1 //===-- AtomicExpandPass.cpp - Expand atomic instructions -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a pass (at IR level) to replace atomic instructions with 11 // either (intrinsic-based) load-linked/store-conditional loops or AtomicCmpXchg. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/Passes.h" 16 #include "llvm/IR/Function.h" 17 #include "llvm/IR/IRBuilder.h" 18 #include "llvm/IR/InstIterator.h" 19 #include "llvm/IR/Instructions.h" 20 #include "llvm/IR/Intrinsics.h" 21 #include "llvm/IR/Module.h" 22 #include "llvm/Support/Debug.h" 23 #include "llvm/Target/TargetLowering.h" 24 #include "llvm/Target/TargetMachine.h" 25 #include "llvm/Target/TargetSubtargetInfo.h" 26 27 using namespace llvm; 28 29 #define DEBUG_TYPE "atomic-expand" 30 31 namespace { 32 class AtomicExpand: public FunctionPass { 33 const TargetMachine *TM; 34 const TargetLowering *TLI; 35 public: 36 static char ID; // Pass identification, replacement for typeid 37 explicit AtomicExpand(const TargetMachine *TM = nullptr) 38 : FunctionPass(ID), TM(TM), TLI(nullptr) { 39 initializeAtomicExpandPass(*PassRegistry::getPassRegistry()); 40 } 41 42 bool runOnFunction(Function &F) override; 43 44 private: 45 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order, 46 bool IsStore, bool IsLoad); 47 bool expandAtomicLoad(LoadInst *LI); 48 bool expandAtomicLoadToLL(LoadInst *LI); 49 bool expandAtomicLoadToCmpXchg(LoadInst *LI); 50 bool expandAtomicStore(StoreInst *SI); 51 bool tryExpandAtomicRMW(AtomicRMWInst *AI); 52 bool expandAtomicRMWToLLSC(AtomicRMWInst *AI); 53 bool expandAtomicRMWToCmpXchg(AtomicRMWInst *AI); 54 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); 55 bool isIdempotentRMW(AtomicRMWInst *AI); 56 bool simplifyIdempotentRMW(AtomicRMWInst *AI); 57 }; 58 } 59 60 char AtomicExpand::ID = 0; 61 char &llvm::AtomicExpandID = AtomicExpand::ID; 62 INITIALIZE_TM_PASS(AtomicExpand, "atomic-expand", 63 "Expand Atomic calls in terms of either load-linked & store-conditional or cmpxchg", 64 false, false) 65 66 FunctionPass *llvm::createAtomicExpandPass(const TargetMachine *TM) { 67 return new AtomicExpand(TM); 68 } 69 70 bool AtomicExpand::runOnFunction(Function &F) { 71 if (!TM || !TM->getSubtargetImpl(F)->enableAtomicExpand()) 72 return false; 73 TLI = TM->getSubtargetImpl(F)->getTargetLowering(); 74 75 SmallVector<Instruction *, 1> AtomicInsts; 76 77 // Changing control-flow while iterating through it is a bad idea, so gather a 78 // list of all atomic instructions before we start. 79 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) { 80 if (I->isAtomic()) 81 AtomicInsts.push_back(&*I); 82 } 83 84 bool MadeChange = false; 85 for (auto I : AtomicInsts) { 86 auto LI = dyn_cast<LoadInst>(I); 87 auto SI = dyn_cast<StoreInst>(I); 88 auto RMWI = dyn_cast<AtomicRMWInst>(I); 89 auto CASI = dyn_cast<AtomicCmpXchgInst>(I); 90 assert((LI || SI || RMWI || CASI || isa<FenceInst>(I)) && 91 "Unknown atomic instruction"); 92 93 auto FenceOrdering = Monotonic; 94 bool IsStore, IsLoad; 95 if (TLI->getInsertFencesForAtomic()) { 96 if (LI && isAtLeastAcquire(LI->getOrdering())) { 97 FenceOrdering = LI->getOrdering(); 98 LI->setOrdering(Monotonic); 99 IsStore = false; 100 IsLoad = true; 101 } else if (SI && isAtLeastRelease(SI->getOrdering())) { 102 FenceOrdering = SI->getOrdering(); 103 SI->setOrdering(Monotonic); 104 IsStore = true; 105 IsLoad = false; 106 } else if (RMWI && (isAtLeastRelease(RMWI->getOrdering()) || 107 isAtLeastAcquire(RMWI->getOrdering()))) { 108 FenceOrdering = RMWI->getOrdering(); 109 RMWI->setOrdering(Monotonic); 110 IsStore = IsLoad = true; 111 } else if (CASI && !TLI->hasLoadLinkedStoreConditional() && 112 (isAtLeastRelease(CASI->getSuccessOrdering()) || 113 isAtLeastAcquire(CASI->getSuccessOrdering()))) { 114 // If a compare and swap is lowered to LL/SC, we can do smarter fence 115 // insertion, with a stronger one on the success path than on the 116 // failure path. As a result, fence insertion is directly done by 117 // expandAtomicCmpXchg in that case. 118 FenceOrdering = CASI->getSuccessOrdering(); 119 CASI->setSuccessOrdering(Monotonic); 120 CASI->setFailureOrdering(Monotonic); 121 IsStore = IsLoad = true; 122 } 123 124 if (FenceOrdering != Monotonic) { 125 MadeChange |= bracketInstWithFences(I, FenceOrdering, IsStore, IsLoad); 126 } 127 } 128 129 if (LI && TLI->shouldExpandAtomicLoadInIR(LI)) { 130 MadeChange |= expandAtomicLoad(LI); 131 } else if (SI && TLI->shouldExpandAtomicStoreInIR(SI)) { 132 MadeChange |= expandAtomicStore(SI); 133 } else if (RMWI) { 134 // There are two different ways of expanding RMW instructions: 135 // - into a load if it is idempotent 136 // - into a Cmpxchg/LL-SC loop otherwise 137 // we try them in that order. 138 139 if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) { 140 MadeChange = true; 141 } else { 142 MadeChange |= tryExpandAtomicRMW(RMWI); 143 } 144 } else if (CASI && TLI->hasLoadLinkedStoreConditional()) { 145 MadeChange |= expandAtomicCmpXchg(CASI); 146 } 147 } 148 return MadeChange; 149 } 150 151 bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order, 152 bool IsStore, bool IsLoad) { 153 IRBuilder<> Builder(I); 154 155 auto LeadingFence = TLI->emitLeadingFence(Builder, Order, IsStore, IsLoad); 156 157 auto TrailingFence = TLI->emitTrailingFence(Builder, Order, IsStore, IsLoad); 158 // The trailing fence is emitted before the instruction instead of after 159 // because there is no easy way of setting Builder insertion point after 160 // an instruction. So we must erase it from the BB, and insert it back 161 // in the right place. 162 // We have a guard here because not every atomic operation generates a 163 // trailing fence. 164 if (TrailingFence) { 165 TrailingFence->removeFromParent(); 166 TrailingFence->insertAfter(I); 167 } 168 169 return (LeadingFence || TrailingFence); 170 } 171 172 bool AtomicExpand::expandAtomicLoad(LoadInst *LI) { 173 if (TLI->hasLoadLinkedStoreConditional()) 174 return expandAtomicLoadToLL(LI); 175 else 176 return expandAtomicLoadToCmpXchg(LI); 177 } 178 179 bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) { 180 IRBuilder<> Builder(LI); 181 182 // On some architectures, load-linked instructions are atomic for larger 183 // sizes than normal loads. For example, the only 64-bit load guaranteed 184 // to be single-copy atomic by ARM is an ldrexd (A3.5.3). 185 Value *Val = 186 TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering()); 187 188 LI->replaceAllUsesWith(Val); 189 LI->eraseFromParent(); 190 191 return true; 192 } 193 194 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) { 195 IRBuilder<> Builder(LI); 196 AtomicOrdering Order = LI->getOrdering(); 197 Value *Addr = LI->getPointerOperand(); 198 Type *Ty = cast<PointerType>(Addr->getType())->getElementType(); 199 Constant *DummyVal = Constant::getNullValue(Ty); 200 201 Value *Pair = Builder.CreateAtomicCmpXchg( 202 Addr, DummyVal, DummyVal, Order, 203 AtomicCmpXchgInst::getStrongestFailureOrdering(Order)); 204 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded"); 205 206 LI->replaceAllUsesWith(Loaded); 207 LI->eraseFromParent(); 208 209 return true; 210 } 211 212 bool AtomicExpand::expandAtomicStore(StoreInst *SI) { 213 // This function is only called on atomic stores that are too large to be 214 // atomic if implemented as a native store. So we replace them by an 215 // atomic swap, that can be implemented for example as a ldrex/strex on ARM 216 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. 217 // It is the responsibility of the target to only signal expansion via 218 // shouldExpandAtomicRMW in cases where this is required and possible. 219 IRBuilder<> Builder(SI); 220 AtomicRMWInst *AI = 221 Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(), 222 SI->getValueOperand(), SI->getOrdering()); 223 SI->eraseFromParent(); 224 225 // Now we have an appropriate swap instruction, lower it as usual. 226 return tryExpandAtomicRMW(AI); 227 } 228 229 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) { 230 switch (TLI->shouldExpandAtomicRMWInIR(AI)) { 231 case TargetLoweringBase::AtomicRMWExpansionKind::None: 232 return false; 233 case TargetLoweringBase::AtomicRMWExpansionKind::LLSC: { 234 assert(TLI->hasLoadLinkedStoreConditional() && 235 "TargetLowering requested we expand AtomicRMW instruction into " 236 "load-linked/store-conditional combos, but such instructions aren't " 237 "supported"); 238 239 return expandAtomicRMWToLLSC(AI); 240 } 241 case TargetLoweringBase::AtomicRMWExpansionKind::CmpXChg: { 242 return expandAtomicRMWToCmpXchg(AI); 243 } 244 } 245 llvm_unreachable("Unhandled case in tryExpandAtomicRMW"); 246 } 247 248 /// Emit IR to implement the given atomicrmw operation on values in registers, 249 /// returning the new value. 250 static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder, 251 Value *Loaded, Value *Inc) { 252 Value *NewVal; 253 switch (Op) { 254 case AtomicRMWInst::Xchg: 255 return Inc; 256 case AtomicRMWInst::Add: 257 return Builder.CreateAdd(Loaded, Inc, "new"); 258 case AtomicRMWInst::Sub: 259 return Builder.CreateSub(Loaded, Inc, "new"); 260 case AtomicRMWInst::And: 261 return Builder.CreateAnd(Loaded, Inc, "new"); 262 case AtomicRMWInst::Nand: 263 return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new"); 264 case AtomicRMWInst::Or: 265 return Builder.CreateOr(Loaded, Inc, "new"); 266 case AtomicRMWInst::Xor: 267 return Builder.CreateXor(Loaded, Inc, "new"); 268 case AtomicRMWInst::Max: 269 NewVal = Builder.CreateICmpSGT(Loaded, Inc); 270 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 271 case AtomicRMWInst::Min: 272 NewVal = Builder.CreateICmpSLE(Loaded, Inc); 273 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 274 case AtomicRMWInst::UMax: 275 NewVal = Builder.CreateICmpUGT(Loaded, Inc); 276 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 277 case AtomicRMWInst::UMin: 278 NewVal = Builder.CreateICmpULE(Loaded, Inc); 279 return Builder.CreateSelect(NewVal, Loaded, Inc, "new"); 280 default: 281 llvm_unreachable("Unknown atomic op"); 282 } 283 } 284 285 bool AtomicExpand::expandAtomicRMWToLLSC(AtomicRMWInst *AI) { 286 AtomicOrdering MemOpOrder = AI->getOrdering(); 287 Value *Addr = AI->getPointerOperand(); 288 BasicBlock *BB = AI->getParent(); 289 Function *F = BB->getParent(); 290 LLVMContext &Ctx = F->getContext(); 291 292 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 293 // 294 // The standard expansion we produce is: 295 // [...] 296 // fence? 297 // atomicrmw.start: 298 // %loaded = @load.linked(%addr) 299 // %new = some_op iN %loaded, %incr 300 // %stored = @store_conditional(%new, %addr) 301 // %try_again = icmp i32 ne %stored, 0 302 // br i1 %try_again, label %loop, label %atomicrmw.end 303 // atomicrmw.end: 304 // fence? 305 // [...] 306 BasicBlock *ExitBB = BB->splitBasicBlock(AI, "atomicrmw.end"); 307 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 308 309 // This grabs the DebugLoc from AI. 310 IRBuilder<> Builder(AI); 311 312 // The split call above "helpfully" added a branch at the end of BB (to the 313 // wrong place), but we might want a fence too. It's easiest to just remove 314 // the branch entirely. 315 std::prev(BB->end())->eraseFromParent(); 316 Builder.SetInsertPoint(BB); 317 Builder.CreateBr(LoopBB); 318 319 // Start the main loop block now that we've taken care of the preliminaries. 320 Builder.SetInsertPoint(LoopBB); 321 Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); 322 323 Value *NewVal = 324 performAtomicOp(AI->getOperation(), Builder, Loaded, AI->getValOperand()); 325 326 Value *StoreSuccess = 327 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); 328 Value *TryAgain = Builder.CreateICmpNE( 329 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); 330 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); 331 332 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 333 334 AI->replaceAllUsesWith(Loaded); 335 AI->eraseFromParent(); 336 337 return true; 338 } 339 340 bool AtomicExpand::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI) { 341 AtomicOrdering MemOpOrder = 342 AI->getOrdering() == Unordered ? Monotonic : AI->getOrdering(); 343 Value *Addr = AI->getPointerOperand(); 344 BasicBlock *BB = AI->getParent(); 345 Function *F = BB->getParent(); 346 LLVMContext &Ctx = F->getContext(); 347 348 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 349 // 350 // The standard expansion we produce is: 351 // [...] 352 // %init_loaded = load atomic iN* %addr 353 // br label %loop 354 // loop: 355 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] 356 // %new = some_op iN %loaded, %incr 357 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new 358 // %new_loaded = extractvalue { iN, i1 } %pair, 0 359 // %success = extractvalue { iN, i1 } %pair, 1 360 // br i1 %success, label %atomicrmw.end, label %loop 361 // atomicrmw.end: 362 // [...] 363 BasicBlock *ExitBB = BB->splitBasicBlock(AI, "atomicrmw.end"); 364 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 365 366 // This grabs the DebugLoc from AI. 367 IRBuilder<> Builder(AI); 368 369 // The split call above "helpfully" added a branch at the end of BB (to the 370 // wrong place), but we want a load. It's easiest to just remove 371 // the branch entirely. 372 std::prev(BB->end())->eraseFromParent(); 373 Builder.SetInsertPoint(BB); 374 LoadInst *InitLoaded = Builder.CreateLoad(Addr); 375 // Atomics require at least natural alignment. 376 InitLoaded->setAlignment(AI->getType()->getPrimitiveSizeInBits()); 377 Builder.CreateBr(LoopBB); 378 379 // Start the main loop block now that we've taken care of the preliminaries. 380 Builder.SetInsertPoint(LoopBB); 381 PHINode *Loaded = Builder.CreatePHI(AI->getType(), 2, "loaded"); 382 Loaded->addIncoming(InitLoaded, BB); 383 384 Value *NewVal = 385 performAtomicOp(AI->getOperation(), Builder, Loaded, AI->getValOperand()); 386 387 Value *Pair = Builder.CreateAtomicCmpXchg( 388 Addr, Loaded, NewVal, MemOpOrder, 389 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder)); 390 Value *NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 391 Loaded->addIncoming(NewLoaded, LoopBB); 392 393 Value *Success = Builder.CreateExtractValue(Pair, 1, "success"); 394 Builder.CreateCondBr(Success, ExitBB, LoopBB); 395 396 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 397 398 AI->replaceAllUsesWith(NewLoaded); 399 AI->eraseFromParent(); 400 401 return true; 402 } 403 404 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 405 AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); 406 AtomicOrdering FailureOrder = CI->getFailureOrdering(); 407 Value *Addr = CI->getPointerOperand(); 408 BasicBlock *BB = CI->getParent(); 409 Function *F = BB->getParent(); 410 LLVMContext &Ctx = F->getContext(); 411 // If getInsertFencesForAtomic() returns true, then the target does not want 412 // to deal with memory orders, and emitLeading/TrailingFence should take care 413 // of everything. Otherwise, emitLeading/TrailingFence are no-op and we 414 // should preserve the ordering. 415 AtomicOrdering MemOpOrder = 416 TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder; 417 418 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord 419 // 420 // The full expansion we produce is: 421 // [...] 422 // fence? 423 // cmpxchg.start: 424 // %loaded = @load.linked(%addr) 425 // %should_store = icmp eq %loaded, %desired 426 // br i1 %should_store, label %cmpxchg.trystore, 427 // label %cmpxchg.failure 428 // cmpxchg.trystore: 429 // %stored = @store_conditional(%new, %addr) 430 // %success = icmp eq i32 %stored, 0 431 // br i1 %success, label %cmpxchg.success, label %loop/%cmpxchg.failure 432 // cmpxchg.success: 433 // fence? 434 // br label %cmpxchg.end 435 // cmpxchg.failure: 436 // fence? 437 // br label %cmpxchg.end 438 // cmpxchg.end: 439 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] 440 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 441 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 442 // [...] 443 BasicBlock *ExitBB = BB->splitBasicBlock(CI, "cmpxchg.end"); 444 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); 445 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, FailureBB); 446 auto TryStoreBB = BasicBlock::Create(Ctx, "cmpxchg.trystore", F, SuccessBB); 447 auto LoopBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, TryStoreBB); 448 449 // This grabs the DebugLoc from CI 450 IRBuilder<> Builder(CI); 451 452 // The split call above "helpfully" added a branch at the end of BB (to the 453 // wrong place), but we might want a fence too. It's easiest to just remove 454 // the branch entirely. 455 std::prev(BB->end())->eraseFromParent(); 456 Builder.SetInsertPoint(BB); 457 TLI->emitLeadingFence(Builder, SuccessOrder, /*IsStore=*/true, 458 /*IsLoad=*/true); 459 Builder.CreateBr(LoopBB); 460 461 // Start the main loop block now that we've taken care of the preliminaries. 462 Builder.SetInsertPoint(LoopBB); 463 Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder); 464 Value *ShouldStore = 465 Builder.CreateICmpEQ(Loaded, CI->getCompareOperand(), "should_store"); 466 467 // If the cmpxchg doesn't actually need any ordering when it fails, we can 468 // jump straight past that fence instruction (if it exists). 469 Builder.CreateCondBr(ShouldStore, TryStoreBB, FailureBB); 470 471 Builder.SetInsertPoint(TryStoreBB); 472 Value *StoreSuccess = TLI->emitStoreConditional( 473 Builder, CI->getNewValOperand(), Addr, MemOpOrder); 474 StoreSuccess = Builder.CreateICmpEQ( 475 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); 476 Builder.CreateCondBr(StoreSuccess, SuccessBB, 477 CI->isWeak() ? FailureBB : LoopBB); 478 479 // Make sure later instructions don't get reordered with a fence if necessary. 480 Builder.SetInsertPoint(SuccessBB); 481 TLI->emitTrailingFence(Builder, SuccessOrder, /*IsStore=*/true, 482 /*IsLoad=*/true); 483 Builder.CreateBr(ExitBB); 484 485 Builder.SetInsertPoint(FailureBB); 486 TLI->emitTrailingFence(Builder, FailureOrder, /*IsStore=*/true, 487 /*IsLoad=*/true); 488 Builder.CreateBr(ExitBB); 489 490 // Finally, we have control-flow based knowledge of whether the cmpxchg 491 // succeeded or not. We expose this to later passes by converting any 492 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate PHI. 493 494 // Setup the builder so we can create any PHIs we need. 495 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 496 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2); 497 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); 498 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); 499 500 // Look for any users of the cmpxchg that are just comparing the loaded value 501 // against the desired one, and replace them with the CFG-derived version. 502 SmallVector<ExtractValueInst *, 2> PrunedInsts; 503 for (auto User : CI->users()) { 504 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); 505 if (!EV) 506 continue; 507 508 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && 509 "weird extraction from { iN, i1 }"); 510 511 if (EV->getIndices()[0] == 0) 512 EV->replaceAllUsesWith(Loaded); 513 else 514 EV->replaceAllUsesWith(Success); 515 516 PrunedInsts.push_back(EV); 517 } 518 519 // We can remove the instructions now we're no longer iterating through them. 520 for (auto EV : PrunedInsts) 521 EV->eraseFromParent(); 522 523 if (!CI->use_empty()) { 524 // Some use of the full struct return that we don't understand has happened, 525 // so we've got to reconstruct it properly. 526 Value *Res; 527 Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0); 528 Res = Builder.CreateInsertValue(Res, Success, 1); 529 530 CI->replaceAllUsesWith(Res); 531 } 532 533 CI->eraseFromParent(); 534 return true; 535 } 536 537 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) { 538 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand()); 539 if(!C) 540 return false; 541 542 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 543 switch(Op) { 544 case AtomicRMWInst::Add: 545 case AtomicRMWInst::Sub: 546 case AtomicRMWInst::Or: 547 case AtomicRMWInst::Xor: 548 return C->isZero(); 549 case AtomicRMWInst::And: 550 return C->isMinusOne(); 551 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/... 552 default: 553 return false; 554 } 555 } 556 557 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) { 558 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { 559 if (TLI->shouldExpandAtomicLoadInIR(ResultingLoad)) 560 expandAtomicLoad(ResultingLoad); 561 return true; 562 } 563 return false; 564 } 565