1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing dwarf debug info into asm files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "DwarfDebug.h" 14 #include "ByteStreamer.h" 15 #include "DIEHash.h" 16 #include "DwarfCompileUnit.h" 17 #include "DwarfExpression.h" 18 #include "DwarfUnit.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/CodeGen/AsmPrinter.h" 24 #include "llvm/CodeGen/DIE.h" 25 #include "llvm/CodeGen/LexicalScopes.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineModuleInfo.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/TargetInstrInfo.h" 31 #include "llvm/CodeGen/TargetLowering.h" 32 #include "llvm/CodeGen/TargetRegisterInfo.h" 33 #include "llvm/CodeGen/TargetSubtargetInfo.h" 34 #include "llvm/DebugInfo/DWARF/DWARFExpression.h" 35 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/MC/MCAsmInfo.h" 41 #include "llvm/MC/MCContext.h" 42 #include "llvm/MC/MCSection.h" 43 #include "llvm/MC/MCStreamer.h" 44 #include "llvm/MC/MCSymbol.h" 45 #include "llvm/MC/MCTargetOptions.h" 46 #include "llvm/MC/MachineLocation.h" 47 #include "llvm/MC/SectionKind.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/MD5.h" 54 #include "llvm/Support/MathExtras.h" 55 #include "llvm/Support/Timer.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include "llvm/Target/TargetLoweringObjectFile.h" 58 #include "llvm/Target/TargetMachine.h" 59 #include <algorithm> 60 #include <cstddef> 61 #include <iterator> 62 #include <string> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "dwarfdebug" 67 68 STATISTIC(NumCSParams, "Number of dbg call site params created"); 69 70 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier( 71 "use-dwarf-ranges-base-address-specifier", cl::Hidden, 72 cl::desc("Use base address specifiers in debug_ranges"), cl::init(false)); 73 74 static cl::opt<bool> GenerateARangeSection("generate-arange-section", 75 cl::Hidden, 76 cl::desc("Generate dwarf aranges"), 77 cl::init(false)); 78 79 static cl::opt<bool> 80 GenerateDwarfTypeUnits("generate-type-units", cl::Hidden, 81 cl::desc("Generate DWARF4 type units."), 82 cl::init(false)); 83 84 static cl::opt<bool> SplitDwarfCrossCuReferences( 85 "split-dwarf-cross-cu-references", cl::Hidden, 86 cl::desc("Enable cross-cu references in DWO files"), cl::init(false)); 87 88 enum DefaultOnOff { Default, Enable, Disable }; 89 90 static cl::opt<DefaultOnOff> UnknownLocations( 91 "use-unknown-locations", cl::Hidden, 92 cl::desc("Make an absence of debug location information explicit."), 93 cl::values(clEnumVal(Default, "At top of block or after label"), 94 clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")), 95 cl::init(Default)); 96 97 static cl::opt<AccelTableKind> AccelTables( 98 "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."), 99 cl::values(clEnumValN(AccelTableKind::Default, "Default", 100 "Default for platform"), 101 clEnumValN(AccelTableKind::None, "Disable", "Disabled."), 102 clEnumValN(AccelTableKind::Apple, "Apple", "Apple"), 103 clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")), 104 cl::init(AccelTableKind::Default)); 105 106 static cl::opt<DefaultOnOff> 107 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden, 108 cl::desc("Use inlined strings rather than string section."), 109 cl::values(clEnumVal(Default, "Default for platform"), 110 clEnumVal(Enable, "Enabled"), 111 clEnumVal(Disable, "Disabled")), 112 cl::init(Default)); 113 114 static cl::opt<bool> 115 NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden, 116 cl::desc("Disable emission .debug_ranges section."), 117 cl::init(false)); 118 119 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences( 120 "dwarf-sections-as-references", cl::Hidden, 121 cl::desc("Use sections+offset as references rather than labels."), 122 cl::values(clEnumVal(Default, "Default for platform"), 123 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 124 cl::init(Default)); 125 126 static cl::opt<bool> 127 UseGNUDebugMacro("use-gnu-debug-macro", cl::Hidden, 128 cl::desc("Emit the GNU .debug_macro format with DWARF <5"), 129 cl::init(false)); 130 131 static cl::opt<DefaultOnOff> DwarfOpConvert( 132 "dwarf-op-convert", cl::Hidden, 133 cl::desc("Enable use of the DWARFv5 DW_OP_convert operator"), 134 cl::values(clEnumVal(Default, "Default for platform"), 135 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 136 cl::init(Default)); 137 138 enum LinkageNameOption { 139 DefaultLinkageNames, 140 AllLinkageNames, 141 AbstractLinkageNames 142 }; 143 144 static cl::opt<LinkageNameOption> 145 DwarfLinkageNames("dwarf-linkage-names", cl::Hidden, 146 cl::desc("Which DWARF linkage-name attributes to emit."), 147 cl::values(clEnumValN(DefaultLinkageNames, "Default", 148 "Default for platform"), 149 clEnumValN(AllLinkageNames, "All", "All"), 150 clEnumValN(AbstractLinkageNames, "Abstract", 151 "Abstract subprograms")), 152 cl::init(DefaultLinkageNames)); 153 154 static cl::opt<DwarfDebug::MinimizeAddrInV5> MinimizeAddrInV5Option( 155 "minimize-addr-in-v5", cl::Hidden, 156 cl::desc("Always use DW_AT_ranges in DWARFv5 whenever it could allow more " 157 "address pool entry sharing to reduce relocations/object size"), 158 cl::values(clEnumValN(DwarfDebug::MinimizeAddrInV5::Default, "Default", 159 "Default address minimization strategy"), 160 clEnumValN(DwarfDebug::MinimizeAddrInV5::Ranges, "Ranges", 161 "Use rnglists for contiguous ranges if that allows " 162 "using a pre-existing base address"), 163 clEnumValN(DwarfDebug::MinimizeAddrInV5::Expressions, 164 "Expressions", 165 "Use exprloc addrx+offset expressions for any " 166 "address with a prior base address"), 167 clEnumValN(DwarfDebug::MinimizeAddrInV5::Form, "Form", 168 "Use addrx+offset extension form for any address " 169 "with a prior base address"), 170 clEnumValN(DwarfDebug::MinimizeAddrInV5::Disabled, "Disabled", 171 "Stuff")), 172 cl::init(DwarfDebug::MinimizeAddrInV5::Default)); 173 174 static constexpr unsigned ULEB128PadSize = 4; 175 176 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) { 177 getActiveStreamer().emitInt8( 178 Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op) 179 : dwarf::OperationEncodingString(Op)); 180 } 181 182 void DebugLocDwarfExpression::emitSigned(int64_t Value) { 183 getActiveStreamer().emitSLEB128(Value, Twine(Value)); 184 } 185 186 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) { 187 getActiveStreamer().emitULEB128(Value, Twine(Value)); 188 } 189 190 void DebugLocDwarfExpression::emitData1(uint8_t Value) { 191 getActiveStreamer().emitInt8(Value, Twine(Value)); 192 } 193 194 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) { 195 assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit"); 196 getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize); 197 } 198 199 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI, 200 llvm::Register MachineReg) { 201 // This information is not available while emitting .debug_loc entries. 202 return false; 203 } 204 205 void DebugLocDwarfExpression::enableTemporaryBuffer() { 206 assert(!IsBuffering && "Already buffering?"); 207 if (!TmpBuf) 208 TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments); 209 IsBuffering = true; 210 } 211 212 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; } 213 214 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() { 215 return TmpBuf ? TmpBuf->Bytes.size() : 0; 216 } 217 218 void DebugLocDwarfExpression::commitTemporaryBuffer() { 219 if (!TmpBuf) 220 return; 221 for (auto Byte : enumerate(TmpBuf->Bytes)) { 222 const char *Comment = (Byte.index() < TmpBuf->Comments.size()) 223 ? TmpBuf->Comments[Byte.index()].c_str() 224 : ""; 225 OutBS.emitInt8(Byte.value(), Comment); 226 } 227 TmpBuf->Bytes.clear(); 228 TmpBuf->Comments.clear(); 229 } 230 231 const DIType *DbgVariable::getType() const { 232 return getVariable()->getType(); 233 } 234 235 /// Get .debug_loc entry for the instruction range starting at MI. 236 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) { 237 const DIExpression *Expr = MI->getDebugExpression(); 238 const bool IsVariadic = MI->isDebugValueList(); 239 assert(MI->getNumOperands() >= 3); 240 SmallVector<DbgValueLocEntry, 4> DbgValueLocEntries; 241 for (const MachineOperand &Op : MI->debug_operands()) { 242 if (Op.isReg()) { 243 MachineLocation MLoc(Op.getReg(), 244 MI->isNonListDebugValue() && MI->isDebugOffsetImm()); 245 DbgValueLocEntries.push_back(DbgValueLocEntry(MLoc)); 246 } else if (Op.isTargetIndex()) { 247 DbgValueLocEntries.push_back( 248 DbgValueLocEntry(TargetIndexLocation(Op.getIndex(), Op.getOffset()))); 249 } else if (Op.isImm()) 250 DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getImm())); 251 else if (Op.isFPImm()) 252 DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getFPImm())); 253 else if (Op.isCImm()) 254 DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getCImm())); 255 else 256 llvm_unreachable("Unexpected debug operand in DBG_VALUE* instruction!"); 257 } 258 return DbgValueLoc(Expr, DbgValueLocEntries, IsVariadic); 259 } 260 261 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) { 262 assert(FrameIndexExprs.empty() && "Already initialized?"); 263 assert(!ValueLoc.get() && "Already initialized?"); 264 265 assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable"); 266 assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() && 267 "Wrong inlined-at"); 268 269 ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue)); 270 if (auto *E = DbgValue->getDebugExpression()) 271 if (E->getNumElements()) 272 FrameIndexExprs.push_back({0, E}); 273 } 274 275 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const { 276 if (FrameIndexExprs.size() == 1) 277 return FrameIndexExprs; 278 279 assert(llvm::all_of(FrameIndexExprs, 280 [](const FrameIndexExpr &A) { 281 return A.Expr->isFragment(); 282 }) && 283 "multiple FI expressions without DW_OP_LLVM_fragment"); 284 llvm::sort(FrameIndexExprs, 285 [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool { 286 return A.Expr->getFragmentInfo()->OffsetInBits < 287 B.Expr->getFragmentInfo()->OffsetInBits; 288 }); 289 290 return FrameIndexExprs; 291 } 292 293 void DbgVariable::addMMIEntry(const DbgVariable &V) { 294 assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry"); 295 assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry"); 296 assert(V.getVariable() == getVariable() && "conflicting variable"); 297 assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location"); 298 299 assert(!FrameIndexExprs.empty() && "Expected an MMI entry"); 300 assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry"); 301 302 // FIXME: This logic should not be necessary anymore, as we now have proper 303 // deduplication. However, without it, we currently run into the assertion 304 // below, which means that we are likely dealing with broken input, i.e. two 305 // non-fragment entries for the same variable at different frame indices. 306 if (FrameIndexExprs.size()) { 307 auto *Expr = FrameIndexExprs.back().Expr; 308 if (!Expr || !Expr->isFragment()) 309 return; 310 } 311 312 for (const auto &FIE : V.FrameIndexExprs) 313 // Ignore duplicate entries. 314 if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) { 315 return FIE.FI == Other.FI && FIE.Expr == Other.Expr; 316 })) 317 FrameIndexExprs.push_back(FIE); 318 319 assert((FrameIndexExprs.size() == 1 || 320 llvm::all_of(FrameIndexExprs, 321 [](FrameIndexExpr &FIE) { 322 return FIE.Expr && FIE.Expr->isFragment(); 323 })) && 324 "conflicting locations for variable"); 325 } 326 327 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion, 328 bool GenerateTypeUnits, 329 DebuggerKind Tuning, 330 const Triple &TT) { 331 // Honor an explicit request. 332 if (AccelTables != AccelTableKind::Default) 333 return AccelTables; 334 335 // Accelerator tables with type units are currently not supported. 336 if (GenerateTypeUnits) 337 return AccelTableKind::None; 338 339 // Accelerator tables get emitted if targetting DWARF v5 or LLDB. DWARF v5 340 // always implies debug_names. For lower standard versions we use apple 341 // accelerator tables on apple platforms and debug_names elsewhere. 342 if (DwarfVersion >= 5) 343 return AccelTableKind::Dwarf; 344 if (Tuning == DebuggerKind::LLDB) 345 return TT.isOSBinFormatMachO() ? AccelTableKind::Apple 346 : AccelTableKind::Dwarf; 347 return AccelTableKind::None; 348 } 349 350 DwarfDebug::DwarfDebug(AsmPrinter *A) 351 : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()), 352 InfoHolder(A, "info_string", DIEValueAllocator), 353 SkeletonHolder(A, "skel_string", DIEValueAllocator), 354 IsDarwin(A->TM.getTargetTriple().isOSDarwin()) { 355 const Triple &TT = Asm->TM.getTargetTriple(); 356 357 // Make sure we know our "debugger tuning". The target option takes 358 // precedence; fall back to triple-based defaults. 359 if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default) 360 DebuggerTuning = Asm->TM.Options.DebuggerTuning; 361 else if (IsDarwin) 362 DebuggerTuning = DebuggerKind::LLDB; 363 else if (TT.isPS4CPU()) 364 DebuggerTuning = DebuggerKind::SCE; 365 else if (TT.isOSAIX()) 366 DebuggerTuning = DebuggerKind::DBX; 367 else 368 DebuggerTuning = DebuggerKind::GDB; 369 370 if (DwarfInlinedStrings == Default) 371 UseInlineStrings = TT.isNVPTX() || tuneForDBX(); 372 else 373 UseInlineStrings = DwarfInlinedStrings == Enable; 374 375 UseLocSection = !TT.isNVPTX(); 376 377 HasAppleExtensionAttributes = tuneForLLDB(); 378 379 // Handle split DWARF. 380 HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty(); 381 382 // SCE defaults to linkage names only for abstract subprograms. 383 if (DwarfLinkageNames == DefaultLinkageNames) 384 UseAllLinkageNames = !tuneForSCE(); 385 else 386 UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames; 387 388 unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion; 389 unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber 390 : MMI->getModule()->getDwarfVersion(); 391 // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2. 392 DwarfVersion = 393 TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION); 394 395 bool Dwarf64 = DwarfVersion >= 3 && // DWARF64 was introduced in DWARFv3. 396 TT.isArch64Bit(); // DWARF64 requires 64-bit relocations. 397 398 // Support DWARF64 399 // 1: For ELF when requested. 400 // 2: For XCOFF64: the AIX assembler will fill in debug section lengths 401 // according to the DWARF64 format for 64-bit assembly, so we must use 402 // DWARF64 in the compiler too for 64-bit mode. 403 Dwarf64 &= 404 ((Asm->TM.Options.MCOptions.Dwarf64 || MMI->getModule()->isDwarf64()) && 405 TT.isOSBinFormatELF()) || 406 TT.isOSBinFormatXCOFF(); 407 408 if (!Dwarf64 && TT.isArch64Bit() && TT.isOSBinFormatXCOFF()) 409 report_fatal_error("XCOFF requires DWARF64 for 64-bit mode!"); 410 411 UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX(); 412 413 // Use sections as references. Force for NVPTX. 414 if (DwarfSectionsAsReferences == Default) 415 UseSectionsAsReferences = TT.isNVPTX(); 416 else 417 UseSectionsAsReferences = DwarfSectionsAsReferences == Enable; 418 419 // Don't generate type units for unsupported object file formats. 420 GenerateTypeUnits = (A->TM.getTargetTriple().isOSBinFormatELF() || 421 A->TM.getTargetTriple().isOSBinFormatWasm()) && 422 GenerateDwarfTypeUnits; 423 424 TheAccelTableKind = computeAccelTableKind( 425 DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple()); 426 427 // Work around a GDB bug. GDB doesn't support the standard opcode; 428 // SCE doesn't support GNU's; LLDB prefers the standard opcode, which 429 // is defined as of DWARF 3. 430 // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented 431 // https://sourceware.org/bugzilla/show_bug.cgi?id=11616 432 UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3; 433 434 // GDB does not fully support the DWARF 4 representation for bitfields. 435 UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB(); 436 437 // The DWARF v5 string offsets table has - possibly shared - contributions 438 // from each compile and type unit each preceded by a header. The string 439 // offsets table used by the pre-DWARF v5 split-DWARF implementation uses 440 // a monolithic string offsets table without any header. 441 UseSegmentedStringOffsetsTable = DwarfVersion >= 5; 442 443 // Emit call-site-param debug info for GDB and LLDB, if the target supports 444 // the debug entry values feature. It can also be enabled explicitly. 445 EmitDebugEntryValues = Asm->TM.Options.ShouldEmitDebugEntryValues(); 446 447 // It is unclear if the GCC .debug_macro extension is well-specified 448 // for split DWARF. For now, do not allow LLVM to emit it. 449 UseDebugMacroSection = 450 DwarfVersion >= 5 || (UseGNUDebugMacro && !useSplitDwarf()); 451 if (DwarfOpConvert == Default) 452 EnableOpConvert = !((tuneForGDB() && useSplitDwarf()) || (tuneForLLDB() && !TT.isOSBinFormatMachO())); 453 else 454 EnableOpConvert = (DwarfOpConvert == Enable); 455 456 // Split DWARF would benefit object size significantly by trading reductions 457 // in address pool usage for slightly increased range list encodings. 458 if (DwarfVersion >= 5) { 459 MinimizeAddr = MinimizeAddrInV5Option; 460 // FIXME: In the future, enable this by default for Split DWARF where the 461 // tradeoff is more pronounced due to being able to offload the range 462 // lists to the dwo file and shrink object files/reduce relocations there. 463 if (MinimizeAddr == MinimizeAddrInV5::Default) 464 MinimizeAddr = MinimizeAddrInV5::Disabled; 465 } 466 467 Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion); 468 Asm->OutStreamer->getContext().setDwarfFormat(Dwarf64 ? dwarf::DWARF64 469 : dwarf::DWARF32); 470 } 471 472 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h. 473 DwarfDebug::~DwarfDebug() = default; 474 475 static bool isObjCClass(StringRef Name) { 476 return Name.startswith("+") || Name.startswith("-"); 477 } 478 479 static bool hasObjCCategory(StringRef Name) { 480 if (!isObjCClass(Name)) 481 return false; 482 483 return Name.contains(") "); 484 } 485 486 static void getObjCClassCategory(StringRef In, StringRef &Class, 487 StringRef &Category) { 488 if (!hasObjCCategory(In)) { 489 Class = In.slice(In.find('[') + 1, In.find(' ')); 490 Category = ""; 491 return; 492 } 493 494 Class = In.slice(In.find('[') + 1, In.find('(')); 495 Category = In.slice(In.find('[') + 1, In.find(' ')); 496 } 497 498 static StringRef getObjCMethodName(StringRef In) { 499 return In.slice(In.find(' ') + 1, In.find(']')); 500 } 501 502 // Add the various names to the Dwarf accelerator table names. 503 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU, 504 const DISubprogram *SP, DIE &Die) { 505 if (getAccelTableKind() != AccelTableKind::Apple && 506 CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None) 507 return; 508 509 if (!SP->isDefinition()) 510 return; 511 512 if (SP->getName() != "") 513 addAccelName(CU, SP->getName(), Die); 514 515 // If the linkage name is different than the name, go ahead and output that as 516 // well into the name table. Only do that if we are going to actually emit 517 // that name. 518 if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() && 519 (useAllLinkageNames() || InfoHolder.getAbstractScopeDIEs().lookup(SP))) 520 addAccelName(CU, SP->getLinkageName(), Die); 521 522 // If this is an Objective-C selector name add it to the ObjC accelerator 523 // too. 524 if (isObjCClass(SP->getName())) { 525 StringRef Class, Category; 526 getObjCClassCategory(SP->getName(), Class, Category); 527 addAccelObjC(CU, Class, Die); 528 if (Category != "") 529 addAccelObjC(CU, Category, Die); 530 // Also add the base method name to the name table. 531 addAccelName(CU, getObjCMethodName(SP->getName()), Die); 532 } 533 } 534 535 /// Check whether we should create a DIE for the given Scope, return true 536 /// if we don't create a DIE (the corresponding DIE is null). 537 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) { 538 if (Scope->isAbstractScope()) 539 return false; 540 541 // We don't create a DIE if there is no Range. 542 const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges(); 543 if (Ranges.empty()) 544 return true; 545 546 if (Ranges.size() > 1) 547 return false; 548 549 // We don't create a DIE if we have a single Range and the end label 550 // is null. 551 return !getLabelAfterInsn(Ranges.front().second); 552 } 553 554 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) { 555 F(CU); 556 if (auto *SkelCU = CU.getSkeleton()) 557 if (CU.getCUNode()->getSplitDebugInlining()) 558 F(*SkelCU); 559 } 560 561 bool DwarfDebug::shareAcrossDWOCUs() const { 562 return SplitDwarfCrossCuReferences; 563 } 564 565 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU, 566 LexicalScope *Scope) { 567 assert(Scope && Scope->getScopeNode()); 568 assert(Scope->isAbstractScope()); 569 assert(!Scope->getInlinedAt()); 570 571 auto *SP = cast<DISubprogram>(Scope->getScopeNode()); 572 573 // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram 574 // was inlined from another compile unit. 575 if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining()) 576 // Avoid building the original CU if it won't be used 577 SrcCU.constructAbstractSubprogramScopeDIE(Scope); 578 else { 579 auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 580 if (auto *SkelCU = CU.getSkeleton()) { 581 (shareAcrossDWOCUs() ? CU : SrcCU) 582 .constructAbstractSubprogramScopeDIE(Scope); 583 if (CU.getCUNode()->getSplitDebugInlining()) 584 SkelCU->constructAbstractSubprogramScopeDIE(Scope); 585 } else 586 CU.constructAbstractSubprogramScopeDIE(Scope); 587 } 588 } 589 590 /// Represents a parameter whose call site value can be described by applying a 591 /// debug expression to a register in the forwarded register worklist. 592 struct FwdRegParamInfo { 593 /// The described parameter register. 594 unsigned ParamReg; 595 596 /// Debug expression that has been built up when walking through the 597 /// instruction chain that produces the parameter's value. 598 const DIExpression *Expr; 599 }; 600 601 /// Register worklist for finding call site values. 602 using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>; 603 604 /// Append the expression \p Addition to \p Original and return the result. 605 static const DIExpression *combineDIExpressions(const DIExpression *Original, 606 const DIExpression *Addition) { 607 std::vector<uint64_t> Elts = Addition->getElements().vec(); 608 // Avoid multiple DW_OP_stack_values. 609 if (Original->isImplicit() && Addition->isImplicit()) 610 erase_value(Elts, dwarf::DW_OP_stack_value); 611 const DIExpression *CombinedExpr = 612 (Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original; 613 return CombinedExpr; 614 } 615 616 /// Emit call site parameter entries that are described by the given value and 617 /// debug expression. 618 template <typename ValT> 619 static void finishCallSiteParams(ValT Val, const DIExpression *Expr, 620 ArrayRef<FwdRegParamInfo> DescribedParams, 621 ParamSet &Params) { 622 for (auto Param : DescribedParams) { 623 bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0; 624 625 // TODO: Entry value operations can currently not be combined with any 626 // other expressions, so we can't emit call site entries in those cases. 627 if (ShouldCombineExpressions && Expr->isEntryValue()) 628 continue; 629 630 // If a parameter's call site value is produced by a chain of 631 // instructions we may have already created an expression for the 632 // parameter when walking through the instructions. Append that to the 633 // base expression. 634 const DIExpression *CombinedExpr = 635 ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr) 636 : Expr; 637 assert((!CombinedExpr || CombinedExpr->isValid()) && 638 "Combined debug expression is invalid"); 639 640 DbgValueLoc DbgLocVal(CombinedExpr, DbgValueLocEntry(Val)); 641 DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal); 642 Params.push_back(CSParm); 643 ++NumCSParams; 644 } 645 } 646 647 /// Add \p Reg to the worklist, if it's not already present, and mark that the 648 /// given parameter registers' values can (potentially) be described using 649 /// that register and an debug expression. 650 static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg, 651 const DIExpression *Expr, 652 ArrayRef<FwdRegParamInfo> ParamsToAdd) { 653 auto I = Worklist.insert({Reg, {}}); 654 auto &ParamsForFwdReg = I.first->second; 655 for (auto Param : ParamsToAdd) { 656 assert(none_of(ParamsForFwdReg, 657 [Param](const FwdRegParamInfo &D) { 658 return D.ParamReg == Param.ParamReg; 659 }) && 660 "Same parameter described twice by forwarding reg"); 661 662 // If a parameter's call site value is produced by a chain of 663 // instructions we may have already created an expression for the 664 // parameter when walking through the instructions. Append that to the 665 // new expression. 666 const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr); 667 ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr}); 668 } 669 } 670 671 /// Interpret values loaded into registers by \p CurMI. 672 static void interpretValues(const MachineInstr *CurMI, 673 FwdRegWorklist &ForwardedRegWorklist, 674 ParamSet &Params) { 675 676 const MachineFunction *MF = CurMI->getMF(); 677 const DIExpression *EmptyExpr = 678 DIExpression::get(MF->getFunction().getContext(), {}); 679 const auto &TRI = *MF->getSubtarget().getRegisterInfo(); 680 const auto &TII = *MF->getSubtarget().getInstrInfo(); 681 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 682 683 // If an instruction defines more than one item in the worklist, we may run 684 // into situations where a worklist register's value is (potentially) 685 // described by the previous value of another register that is also defined 686 // by that instruction. 687 // 688 // This can for example occur in cases like this: 689 // 690 // $r1 = mov 123 691 // $r0, $r1 = mvrr $r1, 456 692 // call @foo, $r0, $r1 693 // 694 // When describing $r1's value for the mvrr instruction, we need to make sure 695 // that we don't finalize an entry value for $r0, as that is dependent on the 696 // previous value of $r1 (123 rather than 456). 697 // 698 // In order to not have to distinguish between those cases when finalizing 699 // entry values, we simply postpone adding new parameter registers to the 700 // worklist, by first keeping them in this temporary container until the 701 // instruction has been handled. 702 FwdRegWorklist TmpWorklistItems; 703 704 // If the MI is an instruction defining one or more parameters' forwarding 705 // registers, add those defines. 706 auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI, 707 SmallSetVector<unsigned, 4> &Defs) { 708 if (MI.isDebugInstr()) 709 return; 710 711 for (const MachineOperand &MO : MI.operands()) { 712 if (MO.isReg() && MO.isDef() && 713 Register::isPhysicalRegister(MO.getReg())) { 714 for (auto &FwdReg : ForwardedRegWorklist) 715 if (TRI.regsOverlap(FwdReg.first, MO.getReg())) 716 Defs.insert(FwdReg.first); 717 } 718 } 719 }; 720 721 // Set of worklist registers that are defined by this instruction. 722 SmallSetVector<unsigned, 4> FwdRegDefs; 723 724 getForwardingRegsDefinedByMI(*CurMI, FwdRegDefs); 725 if (FwdRegDefs.empty()) 726 return; 727 728 for (auto ParamFwdReg : FwdRegDefs) { 729 if (auto ParamValue = TII.describeLoadedValue(*CurMI, ParamFwdReg)) { 730 if (ParamValue->first.isImm()) { 731 int64_t Val = ParamValue->first.getImm(); 732 finishCallSiteParams(Val, ParamValue->second, 733 ForwardedRegWorklist[ParamFwdReg], Params); 734 } else if (ParamValue->first.isReg()) { 735 Register RegLoc = ParamValue->first.getReg(); 736 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 737 Register FP = TRI.getFrameRegister(*MF); 738 bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP); 739 if (TRI.isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) { 740 MachineLocation MLoc(RegLoc, /*Indirect=*/IsSPorFP); 741 finishCallSiteParams(MLoc, ParamValue->second, 742 ForwardedRegWorklist[ParamFwdReg], Params); 743 } else { 744 // ParamFwdReg was described by the non-callee saved register 745 // RegLoc. Mark that the call site values for the parameters are 746 // dependent on that register instead of ParamFwdReg. Since RegLoc 747 // may be a register that will be handled in this iteration, we 748 // postpone adding the items to the worklist, and instead keep them 749 // in a temporary container. 750 addToFwdRegWorklist(TmpWorklistItems, RegLoc, ParamValue->second, 751 ForwardedRegWorklist[ParamFwdReg]); 752 } 753 } 754 } 755 } 756 757 // Remove all registers that this instruction defines from the worklist. 758 for (auto ParamFwdReg : FwdRegDefs) 759 ForwardedRegWorklist.erase(ParamFwdReg); 760 761 // Now that we are done handling this instruction, add items from the 762 // temporary worklist to the real one. 763 for (auto &New : TmpWorklistItems) 764 addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, New.second); 765 TmpWorklistItems.clear(); 766 } 767 768 static bool interpretNextInstr(const MachineInstr *CurMI, 769 FwdRegWorklist &ForwardedRegWorklist, 770 ParamSet &Params) { 771 // Skip bundle headers. 772 if (CurMI->isBundle()) 773 return true; 774 775 // If the next instruction is a call we can not interpret parameter's 776 // forwarding registers or we finished the interpretation of all 777 // parameters. 778 if (CurMI->isCall()) 779 return false; 780 781 if (ForwardedRegWorklist.empty()) 782 return false; 783 784 // Avoid NOP description. 785 if (CurMI->getNumOperands() == 0) 786 return true; 787 788 interpretValues(CurMI, ForwardedRegWorklist, Params); 789 790 return true; 791 } 792 793 /// Try to interpret values loaded into registers that forward parameters 794 /// for \p CallMI. Store parameters with interpreted value into \p Params. 795 static void collectCallSiteParameters(const MachineInstr *CallMI, 796 ParamSet &Params) { 797 const MachineFunction *MF = CallMI->getMF(); 798 const auto &CalleesMap = MF->getCallSitesInfo(); 799 auto CallFwdRegsInfo = CalleesMap.find(CallMI); 800 801 // There is no information for the call instruction. 802 if (CallFwdRegsInfo == CalleesMap.end()) 803 return; 804 805 const MachineBasicBlock *MBB = CallMI->getParent(); 806 807 // Skip the call instruction. 808 auto I = std::next(CallMI->getReverseIterator()); 809 810 FwdRegWorklist ForwardedRegWorklist; 811 812 const DIExpression *EmptyExpr = 813 DIExpression::get(MF->getFunction().getContext(), {}); 814 815 // Add all the forwarding registers into the ForwardedRegWorklist. 816 for (const auto &ArgReg : CallFwdRegsInfo->second) { 817 bool InsertedReg = 818 ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}}) 819 .second; 820 assert(InsertedReg && "Single register used to forward two arguments?"); 821 (void)InsertedReg; 822 } 823 824 // Do not emit CSInfo for undef forwarding registers. 825 for (auto &MO : CallMI->uses()) 826 if (MO.isReg() && MO.isUndef()) 827 ForwardedRegWorklist.erase(MO.getReg()); 828 829 // We erase, from the ForwardedRegWorklist, those forwarding registers for 830 // which we successfully describe a loaded value (by using 831 // the describeLoadedValue()). For those remaining arguments in the working 832 // list, for which we do not describe a loaded value by 833 // the describeLoadedValue(), we try to generate an entry value expression 834 // for their call site value description, if the call is within the entry MBB. 835 // TODO: Handle situations when call site parameter value can be described 836 // as the entry value within basic blocks other than the first one. 837 bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin(); 838 839 // Search for a loading value in forwarding registers inside call delay slot. 840 if (CallMI->hasDelaySlot()) { 841 auto Suc = std::next(CallMI->getIterator()); 842 // Only one-instruction delay slot is supported. 843 auto BundleEnd = llvm::getBundleEnd(CallMI->getIterator()); 844 (void)BundleEnd; 845 assert(std::next(Suc) == BundleEnd && 846 "More than one instruction in call delay slot"); 847 // Try to interpret value loaded by instruction. 848 if (!interpretNextInstr(&*Suc, ForwardedRegWorklist, Params)) 849 return; 850 } 851 852 // Search for a loading value in forwarding registers. 853 for (; I != MBB->rend(); ++I) { 854 // Try to interpret values loaded by instruction. 855 if (!interpretNextInstr(&*I, ForwardedRegWorklist, Params)) 856 return; 857 } 858 859 // Emit the call site parameter's value as an entry value. 860 if (ShouldTryEmitEntryVals) { 861 // Create an expression where the register's entry value is used. 862 DIExpression *EntryExpr = DIExpression::get( 863 MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1}); 864 for (auto &RegEntry : ForwardedRegWorklist) { 865 MachineLocation MLoc(RegEntry.first); 866 finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params); 867 } 868 } 869 } 870 871 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP, 872 DwarfCompileUnit &CU, DIE &ScopeDIE, 873 const MachineFunction &MF) { 874 // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if 875 // the subprogram is required to have one. 876 if (!SP.areAllCallsDescribed() || !SP.isDefinition()) 877 return; 878 879 // Use DW_AT_call_all_calls to express that call site entries are present 880 // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls 881 // because one of its requirements is not met: call site entries for 882 // optimized-out calls are elided. 883 CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls)); 884 885 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 886 assert(TII && "TargetInstrInfo not found: cannot label tail calls"); 887 888 // Delay slot support check. 889 auto delaySlotSupported = [&](const MachineInstr &MI) { 890 if (!MI.isBundledWithSucc()) 891 return false; 892 auto Suc = std::next(MI.getIterator()); 893 auto CallInstrBundle = getBundleStart(MI.getIterator()); 894 (void)CallInstrBundle; 895 auto DelaySlotBundle = getBundleStart(Suc); 896 (void)DelaySlotBundle; 897 // Ensure that label after call is following delay slot instruction. 898 // Ex. CALL_INSTRUCTION { 899 // DELAY_SLOT_INSTRUCTION } 900 // LABEL_AFTER_CALL 901 assert(getLabelAfterInsn(&*CallInstrBundle) == 902 getLabelAfterInsn(&*DelaySlotBundle) && 903 "Call and its successor instruction don't have same label after."); 904 return true; 905 }; 906 907 // Emit call site entries for each call or tail call in the function. 908 for (const MachineBasicBlock &MBB : MF) { 909 for (const MachineInstr &MI : MBB.instrs()) { 910 // Bundles with call in them will pass the isCall() test below but do not 911 // have callee operand information so skip them here. Iterator will 912 // eventually reach the call MI. 913 if (MI.isBundle()) 914 continue; 915 916 // Skip instructions which aren't calls. Both calls and tail-calling jump 917 // instructions (e.g TAILJMPd64) are classified correctly here. 918 if (!MI.isCandidateForCallSiteEntry()) 919 continue; 920 921 // Skip instructions marked as frame setup, as they are not interesting to 922 // the user. 923 if (MI.getFlag(MachineInstr::FrameSetup)) 924 continue; 925 926 // Check if delay slot support is enabled. 927 if (MI.hasDelaySlot() && !delaySlotSupported(*&MI)) 928 return; 929 930 // If this is a direct call, find the callee's subprogram. 931 // In the case of an indirect call find the register that holds 932 // the callee. 933 const MachineOperand &CalleeOp = TII->getCalleeOperand(MI); 934 if (!CalleeOp.isGlobal() && 935 (!CalleeOp.isReg() || 936 !Register::isPhysicalRegister(CalleeOp.getReg()))) 937 continue; 938 939 unsigned CallReg = 0; 940 const DISubprogram *CalleeSP = nullptr; 941 const Function *CalleeDecl = nullptr; 942 if (CalleeOp.isReg()) { 943 CallReg = CalleeOp.getReg(); 944 if (!CallReg) 945 continue; 946 } else { 947 CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal()); 948 if (!CalleeDecl || !CalleeDecl->getSubprogram()) 949 continue; 950 CalleeSP = CalleeDecl->getSubprogram(); 951 } 952 953 // TODO: Omit call site entries for runtime calls (objc_msgSend, etc). 954 955 bool IsTail = TII->isTailCall(MI); 956 957 // If MI is in a bundle, the label was created after the bundle since 958 // EmitFunctionBody iterates over top-level MIs. Get that top-level MI 959 // to search for that label below. 960 const MachineInstr *TopLevelCallMI = 961 MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI; 962 963 // For non-tail calls, the return PC is needed to disambiguate paths in 964 // the call graph which could lead to some target function. For tail 965 // calls, no return PC information is needed, unless tuning for GDB in 966 // DWARF4 mode in which case we fake a return PC for compatibility. 967 const MCSymbol *PCAddr = 968 (!IsTail || CU.useGNUAnalogForDwarf5Feature()) 969 ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI)) 970 : nullptr; 971 972 // For tail calls, it's necessary to record the address of the branch 973 // instruction so that the debugger can show where the tail call occurred. 974 const MCSymbol *CallAddr = 975 IsTail ? getLabelBeforeInsn(TopLevelCallMI) : nullptr; 976 977 assert((IsTail || PCAddr) && "Non-tail call without return PC"); 978 979 LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> " 980 << (CalleeDecl ? CalleeDecl->getName() 981 : StringRef(MF.getSubtarget() 982 .getRegisterInfo() 983 ->getName(CallReg))) 984 << (IsTail ? " [IsTail]" : "") << "\n"); 985 986 DIE &CallSiteDIE = CU.constructCallSiteEntryDIE( 987 ScopeDIE, CalleeSP, IsTail, PCAddr, CallAddr, CallReg); 988 989 // Optionally emit call-site-param debug info. 990 if (emitDebugEntryValues()) { 991 ParamSet Params; 992 // Try to interpret values of call site parameters. 993 collectCallSiteParameters(&MI, Params); 994 CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params); 995 } 996 } 997 } 998 } 999 1000 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const { 1001 if (!U.hasDwarfPubSections()) 1002 return; 1003 1004 U.addFlag(D, dwarf::DW_AT_GNU_pubnames); 1005 } 1006 1007 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit, 1008 DwarfCompileUnit &NewCU) { 1009 DIE &Die = NewCU.getUnitDie(); 1010 StringRef FN = DIUnit->getFilename(); 1011 1012 StringRef Producer = DIUnit->getProducer(); 1013 StringRef Flags = DIUnit->getFlags(); 1014 if (!Flags.empty() && !useAppleExtensionAttributes()) { 1015 std::string ProducerWithFlags = Producer.str() + " " + Flags.str(); 1016 NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags); 1017 } else 1018 NewCU.addString(Die, dwarf::DW_AT_producer, Producer); 1019 1020 NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 1021 DIUnit->getSourceLanguage()); 1022 NewCU.addString(Die, dwarf::DW_AT_name, FN); 1023 StringRef SysRoot = DIUnit->getSysRoot(); 1024 if (!SysRoot.empty()) 1025 NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot); 1026 StringRef SDK = DIUnit->getSDK(); 1027 if (!SDK.empty()) 1028 NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK); 1029 1030 // Add DW_str_offsets_base to the unit DIE, except for split units. 1031 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 1032 NewCU.addStringOffsetsStart(); 1033 1034 if (!useSplitDwarf()) { 1035 NewCU.initStmtList(); 1036 1037 // If we're using split dwarf the compilation dir is going to be in the 1038 // skeleton CU and so we don't need to duplicate it here. 1039 if (!CompilationDir.empty()) 1040 NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 1041 addGnuPubAttributes(NewCU, Die); 1042 } 1043 1044 if (useAppleExtensionAttributes()) { 1045 if (DIUnit->isOptimized()) 1046 NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized); 1047 1048 StringRef Flags = DIUnit->getFlags(); 1049 if (!Flags.empty()) 1050 NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags); 1051 1052 if (unsigned RVer = DIUnit->getRuntimeVersion()) 1053 NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers, 1054 dwarf::DW_FORM_data1, RVer); 1055 } 1056 1057 if (DIUnit->getDWOId()) { 1058 // This CU is either a clang module DWO or a skeleton CU. 1059 NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, 1060 DIUnit->getDWOId()); 1061 if (!DIUnit->getSplitDebugFilename().empty()) { 1062 // This is a prefabricated skeleton CU. 1063 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1064 ? dwarf::DW_AT_dwo_name 1065 : dwarf::DW_AT_GNU_dwo_name; 1066 NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename()); 1067 } 1068 } 1069 } 1070 1071 // Collect local scopes that contain any local declarations 1072 // (excluding local variables) to be sure they will be emitted 1073 // (see DwarfCompileUnit::createAndAddScopeChildren() for details). 1074 static void collectLocalScopesWithDeclsFromCU(const DICompileUnit *CUNode, 1075 DwarfCompileUnit &CU) { 1076 auto getLocalScope = [](const DIScope *S) -> const DILocalScope * { 1077 if (!S) 1078 return nullptr; 1079 if (isa<DICommonBlock>(S)) 1080 S = S->getScope(); 1081 if (const auto *LScope = dyn_cast_or_null<DILocalScope>(S)) 1082 return LScope->getNonLexicalBlockFileScope(); 1083 return nullptr; 1084 }; 1085 1086 for (auto *GVE : CUNode->getGlobalVariables()) 1087 if (auto *LScope = getLocalScope(GVE->getVariable()->getScope())) 1088 CU.recordLocalScopeWithDecls(LScope); 1089 1090 for (auto *Ty : CUNode->getEnumTypes()) 1091 if (auto *LScope = getLocalScope(Ty->getScope())) 1092 CU.recordLocalScopeWithDecls(LScope); 1093 1094 for (auto *Ty : CUNode->getRetainedTypes()) 1095 if (DIType *RT = dyn_cast<DIType>(Ty)) 1096 if (auto *LScope = getLocalScope(RT->getScope())) 1097 CU.recordLocalScopeWithDecls(LScope); 1098 1099 for (auto *IE : CUNode->getImportedEntities()) 1100 if (auto *LScope = getLocalScope(IE->getScope())) 1101 CU.recordLocalScopeWithDecls(LScope); 1102 1103 // FIXME: We know nothing about local records and typedefs here. 1104 // since nothing but local variables (and members of local records) 1105 // references them. So that they will be emitted in a first available 1106 // parent scope DIE. 1107 } 1108 1109 // Create new DwarfCompileUnit for the given metadata node with tag 1110 // DW_TAG_compile_unit. 1111 DwarfCompileUnit & 1112 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) { 1113 if (auto *CU = CUMap.lookup(DIUnit)) 1114 return *CU; 1115 1116 CompilationDir = DIUnit->getDirectory(); 1117 1118 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 1119 InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder); 1120 DwarfCompileUnit &NewCU = *OwnedUnit; 1121 InfoHolder.addUnit(std::move(OwnedUnit)); 1122 1123 // LTO with assembly output shares a single line table amongst multiple CUs. 1124 // To avoid the compilation directory being ambiguous, let the line table 1125 // explicitly describe the directory of all files, never relying on the 1126 // compilation directory. 1127 if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU) 1128 Asm->OutStreamer->emitDwarfFile0Directive( 1129 CompilationDir, DIUnit->getFilename(), getMD5AsBytes(DIUnit->getFile()), 1130 DIUnit->getSource(), NewCU.getUniqueID()); 1131 1132 if (useSplitDwarf()) { 1133 NewCU.setSkeleton(constructSkeletonCU(NewCU)); 1134 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection()); 1135 } else { 1136 finishUnitAttributes(DIUnit, NewCU); 1137 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 1138 } 1139 1140 CUMap.insert({DIUnit, &NewCU}); 1141 CUDieMap.insert({&NewCU.getUnitDie(), &NewCU}); 1142 1143 // Record local scopes, that have some globals (static locals), 1144 // imports or types declared within. 1145 collectLocalScopesWithDeclsFromCU(DIUnit, NewCU); 1146 1147 return NewCU; 1148 } 1149 1150 // Emit all Dwarf sections that should come prior to the content. Create 1151 // global DIEs and emit initial debug info sections. This is invoked by 1152 // the target AsmPrinter. 1153 void DwarfDebug::beginModule(Module *M) { 1154 DebugHandlerBase::beginModule(M); 1155 1156 if (!Asm || !MMI->hasDebugInfo()) 1157 return; 1158 1159 unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(), 1160 M->debug_compile_units_end()); 1161 assert(NumDebugCUs > 0 && "Asm unexpectedly initialized"); 1162 assert(MMI->hasDebugInfo() && 1163 "DebugInfoAvailabilty unexpectedly not initialized"); 1164 SingleCU = NumDebugCUs == 1; 1165 1166 // Create the symbol that designates the start of the unit's contribution 1167 // to the string offsets table. In a split DWARF scenario, only the skeleton 1168 // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol). 1169 if (useSegmentedStringOffsetsTable()) 1170 (useSplitDwarf() ? SkeletonHolder : InfoHolder) 1171 .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base")); 1172 1173 1174 // Create the symbols that designates the start of the DWARF v5 range list 1175 // and locations list tables. They are located past the table headers. 1176 if (getDwarfVersion() >= 5) { 1177 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1178 Holder.setRnglistsTableBaseSym( 1179 Asm->createTempSymbol("rnglists_table_base")); 1180 1181 if (useSplitDwarf()) 1182 InfoHolder.setRnglistsTableBaseSym( 1183 Asm->createTempSymbol("rnglists_dwo_table_base")); 1184 } 1185 1186 // Create the symbol that points to the first entry following the debug 1187 // address table (.debug_addr) header. 1188 AddrPool.setLabel(Asm->createTempSymbol("addr_table_base")); 1189 DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base")); 1190 } 1191 1192 void DwarfDebug::finishEntityDefinitions() { 1193 for (const auto &Entity : ConcreteEntities) { 1194 DIE *Die = Entity->getDIE(); 1195 assert(Die); 1196 // FIXME: Consider the time-space tradeoff of just storing the unit pointer 1197 // in the ConcreteEntities list, rather than looking it up again here. 1198 // DIE::getUnit isn't simple - it walks parent pointers, etc. 1199 DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie()); 1200 assert(Unit); 1201 Unit->finishEntityDefinition(Entity.get()); 1202 } 1203 } 1204 1205 void DwarfDebug::finishSubprogramDefinitions() { 1206 for (const DISubprogram *SP : ProcessedSPNodes) { 1207 assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug); 1208 forBothCUs( 1209 getOrCreateDwarfCompileUnit(SP->getUnit()), 1210 [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); }); 1211 } 1212 } 1213 1214 void DwarfDebug::finalizeModuleInfo() { 1215 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); 1216 1217 finishSubprogramDefinitions(); 1218 1219 finishEntityDefinitions(); 1220 1221 // Include the DWO file name in the hash if there's more than one CU. 1222 // This handles ThinLTO's situation where imported CUs may very easily be 1223 // duplicate with the same CU partially imported into another ThinLTO unit. 1224 StringRef DWOName; 1225 if (CUMap.size() > 1) 1226 DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile; 1227 1228 // Handle anything that needs to be done on a per-unit basis after 1229 // all other generation. 1230 for (const auto &P : CUMap) { 1231 auto &TheCU = *P.second; 1232 if (TheCU.getCUNode()->isDebugDirectivesOnly()) 1233 continue; 1234 // Emit DW_AT_containing_type attribute to connect types with their 1235 // vtable holding type. 1236 TheCU.constructContainingTypeDIEs(); 1237 1238 // Add CU specific attributes if we need to add any. 1239 // If we're splitting the dwarf out now that we've got the entire 1240 // CU then add the dwo id to it. 1241 auto *SkCU = TheCU.getSkeleton(); 1242 1243 bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty(); 1244 1245 if (HasSplitUnit) { 1246 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1247 ? dwarf::DW_AT_dwo_name 1248 : dwarf::DW_AT_GNU_dwo_name; 1249 finishUnitAttributes(TheCU.getCUNode(), TheCU); 1250 TheCU.addString(TheCU.getUnitDie(), attrDWOName, 1251 Asm->TM.Options.MCOptions.SplitDwarfFile); 1252 SkCU->addString(SkCU->getUnitDie(), attrDWOName, 1253 Asm->TM.Options.MCOptions.SplitDwarfFile); 1254 // Emit a unique identifier for this CU. 1255 uint64_t ID = 1256 DIEHash(Asm, &TheCU).computeCUSignature(DWOName, TheCU.getUnitDie()); 1257 if (getDwarfVersion() >= 5) { 1258 TheCU.setDWOId(ID); 1259 SkCU->setDWOId(ID); 1260 } else { 1261 TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1262 dwarf::DW_FORM_data8, ID); 1263 SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1264 dwarf::DW_FORM_data8, ID); 1265 } 1266 1267 if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) { 1268 const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol(); 1269 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base, 1270 Sym, Sym); 1271 } 1272 } else if (SkCU) { 1273 finishUnitAttributes(SkCU->getCUNode(), *SkCU); 1274 } 1275 1276 // If we have code split among multiple sections or non-contiguous 1277 // ranges of code then emit a DW_AT_ranges attribute on the unit that will 1278 // remain in the .o file, otherwise add a DW_AT_low_pc. 1279 // FIXME: We should use ranges allow reordering of code ala 1280 // .subsections_via_symbols in mach-o. This would mean turning on 1281 // ranges for all subprogram DIEs for mach-o. 1282 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 1283 1284 if (unsigned NumRanges = TheCU.getRanges().size()) { 1285 if (NumRanges > 1 && useRangesSection()) 1286 // A DW_AT_low_pc attribute may also be specified in combination with 1287 // DW_AT_ranges to specify the default base address for use in 1288 // location lists (see Section 2.6.2) and range lists (see Section 1289 // 2.17.3). 1290 U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0); 1291 else 1292 U.setBaseAddress(TheCU.getRanges().front().Begin); 1293 U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges()); 1294 } 1295 1296 // We don't keep track of which addresses are used in which CU so this 1297 // is a bit pessimistic under LTO. 1298 if ((HasSplitUnit || getDwarfVersion() >= 5) && !AddrPool.isEmpty()) 1299 U.addAddrTableBase(); 1300 1301 if (getDwarfVersion() >= 5) { 1302 if (U.hasRangeLists()) 1303 U.addRnglistsBase(); 1304 1305 if (!DebugLocs.getLists().empty()) { 1306 if (!useSplitDwarf()) 1307 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base, 1308 DebugLocs.getSym(), 1309 TLOF.getDwarfLoclistsSection()->getBeginSymbol()); 1310 } 1311 } 1312 1313 auto *CUNode = cast<DICompileUnit>(P.first); 1314 // If compile Unit has macros, emit "DW_AT_macro_info/DW_AT_macros" 1315 // attribute. 1316 if (CUNode->getMacros()) { 1317 if (UseDebugMacroSection) { 1318 if (useSplitDwarf()) 1319 TheCU.addSectionDelta( 1320 TheCU.getUnitDie(), dwarf::DW_AT_macros, U.getMacroLabelBegin(), 1321 TLOF.getDwarfMacroDWOSection()->getBeginSymbol()); 1322 else { 1323 dwarf::Attribute MacrosAttr = getDwarfVersion() >= 5 1324 ? dwarf::DW_AT_macros 1325 : dwarf::DW_AT_GNU_macros; 1326 U.addSectionLabel(U.getUnitDie(), MacrosAttr, U.getMacroLabelBegin(), 1327 TLOF.getDwarfMacroSection()->getBeginSymbol()); 1328 } 1329 } else { 1330 if (useSplitDwarf()) 1331 TheCU.addSectionDelta( 1332 TheCU.getUnitDie(), dwarf::DW_AT_macro_info, 1333 U.getMacroLabelBegin(), 1334 TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol()); 1335 else 1336 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info, 1337 U.getMacroLabelBegin(), 1338 TLOF.getDwarfMacinfoSection()->getBeginSymbol()); 1339 } 1340 } 1341 } 1342 1343 // Emit all frontend-produced Skeleton CUs, i.e., Clang modules. 1344 for (auto *CUNode : MMI->getModule()->debug_compile_units()) 1345 if (CUNode->getDWOId()) 1346 getOrCreateDwarfCompileUnit(CUNode); 1347 1348 // Compute DIE offsets and sizes. 1349 InfoHolder.computeSizeAndOffsets(); 1350 if (useSplitDwarf()) 1351 SkeletonHolder.computeSizeAndOffsets(); 1352 } 1353 1354 /// Sort and unique GVEs by comparing their fragment offset. 1355 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> & 1356 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) { 1357 llvm::sort( 1358 GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) { 1359 // Sort order: first null exprs, then exprs without fragment 1360 // info, then sort by fragment offset in bits. 1361 // FIXME: Come up with a more comprehensive comparator so 1362 // the sorting isn't non-deterministic, and so the following 1363 // std::unique call works correctly. 1364 if (!A.Expr || !B.Expr) 1365 return !!B.Expr; 1366 auto FragmentA = A.Expr->getFragmentInfo(); 1367 auto FragmentB = B.Expr->getFragmentInfo(); 1368 if (!FragmentA || !FragmentB) 1369 return !!FragmentB; 1370 return FragmentA->OffsetInBits < FragmentB->OffsetInBits; 1371 }); 1372 GVEs.erase(std::unique(GVEs.begin(), GVEs.end(), 1373 [](DwarfCompileUnit::GlobalExpr A, 1374 DwarfCompileUnit::GlobalExpr B) { 1375 return A.Expr == B.Expr; 1376 }), 1377 GVEs.end()); 1378 return GVEs; 1379 } 1380 1381 /// Create a DIE for \p Ty if it doesn't already exist. If type units are 1382 /// enabled, try to emit a type unit without a CU skeleton DIE. 1383 static void createMaybeUnusedType(DwarfDebug &DD, DwarfCompileUnit &CU, 1384 DIType &Ty) { 1385 // Try to generate a type unit without creating a skeleton DIE in this CU. 1386 if (DICompositeType const *CTy = dyn_cast<DICompositeType>(&Ty)) { 1387 MDString const *TypeId = CTy->getRawIdentifier(); 1388 if (DD.generateTypeUnits() && TypeId && !Ty.isForwardDecl()) 1389 if (DD.getOrCreateDwarfTypeUnit(CU, TypeId->getString(), CTy)) 1390 return; 1391 } 1392 // We couldn't or shouldn't add a type unit so create the DIE normally. 1393 CU.getOrCreateTypeDIE(&Ty); 1394 } 1395 1396 // Emit all Dwarf sections that should come after the content. 1397 void DwarfDebug::endModule() { 1398 // Terminate the pending line table. 1399 if (PrevCU) 1400 terminateLineTable(PrevCU); 1401 PrevCU = nullptr; 1402 assert(CurFn == nullptr); 1403 assert(CurMI == nullptr); 1404 1405 // Collect global variables info. 1406 DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>> 1407 GVMap; 1408 for (const GlobalVariable &Global : MMI->getModule()->globals()) { 1409 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1410 Global.getDebugInfo(GVs); 1411 for (auto *GVE : GVs) 1412 GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()}); 1413 } 1414 1415 for (DICompileUnit *CUNode : MMI->getModule()->debug_compile_units()) { 1416 auto *CU = CUMap.lookup(CUNode); 1417 1418 // If this CU hasn't been emitted yet, create it here unless it is empty. 1419 if (!CU) { 1420 // FIXME: Move local imported entities into a list attached to the 1421 // subprogram, then this search won't be needed and a 1422 // getImportedEntities().empty() test should go below with the rest. 1423 bool HasNonLocalImportedEntities = llvm::any_of( 1424 CUNode->getImportedEntities(), [](const DIImportedEntity *IE) { 1425 return !isa<DILocalScope>(IE->getScope()); 1426 }); 1427 1428 if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() && 1429 CUNode->getRetainedTypes().empty() && 1430 CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty()) 1431 continue; 1432 1433 CU = &getOrCreateDwarfCompileUnit(CUNode); 1434 } 1435 1436 // Global Variables. 1437 for (auto *GVE : CUNode->getGlobalVariables()) { 1438 // Don't bother adding DIGlobalVariableExpressions listed in the CU if we 1439 // already know about the variable and it isn't adding a constant 1440 // expression. 1441 auto &GVMapEntry = GVMap[GVE->getVariable()]; 1442 auto *Expr = GVE->getExpression(); 1443 if (!GVMapEntry.size() || (Expr && Expr->isConstant())) 1444 GVMapEntry.push_back({nullptr, Expr}); 1445 } 1446 1447 DenseSet<DIGlobalVariable *> Processed; 1448 for (auto *GVE : CUNode->getGlobalVariables()) { 1449 DIGlobalVariable *GV = GVE->getVariable(); 1450 if (Processed.insert(GV).second) 1451 CU->getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV])); 1452 } 1453 1454 for (auto *Ty : CUNode->getEnumTypes()) 1455 createMaybeUnusedType(*this, *CU, *Ty); 1456 1457 for (auto *Ty : CUNode->getRetainedTypes()) { 1458 if (DIType *RT = dyn_cast<DIType>(Ty)) 1459 createMaybeUnusedType(*this, *CU, *RT); 1460 } 1461 1462 // Emit imported entities last so that the relevant context 1463 // is already available. 1464 for (auto *IE : CUNode->getImportedEntities()) 1465 CU->createAndAddImportedEntityDIE(IE); 1466 1467 CU->createBaseTypeDIEs(); 1468 } 1469 1470 // If we aren't actually generating debug info (check beginModule - 1471 // conditionalized on the presence of the llvm.dbg.cu metadata node) 1472 if (!Asm || !MMI->hasDebugInfo()) 1473 return; 1474 1475 // Finalize the debug info for the module. 1476 finalizeModuleInfo(); 1477 1478 if (useSplitDwarf()) 1479 // Emit debug_loc.dwo/debug_loclists.dwo section. 1480 emitDebugLocDWO(); 1481 else 1482 // Emit debug_loc/debug_loclists section. 1483 emitDebugLoc(); 1484 1485 // Corresponding abbreviations into a abbrev section. 1486 emitAbbreviations(); 1487 1488 // Emit all the DIEs into a debug info section. 1489 emitDebugInfo(); 1490 1491 // Emit info into a debug aranges section. 1492 if (GenerateARangeSection) 1493 emitDebugARanges(); 1494 1495 // Emit info into a debug ranges section. 1496 emitDebugRanges(); 1497 1498 if (useSplitDwarf()) 1499 // Emit info into a debug macinfo.dwo section. 1500 emitDebugMacinfoDWO(); 1501 else 1502 // Emit info into a debug macinfo/macro section. 1503 emitDebugMacinfo(); 1504 1505 emitDebugStr(); 1506 1507 if (useSplitDwarf()) { 1508 emitDebugStrDWO(); 1509 emitDebugInfoDWO(); 1510 emitDebugAbbrevDWO(); 1511 emitDebugLineDWO(); 1512 emitDebugRangesDWO(); 1513 } 1514 1515 emitDebugAddr(); 1516 1517 // Emit info into the dwarf accelerator table sections. 1518 switch (getAccelTableKind()) { 1519 case AccelTableKind::Apple: 1520 emitAccelNames(); 1521 emitAccelObjC(); 1522 emitAccelNamespaces(); 1523 emitAccelTypes(); 1524 break; 1525 case AccelTableKind::Dwarf: 1526 emitAccelDebugNames(); 1527 break; 1528 case AccelTableKind::None: 1529 break; 1530 case AccelTableKind::Default: 1531 llvm_unreachable("Default should have already been resolved."); 1532 } 1533 1534 // Emit the pubnames and pubtypes sections if requested. 1535 emitDebugPubSections(); 1536 1537 // clean up. 1538 // FIXME: AbstractVariables.clear(); 1539 } 1540 1541 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU, 1542 const DINode *Node, 1543 const MDNode *ScopeNode) { 1544 if (CU.getExistingAbstractEntity(Node)) 1545 return; 1546 1547 CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope( 1548 cast<DILocalScope>(ScopeNode))); 1549 } 1550 1551 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU, 1552 const DINode *Node, const MDNode *ScopeNode) { 1553 if (CU.getExistingAbstractEntity(Node)) 1554 return; 1555 1556 if (LexicalScope *Scope = 1557 LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode))) 1558 CU.createAbstractEntity(Node, Scope); 1559 } 1560 1561 // Collect variable information from side table maintained by MF. 1562 void DwarfDebug::collectVariableInfoFromMFTable( 1563 DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) { 1564 SmallDenseMap<InlinedEntity, DbgVariable *> MFVars; 1565 LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n"); 1566 for (const auto &VI : Asm->MF->getVariableDbgInfo()) { 1567 if (!VI.Var) 1568 continue; 1569 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1570 "Expected inlined-at fields to agree"); 1571 1572 InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt()); 1573 Processed.insert(Var); 1574 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1575 1576 // If variable scope is not found then skip this variable. 1577 if (!Scope) { 1578 LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName() 1579 << ", no variable scope found\n"); 1580 continue; 1581 } 1582 1583 ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode()); 1584 auto RegVar = std::make_unique<DbgVariable>( 1585 cast<DILocalVariable>(Var.first), Var.second); 1586 RegVar->initializeMMI(VI.Expr, VI.Slot); 1587 LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName() 1588 << "\n"); 1589 1590 if (DbgVariable *DbgVar = MFVars.lookup(Var)) 1591 DbgVar->addMMIEntry(*RegVar); 1592 else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) { 1593 MFVars.insert({Var, RegVar.get()}); 1594 ConcreteEntities.push_back(std::move(RegVar)); 1595 } 1596 } 1597 } 1598 1599 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its 1600 /// enclosing lexical scope. The check ensures there are no other instructions 1601 /// in the same lexical scope preceding the DBG_VALUE and that its range is 1602 /// either open or otherwise rolls off the end of the scope. 1603 static bool validThroughout(LexicalScopes &LScopes, 1604 const MachineInstr *DbgValue, 1605 const MachineInstr *RangeEnd, 1606 const InstructionOrdering &Ordering) { 1607 assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location"); 1608 auto MBB = DbgValue->getParent(); 1609 auto DL = DbgValue->getDebugLoc(); 1610 auto *LScope = LScopes.findLexicalScope(DL); 1611 // Scope doesn't exist; this is a dead DBG_VALUE. 1612 if (!LScope) 1613 return false; 1614 auto &LSRange = LScope->getRanges(); 1615 if (LSRange.size() == 0) 1616 return false; 1617 1618 const MachineInstr *LScopeBegin = LSRange.front().first; 1619 // If the scope starts before the DBG_VALUE then we may have a negative 1620 // result. Otherwise the location is live coming into the scope and we 1621 // can skip the following checks. 1622 if (!Ordering.isBefore(DbgValue, LScopeBegin)) { 1623 // Exit if the lexical scope begins outside of the current block. 1624 if (LScopeBegin->getParent() != MBB) 1625 return false; 1626 1627 MachineBasicBlock::const_reverse_iterator Pred(DbgValue); 1628 for (++Pred; Pred != MBB->rend(); ++Pred) { 1629 if (Pred->getFlag(MachineInstr::FrameSetup)) 1630 break; 1631 auto PredDL = Pred->getDebugLoc(); 1632 if (!PredDL || Pred->isMetaInstruction()) 1633 continue; 1634 // Check whether the instruction preceding the DBG_VALUE is in the same 1635 // (sub)scope as the DBG_VALUE. 1636 if (DL->getScope() == PredDL->getScope()) 1637 return false; 1638 auto *PredScope = LScopes.findLexicalScope(PredDL); 1639 if (!PredScope || LScope->dominates(PredScope)) 1640 return false; 1641 } 1642 } 1643 1644 // If the range of the DBG_VALUE is open-ended, report success. 1645 if (!RangeEnd) 1646 return true; 1647 1648 // Single, constant DBG_VALUEs in the prologue are promoted to be live 1649 // throughout the function. This is a hack, presumably for DWARF v2 and not 1650 // necessarily correct. It would be much better to use a dbg.declare instead 1651 // if we know the constant is live throughout the scope. 1652 if (MBB->pred_empty() && 1653 all_of(DbgValue->debug_operands(), 1654 [](const MachineOperand &Op) { return Op.isImm(); })) 1655 return true; 1656 1657 // Test if the location terminates before the end of the scope. 1658 const MachineInstr *LScopeEnd = LSRange.back().second; 1659 if (Ordering.isBefore(RangeEnd, LScopeEnd)) 1660 return false; 1661 1662 // There's a single location which starts at the scope start, and ends at or 1663 // after the scope end. 1664 return true; 1665 } 1666 1667 /// Build the location list for all DBG_VALUEs in the function that 1668 /// describe the same variable. The resulting DebugLocEntries will have 1669 /// strict monotonically increasing begin addresses and will never 1670 /// overlap. If the resulting list has only one entry that is valid 1671 /// throughout variable's scope return true. 1672 // 1673 // See the definition of DbgValueHistoryMap::Entry for an explanation of the 1674 // different kinds of history map entries. One thing to be aware of is that if 1675 // a debug value is ended by another entry (rather than being valid until the 1676 // end of the function), that entry's instruction may or may not be included in 1677 // the range, depending on if the entry is a clobbering entry (it has an 1678 // instruction that clobbers one or more preceding locations), or if it is an 1679 // (overlapping) debug value entry. This distinction can be seen in the example 1680 // below. The first debug value is ended by the clobbering entry 2, and the 1681 // second and third debug values are ended by the overlapping debug value entry 1682 // 4. 1683 // 1684 // Input: 1685 // 1686 // History map entries [type, end index, mi] 1687 // 1688 // 0 | [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)] 1689 // 1 | | [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)] 1690 // 2 | | [Clobber, $reg0 = [...], -, -] 1691 // 3 | | [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)] 1692 // 4 [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)] 1693 // 1694 // Output [start, end) [Value...]: 1695 // 1696 // [0-1) [(reg0, fragment 0, 32)] 1697 // [1-3) [(reg0, fragment 0, 32), (reg1, fragment 32, 32)] 1698 // [3-4) [(reg1, fragment 32, 32), (123, fragment 64, 32)] 1699 // [4-) [(@g, fragment 0, 96)] 1700 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc, 1701 const DbgValueHistoryMap::Entries &Entries) { 1702 using OpenRange = 1703 std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>; 1704 SmallVector<OpenRange, 4> OpenRanges; 1705 bool isSafeForSingleLocation = true; 1706 const MachineInstr *StartDebugMI = nullptr; 1707 const MachineInstr *EndMI = nullptr; 1708 1709 for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) { 1710 const MachineInstr *Instr = EI->getInstr(); 1711 1712 // Remove all values that are no longer live. 1713 size_t Index = std::distance(EB, EI); 1714 erase_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; }); 1715 1716 // If we are dealing with a clobbering entry, this iteration will result in 1717 // a location list entry starting after the clobbering instruction. 1718 const MCSymbol *StartLabel = 1719 EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr); 1720 assert(StartLabel && 1721 "Forgot label before/after instruction starting a range!"); 1722 1723 const MCSymbol *EndLabel; 1724 if (std::next(EI) == Entries.end()) { 1725 const MachineBasicBlock &EndMBB = Asm->MF->back(); 1726 EndLabel = Asm->MBBSectionRanges[EndMBB.getSectionIDNum()].EndLabel; 1727 if (EI->isClobber()) 1728 EndMI = EI->getInstr(); 1729 } 1730 else if (std::next(EI)->isClobber()) 1731 EndLabel = getLabelAfterInsn(std::next(EI)->getInstr()); 1732 else 1733 EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr()); 1734 assert(EndLabel && "Forgot label after instruction ending a range!"); 1735 1736 if (EI->isDbgValue()) 1737 LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n"); 1738 1739 // If this history map entry has a debug value, add that to the list of 1740 // open ranges and check if its location is valid for a single value 1741 // location. 1742 if (EI->isDbgValue()) { 1743 // Do not add undef debug values, as they are redundant information in 1744 // the location list entries. An undef debug results in an empty location 1745 // description. If there are any non-undef fragments then padding pieces 1746 // with empty location descriptions will automatically be inserted, and if 1747 // all fragments are undef then the whole location list entry is 1748 // redundant. 1749 if (!Instr->isUndefDebugValue()) { 1750 auto Value = getDebugLocValue(Instr); 1751 OpenRanges.emplace_back(EI->getEndIndex(), Value); 1752 1753 // TODO: Add support for single value fragment locations. 1754 if (Instr->getDebugExpression()->isFragment()) 1755 isSafeForSingleLocation = false; 1756 1757 if (!StartDebugMI) 1758 StartDebugMI = Instr; 1759 } else { 1760 isSafeForSingleLocation = false; 1761 } 1762 } 1763 1764 // Location list entries with empty location descriptions are redundant 1765 // information in DWARF, so do not emit those. 1766 if (OpenRanges.empty()) 1767 continue; 1768 1769 // Omit entries with empty ranges as they do not have any effect in DWARF. 1770 if (StartLabel == EndLabel) { 1771 LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n"); 1772 continue; 1773 } 1774 1775 SmallVector<DbgValueLoc, 4> Values; 1776 for (auto &R : OpenRanges) 1777 Values.push_back(R.second); 1778 1779 // With Basic block sections, it is posssible that the StartLabel and the 1780 // Instr are not in the same section. This happens when the StartLabel is 1781 // the function begin label and the dbg value appears in a basic block 1782 // that is not the entry. In this case, the range needs to be split to 1783 // span each individual section in the range from StartLabel to EndLabel. 1784 if (Asm->MF->hasBBSections() && StartLabel == Asm->getFunctionBegin() && 1785 !Instr->getParent()->sameSection(&Asm->MF->front())) { 1786 const MCSymbol *BeginSectionLabel = StartLabel; 1787 1788 for (const MachineBasicBlock &MBB : *Asm->MF) { 1789 if (MBB.isBeginSection() && &MBB != &Asm->MF->front()) 1790 BeginSectionLabel = MBB.getSymbol(); 1791 1792 if (MBB.sameSection(Instr->getParent())) { 1793 DebugLoc.emplace_back(BeginSectionLabel, EndLabel, Values); 1794 break; 1795 } 1796 if (MBB.isEndSection()) 1797 DebugLoc.emplace_back(BeginSectionLabel, MBB.getEndSymbol(), Values); 1798 } 1799 } else { 1800 DebugLoc.emplace_back(StartLabel, EndLabel, Values); 1801 } 1802 1803 // Attempt to coalesce the ranges of two otherwise identical 1804 // DebugLocEntries. 1805 auto CurEntry = DebugLoc.rbegin(); 1806 LLVM_DEBUG({ 1807 dbgs() << CurEntry->getValues().size() << " Values:\n"; 1808 for (auto &Value : CurEntry->getValues()) 1809 Value.dump(); 1810 dbgs() << "-----\n"; 1811 }); 1812 1813 auto PrevEntry = std::next(CurEntry); 1814 if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry)) 1815 DebugLoc.pop_back(); 1816 } 1817 1818 if (!isSafeForSingleLocation || 1819 !validThroughout(LScopes, StartDebugMI, EndMI, getInstOrdering())) 1820 return false; 1821 1822 if (DebugLoc.size() == 1) 1823 return true; 1824 1825 if (!Asm->MF->hasBBSections()) 1826 return false; 1827 1828 // Check here to see if loclist can be merged into a single range. If not, 1829 // we must keep the split loclists per section. This does exactly what 1830 // MergeRanges does without sections. We don't actually merge the ranges 1831 // as the split ranges must be kept intact if this cannot be collapsed 1832 // into a single range. 1833 const MachineBasicBlock *RangeMBB = nullptr; 1834 if (DebugLoc[0].getBeginSym() == Asm->getFunctionBegin()) 1835 RangeMBB = &Asm->MF->front(); 1836 else 1837 RangeMBB = Entries.begin()->getInstr()->getParent(); 1838 auto *CurEntry = DebugLoc.begin(); 1839 auto *NextEntry = std::next(CurEntry); 1840 while (NextEntry != DebugLoc.end()) { 1841 // Get the last machine basic block of this section. 1842 while (!RangeMBB->isEndSection()) 1843 RangeMBB = RangeMBB->getNextNode(); 1844 if (!RangeMBB->getNextNode()) 1845 return false; 1846 // CurEntry should end the current section and NextEntry should start 1847 // the next section and the Values must match for these two ranges to be 1848 // merged. 1849 if (CurEntry->getEndSym() != RangeMBB->getEndSymbol() || 1850 NextEntry->getBeginSym() != RangeMBB->getNextNode()->getSymbol() || 1851 CurEntry->getValues() != NextEntry->getValues()) 1852 return false; 1853 RangeMBB = RangeMBB->getNextNode(); 1854 CurEntry = NextEntry; 1855 NextEntry = std::next(CurEntry); 1856 } 1857 return true; 1858 } 1859 1860 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU, 1861 LexicalScope &Scope, 1862 const DINode *Node, 1863 const DILocation *Location, 1864 const MCSymbol *Sym) { 1865 ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode()); 1866 if (isa<const DILocalVariable>(Node)) { 1867 ConcreteEntities.push_back( 1868 std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node), 1869 Location)); 1870 InfoHolder.addScopeVariable(&Scope, 1871 cast<DbgVariable>(ConcreteEntities.back().get())); 1872 } else if (isa<const DILabel>(Node)) { 1873 ConcreteEntities.push_back( 1874 std::make_unique<DbgLabel>(cast<const DILabel>(Node), 1875 Location, Sym)); 1876 InfoHolder.addScopeLabel(&Scope, 1877 cast<DbgLabel>(ConcreteEntities.back().get())); 1878 } 1879 return ConcreteEntities.back().get(); 1880 } 1881 1882 // Find variables for each lexical scope. 1883 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU, 1884 const DISubprogram *SP, 1885 DenseSet<InlinedEntity> &Processed) { 1886 // Grab the variable info that was squirreled away in the MMI side-table. 1887 collectVariableInfoFromMFTable(TheCU, Processed); 1888 1889 for (const auto &I : DbgValues) { 1890 InlinedEntity IV = I.first; 1891 if (Processed.count(IV)) 1892 continue; 1893 1894 // Instruction ranges, specifying where IV is accessible. 1895 const auto &HistoryMapEntries = I.second; 1896 1897 // Try to find any non-empty variable location. Do not create a concrete 1898 // entity if there are no locations. 1899 if (!DbgValues.hasNonEmptyLocation(HistoryMapEntries)) 1900 continue; 1901 1902 LexicalScope *Scope = nullptr; 1903 const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first); 1904 if (const DILocation *IA = IV.second) 1905 Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA); 1906 else 1907 Scope = LScopes.findLexicalScope(LocalVar->getScope()); 1908 // If variable scope is not found then skip this variable. 1909 if (!Scope) 1910 continue; 1911 1912 Processed.insert(IV); 1913 DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU, 1914 *Scope, LocalVar, IV.second)); 1915 1916 const MachineInstr *MInsn = HistoryMapEntries.front().getInstr(); 1917 assert(MInsn->isDebugValue() && "History must begin with debug value"); 1918 1919 // Check if there is a single DBG_VALUE, valid throughout the var's scope. 1920 // If the history map contains a single debug value, there may be an 1921 // additional entry which clobbers the debug value. 1922 size_t HistSize = HistoryMapEntries.size(); 1923 bool SingleValueWithClobber = 1924 HistSize == 2 && HistoryMapEntries[1].isClobber(); 1925 if (HistSize == 1 || SingleValueWithClobber) { 1926 const auto *End = 1927 SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr; 1928 if (validThroughout(LScopes, MInsn, End, getInstOrdering())) { 1929 RegVar->initializeDbgValue(MInsn); 1930 continue; 1931 } 1932 } 1933 1934 // Do not emit location lists if .debug_loc secton is disabled. 1935 if (!useLocSection()) 1936 continue; 1937 1938 // Handle multiple DBG_VALUE instructions describing one variable. 1939 DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn); 1940 1941 // Build the location list for this variable. 1942 SmallVector<DebugLocEntry, 8> Entries; 1943 bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries); 1944 1945 // Check whether buildLocationList managed to merge all locations to one 1946 // that is valid throughout the variable's scope. If so, produce single 1947 // value location. 1948 if (isValidSingleLocation) { 1949 RegVar->initializeDbgValue(Entries[0].getValues()[0]); 1950 continue; 1951 } 1952 1953 // If the variable has a DIBasicType, extract it. Basic types cannot have 1954 // unique identifiers, so don't bother resolving the type with the 1955 // identifier map. 1956 const DIBasicType *BT = dyn_cast<DIBasicType>( 1957 static_cast<const Metadata *>(LocalVar->getType())); 1958 1959 // Finalize the entry by lowering it into a DWARF bytestream. 1960 for (auto &Entry : Entries) 1961 Entry.finalize(*Asm, List, BT, TheCU); 1962 } 1963 1964 // For each InlinedEntity collected from DBG_LABEL instructions, convert to 1965 // DWARF-related DbgLabel. 1966 for (const auto &I : DbgLabels) { 1967 InlinedEntity IL = I.first; 1968 const MachineInstr *MI = I.second; 1969 if (MI == nullptr) 1970 continue; 1971 1972 LexicalScope *Scope = nullptr; 1973 const DILabel *Label = cast<DILabel>(IL.first); 1974 // The scope could have an extra lexical block file. 1975 const DILocalScope *LocalScope = 1976 Label->getScope()->getNonLexicalBlockFileScope(); 1977 // Get inlined DILocation if it is inlined label. 1978 if (const DILocation *IA = IL.second) 1979 Scope = LScopes.findInlinedScope(LocalScope, IA); 1980 else 1981 Scope = LScopes.findLexicalScope(LocalScope); 1982 // If label scope is not found then skip this label. 1983 if (!Scope) 1984 continue; 1985 1986 Processed.insert(IL); 1987 /// At this point, the temporary label is created. 1988 /// Save the temporary label to DbgLabel entity to get the 1989 /// actually address when generating Dwarf DIE. 1990 MCSymbol *Sym = getLabelBeforeInsn(MI); 1991 createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym); 1992 } 1993 1994 // Collect info for variables/labels that were optimized out. 1995 for (const DINode *DN : SP->getRetainedNodes()) { 1996 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 1997 continue; 1998 LexicalScope *Scope = nullptr; 1999 if (auto *DV = dyn_cast<DILocalVariable>(DN)) { 2000 Scope = LScopes.findLexicalScope(DV->getScope()); 2001 } else if (auto *DL = dyn_cast<DILabel>(DN)) { 2002 Scope = LScopes.findLexicalScope(DL->getScope()); 2003 } 2004 2005 if (Scope) 2006 createConcreteEntity(TheCU, *Scope, DN, nullptr); 2007 } 2008 } 2009 2010 // Process beginning of an instruction. 2011 void DwarfDebug::beginInstruction(const MachineInstr *MI) { 2012 const MachineFunction &MF = *MI->getMF(); 2013 const auto *SP = MF.getFunction().getSubprogram(); 2014 bool NoDebug = 2015 !SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug; 2016 2017 // Delay slot support check. 2018 auto delaySlotSupported = [](const MachineInstr &MI) { 2019 if (!MI.isBundledWithSucc()) 2020 return false; 2021 auto Suc = std::next(MI.getIterator()); 2022 (void)Suc; 2023 // Ensure that delay slot instruction is successor of the call instruction. 2024 // Ex. CALL_INSTRUCTION { 2025 // DELAY_SLOT_INSTRUCTION } 2026 assert(Suc->isBundledWithPred() && 2027 "Call bundle instructions are out of order"); 2028 return true; 2029 }; 2030 2031 // When describing calls, we need a label for the call instruction. 2032 if (!NoDebug && SP->areAllCallsDescribed() && 2033 MI->isCandidateForCallSiteEntry(MachineInstr::AnyInBundle) && 2034 (!MI->hasDelaySlot() || delaySlotSupported(*MI))) { 2035 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 2036 bool IsTail = TII->isTailCall(*MI); 2037 // For tail calls, we need the address of the branch instruction for 2038 // DW_AT_call_pc. 2039 if (IsTail) 2040 requestLabelBeforeInsn(MI); 2041 // For non-tail calls, we need the return address for the call for 2042 // DW_AT_call_return_pc. Under GDB tuning, this information is needed for 2043 // tail calls as well. 2044 requestLabelAfterInsn(MI); 2045 } 2046 2047 DebugHandlerBase::beginInstruction(MI); 2048 if (!CurMI) 2049 return; 2050 2051 if (NoDebug) 2052 return; 2053 2054 // Check if source location changes, but ignore DBG_VALUE and CFI locations. 2055 // If the instruction is part of the function frame setup code, do not emit 2056 // any line record, as there is no correspondence with any user code. 2057 if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup)) 2058 return; 2059 const DebugLoc &DL = MI->getDebugLoc(); 2060 // When we emit a line-0 record, we don't update PrevInstLoc; so look at 2061 // the last line number actually emitted, to see if it was line 0. 2062 unsigned LastAsmLine = 2063 Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine(); 2064 2065 if (DL == PrevInstLoc) { 2066 // If we have an ongoing unspecified location, nothing to do here. 2067 if (!DL) 2068 return; 2069 // We have an explicit location, same as the previous location. 2070 // But we might be coming back to it after a line 0 record. 2071 if (LastAsmLine == 0 && DL.getLine() != 0) { 2072 // Reinstate the source location but not marked as a statement. 2073 const MDNode *Scope = DL.getScope(); 2074 recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0); 2075 } 2076 return; 2077 } 2078 2079 if (!DL) { 2080 // We have an unspecified location, which might want to be line 0. 2081 // If we have already emitted a line-0 record, don't repeat it. 2082 if (LastAsmLine == 0) 2083 return; 2084 // If user said Don't Do That, don't do that. 2085 if (UnknownLocations == Disable) 2086 return; 2087 // See if we have a reason to emit a line-0 record now. 2088 // Reasons to emit a line-0 record include: 2089 // - User asked for it (UnknownLocations). 2090 // - Instruction has a label, so it's referenced from somewhere else, 2091 // possibly debug information; we want it to have a source location. 2092 // - Instruction is at the top of a block; we don't want to inherit the 2093 // location from the physically previous (maybe unrelated) block. 2094 if (UnknownLocations == Enable || PrevLabel || 2095 (PrevInstBB && PrevInstBB != MI->getParent())) { 2096 // Preserve the file and column numbers, if we can, to save space in 2097 // the encoded line table. 2098 // Do not update PrevInstLoc, it remembers the last non-0 line. 2099 const MDNode *Scope = nullptr; 2100 unsigned Column = 0; 2101 if (PrevInstLoc) { 2102 Scope = PrevInstLoc.getScope(); 2103 Column = PrevInstLoc.getCol(); 2104 } 2105 recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0); 2106 } 2107 return; 2108 } 2109 2110 // We have an explicit location, different from the previous location. 2111 // Don't repeat a line-0 record, but otherwise emit the new location. 2112 // (The new location might be an explicit line 0, which we do emit.) 2113 if (DL.getLine() == 0 && LastAsmLine == 0) 2114 return; 2115 unsigned Flags = 0; 2116 if (DL == PrologEndLoc) { 2117 Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT; 2118 PrologEndLoc = DebugLoc(); 2119 } 2120 // If the line changed, we call that a new statement; unless we went to 2121 // line 0 and came back, in which case it is not a new statement. 2122 unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine; 2123 if (DL.getLine() && DL.getLine() != OldLine) 2124 Flags |= DWARF2_FLAG_IS_STMT; 2125 2126 const MDNode *Scope = DL.getScope(); 2127 recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags); 2128 2129 // If we're not at line 0, remember this location. 2130 if (DL.getLine()) 2131 PrevInstLoc = DL; 2132 } 2133 2134 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) { 2135 // First known non-DBG_VALUE and non-frame setup location marks 2136 // the beginning of the function body. 2137 DebugLoc LineZeroLoc; 2138 for (const auto &MBB : *MF) { 2139 for (const auto &MI : MBB) { 2140 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 2141 MI.getDebugLoc()) { 2142 // Scan forward to try to find a non-zero line number. The prologue_end 2143 // marks the first breakpoint in the function after the frame setup, and 2144 // a compiler-generated line 0 location is not a meaningful breakpoint. 2145 // If none is found, return the first location after the frame setup. 2146 if (MI.getDebugLoc().getLine()) 2147 return MI.getDebugLoc(); 2148 LineZeroLoc = MI.getDebugLoc(); 2149 } 2150 } 2151 } 2152 return LineZeroLoc; 2153 } 2154 2155 /// Register a source line with debug info. Returns the unique label that was 2156 /// emitted and which provides correspondence to the source line list. 2157 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col, 2158 const MDNode *S, unsigned Flags, unsigned CUID, 2159 uint16_t DwarfVersion, 2160 ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) { 2161 StringRef Fn; 2162 unsigned FileNo = 1; 2163 unsigned Discriminator = 0; 2164 if (auto *Scope = cast_or_null<DIScope>(S)) { 2165 Fn = Scope->getFilename(); 2166 if (Line != 0 && DwarfVersion >= 4) 2167 if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope)) 2168 Discriminator = LBF->getDiscriminator(); 2169 2170 FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID]) 2171 .getOrCreateSourceID(Scope->getFile()); 2172 } 2173 Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0, 2174 Discriminator, Fn); 2175 } 2176 2177 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF, 2178 unsigned CUID) { 2179 // Get beginning of function. 2180 if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) { 2181 // Ensure the compile unit is created if the function is called before 2182 // beginFunction(). 2183 (void)getOrCreateDwarfCompileUnit( 2184 MF.getFunction().getSubprogram()->getUnit()); 2185 // We'd like to list the prologue as "not statements" but GDB behaves 2186 // poorly if we do that. Revisit this with caution/GDB (7.5+) testing. 2187 const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram(); 2188 ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT, 2189 CUID, getDwarfVersion(), getUnits()); 2190 return PrologEndLoc; 2191 } 2192 return DebugLoc(); 2193 } 2194 2195 // Gather pre-function debug information. Assumes being called immediately 2196 // after the function entry point has been emitted. 2197 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) { 2198 CurFn = MF; 2199 2200 auto *SP = MF->getFunction().getSubprogram(); 2201 assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode()); 2202 if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) 2203 return; 2204 2205 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 2206 2207 Asm->OutStreamer->getContext().setDwarfCompileUnitID( 2208 getDwarfCompileUnitIDForLineTable(CU)); 2209 2210 // Record beginning of function. 2211 PrologEndLoc = emitInitialLocDirective( 2212 *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID()); 2213 } 2214 2215 unsigned 2216 DwarfDebug::getDwarfCompileUnitIDForLineTable(const DwarfCompileUnit &CU) { 2217 // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function 2218 // belongs to so that we add to the correct per-cu line table in the 2219 // non-asm case. 2220 if (Asm->OutStreamer->hasRawTextSupport()) 2221 // Use a single line table if we are generating assembly. 2222 return 0; 2223 else 2224 return CU.getUniqueID(); 2225 } 2226 2227 void DwarfDebug::terminateLineTable(const DwarfCompileUnit *CU) { 2228 const auto &CURanges = CU->getRanges(); 2229 auto &LineTable = Asm->OutStreamer->getContext().getMCDwarfLineTable( 2230 getDwarfCompileUnitIDForLineTable(*CU)); 2231 // Add the last range label for the given CU. 2232 LineTable.getMCLineSections().addEndEntry( 2233 const_cast<MCSymbol *>(CURanges.back().End)); 2234 } 2235 2236 void DwarfDebug::skippedNonDebugFunction() { 2237 // If we don't have a subprogram for this function then there will be a hole 2238 // in the range information. Keep note of this by setting the previously used 2239 // section to nullptr. 2240 // Terminate the pending line table. 2241 if (PrevCU) 2242 terminateLineTable(PrevCU); 2243 PrevCU = nullptr; 2244 CurFn = nullptr; 2245 } 2246 2247 // Gather and emit post-function debug information. 2248 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) { 2249 const DISubprogram *SP = MF->getFunction().getSubprogram(); 2250 2251 assert(CurFn == MF && 2252 "endFunction should be called with the same function as beginFunction"); 2253 2254 // Set DwarfDwarfCompileUnitID in MCContext to default value. 2255 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 2256 2257 LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); 2258 assert(!FnScope || SP == FnScope->getScopeNode()); 2259 DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit()); 2260 if (TheCU.getCUNode()->isDebugDirectivesOnly()) { 2261 PrevLabel = nullptr; 2262 CurFn = nullptr; 2263 return; 2264 } 2265 2266 DenseSet<InlinedEntity> Processed; 2267 collectEntityInfo(TheCU, SP, Processed); 2268 2269 // Add the range of this function to the list of ranges for the CU. 2270 // With basic block sections, add ranges for all basic block sections. 2271 for (const auto &R : Asm->MBBSectionRanges) 2272 TheCU.addRange({R.second.BeginLabel, R.second.EndLabel}); 2273 2274 // Under -gmlt, skip building the subprogram if there are no inlined 2275 // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram 2276 // is still needed as we need its source location. 2277 if (!TheCU.getCUNode()->getDebugInfoForProfiling() && 2278 TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly && 2279 LScopes.getAbstractScopesList().empty() && !IsDarwin) { 2280 assert(InfoHolder.getScopeVariables().empty()); 2281 PrevLabel = nullptr; 2282 CurFn = nullptr; 2283 return; 2284 } 2285 2286 #ifndef NDEBUG 2287 size_t NumAbstractScopes = LScopes.getAbstractScopesList().size(); 2288 #endif 2289 // Construct abstract scopes. 2290 for (LexicalScope *AScope : LScopes.getAbstractScopesList()) { 2291 auto *SP = cast<DISubprogram>(AScope->getScopeNode()); 2292 for (const DINode *DN : SP->getRetainedNodes()) { 2293 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 2294 continue; 2295 2296 const MDNode *Scope = nullptr; 2297 if (auto *DV = dyn_cast<DILocalVariable>(DN)) 2298 Scope = DV->getScope(); 2299 else if (auto *DL = dyn_cast<DILabel>(DN)) 2300 Scope = DL->getScope(); 2301 else 2302 llvm_unreachable("Unexpected DI type!"); 2303 2304 // Collect info for variables/labels that were optimized out. 2305 ensureAbstractEntityIsCreated(TheCU, DN, Scope); 2306 assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes 2307 && "ensureAbstractEntityIsCreated inserted abstract scopes"); 2308 } 2309 constructAbstractSubprogramScopeDIE(TheCU, AScope); 2310 } 2311 2312 ProcessedSPNodes.insert(SP); 2313 DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope); 2314 if (auto *SkelCU = TheCU.getSkeleton()) 2315 if (!LScopes.getAbstractScopesList().empty() && 2316 TheCU.getCUNode()->getSplitDebugInlining()) 2317 SkelCU->constructSubprogramScopeDIE(SP, FnScope); 2318 2319 // Construct call site entries. 2320 constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF); 2321 2322 // Clear debug info 2323 // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the 2324 // DbgVariables except those that are also in AbstractVariables (since they 2325 // can be used cross-function) 2326 InfoHolder.getScopeVariables().clear(); 2327 InfoHolder.getScopeLabels().clear(); 2328 PrevLabel = nullptr; 2329 CurFn = nullptr; 2330 } 2331 2332 // Register a source line with debug info. Returns the unique label that was 2333 // emitted and which provides correspondence to the source line list. 2334 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S, 2335 unsigned Flags) { 2336 ::recordSourceLine(*Asm, Line, Col, S, Flags, 2337 Asm->OutStreamer->getContext().getDwarfCompileUnitID(), 2338 getDwarfVersion(), getUnits()); 2339 } 2340 2341 //===----------------------------------------------------------------------===// 2342 // Emit Methods 2343 //===----------------------------------------------------------------------===// 2344 2345 // Emit the debug info section. 2346 void DwarfDebug::emitDebugInfo() { 2347 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2348 Holder.emitUnits(/* UseOffsets */ false); 2349 } 2350 2351 // Emit the abbreviation section. 2352 void DwarfDebug::emitAbbreviations() { 2353 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2354 2355 Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection()); 2356 } 2357 2358 void DwarfDebug::emitStringOffsetsTableHeader() { 2359 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2360 Holder.getStringPool().emitStringOffsetsTableHeader( 2361 *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(), 2362 Holder.getStringOffsetsStartSym()); 2363 } 2364 2365 template <typename AccelTableT> 2366 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section, 2367 StringRef TableName) { 2368 Asm->OutStreamer->SwitchSection(Section); 2369 2370 // Emit the full data. 2371 emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol()); 2372 } 2373 2374 void DwarfDebug::emitAccelDebugNames() { 2375 // Don't emit anything if we have no compilation units to index. 2376 if (getUnits().empty()) 2377 return; 2378 2379 emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits()); 2380 } 2381 2382 // Emit visible names into a hashed accelerator table section. 2383 void DwarfDebug::emitAccelNames() { 2384 emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(), 2385 "Names"); 2386 } 2387 2388 // Emit objective C classes and categories into a hashed accelerator table 2389 // section. 2390 void DwarfDebug::emitAccelObjC() { 2391 emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(), 2392 "ObjC"); 2393 } 2394 2395 // Emit namespace dies into a hashed accelerator table. 2396 void DwarfDebug::emitAccelNamespaces() { 2397 emitAccel(AccelNamespace, 2398 Asm->getObjFileLowering().getDwarfAccelNamespaceSection(), 2399 "namespac"); 2400 } 2401 2402 // Emit type dies into a hashed accelerator table. 2403 void DwarfDebug::emitAccelTypes() { 2404 emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(), 2405 "types"); 2406 } 2407 2408 // Public name handling. 2409 // The format for the various pubnames: 2410 // 2411 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU 2412 // for the DIE that is named. 2413 // 2414 // gnu pubnames - offset/index value/name tuples where the offset is the offset 2415 // into the CU and the index value is computed according to the type of value 2416 // for the DIE that is named. 2417 // 2418 // For type units the offset is the offset of the skeleton DIE. For split dwarf 2419 // it's the offset within the debug_info/debug_types dwo section, however, the 2420 // reference in the pubname header doesn't change. 2421 2422 /// computeIndexValue - Compute the gdb index value for the DIE and CU. 2423 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU, 2424 const DIE *Die) { 2425 // Entities that ended up only in a Type Unit reference the CU instead (since 2426 // the pub entry has offsets within the CU there's no real offset that can be 2427 // provided anyway). As it happens all such entities (namespaces and types, 2428 // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out 2429 // not to be true it would be necessary to persist this information from the 2430 // point at which the entry is added to the index data structure - since by 2431 // the time the index is built from that, the original type/namespace DIE in a 2432 // type unit has already been destroyed so it can't be queried for properties 2433 // like tag, etc. 2434 if (Die->getTag() == dwarf::DW_TAG_compile_unit) 2435 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, 2436 dwarf::GIEL_EXTERNAL); 2437 dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC; 2438 2439 // We could have a specification DIE that has our most of our knowledge, 2440 // look for that now. 2441 if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) { 2442 DIE &SpecDIE = SpecVal.getDIEEntry().getEntry(); 2443 if (SpecDIE.findAttribute(dwarf::DW_AT_external)) 2444 Linkage = dwarf::GIEL_EXTERNAL; 2445 } else if (Die->findAttribute(dwarf::DW_AT_external)) 2446 Linkage = dwarf::GIEL_EXTERNAL; 2447 2448 switch (Die->getTag()) { 2449 case dwarf::DW_TAG_class_type: 2450 case dwarf::DW_TAG_structure_type: 2451 case dwarf::DW_TAG_union_type: 2452 case dwarf::DW_TAG_enumeration_type: 2453 return dwarf::PubIndexEntryDescriptor( 2454 dwarf::GIEK_TYPE, 2455 dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage()) 2456 ? dwarf::GIEL_EXTERNAL 2457 : dwarf::GIEL_STATIC); 2458 case dwarf::DW_TAG_typedef: 2459 case dwarf::DW_TAG_base_type: 2460 case dwarf::DW_TAG_subrange_type: 2461 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC); 2462 case dwarf::DW_TAG_namespace: 2463 return dwarf::GIEK_TYPE; 2464 case dwarf::DW_TAG_subprogram: 2465 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage); 2466 case dwarf::DW_TAG_variable: 2467 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage); 2468 case dwarf::DW_TAG_enumerator: 2469 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, 2470 dwarf::GIEL_STATIC); 2471 default: 2472 return dwarf::GIEK_NONE; 2473 } 2474 } 2475 2476 /// emitDebugPubSections - Emit visible names and types into debug pubnames and 2477 /// pubtypes sections. 2478 void DwarfDebug::emitDebugPubSections() { 2479 for (const auto &NU : CUMap) { 2480 DwarfCompileUnit *TheU = NU.second; 2481 if (!TheU->hasDwarfPubSections()) 2482 continue; 2483 2484 bool GnuStyle = TheU->getCUNode()->getNameTableKind() == 2485 DICompileUnit::DebugNameTableKind::GNU; 2486 2487 Asm->OutStreamer->SwitchSection( 2488 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection() 2489 : Asm->getObjFileLowering().getDwarfPubNamesSection()); 2490 emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames()); 2491 2492 Asm->OutStreamer->SwitchSection( 2493 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection() 2494 : Asm->getObjFileLowering().getDwarfPubTypesSection()); 2495 emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes()); 2496 } 2497 } 2498 2499 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) { 2500 if (useSectionsAsReferences()) 2501 Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(), 2502 CU.getDebugSectionOffset()); 2503 else 2504 Asm->emitDwarfSymbolReference(CU.getLabelBegin()); 2505 } 2506 2507 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name, 2508 DwarfCompileUnit *TheU, 2509 const StringMap<const DIE *> &Globals) { 2510 if (auto *Skeleton = TheU->getSkeleton()) 2511 TheU = Skeleton; 2512 2513 // Emit the header. 2514 MCSymbol *EndLabel = Asm->emitDwarfUnitLength( 2515 "pub" + Name, "Length of Public " + Name + " Info"); 2516 2517 Asm->OutStreamer->AddComment("DWARF Version"); 2518 Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION); 2519 2520 Asm->OutStreamer->AddComment("Offset of Compilation Unit Info"); 2521 emitSectionReference(*TheU); 2522 2523 Asm->OutStreamer->AddComment("Compilation Unit Length"); 2524 Asm->emitDwarfLengthOrOffset(TheU->getLength()); 2525 2526 // Emit the pubnames for this compilation unit. 2527 for (const auto &GI : Globals) { 2528 const char *Name = GI.getKeyData(); 2529 const DIE *Entity = GI.second; 2530 2531 Asm->OutStreamer->AddComment("DIE offset"); 2532 Asm->emitDwarfLengthOrOffset(Entity->getOffset()); 2533 2534 if (GnuStyle) { 2535 dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity); 2536 Asm->OutStreamer->AddComment( 2537 Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + 2538 ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage)); 2539 Asm->emitInt8(Desc.toBits()); 2540 } 2541 2542 Asm->OutStreamer->AddComment("External Name"); 2543 Asm->OutStreamer->emitBytes(StringRef(Name, GI.getKeyLength() + 1)); 2544 } 2545 2546 Asm->OutStreamer->AddComment("End Mark"); 2547 Asm->emitDwarfLengthOrOffset(0); 2548 Asm->OutStreamer->emitLabel(EndLabel); 2549 } 2550 2551 /// Emit null-terminated strings into a debug str section. 2552 void DwarfDebug::emitDebugStr() { 2553 MCSection *StringOffsetsSection = nullptr; 2554 if (useSegmentedStringOffsetsTable()) { 2555 emitStringOffsetsTableHeader(); 2556 StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection(); 2557 } 2558 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2559 Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(), 2560 StringOffsetsSection, /* UseRelativeOffsets = */ true); 2561 } 2562 2563 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer, 2564 const DebugLocStream::Entry &Entry, 2565 const DwarfCompileUnit *CU) { 2566 auto &&Comments = DebugLocs.getComments(Entry); 2567 auto Comment = Comments.begin(); 2568 auto End = Comments.end(); 2569 2570 // The expressions are inserted into a byte stream rather early (see 2571 // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that 2572 // need to reference a base_type DIE the offset of that DIE is not yet known. 2573 // To deal with this we instead insert a placeholder early and then extract 2574 // it here and replace it with the real reference. 2575 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2576 DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(), 2577 DebugLocs.getBytes(Entry).size()), 2578 Asm->getDataLayout().isLittleEndian(), PtrSize); 2579 DWARFExpression Expr(Data, PtrSize, Asm->OutContext.getDwarfFormat()); 2580 2581 using Encoding = DWARFExpression::Operation::Encoding; 2582 uint64_t Offset = 0; 2583 for (auto &Op : Expr) { 2584 assert(Op.getCode() != dwarf::DW_OP_const_type && 2585 "3 operand ops not yet supported"); 2586 Streamer.emitInt8(Op.getCode(), Comment != End ? *(Comment++) : ""); 2587 Offset++; 2588 for (unsigned I = 0; I < 2; ++I) { 2589 if (Op.getDescription().Op[I] == Encoding::SizeNA) 2590 continue; 2591 if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) { 2592 uint64_t Offset = 2593 CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset(); 2594 assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit"); 2595 Streamer.emitULEB128(Offset, "", ULEB128PadSize); 2596 // Make sure comments stay aligned. 2597 for (unsigned J = 0; J < ULEB128PadSize; ++J) 2598 if (Comment != End) 2599 Comment++; 2600 } else { 2601 for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J) 2602 Streamer.emitInt8(Data.getData()[J], Comment != End ? *(Comment++) : ""); 2603 } 2604 Offset = Op.getOperandEndOffset(I); 2605 } 2606 assert(Offset == Op.getEndOffset()); 2607 } 2608 } 2609 2610 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT, 2611 const DbgValueLoc &Value, 2612 DwarfExpression &DwarfExpr) { 2613 auto *DIExpr = Value.getExpression(); 2614 DIExpressionCursor ExprCursor(DIExpr); 2615 DwarfExpr.addFragmentOffset(DIExpr); 2616 2617 // If the DIExpr is is an Entry Value, we want to follow the same code path 2618 // regardless of whether the DBG_VALUE is variadic or not. 2619 if (DIExpr && DIExpr->isEntryValue()) { 2620 // Entry values can only be a single register with no additional DIExpr, 2621 // so just add it directly. 2622 assert(Value.getLocEntries().size() == 1); 2623 assert(Value.getLocEntries()[0].isLocation()); 2624 MachineLocation Location = Value.getLocEntries()[0].getLoc(); 2625 DwarfExpr.setLocation(Location, DIExpr); 2626 2627 DwarfExpr.beginEntryValueExpression(ExprCursor); 2628 2629 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); 2630 if (!DwarfExpr.addMachineRegExpression(TRI, ExprCursor, Location.getReg())) 2631 return; 2632 return DwarfExpr.addExpression(std::move(ExprCursor)); 2633 } 2634 2635 // Regular entry. 2636 auto EmitValueLocEntry = [&DwarfExpr, &BT, 2637 &AP](const DbgValueLocEntry &Entry, 2638 DIExpressionCursor &Cursor) -> bool { 2639 if (Entry.isInt()) { 2640 if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed || 2641 BT->getEncoding() == dwarf::DW_ATE_signed_char)) 2642 DwarfExpr.addSignedConstant(Entry.getInt()); 2643 else 2644 DwarfExpr.addUnsignedConstant(Entry.getInt()); 2645 } else if (Entry.isLocation()) { 2646 MachineLocation Location = Entry.getLoc(); 2647 if (Location.isIndirect()) 2648 DwarfExpr.setMemoryLocationKind(); 2649 2650 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); 2651 if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg())) 2652 return false; 2653 } else if (Entry.isTargetIndexLocation()) { 2654 TargetIndexLocation Loc = Entry.getTargetIndexLocation(); 2655 // TODO TargetIndexLocation is a target-independent. Currently only the 2656 // WebAssembly-specific encoding is supported. 2657 assert(AP.TM.getTargetTriple().isWasm()); 2658 DwarfExpr.addWasmLocation(Loc.Index, static_cast<uint64_t>(Loc.Offset)); 2659 } else if (Entry.isConstantFP()) { 2660 if (AP.getDwarfVersion() >= 4 && !AP.getDwarfDebug()->tuneForSCE() && 2661 !Cursor) { 2662 DwarfExpr.addConstantFP(Entry.getConstantFP()->getValueAPF(), AP); 2663 } else if (Entry.getConstantFP() 2664 ->getValueAPF() 2665 .bitcastToAPInt() 2666 .getBitWidth() <= 64 /*bits*/) { 2667 DwarfExpr.addUnsignedConstant( 2668 Entry.getConstantFP()->getValueAPF().bitcastToAPInt()); 2669 } else { 2670 LLVM_DEBUG( 2671 dbgs() << "Skipped DwarfExpression creation for ConstantFP of size" 2672 << Entry.getConstantFP() 2673 ->getValueAPF() 2674 .bitcastToAPInt() 2675 .getBitWidth() 2676 << " bits\n"); 2677 return false; 2678 } 2679 } 2680 return true; 2681 }; 2682 2683 if (!Value.isVariadic()) { 2684 if (!EmitValueLocEntry(Value.getLocEntries()[0], ExprCursor)) 2685 return; 2686 DwarfExpr.addExpression(std::move(ExprCursor)); 2687 return; 2688 } 2689 2690 // If any of the location entries are registers with the value 0, then the 2691 // location is undefined. 2692 if (any_of(Value.getLocEntries(), [](const DbgValueLocEntry &Entry) { 2693 return Entry.isLocation() && !Entry.getLoc().getReg(); 2694 })) 2695 return; 2696 2697 DwarfExpr.addExpression( 2698 std::move(ExprCursor), 2699 [EmitValueLocEntry, &Value](unsigned Idx, 2700 DIExpressionCursor &Cursor) -> bool { 2701 return EmitValueLocEntry(Value.getLocEntries()[Idx], Cursor); 2702 }); 2703 } 2704 2705 void DebugLocEntry::finalize(const AsmPrinter &AP, 2706 DebugLocStream::ListBuilder &List, 2707 const DIBasicType *BT, 2708 DwarfCompileUnit &TheCU) { 2709 assert(!Values.empty() && 2710 "location list entries without values are redundant"); 2711 assert(Begin != End && "unexpected location list entry with empty range"); 2712 DebugLocStream::EntryBuilder Entry(List, Begin, End); 2713 BufferByteStreamer Streamer = Entry.getStreamer(); 2714 DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU); 2715 const DbgValueLoc &Value = Values[0]; 2716 if (Value.isFragment()) { 2717 // Emit all fragments that belong to the same variable and range. 2718 assert(llvm::all_of(Values, [](DbgValueLoc P) { 2719 return P.isFragment(); 2720 }) && "all values are expected to be fragments"); 2721 assert(llvm::is_sorted(Values) && "fragments are expected to be sorted"); 2722 2723 for (const auto &Fragment : Values) 2724 DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr); 2725 2726 } else { 2727 assert(Values.size() == 1 && "only fragments may have >1 value"); 2728 DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr); 2729 } 2730 DwarfExpr.finalize(); 2731 if (DwarfExpr.TagOffset) 2732 List.setTagOffset(*DwarfExpr.TagOffset); 2733 } 2734 2735 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry, 2736 const DwarfCompileUnit *CU) { 2737 // Emit the size. 2738 Asm->OutStreamer->AddComment("Loc expr size"); 2739 if (getDwarfVersion() >= 5) 2740 Asm->emitULEB128(DebugLocs.getBytes(Entry).size()); 2741 else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max()) 2742 Asm->emitInt16(DebugLocs.getBytes(Entry).size()); 2743 else { 2744 // The entry is too big to fit into 16 bit, drop it as there is nothing we 2745 // can do. 2746 Asm->emitInt16(0); 2747 return; 2748 } 2749 // Emit the entry. 2750 APByteStreamer Streamer(*Asm); 2751 emitDebugLocEntry(Streamer, Entry, CU); 2752 } 2753 2754 // Emit the header of a DWARF 5 range list table list table. Returns the symbol 2755 // that designates the end of the table for the caller to emit when the table is 2756 // complete. 2757 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm, 2758 const DwarfFile &Holder) { 2759 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2760 2761 Asm->OutStreamer->AddComment("Offset entry count"); 2762 Asm->emitInt32(Holder.getRangeLists().size()); 2763 Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym()); 2764 2765 for (const RangeSpanList &List : Holder.getRangeLists()) 2766 Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(), 2767 Asm->getDwarfOffsetByteSize()); 2768 2769 return TableEnd; 2770 } 2771 2772 // Emit the header of a DWARF 5 locations list table. Returns the symbol that 2773 // designates the end of the table for the caller to emit when the table is 2774 // complete. 2775 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm, 2776 const DwarfDebug &DD) { 2777 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2778 2779 const auto &DebugLocs = DD.getDebugLocs(); 2780 2781 Asm->OutStreamer->AddComment("Offset entry count"); 2782 Asm->emitInt32(DebugLocs.getLists().size()); 2783 Asm->OutStreamer->emitLabel(DebugLocs.getSym()); 2784 2785 for (const auto &List : DebugLocs.getLists()) 2786 Asm->emitLabelDifference(List.Label, DebugLocs.getSym(), 2787 Asm->getDwarfOffsetByteSize()); 2788 2789 return TableEnd; 2790 } 2791 2792 template <typename Ranges, typename PayloadEmitter> 2793 static void emitRangeList( 2794 DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R, 2795 const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair, 2796 unsigned StartxLength, unsigned EndOfList, 2797 StringRef (*StringifyEnum)(unsigned), 2798 bool ShouldUseBaseAddress, 2799 PayloadEmitter EmitPayload) { 2800 2801 auto Size = Asm->MAI->getCodePointerSize(); 2802 bool UseDwarf5 = DD.getDwarfVersion() >= 5; 2803 2804 // Emit our symbol so we can find the beginning of the range. 2805 Asm->OutStreamer->emitLabel(Sym); 2806 2807 // Gather all the ranges that apply to the same section so they can share 2808 // a base address entry. 2809 MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges; 2810 2811 for (const auto &Range : R) 2812 SectionRanges[&Range.Begin->getSection()].push_back(&Range); 2813 2814 const MCSymbol *CUBase = CU.getBaseAddress(); 2815 bool BaseIsSet = false; 2816 for (const auto &P : SectionRanges) { 2817 auto *Base = CUBase; 2818 if (!Base && ShouldUseBaseAddress) { 2819 const MCSymbol *Begin = P.second.front()->Begin; 2820 const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection()); 2821 if (!UseDwarf5) { 2822 Base = NewBase; 2823 BaseIsSet = true; 2824 Asm->OutStreamer->emitIntValue(-1, Size); 2825 Asm->OutStreamer->AddComment(" base address"); 2826 Asm->OutStreamer->emitSymbolValue(Base, Size); 2827 } else if (NewBase != Begin || P.second.size() > 1) { 2828 // Only use a base address if 2829 // * the existing pool address doesn't match (NewBase != Begin) 2830 // * or, there's more than one entry to share the base address 2831 Base = NewBase; 2832 BaseIsSet = true; 2833 Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx)); 2834 Asm->emitInt8(BaseAddressx); 2835 Asm->OutStreamer->AddComment(" base address index"); 2836 Asm->emitULEB128(DD.getAddressPool().getIndex(Base)); 2837 } 2838 } else if (BaseIsSet && !UseDwarf5) { 2839 BaseIsSet = false; 2840 assert(!Base); 2841 Asm->OutStreamer->emitIntValue(-1, Size); 2842 Asm->OutStreamer->emitIntValue(0, Size); 2843 } 2844 2845 for (const auto *RS : P.second) { 2846 const MCSymbol *Begin = RS->Begin; 2847 const MCSymbol *End = RS->End; 2848 assert(Begin && "Range without a begin symbol?"); 2849 assert(End && "Range without an end symbol?"); 2850 if (Base) { 2851 if (UseDwarf5) { 2852 // Emit offset_pair when we have a base. 2853 Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair)); 2854 Asm->emitInt8(OffsetPair); 2855 Asm->OutStreamer->AddComment(" starting offset"); 2856 Asm->emitLabelDifferenceAsULEB128(Begin, Base); 2857 Asm->OutStreamer->AddComment(" ending offset"); 2858 Asm->emitLabelDifferenceAsULEB128(End, Base); 2859 } else { 2860 Asm->emitLabelDifference(Begin, Base, Size); 2861 Asm->emitLabelDifference(End, Base, Size); 2862 } 2863 } else if (UseDwarf5) { 2864 Asm->OutStreamer->AddComment(StringifyEnum(StartxLength)); 2865 Asm->emitInt8(StartxLength); 2866 Asm->OutStreamer->AddComment(" start index"); 2867 Asm->emitULEB128(DD.getAddressPool().getIndex(Begin)); 2868 Asm->OutStreamer->AddComment(" length"); 2869 Asm->emitLabelDifferenceAsULEB128(End, Begin); 2870 } else { 2871 Asm->OutStreamer->emitSymbolValue(Begin, Size); 2872 Asm->OutStreamer->emitSymbolValue(End, Size); 2873 } 2874 EmitPayload(*RS); 2875 } 2876 } 2877 2878 if (UseDwarf5) { 2879 Asm->OutStreamer->AddComment(StringifyEnum(EndOfList)); 2880 Asm->emitInt8(EndOfList); 2881 } else { 2882 // Terminate the list with two 0 values. 2883 Asm->OutStreamer->emitIntValue(0, Size); 2884 Asm->OutStreamer->emitIntValue(0, Size); 2885 } 2886 } 2887 2888 // Handles emission of both debug_loclist / debug_loclist.dwo 2889 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) { 2890 emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List), 2891 *List.CU, dwarf::DW_LLE_base_addressx, 2892 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length, 2893 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString, 2894 /* ShouldUseBaseAddress */ true, 2895 [&](const DebugLocStream::Entry &E) { 2896 DD.emitDebugLocEntryLocation(E, List.CU); 2897 }); 2898 } 2899 2900 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) { 2901 if (DebugLocs.getLists().empty()) 2902 return; 2903 2904 Asm->OutStreamer->SwitchSection(Sec); 2905 2906 MCSymbol *TableEnd = nullptr; 2907 if (getDwarfVersion() >= 5) 2908 TableEnd = emitLoclistsTableHeader(Asm, *this); 2909 2910 for (const auto &List : DebugLocs.getLists()) 2911 emitLocList(*this, Asm, List); 2912 2913 if (TableEnd) 2914 Asm->OutStreamer->emitLabel(TableEnd); 2915 } 2916 2917 // Emit locations into the .debug_loc/.debug_loclists section. 2918 void DwarfDebug::emitDebugLoc() { 2919 emitDebugLocImpl( 2920 getDwarfVersion() >= 5 2921 ? Asm->getObjFileLowering().getDwarfLoclistsSection() 2922 : Asm->getObjFileLowering().getDwarfLocSection()); 2923 } 2924 2925 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section. 2926 void DwarfDebug::emitDebugLocDWO() { 2927 if (getDwarfVersion() >= 5) { 2928 emitDebugLocImpl( 2929 Asm->getObjFileLowering().getDwarfLoclistsDWOSection()); 2930 2931 return; 2932 } 2933 2934 for (const auto &List : DebugLocs.getLists()) { 2935 Asm->OutStreamer->SwitchSection( 2936 Asm->getObjFileLowering().getDwarfLocDWOSection()); 2937 Asm->OutStreamer->emitLabel(List.Label); 2938 2939 for (const auto &Entry : DebugLocs.getEntries(List)) { 2940 // GDB only supports startx_length in pre-standard split-DWARF. 2941 // (in v5 standard loclists, it currently* /only/ supports base_address + 2942 // offset_pair, so the implementations can't really share much since they 2943 // need to use different representations) 2944 // * as of October 2018, at least 2945 // 2946 // In v5 (see emitLocList), this uses SectionLabels to reuse existing 2947 // addresses in the address pool to minimize object size/relocations. 2948 Asm->emitInt8(dwarf::DW_LLE_startx_length); 2949 unsigned idx = AddrPool.getIndex(Entry.Begin); 2950 Asm->emitULEB128(idx); 2951 // Also the pre-standard encoding is slightly different, emitting this as 2952 // an address-length entry here, but its a ULEB128 in DWARFv5 loclists. 2953 Asm->emitLabelDifference(Entry.End, Entry.Begin, 4); 2954 emitDebugLocEntryLocation(Entry, List.CU); 2955 } 2956 Asm->emitInt8(dwarf::DW_LLE_end_of_list); 2957 } 2958 } 2959 2960 struct ArangeSpan { 2961 const MCSymbol *Start, *End; 2962 }; 2963 2964 // Emit a debug aranges section, containing a CU lookup for any 2965 // address we can tie back to a CU. 2966 void DwarfDebug::emitDebugARanges() { 2967 // Provides a unique id per text section. 2968 MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap; 2969 2970 // Filter labels by section. 2971 for (const SymbolCU &SCU : ArangeLabels) { 2972 if (SCU.Sym->isInSection()) { 2973 // Make a note of this symbol and it's section. 2974 MCSection *Section = &SCU.Sym->getSection(); 2975 if (!Section->getKind().isMetadata()) 2976 SectionMap[Section].push_back(SCU); 2977 } else { 2978 // Some symbols (e.g. common/bss on mach-o) can have no section but still 2979 // appear in the output. This sucks as we rely on sections to build 2980 // arange spans. We can do it without, but it's icky. 2981 SectionMap[nullptr].push_back(SCU); 2982 } 2983 } 2984 2985 DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans; 2986 2987 for (auto &I : SectionMap) { 2988 MCSection *Section = I.first; 2989 SmallVector<SymbolCU, 8> &List = I.second; 2990 if (List.size() < 1) 2991 continue; 2992 2993 // If we have no section (e.g. common), just write out 2994 // individual spans for each symbol. 2995 if (!Section) { 2996 for (const SymbolCU &Cur : List) { 2997 ArangeSpan Span; 2998 Span.Start = Cur.Sym; 2999 Span.End = nullptr; 3000 assert(Cur.CU); 3001 Spans[Cur.CU].push_back(Span); 3002 } 3003 continue; 3004 } 3005 3006 // Sort the symbols by offset within the section. 3007 llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) { 3008 unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0; 3009 unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0; 3010 3011 // Symbols with no order assigned should be placed at the end. 3012 // (e.g. section end labels) 3013 if (IA == 0) 3014 return false; 3015 if (IB == 0) 3016 return true; 3017 return IA < IB; 3018 }); 3019 3020 // Insert a final terminator. 3021 List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section))); 3022 3023 // Build spans between each label. 3024 const MCSymbol *StartSym = List[0].Sym; 3025 for (size_t n = 1, e = List.size(); n < e; n++) { 3026 const SymbolCU &Prev = List[n - 1]; 3027 const SymbolCU &Cur = List[n]; 3028 3029 // Try and build the longest span we can within the same CU. 3030 if (Cur.CU != Prev.CU) { 3031 ArangeSpan Span; 3032 Span.Start = StartSym; 3033 Span.End = Cur.Sym; 3034 assert(Prev.CU); 3035 Spans[Prev.CU].push_back(Span); 3036 StartSym = Cur.Sym; 3037 } 3038 } 3039 } 3040 3041 // Start the dwarf aranges section. 3042 Asm->OutStreamer->SwitchSection( 3043 Asm->getObjFileLowering().getDwarfARangesSection()); 3044 3045 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 3046 3047 // Build a list of CUs used. 3048 std::vector<DwarfCompileUnit *> CUs; 3049 for (const auto &it : Spans) { 3050 DwarfCompileUnit *CU = it.first; 3051 CUs.push_back(CU); 3052 } 3053 3054 // Sort the CU list (again, to ensure consistent output order). 3055 llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) { 3056 return A->getUniqueID() < B->getUniqueID(); 3057 }); 3058 3059 // Emit an arange table for each CU we used. 3060 for (DwarfCompileUnit *CU : CUs) { 3061 std::vector<ArangeSpan> &List = Spans[CU]; 3062 3063 // Describe the skeleton CU's offset and length, not the dwo file's. 3064 if (auto *Skel = CU->getSkeleton()) 3065 CU = Skel; 3066 3067 // Emit size of content not including length itself. 3068 unsigned ContentSize = 3069 sizeof(int16_t) + // DWARF ARange version number 3070 Asm->getDwarfOffsetByteSize() + // Offset of CU in the .debug_info 3071 // section 3072 sizeof(int8_t) + // Pointer Size (in bytes) 3073 sizeof(int8_t); // Segment Size (in bytes) 3074 3075 unsigned TupleSize = PtrSize * 2; 3076 3077 // 7.20 in the Dwarf specs requires the table to be aligned to a tuple. 3078 unsigned Padding = offsetToAlignment( 3079 Asm->getUnitLengthFieldByteSize() + ContentSize, Align(TupleSize)); 3080 3081 ContentSize += Padding; 3082 ContentSize += (List.size() + 1) * TupleSize; 3083 3084 // For each compile unit, write the list of spans it covers. 3085 Asm->emitDwarfUnitLength(ContentSize, "Length of ARange Set"); 3086 Asm->OutStreamer->AddComment("DWARF Arange version number"); 3087 Asm->emitInt16(dwarf::DW_ARANGES_VERSION); 3088 Asm->OutStreamer->AddComment("Offset Into Debug Info Section"); 3089 emitSectionReference(*CU); 3090 Asm->OutStreamer->AddComment("Address Size (in bytes)"); 3091 Asm->emitInt8(PtrSize); 3092 Asm->OutStreamer->AddComment("Segment Size (in bytes)"); 3093 Asm->emitInt8(0); 3094 3095 Asm->OutStreamer->emitFill(Padding, 0xff); 3096 3097 for (const ArangeSpan &Span : List) { 3098 Asm->emitLabelReference(Span.Start, PtrSize); 3099 3100 // Calculate the size as being from the span start to it's end. 3101 if (Span.End) { 3102 Asm->emitLabelDifference(Span.End, Span.Start, PtrSize); 3103 } else { 3104 // For symbols without an end marker (e.g. common), we 3105 // write a single arange entry containing just that one symbol. 3106 uint64_t Size = SymSize[Span.Start]; 3107 if (Size == 0) 3108 Size = 1; 3109 3110 Asm->OutStreamer->emitIntValue(Size, PtrSize); 3111 } 3112 } 3113 3114 Asm->OutStreamer->AddComment("ARange terminator"); 3115 Asm->OutStreamer->emitIntValue(0, PtrSize); 3116 Asm->OutStreamer->emitIntValue(0, PtrSize); 3117 } 3118 } 3119 3120 /// Emit a single range list. We handle both DWARF v5 and earlier. 3121 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm, 3122 const RangeSpanList &List) { 3123 emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU, 3124 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair, 3125 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list, 3126 llvm::dwarf::RangeListEncodingString, 3127 List.CU->getCUNode()->getRangesBaseAddress() || 3128 DD.getDwarfVersion() >= 5, 3129 [](auto) {}); 3130 } 3131 3132 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) { 3133 if (Holder.getRangeLists().empty()) 3134 return; 3135 3136 assert(useRangesSection()); 3137 assert(!CUMap.empty()); 3138 assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) { 3139 return !Pair.second->getCUNode()->isDebugDirectivesOnly(); 3140 })); 3141 3142 Asm->OutStreamer->SwitchSection(Section); 3143 3144 MCSymbol *TableEnd = nullptr; 3145 if (getDwarfVersion() >= 5) 3146 TableEnd = emitRnglistsTableHeader(Asm, Holder); 3147 3148 for (const RangeSpanList &List : Holder.getRangeLists()) 3149 emitRangeList(*this, Asm, List); 3150 3151 if (TableEnd) 3152 Asm->OutStreamer->emitLabel(TableEnd); 3153 } 3154 3155 /// Emit address ranges into the .debug_ranges section or into the DWARF v5 3156 /// .debug_rnglists section. 3157 void DwarfDebug::emitDebugRanges() { 3158 const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 3159 3160 emitDebugRangesImpl(Holder, 3161 getDwarfVersion() >= 5 3162 ? Asm->getObjFileLowering().getDwarfRnglistsSection() 3163 : Asm->getObjFileLowering().getDwarfRangesSection()); 3164 } 3165 3166 void DwarfDebug::emitDebugRangesDWO() { 3167 emitDebugRangesImpl(InfoHolder, 3168 Asm->getObjFileLowering().getDwarfRnglistsDWOSection()); 3169 } 3170 3171 /// Emit the header of a DWARF 5 macro section, or the GNU extension for 3172 /// DWARF 4. 3173 static void emitMacroHeader(AsmPrinter *Asm, const DwarfDebug &DD, 3174 const DwarfCompileUnit &CU, uint16_t DwarfVersion) { 3175 enum HeaderFlagMask { 3176 #define HANDLE_MACRO_FLAG(ID, NAME) MACRO_FLAG_##NAME = ID, 3177 #include "llvm/BinaryFormat/Dwarf.def" 3178 }; 3179 Asm->OutStreamer->AddComment("Macro information version"); 3180 Asm->emitInt16(DwarfVersion >= 5 ? DwarfVersion : 4); 3181 // We emit the line offset flag unconditionally here, since line offset should 3182 // be mostly present. 3183 if (Asm->isDwarf64()) { 3184 Asm->OutStreamer->AddComment("Flags: 64 bit, debug_line_offset present"); 3185 Asm->emitInt8(MACRO_FLAG_OFFSET_SIZE | MACRO_FLAG_DEBUG_LINE_OFFSET); 3186 } else { 3187 Asm->OutStreamer->AddComment("Flags: 32 bit, debug_line_offset present"); 3188 Asm->emitInt8(MACRO_FLAG_DEBUG_LINE_OFFSET); 3189 } 3190 Asm->OutStreamer->AddComment("debug_line_offset"); 3191 if (DD.useSplitDwarf()) 3192 Asm->emitDwarfLengthOrOffset(0); 3193 else 3194 Asm->emitDwarfSymbolReference(CU.getLineTableStartSym()); 3195 } 3196 3197 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) { 3198 for (auto *MN : Nodes) { 3199 if (auto *M = dyn_cast<DIMacro>(MN)) 3200 emitMacro(*M); 3201 else if (auto *F = dyn_cast<DIMacroFile>(MN)) 3202 emitMacroFile(*F, U); 3203 else 3204 llvm_unreachable("Unexpected DI type!"); 3205 } 3206 } 3207 3208 void DwarfDebug::emitMacro(DIMacro &M) { 3209 StringRef Name = M.getName(); 3210 StringRef Value = M.getValue(); 3211 3212 // There should be one space between the macro name and the macro value in 3213 // define entries. In undef entries, only the macro name is emitted. 3214 std::string Str = Value.empty() ? Name.str() : (Name + " " + Value).str(); 3215 3216 if (UseDebugMacroSection) { 3217 if (getDwarfVersion() >= 5) { 3218 unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define 3219 ? dwarf::DW_MACRO_define_strx 3220 : dwarf::DW_MACRO_undef_strx; 3221 Asm->OutStreamer->AddComment(dwarf::MacroString(Type)); 3222 Asm->emitULEB128(Type); 3223 Asm->OutStreamer->AddComment("Line Number"); 3224 Asm->emitULEB128(M.getLine()); 3225 Asm->OutStreamer->AddComment("Macro String"); 3226 Asm->emitULEB128( 3227 InfoHolder.getStringPool().getIndexedEntry(*Asm, Str).getIndex()); 3228 } else { 3229 unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define 3230 ? dwarf::DW_MACRO_GNU_define_indirect 3231 : dwarf::DW_MACRO_GNU_undef_indirect; 3232 Asm->OutStreamer->AddComment(dwarf::GnuMacroString(Type)); 3233 Asm->emitULEB128(Type); 3234 Asm->OutStreamer->AddComment("Line Number"); 3235 Asm->emitULEB128(M.getLine()); 3236 Asm->OutStreamer->AddComment("Macro String"); 3237 Asm->emitDwarfSymbolReference( 3238 InfoHolder.getStringPool().getEntry(*Asm, Str).getSymbol()); 3239 } 3240 } else { 3241 Asm->OutStreamer->AddComment(dwarf::MacinfoString(M.getMacinfoType())); 3242 Asm->emitULEB128(M.getMacinfoType()); 3243 Asm->OutStreamer->AddComment("Line Number"); 3244 Asm->emitULEB128(M.getLine()); 3245 Asm->OutStreamer->AddComment("Macro String"); 3246 Asm->OutStreamer->emitBytes(Str); 3247 Asm->emitInt8('\0'); 3248 } 3249 } 3250 3251 void DwarfDebug::emitMacroFileImpl( 3252 DIMacroFile &MF, DwarfCompileUnit &U, unsigned StartFile, unsigned EndFile, 3253 StringRef (*MacroFormToString)(unsigned Form)) { 3254 3255 Asm->OutStreamer->AddComment(MacroFormToString(StartFile)); 3256 Asm->emitULEB128(StartFile); 3257 Asm->OutStreamer->AddComment("Line Number"); 3258 Asm->emitULEB128(MF.getLine()); 3259 Asm->OutStreamer->AddComment("File Number"); 3260 DIFile &F = *MF.getFile(); 3261 if (useSplitDwarf()) 3262 Asm->emitULEB128(getDwoLineTable(U)->getFile( 3263 F.getDirectory(), F.getFilename(), getMD5AsBytes(&F), 3264 Asm->OutContext.getDwarfVersion(), F.getSource())); 3265 else 3266 Asm->emitULEB128(U.getOrCreateSourceID(&F)); 3267 handleMacroNodes(MF.getElements(), U); 3268 Asm->OutStreamer->AddComment(MacroFormToString(EndFile)); 3269 Asm->emitULEB128(EndFile); 3270 } 3271 3272 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) { 3273 // DWARFv5 macro and DWARFv4 macinfo share some common encodings, 3274 // so for readibility/uniformity, We are explicitly emitting those. 3275 assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file); 3276 if (UseDebugMacroSection) 3277 emitMacroFileImpl( 3278 F, U, dwarf::DW_MACRO_start_file, dwarf::DW_MACRO_end_file, 3279 (getDwarfVersion() >= 5) ? dwarf::MacroString : dwarf::GnuMacroString); 3280 else 3281 emitMacroFileImpl(F, U, dwarf::DW_MACINFO_start_file, 3282 dwarf::DW_MACINFO_end_file, dwarf::MacinfoString); 3283 } 3284 3285 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) { 3286 for (const auto &P : CUMap) { 3287 auto &TheCU = *P.second; 3288 auto *SkCU = TheCU.getSkeleton(); 3289 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 3290 auto *CUNode = cast<DICompileUnit>(P.first); 3291 DIMacroNodeArray Macros = CUNode->getMacros(); 3292 if (Macros.empty()) 3293 continue; 3294 Asm->OutStreamer->SwitchSection(Section); 3295 Asm->OutStreamer->emitLabel(U.getMacroLabelBegin()); 3296 if (UseDebugMacroSection) 3297 emitMacroHeader(Asm, *this, U, getDwarfVersion()); 3298 handleMacroNodes(Macros, U); 3299 Asm->OutStreamer->AddComment("End Of Macro List Mark"); 3300 Asm->emitInt8(0); 3301 } 3302 } 3303 3304 /// Emit macros into a debug macinfo/macro section. 3305 void DwarfDebug::emitDebugMacinfo() { 3306 auto &ObjLower = Asm->getObjFileLowering(); 3307 emitDebugMacinfoImpl(UseDebugMacroSection 3308 ? ObjLower.getDwarfMacroSection() 3309 : ObjLower.getDwarfMacinfoSection()); 3310 } 3311 3312 void DwarfDebug::emitDebugMacinfoDWO() { 3313 auto &ObjLower = Asm->getObjFileLowering(); 3314 emitDebugMacinfoImpl(UseDebugMacroSection 3315 ? ObjLower.getDwarfMacroDWOSection() 3316 : ObjLower.getDwarfMacinfoDWOSection()); 3317 } 3318 3319 // DWARF5 Experimental Separate Dwarf emitters. 3320 3321 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die, 3322 std::unique_ptr<DwarfCompileUnit> NewU) { 3323 3324 if (!CompilationDir.empty()) 3325 NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 3326 addGnuPubAttributes(*NewU, Die); 3327 3328 SkeletonHolder.addUnit(std::move(NewU)); 3329 } 3330 3331 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) { 3332 3333 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 3334 CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder, 3335 UnitKind::Skeleton); 3336 DwarfCompileUnit &NewCU = *OwnedUnit; 3337 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 3338 3339 NewCU.initStmtList(); 3340 3341 if (useSegmentedStringOffsetsTable()) 3342 NewCU.addStringOffsetsStart(); 3343 3344 initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit)); 3345 3346 return NewCU; 3347 } 3348 3349 // Emit the .debug_info.dwo section for separated dwarf. This contains the 3350 // compile units that would normally be in debug_info. 3351 void DwarfDebug::emitDebugInfoDWO() { 3352 assert(useSplitDwarf() && "No split dwarf debug info?"); 3353 // Don't emit relocations into the dwo file. 3354 InfoHolder.emitUnits(/* UseOffsets */ true); 3355 } 3356 3357 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the 3358 // abbreviations for the .debug_info.dwo section. 3359 void DwarfDebug::emitDebugAbbrevDWO() { 3360 assert(useSplitDwarf() && "No split dwarf?"); 3361 InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection()); 3362 } 3363 3364 void DwarfDebug::emitDebugLineDWO() { 3365 assert(useSplitDwarf() && "No split dwarf?"); 3366 SplitTypeUnitFileTable.Emit( 3367 *Asm->OutStreamer, MCDwarfLineTableParams(), 3368 Asm->getObjFileLowering().getDwarfLineDWOSection()); 3369 } 3370 3371 void DwarfDebug::emitStringOffsetsTableHeaderDWO() { 3372 assert(useSplitDwarf() && "No split dwarf?"); 3373 InfoHolder.getStringPool().emitStringOffsetsTableHeader( 3374 *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(), 3375 InfoHolder.getStringOffsetsStartSym()); 3376 } 3377 3378 // Emit the .debug_str.dwo section for separated dwarf. This contains the 3379 // string section and is identical in format to traditional .debug_str 3380 // sections. 3381 void DwarfDebug::emitDebugStrDWO() { 3382 if (useSegmentedStringOffsetsTable()) 3383 emitStringOffsetsTableHeaderDWO(); 3384 assert(useSplitDwarf() && "No split dwarf?"); 3385 MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection(); 3386 InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(), 3387 OffSec, /* UseRelativeOffsets = */ false); 3388 } 3389 3390 // Emit address pool. 3391 void DwarfDebug::emitDebugAddr() { 3392 AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection()); 3393 } 3394 3395 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) { 3396 if (!useSplitDwarf()) 3397 return nullptr; 3398 const DICompileUnit *DIUnit = CU.getCUNode(); 3399 SplitTypeUnitFileTable.maybeSetRootFile( 3400 DIUnit->getDirectory(), DIUnit->getFilename(), 3401 getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource()); 3402 return &SplitTypeUnitFileTable; 3403 } 3404 3405 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) { 3406 MD5 Hash; 3407 Hash.update(Identifier); 3408 // ... take the least significant 8 bytes and return those. Our MD5 3409 // implementation always returns its results in little endian, so we actually 3410 // need the "high" word. 3411 MD5::MD5Result Result; 3412 Hash.final(Result); 3413 return Result.high(); 3414 } 3415 3416 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU, 3417 StringRef Identifier, DIE &RefDie, 3418 const DICompositeType *CTy) { 3419 bool TopLevelType = TypeUnitsUnderConstruction.empty(); 3420 if (auto Signature = getOrCreateDwarfTypeUnit(CU, Identifier, CTy)) { 3421 CU.addDIETypeSignature(RefDie, *Signature); 3422 } else if (TopLevelType) { 3423 // Construct this type in the CU directly. 3424 // This is inefficient because all the dependent types will be rebuilt 3425 // from scratch, including building them in type units, discovering that 3426 // they depend on addresses, throwing them out and rebuilding them. 3427 CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy)); 3428 } 3429 } 3430 3431 Optional<uint64_t> 3432 DwarfDebug::getOrCreateDwarfTypeUnit(DwarfCompileUnit &CU, StringRef Identifier, 3433 const DICompositeType *CTy) { 3434 // Fast path if we're building some type units and one has already used the 3435 // address pool we know we're going to throw away all this work anyway, so 3436 // don't bother building dependent types. 3437 if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed()) 3438 return None; 3439 3440 auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0)); 3441 if (!Ins.second) 3442 return Ins.first->second; 3443 3444 bool TopLevelType = TypeUnitsUnderConstruction.empty(); 3445 AddrPool.resetUsedFlag(); 3446 3447 auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder, 3448 getDwoLineTable(CU)); 3449 DwarfTypeUnit &NewTU = *OwnedUnit; 3450 DIE &UnitDie = NewTU.getUnitDie(); 3451 TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy); 3452 3453 NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 3454 CU.getLanguage()); 3455 3456 uint64_t Signature = makeTypeSignature(Identifier); 3457 NewTU.setTypeSignature(Signature); 3458 Ins.first->second = Signature; 3459 3460 if (useSplitDwarf()) { 3461 MCSection *Section = 3462 getDwarfVersion() <= 4 3463 ? Asm->getObjFileLowering().getDwarfTypesDWOSection() 3464 : Asm->getObjFileLowering().getDwarfInfoDWOSection(); 3465 NewTU.setSection(Section); 3466 } else { 3467 MCSection *Section = 3468 getDwarfVersion() <= 4 3469 ? Asm->getObjFileLowering().getDwarfTypesSection(Signature) 3470 : Asm->getObjFileLowering().getDwarfInfoSection(Signature); 3471 NewTU.setSection(Section); 3472 // Non-split type units reuse the compile unit's line table. 3473 CU.applyStmtList(UnitDie); 3474 } 3475 3476 // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type 3477 // units. 3478 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 3479 NewTU.addStringOffsetsStart(); 3480 3481 NewTU.setType(NewTU.createTypeDIE(CTy)); 3482 3483 if (TopLevelType) { 3484 auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction); 3485 TypeUnitsUnderConstruction.clear(); 3486 3487 // Types referencing entries in the address table cannot be placed in type 3488 // units. 3489 if (AddrPool.hasBeenUsed()) { 3490 3491 // Remove all the types built while building this type. 3492 // This is pessimistic as some of these types might not be dependent on 3493 // the type that used an address. 3494 for (const auto &TU : TypeUnitsToAdd) 3495 TypeSignatures.erase(TU.second); 3496 return None; 3497 } 3498 3499 // If the type wasn't dependent on fission addresses, finish adding the type 3500 // and all its dependent types. 3501 for (auto &TU : TypeUnitsToAdd) { 3502 InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get()); 3503 InfoHolder.emitUnit(TU.first.get(), useSplitDwarf()); 3504 } 3505 } 3506 return Signature; 3507 } 3508 3509 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD) 3510 : DD(DD), 3511 TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)), AddrPoolUsed(DD->AddrPool.hasBeenUsed()) { 3512 DD->TypeUnitsUnderConstruction.clear(); 3513 DD->AddrPool.resetUsedFlag(); 3514 } 3515 3516 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() { 3517 DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction); 3518 DD->AddrPool.resetUsedFlag(AddrPoolUsed); 3519 } 3520 3521 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() { 3522 return NonTypeUnitContext(this); 3523 } 3524 3525 // Add the Name along with its companion DIE to the appropriate accelerator 3526 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for 3527 // AccelTableKind::Apple, we use the table we got as an argument). If 3528 // accelerator tables are disabled, this function does nothing. 3529 template <typename DataT> 3530 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU, 3531 AccelTable<DataT> &AppleAccel, StringRef Name, 3532 const DIE &Die) { 3533 if (getAccelTableKind() == AccelTableKind::None) 3534 return; 3535 3536 if (getAccelTableKind() != AccelTableKind::Apple && 3537 CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default) 3538 return; 3539 3540 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 3541 DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name); 3542 3543 switch (getAccelTableKind()) { 3544 case AccelTableKind::Apple: 3545 AppleAccel.addName(Ref, Die); 3546 break; 3547 case AccelTableKind::Dwarf: 3548 AccelDebugNames.addName(Ref, Die); 3549 break; 3550 case AccelTableKind::Default: 3551 llvm_unreachable("Default should have already been resolved."); 3552 case AccelTableKind::None: 3553 llvm_unreachable("None handled above"); 3554 } 3555 } 3556 3557 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name, 3558 const DIE &Die) { 3559 addAccelNameImpl(CU, AccelNames, Name, Die); 3560 } 3561 3562 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name, 3563 const DIE &Die) { 3564 // ObjC names go only into the Apple accelerator tables. 3565 if (getAccelTableKind() == AccelTableKind::Apple) 3566 addAccelNameImpl(CU, AccelObjC, Name, Die); 3567 } 3568 3569 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name, 3570 const DIE &Die) { 3571 addAccelNameImpl(CU, AccelNamespace, Name, Die); 3572 } 3573 3574 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name, 3575 const DIE &Die, char Flags) { 3576 addAccelNameImpl(CU, AccelTypes, Name, Die); 3577 } 3578 3579 uint16_t DwarfDebug::getDwarfVersion() const { 3580 return Asm->OutStreamer->getContext().getDwarfVersion(); 3581 } 3582 3583 dwarf::Form DwarfDebug::getDwarfSectionOffsetForm() const { 3584 if (Asm->getDwarfVersion() >= 4) 3585 return dwarf::Form::DW_FORM_sec_offset; 3586 assert((!Asm->isDwarf64() || (Asm->getDwarfVersion() == 3)) && 3587 "DWARF64 is not defined prior DWARFv3"); 3588 return Asm->isDwarf64() ? dwarf::Form::DW_FORM_data8 3589 : dwarf::Form::DW_FORM_data4; 3590 } 3591 3592 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) { 3593 auto I = SectionLabels.find(S); 3594 if (I == SectionLabels.end()) 3595 return nullptr; 3596 return I->second; 3597 } 3598 void DwarfDebug::insertSectionLabel(const MCSymbol *S) { 3599 if (SectionLabels.insert(std::make_pair(&S->getSection(), S)).second) 3600 if (useSplitDwarf() || getDwarfVersion() >= 5) 3601 AddrPool.getIndex(S); 3602 } 3603 3604 Optional<MD5::MD5Result> DwarfDebug::getMD5AsBytes(const DIFile *File) const { 3605 assert(File); 3606 if (getDwarfVersion() < 5) 3607 return None; 3608 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = File->getChecksum(); 3609 if (!Checksum || Checksum->Kind != DIFile::CSK_MD5) 3610 return None; 3611 3612 // Convert the string checksum to an MD5Result for the streamer. 3613 // The verifier validates the checksum so we assume it's okay. 3614 // An MD5 checksum is 16 bytes. 3615 std::string ChecksumString = fromHex(Checksum->Value); 3616 MD5::MD5Result CKMem; 3617 std::copy(ChecksumString.begin(), ChecksumString.end(), CKMem.Bytes.data()); 3618 return CKMem; 3619 } 3620