1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing dwarf debug info into asm files.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "DwarfDebug.h"
14 #include "ByteStreamer.h"
15 #include "DIEHash.h"
16 #include "DwarfCompileUnit.h"
17 #include "DwarfExpression.h"
18 #include "DwarfUnit.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/CodeGen/AsmPrinter.h"
24 #include "llvm/CodeGen/DIE.h"
25 #include "llvm/CodeGen/LexicalScopes.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/TargetInstrInfo.h"
31 #include "llvm/CodeGen/TargetLowering.h"
32 #include "llvm/CodeGen/TargetRegisterInfo.h"
33 #include "llvm/CodeGen/TargetSubtargetInfo.h"
34 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
35 #include "llvm/DebugInfo/DWARF/DWARFExpression.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/MC/MCAsmInfo.h"
41 #include "llvm/MC/MCContext.h"
42 #include "llvm/MC/MCSection.h"
43 #include "llvm/MC/MCStreamer.h"
44 #include "llvm/MC/MCSymbol.h"
45 #include "llvm/MC/MCTargetOptions.h"
46 #include "llvm/MC/MachineLocation.h"
47 #include "llvm/MC/SectionKind.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/MD5.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Target/TargetLoweringObjectFile.h"
55 #include "llvm/Target/TargetMachine.h"
56 #include <algorithm>
57 #include <cstddef>
58 #include <iterator>
59 #include <string>
60
61 using namespace llvm;
62
63 #define DEBUG_TYPE "dwarfdebug"
64
65 STATISTIC(NumCSParams, "Number of dbg call site params created");
66
67 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier(
68 "use-dwarf-ranges-base-address-specifier", cl::Hidden,
69 cl::desc("Use base address specifiers in debug_ranges"), cl::init(false));
70
71 static cl::opt<bool> GenerateARangeSection("generate-arange-section",
72 cl::Hidden,
73 cl::desc("Generate dwarf aranges"),
74 cl::init(false));
75
76 static cl::opt<bool>
77 GenerateDwarfTypeUnits("generate-type-units", cl::Hidden,
78 cl::desc("Generate DWARF4 type units."),
79 cl::init(false));
80
81 static cl::opt<bool> SplitDwarfCrossCuReferences(
82 "split-dwarf-cross-cu-references", cl::Hidden,
83 cl::desc("Enable cross-cu references in DWO files"), cl::init(false));
84
85 enum DefaultOnOff { Default, Enable, Disable };
86
87 static cl::opt<DefaultOnOff> UnknownLocations(
88 "use-unknown-locations", cl::Hidden,
89 cl::desc("Make an absence of debug location information explicit."),
90 cl::values(clEnumVal(Default, "At top of block or after label"),
91 clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")),
92 cl::init(Default));
93
94 static cl::opt<AccelTableKind> AccelTables(
95 "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."),
96 cl::values(clEnumValN(AccelTableKind::Default, "Default",
97 "Default for platform"),
98 clEnumValN(AccelTableKind::None, "Disable", "Disabled."),
99 clEnumValN(AccelTableKind::Apple, "Apple", "Apple"),
100 clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")),
101 cl::init(AccelTableKind::Default));
102
103 static cl::opt<DefaultOnOff>
104 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden,
105 cl::desc("Use inlined strings rather than string section."),
106 cl::values(clEnumVal(Default, "Default for platform"),
107 clEnumVal(Enable, "Enabled"),
108 clEnumVal(Disable, "Disabled")),
109 cl::init(Default));
110
111 static cl::opt<bool>
112 NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden,
113 cl::desc("Disable emission .debug_ranges section."),
114 cl::init(false));
115
116 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences(
117 "dwarf-sections-as-references", cl::Hidden,
118 cl::desc("Use sections+offset as references rather than labels."),
119 cl::values(clEnumVal(Default, "Default for platform"),
120 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
121 cl::init(Default));
122
123 static cl::opt<bool>
124 UseGNUDebugMacro("use-gnu-debug-macro", cl::Hidden,
125 cl::desc("Emit the GNU .debug_macro format with DWARF <5"),
126 cl::init(false));
127
128 static cl::opt<DefaultOnOff> DwarfOpConvert(
129 "dwarf-op-convert", cl::Hidden,
130 cl::desc("Enable use of the DWARFv5 DW_OP_convert operator"),
131 cl::values(clEnumVal(Default, "Default for platform"),
132 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
133 cl::init(Default));
134
135 enum LinkageNameOption {
136 DefaultLinkageNames,
137 AllLinkageNames,
138 AbstractLinkageNames
139 };
140
141 static cl::opt<LinkageNameOption>
142 DwarfLinkageNames("dwarf-linkage-names", cl::Hidden,
143 cl::desc("Which DWARF linkage-name attributes to emit."),
144 cl::values(clEnumValN(DefaultLinkageNames, "Default",
145 "Default for platform"),
146 clEnumValN(AllLinkageNames, "All", "All"),
147 clEnumValN(AbstractLinkageNames, "Abstract",
148 "Abstract subprograms")),
149 cl::init(DefaultLinkageNames));
150
151 static cl::opt<DwarfDebug::MinimizeAddrInV5> MinimizeAddrInV5Option(
152 "minimize-addr-in-v5", cl::Hidden,
153 cl::desc("Always use DW_AT_ranges in DWARFv5 whenever it could allow more "
154 "address pool entry sharing to reduce relocations/object size"),
155 cl::values(clEnumValN(DwarfDebug::MinimizeAddrInV5::Default, "Default",
156 "Default address minimization strategy"),
157 clEnumValN(DwarfDebug::MinimizeAddrInV5::Ranges, "Ranges",
158 "Use rnglists for contiguous ranges if that allows "
159 "using a pre-existing base address"),
160 clEnumValN(DwarfDebug::MinimizeAddrInV5::Expressions,
161 "Expressions",
162 "Use exprloc addrx+offset expressions for any "
163 "address with a prior base address"),
164 clEnumValN(DwarfDebug::MinimizeAddrInV5::Form, "Form",
165 "Use addrx+offset extension form for any address "
166 "with a prior base address"),
167 clEnumValN(DwarfDebug::MinimizeAddrInV5::Disabled, "Disabled",
168 "Stuff")),
169 cl::init(DwarfDebug::MinimizeAddrInV5::Default));
170
171 static constexpr unsigned ULEB128PadSize = 4;
172
emitOp(uint8_t Op,const char * Comment)173 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) {
174 getActiveStreamer().emitInt8(
175 Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op)
176 : dwarf::OperationEncodingString(Op));
177 }
178
emitSigned(int64_t Value)179 void DebugLocDwarfExpression::emitSigned(int64_t Value) {
180 getActiveStreamer().emitSLEB128(Value, Twine(Value));
181 }
182
emitUnsigned(uint64_t Value)183 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) {
184 getActiveStreamer().emitULEB128(Value, Twine(Value));
185 }
186
emitData1(uint8_t Value)187 void DebugLocDwarfExpression::emitData1(uint8_t Value) {
188 getActiveStreamer().emitInt8(Value, Twine(Value));
189 }
190
emitBaseTypeRef(uint64_t Idx)191 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) {
192 assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit");
193 getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize);
194 }
195
isFrameRegister(const TargetRegisterInfo & TRI,llvm::Register MachineReg)196 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI,
197 llvm::Register MachineReg) {
198 // This information is not available while emitting .debug_loc entries.
199 return false;
200 }
201
enableTemporaryBuffer()202 void DebugLocDwarfExpression::enableTemporaryBuffer() {
203 assert(!IsBuffering && "Already buffering?");
204 if (!TmpBuf)
205 TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments);
206 IsBuffering = true;
207 }
208
disableTemporaryBuffer()209 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; }
210
getTemporaryBufferSize()211 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() {
212 return TmpBuf ? TmpBuf->Bytes.size() : 0;
213 }
214
commitTemporaryBuffer()215 void DebugLocDwarfExpression::commitTemporaryBuffer() {
216 if (!TmpBuf)
217 return;
218 for (auto Byte : enumerate(TmpBuf->Bytes)) {
219 const char *Comment = (Byte.index() < TmpBuf->Comments.size())
220 ? TmpBuf->Comments[Byte.index()].c_str()
221 : "";
222 OutBS.emitInt8(Byte.value(), Comment);
223 }
224 TmpBuf->Bytes.clear();
225 TmpBuf->Comments.clear();
226 }
227
getType() const228 const DIType *DbgVariable::getType() const {
229 return getVariable()->getType();
230 }
231
232 /// Get .debug_loc entry for the instruction range starting at MI.
getDebugLocValue(const MachineInstr * MI)233 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) {
234 const DIExpression *Expr = MI->getDebugExpression();
235 const bool IsVariadic = MI->isDebugValueList();
236 assert(MI->getNumOperands() >= 3);
237 SmallVector<DbgValueLocEntry, 4> DbgValueLocEntries;
238 for (const MachineOperand &Op : MI->debug_operands()) {
239 if (Op.isReg()) {
240 MachineLocation MLoc(Op.getReg(),
241 MI->isNonListDebugValue() && MI->isDebugOffsetImm());
242 DbgValueLocEntries.push_back(DbgValueLocEntry(MLoc));
243 } else if (Op.isTargetIndex()) {
244 DbgValueLocEntries.push_back(
245 DbgValueLocEntry(TargetIndexLocation(Op.getIndex(), Op.getOffset())));
246 } else if (Op.isImm())
247 DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getImm()));
248 else if (Op.isFPImm())
249 DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getFPImm()));
250 else if (Op.isCImm())
251 DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getCImm()));
252 else
253 llvm_unreachable("Unexpected debug operand in DBG_VALUE* instruction!");
254 }
255 return DbgValueLoc(Expr, DbgValueLocEntries, IsVariadic);
256 }
257
initializeDbgValue(const MachineInstr * DbgValue)258 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) {
259 assert(FrameIndexExprs.empty() && "Already initialized?");
260 assert(!ValueLoc.get() && "Already initialized?");
261
262 assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable");
263 assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() &&
264 "Wrong inlined-at");
265
266 ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue));
267 if (auto *E = DbgValue->getDebugExpression())
268 if (E->getNumElements())
269 FrameIndexExprs.push_back({0, E});
270 }
271
getFrameIndexExprs() const272 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const {
273 if (FrameIndexExprs.size() == 1)
274 return FrameIndexExprs;
275
276 assert(llvm::all_of(FrameIndexExprs,
277 [](const FrameIndexExpr &A) {
278 return A.Expr->isFragment();
279 }) &&
280 "multiple FI expressions without DW_OP_LLVM_fragment");
281 llvm::sort(FrameIndexExprs,
282 [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool {
283 return A.Expr->getFragmentInfo()->OffsetInBits <
284 B.Expr->getFragmentInfo()->OffsetInBits;
285 });
286
287 return FrameIndexExprs;
288 }
289
addMMIEntry(const DbgVariable & V)290 void DbgVariable::addMMIEntry(const DbgVariable &V) {
291 assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry");
292 assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry");
293 assert(V.getVariable() == getVariable() && "conflicting variable");
294 assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location");
295
296 assert(!FrameIndexExprs.empty() && "Expected an MMI entry");
297 assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry");
298
299 // FIXME: This logic should not be necessary anymore, as we now have proper
300 // deduplication. However, without it, we currently run into the assertion
301 // below, which means that we are likely dealing with broken input, i.e. two
302 // non-fragment entries for the same variable at different frame indices.
303 if (FrameIndexExprs.size()) {
304 auto *Expr = FrameIndexExprs.back().Expr;
305 if (!Expr || !Expr->isFragment())
306 return;
307 }
308
309 for (const auto &FIE : V.FrameIndexExprs)
310 // Ignore duplicate entries.
311 if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) {
312 return FIE.FI == Other.FI && FIE.Expr == Other.Expr;
313 }))
314 FrameIndexExprs.push_back(FIE);
315
316 assert((FrameIndexExprs.size() == 1 ||
317 llvm::all_of(FrameIndexExprs,
318 [](FrameIndexExpr &FIE) {
319 return FIE.Expr && FIE.Expr->isFragment();
320 })) &&
321 "conflicting locations for variable");
322 }
323
computeAccelTableKind(unsigned DwarfVersion,bool GenerateTypeUnits,DebuggerKind Tuning,const Triple & TT)324 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion,
325 bool GenerateTypeUnits,
326 DebuggerKind Tuning,
327 const Triple &TT) {
328 // Honor an explicit request.
329 if (AccelTables != AccelTableKind::Default)
330 return AccelTables;
331
332 // Accelerator tables with type units are currently not supported.
333 if (GenerateTypeUnits)
334 return AccelTableKind::None;
335
336 // Accelerator tables get emitted if targetting DWARF v5 or LLDB. DWARF v5
337 // always implies debug_names. For lower standard versions we use apple
338 // accelerator tables on apple platforms and debug_names elsewhere.
339 if (DwarfVersion >= 5)
340 return AccelTableKind::Dwarf;
341 if (Tuning == DebuggerKind::LLDB)
342 return TT.isOSBinFormatMachO() ? AccelTableKind::Apple
343 : AccelTableKind::Dwarf;
344 return AccelTableKind::None;
345 }
346
DwarfDebug(AsmPrinter * A)347 DwarfDebug::DwarfDebug(AsmPrinter *A)
348 : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()),
349 InfoHolder(A, "info_string", DIEValueAllocator),
350 SkeletonHolder(A, "skel_string", DIEValueAllocator),
351 IsDarwin(A->TM.getTargetTriple().isOSDarwin()) {
352 const Triple &TT = Asm->TM.getTargetTriple();
353
354 // Make sure we know our "debugger tuning". The target option takes
355 // precedence; fall back to triple-based defaults.
356 if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default)
357 DebuggerTuning = Asm->TM.Options.DebuggerTuning;
358 else if (IsDarwin)
359 DebuggerTuning = DebuggerKind::LLDB;
360 else if (TT.isPS())
361 DebuggerTuning = DebuggerKind::SCE;
362 else if (TT.isOSAIX())
363 DebuggerTuning = DebuggerKind::DBX;
364 else
365 DebuggerTuning = DebuggerKind::GDB;
366
367 if (DwarfInlinedStrings == Default)
368 UseInlineStrings = TT.isNVPTX() || tuneForDBX();
369 else
370 UseInlineStrings = DwarfInlinedStrings == Enable;
371
372 UseLocSection = !TT.isNVPTX();
373
374 HasAppleExtensionAttributes = tuneForLLDB();
375
376 // Handle split DWARF.
377 HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty();
378
379 // SCE defaults to linkage names only for abstract subprograms.
380 if (DwarfLinkageNames == DefaultLinkageNames)
381 UseAllLinkageNames = !tuneForSCE();
382 else
383 UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames;
384
385 unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion;
386 unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber
387 : MMI->getModule()->getDwarfVersion();
388 // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2.
389 DwarfVersion =
390 TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION);
391
392 bool Dwarf64 = DwarfVersion >= 3 && // DWARF64 was introduced in DWARFv3.
393 TT.isArch64Bit(); // DWARF64 requires 64-bit relocations.
394
395 // Support DWARF64
396 // 1: For ELF when requested.
397 // 2: For XCOFF64: the AIX assembler will fill in debug section lengths
398 // according to the DWARF64 format for 64-bit assembly, so we must use
399 // DWARF64 in the compiler too for 64-bit mode.
400 Dwarf64 &=
401 ((Asm->TM.Options.MCOptions.Dwarf64 || MMI->getModule()->isDwarf64()) &&
402 TT.isOSBinFormatELF()) ||
403 TT.isOSBinFormatXCOFF();
404
405 if (!Dwarf64 && TT.isArch64Bit() && TT.isOSBinFormatXCOFF())
406 report_fatal_error("XCOFF requires DWARF64 for 64-bit mode!");
407
408 UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX();
409
410 // Use sections as references. Force for NVPTX.
411 if (DwarfSectionsAsReferences == Default)
412 UseSectionsAsReferences = TT.isNVPTX();
413 else
414 UseSectionsAsReferences = DwarfSectionsAsReferences == Enable;
415
416 // Don't generate type units for unsupported object file formats.
417 GenerateTypeUnits = (A->TM.getTargetTriple().isOSBinFormatELF() ||
418 A->TM.getTargetTriple().isOSBinFormatWasm()) &&
419 GenerateDwarfTypeUnits;
420
421 TheAccelTableKind = computeAccelTableKind(
422 DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple());
423
424 // Work around a GDB bug. GDB doesn't support the standard opcode;
425 // SCE doesn't support GNU's; LLDB prefers the standard opcode, which
426 // is defined as of DWARF 3.
427 // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented
428 // https://sourceware.org/bugzilla/show_bug.cgi?id=11616
429 UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3;
430
431 // GDB does not fully support the DWARF 4 representation for bitfields.
432 UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB();
433
434 // The DWARF v5 string offsets table has - possibly shared - contributions
435 // from each compile and type unit each preceded by a header. The string
436 // offsets table used by the pre-DWARF v5 split-DWARF implementation uses
437 // a monolithic string offsets table without any header.
438 UseSegmentedStringOffsetsTable = DwarfVersion >= 5;
439
440 // Emit call-site-param debug info for GDB and LLDB, if the target supports
441 // the debug entry values feature. It can also be enabled explicitly.
442 EmitDebugEntryValues = Asm->TM.Options.ShouldEmitDebugEntryValues();
443
444 // It is unclear if the GCC .debug_macro extension is well-specified
445 // for split DWARF. For now, do not allow LLVM to emit it.
446 UseDebugMacroSection =
447 DwarfVersion >= 5 || (UseGNUDebugMacro && !useSplitDwarf());
448 if (DwarfOpConvert == Default)
449 EnableOpConvert = !((tuneForGDB() && useSplitDwarf()) || (tuneForLLDB() && !TT.isOSBinFormatMachO()));
450 else
451 EnableOpConvert = (DwarfOpConvert == Enable);
452
453 // Split DWARF would benefit object size significantly by trading reductions
454 // in address pool usage for slightly increased range list encodings.
455 if (DwarfVersion >= 5) {
456 MinimizeAddr = MinimizeAddrInV5Option;
457 // FIXME: In the future, enable this by default for Split DWARF where the
458 // tradeoff is more pronounced due to being able to offload the range
459 // lists to the dwo file and shrink object files/reduce relocations there.
460 if (MinimizeAddr == MinimizeAddrInV5::Default)
461 MinimizeAddr = MinimizeAddrInV5::Disabled;
462 }
463
464 Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion);
465 Asm->OutStreamer->getContext().setDwarfFormat(Dwarf64 ? dwarf::DWARF64
466 : dwarf::DWARF32);
467 }
468
469 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h.
470 DwarfDebug::~DwarfDebug() = default;
471
isObjCClass(StringRef Name)472 static bool isObjCClass(StringRef Name) {
473 return Name.startswith("+") || Name.startswith("-");
474 }
475
hasObjCCategory(StringRef Name)476 static bool hasObjCCategory(StringRef Name) {
477 if (!isObjCClass(Name))
478 return false;
479
480 return Name.contains(") ");
481 }
482
getObjCClassCategory(StringRef In,StringRef & Class,StringRef & Category)483 static void getObjCClassCategory(StringRef In, StringRef &Class,
484 StringRef &Category) {
485 if (!hasObjCCategory(In)) {
486 Class = In.slice(In.find('[') + 1, In.find(' '));
487 Category = "";
488 return;
489 }
490
491 Class = In.slice(In.find('[') + 1, In.find('('));
492 Category = In.slice(In.find('[') + 1, In.find(' '));
493 }
494
getObjCMethodName(StringRef In)495 static StringRef getObjCMethodName(StringRef In) {
496 return In.slice(In.find(' ') + 1, In.find(']'));
497 }
498
499 // Add the various names to the Dwarf accelerator table names.
addSubprogramNames(const DICompileUnit & CU,const DISubprogram * SP,DIE & Die)500 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU,
501 const DISubprogram *SP, DIE &Die) {
502 if (getAccelTableKind() != AccelTableKind::Apple &&
503 CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None)
504 return;
505
506 if (!SP->isDefinition())
507 return;
508
509 if (SP->getName() != "")
510 addAccelName(CU, SP->getName(), Die);
511
512 // If the linkage name is different than the name, go ahead and output that as
513 // well into the name table. Only do that if we are going to actually emit
514 // that name.
515 if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() &&
516 (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP)))
517 addAccelName(CU, SP->getLinkageName(), Die);
518
519 // If this is an Objective-C selector name add it to the ObjC accelerator
520 // too.
521 if (isObjCClass(SP->getName())) {
522 StringRef Class, Category;
523 getObjCClassCategory(SP->getName(), Class, Category);
524 addAccelObjC(CU, Class, Die);
525 if (Category != "")
526 addAccelObjC(CU, Category, Die);
527 // Also add the base method name to the name table.
528 addAccelName(CU, getObjCMethodName(SP->getName()), Die);
529 }
530 }
531
532 /// Check whether we should create a DIE for the given Scope, return true
533 /// if we don't create a DIE (the corresponding DIE is null).
isLexicalScopeDIENull(LexicalScope * Scope)534 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) {
535 if (Scope->isAbstractScope())
536 return false;
537
538 // We don't create a DIE if there is no Range.
539 const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges();
540 if (Ranges.empty())
541 return true;
542
543 if (Ranges.size() > 1)
544 return false;
545
546 // We don't create a DIE if we have a single Range and the end label
547 // is null.
548 return !getLabelAfterInsn(Ranges.front().second);
549 }
550
forBothCUs(DwarfCompileUnit & CU,Func F)551 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) {
552 F(CU);
553 if (auto *SkelCU = CU.getSkeleton())
554 if (CU.getCUNode()->getSplitDebugInlining())
555 F(*SkelCU);
556 }
557
shareAcrossDWOCUs() const558 bool DwarfDebug::shareAcrossDWOCUs() const {
559 return SplitDwarfCrossCuReferences;
560 }
561
constructAbstractSubprogramScopeDIE(DwarfCompileUnit & SrcCU,LexicalScope * Scope)562 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU,
563 LexicalScope *Scope) {
564 assert(Scope && Scope->getScopeNode());
565 assert(Scope->isAbstractScope());
566 assert(!Scope->getInlinedAt());
567
568 auto *SP = cast<DISubprogram>(Scope->getScopeNode());
569
570 // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
571 // was inlined from another compile unit.
572 if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining())
573 // Avoid building the original CU if it won't be used
574 SrcCU.constructAbstractSubprogramScopeDIE(Scope);
575 else {
576 auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
577 if (auto *SkelCU = CU.getSkeleton()) {
578 (shareAcrossDWOCUs() ? CU : SrcCU)
579 .constructAbstractSubprogramScopeDIE(Scope);
580 if (CU.getCUNode()->getSplitDebugInlining())
581 SkelCU->constructAbstractSubprogramScopeDIE(Scope);
582 } else
583 CU.constructAbstractSubprogramScopeDIE(Scope);
584 }
585 }
586
587 /// Represents a parameter whose call site value can be described by applying a
588 /// debug expression to a register in the forwarded register worklist.
589 struct FwdRegParamInfo {
590 /// The described parameter register.
591 unsigned ParamReg;
592
593 /// Debug expression that has been built up when walking through the
594 /// instruction chain that produces the parameter's value.
595 const DIExpression *Expr;
596 };
597
598 /// Register worklist for finding call site values.
599 using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>;
600
601 /// Append the expression \p Addition to \p Original and return the result.
combineDIExpressions(const DIExpression * Original,const DIExpression * Addition)602 static const DIExpression *combineDIExpressions(const DIExpression *Original,
603 const DIExpression *Addition) {
604 std::vector<uint64_t> Elts = Addition->getElements().vec();
605 // Avoid multiple DW_OP_stack_values.
606 if (Original->isImplicit() && Addition->isImplicit())
607 erase_value(Elts, dwarf::DW_OP_stack_value);
608 const DIExpression *CombinedExpr =
609 (Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original;
610 return CombinedExpr;
611 }
612
613 /// Emit call site parameter entries that are described by the given value and
614 /// debug expression.
615 template <typename ValT>
finishCallSiteParams(ValT Val,const DIExpression * Expr,ArrayRef<FwdRegParamInfo> DescribedParams,ParamSet & Params)616 static void finishCallSiteParams(ValT Val, const DIExpression *Expr,
617 ArrayRef<FwdRegParamInfo> DescribedParams,
618 ParamSet &Params) {
619 for (auto Param : DescribedParams) {
620 bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0;
621
622 // TODO: Entry value operations can currently not be combined with any
623 // other expressions, so we can't emit call site entries in those cases.
624 if (ShouldCombineExpressions && Expr->isEntryValue())
625 continue;
626
627 // If a parameter's call site value is produced by a chain of
628 // instructions we may have already created an expression for the
629 // parameter when walking through the instructions. Append that to the
630 // base expression.
631 const DIExpression *CombinedExpr =
632 ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr)
633 : Expr;
634 assert((!CombinedExpr || CombinedExpr->isValid()) &&
635 "Combined debug expression is invalid");
636
637 DbgValueLoc DbgLocVal(CombinedExpr, DbgValueLocEntry(Val));
638 DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal);
639 Params.push_back(CSParm);
640 ++NumCSParams;
641 }
642 }
643
644 /// Add \p Reg to the worklist, if it's not already present, and mark that the
645 /// given parameter registers' values can (potentially) be described using
646 /// that register and an debug expression.
addToFwdRegWorklist(FwdRegWorklist & Worklist,unsigned Reg,const DIExpression * Expr,ArrayRef<FwdRegParamInfo> ParamsToAdd)647 static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg,
648 const DIExpression *Expr,
649 ArrayRef<FwdRegParamInfo> ParamsToAdd) {
650 auto I = Worklist.insert({Reg, {}});
651 auto &ParamsForFwdReg = I.first->second;
652 for (auto Param : ParamsToAdd) {
653 assert(none_of(ParamsForFwdReg,
654 [Param](const FwdRegParamInfo &D) {
655 return D.ParamReg == Param.ParamReg;
656 }) &&
657 "Same parameter described twice by forwarding reg");
658
659 // If a parameter's call site value is produced by a chain of
660 // instructions we may have already created an expression for the
661 // parameter when walking through the instructions. Append that to the
662 // new expression.
663 const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr);
664 ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr});
665 }
666 }
667
668 /// Interpret values loaded into registers by \p CurMI.
interpretValues(const MachineInstr * CurMI,FwdRegWorklist & ForwardedRegWorklist,ParamSet & Params)669 static void interpretValues(const MachineInstr *CurMI,
670 FwdRegWorklist &ForwardedRegWorklist,
671 ParamSet &Params) {
672
673 const MachineFunction *MF = CurMI->getMF();
674 const DIExpression *EmptyExpr =
675 DIExpression::get(MF->getFunction().getContext(), {});
676 const auto &TRI = *MF->getSubtarget().getRegisterInfo();
677 const auto &TII = *MF->getSubtarget().getInstrInfo();
678 const auto &TLI = *MF->getSubtarget().getTargetLowering();
679
680 // If an instruction defines more than one item in the worklist, we may run
681 // into situations where a worklist register's value is (potentially)
682 // described by the previous value of another register that is also defined
683 // by that instruction.
684 //
685 // This can for example occur in cases like this:
686 //
687 // $r1 = mov 123
688 // $r0, $r1 = mvrr $r1, 456
689 // call @foo, $r0, $r1
690 //
691 // When describing $r1's value for the mvrr instruction, we need to make sure
692 // that we don't finalize an entry value for $r0, as that is dependent on the
693 // previous value of $r1 (123 rather than 456).
694 //
695 // In order to not have to distinguish between those cases when finalizing
696 // entry values, we simply postpone adding new parameter registers to the
697 // worklist, by first keeping them in this temporary container until the
698 // instruction has been handled.
699 FwdRegWorklist TmpWorklistItems;
700
701 // If the MI is an instruction defining one or more parameters' forwarding
702 // registers, add those defines.
703 auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI,
704 SmallSetVector<unsigned, 4> &Defs) {
705 if (MI.isDebugInstr())
706 return;
707
708 for (const MachineOperand &MO : MI.operands()) {
709 if (MO.isReg() && MO.isDef() &&
710 Register::isPhysicalRegister(MO.getReg())) {
711 for (auto &FwdReg : ForwardedRegWorklist)
712 if (TRI.regsOverlap(FwdReg.first, MO.getReg()))
713 Defs.insert(FwdReg.first);
714 }
715 }
716 };
717
718 // Set of worklist registers that are defined by this instruction.
719 SmallSetVector<unsigned, 4> FwdRegDefs;
720
721 getForwardingRegsDefinedByMI(*CurMI, FwdRegDefs);
722 if (FwdRegDefs.empty())
723 return;
724
725 for (auto ParamFwdReg : FwdRegDefs) {
726 if (auto ParamValue = TII.describeLoadedValue(*CurMI, ParamFwdReg)) {
727 if (ParamValue->first.isImm()) {
728 int64_t Val = ParamValue->first.getImm();
729 finishCallSiteParams(Val, ParamValue->second,
730 ForwardedRegWorklist[ParamFwdReg], Params);
731 } else if (ParamValue->first.isReg()) {
732 Register RegLoc = ParamValue->first.getReg();
733 Register SP = TLI.getStackPointerRegisterToSaveRestore();
734 Register FP = TRI.getFrameRegister(*MF);
735 bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP);
736 if (TRI.isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) {
737 MachineLocation MLoc(RegLoc, /*Indirect=*/IsSPorFP);
738 finishCallSiteParams(MLoc, ParamValue->second,
739 ForwardedRegWorklist[ParamFwdReg], Params);
740 } else {
741 // ParamFwdReg was described by the non-callee saved register
742 // RegLoc. Mark that the call site values for the parameters are
743 // dependent on that register instead of ParamFwdReg. Since RegLoc
744 // may be a register that will be handled in this iteration, we
745 // postpone adding the items to the worklist, and instead keep them
746 // in a temporary container.
747 addToFwdRegWorklist(TmpWorklistItems, RegLoc, ParamValue->second,
748 ForwardedRegWorklist[ParamFwdReg]);
749 }
750 }
751 }
752 }
753
754 // Remove all registers that this instruction defines from the worklist.
755 for (auto ParamFwdReg : FwdRegDefs)
756 ForwardedRegWorklist.erase(ParamFwdReg);
757
758 // Now that we are done handling this instruction, add items from the
759 // temporary worklist to the real one.
760 for (auto &New : TmpWorklistItems)
761 addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, New.second);
762 TmpWorklistItems.clear();
763 }
764
interpretNextInstr(const MachineInstr * CurMI,FwdRegWorklist & ForwardedRegWorklist,ParamSet & Params)765 static bool interpretNextInstr(const MachineInstr *CurMI,
766 FwdRegWorklist &ForwardedRegWorklist,
767 ParamSet &Params) {
768 // Skip bundle headers.
769 if (CurMI->isBundle())
770 return true;
771
772 // If the next instruction is a call we can not interpret parameter's
773 // forwarding registers or we finished the interpretation of all
774 // parameters.
775 if (CurMI->isCall())
776 return false;
777
778 if (ForwardedRegWorklist.empty())
779 return false;
780
781 // Avoid NOP description.
782 if (CurMI->getNumOperands() == 0)
783 return true;
784
785 interpretValues(CurMI, ForwardedRegWorklist, Params);
786
787 return true;
788 }
789
790 /// Try to interpret values loaded into registers that forward parameters
791 /// for \p CallMI. Store parameters with interpreted value into \p Params.
collectCallSiteParameters(const MachineInstr * CallMI,ParamSet & Params)792 static void collectCallSiteParameters(const MachineInstr *CallMI,
793 ParamSet &Params) {
794 const MachineFunction *MF = CallMI->getMF();
795 const auto &CalleesMap = MF->getCallSitesInfo();
796 auto CallFwdRegsInfo = CalleesMap.find(CallMI);
797
798 // There is no information for the call instruction.
799 if (CallFwdRegsInfo == CalleesMap.end())
800 return;
801
802 const MachineBasicBlock *MBB = CallMI->getParent();
803
804 // Skip the call instruction.
805 auto I = std::next(CallMI->getReverseIterator());
806
807 FwdRegWorklist ForwardedRegWorklist;
808
809 const DIExpression *EmptyExpr =
810 DIExpression::get(MF->getFunction().getContext(), {});
811
812 // Add all the forwarding registers into the ForwardedRegWorklist.
813 for (const auto &ArgReg : CallFwdRegsInfo->second) {
814 bool InsertedReg =
815 ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}})
816 .second;
817 assert(InsertedReg && "Single register used to forward two arguments?");
818 (void)InsertedReg;
819 }
820
821 // Do not emit CSInfo for undef forwarding registers.
822 for (const auto &MO : CallMI->uses())
823 if (MO.isReg() && MO.isUndef())
824 ForwardedRegWorklist.erase(MO.getReg());
825
826 // We erase, from the ForwardedRegWorklist, those forwarding registers for
827 // which we successfully describe a loaded value (by using
828 // the describeLoadedValue()). For those remaining arguments in the working
829 // list, for which we do not describe a loaded value by
830 // the describeLoadedValue(), we try to generate an entry value expression
831 // for their call site value description, if the call is within the entry MBB.
832 // TODO: Handle situations when call site parameter value can be described
833 // as the entry value within basic blocks other than the first one.
834 bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin();
835
836 // Search for a loading value in forwarding registers inside call delay slot.
837 if (CallMI->hasDelaySlot()) {
838 auto Suc = std::next(CallMI->getIterator());
839 // Only one-instruction delay slot is supported.
840 auto BundleEnd = llvm::getBundleEnd(CallMI->getIterator());
841 (void)BundleEnd;
842 assert(std::next(Suc) == BundleEnd &&
843 "More than one instruction in call delay slot");
844 // Try to interpret value loaded by instruction.
845 if (!interpretNextInstr(&*Suc, ForwardedRegWorklist, Params))
846 return;
847 }
848
849 // Search for a loading value in forwarding registers.
850 for (; I != MBB->rend(); ++I) {
851 // Try to interpret values loaded by instruction.
852 if (!interpretNextInstr(&*I, ForwardedRegWorklist, Params))
853 return;
854 }
855
856 // Emit the call site parameter's value as an entry value.
857 if (ShouldTryEmitEntryVals) {
858 // Create an expression where the register's entry value is used.
859 DIExpression *EntryExpr = DIExpression::get(
860 MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1});
861 for (auto &RegEntry : ForwardedRegWorklist) {
862 MachineLocation MLoc(RegEntry.first);
863 finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params);
864 }
865 }
866 }
867
constructCallSiteEntryDIEs(const DISubprogram & SP,DwarfCompileUnit & CU,DIE & ScopeDIE,const MachineFunction & MF)868 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP,
869 DwarfCompileUnit &CU, DIE &ScopeDIE,
870 const MachineFunction &MF) {
871 // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if
872 // the subprogram is required to have one.
873 if (!SP.areAllCallsDescribed() || !SP.isDefinition())
874 return;
875
876 // Use DW_AT_call_all_calls to express that call site entries are present
877 // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls
878 // because one of its requirements is not met: call site entries for
879 // optimized-out calls are elided.
880 CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls));
881
882 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
883 assert(TII && "TargetInstrInfo not found: cannot label tail calls");
884
885 // Delay slot support check.
886 auto delaySlotSupported = [&](const MachineInstr &MI) {
887 if (!MI.isBundledWithSucc())
888 return false;
889 auto Suc = std::next(MI.getIterator());
890 auto CallInstrBundle = getBundleStart(MI.getIterator());
891 (void)CallInstrBundle;
892 auto DelaySlotBundle = getBundleStart(Suc);
893 (void)DelaySlotBundle;
894 // Ensure that label after call is following delay slot instruction.
895 // Ex. CALL_INSTRUCTION {
896 // DELAY_SLOT_INSTRUCTION }
897 // LABEL_AFTER_CALL
898 assert(getLabelAfterInsn(&*CallInstrBundle) ==
899 getLabelAfterInsn(&*DelaySlotBundle) &&
900 "Call and its successor instruction don't have same label after.");
901 return true;
902 };
903
904 // Emit call site entries for each call or tail call in the function.
905 for (const MachineBasicBlock &MBB : MF) {
906 for (const MachineInstr &MI : MBB.instrs()) {
907 // Bundles with call in them will pass the isCall() test below but do not
908 // have callee operand information so skip them here. Iterator will
909 // eventually reach the call MI.
910 if (MI.isBundle())
911 continue;
912
913 // Skip instructions which aren't calls. Both calls and tail-calling jump
914 // instructions (e.g TAILJMPd64) are classified correctly here.
915 if (!MI.isCandidateForCallSiteEntry())
916 continue;
917
918 // Skip instructions marked as frame setup, as they are not interesting to
919 // the user.
920 if (MI.getFlag(MachineInstr::FrameSetup))
921 continue;
922
923 // Check if delay slot support is enabled.
924 if (MI.hasDelaySlot() && !delaySlotSupported(*&MI))
925 return;
926
927 // If this is a direct call, find the callee's subprogram.
928 // In the case of an indirect call find the register that holds
929 // the callee.
930 const MachineOperand &CalleeOp = TII->getCalleeOperand(MI);
931 if (!CalleeOp.isGlobal() &&
932 (!CalleeOp.isReg() ||
933 !Register::isPhysicalRegister(CalleeOp.getReg())))
934 continue;
935
936 unsigned CallReg = 0;
937 const DISubprogram *CalleeSP = nullptr;
938 const Function *CalleeDecl = nullptr;
939 if (CalleeOp.isReg()) {
940 CallReg = CalleeOp.getReg();
941 if (!CallReg)
942 continue;
943 } else {
944 CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal());
945 if (!CalleeDecl || !CalleeDecl->getSubprogram())
946 continue;
947 CalleeSP = CalleeDecl->getSubprogram();
948 }
949
950 // TODO: Omit call site entries for runtime calls (objc_msgSend, etc).
951
952 bool IsTail = TII->isTailCall(MI);
953
954 // If MI is in a bundle, the label was created after the bundle since
955 // EmitFunctionBody iterates over top-level MIs. Get that top-level MI
956 // to search for that label below.
957 const MachineInstr *TopLevelCallMI =
958 MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI;
959
960 // For non-tail calls, the return PC is needed to disambiguate paths in
961 // the call graph which could lead to some target function. For tail
962 // calls, no return PC information is needed, unless tuning for GDB in
963 // DWARF4 mode in which case we fake a return PC for compatibility.
964 const MCSymbol *PCAddr =
965 (!IsTail || CU.useGNUAnalogForDwarf5Feature())
966 ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI))
967 : nullptr;
968
969 // For tail calls, it's necessary to record the address of the branch
970 // instruction so that the debugger can show where the tail call occurred.
971 const MCSymbol *CallAddr =
972 IsTail ? getLabelBeforeInsn(TopLevelCallMI) : nullptr;
973
974 assert((IsTail || PCAddr) && "Non-tail call without return PC");
975
976 LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> "
977 << (CalleeDecl ? CalleeDecl->getName()
978 : StringRef(MF.getSubtarget()
979 .getRegisterInfo()
980 ->getName(CallReg)))
981 << (IsTail ? " [IsTail]" : "") << "\n");
982
983 DIE &CallSiteDIE = CU.constructCallSiteEntryDIE(
984 ScopeDIE, CalleeSP, IsTail, PCAddr, CallAddr, CallReg);
985
986 // Optionally emit call-site-param debug info.
987 if (emitDebugEntryValues()) {
988 ParamSet Params;
989 // Try to interpret values of call site parameters.
990 collectCallSiteParameters(&MI, Params);
991 CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params);
992 }
993 }
994 }
995 }
996
addGnuPubAttributes(DwarfCompileUnit & U,DIE & D) const997 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const {
998 if (!U.hasDwarfPubSections())
999 return;
1000
1001 U.addFlag(D, dwarf::DW_AT_GNU_pubnames);
1002 }
1003
finishUnitAttributes(const DICompileUnit * DIUnit,DwarfCompileUnit & NewCU)1004 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit,
1005 DwarfCompileUnit &NewCU) {
1006 DIE &Die = NewCU.getUnitDie();
1007 StringRef FN = DIUnit->getFilename();
1008
1009 StringRef Producer = DIUnit->getProducer();
1010 StringRef Flags = DIUnit->getFlags();
1011 if (!Flags.empty() && !useAppleExtensionAttributes()) {
1012 std::string ProducerWithFlags = Producer.str() + " " + Flags.str();
1013 NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags);
1014 } else
1015 NewCU.addString(Die, dwarf::DW_AT_producer, Producer);
1016
1017 NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
1018 DIUnit->getSourceLanguage());
1019 NewCU.addString(Die, dwarf::DW_AT_name, FN);
1020 StringRef SysRoot = DIUnit->getSysRoot();
1021 if (!SysRoot.empty())
1022 NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot);
1023 StringRef SDK = DIUnit->getSDK();
1024 if (!SDK.empty())
1025 NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK);
1026
1027 // Add DW_str_offsets_base to the unit DIE, except for split units.
1028 if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
1029 NewCU.addStringOffsetsStart();
1030
1031 if (!useSplitDwarf()) {
1032 NewCU.initStmtList();
1033
1034 // If we're using split dwarf the compilation dir is going to be in the
1035 // skeleton CU and so we don't need to duplicate it here.
1036 if (!CompilationDir.empty())
1037 NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
1038 addGnuPubAttributes(NewCU, Die);
1039 }
1040
1041 if (useAppleExtensionAttributes()) {
1042 if (DIUnit->isOptimized())
1043 NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized);
1044
1045 StringRef Flags = DIUnit->getFlags();
1046 if (!Flags.empty())
1047 NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags);
1048
1049 if (unsigned RVer = DIUnit->getRuntimeVersion())
1050 NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers,
1051 dwarf::DW_FORM_data1, RVer);
1052 }
1053
1054 if (DIUnit->getDWOId()) {
1055 // This CU is either a clang module DWO or a skeleton CU.
1056 NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8,
1057 DIUnit->getDWOId());
1058 if (!DIUnit->getSplitDebugFilename().empty()) {
1059 // This is a prefabricated skeleton CU.
1060 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
1061 ? dwarf::DW_AT_dwo_name
1062 : dwarf::DW_AT_GNU_dwo_name;
1063 NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename());
1064 }
1065 }
1066 }
1067 // Create new DwarfCompileUnit for the given metadata node with tag
1068 // DW_TAG_compile_unit.
1069 DwarfCompileUnit &
getOrCreateDwarfCompileUnit(const DICompileUnit * DIUnit)1070 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) {
1071 if (auto *CU = CUMap.lookup(DIUnit))
1072 return *CU;
1073
1074 CompilationDir = DIUnit->getDirectory();
1075
1076 auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
1077 InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder);
1078 DwarfCompileUnit &NewCU = *OwnedUnit;
1079 InfoHolder.addUnit(std::move(OwnedUnit));
1080
1081 for (auto *IE : DIUnit->getImportedEntities())
1082 NewCU.addImportedEntity(IE);
1083
1084 // LTO with assembly output shares a single line table amongst multiple CUs.
1085 // To avoid the compilation directory being ambiguous, let the line table
1086 // explicitly describe the directory of all files, never relying on the
1087 // compilation directory.
1088 if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU)
1089 Asm->OutStreamer->emitDwarfFile0Directive(
1090 CompilationDir, DIUnit->getFilename(), getMD5AsBytes(DIUnit->getFile()),
1091 DIUnit->getSource(), NewCU.getUniqueID());
1092
1093 if (useSplitDwarf()) {
1094 NewCU.setSkeleton(constructSkeletonCU(NewCU));
1095 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection());
1096 } else {
1097 finishUnitAttributes(DIUnit, NewCU);
1098 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
1099 }
1100
1101 CUMap.insert({DIUnit, &NewCU});
1102 CUDieMap.insert({&NewCU.getUnitDie(), &NewCU});
1103 return NewCU;
1104 }
1105
constructAndAddImportedEntityDIE(DwarfCompileUnit & TheCU,const DIImportedEntity * N)1106 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU,
1107 const DIImportedEntity *N) {
1108 if (isa<DILocalScope>(N->getScope()))
1109 return;
1110 if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope()))
1111 D->addChild(TheCU.constructImportedEntityDIE(N));
1112 }
1113
1114 /// Sort and unique GVEs by comparing their fragment offset.
1115 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &
sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> & GVEs)1116 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) {
1117 llvm::sort(
1118 GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) {
1119 // Sort order: first null exprs, then exprs without fragment
1120 // info, then sort by fragment offset in bits.
1121 // FIXME: Come up with a more comprehensive comparator so
1122 // the sorting isn't non-deterministic, and so the following
1123 // std::unique call works correctly.
1124 if (!A.Expr || !B.Expr)
1125 return !!B.Expr;
1126 auto FragmentA = A.Expr->getFragmentInfo();
1127 auto FragmentB = B.Expr->getFragmentInfo();
1128 if (!FragmentA || !FragmentB)
1129 return !!FragmentB;
1130 return FragmentA->OffsetInBits < FragmentB->OffsetInBits;
1131 });
1132 GVEs.erase(std::unique(GVEs.begin(), GVEs.end(),
1133 [](DwarfCompileUnit::GlobalExpr A,
1134 DwarfCompileUnit::GlobalExpr B) {
1135 return A.Expr == B.Expr;
1136 }),
1137 GVEs.end());
1138 return GVEs;
1139 }
1140
1141 // Emit all Dwarf sections that should come prior to the content. Create
1142 // global DIEs and emit initial debug info sections. This is invoked by
1143 // the target AsmPrinter.
beginModule(Module * M)1144 void DwarfDebug::beginModule(Module *M) {
1145 DebugHandlerBase::beginModule(M);
1146
1147 if (!Asm || !MMI->hasDebugInfo())
1148 return;
1149
1150 unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(),
1151 M->debug_compile_units_end());
1152 assert(NumDebugCUs > 0 && "Asm unexpectedly initialized");
1153 assert(MMI->hasDebugInfo() &&
1154 "DebugInfoAvailabilty unexpectedly not initialized");
1155 SingleCU = NumDebugCUs == 1;
1156 DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>>
1157 GVMap;
1158 for (const GlobalVariable &Global : M->globals()) {
1159 SmallVector<DIGlobalVariableExpression *, 1> GVs;
1160 Global.getDebugInfo(GVs);
1161 for (auto *GVE : GVs)
1162 GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()});
1163 }
1164
1165 // Create the symbol that designates the start of the unit's contribution
1166 // to the string offsets table. In a split DWARF scenario, only the skeleton
1167 // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol).
1168 if (useSegmentedStringOffsetsTable())
1169 (useSplitDwarf() ? SkeletonHolder : InfoHolder)
1170 .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base"));
1171
1172
1173 // Create the symbols that designates the start of the DWARF v5 range list
1174 // and locations list tables. They are located past the table headers.
1175 if (getDwarfVersion() >= 5) {
1176 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1177 Holder.setRnglistsTableBaseSym(
1178 Asm->createTempSymbol("rnglists_table_base"));
1179
1180 if (useSplitDwarf())
1181 InfoHolder.setRnglistsTableBaseSym(
1182 Asm->createTempSymbol("rnglists_dwo_table_base"));
1183 }
1184
1185 // Create the symbol that points to the first entry following the debug
1186 // address table (.debug_addr) header.
1187 AddrPool.setLabel(Asm->createTempSymbol("addr_table_base"));
1188 DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base"));
1189
1190 for (DICompileUnit *CUNode : M->debug_compile_units()) {
1191 // FIXME: Move local imported entities into a list attached to the
1192 // subprogram, then this search won't be needed and a
1193 // getImportedEntities().empty() test should go below with the rest.
1194 bool HasNonLocalImportedEntities = llvm::any_of(
1195 CUNode->getImportedEntities(), [](const DIImportedEntity *IE) {
1196 return !isa<DILocalScope>(IE->getScope());
1197 });
1198
1199 if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() &&
1200 CUNode->getRetainedTypes().empty() &&
1201 CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty())
1202 continue;
1203
1204 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode);
1205
1206 // Global Variables.
1207 for (auto *GVE : CUNode->getGlobalVariables()) {
1208 // Don't bother adding DIGlobalVariableExpressions listed in the CU if we
1209 // already know about the variable and it isn't adding a constant
1210 // expression.
1211 auto &GVMapEntry = GVMap[GVE->getVariable()];
1212 auto *Expr = GVE->getExpression();
1213 if (!GVMapEntry.size() || (Expr && Expr->isConstant()))
1214 GVMapEntry.push_back({nullptr, Expr});
1215 }
1216
1217 DenseSet<DIGlobalVariable *> Processed;
1218 for (auto *GVE : CUNode->getGlobalVariables()) {
1219 DIGlobalVariable *GV = GVE->getVariable();
1220 if (Processed.insert(GV).second)
1221 CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV]));
1222 }
1223
1224 for (auto *Ty : CUNode->getEnumTypes())
1225 CU.getOrCreateTypeDIE(cast<DIType>(Ty));
1226
1227 for (auto *Ty : CUNode->getRetainedTypes()) {
1228 // The retained types array by design contains pointers to
1229 // MDNodes rather than DIRefs. Unique them here.
1230 if (DIType *RT = dyn_cast<DIType>(Ty))
1231 // There is no point in force-emitting a forward declaration.
1232 CU.getOrCreateTypeDIE(RT);
1233 }
1234 // Emit imported_modules last so that the relevant context is already
1235 // available.
1236 for (auto *IE : CUNode->getImportedEntities())
1237 constructAndAddImportedEntityDIE(CU, IE);
1238 }
1239 }
1240
finishEntityDefinitions()1241 void DwarfDebug::finishEntityDefinitions() {
1242 for (const auto &Entity : ConcreteEntities) {
1243 DIE *Die = Entity->getDIE();
1244 assert(Die);
1245 // FIXME: Consider the time-space tradeoff of just storing the unit pointer
1246 // in the ConcreteEntities list, rather than looking it up again here.
1247 // DIE::getUnit isn't simple - it walks parent pointers, etc.
1248 DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie());
1249 assert(Unit);
1250 Unit->finishEntityDefinition(Entity.get());
1251 }
1252 }
1253
finishSubprogramDefinitions()1254 void DwarfDebug::finishSubprogramDefinitions() {
1255 for (const DISubprogram *SP : ProcessedSPNodes) {
1256 assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug);
1257 forBothCUs(
1258 getOrCreateDwarfCompileUnit(SP->getUnit()),
1259 [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); });
1260 }
1261 }
1262
finalizeModuleInfo()1263 void DwarfDebug::finalizeModuleInfo() {
1264 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
1265
1266 finishSubprogramDefinitions();
1267
1268 finishEntityDefinitions();
1269
1270 // Include the DWO file name in the hash if there's more than one CU.
1271 // This handles ThinLTO's situation where imported CUs may very easily be
1272 // duplicate with the same CU partially imported into another ThinLTO unit.
1273 StringRef DWOName;
1274 if (CUMap.size() > 1)
1275 DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile;
1276
1277 // Handle anything that needs to be done on a per-unit basis after
1278 // all other generation.
1279 for (const auto &P : CUMap) {
1280 auto &TheCU = *P.second;
1281 if (TheCU.getCUNode()->isDebugDirectivesOnly())
1282 continue;
1283 // Emit DW_AT_containing_type attribute to connect types with their
1284 // vtable holding type.
1285 TheCU.constructContainingTypeDIEs();
1286
1287 // Add CU specific attributes if we need to add any.
1288 // If we're splitting the dwarf out now that we've got the entire
1289 // CU then add the dwo id to it.
1290 auto *SkCU = TheCU.getSkeleton();
1291
1292 bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty();
1293
1294 if (HasSplitUnit) {
1295 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
1296 ? dwarf::DW_AT_dwo_name
1297 : dwarf::DW_AT_GNU_dwo_name;
1298 finishUnitAttributes(TheCU.getCUNode(), TheCU);
1299 TheCU.addString(TheCU.getUnitDie(), attrDWOName,
1300 Asm->TM.Options.MCOptions.SplitDwarfFile);
1301 SkCU->addString(SkCU->getUnitDie(), attrDWOName,
1302 Asm->TM.Options.MCOptions.SplitDwarfFile);
1303 // Emit a unique identifier for this CU.
1304 uint64_t ID =
1305 DIEHash(Asm, &TheCU).computeCUSignature(DWOName, TheCU.getUnitDie());
1306 if (getDwarfVersion() >= 5) {
1307 TheCU.setDWOId(ID);
1308 SkCU->setDWOId(ID);
1309 } else {
1310 TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1311 dwarf::DW_FORM_data8, ID);
1312 SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1313 dwarf::DW_FORM_data8, ID);
1314 }
1315
1316 if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) {
1317 const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol();
1318 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base,
1319 Sym, Sym);
1320 }
1321 } else if (SkCU) {
1322 finishUnitAttributes(SkCU->getCUNode(), *SkCU);
1323 }
1324
1325 // If we have code split among multiple sections or non-contiguous
1326 // ranges of code then emit a DW_AT_ranges attribute on the unit that will
1327 // remain in the .o file, otherwise add a DW_AT_low_pc.
1328 // FIXME: We should use ranges allow reordering of code ala
1329 // .subsections_via_symbols in mach-o. This would mean turning on
1330 // ranges for all subprogram DIEs for mach-o.
1331 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
1332
1333 if (unsigned NumRanges = TheCU.getRanges().size()) {
1334 if (NumRanges > 1 && useRangesSection())
1335 // A DW_AT_low_pc attribute may also be specified in combination with
1336 // DW_AT_ranges to specify the default base address for use in
1337 // location lists (see Section 2.6.2) and range lists (see Section
1338 // 2.17.3).
1339 U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0);
1340 else
1341 U.setBaseAddress(TheCU.getRanges().front().Begin);
1342 U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges());
1343 }
1344
1345 // We don't keep track of which addresses are used in which CU so this
1346 // is a bit pessimistic under LTO.
1347 if ((HasSplitUnit || getDwarfVersion() >= 5) && !AddrPool.isEmpty())
1348 U.addAddrTableBase();
1349
1350 if (getDwarfVersion() >= 5) {
1351 if (U.hasRangeLists())
1352 U.addRnglistsBase();
1353
1354 if (!DebugLocs.getLists().empty()) {
1355 if (!useSplitDwarf())
1356 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base,
1357 DebugLocs.getSym(),
1358 TLOF.getDwarfLoclistsSection()->getBeginSymbol());
1359 }
1360 }
1361
1362 auto *CUNode = cast<DICompileUnit>(P.first);
1363 // If compile Unit has macros, emit "DW_AT_macro_info/DW_AT_macros"
1364 // attribute.
1365 if (CUNode->getMacros()) {
1366 if (UseDebugMacroSection) {
1367 if (useSplitDwarf())
1368 TheCU.addSectionDelta(
1369 TheCU.getUnitDie(), dwarf::DW_AT_macros, U.getMacroLabelBegin(),
1370 TLOF.getDwarfMacroDWOSection()->getBeginSymbol());
1371 else {
1372 dwarf::Attribute MacrosAttr = getDwarfVersion() >= 5
1373 ? dwarf::DW_AT_macros
1374 : dwarf::DW_AT_GNU_macros;
1375 U.addSectionLabel(U.getUnitDie(), MacrosAttr, U.getMacroLabelBegin(),
1376 TLOF.getDwarfMacroSection()->getBeginSymbol());
1377 }
1378 } else {
1379 if (useSplitDwarf())
1380 TheCU.addSectionDelta(
1381 TheCU.getUnitDie(), dwarf::DW_AT_macro_info,
1382 U.getMacroLabelBegin(),
1383 TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol());
1384 else
1385 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info,
1386 U.getMacroLabelBegin(),
1387 TLOF.getDwarfMacinfoSection()->getBeginSymbol());
1388 }
1389 }
1390 }
1391
1392 // Emit all frontend-produced Skeleton CUs, i.e., Clang modules.
1393 for (auto *CUNode : MMI->getModule()->debug_compile_units())
1394 if (CUNode->getDWOId())
1395 getOrCreateDwarfCompileUnit(CUNode);
1396
1397 // Compute DIE offsets and sizes.
1398 InfoHolder.computeSizeAndOffsets();
1399 if (useSplitDwarf())
1400 SkeletonHolder.computeSizeAndOffsets();
1401 }
1402
1403 // Emit all Dwarf sections that should come after the content.
endModule()1404 void DwarfDebug::endModule() {
1405 // Terminate the pending line table.
1406 if (PrevCU)
1407 terminateLineTable(PrevCU);
1408 PrevCU = nullptr;
1409 assert(CurFn == nullptr);
1410 assert(CurMI == nullptr);
1411
1412 for (const auto &P : CUMap) {
1413 auto &CU = *P.second;
1414 CU.createBaseTypeDIEs();
1415 }
1416
1417 // If we aren't actually generating debug info (check beginModule -
1418 // conditionalized on the presence of the llvm.dbg.cu metadata node)
1419 if (!Asm || !MMI->hasDebugInfo())
1420 return;
1421
1422 // Finalize the debug info for the module.
1423 finalizeModuleInfo();
1424
1425 if (useSplitDwarf())
1426 // Emit debug_loc.dwo/debug_loclists.dwo section.
1427 emitDebugLocDWO();
1428 else
1429 // Emit debug_loc/debug_loclists section.
1430 emitDebugLoc();
1431
1432 // Corresponding abbreviations into a abbrev section.
1433 emitAbbreviations();
1434
1435 // Emit all the DIEs into a debug info section.
1436 emitDebugInfo();
1437
1438 // Emit info into a debug aranges section.
1439 if (GenerateARangeSection)
1440 emitDebugARanges();
1441
1442 // Emit info into a debug ranges section.
1443 emitDebugRanges();
1444
1445 if (useSplitDwarf())
1446 // Emit info into a debug macinfo.dwo section.
1447 emitDebugMacinfoDWO();
1448 else
1449 // Emit info into a debug macinfo/macro section.
1450 emitDebugMacinfo();
1451
1452 emitDebugStr();
1453
1454 if (useSplitDwarf()) {
1455 emitDebugStrDWO();
1456 emitDebugInfoDWO();
1457 emitDebugAbbrevDWO();
1458 emitDebugLineDWO();
1459 emitDebugRangesDWO();
1460 }
1461
1462 emitDebugAddr();
1463
1464 // Emit info into the dwarf accelerator table sections.
1465 switch (getAccelTableKind()) {
1466 case AccelTableKind::Apple:
1467 emitAccelNames();
1468 emitAccelObjC();
1469 emitAccelNamespaces();
1470 emitAccelTypes();
1471 break;
1472 case AccelTableKind::Dwarf:
1473 emitAccelDebugNames();
1474 break;
1475 case AccelTableKind::None:
1476 break;
1477 case AccelTableKind::Default:
1478 llvm_unreachable("Default should have already been resolved.");
1479 }
1480
1481 // Emit the pubnames and pubtypes sections if requested.
1482 emitDebugPubSections();
1483
1484 // clean up.
1485 // FIXME: AbstractVariables.clear();
1486 }
1487
ensureAbstractEntityIsCreated(DwarfCompileUnit & CU,const DINode * Node,const MDNode * ScopeNode)1488 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU,
1489 const DINode *Node,
1490 const MDNode *ScopeNode) {
1491 if (CU.getExistingAbstractEntity(Node))
1492 return;
1493
1494 CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope(
1495 cast<DILocalScope>(ScopeNode)));
1496 }
1497
ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit & CU,const DINode * Node,const MDNode * ScopeNode)1498 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU,
1499 const DINode *Node, const MDNode *ScopeNode) {
1500 if (CU.getExistingAbstractEntity(Node))
1501 return;
1502
1503 if (LexicalScope *Scope =
1504 LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode)))
1505 CU.createAbstractEntity(Node, Scope);
1506 }
1507
1508 // Collect variable information from side table maintained by MF.
collectVariableInfoFromMFTable(DwarfCompileUnit & TheCU,DenseSet<InlinedEntity> & Processed)1509 void DwarfDebug::collectVariableInfoFromMFTable(
1510 DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) {
1511 SmallDenseMap<InlinedEntity, DbgVariable *> MFVars;
1512 LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n");
1513 for (const auto &VI : Asm->MF->getVariableDbgInfo()) {
1514 if (!VI.Var)
1515 continue;
1516 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1517 "Expected inlined-at fields to agree");
1518
1519 InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt());
1520 Processed.insert(Var);
1521 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1522
1523 // If variable scope is not found then skip this variable.
1524 if (!Scope) {
1525 LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName()
1526 << ", no variable scope found\n");
1527 continue;
1528 }
1529
1530 ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode());
1531 auto RegVar = std::make_unique<DbgVariable>(
1532 cast<DILocalVariable>(Var.first), Var.second);
1533 RegVar->initializeMMI(VI.Expr, VI.Slot);
1534 LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName()
1535 << "\n");
1536
1537 if (DbgVariable *DbgVar = MFVars.lookup(Var))
1538 DbgVar->addMMIEntry(*RegVar);
1539 else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) {
1540 MFVars.insert({Var, RegVar.get()});
1541 ConcreteEntities.push_back(std::move(RegVar));
1542 }
1543 }
1544 }
1545
1546 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its
1547 /// enclosing lexical scope. The check ensures there are no other instructions
1548 /// in the same lexical scope preceding the DBG_VALUE and that its range is
1549 /// either open or otherwise rolls off the end of the scope.
validThroughout(LexicalScopes & LScopes,const MachineInstr * DbgValue,const MachineInstr * RangeEnd,const InstructionOrdering & Ordering)1550 static bool validThroughout(LexicalScopes &LScopes,
1551 const MachineInstr *DbgValue,
1552 const MachineInstr *RangeEnd,
1553 const InstructionOrdering &Ordering) {
1554 assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location");
1555 auto MBB = DbgValue->getParent();
1556 auto DL = DbgValue->getDebugLoc();
1557 auto *LScope = LScopes.findLexicalScope(DL);
1558 // Scope doesn't exist; this is a dead DBG_VALUE.
1559 if (!LScope)
1560 return false;
1561 auto &LSRange = LScope->getRanges();
1562 if (LSRange.size() == 0)
1563 return false;
1564
1565 const MachineInstr *LScopeBegin = LSRange.front().first;
1566 // If the scope starts before the DBG_VALUE then we may have a negative
1567 // result. Otherwise the location is live coming into the scope and we
1568 // can skip the following checks.
1569 if (!Ordering.isBefore(DbgValue, LScopeBegin)) {
1570 // Exit if the lexical scope begins outside of the current block.
1571 if (LScopeBegin->getParent() != MBB)
1572 return false;
1573
1574 MachineBasicBlock::const_reverse_iterator Pred(DbgValue);
1575 for (++Pred; Pred != MBB->rend(); ++Pred) {
1576 if (Pred->getFlag(MachineInstr::FrameSetup))
1577 break;
1578 auto PredDL = Pred->getDebugLoc();
1579 if (!PredDL || Pred->isMetaInstruction())
1580 continue;
1581 // Check whether the instruction preceding the DBG_VALUE is in the same
1582 // (sub)scope as the DBG_VALUE.
1583 if (DL->getScope() == PredDL->getScope())
1584 return false;
1585 auto *PredScope = LScopes.findLexicalScope(PredDL);
1586 if (!PredScope || LScope->dominates(PredScope))
1587 return false;
1588 }
1589 }
1590
1591 // If the range of the DBG_VALUE is open-ended, report success.
1592 if (!RangeEnd)
1593 return true;
1594
1595 // Single, constant DBG_VALUEs in the prologue are promoted to be live
1596 // throughout the function. This is a hack, presumably for DWARF v2 and not
1597 // necessarily correct. It would be much better to use a dbg.declare instead
1598 // if we know the constant is live throughout the scope.
1599 if (MBB->pred_empty() &&
1600 all_of(DbgValue->debug_operands(),
1601 [](const MachineOperand &Op) { return Op.isImm(); }))
1602 return true;
1603
1604 // Test if the location terminates before the end of the scope.
1605 const MachineInstr *LScopeEnd = LSRange.back().second;
1606 if (Ordering.isBefore(RangeEnd, LScopeEnd))
1607 return false;
1608
1609 // There's a single location which starts at the scope start, and ends at or
1610 // after the scope end.
1611 return true;
1612 }
1613
1614 /// Build the location list for all DBG_VALUEs in the function that
1615 /// describe the same variable. The resulting DebugLocEntries will have
1616 /// strict monotonically increasing begin addresses and will never
1617 /// overlap. If the resulting list has only one entry that is valid
1618 /// throughout variable's scope return true.
1619 //
1620 // See the definition of DbgValueHistoryMap::Entry for an explanation of the
1621 // different kinds of history map entries. One thing to be aware of is that if
1622 // a debug value is ended by another entry (rather than being valid until the
1623 // end of the function), that entry's instruction may or may not be included in
1624 // the range, depending on if the entry is a clobbering entry (it has an
1625 // instruction that clobbers one or more preceding locations), or if it is an
1626 // (overlapping) debug value entry. This distinction can be seen in the example
1627 // below. The first debug value is ended by the clobbering entry 2, and the
1628 // second and third debug values are ended by the overlapping debug value entry
1629 // 4.
1630 //
1631 // Input:
1632 //
1633 // History map entries [type, end index, mi]
1634 //
1635 // 0 | [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)]
1636 // 1 | | [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)]
1637 // 2 | | [Clobber, $reg0 = [...], -, -]
1638 // 3 | | [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)]
1639 // 4 [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)]
1640 //
1641 // Output [start, end) [Value...]:
1642 //
1643 // [0-1) [(reg0, fragment 0, 32)]
1644 // [1-3) [(reg0, fragment 0, 32), (reg1, fragment 32, 32)]
1645 // [3-4) [(reg1, fragment 32, 32), (123, fragment 64, 32)]
1646 // [4-) [(@g, fragment 0, 96)]
buildLocationList(SmallVectorImpl<DebugLocEntry> & DebugLoc,const DbgValueHistoryMap::Entries & Entries)1647 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc,
1648 const DbgValueHistoryMap::Entries &Entries) {
1649 using OpenRange =
1650 std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>;
1651 SmallVector<OpenRange, 4> OpenRanges;
1652 bool isSafeForSingleLocation = true;
1653 const MachineInstr *StartDebugMI = nullptr;
1654 const MachineInstr *EndMI = nullptr;
1655
1656 for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) {
1657 const MachineInstr *Instr = EI->getInstr();
1658
1659 // Remove all values that are no longer live.
1660 size_t Index = std::distance(EB, EI);
1661 erase_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; });
1662
1663 // If we are dealing with a clobbering entry, this iteration will result in
1664 // a location list entry starting after the clobbering instruction.
1665 const MCSymbol *StartLabel =
1666 EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr);
1667 assert(StartLabel &&
1668 "Forgot label before/after instruction starting a range!");
1669
1670 const MCSymbol *EndLabel;
1671 if (std::next(EI) == Entries.end()) {
1672 const MachineBasicBlock &EndMBB = Asm->MF->back();
1673 EndLabel = Asm->MBBSectionRanges[EndMBB.getSectionIDNum()].EndLabel;
1674 if (EI->isClobber())
1675 EndMI = EI->getInstr();
1676 }
1677 else if (std::next(EI)->isClobber())
1678 EndLabel = getLabelAfterInsn(std::next(EI)->getInstr());
1679 else
1680 EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr());
1681 assert(EndLabel && "Forgot label after instruction ending a range!");
1682
1683 if (EI->isDbgValue())
1684 LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n");
1685
1686 // If this history map entry has a debug value, add that to the list of
1687 // open ranges and check if its location is valid for a single value
1688 // location.
1689 if (EI->isDbgValue()) {
1690 // Do not add undef debug values, as they are redundant information in
1691 // the location list entries. An undef debug results in an empty location
1692 // description. If there are any non-undef fragments then padding pieces
1693 // with empty location descriptions will automatically be inserted, and if
1694 // all fragments are undef then the whole location list entry is
1695 // redundant.
1696 if (!Instr->isUndefDebugValue()) {
1697 auto Value = getDebugLocValue(Instr);
1698 OpenRanges.emplace_back(EI->getEndIndex(), Value);
1699
1700 // TODO: Add support for single value fragment locations.
1701 if (Instr->getDebugExpression()->isFragment())
1702 isSafeForSingleLocation = false;
1703
1704 if (!StartDebugMI)
1705 StartDebugMI = Instr;
1706 } else {
1707 isSafeForSingleLocation = false;
1708 }
1709 }
1710
1711 // Location list entries with empty location descriptions are redundant
1712 // information in DWARF, so do not emit those.
1713 if (OpenRanges.empty())
1714 continue;
1715
1716 // Omit entries with empty ranges as they do not have any effect in DWARF.
1717 if (StartLabel == EndLabel) {
1718 LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n");
1719 continue;
1720 }
1721
1722 SmallVector<DbgValueLoc, 4> Values;
1723 for (auto &R : OpenRanges)
1724 Values.push_back(R.second);
1725
1726 // With Basic block sections, it is posssible that the StartLabel and the
1727 // Instr are not in the same section. This happens when the StartLabel is
1728 // the function begin label and the dbg value appears in a basic block
1729 // that is not the entry. In this case, the range needs to be split to
1730 // span each individual section in the range from StartLabel to EndLabel.
1731 if (Asm->MF->hasBBSections() && StartLabel == Asm->getFunctionBegin() &&
1732 !Instr->getParent()->sameSection(&Asm->MF->front())) {
1733 const MCSymbol *BeginSectionLabel = StartLabel;
1734
1735 for (const MachineBasicBlock &MBB : *Asm->MF) {
1736 if (MBB.isBeginSection() && &MBB != &Asm->MF->front())
1737 BeginSectionLabel = MBB.getSymbol();
1738
1739 if (MBB.sameSection(Instr->getParent())) {
1740 DebugLoc.emplace_back(BeginSectionLabel, EndLabel, Values);
1741 break;
1742 }
1743 if (MBB.isEndSection())
1744 DebugLoc.emplace_back(BeginSectionLabel, MBB.getEndSymbol(), Values);
1745 }
1746 } else {
1747 DebugLoc.emplace_back(StartLabel, EndLabel, Values);
1748 }
1749
1750 // Attempt to coalesce the ranges of two otherwise identical
1751 // DebugLocEntries.
1752 auto CurEntry = DebugLoc.rbegin();
1753 LLVM_DEBUG({
1754 dbgs() << CurEntry->getValues().size() << " Values:\n";
1755 for (auto &Value : CurEntry->getValues())
1756 Value.dump();
1757 dbgs() << "-----\n";
1758 });
1759
1760 auto PrevEntry = std::next(CurEntry);
1761 if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry))
1762 DebugLoc.pop_back();
1763 }
1764
1765 if (!isSafeForSingleLocation ||
1766 !validThroughout(LScopes, StartDebugMI, EndMI, getInstOrdering()))
1767 return false;
1768
1769 if (DebugLoc.size() == 1)
1770 return true;
1771
1772 if (!Asm->MF->hasBBSections())
1773 return false;
1774
1775 // Check here to see if loclist can be merged into a single range. If not,
1776 // we must keep the split loclists per section. This does exactly what
1777 // MergeRanges does without sections. We don't actually merge the ranges
1778 // as the split ranges must be kept intact if this cannot be collapsed
1779 // into a single range.
1780 const MachineBasicBlock *RangeMBB = nullptr;
1781 if (DebugLoc[0].getBeginSym() == Asm->getFunctionBegin())
1782 RangeMBB = &Asm->MF->front();
1783 else
1784 RangeMBB = Entries.begin()->getInstr()->getParent();
1785 auto *CurEntry = DebugLoc.begin();
1786 auto *NextEntry = std::next(CurEntry);
1787 while (NextEntry != DebugLoc.end()) {
1788 // Get the last machine basic block of this section.
1789 while (!RangeMBB->isEndSection())
1790 RangeMBB = RangeMBB->getNextNode();
1791 if (!RangeMBB->getNextNode())
1792 return false;
1793 // CurEntry should end the current section and NextEntry should start
1794 // the next section and the Values must match for these two ranges to be
1795 // merged.
1796 if (CurEntry->getEndSym() != RangeMBB->getEndSymbol() ||
1797 NextEntry->getBeginSym() != RangeMBB->getNextNode()->getSymbol() ||
1798 CurEntry->getValues() != NextEntry->getValues())
1799 return false;
1800 RangeMBB = RangeMBB->getNextNode();
1801 CurEntry = NextEntry;
1802 NextEntry = std::next(CurEntry);
1803 }
1804 return true;
1805 }
1806
createConcreteEntity(DwarfCompileUnit & TheCU,LexicalScope & Scope,const DINode * Node,const DILocation * Location,const MCSymbol * Sym)1807 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU,
1808 LexicalScope &Scope,
1809 const DINode *Node,
1810 const DILocation *Location,
1811 const MCSymbol *Sym) {
1812 ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode());
1813 if (isa<const DILocalVariable>(Node)) {
1814 ConcreteEntities.push_back(
1815 std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node),
1816 Location));
1817 InfoHolder.addScopeVariable(&Scope,
1818 cast<DbgVariable>(ConcreteEntities.back().get()));
1819 } else if (isa<const DILabel>(Node)) {
1820 ConcreteEntities.push_back(
1821 std::make_unique<DbgLabel>(cast<const DILabel>(Node),
1822 Location, Sym));
1823 InfoHolder.addScopeLabel(&Scope,
1824 cast<DbgLabel>(ConcreteEntities.back().get()));
1825 }
1826 return ConcreteEntities.back().get();
1827 }
1828
1829 // Find variables for each lexical scope.
collectEntityInfo(DwarfCompileUnit & TheCU,const DISubprogram * SP,DenseSet<InlinedEntity> & Processed)1830 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU,
1831 const DISubprogram *SP,
1832 DenseSet<InlinedEntity> &Processed) {
1833 // Grab the variable info that was squirreled away in the MMI side-table.
1834 collectVariableInfoFromMFTable(TheCU, Processed);
1835
1836 for (const auto &I : DbgValues) {
1837 InlinedEntity IV = I.first;
1838 if (Processed.count(IV))
1839 continue;
1840
1841 // Instruction ranges, specifying where IV is accessible.
1842 const auto &HistoryMapEntries = I.second;
1843
1844 // Try to find any non-empty variable location. Do not create a concrete
1845 // entity if there are no locations.
1846 if (!DbgValues.hasNonEmptyLocation(HistoryMapEntries))
1847 continue;
1848
1849 LexicalScope *Scope = nullptr;
1850 const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first);
1851 if (const DILocation *IA = IV.second)
1852 Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA);
1853 else
1854 Scope = LScopes.findLexicalScope(LocalVar->getScope());
1855 // If variable scope is not found then skip this variable.
1856 if (!Scope)
1857 continue;
1858
1859 Processed.insert(IV);
1860 DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU,
1861 *Scope, LocalVar, IV.second));
1862
1863 const MachineInstr *MInsn = HistoryMapEntries.front().getInstr();
1864 assert(MInsn->isDebugValue() && "History must begin with debug value");
1865
1866 // Check if there is a single DBG_VALUE, valid throughout the var's scope.
1867 // If the history map contains a single debug value, there may be an
1868 // additional entry which clobbers the debug value.
1869 size_t HistSize = HistoryMapEntries.size();
1870 bool SingleValueWithClobber =
1871 HistSize == 2 && HistoryMapEntries[1].isClobber();
1872 if (HistSize == 1 || SingleValueWithClobber) {
1873 const auto *End =
1874 SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr;
1875 if (validThroughout(LScopes, MInsn, End, getInstOrdering())) {
1876 RegVar->initializeDbgValue(MInsn);
1877 continue;
1878 }
1879 }
1880
1881 // Do not emit location lists if .debug_loc secton is disabled.
1882 if (!useLocSection())
1883 continue;
1884
1885 // Handle multiple DBG_VALUE instructions describing one variable.
1886 DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn);
1887
1888 // Build the location list for this variable.
1889 SmallVector<DebugLocEntry, 8> Entries;
1890 bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries);
1891
1892 // Check whether buildLocationList managed to merge all locations to one
1893 // that is valid throughout the variable's scope. If so, produce single
1894 // value location.
1895 if (isValidSingleLocation) {
1896 RegVar->initializeDbgValue(Entries[0].getValues()[0]);
1897 continue;
1898 }
1899
1900 // If the variable has a DIBasicType, extract it. Basic types cannot have
1901 // unique identifiers, so don't bother resolving the type with the
1902 // identifier map.
1903 const DIBasicType *BT = dyn_cast<DIBasicType>(
1904 static_cast<const Metadata *>(LocalVar->getType()));
1905
1906 // Finalize the entry by lowering it into a DWARF bytestream.
1907 for (auto &Entry : Entries)
1908 Entry.finalize(*Asm, List, BT, TheCU);
1909 }
1910
1911 // For each InlinedEntity collected from DBG_LABEL instructions, convert to
1912 // DWARF-related DbgLabel.
1913 for (const auto &I : DbgLabels) {
1914 InlinedEntity IL = I.first;
1915 const MachineInstr *MI = I.second;
1916 if (MI == nullptr)
1917 continue;
1918
1919 LexicalScope *Scope = nullptr;
1920 const DILabel *Label = cast<DILabel>(IL.first);
1921 // The scope could have an extra lexical block file.
1922 const DILocalScope *LocalScope =
1923 Label->getScope()->getNonLexicalBlockFileScope();
1924 // Get inlined DILocation if it is inlined label.
1925 if (const DILocation *IA = IL.second)
1926 Scope = LScopes.findInlinedScope(LocalScope, IA);
1927 else
1928 Scope = LScopes.findLexicalScope(LocalScope);
1929 // If label scope is not found then skip this label.
1930 if (!Scope)
1931 continue;
1932
1933 Processed.insert(IL);
1934 /// At this point, the temporary label is created.
1935 /// Save the temporary label to DbgLabel entity to get the
1936 /// actually address when generating Dwarf DIE.
1937 MCSymbol *Sym = getLabelBeforeInsn(MI);
1938 createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym);
1939 }
1940
1941 // Collect info for variables/labels that were optimized out.
1942 for (const DINode *DN : SP->getRetainedNodes()) {
1943 if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
1944 continue;
1945 LexicalScope *Scope = nullptr;
1946 if (auto *DV = dyn_cast<DILocalVariable>(DN)) {
1947 Scope = LScopes.findLexicalScope(DV->getScope());
1948 } else if (auto *DL = dyn_cast<DILabel>(DN)) {
1949 Scope = LScopes.findLexicalScope(DL->getScope());
1950 }
1951
1952 if (Scope)
1953 createConcreteEntity(TheCU, *Scope, DN, nullptr);
1954 }
1955 }
1956
1957 // Process beginning of an instruction.
beginInstruction(const MachineInstr * MI)1958 void DwarfDebug::beginInstruction(const MachineInstr *MI) {
1959 const MachineFunction &MF = *MI->getMF();
1960 const auto *SP = MF.getFunction().getSubprogram();
1961 bool NoDebug =
1962 !SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug;
1963
1964 // Delay slot support check.
1965 auto delaySlotSupported = [](const MachineInstr &MI) {
1966 if (!MI.isBundledWithSucc())
1967 return false;
1968 auto Suc = std::next(MI.getIterator());
1969 (void)Suc;
1970 // Ensure that delay slot instruction is successor of the call instruction.
1971 // Ex. CALL_INSTRUCTION {
1972 // DELAY_SLOT_INSTRUCTION }
1973 assert(Suc->isBundledWithPred() &&
1974 "Call bundle instructions are out of order");
1975 return true;
1976 };
1977
1978 // When describing calls, we need a label for the call instruction.
1979 if (!NoDebug && SP->areAllCallsDescribed() &&
1980 MI->isCandidateForCallSiteEntry(MachineInstr::AnyInBundle) &&
1981 (!MI->hasDelaySlot() || delaySlotSupported(*MI))) {
1982 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1983 bool IsTail = TII->isTailCall(*MI);
1984 // For tail calls, we need the address of the branch instruction for
1985 // DW_AT_call_pc.
1986 if (IsTail)
1987 requestLabelBeforeInsn(MI);
1988 // For non-tail calls, we need the return address for the call for
1989 // DW_AT_call_return_pc. Under GDB tuning, this information is needed for
1990 // tail calls as well.
1991 requestLabelAfterInsn(MI);
1992 }
1993
1994 DebugHandlerBase::beginInstruction(MI);
1995 if (!CurMI)
1996 return;
1997
1998 if (NoDebug)
1999 return;
2000
2001 // Check if source location changes, but ignore DBG_VALUE and CFI locations.
2002 // If the instruction is part of the function frame setup code, do not emit
2003 // any line record, as there is no correspondence with any user code.
2004 if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup))
2005 return;
2006 const DebugLoc &DL = MI->getDebugLoc();
2007 // When we emit a line-0 record, we don't update PrevInstLoc; so look at
2008 // the last line number actually emitted, to see if it was line 0.
2009 unsigned LastAsmLine =
2010 Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine();
2011
2012 if (DL == PrevInstLoc) {
2013 // If we have an ongoing unspecified location, nothing to do here.
2014 if (!DL)
2015 return;
2016 // We have an explicit location, same as the previous location.
2017 // But we might be coming back to it after a line 0 record.
2018 if (LastAsmLine == 0 && DL.getLine() != 0) {
2019 // Reinstate the source location but not marked as a statement.
2020 const MDNode *Scope = DL.getScope();
2021 recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0);
2022 }
2023 return;
2024 }
2025
2026 if (!DL) {
2027 // We have an unspecified location, which might want to be line 0.
2028 // If we have already emitted a line-0 record, don't repeat it.
2029 if (LastAsmLine == 0)
2030 return;
2031 // If user said Don't Do That, don't do that.
2032 if (UnknownLocations == Disable)
2033 return;
2034 // See if we have a reason to emit a line-0 record now.
2035 // Reasons to emit a line-0 record include:
2036 // - User asked for it (UnknownLocations).
2037 // - Instruction has a label, so it's referenced from somewhere else,
2038 // possibly debug information; we want it to have a source location.
2039 // - Instruction is at the top of a block; we don't want to inherit the
2040 // location from the physically previous (maybe unrelated) block.
2041 if (UnknownLocations == Enable || PrevLabel ||
2042 (PrevInstBB && PrevInstBB != MI->getParent())) {
2043 // Preserve the file and column numbers, if we can, to save space in
2044 // the encoded line table.
2045 // Do not update PrevInstLoc, it remembers the last non-0 line.
2046 const MDNode *Scope = nullptr;
2047 unsigned Column = 0;
2048 if (PrevInstLoc) {
2049 Scope = PrevInstLoc.getScope();
2050 Column = PrevInstLoc.getCol();
2051 }
2052 recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0);
2053 }
2054 return;
2055 }
2056
2057 // We have an explicit location, different from the previous location.
2058 // Don't repeat a line-0 record, but otherwise emit the new location.
2059 // (The new location might be an explicit line 0, which we do emit.)
2060 if (DL.getLine() == 0 && LastAsmLine == 0)
2061 return;
2062 unsigned Flags = 0;
2063 if (DL == PrologEndLoc) {
2064 Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT;
2065 PrologEndLoc = DebugLoc();
2066 }
2067 // If the line changed, we call that a new statement; unless we went to
2068 // line 0 and came back, in which case it is not a new statement.
2069 unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine;
2070 if (DL.getLine() && DL.getLine() != OldLine)
2071 Flags |= DWARF2_FLAG_IS_STMT;
2072
2073 const MDNode *Scope = DL.getScope();
2074 recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
2075
2076 // If we're not at line 0, remember this location.
2077 if (DL.getLine())
2078 PrevInstLoc = DL;
2079 }
2080
findPrologueEndLoc(const MachineFunction * MF)2081 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) {
2082 // First known non-DBG_VALUE and non-frame setup location marks
2083 // the beginning of the function body.
2084 DebugLoc LineZeroLoc;
2085 for (const auto &MBB : *MF) {
2086 for (const auto &MI : MBB) {
2087 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
2088 MI.getDebugLoc()) {
2089 // Scan forward to try to find a non-zero line number. The prologue_end
2090 // marks the first breakpoint in the function after the frame setup, and
2091 // a compiler-generated line 0 location is not a meaningful breakpoint.
2092 // If none is found, return the first location after the frame setup.
2093 if (MI.getDebugLoc().getLine())
2094 return MI.getDebugLoc();
2095 LineZeroLoc = MI.getDebugLoc();
2096 }
2097 }
2098 }
2099 return LineZeroLoc;
2100 }
2101
2102 /// Register a source line with debug info. Returns the unique label that was
2103 /// emitted and which provides correspondence to the source line list.
recordSourceLine(AsmPrinter & Asm,unsigned Line,unsigned Col,const MDNode * S,unsigned Flags,unsigned CUID,uint16_t DwarfVersion,ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs)2104 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col,
2105 const MDNode *S, unsigned Flags, unsigned CUID,
2106 uint16_t DwarfVersion,
2107 ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) {
2108 StringRef Fn;
2109 unsigned FileNo = 1;
2110 unsigned Discriminator = 0;
2111 if (auto *Scope = cast_or_null<DIScope>(S)) {
2112 Fn = Scope->getFilename();
2113 if (Line != 0 && DwarfVersion >= 4)
2114 if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope))
2115 Discriminator = LBF->getDiscriminator();
2116
2117 FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID])
2118 .getOrCreateSourceID(Scope->getFile());
2119 }
2120 Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0,
2121 Discriminator, Fn);
2122 }
2123
emitInitialLocDirective(const MachineFunction & MF,unsigned CUID)2124 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF,
2125 unsigned CUID) {
2126 // Get beginning of function.
2127 if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) {
2128 // Ensure the compile unit is created if the function is called before
2129 // beginFunction().
2130 (void)getOrCreateDwarfCompileUnit(
2131 MF.getFunction().getSubprogram()->getUnit());
2132 // We'd like to list the prologue as "not statements" but GDB behaves
2133 // poorly if we do that. Revisit this with caution/GDB (7.5+) testing.
2134 const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram();
2135 ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT,
2136 CUID, getDwarfVersion(), getUnits());
2137 return PrologEndLoc;
2138 }
2139 return DebugLoc();
2140 }
2141
2142 // Gather pre-function debug information. Assumes being called immediately
2143 // after the function entry point has been emitted.
beginFunctionImpl(const MachineFunction * MF)2144 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) {
2145 CurFn = MF;
2146
2147 auto *SP = MF->getFunction().getSubprogram();
2148 assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode());
2149 if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
2150 return;
2151
2152 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
2153
2154 Asm->OutStreamer->getContext().setDwarfCompileUnitID(
2155 getDwarfCompileUnitIDForLineTable(CU));
2156
2157 // Record beginning of function.
2158 PrologEndLoc = emitInitialLocDirective(
2159 *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID());
2160 }
2161
2162 unsigned
getDwarfCompileUnitIDForLineTable(const DwarfCompileUnit & CU)2163 DwarfDebug::getDwarfCompileUnitIDForLineTable(const DwarfCompileUnit &CU) {
2164 // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function
2165 // belongs to so that we add to the correct per-cu line table in the
2166 // non-asm case.
2167 if (Asm->OutStreamer->hasRawTextSupport())
2168 // Use a single line table if we are generating assembly.
2169 return 0;
2170 else
2171 return CU.getUniqueID();
2172 }
2173
terminateLineTable(const DwarfCompileUnit * CU)2174 void DwarfDebug::terminateLineTable(const DwarfCompileUnit *CU) {
2175 const auto &CURanges = CU->getRanges();
2176 auto &LineTable = Asm->OutStreamer->getContext().getMCDwarfLineTable(
2177 getDwarfCompileUnitIDForLineTable(*CU));
2178 // Add the last range label for the given CU.
2179 LineTable.getMCLineSections().addEndEntry(
2180 const_cast<MCSymbol *>(CURanges.back().End));
2181 }
2182
skippedNonDebugFunction()2183 void DwarfDebug::skippedNonDebugFunction() {
2184 // If we don't have a subprogram for this function then there will be a hole
2185 // in the range information. Keep note of this by setting the previously used
2186 // section to nullptr.
2187 // Terminate the pending line table.
2188 if (PrevCU)
2189 terminateLineTable(PrevCU);
2190 PrevCU = nullptr;
2191 CurFn = nullptr;
2192 }
2193
2194 // Gather and emit post-function debug information.
endFunctionImpl(const MachineFunction * MF)2195 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) {
2196 const DISubprogram *SP = MF->getFunction().getSubprogram();
2197
2198 assert(CurFn == MF &&
2199 "endFunction should be called with the same function as beginFunction");
2200
2201 // Set DwarfDwarfCompileUnitID in MCContext to default value.
2202 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
2203
2204 LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
2205 assert(!FnScope || SP == FnScope->getScopeNode());
2206 DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit());
2207 if (TheCU.getCUNode()->isDebugDirectivesOnly()) {
2208 PrevLabel = nullptr;
2209 CurFn = nullptr;
2210 return;
2211 }
2212
2213 DenseSet<InlinedEntity> Processed;
2214 collectEntityInfo(TheCU, SP, Processed);
2215
2216 // Add the range of this function to the list of ranges for the CU.
2217 // With basic block sections, add ranges for all basic block sections.
2218 for (const auto &R : Asm->MBBSectionRanges)
2219 TheCU.addRange({R.second.BeginLabel, R.second.EndLabel});
2220
2221 // Under -gmlt, skip building the subprogram if there are no inlined
2222 // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram
2223 // is still needed as we need its source location.
2224 if (!TheCU.getCUNode()->getDebugInfoForProfiling() &&
2225 TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly &&
2226 LScopes.getAbstractScopesList().empty() && !IsDarwin) {
2227 assert(InfoHolder.getScopeVariables().empty());
2228 PrevLabel = nullptr;
2229 CurFn = nullptr;
2230 return;
2231 }
2232
2233 #ifndef NDEBUG
2234 size_t NumAbstractScopes = LScopes.getAbstractScopesList().size();
2235 #endif
2236 // Construct abstract scopes.
2237 for (LexicalScope *AScope : LScopes.getAbstractScopesList()) {
2238 const auto *SP = cast<DISubprogram>(AScope->getScopeNode());
2239 for (const DINode *DN : SP->getRetainedNodes()) {
2240 if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
2241 continue;
2242
2243 const MDNode *Scope = nullptr;
2244 if (auto *DV = dyn_cast<DILocalVariable>(DN))
2245 Scope = DV->getScope();
2246 else if (auto *DL = dyn_cast<DILabel>(DN))
2247 Scope = DL->getScope();
2248 else
2249 llvm_unreachable("Unexpected DI type!");
2250
2251 // Collect info for variables/labels that were optimized out.
2252 ensureAbstractEntityIsCreated(TheCU, DN, Scope);
2253 assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes
2254 && "ensureAbstractEntityIsCreated inserted abstract scopes");
2255 }
2256 constructAbstractSubprogramScopeDIE(TheCU, AScope);
2257 }
2258
2259 ProcessedSPNodes.insert(SP);
2260 DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope);
2261 if (auto *SkelCU = TheCU.getSkeleton())
2262 if (!LScopes.getAbstractScopesList().empty() &&
2263 TheCU.getCUNode()->getSplitDebugInlining())
2264 SkelCU->constructSubprogramScopeDIE(SP, FnScope);
2265
2266 // Construct call site entries.
2267 constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF);
2268
2269 // Clear debug info
2270 // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the
2271 // DbgVariables except those that are also in AbstractVariables (since they
2272 // can be used cross-function)
2273 InfoHolder.getScopeVariables().clear();
2274 InfoHolder.getScopeLabels().clear();
2275 PrevLabel = nullptr;
2276 CurFn = nullptr;
2277 }
2278
2279 // Register a source line with debug info. Returns the unique label that was
2280 // emitted and which provides correspondence to the source line list.
recordSourceLine(unsigned Line,unsigned Col,const MDNode * S,unsigned Flags)2281 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S,
2282 unsigned Flags) {
2283 ::recordSourceLine(*Asm, Line, Col, S, Flags,
2284 Asm->OutStreamer->getContext().getDwarfCompileUnitID(),
2285 getDwarfVersion(), getUnits());
2286 }
2287
2288 //===----------------------------------------------------------------------===//
2289 // Emit Methods
2290 //===----------------------------------------------------------------------===//
2291
2292 // Emit the debug info section.
emitDebugInfo()2293 void DwarfDebug::emitDebugInfo() {
2294 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2295 Holder.emitUnits(/* UseOffsets */ false);
2296 }
2297
2298 // Emit the abbreviation section.
emitAbbreviations()2299 void DwarfDebug::emitAbbreviations() {
2300 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2301
2302 Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection());
2303 }
2304
emitStringOffsetsTableHeader()2305 void DwarfDebug::emitStringOffsetsTableHeader() {
2306 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2307 Holder.getStringPool().emitStringOffsetsTableHeader(
2308 *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(),
2309 Holder.getStringOffsetsStartSym());
2310 }
2311
2312 template <typename AccelTableT>
emitAccel(AccelTableT & Accel,MCSection * Section,StringRef TableName)2313 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section,
2314 StringRef TableName) {
2315 Asm->OutStreamer->switchSection(Section);
2316
2317 // Emit the full data.
2318 emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol());
2319 }
2320
emitAccelDebugNames()2321 void DwarfDebug::emitAccelDebugNames() {
2322 // Don't emit anything if we have no compilation units to index.
2323 if (getUnits().empty())
2324 return;
2325
2326 emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits());
2327 }
2328
2329 // Emit visible names into a hashed accelerator table section.
emitAccelNames()2330 void DwarfDebug::emitAccelNames() {
2331 emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(),
2332 "Names");
2333 }
2334
2335 // Emit objective C classes and categories into a hashed accelerator table
2336 // section.
emitAccelObjC()2337 void DwarfDebug::emitAccelObjC() {
2338 emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(),
2339 "ObjC");
2340 }
2341
2342 // Emit namespace dies into a hashed accelerator table.
emitAccelNamespaces()2343 void DwarfDebug::emitAccelNamespaces() {
2344 emitAccel(AccelNamespace,
2345 Asm->getObjFileLowering().getDwarfAccelNamespaceSection(),
2346 "namespac");
2347 }
2348
2349 // Emit type dies into a hashed accelerator table.
emitAccelTypes()2350 void DwarfDebug::emitAccelTypes() {
2351 emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(),
2352 "types");
2353 }
2354
2355 // Public name handling.
2356 // The format for the various pubnames:
2357 //
2358 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU
2359 // for the DIE that is named.
2360 //
2361 // gnu pubnames - offset/index value/name tuples where the offset is the offset
2362 // into the CU and the index value is computed according to the type of value
2363 // for the DIE that is named.
2364 //
2365 // For type units the offset is the offset of the skeleton DIE. For split dwarf
2366 // it's the offset within the debug_info/debug_types dwo section, however, the
2367 // reference in the pubname header doesn't change.
2368
2369 /// computeIndexValue - Compute the gdb index value for the DIE and CU.
computeIndexValue(DwarfUnit * CU,const DIE * Die)2370 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU,
2371 const DIE *Die) {
2372 // Entities that ended up only in a Type Unit reference the CU instead (since
2373 // the pub entry has offsets within the CU there's no real offset that can be
2374 // provided anyway). As it happens all such entities (namespaces and types,
2375 // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out
2376 // not to be true it would be necessary to persist this information from the
2377 // point at which the entry is added to the index data structure - since by
2378 // the time the index is built from that, the original type/namespace DIE in a
2379 // type unit has already been destroyed so it can't be queried for properties
2380 // like tag, etc.
2381 if (Die->getTag() == dwarf::DW_TAG_compile_unit)
2382 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE,
2383 dwarf::GIEL_EXTERNAL);
2384 dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC;
2385
2386 // We could have a specification DIE that has our most of our knowledge,
2387 // look for that now.
2388 if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) {
2389 DIE &SpecDIE = SpecVal.getDIEEntry().getEntry();
2390 if (SpecDIE.findAttribute(dwarf::DW_AT_external))
2391 Linkage = dwarf::GIEL_EXTERNAL;
2392 } else if (Die->findAttribute(dwarf::DW_AT_external))
2393 Linkage = dwarf::GIEL_EXTERNAL;
2394
2395 switch (Die->getTag()) {
2396 case dwarf::DW_TAG_class_type:
2397 case dwarf::DW_TAG_structure_type:
2398 case dwarf::DW_TAG_union_type:
2399 case dwarf::DW_TAG_enumeration_type:
2400 return dwarf::PubIndexEntryDescriptor(
2401 dwarf::GIEK_TYPE,
2402 dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage())
2403 ? dwarf::GIEL_EXTERNAL
2404 : dwarf::GIEL_STATIC);
2405 case dwarf::DW_TAG_typedef:
2406 case dwarf::DW_TAG_base_type:
2407 case dwarf::DW_TAG_subrange_type:
2408 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC);
2409 case dwarf::DW_TAG_namespace:
2410 return dwarf::GIEK_TYPE;
2411 case dwarf::DW_TAG_subprogram:
2412 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage);
2413 case dwarf::DW_TAG_variable:
2414 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage);
2415 case dwarf::DW_TAG_enumerator:
2416 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE,
2417 dwarf::GIEL_STATIC);
2418 default:
2419 return dwarf::GIEK_NONE;
2420 }
2421 }
2422
2423 /// emitDebugPubSections - Emit visible names and types into debug pubnames and
2424 /// pubtypes sections.
emitDebugPubSections()2425 void DwarfDebug::emitDebugPubSections() {
2426 for (const auto &NU : CUMap) {
2427 DwarfCompileUnit *TheU = NU.second;
2428 if (!TheU->hasDwarfPubSections())
2429 continue;
2430
2431 bool GnuStyle = TheU->getCUNode()->getNameTableKind() ==
2432 DICompileUnit::DebugNameTableKind::GNU;
2433
2434 Asm->OutStreamer->switchSection(
2435 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection()
2436 : Asm->getObjFileLowering().getDwarfPubNamesSection());
2437 emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames());
2438
2439 Asm->OutStreamer->switchSection(
2440 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection()
2441 : Asm->getObjFileLowering().getDwarfPubTypesSection());
2442 emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes());
2443 }
2444 }
2445
emitSectionReference(const DwarfCompileUnit & CU)2446 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) {
2447 if (useSectionsAsReferences())
2448 Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(),
2449 CU.getDebugSectionOffset());
2450 else
2451 Asm->emitDwarfSymbolReference(CU.getLabelBegin());
2452 }
2453
emitDebugPubSection(bool GnuStyle,StringRef Name,DwarfCompileUnit * TheU,const StringMap<const DIE * > & Globals)2454 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name,
2455 DwarfCompileUnit *TheU,
2456 const StringMap<const DIE *> &Globals) {
2457 if (auto *Skeleton = TheU->getSkeleton())
2458 TheU = Skeleton;
2459
2460 // Emit the header.
2461 MCSymbol *EndLabel = Asm->emitDwarfUnitLength(
2462 "pub" + Name, "Length of Public " + Name + " Info");
2463
2464 Asm->OutStreamer->AddComment("DWARF Version");
2465 Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION);
2466
2467 Asm->OutStreamer->AddComment("Offset of Compilation Unit Info");
2468 emitSectionReference(*TheU);
2469
2470 Asm->OutStreamer->AddComment("Compilation Unit Length");
2471 Asm->emitDwarfLengthOrOffset(TheU->getLength());
2472
2473 // Emit the pubnames for this compilation unit.
2474 for (const auto &GI : Globals) {
2475 const char *Name = GI.getKeyData();
2476 const DIE *Entity = GI.second;
2477
2478 Asm->OutStreamer->AddComment("DIE offset");
2479 Asm->emitDwarfLengthOrOffset(Entity->getOffset());
2480
2481 if (GnuStyle) {
2482 dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity);
2483 Asm->OutStreamer->AddComment(
2484 Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) +
2485 ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage));
2486 Asm->emitInt8(Desc.toBits());
2487 }
2488
2489 Asm->OutStreamer->AddComment("External Name");
2490 Asm->OutStreamer->emitBytes(StringRef(Name, GI.getKeyLength() + 1));
2491 }
2492
2493 Asm->OutStreamer->AddComment("End Mark");
2494 Asm->emitDwarfLengthOrOffset(0);
2495 Asm->OutStreamer->emitLabel(EndLabel);
2496 }
2497
2498 /// Emit null-terminated strings into a debug str section.
emitDebugStr()2499 void DwarfDebug::emitDebugStr() {
2500 MCSection *StringOffsetsSection = nullptr;
2501 if (useSegmentedStringOffsetsTable()) {
2502 emitStringOffsetsTableHeader();
2503 StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection();
2504 }
2505 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2506 Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(),
2507 StringOffsetsSection, /* UseRelativeOffsets = */ true);
2508 }
2509
emitDebugLocEntry(ByteStreamer & Streamer,const DebugLocStream::Entry & Entry,const DwarfCompileUnit * CU)2510 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer,
2511 const DebugLocStream::Entry &Entry,
2512 const DwarfCompileUnit *CU) {
2513 auto &&Comments = DebugLocs.getComments(Entry);
2514 auto Comment = Comments.begin();
2515 auto End = Comments.end();
2516
2517 // The expressions are inserted into a byte stream rather early (see
2518 // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that
2519 // need to reference a base_type DIE the offset of that DIE is not yet known.
2520 // To deal with this we instead insert a placeholder early and then extract
2521 // it here and replace it with the real reference.
2522 unsigned PtrSize = Asm->MAI->getCodePointerSize();
2523 DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(),
2524 DebugLocs.getBytes(Entry).size()),
2525 Asm->getDataLayout().isLittleEndian(), PtrSize);
2526 DWARFExpression Expr(Data, PtrSize, Asm->OutContext.getDwarfFormat());
2527
2528 using Encoding = DWARFExpression::Operation::Encoding;
2529 uint64_t Offset = 0;
2530 for (const auto &Op : Expr) {
2531 assert(Op.getCode() != dwarf::DW_OP_const_type &&
2532 "3 operand ops not yet supported");
2533 Streamer.emitInt8(Op.getCode(), Comment != End ? *(Comment++) : "");
2534 Offset++;
2535 for (unsigned I = 0; I < 2; ++I) {
2536 if (Op.getDescription().Op[I] == Encoding::SizeNA)
2537 continue;
2538 if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) {
2539 unsigned Length =
2540 Streamer.emitDIERef(*CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die);
2541 // Make sure comments stay aligned.
2542 for (unsigned J = 0; J < Length; ++J)
2543 if (Comment != End)
2544 Comment++;
2545 } else {
2546 for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J)
2547 Streamer.emitInt8(Data.getData()[J], Comment != End ? *(Comment++) : "");
2548 }
2549 Offset = Op.getOperandEndOffset(I);
2550 }
2551 assert(Offset == Op.getEndOffset());
2552 }
2553 }
2554
emitDebugLocValue(const AsmPrinter & AP,const DIBasicType * BT,const DbgValueLoc & Value,DwarfExpression & DwarfExpr)2555 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT,
2556 const DbgValueLoc &Value,
2557 DwarfExpression &DwarfExpr) {
2558 auto *DIExpr = Value.getExpression();
2559 DIExpressionCursor ExprCursor(DIExpr);
2560 DwarfExpr.addFragmentOffset(DIExpr);
2561
2562 // If the DIExpr is is an Entry Value, we want to follow the same code path
2563 // regardless of whether the DBG_VALUE is variadic or not.
2564 if (DIExpr && DIExpr->isEntryValue()) {
2565 // Entry values can only be a single register with no additional DIExpr,
2566 // so just add it directly.
2567 assert(Value.getLocEntries().size() == 1);
2568 assert(Value.getLocEntries()[0].isLocation());
2569 MachineLocation Location = Value.getLocEntries()[0].getLoc();
2570 DwarfExpr.setLocation(Location, DIExpr);
2571
2572 DwarfExpr.beginEntryValueExpression(ExprCursor);
2573
2574 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
2575 if (!DwarfExpr.addMachineRegExpression(TRI, ExprCursor, Location.getReg()))
2576 return;
2577 return DwarfExpr.addExpression(std::move(ExprCursor));
2578 }
2579
2580 // Regular entry.
2581 auto EmitValueLocEntry = [&DwarfExpr, &BT,
2582 &AP](const DbgValueLocEntry &Entry,
2583 DIExpressionCursor &Cursor) -> bool {
2584 if (Entry.isInt()) {
2585 if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed ||
2586 BT->getEncoding() == dwarf::DW_ATE_signed_char))
2587 DwarfExpr.addSignedConstant(Entry.getInt());
2588 else
2589 DwarfExpr.addUnsignedConstant(Entry.getInt());
2590 } else if (Entry.isLocation()) {
2591 MachineLocation Location = Entry.getLoc();
2592 if (Location.isIndirect())
2593 DwarfExpr.setMemoryLocationKind();
2594
2595 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
2596 if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg()))
2597 return false;
2598 } else if (Entry.isTargetIndexLocation()) {
2599 TargetIndexLocation Loc = Entry.getTargetIndexLocation();
2600 // TODO TargetIndexLocation is a target-independent. Currently only the
2601 // WebAssembly-specific encoding is supported.
2602 assert(AP.TM.getTargetTriple().isWasm());
2603 DwarfExpr.addWasmLocation(Loc.Index, static_cast<uint64_t>(Loc.Offset));
2604 } else if (Entry.isConstantFP()) {
2605 if (AP.getDwarfVersion() >= 4 && !AP.getDwarfDebug()->tuneForSCE() &&
2606 !Cursor) {
2607 DwarfExpr.addConstantFP(Entry.getConstantFP()->getValueAPF(), AP);
2608 } else if (Entry.getConstantFP()
2609 ->getValueAPF()
2610 .bitcastToAPInt()
2611 .getBitWidth() <= 64 /*bits*/) {
2612 DwarfExpr.addUnsignedConstant(
2613 Entry.getConstantFP()->getValueAPF().bitcastToAPInt());
2614 } else {
2615 LLVM_DEBUG(
2616 dbgs() << "Skipped DwarfExpression creation for ConstantFP of size"
2617 << Entry.getConstantFP()
2618 ->getValueAPF()
2619 .bitcastToAPInt()
2620 .getBitWidth()
2621 << " bits\n");
2622 return false;
2623 }
2624 }
2625 return true;
2626 };
2627
2628 if (!Value.isVariadic()) {
2629 if (!EmitValueLocEntry(Value.getLocEntries()[0], ExprCursor))
2630 return;
2631 DwarfExpr.addExpression(std::move(ExprCursor));
2632 return;
2633 }
2634
2635 // If any of the location entries are registers with the value 0, then the
2636 // location is undefined.
2637 if (any_of(Value.getLocEntries(), [](const DbgValueLocEntry &Entry) {
2638 return Entry.isLocation() && !Entry.getLoc().getReg();
2639 }))
2640 return;
2641
2642 DwarfExpr.addExpression(
2643 std::move(ExprCursor),
2644 [EmitValueLocEntry, &Value](unsigned Idx,
2645 DIExpressionCursor &Cursor) -> bool {
2646 return EmitValueLocEntry(Value.getLocEntries()[Idx], Cursor);
2647 });
2648 }
2649
finalize(const AsmPrinter & AP,DebugLocStream::ListBuilder & List,const DIBasicType * BT,DwarfCompileUnit & TheCU)2650 void DebugLocEntry::finalize(const AsmPrinter &AP,
2651 DebugLocStream::ListBuilder &List,
2652 const DIBasicType *BT,
2653 DwarfCompileUnit &TheCU) {
2654 assert(!Values.empty() &&
2655 "location list entries without values are redundant");
2656 assert(Begin != End && "unexpected location list entry with empty range");
2657 DebugLocStream::EntryBuilder Entry(List, Begin, End);
2658 BufferByteStreamer Streamer = Entry.getStreamer();
2659 DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU);
2660 const DbgValueLoc &Value = Values[0];
2661 if (Value.isFragment()) {
2662 // Emit all fragments that belong to the same variable and range.
2663 assert(llvm::all_of(Values, [](DbgValueLoc P) {
2664 return P.isFragment();
2665 }) && "all values are expected to be fragments");
2666 assert(llvm::is_sorted(Values) && "fragments are expected to be sorted");
2667
2668 for (const auto &Fragment : Values)
2669 DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr);
2670
2671 } else {
2672 assert(Values.size() == 1 && "only fragments may have >1 value");
2673 DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr);
2674 }
2675 DwarfExpr.finalize();
2676 if (DwarfExpr.TagOffset)
2677 List.setTagOffset(*DwarfExpr.TagOffset);
2678 }
2679
emitDebugLocEntryLocation(const DebugLocStream::Entry & Entry,const DwarfCompileUnit * CU)2680 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry,
2681 const DwarfCompileUnit *CU) {
2682 // Emit the size.
2683 Asm->OutStreamer->AddComment("Loc expr size");
2684 if (getDwarfVersion() >= 5)
2685 Asm->emitULEB128(DebugLocs.getBytes(Entry).size());
2686 else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max())
2687 Asm->emitInt16(DebugLocs.getBytes(Entry).size());
2688 else {
2689 // The entry is too big to fit into 16 bit, drop it as there is nothing we
2690 // can do.
2691 Asm->emitInt16(0);
2692 return;
2693 }
2694 // Emit the entry.
2695 APByteStreamer Streamer(*Asm);
2696 emitDebugLocEntry(Streamer, Entry, CU);
2697 }
2698
2699 // Emit the header of a DWARF 5 range list table list table. Returns the symbol
2700 // that designates the end of the table for the caller to emit when the table is
2701 // complete.
emitRnglistsTableHeader(AsmPrinter * Asm,const DwarfFile & Holder)2702 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm,
2703 const DwarfFile &Holder) {
2704 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer);
2705
2706 Asm->OutStreamer->AddComment("Offset entry count");
2707 Asm->emitInt32(Holder.getRangeLists().size());
2708 Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym());
2709
2710 for (const RangeSpanList &List : Holder.getRangeLists())
2711 Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(),
2712 Asm->getDwarfOffsetByteSize());
2713
2714 return TableEnd;
2715 }
2716
2717 // Emit the header of a DWARF 5 locations list table. Returns the symbol that
2718 // designates the end of the table for the caller to emit when the table is
2719 // complete.
emitLoclistsTableHeader(AsmPrinter * Asm,const DwarfDebug & DD)2720 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm,
2721 const DwarfDebug &DD) {
2722 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer);
2723
2724 const auto &DebugLocs = DD.getDebugLocs();
2725
2726 Asm->OutStreamer->AddComment("Offset entry count");
2727 Asm->emitInt32(DebugLocs.getLists().size());
2728 Asm->OutStreamer->emitLabel(DebugLocs.getSym());
2729
2730 for (const auto &List : DebugLocs.getLists())
2731 Asm->emitLabelDifference(List.Label, DebugLocs.getSym(),
2732 Asm->getDwarfOffsetByteSize());
2733
2734 return TableEnd;
2735 }
2736
2737 template <typename Ranges, typename PayloadEmitter>
emitRangeList(DwarfDebug & DD,AsmPrinter * Asm,MCSymbol * Sym,const Ranges & R,const DwarfCompileUnit & CU,unsigned BaseAddressx,unsigned OffsetPair,unsigned StartxLength,unsigned EndOfList,StringRef (* StringifyEnum)(unsigned),bool ShouldUseBaseAddress,PayloadEmitter EmitPayload)2738 static void emitRangeList(
2739 DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R,
2740 const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair,
2741 unsigned StartxLength, unsigned EndOfList,
2742 StringRef (*StringifyEnum)(unsigned),
2743 bool ShouldUseBaseAddress,
2744 PayloadEmitter EmitPayload) {
2745
2746 auto Size = Asm->MAI->getCodePointerSize();
2747 bool UseDwarf5 = DD.getDwarfVersion() >= 5;
2748
2749 // Emit our symbol so we can find the beginning of the range.
2750 Asm->OutStreamer->emitLabel(Sym);
2751
2752 // Gather all the ranges that apply to the same section so they can share
2753 // a base address entry.
2754 MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges;
2755
2756 for (const auto &Range : R)
2757 SectionRanges[&Range.Begin->getSection()].push_back(&Range);
2758
2759 const MCSymbol *CUBase = CU.getBaseAddress();
2760 bool BaseIsSet = false;
2761 for (const auto &P : SectionRanges) {
2762 auto *Base = CUBase;
2763 if (!Base && ShouldUseBaseAddress) {
2764 const MCSymbol *Begin = P.second.front()->Begin;
2765 const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection());
2766 if (!UseDwarf5) {
2767 Base = NewBase;
2768 BaseIsSet = true;
2769 Asm->OutStreamer->emitIntValue(-1, Size);
2770 Asm->OutStreamer->AddComment(" base address");
2771 Asm->OutStreamer->emitSymbolValue(Base, Size);
2772 } else if (NewBase != Begin || P.second.size() > 1) {
2773 // Only use a base address if
2774 // * the existing pool address doesn't match (NewBase != Begin)
2775 // * or, there's more than one entry to share the base address
2776 Base = NewBase;
2777 BaseIsSet = true;
2778 Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx));
2779 Asm->emitInt8(BaseAddressx);
2780 Asm->OutStreamer->AddComment(" base address index");
2781 Asm->emitULEB128(DD.getAddressPool().getIndex(Base));
2782 }
2783 } else if (BaseIsSet && !UseDwarf5) {
2784 BaseIsSet = false;
2785 assert(!Base);
2786 Asm->OutStreamer->emitIntValue(-1, Size);
2787 Asm->OutStreamer->emitIntValue(0, Size);
2788 }
2789
2790 for (const auto *RS : P.second) {
2791 const MCSymbol *Begin = RS->Begin;
2792 const MCSymbol *End = RS->End;
2793 assert(Begin && "Range without a begin symbol?");
2794 assert(End && "Range without an end symbol?");
2795 if (Base) {
2796 if (UseDwarf5) {
2797 // Emit offset_pair when we have a base.
2798 Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair));
2799 Asm->emitInt8(OffsetPair);
2800 Asm->OutStreamer->AddComment(" starting offset");
2801 Asm->emitLabelDifferenceAsULEB128(Begin, Base);
2802 Asm->OutStreamer->AddComment(" ending offset");
2803 Asm->emitLabelDifferenceAsULEB128(End, Base);
2804 } else {
2805 Asm->emitLabelDifference(Begin, Base, Size);
2806 Asm->emitLabelDifference(End, Base, Size);
2807 }
2808 } else if (UseDwarf5) {
2809 Asm->OutStreamer->AddComment(StringifyEnum(StartxLength));
2810 Asm->emitInt8(StartxLength);
2811 Asm->OutStreamer->AddComment(" start index");
2812 Asm->emitULEB128(DD.getAddressPool().getIndex(Begin));
2813 Asm->OutStreamer->AddComment(" length");
2814 Asm->emitLabelDifferenceAsULEB128(End, Begin);
2815 } else {
2816 Asm->OutStreamer->emitSymbolValue(Begin, Size);
2817 Asm->OutStreamer->emitSymbolValue(End, Size);
2818 }
2819 EmitPayload(*RS);
2820 }
2821 }
2822
2823 if (UseDwarf5) {
2824 Asm->OutStreamer->AddComment(StringifyEnum(EndOfList));
2825 Asm->emitInt8(EndOfList);
2826 } else {
2827 // Terminate the list with two 0 values.
2828 Asm->OutStreamer->emitIntValue(0, Size);
2829 Asm->OutStreamer->emitIntValue(0, Size);
2830 }
2831 }
2832
2833 // Handles emission of both debug_loclist / debug_loclist.dwo
emitLocList(DwarfDebug & DD,AsmPrinter * Asm,const DebugLocStream::List & List)2834 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) {
2835 emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List),
2836 *List.CU, dwarf::DW_LLE_base_addressx,
2837 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length,
2838 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString,
2839 /* ShouldUseBaseAddress */ true,
2840 [&](const DebugLocStream::Entry &E) {
2841 DD.emitDebugLocEntryLocation(E, List.CU);
2842 });
2843 }
2844
emitDebugLocImpl(MCSection * Sec)2845 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) {
2846 if (DebugLocs.getLists().empty())
2847 return;
2848
2849 Asm->OutStreamer->switchSection(Sec);
2850
2851 MCSymbol *TableEnd = nullptr;
2852 if (getDwarfVersion() >= 5)
2853 TableEnd = emitLoclistsTableHeader(Asm, *this);
2854
2855 for (const auto &List : DebugLocs.getLists())
2856 emitLocList(*this, Asm, List);
2857
2858 if (TableEnd)
2859 Asm->OutStreamer->emitLabel(TableEnd);
2860 }
2861
2862 // Emit locations into the .debug_loc/.debug_loclists section.
emitDebugLoc()2863 void DwarfDebug::emitDebugLoc() {
2864 emitDebugLocImpl(
2865 getDwarfVersion() >= 5
2866 ? Asm->getObjFileLowering().getDwarfLoclistsSection()
2867 : Asm->getObjFileLowering().getDwarfLocSection());
2868 }
2869
2870 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section.
emitDebugLocDWO()2871 void DwarfDebug::emitDebugLocDWO() {
2872 if (getDwarfVersion() >= 5) {
2873 emitDebugLocImpl(
2874 Asm->getObjFileLowering().getDwarfLoclistsDWOSection());
2875
2876 return;
2877 }
2878
2879 for (const auto &List : DebugLocs.getLists()) {
2880 Asm->OutStreamer->switchSection(
2881 Asm->getObjFileLowering().getDwarfLocDWOSection());
2882 Asm->OutStreamer->emitLabel(List.Label);
2883
2884 for (const auto &Entry : DebugLocs.getEntries(List)) {
2885 // GDB only supports startx_length in pre-standard split-DWARF.
2886 // (in v5 standard loclists, it currently* /only/ supports base_address +
2887 // offset_pair, so the implementations can't really share much since they
2888 // need to use different representations)
2889 // * as of October 2018, at least
2890 //
2891 // In v5 (see emitLocList), this uses SectionLabels to reuse existing
2892 // addresses in the address pool to minimize object size/relocations.
2893 Asm->emitInt8(dwarf::DW_LLE_startx_length);
2894 unsigned idx = AddrPool.getIndex(Entry.Begin);
2895 Asm->emitULEB128(idx);
2896 // Also the pre-standard encoding is slightly different, emitting this as
2897 // an address-length entry here, but its a ULEB128 in DWARFv5 loclists.
2898 Asm->emitLabelDifference(Entry.End, Entry.Begin, 4);
2899 emitDebugLocEntryLocation(Entry, List.CU);
2900 }
2901 Asm->emitInt8(dwarf::DW_LLE_end_of_list);
2902 }
2903 }
2904
2905 struct ArangeSpan {
2906 const MCSymbol *Start, *End;
2907 };
2908
2909 // Emit a debug aranges section, containing a CU lookup for any
2910 // address we can tie back to a CU.
emitDebugARanges()2911 void DwarfDebug::emitDebugARanges() {
2912 // Provides a unique id per text section.
2913 MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap;
2914
2915 // Filter labels by section.
2916 for (const SymbolCU &SCU : ArangeLabels) {
2917 if (SCU.Sym->isInSection()) {
2918 // Make a note of this symbol and it's section.
2919 MCSection *Section = &SCU.Sym->getSection();
2920 if (!Section->getKind().isMetadata())
2921 SectionMap[Section].push_back(SCU);
2922 } else {
2923 // Some symbols (e.g. common/bss on mach-o) can have no section but still
2924 // appear in the output. This sucks as we rely on sections to build
2925 // arange spans. We can do it without, but it's icky.
2926 SectionMap[nullptr].push_back(SCU);
2927 }
2928 }
2929
2930 DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans;
2931
2932 for (auto &I : SectionMap) {
2933 MCSection *Section = I.first;
2934 SmallVector<SymbolCU, 8> &List = I.second;
2935 if (List.size() < 1)
2936 continue;
2937
2938 // If we have no section (e.g. common), just write out
2939 // individual spans for each symbol.
2940 if (!Section) {
2941 for (const SymbolCU &Cur : List) {
2942 ArangeSpan Span;
2943 Span.Start = Cur.Sym;
2944 Span.End = nullptr;
2945 assert(Cur.CU);
2946 Spans[Cur.CU].push_back(Span);
2947 }
2948 continue;
2949 }
2950
2951 // Sort the symbols by offset within the section.
2952 llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) {
2953 unsigned IA = A.Sym ? Asm->OutStreamer->getSymbolOrder(A.Sym) : 0;
2954 unsigned IB = B.Sym ? Asm->OutStreamer->getSymbolOrder(B.Sym) : 0;
2955
2956 // Symbols with no order assigned should be placed at the end.
2957 // (e.g. section end labels)
2958 if (IA == 0)
2959 return false;
2960 if (IB == 0)
2961 return true;
2962 return IA < IB;
2963 });
2964
2965 // Insert a final terminator.
2966 List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section)));
2967
2968 // Build spans between each label.
2969 const MCSymbol *StartSym = List[0].Sym;
2970 for (size_t n = 1, e = List.size(); n < e; n++) {
2971 const SymbolCU &Prev = List[n - 1];
2972 const SymbolCU &Cur = List[n];
2973
2974 // Try and build the longest span we can within the same CU.
2975 if (Cur.CU != Prev.CU) {
2976 ArangeSpan Span;
2977 Span.Start = StartSym;
2978 Span.End = Cur.Sym;
2979 assert(Prev.CU);
2980 Spans[Prev.CU].push_back(Span);
2981 StartSym = Cur.Sym;
2982 }
2983 }
2984 }
2985
2986 // Start the dwarf aranges section.
2987 Asm->OutStreamer->switchSection(
2988 Asm->getObjFileLowering().getDwarfARangesSection());
2989
2990 unsigned PtrSize = Asm->MAI->getCodePointerSize();
2991
2992 // Build a list of CUs used.
2993 std::vector<DwarfCompileUnit *> CUs;
2994 for (const auto &it : Spans) {
2995 DwarfCompileUnit *CU = it.first;
2996 CUs.push_back(CU);
2997 }
2998
2999 // Sort the CU list (again, to ensure consistent output order).
3000 llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) {
3001 return A->getUniqueID() < B->getUniqueID();
3002 });
3003
3004 // Emit an arange table for each CU we used.
3005 for (DwarfCompileUnit *CU : CUs) {
3006 std::vector<ArangeSpan> &List = Spans[CU];
3007
3008 // Describe the skeleton CU's offset and length, not the dwo file's.
3009 if (auto *Skel = CU->getSkeleton())
3010 CU = Skel;
3011
3012 // Emit size of content not including length itself.
3013 unsigned ContentSize =
3014 sizeof(int16_t) + // DWARF ARange version number
3015 Asm->getDwarfOffsetByteSize() + // Offset of CU in the .debug_info
3016 // section
3017 sizeof(int8_t) + // Pointer Size (in bytes)
3018 sizeof(int8_t); // Segment Size (in bytes)
3019
3020 unsigned TupleSize = PtrSize * 2;
3021
3022 // 7.20 in the Dwarf specs requires the table to be aligned to a tuple.
3023 unsigned Padding = offsetToAlignment(
3024 Asm->getUnitLengthFieldByteSize() + ContentSize, Align(TupleSize));
3025
3026 ContentSize += Padding;
3027 ContentSize += (List.size() + 1) * TupleSize;
3028
3029 // For each compile unit, write the list of spans it covers.
3030 Asm->emitDwarfUnitLength(ContentSize, "Length of ARange Set");
3031 Asm->OutStreamer->AddComment("DWARF Arange version number");
3032 Asm->emitInt16(dwarf::DW_ARANGES_VERSION);
3033 Asm->OutStreamer->AddComment("Offset Into Debug Info Section");
3034 emitSectionReference(*CU);
3035 Asm->OutStreamer->AddComment("Address Size (in bytes)");
3036 Asm->emitInt8(PtrSize);
3037 Asm->OutStreamer->AddComment("Segment Size (in bytes)");
3038 Asm->emitInt8(0);
3039
3040 Asm->OutStreamer->emitFill(Padding, 0xff);
3041
3042 for (const ArangeSpan &Span : List) {
3043 Asm->emitLabelReference(Span.Start, PtrSize);
3044
3045 // Calculate the size as being from the span start to its end.
3046 //
3047 // If the size is zero, then round it up to one byte. The DWARF
3048 // specification requires that entries in this table have nonzero
3049 // lengths.
3050 auto SizeRef = SymSize.find(Span.Start);
3051 if ((SizeRef == SymSize.end() || SizeRef->second != 0) && Span.End) {
3052 Asm->emitLabelDifference(Span.End, Span.Start, PtrSize);
3053 } else {
3054 // For symbols without an end marker (e.g. common), we
3055 // write a single arange entry containing just that one symbol.
3056 uint64_t Size;
3057 if (SizeRef == SymSize.end() || SizeRef->second == 0)
3058 Size = 1;
3059 else
3060 Size = SizeRef->second;
3061
3062 Asm->OutStreamer->emitIntValue(Size, PtrSize);
3063 }
3064 }
3065
3066 Asm->OutStreamer->AddComment("ARange terminator");
3067 Asm->OutStreamer->emitIntValue(0, PtrSize);
3068 Asm->OutStreamer->emitIntValue(0, PtrSize);
3069 }
3070 }
3071
3072 /// Emit a single range list. We handle both DWARF v5 and earlier.
emitRangeList(DwarfDebug & DD,AsmPrinter * Asm,const RangeSpanList & List)3073 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm,
3074 const RangeSpanList &List) {
3075 emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU,
3076 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair,
3077 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list,
3078 llvm::dwarf::RangeListEncodingString,
3079 List.CU->getCUNode()->getRangesBaseAddress() ||
3080 DD.getDwarfVersion() >= 5,
3081 [](auto) {});
3082 }
3083
emitDebugRangesImpl(const DwarfFile & Holder,MCSection * Section)3084 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) {
3085 if (Holder.getRangeLists().empty())
3086 return;
3087
3088 assert(useRangesSection());
3089 assert(!CUMap.empty());
3090 assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) {
3091 return !Pair.second->getCUNode()->isDebugDirectivesOnly();
3092 }));
3093
3094 Asm->OutStreamer->switchSection(Section);
3095
3096 MCSymbol *TableEnd = nullptr;
3097 if (getDwarfVersion() >= 5)
3098 TableEnd = emitRnglistsTableHeader(Asm, Holder);
3099
3100 for (const RangeSpanList &List : Holder.getRangeLists())
3101 emitRangeList(*this, Asm, List);
3102
3103 if (TableEnd)
3104 Asm->OutStreamer->emitLabel(TableEnd);
3105 }
3106
3107 /// Emit address ranges into the .debug_ranges section or into the DWARF v5
3108 /// .debug_rnglists section.
emitDebugRanges()3109 void DwarfDebug::emitDebugRanges() {
3110 const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
3111
3112 emitDebugRangesImpl(Holder,
3113 getDwarfVersion() >= 5
3114 ? Asm->getObjFileLowering().getDwarfRnglistsSection()
3115 : Asm->getObjFileLowering().getDwarfRangesSection());
3116 }
3117
emitDebugRangesDWO()3118 void DwarfDebug::emitDebugRangesDWO() {
3119 emitDebugRangesImpl(InfoHolder,
3120 Asm->getObjFileLowering().getDwarfRnglistsDWOSection());
3121 }
3122
3123 /// Emit the header of a DWARF 5 macro section, or the GNU extension for
3124 /// DWARF 4.
emitMacroHeader(AsmPrinter * Asm,const DwarfDebug & DD,const DwarfCompileUnit & CU,uint16_t DwarfVersion)3125 static void emitMacroHeader(AsmPrinter *Asm, const DwarfDebug &DD,
3126 const DwarfCompileUnit &CU, uint16_t DwarfVersion) {
3127 enum HeaderFlagMask {
3128 #define HANDLE_MACRO_FLAG(ID, NAME) MACRO_FLAG_##NAME = ID,
3129 #include "llvm/BinaryFormat/Dwarf.def"
3130 };
3131 Asm->OutStreamer->AddComment("Macro information version");
3132 Asm->emitInt16(DwarfVersion >= 5 ? DwarfVersion : 4);
3133 // We emit the line offset flag unconditionally here, since line offset should
3134 // be mostly present.
3135 if (Asm->isDwarf64()) {
3136 Asm->OutStreamer->AddComment("Flags: 64 bit, debug_line_offset present");
3137 Asm->emitInt8(MACRO_FLAG_OFFSET_SIZE | MACRO_FLAG_DEBUG_LINE_OFFSET);
3138 } else {
3139 Asm->OutStreamer->AddComment("Flags: 32 bit, debug_line_offset present");
3140 Asm->emitInt8(MACRO_FLAG_DEBUG_LINE_OFFSET);
3141 }
3142 Asm->OutStreamer->AddComment("debug_line_offset");
3143 if (DD.useSplitDwarf())
3144 Asm->emitDwarfLengthOrOffset(0);
3145 else
3146 Asm->emitDwarfSymbolReference(CU.getLineTableStartSym());
3147 }
3148
handleMacroNodes(DIMacroNodeArray Nodes,DwarfCompileUnit & U)3149 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) {
3150 for (auto *MN : Nodes) {
3151 if (auto *M = dyn_cast<DIMacro>(MN))
3152 emitMacro(*M);
3153 else if (auto *F = dyn_cast<DIMacroFile>(MN))
3154 emitMacroFile(*F, U);
3155 else
3156 llvm_unreachable("Unexpected DI type!");
3157 }
3158 }
3159
emitMacro(DIMacro & M)3160 void DwarfDebug::emitMacro(DIMacro &M) {
3161 StringRef Name = M.getName();
3162 StringRef Value = M.getValue();
3163
3164 // There should be one space between the macro name and the macro value in
3165 // define entries. In undef entries, only the macro name is emitted.
3166 std::string Str = Value.empty() ? Name.str() : (Name + " " + Value).str();
3167
3168 if (UseDebugMacroSection) {
3169 if (getDwarfVersion() >= 5) {
3170 unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define
3171 ? dwarf::DW_MACRO_define_strx
3172 : dwarf::DW_MACRO_undef_strx;
3173 Asm->OutStreamer->AddComment(dwarf::MacroString(Type));
3174 Asm->emitULEB128(Type);
3175 Asm->OutStreamer->AddComment("Line Number");
3176 Asm->emitULEB128(M.getLine());
3177 Asm->OutStreamer->AddComment("Macro String");
3178 Asm->emitULEB128(
3179 InfoHolder.getStringPool().getIndexedEntry(*Asm, Str).getIndex());
3180 } else {
3181 unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define
3182 ? dwarf::DW_MACRO_GNU_define_indirect
3183 : dwarf::DW_MACRO_GNU_undef_indirect;
3184 Asm->OutStreamer->AddComment(dwarf::GnuMacroString(Type));
3185 Asm->emitULEB128(Type);
3186 Asm->OutStreamer->AddComment("Line Number");
3187 Asm->emitULEB128(M.getLine());
3188 Asm->OutStreamer->AddComment("Macro String");
3189 Asm->emitDwarfSymbolReference(
3190 InfoHolder.getStringPool().getEntry(*Asm, Str).getSymbol());
3191 }
3192 } else {
3193 Asm->OutStreamer->AddComment(dwarf::MacinfoString(M.getMacinfoType()));
3194 Asm->emitULEB128(M.getMacinfoType());
3195 Asm->OutStreamer->AddComment("Line Number");
3196 Asm->emitULEB128(M.getLine());
3197 Asm->OutStreamer->AddComment("Macro String");
3198 Asm->OutStreamer->emitBytes(Str);
3199 Asm->emitInt8('\0');
3200 }
3201 }
3202
emitMacroFileImpl(DIMacroFile & MF,DwarfCompileUnit & U,unsigned StartFile,unsigned EndFile,StringRef (* MacroFormToString)(unsigned Form))3203 void DwarfDebug::emitMacroFileImpl(
3204 DIMacroFile &MF, DwarfCompileUnit &U, unsigned StartFile, unsigned EndFile,
3205 StringRef (*MacroFormToString)(unsigned Form)) {
3206
3207 Asm->OutStreamer->AddComment(MacroFormToString(StartFile));
3208 Asm->emitULEB128(StartFile);
3209 Asm->OutStreamer->AddComment("Line Number");
3210 Asm->emitULEB128(MF.getLine());
3211 Asm->OutStreamer->AddComment("File Number");
3212 DIFile &F = *MF.getFile();
3213 if (useSplitDwarf())
3214 Asm->emitULEB128(getDwoLineTable(U)->getFile(
3215 F.getDirectory(), F.getFilename(), getMD5AsBytes(&F),
3216 Asm->OutContext.getDwarfVersion(), F.getSource()));
3217 else
3218 Asm->emitULEB128(U.getOrCreateSourceID(&F));
3219 handleMacroNodes(MF.getElements(), U);
3220 Asm->OutStreamer->AddComment(MacroFormToString(EndFile));
3221 Asm->emitULEB128(EndFile);
3222 }
3223
emitMacroFile(DIMacroFile & F,DwarfCompileUnit & U)3224 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) {
3225 // DWARFv5 macro and DWARFv4 macinfo share some common encodings,
3226 // so for readibility/uniformity, We are explicitly emitting those.
3227 assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file);
3228 if (UseDebugMacroSection)
3229 emitMacroFileImpl(
3230 F, U, dwarf::DW_MACRO_start_file, dwarf::DW_MACRO_end_file,
3231 (getDwarfVersion() >= 5) ? dwarf::MacroString : dwarf::GnuMacroString);
3232 else
3233 emitMacroFileImpl(F, U, dwarf::DW_MACINFO_start_file,
3234 dwarf::DW_MACINFO_end_file, dwarf::MacinfoString);
3235 }
3236
emitDebugMacinfoImpl(MCSection * Section)3237 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) {
3238 for (const auto &P : CUMap) {
3239 auto &TheCU = *P.second;
3240 auto *SkCU = TheCU.getSkeleton();
3241 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
3242 auto *CUNode = cast<DICompileUnit>(P.first);
3243 DIMacroNodeArray Macros = CUNode->getMacros();
3244 if (Macros.empty())
3245 continue;
3246 Asm->OutStreamer->switchSection(Section);
3247 Asm->OutStreamer->emitLabel(U.getMacroLabelBegin());
3248 if (UseDebugMacroSection)
3249 emitMacroHeader(Asm, *this, U, getDwarfVersion());
3250 handleMacroNodes(Macros, U);
3251 Asm->OutStreamer->AddComment("End Of Macro List Mark");
3252 Asm->emitInt8(0);
3253 }
3254 }
3255
3256 /// Emit macros into a debug macinfo/macro section.
emitDebugMacinfo()3257 void DwarfDebug::emitDebugMacinfo() {
3258 auto &ObjLower = Asm->getObjFileLowering();
3259 emitDebugMacinfoImpl(UseDebugMacroSection
3260 ? ObjLower.getDwarfMacroSection()
3261 : ObjLower.getDwarfMacinfoSection());
3262 }
3263
emitDebugMacinfoDWO()3264 void DwarfDebug::emitDebugMacinfoDWO() {
3265 auto &ObjLower = Asm->getObjFileLowering();
3266 emitDebugMacinfoImpl(UseDebugMacroSection
3267 ? ObjLower.getDwarfMacroDWOSection()
3268 : ObjLower.getDwarfMacinfoDWOSection());
3269 }
3270
3271 // DWARF5 Experimental Separate Dwarf emitters.
3272
initSkeletonUnit(const DwarfUnit & U,DIE & Die,std::unique_ptr<DwarfCompileUnit> NewU)3273 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die,
3274 std::unique_ptr<DwarfCompileUnit> NewU) {
3275
3276 if (!CompilationDir.empty())
3277 NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
3278 addGnuPubAttributes(*NewU, Die);
3279
3280 SkeletonHolder.addUnit(std::move(NewU));
3281 }
3282
constructSkeletonCU(const DwarfCompileUnit & CU)3283 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) {
3284
3285 auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
3286 CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder,
3287 UnitKind::Skeleton);
3288 DwarfCompileUnit &NewCU = *OwnedUnit;
3289 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
3290
3291 NewCU.initStmtList();
3292
3293 if (useSegmentedStringOffsetsTable())
3294 NewCU.addStringOffsetsStart();
3295
3296 initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit));
3297
3298 return NewCU;
3299 }
3300
3301 // Emit the .debug_info.dwo section for separated dwarf. This contains the
3302 // compile units that would normally be in debug_info.
emitDebugInfoDWO()3303 void DwarfDebug::emitDebugInfoDWO() {
3304 assert(useSplitDwarf() && "No split dwarf debug info?");
3305 // Don't emit relocations into the dwo file.
3306 InfoHolder.emitUnits(/* UseOffsets */ true);
3307 }
3308
3309 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the
3310 // abbreviations for the .debug_info.dwo section.
emitDebugAbbrevDWO()3311 void DwarfDebug::emitDebugAbbrevDWO() {
3312 assert(useSplitDwarf() && "No split dwarf?");
3313 InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection());
3314 }
3315
emitDebugLineDWO()3316 void DwarfDebug::emitDebugLineDWO() {
3317 assert(useSplitDwarf() && "No split dwarf?");
3318 SplitTypeUnitFileTable.Emit(
3319 *Asm->OutStreamer, MCDwarfLineTableParams(),
3320 Asm->getObjFileLowering().getDwarfLineDWOSection());
3321 }
3322
emitStringOffsetsTableHeaderDWO()3323 void DwarfDebug::emitStringOffsetsTableHeaderDWO() {
3324 assert(useSplitDwarf() && "No split dwarf?");
3325 InfoHolder.getStringPool().emitStringOffsetsTableHeader(
3326 *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(),
3327 InfoHolder.getStringOffsetsStartSym());
3328 }
3329
3330 // Emit the .debug_str.dwo section for separated dwarf. This contains the
3331 // string section and is identical in format to traditional .debug_str
3332 // sections.
emitDebugStrDWO()3333 void DwarfDebug::emitDebugStrDWO() {
3334 if (useSegmentedStringOffsetsTable())
3335 emitStringOffsetsTableHeaderDWO();
3336 assert(useSplitDwarf() && "No split dwarf?");
3337 MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection();
3338 InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(),
3339 OffSec, /* UseRelativeOffsets = */ false);
3340 }
3341
3342 // Emit address pool.
emitDebugAddr()3343 void DwarfDebug::emitDebugAddr() {
3344 AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection());
3345 }
3346
getDwoLineTable(const DwarfCompileUnit & CU)3347 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) {
3348 if (!useSplitDwarf())
3349 return nullptr;
3350 const DICompileUnit *DIUnit = CU.getCUNode();
3351 SplitTypeUnitFileTable.maybeSetRootFile(
3352 DIUnit->getDirectory(), DIUnit->getFilename(),
3353 getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource());
3354 return &SplitTypeUnitFileTable;
3355 }
3356
makeTypeSignature(StringRef Identifier)3357 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) {
3358 MD5 Hash;
3359 Hash.update(Identifier);
3360 // ... take the least significant 8 bytes and return those. Our MD5
3361 // implementation always returns its results in little endian, so we actually
3362 // need the "high" word.
3363 MD5::MD5Result Result;
3364 Hash.final(Result);
3365 return Result.high();
3366 }
3367
addDwarfTypeUnitType(DwarfCompileUnit & CU,StringRef Identifier,DIE & RefDie,const DICompositeType * CTy)3368 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
3369 StringRef Identifier, DIE &RefDie,
3370 const DICompositeType *CTy) {
3371 // Fast path if we're building some type units and one has already used the
3372 // address pool we know we're going to throw away all this work anyway, so
3373 // don't bother building dependent types.
3374 if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed())
3375 return;
3376
3377 auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0));
3378 if (!Ins.second) {
3379 CU.addDIETypeSignature(RefDie, Ins.first->second);
3380 return;
3381 }
3382
3383 bool TopLevelType = TypeUnitsUnderConstruction.empty();
3384 AddrPool.resetUsedFlag();
3385
3386 auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder,
3387 getDwoLineTable(CU));
3388 DwarfTypeUnit &NewTU = *OwnedUnit;
3389 DIE &UnitDie = NewTU.getUnitDie();
3390 TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy);
3391
3392 NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
3393 CU.getLanguage());
3394
3395 uint64_t Signature = makeTypeSignature(Identifier);
3396 NewTU.setTypeSignature(Signature);
3397 Ins.first->second = Signature;
3398
3399 if (useSplitDwarf()) {
3400 MCSection *Section =
3401 getDwarfVersion() <= 4
3402 ? Asm->getObjFileLowering().getDwarfTypesDWOSection()
3403 : Asm->getObjFileLowering().getDwarfInfoDWOSection();
3404 NewTU.setSection(Section);
3405 } else {
3406 MCSection *Section =
3407 getDwarfVersion() <= 4
3408 ? Asm->getObjFileLowering().getDwarfTypesSection(Signature)
3409 : Asm->getObjFileLowering().getDwarfInfoSection(Signature);
3410 NewTU.setSection(Section);
3411 // Non-split type units reuse the compile unit's line table.
3412 CU.applyStmtList(UnitDie);
3413 }
3414
3415 // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type
3416 // units.
3417 if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
3418 NewTU.addStringOffsetsStart();
3419
3420 NewTU.setType(NewTU.createTypeDIE(CTy));
3421
3422 if (TopLevelType) {
3423 auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction);
3424 TypeUnitsUnderConstruction.clear();
3425
3426 // Types referencing entries in the address table cannot be placed in type
3427 // units.
3428 if (AddrPool.hasBeenUsed()) {
3429
3430 // Remove all the types built while building this type.
3431 // This is pessimistic as some of these types might not be dependent on
3432 // the type that used an address.
3433 for (const auto &TU : TypeUnitsToAdd)
3434 TypeSignatures.erase(TU.second);
3435
3436 // Construct this type in the CU directly.
3437 // This is inefficient because all the dependent types will be rebuilt
3438 // from scratch, including building them in type units, discovering that
3439 // they depend on addresses, throwing them out and rebuilding them.
3440 CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy));
3441 return;
3442 }
3443
3444 // If the type wasn't dependent on fission addresses, finish adding the type
3445 // and all its dependent types.
3446 for (auto &TU : TypeUnitsToAdd) {
3447 InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get());
3448 InfoHolder.emitUnit(TU.first.get(), useSplitDwarf());
3449 }
3450 }
3451 CU.addDIETypeSignature(RefDie, Signature);
3452 }
3453
3454 // Add the Name along with its companion DIE to the appropriate accelerator
3455 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for
3456 // AccelTableKind::Apple, we use the table we got as an argument). If
3457 // accelerator tables are disabled, this function does nothing.
3458 template <typename DataT>
addAccelNameImpl(const DICompileUnit & CU,AccelTable<DataT> & AppleAccel,StringRef Name,const DIE & Die)3459 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU,
3460 AccelTable<DataT> &AppleAccel, StringRef Name,
3461 const DIE &Die) {
3462 if (getAccelTableKind() == AccelTableKind::None)
3463 return;
3464
3465 if (getAccelTableKind() != AccelTableKind::Apple &&
3466 CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default)
3467 return;
3468
3469 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
3470 DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name);
3471
3472 switch (getAccelTableKind()) {
3473 case AccelTableKind::Apple:
3474 AppleAccel.addName(Ref, Die);
3475 break;
3476 case AccelTableKind::Dwarf:
3477 AccelDebugNames.addName(Ref, Die);
3478 break;
3479 case AccelTableKind::Default:
3480 llvm_unreachable("Default should have already been resolved.");
3481 case AccelTableKind::None:
3482 llvm_unreachable("None handled above");
3483 }
3484 }
3485
addAccelName(const DICompileUnit & CU,StringRef Name,const DIE & Die)3486 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name,
3487 const DIE &Die) {
3488 addAccelNameImpl(CU, AccelNames, Name, Die);
3489 }
3490
addAccelObjC(const DICompileUnit & CU,StringRef Name,const DIE & Die)3491 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name,
3492 const DIE &Die) {
3493 // ObjC names go only into the Apple accelerator tables.
3494 if (getAccelTableKind() == AccelTableKind::Apple)
3495 addAccelNameImpl(CU, AccelObjC, Name, Die);
3496 }
3497
addAccelNamespace(const DICompileUnit & CU,StringRef Name,const DIE & Die)3498 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name,
3499 const DIE &Die) {
3500 addAccelNameImpl(CU, AccelNamespace, Name, Die);
3501 }
3502
addAccelType(const DICompileUnit & CU,StringRef Name,const DIE & Die,char Flags)3503 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name,
3504 const DIE &Die, char Flags) {
3505 addAccelNameImpl(CU, AccelTypes, Name, Die);
3506 }
3507
getDwarfVersion() const3508 uint16_t DwarfDebug::getDwarfVersion() const {
3509 return Asm->OutStreamer->getContext().getDwarfVersion();
3510 }
3511
getDwarfSectionOffsetForm() const3512 dwarf::Form DwarfDebug::getDwarfSectionOffsetForm() const {
3513 if (Asm->getDwarfVersion() >= 4)
3514 return dwarf::Form::DW_FORM_sec_offset;
3515 assert((!Asm->isDwarf64() || (Asm->getDwarfVersion() == 3)) &&
3516 "DWARF64 is not defined prior DWARFv3");
3517 return Asm->isDwarf64() ? dwarf::Form::DW_FORM_data8
3518 : dwarf::Form::DW_FORM_data4;
3519 }
3520
getSectionLabel(const MCSection * S)3521 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) {
3522 auto I = SectionLabels.find(S);
3523 if (I == SectionLabels.end())
3524 return nullptr;
3525 return I->second;
3526 }
insertSectionLabel(const MCSymbol * S)3527 void DwarfDebug::insertSectionLabel(const MCSymbol *S) {
3528 if (SectionLabels.insert(std::make_pair(&S->getSection(), S)).second)
3529 if (useSplitDwarf() || getDwarfVersion() >= 5)
3530 AddrPool.getIndex(S);
3531 }
3532
getMD5AsBytes(const DIFile * File) const3533 Optional<MD5::MD5Result> DwarfDebug::getMD5AsBytes(const DIFile *File) const {
3534 assert(File);
3535 if (getDwarfVersion() < 5)
3536 return None;
3537 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = File->getChecksum();
3538 if (!Checksum || Checksum->Kind != DIFile::CSK_MD5)
3539 return None;
3540
3541 // Convert the string checksum to an MD5Result for the streamer.
3542 // The verifier validates the checksum so we assume it's okay.
3543 // An MD5 checksum is 16 bytes.
3544 std::string ChecksumString = fromHex(Checksum->Value);
3545 MD5::MD5Result CKMem;
3546 std::copy(ChecksumString.begin(), ChecksumString.end(), CKMem.data());
3547 return CKMem;
3548 }
3549