBr(ExitBB); 1302 1303 Builder.SetInsertPoint(NoStoreBB); 1304 PHINode *LoadedNoStore = 1305 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.nostore"); 1306 LoadedNoStore->addIncoming(UnreleasedLoad, StartBB); 1307 if (HasReleasedLoadBB) 1308 LoadedNoStore->addIncoming(SecondLoad, ReleasedLoadBB); 1309 1310 // In the failing case, where we don't execute the store-conditional, the 1311 // target might want to balance out the load-linked with a dedicated 1312 // instruction (e.g., on ARM, clearing the exclusive monitor). 1313 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 1314 Builder.CreateBr(FailureBB); 1315 1316 Builder.SetInsertPoint(FailureBB); 1317 PHINode *LoadedFailure = 1318 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.failure"); 1319 LoadedFailure->addIncoming(LoadedNoStore, NoStoreBB); 1320 if (CI->isWeak()) 1321 LoadedFailure->addIncoming(LoadedTryStore, TryStoreBB); 1322 if (ShouldInsertFencesForAtomic) 1323 TLI->emitTrailingFence(Builder, CI, FailureOrder); 1324 Builder.CreateBr(ExitBB); 1325 1326 // Finally, we have control-flow based knowledge of whether the cmpxchg 1327 // succeeded or not. We expose this to later passes by converting any 1328 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate 1329 // PHI. 1330 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1331 PHINode *LoadedExit = 1332 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.exit"); 1333 LoadedExit->addIncoming(LoadedTryStore, SuccessBB); 1334 LoadedExit->addIncoming(LoadedFailure, FailureBB); 1335 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2, "success"); 1336 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); 1337 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); 1338 1339 // This is the "exit value" from the cmpxchg expansion. It may be of 1340 // a type wider than the one in the cmpxchg instruction. 1341 Value *LoadedFull = LoadedExit; 1342 1343 Builder.SetInsertPoint(ExitBB, std::next(Success->getIterator())); 1344 Value *Loaded = extractMaskedValue(Builder, LoadedFull, PMV); 1345 1346 // Look for any users of the cmpxchg that are just comparing the loaded value 1347 // against the desired one, and replace them with the CFG-derived version. 1348 SmallVector<ExtractValueInst *, 2> PrunedInsts; 1349 for (auto User : CI->users()) { 1350 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); 1351 if (!EV) 1352 continue; 1353 1354 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && 1355 "weird extraction from { iN, i1 }"); 1356 1357 if (EV->getIndices()[0] == 0) 1358 EV->replaceAllUsesWith(Loaded); 1359 else 1360 EV->replaceAllUsesWith(Success); 1361 1362 PrunedInsts.push_back(EV); 1363 } 1364 1365 // We can remove the instructions now we're no longer iterating through them. 1366 for (auto EV : PrunedInsts) 1367 EV->eraseFromParent(); 1368 1369 if (!CI->use_empty()) { 1370 // Some use of the full struct return that we don't understand has happened, 1371 // so we've got to reconstruct it properly. 1372 Value *Res; 1373 Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0); 1374 Res = Builder.CreateInsertValue(Res, Success, 1); 1375 1376 CI->replaceAllUsesWith(Res); 1377 } 1378 1379 CI->eraseFromParent(); 1380 return true; 1381 } 1382 1383 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) { 1384 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand()); 1385 if(!C) 1386 return false; 1387 1388 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 1389 switch(Op) { 1390 case AtomicRMWInst::Add: 1391 case AtomicRMWInst::Sub: 1392 case AtomicRMWInst::Or: 1393 case AtomicRMWInst::Xor: 1394 return C->isZero(); 1395 case AtomicRMWInst::And: 1396 return C->isMinusOne(); 1397 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/... 1398 default: 1399 return false; 1400 } 1401 } 1402 1403 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) { 1404 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { 1405 tryExpandAtomicLoad(ResultingLoad); 1406 return true; 1407 } 1408 return false; 1409 } 1410 1411 Value *AtomicExpand::insertRMWCmpXchgLoop( 1412 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, 1413 AtomicOrdering MemOpOrder, 1414 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, 1415 CreateCmpXchgInstFun CreateCmpXchg) { 1416 LLVMContext &Ctx = Builder.getContext(); 1417 BasicBlock *BB = Builder.GetInsertBlock(); 1418 Function *F = BB->getParent(); 1419 1420 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1421 // 1422 // The standard expansion we produce is: 1423 // [...] 1424 // %init_loaded = load atomic iN* %addr 1425 // br label %loop 1426 // loop: 1427 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] 1428 // %new = some_op iN %loaded, %incr 1429 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new 1430 // %new_loaded = extractvalue { iN, i1 } %pair, 0 1431 // %success = extractvalue { iN, i1 } %pair, 1 1432 // br i1 %success, label %atomicrmw.end, label %loop 1433 // atomicrmw.end: 1434 // [...] 1435 BasicBlock *ExitBB = 1436 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1437 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1438 1439 // The split call above "helpfully" added a branch at the end of BB (to the 1440 // wrong place), but we want a load. It's easiest to just remove 1441 // the branch entirely. 1442 std::prev(BB->end())->eraseFromParent(); 1443 Builder.SetInsertPoint(BB); 1444 LoadInst *InitLoaded = Builder.CreateLoad(ResultTy, Addr); 1445 // Atomics require at least natural alignment. 1446 InitLoaded->setAlignment(Align(ResultTy->getPrimitiveSizeInBits() / 8)); 1447 Builder.CreateBr(LoopBB); 1448 1449 // Start the main loop block now that we've taken care of the preliminaries. 1450 Builder.SetInsertPoint(LoopBB); 1451 PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded"); 1452 Loaded->addIncoming(InitLoaded, BB); 1453 1454 Value *NewVal = PerformOp(Builder, Loaded); 1455 1456 Value *NewLoaded = nullptr; 1457 Value *Success = nullptr; 1458 1459 CreateCmpXchg(Builder, Addr, Loaded, NewVal, 1460 MemOpOrder == AtomicOrdering::Unordered 1461 ? AtomicOrdering::Monotonic 1462 : MemOpOrder, 1463 Success, NewLoaded); 1464 assert(Success && NewLoaded); 1465 1466 Loaded->addIncoming(NewLoaded, LoopBB); 1467 1468 Builder.CreateCondBr(Success, ExitBB, LoopBB); 1469 1470 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1471 return NewLoaded; 1472 } 1473 1474 bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1475 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 1476 unsigned ValueSize = getAtomicOpSize(CI); 1477 1478 switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) { 1479 default: 1480 llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg"); 1481 case TargetLoweringBase::AtomicExpansionKind::None: 1482 if (ValueSize < MinCASSize) 1483 expandPartwordCmpXchg(CI); 1484 return false; 1485 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 1486 return expandAtomicCmpXchg(CI); 1487 } 1488 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: 1489 expandAtomicCmpXchgToMaskedIntrinsic(CI); 1490 return true; 1491 } 1492 } 1493 1494 // Note: This function is exposed externally by AtomicExpandUtils.h 1495 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 1496 CreateCmpXchgInstFun CreateCmpXchg) { 1497 IRBuilder<> Builder(AI); 1498 Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop( 1499 Builder, AI->getType(), AI->getPointerOperand(), AI->getOrdering(), 1500 [&](IRBuilder<> &Builder, Value *Loaded) { 1501 return performAtomicOp(AI->getOperation(), Builder, Loaded, 1502 AI->getValOperand()); 1503 }, 1504 CreateCmpXchg); 1505 1506 AI->replaceAllUsesWith(Loaded); 1507 AI->eraseFromParent(); 1508 return true; 1509 } 1510 1511 // In order to use one of the sized library calls such as 1512 // __atomic_fetch_add_4, the alignment must be sufficient, the size 1513 // must be one of the potentially-specialized sizes, and the value 1514 // type must actually exist in C on the target (otherwise, the 1515 // function wouldn't actually be defined.) 1516 static bool canUseSizedAtomicCall(unsigned Size, unsigned Align, 1517 const DataLayout &DL) { 1518 // TODO: "LargestSize" is an approximation for "largest type that 1519 // you can express in C". It seems to be the case that int128 is 1520 // supported on all 64-bit platforms, otherwise only up to 64-bit 1521 // integers are supported. If we get this wrong, then we'll try to 1522 // call a sized libcall that doesn't actually exist. There should 1523 // really be some more reliable way in LLVM of determining integer 1524 // sizes which are valid in the target's C ABI... 1525 unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8; 1526 return Align >= Size && 1527 (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) && 1528 Size <= LargestSize; 1529 } 1530 1531 void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) { 1532 static const RTLIB::Libcall Libcalls[6] = { 1533 RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2, 1534 RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16}; 1535 unsigned Size = getAtomicOpSize(I); 1536 unsigned Align = getAtomicOpAlign(I); 1537 1538 bool expanded = expandAtomicOpToLibcall( 1539 I, Size, Align, I->getPointerOperand(), nullptr, nullptr, 1540 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1541 (void)expanded; 1542 assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Load"); 1543 } 1544 1545 void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) { 1546 static const RTLIB::Libcall Libcalls[6] = { 1547 RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2, 1548 RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16}; 1549 unsigned Size = getAtomicOpSize(I); 1550 unsigned Align = getAtomicOpAlign(I); 1551 1552 bool expanded = expandAtomicOpToLibcall( 1553 I, Size, Align, I->getPointerOperand(), I->getValueOperand(), nullptr, 1554 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1555 (void)expanded; 1556 assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Store"); 1557 } 1558 1559 void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) { 1560 static const RTLIB::Libcall Libcalls[6] = { 1561 RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1, 1562 RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4, 1563 RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16}; 1564 unsigned Size = getAtomicOpSize(I); 1565 unsigned Align = getAtomicOpAlign(I); 1566 1567 bool expanded = expandAtomicOpToLibcall( 1568 I, Size, Align, I->getPointerOperand(), I->getNewValOperand(), 1569 I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(), 1570 Libcalls); 1571 (void)expanded; 1572 assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor CAS"); 1573 } 1574 1575 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) { 1576 static const RTLIB::Libcall LibcallsXchg[6] = { 1577 RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1, 1578 RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4, 1579 RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16}; 1580 static const RTLIB::Libcall LibcallsAdd[6] = { 1581 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1, 1582 RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4, 1583 RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16}; 1584 static const RTLIB::Libcall LibcallsSub[6] = { 1585 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1, 1586 RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4, 1587 RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16}; 1588 static const RTLIB::Libcall LibcallsAnd[6] = { 1589 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1, 1590 RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4, 1591 RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16}; 1592 static const RTLIB::Libcall LibcallsOr[6] = { 1593 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1, 1594 RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4, 1595 RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16}; 1596 static const RTLIB::Libcall LibcallsXor[6] = { 1597 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1, 1598 RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4, 1599 RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16}; 1600 static const RTLIB::Libcall LibcallsNand[6] = { 1601 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1, 1602 RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4, 1603 RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16}; 1604 1605 switch (Op) { 1606 case AtomicRMWInst::BAD_BINOP: 1607 llvm_unreachable("Should not have BAD_BINOP."); 1608 case AtomicRMWInst::Xchg: 1609 return makeArrayRef(LibcallsXchg); 1610 case AtomicRMWInst::Add: 1611 return makeArrayRef(LibcallsAdd); 1612 case AtomicRMWInst::Sub: 1613 return makeArrayRef(LibcallsSub); 1614 case AtomicRMWInst::And: 1615 return makeArrayRef(LibcallsAnd); 1616 case AtomicRMWInst::Or: 1617 return makeArrayRef(LibcallsOr); 1618 case AtomicRMWInst::Xor: 1619 return makeArrayRef(LibcallsXor); 1620 case AtomicRMWInst::Nand: 1621 return makeArrayRef(LibcallsNand); 1622 case AtomicRMWInst::Max: 1623 case AtomicRMWInst::Min: 1624 case AtomicRMWInst::UMax: 1625 case AtomicRMWInst::UMin: 1626 case AtomicRMWInst::FAdd: 1627 case AtomicRMWInst::FSub: 1628 // No atomic libcalls are available for max/min/umax/umin. 1629 return {}; 1630 } 1631 llvm_unreachable("Unexpected AtomicRMW operation."); 1632 } 1633 1634 void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) { 1635 ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation()); 1636 1637 unsigned Size = getAtomicOpSize(I); 1638 unsigned Align = getAtomicOpAlign(I); 1639 1640 bool Success = false; 1641 if (!Libcalls.empty()) 1642 Success = expandAtomicOpToLibcall( 1643 I, Size, Align, I->getPointerOperand(), I->getValOperand(), nullptr, 1644 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1645 1646 // The expansion failed: either there were no libcalls at all for 1647 // the operation (min/max), or there were only size-specialized 1648 // libcalls (add/sub/etc) and we needed a generic. So, expand to a 1649 // CAS libcall, via a CAS loop, instead. 1650 if (!Success) { 1651 expandAtomicRMWToCmpXchg(I, [this](IRBuilder<> &Builder, Value *Addr, 1652 Value *Loaded, Value *NewVal, 1653 AtomicOrdering MemOpOrder, 1654 Value *&Success, Value *&NewLoaded) { 1655 // Create the CAS instruction normally... 1656 AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg( 1657 Addr, Loaded, NewVal, MemOpOrder, 1658 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder)); 1659 Success = Builder.CreateExtractValue(Pair, 1, "success"); 1660 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 1661 1662 // ...and then expand the CAS into a libcall. 1663 expandAtomicCASToLibcall(Pair); 1664 }); 1665 } 1666 } 1667 1668 // A helper routine for the above expandAtomic*ToLibcall functions. 1669 // 1670 // 'Libcalls' contains an array of enum values for the particular 1671 // ATOMIC libcalls to be emitted. All of the other arguments besides 1672 // 'I' are extracted from the Instruction subclass by the 1673 // caller. Depending on the particular call, some will be null. 1674 bool AtomicExpand::expandAtomicOpToLibcall( 1675 Instruction *I, unsigned Size, unsigned Align, Value *PointerOperand, 1676 Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering, 1677 AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) { 1678 assert(Libcalls.size() == 6); 1679 1680 LLVMContext &Ctx = I->getContext(); 1681 Module *M = I->getModule(); 1682 const DataLayout &DL = M->getDataLayout(); 1683 IRBuilder<> Builder(I); 1684 IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front()); 1685 1686 bool UseSizedLibcall = canUseSizedAtomicCall(Size, Align, DL); 1687 Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8); 1688 1689 const llvm::Align AllocaAlignment(DL.getPrefTypeAlignment(SizedIntTy)); 1690 1691 // TODO: the "order" argument type is "int", not int32. So 1692 // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints. 1693 ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size); 1694 assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO"); 1695 Constant *OrderingVal = 1696 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering)); 1697 Constant *Ordering2Val = nullptr; 1698 if (CASExpected) { 1699 assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO"); 1700 Ordering2Val = 1701 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2)); 1702 } 1703 bool HasResult = I->getType() != Type::getVoidTy(Ctx); 1704 1705 RTLIB::Libcall RTLibType; 1706 if (UseSizedLibcall) { 1707 switch (Size) { 1708 case 1: RTLibType = Libcalls[1]; break; 1709 case 2: RTLibType = Libcalls[2]; break; 1710 case 4: RTLibType = Libcalls[3]; break; 1711 case 8: RTLibType = Libcalls[4]; break; 1712 case 16: RTLibType = Libcalls[5]; break; 1713 } 1714 } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) { 1715 RTLibType = Libcalls[0]; 1716 } else { 1717 // Can't use sized function, and there's no generic for this 1718 // operation, so give up. 1719 return false; 1720 } 1721 1722 // Build up the function call. There's two kinds. First, the sized 1723 // variants. These calls are going to be one of the following (with 1724 // N=1,2,4,8,16): 1725 // iN __atomic_load_N(iN *ptr, int ordering) 1726 // void __atomic_store_N(iN *ptr, iN val, int ordering) 1727 // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering) 1728 // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired, 1729 // int success_order, int failure_order) 1730 // 1731 // Note that these functions can be used for non-integer atomic 1732 // operations, the values just need to be bitcast to integers on the 1733 // way in and out. 1734 // 1735 // And, then, the generic variants. They look like the following: 1736 // void __atomic_load(size_t size, void *ptr, void *ret, int ordering) 1737 // void __atomic_store(size_t size, void *ptr, void *val, int ordering) 1738 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, 1739 // int ordering) 1740 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, 1741 // void *desired, int success_order, 1742 // int failure_order) 1743 // 1744 // The different signatures are built up depending on the 1745 // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult' 1746 // variables. 1747 1748 AllocaInst *AllocaCASExpected = nullptr; 1749 Value *AllocaCASExpected_i8 = nullptr; 1750 AllocaInst *AllocaValue = nullptr; 1751 Value *AllocaValue_i8 = nullptr; 1752 AllocaInst *AllocaResult = nullptr; 1753 Value *AllocaResult_i8 = nullptr; 1754 1755 Type *ResultTy; 1756 SmallVector<Value *, 6> Args; 1757 AttributeList Attr; 1758 1759 // 'size' argument. 1760 if (!UseSizedLibcall) { 1761 // Note, getIntPtrType is assumed equivalent to size_t. 1762 Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size)); 1763 } 1764 1765 // 'ptr' argument. 1766 // note: This assumes all address spaces share a common libfunc 1767 // implementation and that addresses are convertable. For systems without 1768 // that property, we'd need to extend this mechanism to support AS-specific 1769 // families of atomic intrinsics. 1770 auto PtrTypeAS = PointerOperand->getType()->getPointerAddressSpace(); 1771 Value *PtrVal = Builder.CreateBitCast(PointerOperand, 1772 Type::getInt8PtrTy(Ctx, PtrTypeAS)); 1773 PtrVal = Builder.CreateAddrSpaceCast(PtrVal, Type::getInt8PtrTy(Ctx)); 1774 Args.push_back(PtrVal); 1775 1776 // 'expected' argument, if present. 1777 if (CASExpected) { 1778 AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType()); 1779 AllocaCASExpected->setAlignment(AllocaAlignment); 1780 unsigned AllocaAS = AllocaCASExpected->getType()->getPointerAddressSpace(); 1781 1782 AllocaCASExpected_i8 = 1783 Builder.CreateBitCast(AllocaCASExpected, 1784 Type::getInt8PtrTy(Ctx, AllocaAS)); 1785 Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64); 1786 Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment); 1787 Args.push_back(AllocaCASExpected_i8); 1788 } 1789 1790 // 'val' argument ('desired' for cas), if present. 1791 if (ValueOperand) { 1792 if (UseSizedLibcall) { 1793 Value *IntValue = 1794 Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy); 1795 Args.push_back(IntValue); 1796 } else { 1797 AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType()); 1798 AllocaValue->setAlignment(AllocaAlignment); 1799 AllocaValue_i8 = 1800 Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx)); 1801 Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64); 1802 Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment); 1803 Args.push_back(AllocaValue_i8); 1804 } 1805 } 1806 1807 // 'ret' argument. 1808 if (!CASExpected && HasResult && !UseSizedLibcall) { 1809 AllocaResult = AllocaBuilder.CreateAlloca(I->getType()); 1810 AllocaResult->setAlignment(AllocaAlignment); 1811 unsigned AllocaAS = AllocaResult->getType()->getPointerAddressSpace(); 1812 AllocaResult_i8 = 1813 Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx, AllocaAS)); 1814 Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64); 1815 Args.push_back(AllocaResult_i8); 1816 } 1817 1818 // 'ordering' ('success_order' for cas) argument. 1819 Args.push_back(OrderingVal); 1820 1821 // 'failure_order' argument, if present. 1822 if (Ordering2Val) 1823 Args.push_back(Ordering2Val); 1824 1825 // Now, the return type. 1826 if (CASExpected) { 1827 ResultTy = Type::getInt1Ty(Ctx); 1828 Attr = Attr.addAttribute(Ctx, AttributeList::ReturnIndex, Attribute::ZExt); 1829 } else if (HasResult && UseSizedLibcall) 1830 ResultTy = SizedIntTy; 1831 else 1832 ResultTy = Type::getVoidTy(Ctx); 1833 1834 // Done with setting up arguments and return types, create the call: 1835 SmallVector<Type *, 6> ArgTys; 1836 for (Value *Arg : Args) 1837 ArgTys.push_back(Arg->getType()); 1838 FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false); 1839 FunctionCallee LibcallFn = 1840 M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr); 1841 CallInst *Call = Builder.CreateCall(LibcallFn, Args); 1842 Call->setAttributes(Attr); 1843 Value *Result = Call; 1844 1845 // And then, extract the results... 1846 if (ValueOperand && !UseSizedLibcall) 1847 Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64); 1848 1849 if (CASExpected) { 1850 // The final result from the CAS is {load of 'expected' alloca, bool result 1851 // from call} 1852 Type *FinalResultTy = I->getType(); 1853 Value *V = UndefValue::get(FinalResultTy); 1854 Value *ExpectedOut = Builder.CreateAlignedLoad( 1855 CASExpected->getType(), AllocaCASExpected, AllocaAlignment); 1856 Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64); 1857 V = Builder.CreateInsertValue(V, ExpectedOut, 0); 1858 V = Builder.CreateInsertValue(V, Result, 1); 1859 I->replaceAllUsesWith(V); 1860 } else if (HasResult) { 1861 Value *V; 1862 if (UseSizedLibcall) 1863 V = Builder.CreateBitOrPointerCast(Result, I->getType()); 1864 else { 1865 V = Builder.CreateAlignedLoad(I->getType(), AllocaResult, 1866 AllocaAlignment); 1867 Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64); 1868 } 1869 I->replaceAllUsesWith(V); 1870 } 1871 I->eraseFromParent(); 1872 return true; 1873 } 1874