1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a pass (at IR level) to replace atomic instructions with
10 // __atomic_* library calls, or target specific instruction which implement the
11 // same semantics in a way which better fits the target backend.  This can
12 // include the use of (intrinsic-based) load-linked/store-conditional loops,
13 // AtomicCmpXchg, or type coercions.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/CodeGen/AtomicExpandUtils.h"
21 #include "llvm/CodeGen/RuntimeLibcalls.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetPassConfig.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/CodeGen/ValueTypes.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Constant.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/InstIterator.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/User.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/AtomicOrdering.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Target/TargetMachine.h"
48 #include <cassert>
49 #include <cstdint>
50 #include <iterator>
51 
52 using namespace llvm;
53 
54 #define DEBUG_TYPE "atomic-expand"
55 
56 namespace {
57 
58   class AtomicExpand: public FunctionPass {
59     const TargetLowering *TLI = nullptr;
60 
61   public:
62     static char ID; // Pass identification, replacement for typeid
63 
64     AtomicExpand() : FunctionPass(ID) {
65       initializeAtomicExpandPass(*PassRegistry::getPassRegistry());
66     }
67 
68     bool runOnFunction(Function &F) override;
69 
70   private:
71     bool bracketInstWithFences(Instruction *I, AtomicOrdering Order);
72     IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL);
73     LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI);
74     bool tryExpandAtomicLoad(LoadInst *LI);
75     bool expandAtomicLoadToLL(LoadInst *LI);
76     bool expandAtomicLoadToCmpXchg(LoadInst *LI);
77     StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI);
78     bool expandAtomicStore(StoreInst *SI);
79     bool tryExpandAtomicRMW(AtomicRMWInst *AI);
80     Value *
81     insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
82                       AtomicOrdering MemOpOrder,
83                       function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
84     void expandAtomicOpToLLSC(
85         Instruction *I, Type *ResultTy, Value *Addr, AtomicOrdering MemOpOrder,
86         function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
87     void expandPartwordAtomicRMW(
88         AtomicRMWInst *I,
89         TargetLoweringBase::AtomicExpansionKind ExpansionKind);
90     AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI);
91     void expandPartwordCmpXchg(AtomicCmpXchgInst *I);
92     void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI);
93     void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI);
94 
95     AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI);
96     static Value *insertRMWCmpXchgLoop(
97         IRBuilder<> &Builder, Type *ResultType, Value *Addr,
98         AtomicOrdering MemOpOrder,
99         function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
100         CreateCmpXchgInstFun CreateCmpXchg);
101     bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI);
102 
103     bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI);
104     bool isIdempotentRMW(AtomicRMWInst *RMWI);
105     bool simplifyIdempotentRMW(AtomicRMWInst *RMWI);
106 
107     bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, unsigned Align,
108                                  Value *PointerOperand, Value *ValueOperand,
109                                  Value *CASExpected, AtomicOrdering Ordering,
110                                  AtomicOrdering Ordering2,
111                                  ArrayRef<RTLIB::Libcall> Libcalls);
112     void expandAtomicLoadToLibcall(LoadInst *LI);
113     void expandAtomicStoreToLibcall(StoreInst *LI);
114     void expandAtomicRMWToLibcall(AtomicRMWInst *I);
115     void expandAtomicCASToLibcall(AtomicCmpXchgInst *I);
116 
117     friend bool
118     llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
119                                    CreateCmpXchgInstFun CreateCmpXchg);
120   };
121 
122 } // end anonymous namespace
123 
124 char AtomicExpand::ID = 0;
125 
126 char &llvm::AtomicExpandID = AtomicExpand::ID;
127 
128 INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions",
129                 false, false)
130 
131 FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); }
132 
133 // Helper functions to retrieve the size of atomic instructions.
134 static unsigned getAtomicOpSize(LoadInst *LI) {
135   const DataLayout &DL = LI->getModule()->getDataLayout();
136   return DL.getTypeStoreSize(LI->getType());
137 }
138 
139 static unsigned getAtomicOpSize(StoreInst *SI) {
140   const DataLayout &DL = SI->getModule()->getDataLayout();
141   return DL.getTypeStoreSize(SI->getValueOperand()->getType());
142 }
143 
144 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) {
145   const DataLayout &DL = RMWI->getModule()->getDataLayout();
146   return DL.getTypeStoreSize(RMWI->getValOperand()->getType());
147 }
148 
149 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) {
150   const DataLayout &DL = CASI->getModule()->getDataLayout();
151   return DL.getTypeStoreSize(CASI->getCompareOperand()->getType());
152 }
153 
154 // Helper functions to retrieve the alignment of atomic instructions.
155 static unsigned getAtomicOpAlign(LoadInst *LI) {
156   unsigned Align = LI->getAlignment();
157   // In the future, if this IR restriction is relaxed, we should
158   // return DataLayout::getABITypeAlignment when there's no align
159   // value.
160   assert(Align != 0 && "An atomic LoadInst always has an explicit alignment");
161   return Align;
162 }
163 
164 static unsigned getAtomicOpAlign(StoreInst *SI) {
165   unsigned Align = SI->getAlignment();
166   // In the future, if this IR restriction is relaxed, we should
167   // return DataLayout::getABITypeAlignment when there's no align
168   // value.
169   assert(Align != 0 && "An atomic StoreInst always has an explicit alignment");
170   return Align;
171 }
172 
173 static unsigned getAtomicOpAlign(AtomicRMWInst *RMWI) {
174   // TODO(PR27168): This instruction has no alignment attribute, but unlike the
175   // default alignment for load/store, the default here is to assume
176   // it has NATURAL alignment, not DataLayout-specified alignment.
177   const DataLayout &DL = RMWI->getModule()->getDataLayout();
178   return DL.getTypeStoreSize(RMWI->getValOperand()->getType());
179 }
180 
181 static unsigned getAtomicOpAlign(AtomicCmpXchgInst *CASI) {
182   // TODO(PR27168): same comment as above.
183   const DataLayout &DL = CASI->getModule()->getDataLayout();
184   return DL.getTypeStoreSize(CASI->getCompareOperand()->getType());
185 }
186 
187 // Determine if a particular atomic operation has a supported size,
188 // and is of appropriate alignment, to be passed through for target
189 // lowering. (Versus turning into a __atomic libcall)
190 template <typename Inst>
191 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) {
192   unsigned Size = getAtomicOpSize(I);
193   unsigned Align = getAtomicOpAlign(I);
194   return Align >= Size && Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8;
195 }
196 
197 bool AtomicExpand::runOnFunction(Function &F) {
198   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
199   if (!TPC)
200     return false;
201 
202   auto &TM = TPC->getTM<TargetMachine>();
203   if (!TM.getSubtargetImpl(F)->enableAtomicExpand())
204     return false;
205   TLI = TM.getSubtargetImpl(F)->getTargetLowering();
206 
207   SmallVector<Instruction *, 1> AtomicInsts;
208 
209   // Changing control-flow while iterating through it is a bad idea, so gather a
210   // list of all atomic instructions before we start.
211   for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
212     Instruction *I = &*II;
213     if (I->isAtomic() && !isa<FenceInst>(I))
214       AtomicInsts.push_back(I);
215   }
216 
217   bool MadeChange = false;
218   for (auto I : AtomicInsts) {
219     auto LI = dyn_cast<LoadInst>(I);
220     auto SI = dyn_cast<StoreInst>(I);
221     auto RMWI = dyn_cast<AtomicRMWInst>(I);
222     auto CASI = dyn_cast<AtomicCmpXchgInst>(I);
223     assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction");
224 
225     // If the Size/Alignment is not supported, replace with a libcall.
226     if (LI) {
227       if (!atomicSizeSupported(TLI, LI)) {
228         expandAtomicLoadToLibcall(LI);
229         MadeChange = true;
230         continue;
231       }
232     } else if (SI) {
233       if (!atomicSizeSupported(TLI, SI)) {
234         expandAtomicStoreToLibcall(SI);
235         MadeChange = true;
236         continue;
237       }
238     } else if (RMWI) {
239       if (!atomicSizeSupported(TLI, RMWI)) {
240         expandAtomicRMWToLibcall(RMWI);
241         MadeChange = true;
242         continue;
243       }
244     } else if (CASI) {
245       if (!atomicSizeSupported(TLI, CASI)) {
246         expandAtomicCASToLibcall(CASI);
247         MadeChange = true;
248         continue;
249       }
250     }
251 
252     if (TLI->shouldInsertFencesForAtomic(I)) {
253       auto FenceOrdering = AtomicOrdering::Monotonic;
254       if (LI && isAcquireOrStronger(LI->getOrdering())) {
255         FenceOrdering = LI->getOrdering();
256         LI->setOrdering(AtomicOrdering::Monotonic);
257       } else if (SI && isReleaseOrStronger(SI->getOrdering())) {
258         FenceOrdering = SI->getOrdering();
259         SI->setOrdering(AtomicOrdering::Monotonic);
260       } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) ||
261                           isAcquireOrStronger(RMWI->getOrdering()))) {
262         FenceOrdering = RMWI->getOrdering();
263         RMWI->setOrdering(AtomicOrdering::Monotonic);
264       } else if (CASI &&
265                  TLI->shouldExpandAtomicCmpXchgInIR(CASI) ==
266                      TargetLoweringBase::AtomicExpansionKind::None &&
267                  (isReleaseOrStronger(CASI->getSuccessOrdering()) ||
268                   isAcquireOrStronger(CASI->getSuccessOrdering()))) {
269         // If a compare and swap is lowered to LL/SC, we can do smarter fence
270         // insertion, with a stronger one on the success path than on the
271         // failure path. As a result, fence insertion is directly done by
272         // expandAtomicCmpXchg in that case.
273         FenceOrdering = CASI->getSuccessOrdering();
274         CASI->setSuccessOrdering(AtomicOrdering::Monotonic);
275         CASI->setFailureOrdering(AtomicOrdering::Monotonic);
276       }
277 
278       if (FenceOrdering != AtomicOrdering::Monotonic) {
279         MadeChange |= bracketInstWithFences(I, FenceOrdering);
280       }
281     }
282 
283     if (LI) {
284       if (LI->getType()->isFloatingPointTy()) {
285         // TODO: add a TLI hook to control this so that each target can
286         // convert to lowering the original type one at a time.
287         LI = convertAtomicLoadToIntegerType(LI);
288         assert(LI->getType()->isIntegerTy() && "invariant broken");
289         MadeChange = true;
290       }
291 
292       MadeChange |= tryExpandAtomicLoad(LI);
293     } else if (SI) {
294       if (SI->getValueOperand()->getType()->isFloatingPointTy()) {
295         // TODO: add a TLI hook to control this so that each target can
296         // convert to lowering the original type one at a time.
297         SI = convertAtomicStoreToIntegerType(SI);
298         assert(SI->getValueOperand()->getType()->isIntegerTy() &&
299                "invariant broken");
300         MadeChange = true;
301       }
302 
303       if (TLI->shouldExpandAtomicStoreInIR(SI))
304         MadeChange |= expandAtomicStore(SI);
305     } else if (RMWI) {
306       // There are two different ways of expanding RMW instructions:
307       // - into a load if it is idempotent
308       // - into a Cmpxchg/LL-SC loop otherwise
309       // we try them in that order.
310 
311       if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) {
312         MadeChange = true;
313       } else {
314         unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
315         unsigned ValueSize = getAtomicOpSize(RMWI);
316         AtomicRMWInst::BinOp Op = RMWI->getOperation();
317         if (ValueSize < MinCASSize &&
318             (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
319              Op == AtomicRMWInst::And)) {
320           RMWI = widenPartwordAtomicRMW(RMWI);
321           MadeChange = true;
322         }
323 
324         MadeChange |= tryExpandAtomicRMW(RMWI);
325       }
326     } else if (CASI) {
327       // TODO: when we're ready to make the change at the IR level, we can
328       // extend convertCmpXchgToInteger for floating point too.
329       assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() &&
330              "unimplemented - floating point not legal at IR level");
331       if (CASI->getCompareOperand()->getType()->isPointerTy() ) {
332         // TODO: add a TLI hook to control this so that each target can
333         // convert to lowering the original type one at a time.
334         CASI = convertCmpXchgToIntegerType(CASI);
335         assert(CASI->getCompareOperand()->getType()->isIntegerTy() &&
336                "invariant broken");
337         MadeChange = true;
338       }
339 
340       MadeChange |= tryExpandAtomicCmpXchg(CASI);
341     }
342   }
343   return MadeChange;
344 }
345 
346 bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) {
347   IRBuilder<> Builder(I);
348 
349   auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order);
350 
351   auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order);
352   // We have a guard here because not every atomic operation generates a
353   // trailing fence.
354   if (TrailingFence)
355     TrailingFence->moveAfter(I);
356 
357   return (LeadingFence || TrailingFence);
358 }
359 
360 /// Get the iX type with the same bitwidth as T.
361 IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T,
362                                                        const DataLayout &DL) {
363   EVT VT = TLI->getValueType(DL, T);
364   unsigned BitWidth = VT.getStoreSizeInBits();
365   assert(BitWidth == VT.getSizeInBits() && "must be a power of two");
366   return IntegerType::get(T->getContext(), BitWidth);
367 }
368 
369 /// Convert an atomic load of a non-integral type to an integer load of the
370 /// equivalent bitwidth.  See the function comment on
371 /// convertAtomicStoreToIntegerType for background.
372 LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) {
373   auto *M = LI->getModule();
374   Type *NewTy = getCorrespondingIntegerType(LI->getType(),
375                                             M->getDataLayout());
376 
377   IRBuilder<> Builder(LI);
378 
379   Value *Addr = LI->getPointerOperand();
380   Type *PT = PointerType::get(NewTy,
381                               Addr->getType()->getPointerAddressSpace());
382   Value *NewAddr = Builder.CreateBitCast(Addr, PT);
383 
384   auto *NewLI = Builder.CreateLoad(NewTy, NewAddr);
385   NewLI->setAlignment(LI->getAlignment());
386   NewLI->setVolatile(LI->isVolatile());
387   NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID());
388   LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n");
389 
390   Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType());
391   LI->replaceAllUsesWith(NewVal);
392   LI->eraseFromParent();
393   return NewLI;
394 }
395 
396 bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) {
397   switch (TLI->shouldExpandAtomicLoadInIR(LI)) {
398   case TargetLoweringBase::AtomicExpansionKind::None:
399     return false;
400   case TargetLoweringBase::AtomicExpansionKind::LLSC:
401     expandAtomicOpToLLSC(
402         LI, LI->getType(), LI->getPointerOperand(), LI->getOrdering(),
403         [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; });
404     return true;
405   case TargetLoweringBase::AtomicExpansionKind::LLOnly:
406     return expandAtomicLoadToLL(LI);
407   case TargetLoweringBase::AtomicExpansionKind::CmpXChg:
408     return expandAtomicLoadToCmpXchg(LI);
409   default:
410     llvm_unreachable("Unhandled case in tryExpandAtomicLoad");
411   }
412 }
413 
414 bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) {
415   IRBuilder<> Builder(LI);
416 
417   // On some architectures, load-linked instructions are atomic for larger
418   // sizes than normal loads. For example, the only 64-bit load guaranteed
419   // to be single-copy atomic by ARM is an ldrexd (A3.5.3).
420   Value *Val =
421       TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering());
422   TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
423 
424   LI->replaceAllUsesWith(Val);
425   LI->eraseFromParent();
426 
427   return true;
428 }
429 
430 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) {
431   IRBuilder<> Builder(LI);
432   AtomicOrdering Order = LI->getOrdering();
433   Value *Addr = LI->getPointerOperand();
434   Type *Ty = cast<PointerType>(Addr->getType())->getElementType();
435   Constant *DummyVal = Constant::getNullValue(Ty);
436 
437   Value *Pair = Builder.CreateAtomicCmpXchg(
438       Addr, DummyVal, DummyVal, Order,
439       AtomicCmpXchgInst::getStrongestFailureOrdering(Order));
440   Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded");
441 
442   LI->replaceAllUsesWith(Loaded);
443   LI->eraseFromParent();
444 
445   return true;
446 }
447 
448 /// Convert an atomic store of a non-integral type to an integer store of the
449 /// equivalent bitwidth.  We used to not support floating point or vector
450 /// atomics in the IR at all.  The backends learned to deal with the bitcast
451 /// idiom because that was the only way of expressing the notion of a atomic
452 /// float or vector store.  The long term plan is to teach each backend to
453 /// instruction select from the original atomic store, but as a migration
454 /// mechanism, we convert back to the old format which the backends understand.
455 /// Each backend will need individual work to recognize the new format.
456 StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) {
457   IRBuilder<> Builder(SI);
458   auto *M = SI->getModule();
459   Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(),
460                                             M->getDataLayout());
461   Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy);
462 
463   Value *Addr = SI->getPointerOperand();
464   Type *PT = PointerType::get(NewTy,
465                               Addr->getType()->getPointerAddressSpace());
466   Value *NewAddr = Builder.CreateBitCast(Addr, PT);
467 
468   StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr);
469   NewSI->setAlignment(SI->getAlignment());
470   NewSI->setVolatile(SI->isVolatile());
471   NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID());
472   LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n");
473   SI->eraseFromParent();
474   return NewSI;
475 }
476 
477 bool AtomicExpand::expandAtomicStore(StoreInst *SI) {
478   // This function is only called on atomic stores that are too large to be
479   // atomic if implemented as a native store. So we replace them by an
480   // atomic swap, that can be implemented for example as a ldrex/strex on ARM
481   // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes.
482   // It is the responsibility of the target to only signal expansion via
483   // shouldExpandAtomicRMW in cases where this is required and possible.
484   IRBuilder<> Builder(SI);
485   AtomicRMWInst *AI =
486       Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(),
487                               SI->getValueOperand(), SI->getOrdering());
488   SI->eraseFromParent();
489 
490   // Now we have an appropriate swap instruction, lower it as usual.
491   return tryExpandAtomicRMW(AI);
492 }
493 
494 static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr,
495                                  Value *Loaded, Value *NewVal,
496                                  AtomicOrdering MemOpOrder,
497                                  Value *&Success, Value *&NewLoaded) {
498   Type *OrigTy = NewVal->getType();
499 
500   // This code can go away when cmpxchg supports FP types.
501   bool NeedBitcast = OrigTy->isFloatingPointTy();
502   if (NeedBitcast) {
503     IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits());
504     unsigned AS = Addr->getType()->getPointerAddressSpace();
505     Addr = Builder.CreateBitCast(Addr, IntTy->getPointerTo(AS));
506     NewVal = Builder.CreateBitCast(NewVal, IntTy);
507     Loaded = Builder.CreateBitCast(Loaded, IntTy);
508   }
509 
510   Value* Pair = Builder.CreateAtomicCmpXchg(
511       Addr, Loaded, NewVal, MemOpOrder,
512       AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder));
513   Success = Builder.CreateExtractValue(Pair, 1, "success");
514   NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
515 
516   if (NeedBitcast)
517     NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy);
518 }
519 
520 /// Emit IR to implement the given atomicrmw operation on values in registers,
521 /// returning the new value.
522 static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder,
523                               Value *Loaded, Value *Inc) {
524   Value *NewVal;
525   switch (Op) {
526   case AtomicRMWInst::Xchg:
527     return Inc;
528   case AtomicRMWInst::Add:
529     return Builder.CreateAdd(Loaded, Inc, "new");
530   case AtomicRMWInst::Sub:
531     return Builder.CreateSub(Loaded, Inc, "new");
532   case AtomicRMWInst::And:
533     return Builder.CreateAnd(Loaded, Inc, "new");
534   case AtomicRMWInst::Nand:
535     return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new");
536   case AtomicRMWInst::Or:
537     return Builder.CreateOr(Loaded, Inc, "new");
538   case AtomicRMWInst::Xor:
539     return Builder.CreateXor(Loaded, Inc, "new");
540   case AtomicRMWInst::Max:
541     NewVal = Builder.CreateICmpSGT(Loaded, Inc);
542     return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
543   case AtomicRMWInst::Min:
544     NewVal = Builder.CreateICmpSLE(Loaded, Inc);
545     return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
546   case AtomicRMWInst::UMax:
547     NewVal = Builder.CreateICmpUGT(Loaded, Inc);
548     return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
549   case AtomicRMWInst::UMin:
550     NewVal = Builder.CreateICmpULE(Loaded, Inc);
551     return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
552   case AtomicRMWInst::FAdd:
553     return Builder.CreateFAdd(Loaded, Inc, "new");
554   case AtomicRMWInst::FSub:
555     return Builder.CreateFSub(Loaded, Inc, "new");
556   default:
557     llvm_unreachable("Unknown atomic op");
558   }
559 }
560 
561 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) {
562   switch (TLI->shouldExpandAtomicRMWInIR(AI)) {
563   case TargetLoweringBase::AtomicExpansionKind::None:
564     return false;
565   case TargetLoweringBase::AtomicExpansionKind::LLSC: {
566     unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
567     unsigned ValueSize = getAtomicOpSize(AI);
568     if (ValueSize < MinCASSize) {
569       llvm_unreachable(
570           "MinCmpXchgSizeInBits not yet supported for LL/SC architectures.");
571     } else {
572       auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) {
573         return performAtomicOp(AI->getOperation(), Builder, Loaded,
574                                AI->getValOperand());
575       };
576       expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(),
577                            AI->getOrdering(), PerformOp);
578     }
579     return true;
580   }
581   case TargetLoweringBase::AtomicExpansionKind::CmpXChg: {
582     unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
583     unsigned ValueSize = getAtomicOpSize(AI);
584     if (ValueSize < MinCASSize) {
585       expandPartwordAtomicRMW(AI,
586                               TargetLoweringBase::AtomicExpansionKind::CmpXChg);
587     } else {
588       expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun);
589     }
590     return true;
591   }
592   case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: {
593     expandAtomicRMWToMaskedIntrinsic(AI);
594     return true;
595   }
596   default:
597     llvm_unreachable("Unhandled case in tryExpandAtomicRMW");
598   }
599 }
600 
601 namespace {
602 
603 /// Result values from createMaskInstrs helper.
604 struct PartwordMaskValues {
605   Type *WordType;
606   Type *ValueType;
607   Value *AlignedAddr;
608   Value *ShiftAmt;
609   Value *Mask;
610   Value *Inv_Mask;
611 };
612 
613 } // end anonymous namespace
614 
615 /// This is a helper function which builds instructions to provide
616 /// values necessary for partword atomic operations. It takes an
617 /// incoming address, Addr, and ValueType, and constructs the address,
618 /// shift-amounts and masks needed to work with a larger value of size
619 /// WordSize.
620 ///
621 /// AlignedAddr: Addr rounded down to a multiple of WordSize
622 ///
623 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded
624 ///           from AlignAddr for it to have the same value as if
625 ///           ValueType was loaded from Addr.
626 ///
627 /// Mask: Value to mask with the value loaded from AlignAddr to
628 ///       include only the part that would've been loaded from Addr.
629 ///
630 /// Inv_Mask: The inverse of Mask.
631 static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I,
632                                            Type *ValueType, Value *Addr,
633                                            unsigned WordSize) {
634   PartwordMaskValues Ret;
635 
636   BasicBlock *BB = I->getParent();
637   Function *F = BB->getParent();
638   Module *M = I->getModule();
639 
640   LLVMContext &Ctx = F->getContext();
641   const DataLayout &DL = M->getDataLayout();
642 
643   unsigned ValueSize = DL.getTypeStoreSize(ValueType);
644 
645   assert(ValueSize < WordSize);
646 
647   Ret.ValueType = ValueType;
648   Ret.WordType = Type::getIntNTy(Ctx, WordSize * 8);
649 
650   Type *WordPtrType =
651       Ret.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace());
652 
653   Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx));
654   Ret.AlignedAddr = Builder.CreateIntToPtr(
655       Builder.CreateAnd(AddrInt, ~(uint64_t)(WordSize - 1)), WordPtrType,
656       "AlignedAddr");
657 
658   Value *PtrLSB = Builder.CreateAnd(AddrInt, WordSize - 1, "PtrLSB");
659   if (DL.isLittleEndian()) {
660     // turn bytes into bits
661     Ret.ShiftAmt = Builder.CreateShl(PtrLSB, 3);
662   } else {
663     // turn bytes into bits, and count from the other side.
664     Ret.ShiftAmt =
665         Builder.CreateShl(Builder.CreateXor(PtrLSB, WordSize - ValueSize), 3);
666   }
667 
668   Ret.ShiftAmt = Builder.CreateTrunc(Ret.ShiftAmt, Ret.WordType, "ShiftAmt");
669   Ret.Mask = Builder.CreateShl(
670       ConstantInt::get(Ret.WordType, (1 << ValueSize * 8) - 1), Ret.ShiftAmt,
671       "Mask");
672   Ret.Inv_Mask = Builder.CreateNot(Ret.Mask, "Inv_Mask");
673 
674   return Ret;
675 }
676 
677 /// Emit IR to implement a masked version of a given atomicrmw
678 /// operation. (That is, only the bits under the Mask should be
679 /// affected by the operation)
680 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op,
681                                     IRBuilder<> &Builder, Value *Loaded,
682                                     Value *Shifted_Inc, Value *Inc,
683                                     const PartwordMaskValues &PMV) {
684   // TODO: update to use
685   // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order
686   // to merge bits from two values without requiring PMV.Inv_Mask.
687   switch (Op) {
688   case AtomicRMWInst::Xchg: {
689     Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
690     Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc);
691     return FinalVal;
692   }
693   case AtomicRMWInst::Or:
694   case AtomicRMWInst::Xor:
695   case AtomicRMWInst::And:
696     llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW");
697   case AtomicRMWInst::Add:
698   case AtomicRMWInst::Sub:
699   case AtomicRMWInst::Nand: {
700     // The other arithmetic ops need to be masked into place.
701     Value *NewVal = performAtomicOp(Op, Builder, Loaded, Shifted_Inc);
702     Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask);
703     Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
704     Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked);
705     return FinalVal;
706   }
707   case AtomicRMWInst::Max:
708   case AtomicRMWInst::Min:
709   case AtomicRMWInst::UMax:
710   case AtomicRMWInst::UMin: {
711     // Finally, comparison ops will operate on the full value, so
712     // truncate down to the original size, and expand out again after
713     // doing the operation.
714     Value *Loaded_Shiftdown = Builder.CreateTrunc(
715         Builder.CreateLShr(Loaded, PMV.ShiftAmt), PMV.ValueType);
716     Value *NewVal = performAtomicOp(Op, Builder, Loaded_Shiftdown, Inc);
717     Value *NewVal_Shiftup = Builder.CreateShl(
718         Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt);
719     Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
720     Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shiftup);
721     return FinalVal;
722   }
723   default:
724     llvm_unreachable("Unknown atomic op");
725   }
726 }
727 
728 /// Expand a sub-word atomicrmw operation into an appropriate
729 /// word-sized operation.
730 ///
731 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same
732 /// way as a typical atomicrmw expansion. The only difference here is
733 /// that the operation inside of the loop must operate only upon a
734 /// part of the value.
735 void AtomicExpand::expandPartwordAtomicRMW(
736     AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) {
737   assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg);
738 
739   AtomicOrdering MemOpOrder = AI->getOrdering();
740 
741   IRBuilder<> Builder(AI);
742 
743   PartwordMaskValues PMV =
744       createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
745                        TLI->getMinCmpXchgSizeInBits() / 8);
746 
747   Value *ValOperand_Shifted =
748       Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
749                         PMV.ShiftAmt, "ValOperand_Shifted");
750 
751   auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) {
752     return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded,
753                                  ValOperand_Shifted, AI->getValOperand(), PMV);
754   };
755 
756   // TODO: When we're ready to support LLSC conversions too, use
757   // insertRMWLLSCLoop here for ExpansionKind==LLSC.
758   Value *OldResult =
759       insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder,
760                            PerformPartwordOp, createCmpXchgInstFun);
761   Value *FinalOldResult = Builder.CreateTrunc(
762       Builder.CreateLShr(OldResult, PMV.ShiftAmt), PMV.ValueType);
763   AI->replaceAllUsesWith(FinalOldResult);
764   AI->eraseFromParent();
765 }
766 
767 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width.
768 AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) {
769   IRBuilder<> Builder(AI);
770   AtomicRMWInst::BinOp Op = AI->getOperation();
771 
772   assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
773           Op == AtomicRMWInst::And) &&
774          "Unable to widen operation");
775 
776   PartwordMaskValues PMV =
777       createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
778                        TLI->getMinCmpXchgSizeInBits() / 8);
779 
780   Value *ValOperand_Shifted =
781       Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
782                         PMV.ShiftAmt, "ValOperand_Shifted");
783 
784   Value *NewOperand;
785 
786   if (Op == AtomicRMWInst::And)
787     NewOperand =
788         Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand");
789   else
790     NewOperand = ValOperand_Shifted;
791 
792   AtomicRMWInst *NewAI = Builder.CreateAtomicRMW(Op, PMV.AlignedAddr,
793                                                  NewOperand, AI->getOrdering());
794 
795   Value *FinalOldResult = Builder.CreateTrunc(
796       Builder.CreateLShr(NewAI, PMV.ShiftAmt), PMV.ValueType);
797   AI->replaceAllUsesWith(FinalOldResult);
798   AI->eraseFromParent();
799   return NewAI;
800 }
801 
802 void AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) {
803   // The basic idea here is that we're expanding a cmpxchg of a
804   // smaller memory size up to a word-sized cmpxchg. To do this, we
805   // need to add a retry-loop for strong cmpxchg, so that
806   // modifications to other parts of the word don't cause a spurious
807   // failure.
808 
809   // This generates code like the following:
810   //     [[Setup mask values PMV.*]]
811   //     %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt
812   //     %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt
813   //     %InitLoaded = load i32* %addr
814   //     %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask
815   //     br partword.cmpxchg.loop
816   // partword.cmpxchg.loop:
817   //     %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ],
818   //        [ %OldVal_MaskOut, %partword.cmpxchg.failure ]
819   //     %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted
820   //     %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted
821   //     %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp,
822   //        i32 %FullWord_NewVal success_ordering failure_ordering
823   //     %OldVal = extractvalue { i32, i1 } %NewCI, 0
824   //     %Success = extractvalue { i32, i1 } %NewCI, 1
825   //     br i1 %Success, label %partword.cmpxchg.end,
826   //        label %partword.cmpxchg.failure
827   // partword.cmpxchg.failure:
828   //     %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask
829   //     %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut
830   //     br i1 %ShouldContinue, label %partword.cmpxchg.loop,
831   //         label %partword.cmpxchg.end
832   // partword.cmpxchg.end:
833   //    %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt
834   //    %FinalOldVal = trunc i32 %tmp1 to i8
835   //    %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0
836   //    %Res = insertvalue { i8, i1 } %25, i1 %Success, 1
837 
838   Value *Addr = CI->getPointerOperand();
839   Value *Cmp = CI->getCompareOperand();
840   Value *NewVal = CI->getNewValOperand();
841 
842   BasicBlock *BB = CI->getParent();
843   Function *F = BB->getParent();
844   IRBuilder<> Builder(CI);
845   LLVMContext &Ctx = Builder.getContext();
846 
847   const int WordSize = TLI->getMinCmpXchgSizeInBits() / 8;
848 
849   BasicBlock *EndBB =
850       BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end");
851   auto FailureBB =
852       BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB);
853   auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB);
854 
855   // The split call above "helpfully" added a branch at the end of BB
856   // (to the wrong place).
857   std::prev(BB->end())->eraseFromParent();
858   Builder.SetInsertPoint(BB);
859 
860   PartwordMaskValues PMV = createMaskInstrs(
861       Builder, CI, CI->getCompareOperand()->getType(), Addr, WordSize);
862 
863   // Shift the incoming values over, into the right location in the word.
864   Value *NewVal_Shifted =
865       Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt);
866   Value *Cmp_Shifted =
867       Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt);
868 
869   // Load the entire current word, and mask into place the expected and new
870   // values
871   LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr);
872   InitLoaded->setVolatile(CI->isVolatile());
873   Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask);
874   Builder.CreateBr(LoopBB);
875 
876   // partword.cmpxchg.loop:
877   Builder.SetInsertPoint(LoopBB);
878   PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2);
879   Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB);
880 
881   // Mask/Or the expected and new values into place in the loaded word.
882   Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted);
883   Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted);
884   AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg(
885       PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, CI->getSuccessOrdering(),
886       CI->getFailureOrdering(), CI->getSyncScopeID());
887   NewCI->setVolatile(CI->isVolatile());
888   // When we're building a strong cmpxchg, we need a loop, so you
889   // might think we could use a weak cmpxchg inside. But, using strong
890   // allows the below comparison for ShouldContinue, and we're
891   // expecting the underlying cmpxchg to be a machine instruction,
892   // which is strong anyways.
893   NewCI->setWeak(CI->isWeak());
894 
895   Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
896   Value *Success = Builder.CreateExtractValue(NewCI, 1);
897 
898   if (CI->isWeak())
899     Builder.CreateBr(EndBB);
900   else
901     Builder.CreateCondBr(Success, EndBB, FailureBB);
902 
903   // partword.cmpxchg.failure:
904   Builder.SetInsertPoint(FailureBB);
905   // Upon failure, verify that the masked-out part of the loaded value
906   // has been modified.  If it didn't, abort the cmpxchg, since the
907   // masked-in part must've.
908   Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask);
909   Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut);
910   Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB);
911 
912   // Add the second value to the phi from above
913   Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB);
914 
915   // partword.cmpxchg.end:
916   Builder.SetInsertPoint(CI);
917 
918   Value *FinalOldVal = Builder.CreateTrunc(
919       Builder.CreateLShr(OldVal, PMV.ShiftAmt), PMV.ValueType);
920   Value *Res = UndefValue::get(CI->getType());
921   Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
922   Res = Builder.CreateInsertValue(Res, Success, 1);
923 
924   CI->replaceAllUsesWith(Res);
925   CI->eraseFromParent();
926 }
927 
928 void AtomicExpand::expandAtomicOpToLLSC(
929     Instruction *I, Type *ResultType, Value *Addr, AtomicOrdering MemOpOrder,
930     function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
931   IRBuilder<> Builder(I);
932   Value *Loaded =
933       insertRMWLLSCLoop(Builder, ResultType, Addr, MemOpOrder, PerformOp);
934 
935   I->replaceAllUsesWith(Loaded);
936   I->eraseFromParent();
937 }
938 
939 void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) {
940   IRBuilder<> Builder(AI);
941 
942   PartwordMaskValues PMV =
943       createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
944                        TLI->getMinCmpXchgSizeInBits() / 8);
945 
946   // The value operand must be sign-extended for signed min/max so that the
947   // target's signed comparison instructions can be used. Otherwise, just
948   // zero-ext.
949   Instruction::CastOps CastOp = Instruction::ZExt;
950   AtomicRMWInst::BinOp RMWOp = AI->getOperation();
951   if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min)
952     CastOp = Instruction::SExt;
953 
954   Value *ValOperand_Shifted = Builder.CreateShl(
955       Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType),
956       PMV.ShiftAmt, "ValOperand_Shifted");
957   Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic(
958       Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt,
959       AI->getOrdering());
960   Value *FinalOldResult = Builder.CreateTrunc(
961       Builder.CreateLShr(OldResult, PMV.ShiftAmt), PMV.ValueType);
962   AI->replaceAllUsesWith(FinalOldResult);
963   AI->eraseFromParent();
964 }
965 
966 void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI) {
967   IRBuilder<> Builder(CI);
968 
969   PartwordMaskValues PMV = createMaskInstrs(
970       Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(),
971       TLI->getMinCmpXchgSizeInBits() / 8);
972 
973   Value *CmpVal_Shifted = Builder.CreateShl(
974       Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt,
975       "CmpVal_Shifted");
976   Value *NewVal_Shifted = Builder.CreateShl(
977       Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt,
978       "NewVal_Shifted");
979   Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic(
980       Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask,
981       CI->getSuccessOrdering());
982   Value *FinalOldVal = Builder.CreateTrunc(
983       Builder.CreateLShr(OldVal, PMV.ShiftAmt), PMV.ValueType);
984 
985   Value *Res = UndefValue::get(CI->getType());
986   Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
987   Value *Success = Builder.CreateICmpEQ(
988       CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success");
989   Res = Builder.CreateInsertValue(Res, Success, 1);
990 
991   CI->replaceAllUsesWith(Res);
992   CI->eraseFromParent();
993 }
994 
995 Value *AtomicExpand::insertRMWLLSCLoop(
996     IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
997     AtomicOrdering MemOpOrder,
998     function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
999   LLVMContext &Ctx = Builder.getContext();
1000   BasicBlock *BB = Builder.GetInsertBlock();
1001   Function *F = BB->getParent();
1002 
1003   // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1004   //
1005   // The standard expansion we produce is:
1006   //     [...]
1007   // atomicrmw.start:
1008   //     %loaded = @load.linked(%addr)
1009   //     %new = some_op iN %loaded, %incr
1010   //     %stored = @store_conditional(%new, %addr)
1011   //     %try_again = icmp i32 ne %stored, 0
1012   //     br i1 %try_again, label %loop, label %atomicrmw.end
1013   // atomicrmw.end:
1014   //     [...]
1015   BasicBlock *ExitBB =
1016       BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
1017   BasicBlock *LoopBB =  BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
1018 
1019   // The split call above "helpfully" added a branch at the end of BB (to the
1020   // wrong place).
1021   std::prev(BB->end())->eraseFromParent();
1022   Builder.SetInsertPoint(BB);
1023   Builder.CreateBr(LoopBB);
1024 
1025   // Start the main loop block now that we've taken care of the preliminaries.
1026   Builder.SetInsertPoint(LoopBB);
1027   Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
1028 
1029   Value *NewVal = PerformOp(Builder, Loaded);
1030 
1031   Value *StoreSuccess =
1032       TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder);
1033   Value *TryAgain = Builder.CreateICmpNE(
1034       StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain");
1035   Builder.CreateCondBr(TryAgain, LoopBB, ExitBB);
1036 
1037   Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1038   return Loaded;
1039 }
1040 
1041 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of
1042 /// the equivalent bitwidth.  We used to not support pointer cmpxchg in the
1043 /// IR.  As a migration step, we convert back to what use to be the standard
1044 /// way to represent a pointer cmpxchg so that we can update backends one by
1045 /// one.
1046 AtomicCmpXchgInst *AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) {
1047   auto *M = CI->getModule();
1048   Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(),
1049                                             M->getDataLayout());
1050 
1051   IRBuilder<> Builder(CI);
1052 
1053   Value *Addr = CI->getPointerOperand();
1054   Type *PT = PointerType::get(NewTy,
1055                               Addr->getType()->getPointerAddressSpace());
1056   Value *NewAddr = Builder.CreateBitCast(Addr, PT);
1057 
1058   Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy);
1059   Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy);
1060 
1061 
1062   auto *NewCI = Builder.CreateAtomicCmpXchg(NewAddr, NewCmp, NewNewVal,
1063                                             CI->getSuccessOrdering(),
1064                                             CI->getFailureOrdering(),
1065                                             CI->getSyncScopeID());
1066   NewCI->setVolatile(CI->isVolatile());
1067   NewCI->setWeak(CI->isWeak());
1068   LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n");
1069 
1070   Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
1071   Value *Succ = Builder.CreateExtractValue(NewCI, 1);
1072 
1073   OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType());
1074 
1075   Value *Res = UndefValue::get(CI->getType());
1076   Res = Builder.CreateInsertValue(Res, OldVal, 0);
1077   Res = Builder.CreateInsertValue(Res, Succ, 1);
1078 
1079   CI->replaceAllUsesWith(Res);
1080   CI->eraseFromParent();
1081   return NewCI;
1082 }
1083 
1084 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1085   AtomicOrdering SuccessOrder = CI->getSuccessOrdering();
1086   AtomicOrdering FailureOrder = CI->getFailureOrdering();
1087   Value *Addr = CI->getPointerOperand();
1088   BasicBlock *BB = CI->getParent();
1089   Function *F = BB->getParent();
1090   LLVMContext &Ctx = F->getContext();
1091   // If shouldInsertFencesForAtomic() returns true, then the target does not
1092   // want to deal with memory orders, and emitLeading/TrailingFence should take
1093   // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we
1094   // should preserve the ordering.
1095   bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI);
1096   AtomicOrdering MemOpOrder =
1097       ShouldInsertFencesForAtomic ? AtomicOrdering::Monotonic : SuccessOrder;
1098 
1099   // In implementations which use a barrier to achieve release semantics, we can
1100   // delay emitting this barrier until we know a store is actually going to be
1101   // attempted. The cost of this delay is that we need 2 copies of the block
1102   // emitting the load-linked, affecting code size.
1103   //
1104   // Ideally, this logic would be unconditional except for the minsize check
1105   // since in other cases the extra blocks naturally collapse down to the
1106   // minimal loop. Unfortunately, this puts too much stress on later
1107   // optimisations so we avoid emitting the extra logic in those cases too.
1108   bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic &&
1109                            SuccessOrder != AtomicOrdering::Monotonic &&
1110                            SuccessOrder != AtomicOrdering::Acquire &&
1111                            !F->optForMinSize();
1112 
1113   // There's no overhead for sinking the release barrier in a weak cmpxchg, so
1114   // do it even on minsize.
1115   bool UseUnconditionalReleaseBarrier = F->optForMinSize() && !CI->isWeak();
1116 
1117   // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord
1118   //
1119   // The full expansion we produce is:
1120   //     [...]
1121   // cmpxchg.start:
1122   //     %unreleasedload = @load.linked(%addr)
1123   //     %should_store = icmp eq %unreleasedload, %desired
1124   //     br i1 %should_store, label %cmpxchg.fencedstore,
1125   //                          label %cmpxchg.nostore
1126   // cmpxchg.releasingstore:
1127   //     fence?
1128   //     br label cmpxchg.trystore
1129   // cmpxchg.trystore:
1130   //     %loaded.trystore = phi [%unreleasedload, %releasingstore],
1131   //                            [%releasedload, %cmpxchg.releasedload]
1132   //     %stored = @store_conditional(%new, %addr)
1133   //     %success = icmp eq i32 %stored, 0
1134   //     br i1 %success, label %cmpxchg.success,
1135   //                     label %cmpxchg.releasedload/%cmpxchg.failure
1136   // cmpxchg.releasedload:
1137   //     %releasedload = @load.linked(%addr)
1138   //     %should_store = icmp eq %releasedload, %desired
1139   //     br i1 %should_store, label %cmpxchg.trystore,
1140   //                          label %cmpxchg.failure
1141   // cmpxchg.success:
1142   //     fence?
1143   //     br label %cmpxchg.end
1144   // cmpxchg.nostore:
1145   //     %loaded.nostore = phi [%unreleasedload, %cmpxchg.start],
1146   //                           [%releasedload,
1147   //                               %cmpxchg.releasedload/%cmpxchg.trystore]
1148   //     @load_linked_fail_balance()?
1149   //     br label %cmpxchg.failure
1150   // cmpxchg.failure:
1151   //     fence?
1152   //     br label %cmpxchg.end
1153   // cmpxchg.end:
1154   //     %loaded = phi [%loaded.nostore, %cmpxchg.failure],
1155   //                   [%loaded.trystore, %cmpxchg.trystore]
1156   //     %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure]
1157   //     %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0
1158   //     %res = insertvalue { iN, i1 } %restmp, i1 %success, 1
1159   //     [...]
1160   BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end");
1161   auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB);
1162   auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB);
1163   auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB);
1164   auto ReleasedLoadBB =
1165       BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB);
1166   auto TryStoreBB =
1167       BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB);
1168   auto ReleasingStoreBB =
1169       BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB);
1170   auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB);
1171 
1172   // This grabs the DebugLoc from CI
1173   IRBuilder<> Builder(CI);
1174 
1175   // The split call above "helpfully" added a branch at the end of BB (to the
1176   // wrong place), but we might want a fence too. It's easiest to just remove
1177   // the branch entirely.
1178   std::prev(BB->end())->eraseFromParent();
1179   Builder.SetInsertPoint(BB);
1180   if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier)
1181     TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1182   Builder.CreateBr(StartBB);
1183 
1184   // Start the main loop block now that we've taken care of the preliminaries.
1185   Builder.SetInsertPoint(StartBB);
1186   Value *UnreleasedLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
1187   Value *ShouldStore = Builder.CreateICmpEQ(
1188       UnreleasedLoad, CI->getCompareOperand(), "should_store");
1189 
1190   // If the cmpxchg doesn't actually need any ordering when it fails, we can
1191   // jump straight past that fence instruction (if it exists).
1192   Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB);
1193 
1194   Builder.SetInsertPoint(ReleasingStoreBB);
1195   if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier)
1196     TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1197   Builder.CreateBr(TryStoreBB);
1198 
1199   Builder.SetInsertPoint(TryStoreBB);
1200   Value *StoreSuccess = TLI->emitStoreConditional(
1201       Builder, CI->getNewValOperand(), Addr, MemOpOrder);
1202   StoreSuccess = Builder.CreateICmpEQ(
1203       StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success");
1204   BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB;
1205   Builder.CreateCondBr(StoreSuccess, SuccessBB,
1206                        CI->isWeak() ? FailureBB : RetryBB);
1207 
1208   Builder.SetInsertPoint(ReleasedLoadBB);
1209   Value *SecondLoad;
1210   if (HasReleasedLoadBB) {
1211     SecondLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
1212     ShouldStore = Builder.CreateICmpEQ(SecondLoad, CI->getCompareOperand(),
1213                                        "should_store");
1214 
1215     // If the cmpxchg doesn't actually need any ordering when it fails, we can
1216     // jump straight past that fence instruction (if it exists).
1217     Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB);
1218   } else
1219     Builder.CreateUnreachable();
1220 
1221   // Make sure later instructions don't get reordered with a fence if
1222   // necessary.
1223   Builder.SetInsertPoint(SuccessBB);
1224   if (ShouldInsertFencesForAtomic)
1225     TLI->emitTrailingFence(Builder, CI, SuccessOrder);
1226   Builder.CreateBr(ExitBB);
1227 
1228   Builder.SetInsertPoint(NoStoreBB);
1229   // In the failing case, where we don't execute the store-conditional, the
1230   // target might want to balance out the load-linked with a dedicated
1231   // instruction (e.g., on ARM, clearing the exclusive monitor).
1232   TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
1233   Builder.CreateBr(FailureBB);
1234 
1235   Builder.SetInsertPoint(FailureBB);
1236   if (ShouldInsertFencesForAtomic)
1237     TLI->emitTrailingFence(Builder, CI, FailureOrder);
1238   Builder.CreateBr(ExitBB);
1239 
1240   // Finally, we have control-flow based knowledge of whether the cmpxchg
1241   // succeeded or not. We expose this to later passes by converting any
1242   // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate
1243   // PHI.
1244   Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1245   PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2);
1246   Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB);
1247   Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB);
1248 
1249   // Setup the builder so we can create any PHIs we need.
1250   Value *Loaded;
1251   if (!HasReleasedLoadBB)
1252     Loaded = UnreleasedLoad;
1253   else {
1254     Builder.SetInsertPoint(TryStoreBB, TryStoreBB->begin());
1255     PHINode *TryStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2);
1256     TryStoreLoaded->addIncoming(UnreleasedLoad, ReleasingStoreBB);
1257     TryStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB);
1258 
1259     Builder.SetInsertPoint(NoStoreBB, NoStoreBB->begin());
1260     PHINode *NoStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2);
1261     NoStoreLoaded->addIncoming(UnreleasedLoad, StartBB);
1262     NoStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB);
1263 
1264     Builder.SetInsertPoint(ExitBB, ++ExitBB->begin());
1265     PHINode *ExitLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2);
1266     ExitLoaded->addIncoming(TryStoreLoaded, SuccessBB);
1267     ExitLoaded->addIncoming(NoStoreLoaded, FailureBB);
1268 
1269     Loaded = ExitLoaded;
1270   }
1271 
1272   // Look for any users of the cmpxchg that are just comparing the loaded value
1273   // against the desired one, and replace them with the CFG-derived version.
1274   SmallVector<ExtractValueInst *, 2> PrunedInsts;
1275   for (auto User : CI->users()) {
1276     ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User);
1277     if (!EV)
1278       continue;
1279 
1280     assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 &&
1281            "weird extraction from { iN, i1 }");
1282 
1283     if (EV->getIndices()[0] == 0)
1284       EV->replaceAllUsesWith(Loaded);
1285     else
1286       EV->replaceAllUsesWith(Success);
1287 
1288     PrunedInsts.push_back(EV);
1289   }
1290 
1291   // We can remove the instructions now we're no longer iterating through them.
1292   for (auto EV : PrunedInsts)
1293     EV->eraseFromParent();
1294 
1295   if (!CI->use_empty()) {
1296     // Some use of the full struct return that we don't understand has happened,
1297     // so we've got to reconstruct it properly.
1298     Value *Res;
1299     Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0);
1300     Res = Builder.CreateInsertValue(Res, Success, 1);
1301 
1302     CI->replaceAllUsesWith(Res);
1303   }
1304 
1305   CI->eraseFromParent();
1306   return true;
1307 }
1308 
1309 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) {
1310   auto C = dyn_cast<ConstantInt>(RMWI->getValOperand());
1311   if(!C)
1312     return false;
1313 
1314   AtomicRMWInst::BinOp Op = RMWI->getOperation();
1315   switch(Op) {
1316     case AtomicRMWInst::Add:
1317     case AtomicRMWInst::Sub:
1318     case AtomicRMWInst::Or:
1319     case AtomicRMWInst::Xor:
1320       return C->isZero();
1321     case AtomicRMWInst::And:
1322       return C->isMinusOne();
1323     // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/...
1324     default:
1325       return false;
1326   }
1327 }
1328 
1329 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) {
1330   if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) {
1331     tryExpandAtomicLoad(ResultingLoad);
1332     return true;
1333   }
1334   return false;
1335 }
1336 
1337 Value *AtomicExpand::insertRMWCmpXchgLoop(
1338     IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
1339     AtomicOrdering MemOpOrder,
1340     function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
1341     CreateCmpXchgInstFun CreateCmpXchg) {
1342   LLVMContext &Ctx = Builder.getContext();
1343   BasicBlock *BB = Builder.GetInsertBlock();
1344   Function *F = BB->getParent();
1345 
1346   // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1347   //
1348   // The standard expansion we produce is:
1349   //     [...]
1350   //     %init_loaded = load atomic iN* %addr
1351   //     br label %loop
1352   // loop:
1353   //     %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ]
1354   //     %new = some_op iN %loaded, %incr
1355   //     %pair = cmpxchg iN* %addr, iN %loaded, iN %new
1356   //     %new_loaded = extractvalue { iN, i1 } %pair, 0
1357   //     %success = extractvalue { iN, i1 } %pair, 1
1358   //     br i1 %success, label %atomicrmw.end, label %loop
1359   // atomicrmw.end:
1360   //     [...]
1361   BasicBlock *ExitBB =
1362       BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
1363   BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
1364 
1365   // The split call above "helpfully" added a branch at the end of BB (to the
1366   // wrong place), but we want a load. It's easiest to just remove
1367   // the branch entirely.
1368   std::prev(BB->end())->eraseFromParent();
1369   Builder.SetInsertPoint(BB);
1370   LoadInst *InitLoaded = Builder.CreateLoad(ResultTy, Addr);
1371   // Atomics require at least natural alignment.
1372   InitLoaded->setAlignment(ResultTy->getPrimitiveSizeInBits() / 8);
1373   Builder.CreateBr(LoopBB);
1374 
1375   // Start the main loop block now that we've taken care of the preliminaries.
1376   Builder.SetInsertPoint(LoopBB);
1377   PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded");
1378   Loaded->addIncoming(InitLoaded, BB);
1379 
1380   Value *NewVal = PerformOp(Builder, Loaded);
1381 
1382   Value *NewLoaded = nullptr;
1383   Value *Success = nullptr;
1384 
1385   CreateCmpXchg(Builder, Addr, Loaded, NewVal,
1386                 MemOpOrder == AtomicOrdering::Unordered
1387                     ? AtomicOrdering::Monotonic
1388                     : MemOpOrder,
1389                 Success, NewLoaded);
1390   assert(Success && NewLoaded);
1391 
1392   Loaded->addIncoming(NewLoaded, LoopBB);
1393 
1394   Builder.CreateCondBr(Success, ExitBB, LoopBB);
1395 
1396   Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1397   return NewLoaded;
1398 }
1399 
1400 bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1401   unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
1402   unsigned ValueSize = getAtomicOpSize(CI);
1403 
1404   switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) {
1405   default:
1406     llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg");
1407   case TargetLoweringBase::AtomicExpansionKind::None:
1408     if (ValueSize < MinCASSize)
1409       expandPartwordCmpXchg(CI);
1410     return false;
1411   case TargetLoweringBase::AtomicExpansionKind::LLSC: {
1412     assert(ValueSize >= MinCASSize &&
1413            "MinCmpXchgSizeInBits not yet supported for LL/SC expansions.");
1414     return expandAtomicCmpXchg(CI);
1415   }
1416   case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic:
1417     expandAtomicCmpXchgToMaskedIntrinsic(CI);
1418     return true;
1419   }
1420 }
1421 
1422 // Note: This function is exposed externally by AtomicExpandUtils.h
1423 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
1424                                     CreateCmpXchgInstFun CreateCmpXchg) {
1425   IRBuilder<> Builder(AI);
1426   Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop(
1427       Builder, AI->getType(), AI->getPointerOperand(), AI->getOrdering(),
1428       [&](IRBuilder<> &Builder, Value *Loaded) {
1429         return performAtomicOp(AI->getOperation(), Builder, Loaded,
1430                                AI->getValOperand());
1431       },
1432       CreateCmpXchg);
1433 
1434   AI->replaceAllUsesWith(Loaded);
1435   AI->eraseFromParent();
1436   return true;
1437 }
1438 
1439 // In order to use one of the sized library calls such as
1440 // __atomic_fetch_add_4, the alignment must be sufficient, the size
1441 // must be one of the potentially-specialized sizes, and the value
1442 // type must actually exist in C on the target (otherwise, the
1443 // function wouldn't actually be defined.)
1444 static bool canUseSizedAtomicCall(unsigned Size, unsigned Align,
1445                                   const DataLayout &DL) {
1446   // TODO: "LargestSize" is an approximation for "largest type that
1447   // you can express in C". It seems to be the case that int128 is
1448   // supported on all 64-bit platforms, otherwise only up to 64-bit
1449   // integers are supported. If we get this wrong, then we'll try to
1450   // call a sized libcall that doesn't actually exist. There should
1451   // really be some more reliable way in LLVM of determining integer
1452   // sizes which are valid in the target's C ABI...
1453   unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8;
1454   return Align >= Size &&
1455          (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) &&
1456          Size <= LargestSize;
1457 }
1458 
1459 void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) {
1460   static const RTLIB::Libcall Libcalls[6] = {
1461       RTLIB::ATOMIC_LOAD,   RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2,
1462       RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16};
1463   unsigned Size = getAtomicOpSize(I);
1464   unsigned Align = getAtomicOpAlign(I);
1465 
1466   bool expanded = expandAtomicOpToLibcall(
1467       I, Size, Align, I->getPointerOperand(), nullptr, nullptr,
1468       I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1469   (void)expanded;
1470   assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Load");
1471 }
1472 
1473 void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) {
1474   static const RTLIB::Libcall Libcalls[6] = {
1475       RTLIB::ATOMIC_STORE,   RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2,
1476       RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16};
1477   unsigned Size = getAtomicOpSize(I);
1478   unsigned Align = getAtomicOpAlign(I);
1479 
1480   bool expanded = expandAtomicOpToLibcall(
1481       I, Size, Align, I->getPointerOperand(), I->getValueOperand(), nullptr,
1482       I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1483   (void)expanded;
1484   assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Store");
1485 }
1486 
1487 void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) {
1488   static const RTLIB::Libcall Libcalls[6] = {
1489       RTLIB::ATOMIC_COMPARE_EXCHANGE,   RTLIB::ATOMIC_COMPARE_EXCHANGE_1,
1490       RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4,
1491       RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16};
1492   unsigned Size = getAtomicOpSize(I);
1493   unsigned Align = getAtomicOpAlign(I);
1494 
1495   bool expanded = expandAtomicOpToLibcall(
1496       I, Size, Align, I->getPointerOperand(), I->getNewValOperand(),
1497       I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(),
1498       Libcalls);
1499   (void)expanded;
1500   assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor CAS");
1501 }
1502 
1503 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) {
1504   static const RTLIB::Libcall LibcallsXchg[6] = {
1505       RTLIB::ATOMIC_EXCHANGE,   RTLIB::ATOMIC_EXCHANGE_1,
1506       RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4,
1507       RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16};
1508   static const RTLIB::Libcall LibcallsAdd[6] = {
1509       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_ADD_1,
1510       RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4,
1511       RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16};
1512   static const RTLIB::Libcall LibcallsSub[6] = {
1513       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_SUB_1,
1514       RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4,
1515       RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16};
1516   static const RTLIB::Libcall LibcallsAnd[6] = {
1517       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_AND_1,
1518       RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4,
1519       RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16};
1520   static const RTLIB::Libcall LibcallsOr[6] = {
1521       RTLIB::UNKNOWN_LIBCALL,   RTLIB::ATOMIC_FETCH_OR_1,
1522       RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4,
1523       RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16};
1524   static const RTLIB::Libcall LibcallsXor[6] = {
1525       RTLIB::UNKNOWN_LIBCALL,    RTLIB::ATOMIC_FETCH_XOR_1,
1526       RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4,
1527       RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16};
1528   static const RTLIB::Libcall LibcallsNand[6] = {
1529       RTLIB::UNKNOWN_LIBCALL,     RTLIB::ATOMIC_FETCH_NAND_1,
1530       RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4,
1531       RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16};
1532 
1533   switch (Op) {
1534   case AtomicRMWInst::BAD_BINOP:
1535     llvm_unreachable("Should not have BAD_BINOP.");
1536   case AtomicRMWInst::Xchg:
1537     return makeArrayRef(LibcallsXchg);
1538   case AtomicRMWInst::Add:
1539     return makeArrayRef(LibcallsAdd);
1540   case AtomicRMWInst::Sub:
1541     return makeArrayRef(LibcallsSub);
1542   case AtomicRMWInst::And:
1543     return makeArrayRef(LibcallsAnd);
1544   case AtomicRMWInst::Or:
1545     return makeArrayRef(LibcallsOr);
1546   case AtomicRMWInst::Xor:
1547     return makeArrayRef(LibcallsXor);
1548   case AtomicRMWInst::Nand:
1549     return makeArrayRef(LibcallsNand);
1550   case AtomicRMWInst::Max:
1551   case AtomicRMWInst::Min:
1552   case AtomicRMWInst::UMax:
1553   case AtomicRMWInst::UMin:
1554   case AtomicRMWInst::FAdd:
1555   case AtomicRMWInst::FSub:
1556     // No atomic libcalls are available for max/min/umax/umin.
1557     return {};
1558   }
1559   llvm_unreachable("Unexpected AtomicRMW operation.");
1560 }
1561 
1562 void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) {
1563   ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation());
1564 
1565   unsigned Size = getAtomicOpSize(I);
1566   unsigned Align = getAtomicOpAlign(I);
1567 
1568   bool Success = false;
1569   if (!Libcalls.empty())
1570     Success = expandAtomicOpToLibcall(
1571         I, Size, Align, I->getPointerOperand(), I->getValOperand(), nullptr,
1572         I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1573 
1574   // The expansion failed: either there were no libcalls at all for
1575   // the operation (min/max), or there were only size-specialized
1576   // libcalls (add/sub/etc) and we needed a generic. So, expand to a
1577   // CAS libcall, via a CAS loop, instead.
1578   if (!Success) {
1579     expandAtomicRMWToCmpXchg(I, [this](IRBuilder<> &Builder, Value *Addr,
1580                                        Value *Loaded, Value *NewVal,
1581                                        AtomicOrdering MemOpOrder,
1582                                        Value *&Success, Value *&NewLoaded) {
1583       // Create the CAS instruction normally...
1584       AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg(
1585           Addr, Loaded, NewVal, MemOpOrder,
1586           AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder));
1587       Success = Builder.CreateExtractValue(Pair, 1, "success");
1588       NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
1589 
1590       // ...and then expand the CAS into a libcall.
1591       expandAtomicCASToLibcall(Pair);
1592     });
1593   }
1594 }
1595 
1596 // A helper routine for the above expandAtomic*ToLibcall functions.
1597 //
1598 // 'Libcalls' contains an array of enum values for the particular
1599 // ATOMIC libcalls to be emitted. All of the other arguments besides
1600 // 'I' are extracted from the Instruction subclass by the
1601 // caller. Depending on the particular call, some will be null.
1602 bool AtomicExpand::expandAtomicOpToLibcall(
1603     Instruction *I, unsigned Size, unsigned Align, Value *PointerOperand,
1604     Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering,
1605     AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) {
1606   assert(Libcalls.size() == 6);
1607 
1608   LLVMContext &Ctx = I->getContext();
1609   Module *M = I->getModule();
1610   const DataLayout &DL = M->getDataLayout();
1611   IRBuilder<> Builder(I);
1612   IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front());
1613 
1614   bool UseSizedLibcall = canUseSizedAtomicCall(Size, Align, DL);
1615   Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8);
1616 
1617   unsigned AllocaAlignment = DL.getPrefTypeAlignment(SizedIntTy);
1618 
1619   // TODO: the "order" argument type is "int", not int32. So
1620   // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints.
1621   ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size);
1622   assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO");
1623   Constant *OrderingVal =
1624       ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering));
1625   Constant *Ordering2Val = nullptr;
1626   if (CASExpected) {
1627     assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO");
1628     Ordering2Val =
1629         ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2));
1630   }
1631   bool HasResult = I->getType() != Type::getVoidTy(Ctx);
1632 
1633   RTLIB::Libcall RTLibType;
1634   if (UseSizedLibcall) {
1635     switch (Size) {
1636     case 1: RTLibType = Libcalls[1]; break;
1637     case 2: RTLibType = Libcalls[2]; break;
1638     case 4: RTLibType = Libcalls[3]; break;
1639     case 8: RTLibType = Libcalls[4]; break;
1640     case 16: RTLibType = Libcalls[5]; break;
1641     }
1642   } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) {
1643     RTLibType = Libcalls[0];
1644   } else {
1645     // Can't use sized function, and there's no generic for this
1646     // operation, so give up.
1647     return false;
1648   }
1649 
1650   // Build up the function call. There's two kinds. First, the sized
1651   // variants.  These calls are going to be one of the following (with
1652   // N=1,2,4,8,16):
1653   //  iN    __atomic_load_N(iN *ptr, int ordering)
1654   //  void  __atomic_store_N(iN *ptr, iN val, int ordering)
1655   //  iN    __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering)
1656   //  bool  __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired,
1657   //                                    int success_order, int failure_order)
1658   //
1659   // Note that these functions can be used for non-integer atomic
1660   // operations, the values just need to be bitcast to integers on the
1661   // way in and out.
1662   //
1663   // And, then, the generic variants. They look like the following:
1664   //  void  __atomic_load(size_t size, void *ptr, void *ret, int ordering)
1665   //  void  __atomic_store(size_t size, void *ptr, void *val, int ordering)
1666   //  void  __atomic_exchange(size_t size, void *ptr, void *val, void *ret,
1667   //                          int ordering)
1668   //  bool  __atomic_compare_exchange(size_t size, void *ptr, void *expected,
1669   //                                  void *desired, int success_order,
1670   //                                  int failure_order)
1671   //
1672   // The different signatures are built up depending on the
1673   // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult'
1674   // variables.
1675 
1676   AllocaInst *AllocaCASExpected = nullptr;
1677   Value *AllocaCASExpected_i8 = nullptr;
1678   AllocaInst *AllocaValue = nullptr;
1679   Value *AllocaValue_i8 = nullptr;
1680   AllocaInst *AllocaResult = nullptr;
1681   Value *AllocaResult_i8 = nullptr;
1682 
1683   Type *ResultTy;
1684   SmallVector<Value *, 6> Args;
1685   AttributeList Attr;
1686 
1687   // 'size' argument.
1688   if (!UseSizedLibcall) {
1689     // Note, getIntPtrType is assumed equivalent to size_t.
1690     Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size));
1691   }
1692 
1693   // 'ptr' argument.
1694   // note: This assumes all address spaces share a common libfunc
1695   // implementation and that addresses are convertable.  For systems without
1696   // that property, we'd need to extend this mechanism to support AS-specific
1697   // families of atomic intrinsics.
1698   auto PtrTypeAS = PointerOperand->getType()->getPointerAddressSpace();
1699   Value *PtrVal = Builder.CreateBitCast(PointerOperand,
1700                                         Type::getInt8PtrTy(Ctx, PtrTypeAS));
1701   PtrVal = Builder.CreateAddrSpaceCast(PtrVal, Type::getInt8PtrTy(Ctx));
1702   Args.push_back(PtrVal);
1703 
1704   // 'expected' argument, if present.
1705   if (CASExpected) {
1706     AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType());
1707     AllocaCASExpected->setAlignment(AllocaAlignment);
1708     AllocaCASExpected_i8 =
1709         Builder.CreateBitCast(AllocaCASExpected, Type::getInt8PtrTy(Ctx));
1710     Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64);
1711     Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment);
1712     Args.push_back(AllocaCASExpected_i8);
1713   }
1714 
1715   // 'val' argument ('desired' for cas), if present.
1716   if (ValueOperand) {
1717     if (UseSizedLibcall) {
1718       Value *IntValue =
1719           Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy);
1720       Args.push_back(IntValue);
1721     } else {
1722       AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType());
1723       AllocaValue->setAlignment(AllocaAlignment);
1724       AllocaValue_i8 =
1725           Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx));
1726       Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64);
1727       Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment);
1728       Args.push_back(AllocaValue_i8);
1729     }
1730   }
1731 
1732   // 'ret' argument.
1733   if (!CASExpected && HasResult && !UseSizedLibcall) {
1734     AllocaResult = AllocaBuilder.CreateAlloca(I->getType());
1735     AllocaResult->setAlignment(AllocaAlignment);
1736     AllocaResult_i8 =
1737         Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx));
1738     Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64);
1739     Args.push_back(AllocaResult_i8);
1740   }
1741 
1742   // 'ordering' ('success_order' for cas) argument.
1743   Args.push_back(OrderingVal);
1744 
1745   // 'failure_order' argument, if present.
1746   if (Ordering2Val)
1747     Args.push_back(Ordering2Val);
1748 
1749   // Now, the return type.
1750   if (CASExpected) {
1751     ResultTy = Type::getInt1Ty(Ctx);
1752     Attr = Attr.addAttribute(Ctx, AttributeList::ReturnIndex, Attribute::ZExt);
1753   } else if (HasResult && UseSizedLibcall)
1754     ResultTy = SizedIntTy;
1755   else
1756     ResultTy = Type::getVoidTy(Ctx);
1757 
1758   // Done with setting up arguments and return types, create the call:
1759   SmallVector<Type *, 6> ArgTys;
1760   for (Value *Arg : Args)
1761     ArgTys.push_back(Arg->getType());
1762   FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false);
1763   FunctionCallee LibcallFn =
1764       M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr);
1765   CallInst *Call = Builder.CreateCall(LibcallFn, Args);
1766   Call->setAttributes(Attr);
1767   Value *Result = Call;
1768 
1769   // And then, extract the results...
1770   if (ValueOperand && !UseSizedLibcall)
1771     Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64);
1772 
1773   if (CASExpected) {
1774     // The final result from the CAS is {load of 'expected' alloca, bool result
1775     // from call}
1776     Type *FinalResultTy = I->getType();
1777     Value *V = UndefValue::get(FinalResultTy);
1778     Value *ExpectedOut = Builder.CreateAlignedLoad(
1779         CASExpected->getType(), AllocaCASExpected, AllocaAlignment);
1780     Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64);
1781     V = Builder.CreateInsertValue(V, ExpectedOut, 0);
1782     V = Builder.CreateInsertValue(V, Result, 1);
1783     I->replaceAllUsesWith(V);
1784   } else if (HasResult) {
1785     Value *V;
1786     if (UseSizedLibcall)
1787       V = Builder.CreateBitOrPointerCast(Result, I->getType());
1788     else {
1789       V = Builder.CreateAlignedLoad(I->getType(), AllocaResult,
1790                                     AllocaAlignment);
1791       Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64);
1792     }
1793     I->replaceAllUsesWith(V);
1794   }
1795   I->eraseFromParent();
1796   return true;
1797 }
1798