1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a pass (at IR level) to replace atomic instructions with 11 // __atomic_* library calls, or target specific instruction which implement the 12 // same semantics in a way which better fits the target backend. This can 13 // include the use of (intrinsic-based) load-linked/store-conditional loops, 14 // AtomicCmpXchg, or type coercions. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/CodeGen/AtomicExpandUtils.h" 22 #include "llvm/CodeGen/RuntimeLibcalls.h" 23 #include "llvm/CodeGen/TargetLowering.h" 24 #include "llvm/CodeGen/TargetPassConfig.h" 25 #include "llvm/CodeGen/TargetSubtargetInfo.h" 26 #include "llvm/CodeGen/ValueTypes.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Constant.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/IRBuilder.h" 35 #include "llvm/IR/InstIterator.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Type.h" 40 #include "llvm/IR/User.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/AtomicOrdering.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Target/TargetMachine.h" 49 #include <cassert> 50 #include <cstdint> 51 #include <iterator> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "atomic-expand" 56 57 namespace { 58 59 class AtomicExpand: public FunctionPass { 60 const TargetLowering *TLI = nullptr; 61 62 public: 63 static char ID; // Pass identification, replacement for typeid 64 65 AtomicExpand() : FunctionPass(ID) { 66 initializeAtomicExpandPass(*PassRegistry::getPassRegistry()); 67 } 68 69 bool runOnFunction(Function &F) override; 70 71 private: 72 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order); 73 IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL); 74 LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI); 75 bool tryExpandAtomicLoad(LoadInst *LI); 76 bool expandAtomicLoadToLL(LoadInst *LI); 77 bool expandAtomicLoadToCmpXchg(LoadInst *LI); 78 StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI); 79 bool expandAtomicStore(StoreInst *SI); 80 bool tryExpandAtomicRMW(AtomicRMWInst *AI); 81 Value * 82 insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr, 83 AtomicOrdering MemOpOrder, 84 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); 85 void expandAtomicOpToLLSC( 86 Instruction *I, Type *ResultTy, Value *Addr, AtomicOrdering MemOpOrder, 87 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp); 88 void expandPartwordAtomicRMW( 89 AtomicRMWInst *I, 90 TargetLoweringBase::AtomicExpansionKind ExpansionKind); 91 AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI); 92 void expandPartwordCmpXchg(AtomicCmpXchgInst *I); 93 void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI); 94 void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI); 95 96 AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI); 97 static Value *insertRMWCmpXchgLoop( 98 IRBuilder<> &Builder, Type *ResultType, Value *Addr, 99 AtomicOrdering MemOpOrder, 100 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, 101 CreateCmpXchgInstFun CreateCmpXchg); 102 bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI); 103 104 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); 105 bool isIdempotentRMW(AtomicRMWInst *RMWI); 106 bool simplifyIdempotentRMW(AtomicRMWInst *RMWI); 107 108 bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, unsigned Align, 109 Value *PointerOperand, Value *ValueOperand, 110 Value *CASExpected, AtomicOrdering Ordering, 111 AtomicOrdering Ordering2, 112 ArrayRef<RTLIB::Libcall> Libcalls); 113 void expandAtomicLoadToLibcall(LoadInst *LI); 114 void expandAtomicStoreToLibcall(StoreInst *LI); 115 void expandAtomicRMWToLibcall(AtomicRMWInst *I); 116 void expandAtomicCASToLibcall(AtomicCmpXchgInst *I); 117 118 friend bool 119 llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 120 CreateCmpXchgInstFun CreateCmpXchg); 121 }; 122 123 } // end anonymous namespace 124 125 char AtomicExpand::ID = 0; 126 127 char &llvm::AtomicExpandID = AtomicExpand::ID; 128 129 INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions", 130 false, false) 131 132 FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); } 133 134 // Helper functions to retrieve the size of atomic instructions. 135 static unsigned getAtomicOpSize(LoadInst *LI) { 136 const DataLayout &DL = LI->getModule()->getDataLayout(); 137 return DL.getTypeStoreSize(LI->getType()); 138 } 139 140 static unsigned getAtomicOpSize(StoreInst *SI) { 141 const DataLayout &DL = SI->getModule()->getDataLayout(); 142 return DL.getTypeStoreSize(SI->getValueOperand()->getType()); 143 } 144 145 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) { 146 const DataLayout &DL = RMWI->getModule()->getDataLayout(); 147 return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); 148 } 149 150 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) { 151 const DataLayout &DL = CASI->getModule()->getDataLayout(); 152 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); 153 } 154 155 // Helper functions to retrieve the alignment of atomic instructions. 156 static unsigned getAtomicOpAlign(LoadInst *LI) { 157 unsigned Align = LI->getAlignment(); 158 // In the future, if this IR restriction is relaxed, we should 159 // return DataLayout::getABITypeAlignment when there's no align 160 // value. 161 assert(Align != 0 && "An atomic LoadInst always has an explicit alignment"); 162 return Align; 163 } 164 165 static unsigned getAtomicOpAlign(StoreInst *SI) { 166 unsigned Align = SI->getAlignment(); 167 // In the future, if this IR restriction is relaxed, we should 168 // return DataLayout::getABITypeAlignment when there's no align 169 // value. 170 assert(Align != 0 && "An atomic StoreInst always has an explicit alignment"); 171 return Align; 172 } 173 174 static unsigned getAtomicOpAlign(AtomicRMWInst *RMWI) { 175 // TODO(PR27168): This instruction has no alignment attribute, but unlike the 176 // default alignment for load/store, the default here is to assume 177 // it has NATURAL alignment, not DataLayout-specified alignment. 178 const DataLayout &DL = RMWI->getModule()->getDataLayout(); 179 return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); 180 } 181 182 static unsigned getAtomicOpAlign(AtomicCmpXchgInst *CASI) { 183 // TODO(PR27168): same comment as above. 184 const DataLayout &DL = CASI->getModule()->getDataLayout(); 185 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); 186 } 187 188 // Determine if a particular atomic operation has a supported size, 189 // and is of appropriate alignment, to be passed through for target 190 // lowering. (Versus turning into a __atomic libcall) 191 template <typename Inst> 192 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) { 193 unsigned Size = getAtomicOpSize(I); 194 unsigned Align = getAtomicOpAlign(I); 195 return Align >= Size && Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8; 196 } 197 198 bool AtomicExpand::runOnFunction(Function &F) { 199 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 200 if (!TPC) 201 return false; 202 203 auto &TM = TPC->getTM<TargetMachine>(); 204 if (!TM.getSubtargetImpl(F)->enableAtomicExpand()) 205 return false; 206 TLI = TM.getSubtargetImpl(F)->getTargetLowering(); 207 208 SmallVector<Instruction *, 1> AtomicInsts; 209 210 // Changing control-flow while iterating through it is a bad idea, so gather a 211 // list of all atomic instructions before we start. 212 for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) { 213 Instruction *I = &*II; 214 if (I->isAtomic() && !isa<FenceInst>(I)) 215 AtomicInsts.push_back(I); 216 } 217 218 bool MadeChange = false; 219 for (auto I : AtomicInsts) { 220 auto LI = dyn_cast<LoadInst>(I); 221 auto SI = dyn_cast<StoreInst>(I); 222 auto RMWI = dyn_cast<AtomicRMWInst>(I); 223 auto CASI = dyn_cast<AtomicCmpXchgInst>(I); 224 assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction"); 225 226 // If the Size/Alignment is not supported, replace with a libcall. 227 if (LI) { 228 if (!atomicSizeSupported(TLI, LI)) { 229 expandAtomicLoadToLibcall(LI); 230 MadeChange = true; 231 continue; 232 } 233 } else if (SI) { 234 if (!atomicSizeSupported(TLI, SI)) { 235 expandAtomicStoreToLibcall(SI); 236 MadeChange = true; 237 continue; 238 } 239 } else if (RMWI) { 240 if (!atomicSizeSupported(TLI, RMWI)) { 241 expandAtomicRMWToLibcall(RMWI); 242 MadeChange = true; 243 continue; 244 } 245 } else if (CASI) { 246 if (!atomicSizeSupported(TLI, CASI)) { 247 expandAtomicCASToLibcall(CASI); 248 MadeChange = true; 249 continue; 250 } 251 } 252 253 if (TLI->shouldInsertFencesForAtomic(I)) { 254 auto FenceOrdering = AtomicOrdering::Monotonic; 255 if (LI && isAcquireOrStronger(LI->getOrdering())) { 256 FenceOrdering = LI->getOrdering(); 257 LI->setOrdering(AtomicOrdering::Monotonic); 258 } else if (SI && isReleaseOrStronger(SI->getOrdering())) { 259 FenceOrdering = SI->getOrdering(); 260 SI->setOrdering(AtomicOrdering::Monotonic); 261 } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) || 262 isAcquireOrStronger(RMWI->getOrdering()))) { 263 FenceOrdering = RMWI->getOrdering(); 264 RMWI->setOrdering(AtomicOrdering::Monotonic); 265 } else if (CASI && 266 TLI->shouldExpandAtomicCmpXchgInIR(CASI) == 267 TargetLoweringBase::AtomicExpansionKind::None && 268 (isReleaseOrStronger(CASI->getSuccessOrdering()) || 269 isAcquireOrStronger(CASI->getSuccessOrdering()))) { 270 // If a compare and swap is lowered to LL/SC, we can do smarter fence 271 // insertion, with a stronger one on the success path than on the 272 // failure path. As a result, fence insertion is directly done by 273 // expandAtomicCmpXchg in that case. 274 FenceOrdering = CASI->getSuccessOrdering(); 275 CASI->setSuccessOrdering(AtomicOrdering::Monotonic); 276 CASI->setFailureOrdering(AtomicOrdering::Monotonic); 277 } 278 279 if (FenceOrdering != AtomicOrdering::Monotonic) { 280 MadeChange |= bracketInstWithFences(I, FenceOrdering); 281 } 282 } 283 284 if (LI) { 285 if (LI->getType()->isFloatingPointTy()) { 286 // TODO: add a TLI hook to control this so that each target can 287 // convert to lowering the original type one at a time. 288 LI = convertAtomicLoadToIntegerType(LI); 289 assert(LI->getType()->isIntegerTy() && "invariant broken"); 290 MadeChange = true; 291 } 292 293 MadeChange |= tryExpandAtomicLoad(LI); 294 } else if (SI) { 295 if (SI->getValueOperand()->getType()->isFloatingPointTy()) { 296 // TODO: add a TLI hook to control this so that each target can 297 // convert to lowering the original type one at a time. 298 SI = convertAtomicStoreToIntegerType(SI); 299 assert(SI->getValueOperand()->getType()->isIntegerTy() && 300 "invariant broken"); 301 MadeChange = true; 302 } 303 304 if (TLI->shouldExpandAtomicStoreInIR(SI)) 305 MadeChange |= expandAtomicStore(SI); 306 } else if (RMWI) { 307 // There are two different ways of expanding RMW instructions: 308 // - into a load if it is idempotent 309 // - into a Cmpxchg/LL-SC loop otherwise 310 // we try them in that order. 311 312 if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) { 313 MadeChange = true; 314 } else { 315 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 316 unsigned ValueSize = getAtomicOpSize(RMWI); 317 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 318 if (ValueSize < MinCASSize && 319 (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 320 Op == AtomicRMWInst::And)) { 321 RMWI = widenPartwordAtomicRMW(RMWI); 322 MadeChange = true; 323 } 324 325 MadeChange |= tryExpandAtomicRMW(RMWI); 326 } 327 } else if (CASI) { 328 // TODO: when we're ready to make the change at the IR level, we can 329 // extend convertCmpXchgToInteger for floating point too. 330 assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() && 331 "unimplemented - floating point not legal at IR level"); 332 if (CASI->getCompareOperand()->getType()->isPointerTy() ) { 333 // TODO: add a TLI hook to control this so that each target can 334 // convert to lowering the original type one at a time. 335 CASI = convertCmpXchgToIntegerType(CASI); 336 assert(CASI->getCompareOperand()->getType()->isIntegerTy() && 337 "invariant broken"); 338 MadeChange = true; 339 } 340 341 MadeChange |= tryExpandAtomicCmpXchg(CASI); 342 } 343 } 344 return MadeChange; 345 } 346 347 bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) { 348 IRBuilder<> Builder(I); 349 350 auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order); 351 352 auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order); 353 // We have a guard here because not every atomic operation generates a 354 // trailing fence. 355 if (TrailingFence) 356 TrailingFence->moveAfter(I); 357 358 return (LeadingFence || TrailingFence); 359 } 360 361 /// Get the iX type with the same bitwidth as T. 362 IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T, 363 const DataLayout &DL) { 364 EVT VT = TLI->getValueType(DL, T); 365 unsigned BitWidth = VT.getStoreSizeInBits(); 366 assert(BitWidth == VT.getSizeInBits() && "must be a power of two"); 367 return IntegerType::get(T->getContext(), BitWidth); 368 } 369 370 /// Convert an atomic load of a non-integral type to an integer load of the 371 /// equivalent bitwidth. See the function comment on 372 /// convertAtomicStoreToIntegerType for background. 373 LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) { 374 auto *M = LI->getModule(); 375 Type *NewTy = getCorrespondingIntegerType(LI->getType(), 376 M->getDataLayout()); 377 378 IRBuilder<> Builder(LI); 379 380 Value *Addr = LI->getPointerOperand(); 381 Type *PT = PointerType::get(NewTy, 382 Addr->getType()->getPointerAddressSpace()); 383 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 384 385 auto *NewLI = Builder.CreateLoad(NewAddr); 386 NewLI->setAlignment(LI->getAlignment()); 387 NewLI->setVolatile(LI->isVolatile()); 388 NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID()); 389 LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n"); 390 391 Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType()); 392 LI->replaceAllUsesWith(NewVal); 393 LI->eraseFromParent(); 394 return NewLI; 395 } 396 397 bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) { 398 switch (TLI->shouldExpandAtomicLoadInIR(LI)) { 399 case TargetLoweringBase::AtomicExpansionKind::None: 400 return false; 401 case TargetLoweringBase::AtomicExpansionKind::LLSC: 402 expandAtomicOpToLLSC( 403 LI, LI->getType(), LI->getPointerOperand(), LI->getOrdering(), 404 [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; }); 405 return true; 406 case TargetLoweringBase::AtomicExpansionKind::LLOnly: 407 return expandAtomicLoadToLL(LI); 408 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: 409 return expandAtomicLoadToCmpXchg(LI); 410 default: 411 llvm_unreachable("Unhandled case in tryExpandAtomicLoad"); 412 } 413 } 414 415 bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) { 416 IRBuilder<> Builder(LI); 417 418 // On some architectures, load-linked instructions are atomic for larger 419 // sizes than normal loads. For example, the only 64-bit load guaranteed 420 // to be single-copy atomic by ARM is an ldrexd (A3.5.3). 421 Value *Val = 422 TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering()); 423 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 424 425 LI->replaceAllUsesWith(Val); 426 LI->eraseFromParent(); 427 428 return true; 429 } 430 431 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) { 432 IRBuilder<> Builder(LI); 433 AtomicOrdering Order = LI->getOrdering(); 434 Value *Addr = LI->getPointerOperand(); 435 Type *Ty = cast<PointerType>(Addr->getType())->getElementType(); 436 Constant *DummyVal = Constant::getNullValue(Ty); 437 438 Value *Pair = Builder.CreateAtomicCmpXchg( 439 Addr, DummyVal, DummyVal, Order, 440 AtomicCmpXchgInst::getStrongestFailureOrdering(Order)); 441 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded"); 442 443 LI->replaceAllUsesWith(Loaded); 444 LI->eraseFromParent(); 445 446 return true; 447 } 448 449 /// Convert an atomic store of a non-integral type to an integer store of the 450 /// equivalent bitwidth. We used to not support floating point or vector 451 /// atomics in the IR at all. The backends learned to deal with the bitcast 452 /// idiom because that was the only way of expressing the notion of a atomic 453 /// float or vector store. The long term plan is to teach each backend to 454 /// instruction select from the original atomic store, but as a migration 455 /// mechanism, we convert back to the old format which the backends understand. 456 /// Each backend will need individual work to recognize the new format. 457 StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) { 458 IRBuilder<> Builder(SI); 459 auto *M = SI->getModule(); 460 Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(), 461 M->getDataLayout()); 462 Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy); 463 464 Value *Addr = SI->getPointerOperand(); 465 Type *PT = PointerType::get(NewTy, 466 Addr->getType()->getPointerAddressSpace()); 467 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 468 469 StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr); 470 NewSI->setAlignment(SI->getAlignment()); 471 NewSI->setVolatile(SI->isVolatile()); 472 NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID()); 473 LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n"); 474 SI->eraseFromParent(); 475 return NewSI; 476 } 477 478 bool AtomicExpand::expandAtomicStore(StoreInst *SI) { 479 // This function is only called on atomic stores that are too large to be 480 // atomic if implemented as a native store. So we replace them by an 481 // atomic swap, that can be implemented for example as a ldrex/strex on ARM 482 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. 483 // It is the responsibility of the target to only signal expansion via 484 // shouldExpandAtomicRMW in cases where this is required and possible. 485 IRBuilder<> Builder(SI); 486 AtomicRMWInst *AI = 487 Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(), 488 SI->getValueOperand(), SI->getOrdering()); 489 SI->eraseFromParent(); 490 491 // Now we have an appropriate swap instruction, lower it as usual. 492 return tryExpandAtomicRMW(AI); 493 } 494 495 static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr, 496 Value *Loaded, Value *NewVal, 497 AtomicOrdering MemOpOrder, 498 Value *&Success, Value *&NewLoaded) { 499 Value* Pair = Builder.CreateAtomicCmpXchg( 500 Addr, Loaded, NewVal, MemOpOrder, 501 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder)); 502 Success = Builder.CreateExtractValue(Pair, 1, "success"); 503 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 504 } 505 506 /// Emit IR to implement the given atomicrmw operation on values in registers, 507 /// returning the new value. 508 static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder, 509 Value *Loaded, Value *Inc) { 510 Value *NewVal; 511 switch (Op) { 512 case AtomicRMWInst::Xchg: 513 return Inc; 514 case AtomicRMWInst::Add: 515 return Builder.CreateAdd(Loaded, Inc, "new"); 516 case AtomicRMWInst::Sub: 517 return Builder.CreateSub(Loaded, Inc, "new"); 518 case AtomicRMWInst::And: 519 return Builder.CreateAnd(Loaded, Inc, "new"); 520 case AtomicRMWInst::Nand: 521 return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new"); 522 case AtomicRMWInst::Or: 523 return Builder.CreateOr(Loaded, Inc, "new"); 524 case AtomicRMWInst::Xor: 525 return Builder.CreateXor(Loaded, Inc, "new"); 526 case AtomicRMWInst::Max: 527 NewVal = Builder.CreateICmpSGT(Loaded, Inc); 528 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 529 case AtomicRMWInst::Min: 530 NewVal = Builder.CreateICmpSLE(Loaded, Inc); 531 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 532 case AtomicRMWInst::UMax: 533 NewVal = Builder.CreateICmpUGT(Loaded, Inc); 534 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 535 case AtomicRMWInst::UMin: 536 NewVal = Builder.CreateICmpULE(Loaded, Inc); 537 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 538 default: 539 llvm_unreachable("Unknown atomic op"); 540 } 541 } 542 543 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) { 544 switch (TLI->shouldExpandAtomicRMWInIR(AI)) { 545 case TargetLoweringBase::AtomicExpansionKind::None: 546 return false; 547 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 548 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 549 unsigned ValueSize = getAtomicOpSize(AI); 550 if (ValueSize < MinCASSize) { 551 llvm_unreachable( 552 "MinCmpXchgSizeInBits not yet supported for LL/SC architectures."); 553 } else { 554 auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) { 555 return performAtomicOp(AI->getOperation(), Builder, Loaded, 556 AI->getValOperand()); 557 }; 558 expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(), 559 AI->getOrdering(), PerformOp); 560 } 561 return true; 562 } 563 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: { 564 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 565 unsigned ValueSize = getAtomicOpSize(AI); 566 if (ValueSize < MinCASSize) { 567 expandPartwordAtomicRMW(AI, 568 TargetLoweringBase::AtomicExpansionKind::CmpXChg); 569 } else { 570 expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun); 571 } 572 return true; 573 } 574 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: { 575 expandAtomicRMWToMaskedIntrinsic(AI); 576 return true; 577 } 578 default: 579 llvm_unreachable("Unhandled case in tryExpandAtomicRMW"); 580 } 581 } 582 583 namespace { 584 585 /// Result values from createMaskInstrs helper. 586 struct PartwordMaskValues { 587 Type *WordType; 588 Type *ValueType; 589 Value *AlignedAddr; 590 Value *ShiftAmt; 591 Value *Mask; 592 Value *Inv_Mask; 593 }; 594 595 } // end anonymous namespace 596 597 /// This is a helper function which builds instructions to provide 598 /// values necessary for partword atomic operations. It takes an 599 /// incoming address, Addr, and ValueType, and constructs the address, 600 /// shift-amounts and masks needed to work with a larger value of size 601 /// WordSize. 602 /// 603 /// AlignedAddr: Addr rounded down to a multiple of WordSize 604 /// 605 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded 606 /// from AlignAddr for it to have the same value as if 607 /// ValueType was loaded from Addr. 608 /// 609 /// Mask: Value to mask with the value loaded from AlignAddr to 610 /// include only the part that would've been loaded from Addr. 611 /// 612 /// Inv_Mask: The inverse of Mask. 613 static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I, 614 Type *ValueType, Value *Addr, 615 unsigned WordSize) { 616 PartwordMaskValues Ret; 617 618 BasicBlock *BB = I->getParent(); 619 Function *F = BB->getParent(); 620 Module *M = I->getModule(); 621 622 LLVMContext &Ctx = F->getContext(); 623 const DataLayout &DL = M->getDataLayout(); 624 625 unsigned ValueSize = DL.getTypeStoreSize(ValueType); 626 627 assert(ValueSize < WordSize); 628 629 Ret.ValueType = ValueType; 630 Ret.WordType = Type::getIntNTy(Ctx, WordSize * 8); 631 632 Type *WordPtrType = 633 Ret.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace()); 634 635 Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx)); 636 Ret.AlignedAddr = Builder.CreateIntToPtr( 637 Builder.CreateAnd(AddrInt, ~(uint64_t)(WordSize - 1)), WordPtrType, 638 "AlignedAddr"); 639 640 Value *PtrLSB = Builder.CreateAnd(AddrInt, WordSize - 1, "PtrLSB"); 641 if (DL.isLittleEndian()) { 642 // turn bytes into bits 643 Ret.ShiftAmt = Builder.CreateShl(PtrLSB, 3); 644 } else { 645 // turn bytes into bits, and count from the other side. 646 Ret.ShiftAmt = 647 Builder.CreateShl(Builder.CreateXor(PtrLSB, WordSize - ValueSize), 3); 648 } 649 650 Ret.ShiftAmt = Builder.CreateTrunc(Ret.ShiftAmt, Ret.WordType, "ShiftAmt"); 651 Ret.Mask = Builder.CreateShl( 652 ConstantInt::get(Ret.WordType, (1 << ValueSize * 8) - 1), Ret.ShiftAmt, 653 "Mask"); 654 Ret.Inv_Mask = Builder.CreateNot(Ret.Mask, "Inv_Mask"); 655 656 return Ret; 657 } 658 659 /// Emit IR to implement a masked version of a given atomicrmw 660 /// operation. (That is, only the bits under the Mask should be 661 /// affected by the operation) 662 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op, 663 IRBuilder<> &Builder, Value *Loaded, 664 Value *Shifted_Inc, Value *Inc, 665 const PartwordMaskValues &PMV) { 666 // TODO: update to use 667 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order 668 // to merge bits from two values without requiring PMV.Inv_Mask. 669 switch (Op) { 670 case AtomicRMWInst::Xchg: { 671 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 672 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc); 673 return FinalVal; 674 } 675 case AtomicRMWInst::Or: 676 case AtomicRMWInst::Xor: 677 case AtomicRMWInst::And: 678 llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW"); 679 case AtomicRMWInst::Add: 680 case AtomicRMWInst::Sub: 681 case AtomicRMWInst::Nand: { 682 // The other arithmetic ops need to be masked into place. 683 Value *NewVal = performAtomicOp(Op, Builder, Loaded, Shifted_Inc); 684 Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask); 685 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 686 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked); 687 return FinalVal; 688 } 689 case AtomicRMWInst::Max: 690 case AtomicRMWInst::Min: 691 case AtomicRMWInst::UMax: 692 case AtomicRMWInst::UMin: { 693 // Finally, comparison ops will operate on the full value, so 694 // truncate down to the original size, and expand out again after 695 // doing the operation. 696 Value *Loaded_Shiftdown = Builder.CreateTrunc( 697 Builder.CreateLShr(Loaded, PMV.ShiftAmt), PMV.ValueType); 698 Value *NewVal = performAtomicOp(Op, Builder, Loaded_Shiftdown, Inc); 699 Value *NewVal_Shiftup = Builder.CreateShl( 700 Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt); 701 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 702 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shiftup); 703 return FinalVal; 704 } 705 default: 706 llvm_unreachable("Unknown atomic op"); 707 } 708 } 709 710 /// Expand a sub-word atomicrmw operation into an appropriate 711 /// word-sized operation. 712 /// 713 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same 714 /// way as a typical atomicrmw expansion. The only difference here is 715 /// that the operation inside of the loop must operate only upon a 716 /// part of the value. 717 void AtomicExpand::expandPartwordAtomicRMW( 718 AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) { 719 assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg); 720 721 AtomicOrdering MemOpOrder = AI->getOrdering(); 722 723 IRBuilder<> Builder(AI); 724 725 PartwordMaskValues PMV = 726 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 727 TLI->getMinCmpXchgSizeInBits() / 8); 728 729 Value *ValOperand_Shifted = 730 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 731 PMV.ShiftAmt, "ValOperand_Shifted"); 732 733 auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) { 734 return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded, 735 ValOperand_Shifted, AI->getValOperand(), PMV); 736 }; 737 738 // TODO: When we're ready to support LLSC conversions too, use 739 // insertRMWLLSCLoop here for ExpansionKind==LLSC. 740 Value *OldResult = 741 insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder, 742 PerformPartwordOp, createCmpXchgInstFun); 743 Value *FinalOldResult = Builder.CreateTrunc( 744 Builder.CreateLShr(OldResult, PMV.ShiftAmt), PMV.ValueType); 745 AI->replaceAllUsesWith(FinalOldResult); 746 AI->eraseFromParent(); 747 } 748 749 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width. 750 AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) { 751 IRBuilder<> Builder(AI); 752 AtomicRMWInst::BinOp Op = AI->getOperation(); 753 754 assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 755 Op == AtomicRMWInst::And) && 756 "Unable to widen operation"); 757 758 PartwordMaskValues PMV = 759 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 760 TLI->getMinCmpXchgSizeInBits() / 8); 761 762 Value *ValOperand_Shifted = 763 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 764 PMV.ShiftAmt, "ValOperand_Shifted"); 765 766 Value *NewOperand; 767 768 if (Op == AtomicRMWInst::And) 769 NewOperand = 770 Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand"); 771 else 772 NewOperand = ValOperand_Shifted; 773 774 AtomicRMWInst *NewAI = Builder.CreateAtomicRMW(Op, PMV.AlignedAddr, 775 NewOperand, AI->getOrdering()); 776 777 Value *FinalOldResult = Builder.CreateTrunc( 778 Builder.CreateLShr(NewAI, PMV.ShiftAmt), PMV.ValueType); 779 AI->replaceAllUsesWith(FinalOldResult); 780 AI->eraseFromParent(); 781 return NewAI; 782 } 783 784 void AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) { 785 // The basic idea here is that we're expanding a cmpxchg of a 786 // smaller memory size up to a word-sized cmpxchg. To do this, we 787 // need to add a retry-loop for strong cmpxchg, so that 788 // modifications to other parts of the word don't cause a spurious 789 // failure. 790 791 // This generates code like the following: 792 // [[Setup mask values PMV.*]] 793 // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt 794 // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt 795 // %InitLoaded = load i32* %addr 796 // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask 797 // br partword.cmpxchg.loop 798 // partword.cmpxchg.loop: 799 // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ], 800 // [ %OldVal_MaskOut, %partword.cmpxchg.failure ] 801 // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted 802 // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted 803 // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp, 804 // i32 %FullWord_NewVal success_ordering failure_ordering 805 // %OldVal = extractvalue { i32, i1 } %NewCI, 0 806 // %Success = extractvalue { i32, i1 } %NewCI, 1 807 // br i1 %Success, label %partword.cmpxchg.end, 808 // label %partword.cmpxchg.failure 809 // partword.cmpxchg.failure: 810 // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask 811 // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut 812 // br i1 %ShouldContinue, label %partword.cmpxchg.loop, 813 // label %partword.cmpxchg.end 814 // partword.cmpxchg.end: 815 // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt 816 // %FinalOldVal = trunc i32 %tmp1 to i8 817 // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0 818 // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1 819 820 Value *Addr = CI->getPointerOperand(); 821 Value *Cmp = CI->getCompareOperand(); 822 Value *NewVal = CI->getNewValOperand(); 823 824 BasicBlock *BB = CI->getParent(); 825 Function *F = BB->getParent(); 826 IRBuilder<> Builder(CI); 827 LLVMContext &Ctx = Builder.getContext(); 828 829 const int WordSize = TLI->getMinCmpXchgSizeInBits() / 8; 830 831 BasicBlock *EndBB = 832 BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end"); 833 auto FailureBB = 834 BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB); 835 auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB); 836 837 // The split call above "helpfully" added a branch at the end of BB 838 // (to the wrong place). 839 std::prev(BB->end())->eraseFromParent(); 840 Builder.SetInsertPoint(BB); 841 842 PartwordMaskValues PMV = createMaskInstrs( 843 Builder, CI, CI->getCompareOperand()->getType(), Addr, WordSize); 844 845 // Shift the incoming values over, into the right location in the word. 846 Value *NewVal_Shifted = 847 Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt); 848 Value *Cmp_Shifted = 849 Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt); 850 851 // Load the entire current word, and mask into place the expected and new 852 // values 853 LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr); 854 InitLoaded->setVolatile(CI->isVolatile()); 855 Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask); 856 Builder.CreateBr(LoopBB); 857 858 // partword.cmpxchg.loop: 859 Builder.SetInsertPoint(LoopBB); 860 PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2); 861 Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB); 862 863 // Mask/Or the expected and new values into place in the loaded word. 864 Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted); 865 Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted); 866 AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg( 867 PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, CI->getSuccessOrdering(), 868 CI->getFailureOrdering(), CI->getSyncScopeID()); 869 NewCI->setVolatile(CI->isVolatile()); 870 // When we're building a strong cmpxchg, we need a loop, so you 871 // might think we could use a weak cmpxchg inside. But, using strong 872 // allows the below comparison for ShouldContinue, and we're 873 // expecting the underlying cmpxchg to be a machine instruction, 874 // which is strong anyways. 875 NewCI->setWeak(CI->isWeak()); 876 877 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 878 Value *Success = Builder.CreateExtractValue(NewCI, 1); 879 880 if (CI->isWeak()) 881 Builder.CreateBr(EndBB); 882 else 883 Builder.CreateCondBr(Success, EndBB, FailureBB); 884 885 // partword.cmpxchg.failure: 886 Builder.SetInsertPoint(FailureBB); 887 // Upon failure, verify that the masked-out part of the loaded value 888 // has been modified. If it didn't, abort the cmpxchg, since the 889 // masked-in part must've. 890 Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask); 891 Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut); 892 Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB); 893 894 // Add the second value to the phi from above 895 Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB); 896 897 // partword.cmpxchg.end: 898 Builder.SetInsertPoint(CI); 899 900 Value *FinalOldVal = Builder.CreateTrunc( 901 Builder.CreateLShr(OldVal, PMV.ShiftAmt), PMV.ValueType); 902 Value *Res = UndefValue::get(CI->getType()); 903 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 904 Res = Builder.CreateInsertValue(Res, Success, 1); 905 906 CI->replaceAllUsesWith(Res); 907 CI->eraseFromParent(); 908 } 909 910 void AtomicExpand::expandAtomicOpToLLSC( 911 Instruction *I, Type *ResultType, Value *Addr, AtomicOrdering MemOpOrder, 912 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { 913 IRBuilder<> Builder(I); 914 Value *Loaded = 915 insertRMWLLSCLoop(Builder, ResultType, Addr, MemOpOrder, PerformOp); 916 917 I->replaceAllUsesWith(Loaded); 918 I->eraseFromParent(); 919 } 920 921 void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) { 922 IRBuilder<> Builder(AI); 923 924 PartwordMaskValues PMV = 925 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 926 TLI->getMinCmpXchgSizeInBits() / 8); 927 928 // The value operand must be sign-extended for signed min/max so that the 929 // target's signed comparison instructions can be used. Otherwise, just 930 // zero-ext. 931 Instruction::CastOps CastOp = Instruction::ZExt; 932 AtomicRMWInst::BinOp RMWOp = AI->getOperation(); 933 if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min) 934 CastOp = Instruction::SExt; 935 936 Value *ValOperand_Shifted = Builder.CreateShl( 937 Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType), 938 PMV.ShiftAmt, "ValOperand_Shifted"); 939 Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic( 940 Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt, 941 AI->getOrdering()); 942 Value *FinalOldResult = Builder.CreateTrunc( 943 Builder.CreateLShr(OldResult, PMV.ShiftAmt), PMV.ValueType); 944 AI->replaceAllUsesWith(FinalOldResult); 945 AI->eraseFromParent(); 946 } 947 948 void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI) { 949 IRBuilder<> Builder(CI); 950 951 PartwordMaskValues PMV = createMaskInstrs( 952 Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(), 953 TLI->getMinCmpXchgSizeInBits() / 8); 954 955 Value *CmpVal_Shifted = Builder.CreateShl( 956 Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt, 957 "CmpVal_Shifted"); 958 Value *NewVal_Shifted = Builder.CreateShl( 959 Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt, 960 "NewVal_Shifted"); 961 Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic( 962 Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask, 963 CI->getSuccessOrdering()); 964 Value *FinalOldVal = Builder.CreateTrunc( 965 Builder.CreateLShr(OldVal, PMV.ShiftAmt), PMV.ValueType); 966 967 Value *Res = UndefValue::get(CI->getType()); 968 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 969 Value *Success = Builder.CreateICmpEQ( 970 CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success"); 971 Res = Builder.CreateInsertValue(Res, Success, 1); 972 973 CI->replaceAllUsesWith(Res); 974 CI->eraseFromParent(); 975 } 976 977 Value *AtomicExpand::insertRMWLLSCLoop( 978 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, 979 AtomicOrdering MemOpOrder, 980 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) { 981 LLVMContext &Ctx = Builder.getContext(); 982 BasicBlock *BB = Builder.GetInsertBlock(); 983 Function *F = BB->getParent(); 984 985 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 986 // 987 // The standard expansion we produce is: 988 // [...] 989 // atomicrmw.start: 990 // %loaded = @load.linked(%addr) 991 // %new = some_op iN %loaded, %incr 992 // %stored = @store_conditional(%new, %addr) 993 // %try_again = icmp i32 ne %stored, 0 994 // br i1 %try_again, label %loop, label %atomicrmw.end 995 // atomicrmw.end: 996 // [...] 997 BasicBlock *ExitBB = 998 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 999 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1000 1001 // The split call above "helpfully" added a branch at the end of BB (to the 1002 // wrong place). 1003 std::prev(BB->end())->eraseFromParent(); 1004 Builder.SetInsertPoint(BB); 1005 Builder.CreateBr(LoopBB); 1006 1007 // Start the main loop block now that we've taken care of the preliminaries. 1008 Builder.SetInsertPoint(LoopBB); 1009 Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); 1010 1011 Value *NewVal = PerformOp(Builder, Loaded); 1012 1013 Value *StoreSuccess = 1014 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); 1015 Value *TryAgain = Builder.CreateICmpNE( 1016 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); 1017 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); 1018 1019 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1020 return Loaded; 1021 } 1022 1023 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of 1024 /// the equivalent bitwidth. We used to not support pointer cmpxchg in the 1025 /// IR. As a migration step, we convert back to what use to be the standard 1026 /// way to represent a pointer cmpxchg so that we can update backends one by 1027 /// one. 1028 AtomicCmpXchgInst *AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) { 1029 auto *M = CI->getModule(); 1030 Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(), 1031 M->getDataLayout()); 1032 1033 IRBuilder<> Builder(CI); 1034 1035 Value *Addr = CI->getPointerOperand(); 1036 Type *PT = PointerType::get(NewTy, 1037 Addr->getType()->getPointerAddressSpace()); 1038 Value *NewAddr = Builder.CreateBitCast(Addr, PT); 1039 1040 Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy); 1041 Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy); 1042 1043 1044 auto *NewCI = Builder.CreateAtomicCmpXchg(NewAddr, NewCmp, NewNewVal, 1045 CI->getSuccessOrdering(), 1046 CI->getFailureOrdering(), 1047 CI->getSyncScopeID()); 1048 NewCI->setVolatile(CI->isVolatile()); 1049 NewCI->setWeak(CI->isWeak()); 1050 LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n"); 1051 1052 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 1053 Value *Succ = Builder.CreateExtractValue(NewCI, 1); 1054 1055 OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType()); 1056 1057 Value *Res = UndefValue::get(CI->getType()); 1058 Res = Builder.CreateInsertValue(Res, OldVal, 0); 1059 Res = Builder.CreateInsertValue(Res, Succ, 1); 1060 1061 CI->replaceAllUsesWith(Res); 1062 CI->eraseFromParent(); 1063 return NewCI; 1064 } 1065 1066 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1067 AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); 1068 AtomicOrdering FailureOrder = CI->getFailureOrdering(); 1069 Value *Addr = CI->getPointerOperand(); 1070 BasicBlock *BB = CI->getParent(); 1071 Function *F = BB->getParent(); 1072 LLVMContext &Ctx = F->getContext(); 1073 // If shouldInsertFencesForAtomic() returns true, then the target does not 1074 // want to deal with memory orders, and emitLeading/TrailingFence should take 1075 // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we 1076 // should preserve the ordering. 1077 bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI); 1078 AtomicOrdering MemOpOrder = 1079 ShouldInsertFencesForAtomic ? AtomicOrdering::Monotonic : SuccessOrder; 1080 1081 // In implementations which use a barrier to achieve release semantics, we can 1082 // delay emitting this barrier until we know a store is actually going to be 1083 // attempted. The cost of this delay is that we need 2 copies of the block 1084 // emitting the load-linked, affecting code size. 1085 // 1086 // Ideally, this logic would be unconditional except for the minsize check 1087 // since in other cases the extra blocks naturally collapse down to the 1088 // minimal loop. Unfortunately, this puts too much stress on later 1089 // optimisations so we avoid emitting the extra logic in those cases too. 1090 bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic && 1091 SuccessOrder != AtomicOrdering::Monotonic && 1092 SuccessOrder != AtomicOrdering::Acquire && 1093 !F->optForMinSize(); 1094 1095 // There's no overhead for sinking the release barrier in a weak cmpxchg, so 1096 // do it even on minsize. 1097 bool UseUnconditionalReleaseBarrier = F->optForMinSize() && !CI->isWeak(); 1098 1099 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord 1100 // 1101 // The full expansion we produce is: 1102 // [...] 1103 // cmpxchg.start: 1104 // %unreleasedload = @load.linked(%addr) 1105 // %should_store = icmp eq %unreleasedload, %desired 1106 // br i1 %should_store, label %cmpxchg.fencedstore, 1107 // label %cmpxchg.nostore 1108 // cmpxchg.releasingstore: 1109 // fence? 1110 // br label cmpxchg.trystore 1111 // cmpxchg.trystore: 1112 // %loaded.trystore = phi [%unreleasedload, %releasingstore], 1113 // [%releasedload, %cmpxchg.releasedload] 1114 // %stored = @store_conditional(%new, %addr) 1115 // %success = icmp eq i32 %stored, 0 1116 // br i1 %success, label %cmpxchg.success, 1117 // label %cmpxchg.releasedload/%cmpxchg.failure 1118 // cmpxchg.releasedload: 1119 // %releasedload = @load.linked(%addr) 1120 // %should_store = icmp eq %releasedload, %desired 1121 // br i1 %should_store, label %cmpxchg.trystore, 1122 // label %cmpxchg.failure 1123 // cmpxchg.success: 1124 // fence? 1125 // br label %cmpxchg.end 1126 // cmpxchg.nostore: 1127 // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start], 1128 // [%releasedload, 1129 // %cmpxchg.releasedload/%cmpxchg.trystore] 1130 // @load_linked_fail_balance()? 1131 // br label %cmpxchg.failure 1132 // cmpxchg.failure: 1133 // fence? 1134 // br label %cmpxchg.end 1135 // cmpxchg.end: 1136 // %loaded = phi [%loaded.nostore, %cmpxchg.failure], 1137 // [%loaded.trystore, %cmpxchg.trystore] 1138 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] 1139 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 1140 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 1141 // [...] 1142 BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end"); 1143 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); 1144 auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB); 1145 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB); 1146 auto ReleasedLoadBB = 1147 BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB); 1148 auto TryStoreBB = 1149 BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB); 1150 auto ReleasingStoreBB = 1151 BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB); 1152 auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB); 1153 1154 // This grabs the DebugLoc from CI 1155 IRBuilder<> Builder(CI); 1156 1157 // The split call above "helpfully" added a branch at the end of BB (to the 1158 // wrong place), but we might want a fence too. It's easiest to just remove 1159 // the branch entirely. 1160 std::prev(BB->end())->eraseFromParent(); 1161 Builder.SetInsertPoint(BB); 1162 if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier) 1163 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1164 Builder.CreateBr(StartBB); 1165 1166 // Start the main loop block now that we've taken care of the preliminaries. 1167 Builder.SetInsertPoint(StartBB); 1168 Value *UnreleasedLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); 1169 Value *ShouldStore = Builder.CreateICmpEQ( 1170 UnreleasedLoad, CI->getCompareOperand(), "should_store"); 1171 1172 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1173 // jump straight past that fence instruction (if it exists). 1174 Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB); 1175 1176 Builder.SetInsertPoint(ReleasingStoreBB); 1177 if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier) 1178 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1179 Builder.CreateBr(TryStoreBB); 1180 1181 Builder.SetInsertPoint(TryStoreBB); 1182 Value *StoreSuccess = TLI->emitStoreConditional( 1183 Builder, CI->getNewValOperand(), Addr, MemOpOrder); 1184 StoreSuccess = Builder.CreateICmpEQ( 1185 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); 1186 BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB; 1187 Builder.CreateCondBr(StoreSuccess, SuccessBB, 1188 CI->isWeak() ? FailureBB : RetryBB); 1189 1190 Builder.SetInsertPoint(ReleasedLoadBB); 1191 Value *SecondLoad; 1192 if (HasReleasedLoadBB) { 1193 SecondLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); 1194 ShouldStore = Builder.CreateICmpEQ(SecondLoad, CI->getCompareOperand(), 1195 "should_store"); 1196 1197 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1198 // jump straight past that fence instruction (if it exists). 1199 Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB); 1200 } else 1201 Builder.CreateUnreachable(); 1202 1203 // Make sure later instructions don't get reordered with a fence if 1204 // necessary. 1205 Builder.SetInsertPoint(SuccessBB); 1206 if (ShouldInsertFencesForAtomic) 1207 TLI->emitTrailingFence(Builder, CI, SuccessOrder); 1208 Builder.CreateBr(ExitBB); 1209 1210 Builder.SetInsertPoint(NoStoreBB); 1211 // In the failing case, where we don't execute the store-conditional, the 1212 // target might want to balance out the load-linked with a dedicated 1213 // instruction (e.g., on ARM, clearing the exclusive monitor). 1214 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 1215 Builder.CreateBr(FailureBB); 1216 1217 Builder.SetInsertPoint(FailureBB); 1218 if (ShouldInsertFencesForAtomic) 1219 TLI->emitTrailingFence(Builder, CI, FailureOrder); 1220 Builder.CreateBr(ExitBB); 1221 1222 // Finally, we have control-flow based knowledge of whether the cmpxchg 1223 // succeeded or not. We expose this to later passes by converting any 1224 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate 1225 // PHI. 1226 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1227 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2); 1228 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); 1229 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); 1230 1231 // Setup the builder so we can create any PHIs we need. 1232 Value *Loaded; 1233 if (!HasReleasedLoadBB) 1234 Loaded = UnreleasedLoad; 1235 else { 1236 Builder.SetInsertPoint(TryStoreBB, TryStoreBB->begin()); 1237 PHINode *TryStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2); 1238 TryStoreLoaded->addIncoming(UnreleasedLoad, ReleasingStoreBB); 1239 TryStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB); 1240 1241 Builder.SetInsertPoint(NoStoreBB, NoStoreBB->begin()); 1242 PHINode *NoStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2); 1243 NoStoreLoaded->addIncoming(UnreleasedLoad, StartBB); 1244 NoStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB); 1245 1246 Builder.SetInsertPoint(ExitBB, ++ExitBB->begin()); 1247 PHINode *ExitLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2); 1248 ExitLoaded->addIncoming(TryStoreLoaded, SuccessBB); 1249 ExitLoaded->addIncoming(NoStoreLoaded, FailureBB); 1250 1251 Loaded = ExitLoaded; 1252 } 1253 1254 // Look for any users of the cmpxchg that are just comparing the loaded value 1255 // against the desired one, and replace them with the CFG-derived version. 1256 SmallVector<ExtractValueInst *, 2> PrunedInsts; 1257 for (auto User : CI->users()) { 1258 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); 1259 if (!EV) 1260 continue; 1261 1262 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && 1263 "weird extraction from { iN, i1 }"); 1264 1265 if (EV->getIndices()[0] == 0) 1266 EV->replaceAllUsesWith(Loaded); 1267 else 1268 EV->replaceAllUsesWith(Success); 1269 1270 PrunedInsts.push_back(EV); 1271 } 1272 1273 // We can remove the instructions now we're no longer iterating through them. 1274 for (auto EV : PrunedInsts) 1275 EV->eraseFromParent(); 1276 1277 if (!CI->use_empty()) { 1278 // Some use of the full struct return that we don't understand has happened, 1279 // so we've got to reconstruct it properly. 1280 Value *Res; 1281 Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0); 1282 Res = Builder.CreateInsertValue(Res, Success, 1); 1283 1284 CI->replaceAllUsesWith(Res); 1285 } 1286 1287 CI->eraseFromParent(); 1288 return true; 1289 } 1290 1291 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) { 1292 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand()); 1293 if(!C) 1294 return false; 1295 1296 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 1297 switch(Op) { 1298 case AtomicRMWInst::Add: 1299 case AtomicRMWInst::Sub: 1300 case AtomicRMWInst::Or: 1301 case AtomicRMWInst::Xor: 1302 return C->isZero(); 1303 case AtomicRMWInst::And: 1304 return C->isMinusOne(); 1305 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/... 1306 default: 1307 return false; 1308 } 1309 } 1310 1311 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) { 1312 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { 1313 tryExpandAtomicLoad(ResultingLoad); 1314 return true; 1315 } 1316 return false; 1317 } 1318 1319 Value *AtomicExpand::insertRMWCmpXchgLoop( 1320 IRBuilder<> &Builder, Type *ResultTy, Value *Addr, 1321 AtomicOrdering MemOpOrder, 1322 function_ref<Value *(IRBuilder<> &, Value *)> PerformOp, 1323 CreateCmpXchgInstFun CreateCmpXchg) { 1324 LLVMContext &Ctx = Builder.getContext(); 1325 BasicBlock *BB = Builder.GetInsertBlock(); 1326 Function *F = BB->getParent(); 1327 1328 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1329 // 1330 // The standard expansion we produce is: 1331 // [...] 1332 // %init_loaded = load atomic iN* %addr 1333 // br label %loop 1334 // loop: 1335 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] 1336 // %new = some_op iN %loaded, %incr 1337 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new 1338 // %new_loaded = extractvalue { iN, i1 } %pair, 0 1339 // %success = extractvalue { iN, i1 } %pair, 1 1340 // br i1 %success, label %atomicrmw.end, label %loop 1341 // atomicrmw.end: 1342 // [...] 1343 BasicBlock *ExitBB = 1344 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1345 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1346 1347 // The split call above "helpfully" added a branch at the end of BB (to the 1348 // wrong place), but we want a load. It's easiest to just remove 1349 // the branch entirely. 1350 std::prev(BB->end())->eraseFromParent(); 1351 Builder.SetInsertPoint(BB); 1352 LoadInst *InitLoaded = Builder.CreateLoad(ResultTy, Addr); 1353 // Atomics require at least natural alignment. 1354 InitLoaded->setAlignment(ResultTy->getPrimitiveSizeInBits() / 8); 1355 Builder.CreateBr(LoopBB); 1356 1357 // Start the main loop block now that we've taken care of the preliminaries. 1358 Builder.SetInsertPoint(LoopBB); 1359 PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded"); 1360 Loaded->addIncoming(InitLoaded, BB); 1361 1362 Value *NewVal = PerformOp(Builder, Loaded); 1363 1364 Value *NewLoaded = nullptr; 1365 Value *Success = nullptr; 1366 1367 CreateCmpXchg(Builder, Addr, Loaded, NewVal, 1368 MemOpOrder == AtomicOrdering::Unordered 1369 ? AtomicOrdering::Monotonic 1370 : MemOpOrder, 1371 Success, NewLoaded); 1372 assert(Success && NewLoaded); 1373 1374 Loaded->addIncoming(NewLoaded, LoopBB); 1375 1376 Builder.CreateCondBr(Success, ExitBB, LoopBB); 1377 1378 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1379 return NewLoaded; 1380 } 1381 1382 bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1383 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 1384 unsigned ValueSize = getAtomicOpSize(CI); 1385 1386 switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) { 1387 default: 1388 llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg"); 1389 case TargetLoweringBase::AtomicExpansionKind::None: 1390 if (ValueSize < MinCASSize) 1391 expandPartwordCmpXchg(CI); 1392 return false; 1393 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 1394 assert(ValueSize >= MinCASSize && 1395 "MinCmpXchgSizeInBits not yet supported for LL/SC expansions."); 1396 return expandAtomicCmpXchg(CI); 1397 } 1398 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: 1399 expandAtomicCmpXchgToMaskedIntrinsic(CI); 1400 return true; 1401 } 1402 } 1403 1404 // Note: This function is exposed externally by AtomicExpandUtils.h 1405 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 1406 CreateCmpXchgInstFun CreateCmpXchg) { 1407 IRBuilder<> Builder(AI); 1408 Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop( 1409 Builder, AI->getType(), AI->getPointerOperand(), AI->getOrdering(), 1410 [&](IRBuilder<> &Builder, Value *Loaded) { 1411 return performAtomicOp(AI->getOperation(), Builder, Loaded, 1412 AI->getValOperand()); 1413 }, 1414 CreateCmpXchg); 1415 1416 AI->replaceAllUsesWith(Loaded); 1417 AI->eraseFromParent(); 1418 return true; 1419 } 1420 1421 // In order to use one of the sized library calls such as 1422 // __atomic_fetch_add_4, the alignment must be sufficient, the size 1423 // must be one of the potentially-specialized sizes, and the value 1424 // type must actually exist in C on the target (otherwise, the 1425 // function wouldn't actually be defined.) 1426 static bool canUseSizedAtomicCall(unsigned Size, unsigned Align, 1427 const DataLayout &DL) { 1428 // TODO: "LargestSize" is an approximation for "largest type that 1429 // you can express in C". It seems to be the case that int128 is 1430 // supported on all 64-bit platforms, otherwise only up to 64-bit 1431 // integers are supported. If we get this wrong, then we'll try to 1432 // call a sized libcall that doesn't actually exist. There should 1433 // really be some more reliable way in LLVM of determining integer 1434 // sizes which are valid in the target's C ABI... 1435 unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8; 1436 return Align >= Size && 1437 (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) && 1438 Size <= LargestSize; 1439 } 1440 1441 void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) { 1442 static const RTLIB::Libcall Libcalls[6] = { 1443 RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2, 1444 RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16}; 1445 unsigned Size = getAtomicOpSize(I); 1446 unsigned Align = getAtomicOpAlign(I); 1447 1448 bool expanded = expandAtomicOpToLibcall( 1449 I, Size, Align, I->getPointerOperand(), nullptr, nullptr, 1450 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1451 (void)expanded; 1452 assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Load"); 1453 } 1454 1455 void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) { 1456 static const RTLIB::Libcall Libcalls[6] = { 1457 RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2, 1458 RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16}; 1459 unsigned Size = getAtomicOpSize(I); 1460 unsigned Align = getAtomicOpAlign(I); 1461 1462 bool expanded = expandAtomicOpToLibcall( 1463 I, Size, Align, I->getPointerOperand(), I->getValueOperand(), nullptr, 1464 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1465 (void)expanded; 1466 assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Store"); 1467 } 1468 1469 void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) { 1470 static const RTLIB::Libcall Libcalls[6] = { 1471 RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1, 1472 RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4, 1473 RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16}; 1474 unsigned Size = getAtomicOpSize(I); 1475 unsigned Align = getAtomicOpAlign(I); 1476 1477 bool expanded = expandAtomicOpToLibcall( 1478 I, Size, Align, I->getPointerOperand(), I->getNewValOperand(), 1479 I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(), 1480 Libcalls); 1481 (void)expanded; 1482 assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor CAS"); 1483 } 1484 1485 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) { 1486 static const RTLIB::Libcall LibcallsXchg[6] = { 1487 RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1, 1488 RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4, 1489 RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16}; 1490 static const RTLIB::Libcall LibcallsAdd[6] = { 1491 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1, 1492 RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4, 1493 RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16}; 1494 static const RTLIB::Libcall LibcallsSub[6] = { 1495 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1, 1496 RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4, 1497 RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16}; 1498 static const RTLIB::Libcall LibcallsAnd[6] = { 1499 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1, 1500 RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4, 1501 RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16}; 1502 static const RTLIB::Libcall LibcallsOr[6] = { 1503 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1, 1504 RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4, 1505 RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16}; 1506 static const RTLIB::Libcall LibcallsXor[6] = { 1507 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1, 1508 RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4, 1509 RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16}; 1510 static const RTLIB::Libcall LibcallsNand[6] = { 1511 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1, 1512 RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4, 1513 RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16}; 1514 1515 switch (Op) { 1516 case AtomicRMWInst::BAD_BINOP: 1517 llvm_unreachable("Should not have BAD_BINOP."); 1518 case AtomicRMWInst::Xchg: 1519 return makeArrayRef(LibcallsXchg); 1520 case AtomicRMWInst::Add: 1521 return makeArrayRef(LibcallsAdd); 1522 case AtomicRMWInst::Sub: 1523 return makeArrayRef(LibcallsSub); 1524 case AtomicRMWInst::And: 1525 return makeArrayRef(LibcallsAnd); 1526 case AtomicRMWInst::Or: 1527 return makeArrayRef(LibcallsOr); 1528 case AtomicRMWInst::Xor: 1529 return makeArrayRef(LibcallsXor); 1530 case AtomicRMWInst::Nand: 1531 return makeArrayRef(LibcallsNand); 1532 case AtomicRMWInst::Max: 1533 case AtomicRMWInst::Min: 1534 case AtomicRMWInst::UMax: 1535 case AtomicRMWInst::UMin: 1536 // No atomic libcalls are available for max/min/umax/umin. 1537 return {}; 1538 } 1539 llvm_unreachable("Unexpected AtomicRMW operation."); 1540 } 1541 1542 void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) { 1543 ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation()); 1544 1545 unsigned Size = getAtomicOpSize(I); 1546 unsigned Align = getAtomicOpAlign(I); 1547 1548 bool Success = false; 1549 if (!Libcalls.empty()) 1550 Success = expandAtomicOpToLibcall( 1551 I, Size, Align, I->getPointerOperand(), I->getValOperand(), nullptr, 1552 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1553 1554 // The expansion failed: either there were no libcalls at all for 1555 // the operation (min/max), or there were only size-specialized 1556 // libcalls (add/sub/etc) and we needed a generic. So, expand to a 1557 // CAS libcall, via a CAS loop, instead. 1558 if (!Success) { 1559 expandAtomicRMWToCmpXchg(I, [this](IRBuilder<> &Builder, Value *Addr, 1560 Value *Loaded, Value *NewVal, 1561 AtomicOrdering MemOpOrder, 1562 Value *&Success, Value *&NewLoaded) { 1563 // Create the CAS instruction normally... 1564 AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg( 1565 Addr, Loaded, NewVal, MemOpOrder, 1566 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder)); 1567 Success = Builder.CreateExtractValue(Pair, 1, "success"); 1568 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 1569 1570 // ...and then expand the CAS into a libcall. 1571 expandAtomicCASToLibcall(Pair); 1572 }); 1573 } 1574 } 1575 1576 // A helper routine for the above expandAtomic*ToLibcall functions. 1577 // 1578 // 'Libcalls' contains an array of enum values for the particular 1579 // ATOMIC libcalls to be emitted. All of the other arguments besides 1580 // 'I' are extracted from the Instruction subclass by the 1581 // caller. Depending on the particular call, some will be null. 1582 bool AtomicExpand::expandAtomicOpToLibcall( 1583 Instruction *I, unsigned Size, unsigned Align, Value *PointerOperand, 1584 Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering, 1585 AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) { 1586 assert(Libcalls.size() == 6); 1587 1588 LLVMContext &Ctx = I->getContext(); 1589 Module *M = I->getModule(); 1590 const DataLayout &DL = M->getDataLayout(); 1591 IRBuilder<> Builder(I); 1592 IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front()); 1593 1594 bool UseSizedLibcall = canUseSizedAtomicCall(Size, Align, DL); 1595 Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8); 1596 1597 unsigned AllocaAlignment = DL.getPrefTypeAlignment(SizedIntTy); 1598 1599 // TODO: the "order" argument type is "int", not int32. So 1600 // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints. 1601 ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size); 1602 assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO"); 1603 Constant *OrderingVal = 1604 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering)); 1605 Constant *Ordering2Val = nullptr; 1606 if (CASExpected) { 1607 assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO"); 1608 Ordering2Val = 1609 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2)); 1610 } 1611 bool HasResult = I->getType() != Type::getVoidTy(Ctx); 1612 1613 RTLIB::Libcall RTLibType; 1614 if (UseSizedLibcall) { 1615 switch (Size) { 1616 case 1: RTLibType = Libcalls[1]; break; 1617 case 2: RTLibType = Libcalls[2]; break; 1618 case 4: RTLibType = Libcalls[3]; break; 1619 case 8: RTLibType = Libcalls[4]; break; 1620 case 16: RTLibType = Libcalls[5]; break; 1621 } 1622 } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) { 1623 RTLibType = Libcalls[0]; 1624 } else { 1625 // Can't use sized function, and there's no generic for this 1626 // operation, so give up. 1627 return false; 1628 } 1629 1630 // Build up the function call. There's two kinds. First, the sized 1631 // variants. These calls are going to be one of the following (with 1632 // N=1,2,4,8,16): 1633 // iN __atomic_load_N(iN *ptr, int ordering) 1634 // void __atomic_store_N(iN *ptr, iN val, int ordering) 1635 // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering) 1636 // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired, 1637 // int success_order, int failure_order) 1638 // 1639 // Note that these functions can be used for non-integer atomic 1640 // operations, the values just need to be bitcast to integers on the 1641 // way in and out. 1642 // 1643 // And, then, the generic variants. They look like the following: 1644 // void __atomic_load(size_t size, void *ptr, void *ret, int ordering) 1645 // void __atomic_store(size_t size, void *ptr, void *val, int ordering) 1646 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, 1647 // int ordering) 1648 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, 1649 // void *desired, int success_order, 1650 // int failure_order) 1651 // 1652 // The different signatures are built up depending on the 1653 // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult' 1654 // variables. 1655 1656 AllocaInst *AllocaCASExpected = nullptr; 1657 Value *AllocaCASExpected_i8 = nullptr; 1658 AllocaInst *AllocaValue = nullptr; 1659 Value *AllocaValue_i8 = nullptr; 1660 AllocaInst *AllocaResult = nullptr; 1661 Value *AllocaResult_i8 = nullptr; 1662 1663 Type *ResultTy; 1664 SmallVector<Value *, 6> Args; 1665 AttributeList Attr; 1666 1667 // 'size' argument. 1668 if (!UseSizedLibcall) { 1669 // Note, getIntPtrType is assumed equivalent to size_t. 1670 Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size)); 1671 } 1672 1673 // 'ptr' argument. 1674 Value *PtrVal = 1675 Builder.CreateBitCast(PointerOperand, Type::getInt8PtrTy(Ctx)); 1676 Args.push_back(PtrVal); 1677 1678 // 'expected' argument, if present. 1679 if (CASExpected) { 1680 AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType()); 1681 AllocaCASExpected->setAlignment(AllocaAlignment); 1682 AllocaCASExpected_i8 = 1683 Builder.CreateBitCast(AllocaCASExpected, Type::getInt8PtrTy(Ctx)); 1684 Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64); 1685 Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment); 1686 Args.push_back(AllocaCASExpected_i8); 1687 } 1688 1689 // 'val' argument ('desired' for cas), if present. 1690 if (ValueOperand) { 1691 if (UseSizedLibcall) { 1692 Value *IntValue = 1693 Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy); 1694 Args.push_back(IntValue); 1695 } else { 1696 AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType()); 1697 AllocaValue->setAlignment(AllocaAlignment); 1698 AllocaValue_i8 = 1699 Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx)); 1700 Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64); 1701 Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment); 1702 Args.push_back(AllocaValue_i8); 1703 } 1704 } 1705 1706 // 'ret' argument. 1707 if (!CASExpected && HasResult && !UseSizedLibcall) { 1708 AllocaResult = AllocaBuilder.CreateAlloca(I->getType()); 1709 AllocaResult->setAlignment(AllocaAlignment); 1710 AllocaResult_i8 = 1711 Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx)); 1712 Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64); 1713 Args.push_back(AllocaResult_i8); 1714 } 1715 1716 // 'ordering' ('success_order' for cas) argument. 1717 Args.push_back(OrderingVal); 1718 1719 // 'failure_order' argument, if present. 1720 if (Ordering2Val) 1721 Args.push_back(Ordering2Val); 1722 1723 // Now, the return type. 1724 if (CASExpected) { 1725 ResultTy = Type::getInt1Ty(Ctx); 1726 Attr = Attr.addAttribute(Ctx, AttributeList::ReturnIndex, Attribute::ZExt); 1727 } else if (HasResult && UseSizedLibcall) 1728 ResultTy = SizedIntTy; 1729 else 1730 ResultTy = Type::getVoidTy(Ctx); 1731 1732 // Done with setting up arguments and return types, create the call: 1733 SmallVector<Type *, 6> ArgTys; 1734 for (Value *Arg : Args) 1735 ArgTys.push_back(Arg->getType()); 1736 FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false); 1737 Constant *LibcallFn = 1738 M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr); 1739 CallInst *Call = Builder.CreateCall(LibcallFn, Args); 1740 Call->setAttributes(Attr); 1741 Value *Result = Call; 1742 1743 // And then, extract the results... 1744 if (ValueOperand && !UseSizedLibcall) 1745 Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64); 1746 1747 if (CASExpected) { 1748 // The final result from the CAS is {load of 'expected' alloca, bool result 1749 // from call} 1750 Type *FinalResultTy = I->getType(); 1751 Value *V = UndefValue::get(FinalResultTy); 1752 Value *ExpectedOut = 1753 Builder.CreateAlignedLoad(AllocaCASExpected, AllocaAlignment); 1754 Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64); 1755 V = Builder.CreateInsertValue(V, ExpectedOut, 0); 1756 V = Builder.CreateInsertValue(V, Result, 1); 1757 I->replaceAllUsesWith(V); 1758 } else if (HasResult) { 1759 Value *V; 1760 if (UseSizedLibcall) 1761 V = Builder.CreateBitOrPointerCast(Result, I->getType()); 1762 else { 1763 V = Builder.CreateAlignedLoad(AllocaResult, AllocaAlignment); 1764 Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64); 1765 } 1766 I->replaceAllUsesWith(V); 1767 } 1768 I->eraseFromParent(); 1769 return true; 1770 } 1771