1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing dwarf debug info into asm files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "DwarfDebug.h" 14 #include "ByteStreamer.h" 15 #include "DIEHash.h" 16 #include "DebugLocEntry.h" 17 #include "DebugLocStream.h" 18 #include "DwarfCompileUnit.h" 19 #include "DwarfExpression.h" 20 #include "DwarfFile.h" 21 #include "DwarfUnit.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/DenseSet.h" 25 #include "llvm/ADT/MapVector.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/BinaryFormat/Dwarf.h" 33 #include "llvm/CodeGen/AccelTable.h" 34 #include "llvm/CodeGen/AsmPrinter.h" 35 #include "llvm/CodeGen/DIE.h" 36 #include "llvm/CodeGen/LexicalScopes.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineInstr.h" 40 #include "llvm/CodeGen/MachineModuleInfo.h" 41 #include "llvm/CodeGen/MachineOperand.h" 42 #include "llvm/CodeGen/TargetInstrInfo.h" 43 #include "llvm/CodeGen/TargetLowering.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/DebugInfo/DWARF/DWARFExpression.h" 47 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GlobalVariable.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/MC/MCAsmInfo.h" 55 #include "llvm/MC/MCContext.h" 56 #include "llvm/MC/MCDwarf.h" 57 #include "llvm/MC/MCSection.h" 58 #include "llvm/MC/MCStreamer.h" 59 #include "llvm/MC/MCSymbol.h" 60 #include "llvm/MC/MCTargetOptions.h" 61 #include "llvm/MC/MachineLocation.h" 62 #include "llvm/MC/SectionKind.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MD5.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/Timer.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Target/TargetLoweringObjectFile.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include "llvm/Target/TargetOptions.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <iterator> 80 #include <string> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 #define DEBUG_TYPE "dwarfdebug" 87 88 STATISTIC(NumCSParams, "Number of dbg call site params created"); 89 90 static cl::opt<bool> 91 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, 92 cl::desc("Disable debug info printing")); 93 94 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier( 95 "use-dwarf-ranges-base-address-specifier", cl::Hidden, 96 cl::desc("Use base address specifiers in debug_ranges"), cl::init(false)); 97 98 static cl::opt<bool> EmitDwarfDebugEntryValues( 99 "emit-debug-entry-values", cl::Hidden, 100 cl::desc("Emit the debug entry values"), cl::init(false)); 101 102 static cl::opt<bool> GenerateARangeSection("generate-arange-section", 103 cl::Hidden, 104 cl::desc("Generate dwarf aranges"), 105 cl::init(false)); 106 107 static cl::opt<bool> 108 GenerateDwarfTypeUnits("generate-type-units", cl::Hidden, 109 cl::desc("Generate DWARF4 type units."), 110 cl::init(false)); 111 112 static cl::opt<bool> SplitDwarfCrossCuReferences( 113 "split-dwarf-cross-cu-references", cl::Hidden, 114 cl::desc("Enable cross-cu references in DWO files"), cl::init(false)); 115 116 enum DefaultOnOff { Default, Enable, Disable }; 117 118 static cl::opt<DefaultOnOff> UnknownLocations( 119 "use-unknown-locations", cl::Hidden, 120 cl::desc("Make an absence of debug location information explicit."), 121 cl::values(clEnumVal(Default, "At top of block or after label"), 122 clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")), 123 cl::init(Default)); 124 125 static cl::opt<AccelTableKind> AccelTables( 126 "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."), 127 cl::values(clEnumValN(AccelTableKind::Default, "Default", 128 "Default for platform"), 129 clEnumValN(AccelTableKind::None, "Disable", "Disabled."), 130 clEnumValN(AccelTableKind::Apple, "Apple", "Apple"), 131 clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")), 132 cl::init(AccelTableKind::Default)); 133 134 static cl::opt<DefaultOnOff> 135 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden, 136 cl::desc("Use inlined strings rather than string section."), 137 cl::values(clEnumVal(Default, "Default for platform"), 138 clEnumVal(Enable, "Enabled"), 139 clEnumVal(Disable, "Disabled")), 140 cl::init(Default)); 141 142 static cl::opt<bool> 143 NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden, 144 cl::desc("Disable emission .debug_ranges section."), 145 cl::init(false)); 146 147 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences( 148 "dwarf-sections-as-references", cl::Hidden, 149 cl::desc("Use sections+offset as references rather than labels."), 150 cl::values(clEnumVal(Default, "Default for platform"), 151 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 152 cl::init(Default)); 153 154 enum LinkageNameOption { 155 DefaultLinkageNames, 156 AllLinkageNames, 157 AbstractLinkageNames 158 }; 159 160 static cl::opt<LinkageNameOption> 161 DwarfLinkageNames("dwarf-linkage-names", cl::Hidden, 162 cl::desc("Which DWARF linkage-name attributes to emit."), 163 cl::values(clEnumValN(DefaultLinkageNames, "Default", 164 "Default for platform"), 165 clEnumValN(AllLinkageNames, "All", "All"), 166 clEnumValN(AbstractLinkageNames, "Abstract", 167 "Abstract subprograms")), 168 cl::init(DefaultLinkageNames)); 169 170 static const char *const DWARFGroupName = "dwarf"; 171 static const char *const DWARFGroupDescription = "DWARF Emission"; 172 static const char *const DbgTimerName = "writer"; 173 static const char *const DbgTimerDescription = "DWARF Debug Writer"; 174 static constexpr unsigned ULEB128PadSize = 4; 175 176 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) { 177 getActiveStreamer().EmitInt8( 178 Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op) 179 : dwarf::OperationEncodingString(Op)); 180 } 181 182 void DebugLocDwarfExpression::emitSigned(int64_t Value) { 183 getActiveStreamer().emitSLEB128(Value, Twine(Value)); 184 } 185 186 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) { 187 getActiveStreamer().emitULEB128(Value, Twine(Value)); 188 } 189 190 void DebugLocDwarfExpression::emitData1(uint8_t Value) { 191 getActiveStreamer().EmitInt8(Value, Twine(Value)); 192 } 193 194 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) { 195 assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit"); 196 getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize); 197 } 198 199 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI, 200 unsigned MachineReg) { 201 // This information is not available while emitting .debug_loc entries. 202 return false; 203 } 204 205 void DebugLocDwarfExpression::enableTemporaryBuffer() { 206 assert(!IsBuffering && "Already buffering?"); 207 if (!TmpBuf) 208 TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments); 209 IsBuffering = true; 210 } 211 212 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; } 213 214 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() { 215 return TmpBuf ? TmpBuf->Bytes.size() : 0; 216 } 217 218 void DebugLocDwarfExpression::commitTemporaryBuffer() { 219 if (!TmpBuf) 220 return; 221 for (auto Byte : enumerate(TmpBuf->Bytes)) { 222 const char *Comment = (Byte.index() < TmpBuf->Comments.size()) 223 ? TmpBuf->Comments[Byte.index()].c_str() 224 : ""; 225 OutBS.EmitInt8(Byte.value(), Comment); 226 } 227 TmpBuf->Bytes.clear(); 228 TmpBuf->Comments.clear(); 229 } 230 231 const DIType *DbgVariable::getType() const { 232 return getVariable()->getType(); 233 } 234 235 /// Get .debug_loc entry for the instruction range starting at MI. 236 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) { 237 const DIExpression *Expr = MI->getDebugExpression(); 238 assert(MI->getNumOperands() == 4); 239 if (MI->getOperand(0).isReg()) { 240 auto RegOp = MI->getOperand(0); 241 auto Op1 = MI->getOperand(1); 242 // If the second operand is an immediate, this is a 243 // register-indirect address. 244 assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset"); 245 MachineLocation MLoc(RegOp.getReg(), Op1.isImm()); 246 return DbgValueLoc(Expr, MLoc); 247 } 248 if (MI->getOperand(0).isTargetIndex()) { 249 auto Op = MI->getOperand(0); 250 return DbgValueLoc(Expr, 251 TargetIndexLocation(Op.getIndex(), Op.getOffset())); 252 } 253 if (MI->getOperand(0).isImm()) 254 return DbgValueLoc(Expr, MI->getOperand(0).getImm()); 255 if (MI->getOperand(0).isFPImm()) 256 return DbgValueLoc(Expr, MI->getOperand(0).getFPImm()); 257 if (MI->getOperand(0).isCImm()) 258 return DbgValueLoc(Expr, MI->getOperand(0).getCImm()); 259 260 llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!"); 261 } 262 263 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) { 264 assert(FrameIndexExprs.empty() && "Already initialized?"); 265 assert(!ValueLoc.get() && "Already initialized?"); 266 267 assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable"); 268 assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() && 269 "Wrong inlined-at"); 270 271 ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue)); 272 if (auto *E = DbgValue->getDebugExpression()) 273 if (E->getNumElements()) 274 FrameIndexExprs.push_back({0, E}); 275 } 276 277 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const { 278 if (FrameIndexExprs.size() == 1) 279 return FrameIndexExprs; 280 281 assert(llvm::all_of(FrameIndexExprs, 282 [](const FrameIndexExpr &A) { 283 return A.Expr->isFragment(); 284 }) && 285 "multiple FI expressions without DW_OP_LLVM_fragment"); 286 llvm::sort(FrameIndexExprs, 287 [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool { 288 return A.Expr->getFragmentInfo()->OffsetInBits < 289 B.Expr->getFragmentInfo()->OffsetInBits; 290 }); 291 292 return FrameIndexExprs; 293 } 294 295 void DbgVariable::addMMIEntry(const DbgVariable &V) { 296 assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry"); 297 assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry"); 298 assert(V.getVariable() == getVariable() && "conflicting variable"); 299 assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location"); 300 301 assert(!FrameIndexExprs.empty() && "Expected an MMI entry"); 302 assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry"); 303 304 // FIXME: This logic should not be necessary anymore, as we now have proper 305 // deduplication. However, without it, we currently run into the assertion 306 // below, which means that we are likely dealing with broken input, i.e. two 307 // non-fragment entries for the same variable at different frame indices. 308 if (FrameIndexExprs.size()) { 309 auto *Expr = FrameIndexExprs.back().Expr; 310 if (!Expr || !Expr->isFragment()) 311 return; 312 } 313 314 for (const auto &FIE : V.FrameIndexExprs) 315 // Ignore duplicate entries. 316 if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) { 317 return FIE.FI == Other.FI && FIE.Expr == Other.Expr; 318 })) 319 FrameIndexExprs.push_back(FIE); 320 321 assert((FrameIndexExprs.size() == 1 || 322 llvm::all_of(FrameIndexExprs, 323 [](FrameIndexExpr &FIE) { 324 return FIE.Expr && FIE.Expr->isFragment(); 325 })) && 326 "conflicting locations for variable"); 327 } 328 329 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion, 330 bool GenerateTypeUnits, 331 DebuggerKind Tuning, 332 const Triple &TT) { 333 // Honor an explicit request. 334 if (AccelTables != AccelTableKind::Default) 335 return AccelTables; 336 337 // Accelerator tables with type units are currently not supported. 338 if (GenerateTypeUnits) 339 return AccelTableKind::None; 340 341 // Accelerator tables get emitted if targetting DWARF v5 or LLDB. DWARF v5 342 // always implies debug_names. For lower standard versions we use apple 343 // accelerator tables on apple platforms and debug_names elsewhere. 344 if (DwarfVersion >= 5) 345 return AccelTableKind::Dwarf; 346 if (Tuning == DebuggerKind::LLDB) 347 return TT.isOSBinFormatMachO() ? AccelTableKind::Apple 348 : AccelTableKind::Dwarf; 349 return AccelTableKind::None; 350 } 351 352 DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M) 353 : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()), 354 InfoHolder(A, "info_string", DIEValueAllocator), 355 SkeletonHolder(A, "skel_string", DIEValueAllocator), 356 IsDarwin(A->TM.getTargetTriple().isOSDarwin()) { 357 const Triple &TT = Asm->TM.getTargetTriple(); 358 359 // Make sure we know our "debugger tuning". The target option takes 360 // precedence; fall back to triple-based defaults. 361 if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default) 362 DebuggerTuning = Asm->TM.Options.DebuggerTuning; 363 else if (IsDarwin) 364 DebuggerTuning = DebuggerKind::LLDB; 365 else if (TT.isPS4CPU()) 366 DebuggerTuning = DebuggerKind::SCE; 367 else 368 DebuggerTuning = DebuggerKind::GDB; 369 370 if (DwarfInlinedStrings == Default) 371 UseInlineStrings = TT.isNVPTX(); 372 else 373 UseInlineStrings = DwarfInlinedStrings == Enable; 374 375 UseLocSection = !TT.isNVPTX(); 376 377 HasAppleExtensionAttributes = tuneForLLDB(); 378 379 // Handle split DWARF. 380 HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty(); 381 382 // SCE defaults to linkage names only for abstract subprograms. 383 if (DwarfLinkageNames == DefaultLinkageNames) 384 UseAllLinkageNames = !tuneForSCE(); 385 else 386 UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames; 387 388 unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion; 389 unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber 390 : MMI->getModule()->getDwarfVersion(); 391 // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2. 392 DwarfVersion = 393 TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION); 394 395 UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX(); 396 397 // Use sections as references. Force for NVPTX. 398 if (DwarfSectionsAsReferences == Default) 399 UseSectionsAsReferences = TT.isNVPTX(); 400 else 401 UseSectionsAsReferences = DwarfSectionsAsReferences == Enable; 402 403 // Don't generate type units for unsupported object file formats. 404 GenerateTypeUnits = 405 A->TM.getTargetTriple().isOSBinFormatELF() && GenerateDwarfTypeUnits; 406 407 TheAccelTableKind = computeAccelTableKind( 408 DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple()); 409 410 // Work around a GDB bug. GDB doesn't support the standard opcode; 411 // SCE doesn't support GNU's; LLDB prefers the standard opcode, which 412 // is defined as of DWARF 3. 413 // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented 414 // https://sourceware.org/bugzilla/show_bug.cgi?id=11616 415 UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3; 416 417 // GDB does not fully support the DWARF 4 representation for bitfields. 418 UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB(); 419 420 // The DWARF v5 string offsets table has - possibly shared - contributions 421 // from each compile and type unit each preceded by a header. The string 422 // offsets table used by the pre-DWARF v5 split-DWARF implementation uses 423 // a monolithic string offsets table without any header. 424 UseSegmentedStringOffsetsTable = DwarfVersion >= 5; 425 426 // Emit call-site-param debug info for GDB and LLDB, if the target supports 427 // the debug entry values feature. It can also be enabled explicitly. 428 EmitDebugEntryValues = (Asm->TM.Options.ShouldEmitDebugEntryValues() && 429 (tuneForGDB() || tuneForLLDB())) || 430 EmitDwarfDebugEntryValues; 431 432 Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion); 433 } 434 435 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h. 436 DwarfDebug::~DwarfDebug() = default; 437 438 static bool isObjCClass(StringRef Name) { 439 return Name.startswith("+") || Name.startswith("-"); 440 } 441 442 static bool hasObjCCategory(StringRef Name) { 443 if (!isObjCClass(Name)) 444 return false; 445 446 return Name.find(") ") != StringRef::npos; 447 } 448 449 static void getObjCClassCategory(StringRef In, StringRef &Class, 450 StringRef &Category) { 451 if (!hasObjCCategory(In)) { 452 Class = In.slice(In.find('[') + 1, In.find(' ')); 453 Category = ""; 454 return; 455 } 456 457 Class = In.slice(In.find('[') + 1, In.find('(')); 458 Category = In.slice(In.find('[') + 1, In.find(' ')); 459 } 460 461 static StringRef getObjCMethodName(StringRef In) { 462 return In.slice(In.find(' ') + 1, In.find(']')); 463 } 464 465 // Add the various names to the Dwarf accelerator table names. 466 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU, 467 const DISubprogram *SP, DIE &Die) { 468 if (getAccelTableKind() != AccelTableKind::Apple && 469 CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None) 470 return; 471 472 if (!SP->isDefinition()) 473 return; 474 475 if (SP->getName() != "") 476 addAccelName(CU, SP->getName(), Die); 477 478 // If the linkage name is different than the name, go ahead and output that as 479 // well into the name table. Only do that if we are going to actually emit 480 // that name. 481 if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() && 482 (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP))) 483 addAccelName(CU, SP->getLinkageName(), Die); 484 485 // If this is an Objective-C selector name add it to the ObjC accelerator 486 // too. 487 if (isObjCClass(SP->getName())) { 488 StringRef Class, Category; 489 getObjCClassCategory(SP->getName(), Class, Category); 490 addAccelObjC(CU, Class, Die); 491 if (Category != "") 492 addAccelObjC(CU, Category, Die); 493 // Also add the base method name to the name table. 494 addAccelName(CU, getObjCMethodName(SP->getName()), Die); 495 } 496 } 497 498 /// Check whether we should create a DIE for the given Scope, return true 499 /// if we don't create a DIE (the corresponding DIE is null). 500 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) { 501 if (Scope->isAbstractScope()) 502 return false; 503 504 // We don't create a DIE if there is no Range. 505 const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges(); 506 if (Ranges.empty()) 507 return true; 508 509 if (Ranges.size() > 1) 510 return false; 511 512 // We don't create a DIE if we have a single Range and the end label 513 // is null. 514 return !getLabelAfterInsn(Ranges.front().second); 515 } 516 517 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) { 518 F(CU); 519 if (auto *SkelCU = CU.getSkeleton()) 520 if (CU.getCUNode()->getSplitDebugInlining()) 521 F(*SkelCU); 522 } 523 524 bool DwarfDebug::shareAcrossDWOCUs() const { 525 return SplitDwarfCrossCuReferences; 526 } 527 528 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU, 529 LexicalScope *Scope) { 530 assert(Scope && Scope->getScopeNode()); 531 assert(Scope->isAbstractScope()); 532 assert(!Scope->getInlinedAt()); 533 534 auto *SP = cast<DISubprogram>(Scope->getScopeNode()); 535 536 // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram 537 // was inlined from another compile unit. 538 if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining()) 539 // Avoid building the original CU if it won't be used 540 SrcCU.constructAbstractSubprogramScopeDIE(Scope); 541 else { 542 auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 543 if (auto *SkelCU = CU.getSkeleton()) { 544 (shareAcrossDWOCUs() ? CU : SrcCU) 545 .constructAbstractSubprogramScopeDIE(Scope); 546 if (CU.getCUNode()->getSplitDebugInlining()) 547 SkelCU->constructAbstractSubprogramScopeDIE(Scope); 548 } else 549 CU.constructAbstractSubprogramScopeDIE(Scope); 550 } 551 } 552 553 DIE &DwarfDebug::constructSubprogramDefinitionDIE(const DISubprogram *SP) { 554 DICompileUnit *Unit = SP->getUnit(); 555 assert(SP->isDefinition() && "Subprogram not a definition"); 556 assert(Unit && "Subprogram definition without parent unit"); 557 auto &CU = getOrCreateDwarfCompileUnit(Unit); 558 return *CU.getOrCreateSubprogramDIE(SP); 559 } 560 561 /// Represents a parameter whose call site value can be described by applying a 562 /// debug expression to a register in the forwarded register worklist. 563 struct FwdRegParamInfo { 564 /// The described parameter register. 565 unsigned ParamReg; 566 567 /// Debug expression that has been built up when walking through the 568 /// instruction chain that produces the parameter's value. 569 const DIExpression *Expr; 570 }; 571 572 /// Register worklist for finding call site values. 573 using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>; 574 575 /// Append the expression \p Addition to \p Original and return the result. 576 static const DIExpression *combineDIExpressions(const DIExpression *Original, 577 const DIExpression *Addition) { 578 std::vector<uint64_t> Elts = Addition->getElements().vec(); 579 // Avoid multiple DW_OP_stack_values. 580 if (Original->isImplicit() && Addition->isImplicit()) 581 erase_if(Elts, [](uint64_t Op) { return Op == dwarf::DW_OP_stack_value; }); 582 const DIExpression *CombinedExpr = 583 (Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original; 584 return CombinedExpr; 585 } 586 587 /// Emit call site parameter entries that are described by the given value and 588 /// debug expression. 589 template <typename ValT> 590 static void finishCallSiteParams(ValT Val, const DIExpression *Expr, 591 ArrayRef<FwdRegParamInfo> DescribedParams, 592 ParamSet &Params) { 593 for (auto Param : DescribedParams) { 594 bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0; 595 596 // TODO: Entry value operations can currently not be combined with any 597 // other expressions, so we can't emit call site entries in those cases. 598 if (ShouldCombineExpressions && Expr->isEntryValue()) 599 continue; 600 601 // If a parameter's call site value is produced by a chain of 602 // instructions we may have already created an expression for the 603 // parameter when walking through the instructions. Append that to the 604 // base expression. 605 const DIExpression *CombinedExpr = 606 ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr) 607 : Expr; 608 assert((!CombinedExpr || CombinedExpr->isValid()) && 609 "Combined debug expression is invalid"); 610 611 DbgValueLoc DbgLocVal(CombinedExpr, Val); 612 DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal); 613 Params.push_back(CSParm); 614 ++NumCSParams; 615 } 616 } 617 618 /// Add \p Reg to the worklist, if it's not already present, and mark that the 619 /// given parameter registers' values can (potentially) be described using 620 /// that register and an debug expression. 621 static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg, 622 const DIExpression *Expr, 623 ArrayRef<FwdRegParamInfo> ParamsToAdd) { 624 auto I = Worklist.insert({Reg, {}}); 625 auto &ParamsForFwdReg = I.first->second; 626 for (auto Param : ParamsToAdd) { 627 assert(none_of(ParamsForFwdReg, 628 [Param](const FwdRegParamInfo &D) { 629 return D.ParamReg == Param.ParamReg; 630 }) && 631 "Same parameter described twice by forwarding reg"); 632 633 // If a parameter's call site value is produced by a chain of 634 // instructions we may have already created an expression for the 635 // parameter when walking through the instructions. Append that to the 636 // new expression. 637 const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr); 638 ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr}); 639 } 640 } 641 642 /// Try to interpret values loaded into registers that forward parameters 643 /// for \p CallMI. Store parameters with interpreted value into \p Params. 644 static void collectCallSiteParameters(const MachineInstr *CallMI, 645 ParamSet &Params) { 646 auto *MF = CallMI->getMF(); 647 auto CalleesMap = MF->getCallSitesInfo(); 648 auto CallFwdRegsInfo = CalleesMap.find(CallMI); 649 650 // There is no information for the call instruction. 651 if (CallFwdRegsInfo == CalleesMap.end()) 652 return; 653 654 auto *MBB = CallMI->getParent(); 655 const auto &TRI = MF->getSubtarget().getRegisterInfo(); 656 const auto &TII = MF->getSubtarget().getInstrInfo(); 657 const auto &TLI = MF->getSubtarget().getTargetLowering(); 658 659 // Skip the call instruction. 660 auto I = std::next(CallMI->getReverseIterator()); 661 662 FwdRegWorklist ForwardedRegWorklist; 663 664 // If an instruction defines more than one item in the worklist, we may run 665 // into situations where a worklist register's value is (potentially) 666 // described by the previous value of another register that is also defined 667 // by that instruction. 668 // 669 // This can for example occur in cases like this: 670 // 671 // $r1 = mov 123 672 // $r0, $r1 = mvrr $r1, 456 673 // call @foo, $r0, $r1 674 // 675 // When describing $r1's value for the mvrr instruction, we need to make sure 676 // that we don't finalize an entry value for $r0, as that is dependent on the 677 // previous value of $r1 (123 rather than 456). 678 // 679 // In order to not have to distinguish between those cases when finalizing 680 // entry values, we simply postpone adding new parameter registers to the 681 // worklist, by first keeping them in this temporary container until the 682 // instruction has been handled. 683 FwdRegWorklist NewWorklistItems; 684 685 const DIExpression *EmptyExpr = 686 DIExpression::get(MF->getFunction().getContext(), {}); 687 688 // Add all the forwarding registers into the ForwardedRegWorklist. 689 for (auto ArgReg : CallFwdRegsInfo->second) { 690 bool InsertedReg = 691 ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}}) 692 .second; 693 assert(InsertedReg && "Single register used to forward two arguments?"); 694 (void)InsertedReg; 695 } 696 697 // We erase, from the ForwardedRegWorklist, those forwarding registers for 698 // which we successfully describe a loaded value (by using 699 // the describeLoadedValue()). For those remaining arguments in the working 700 // list, for which we do not describe a loaded value by 701 // the describeLoadedValue(), we try to generate an entry value expression 702 // for their call site value description, if the call is within the entry MBB. 703 // TODO: Handle situations when call site parameter value can be described 704 // as the entry value within basic blocks other than the first one. 705 bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin(); 706 707 // If the MI is an instruction defining one or more parameters' forwarding 708 // registers, add those defines. 709 auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI, 710 SmallSetVector<unsigned, 4> &Defs) { 711 if (MI.isDebugInstr()) 712 return; 713 714 for (const MachineOperand &MO : MI.operands()) { 715 if (MO.isReg() && MO.isDef() && 716 Register::isPhysicalRegister(MO.getReg())) { 717 for (auto FwdReg : ForwardedRegWorklist) 718 if (TRI->regsOverlap(FwdReg.first, MO.getReg())) 719 Defs.insert(FwdReg.first); 720 } 721 } 722 }; 723 724 // Search for a loading value in forwarding registers. 725 for (; I != MBB->rend(); ++I) { 726 // Skip bundle headers. 727 if (I->isBundle()) 728 continue; 729 730 // If the next instruction is a call we can not interpret parameter's 731 // forwarding registers or we finished the interpretation of all parameters. 732 if (I->isCall()) 733 return; 734 735 if (ForwardedRegWorklist.empty()) 736 return; 737 738 // Set of worklist registers that are defined by this instruction. 739 SmallSetVector<unsigned, 4> FwdRegDefs; 740 741 getForwardingRegsDefinedByMI(*I, FwdRegDefs); 742 if (FwdRegDefs.empty()) 743 continue; 744 745 for (auto ParamFwdReg : FwdRegDefs) { 746 if (auto ParamValue = TII->describeLoadedValue(*I, ParamFwdReg)) { 747 if (ParamValue->first.isImm()) { 748 int64_t Val = ParamValue->first.getImm(); 749 finishCallSiteParams(Val, ParamValue->second, 750 ForwardedRegWorklist[ParamFwdReg], Params); 751 } else if (ParamValue->first.isReg()) { 752 Register RegLoc = ParamValue->first.getReg(); 753 unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); 754 Register FP = TRI->getFrameRegister(*MF); 755 bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP); 756 if (TRI->isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) { 757 MachineLocation MLoc(RegLoc, /*IsIndirect=*/IsSPorFP); 758 finishCallSiteParams(MLoc, ParamValue->second, 759 ForwardedRegWorklist[ParamFwdReg], Params); 760 } else { 761 // ParamFwdReg was described by the non-callee saved register 762 // RegLoc. Mark that the call site values for the parameters are 763 // dependent on that register instead of ParamFwdReg. Since RegLoc 764 // may be a register that will be handled in this iteration, we 765 // postpone adding the items to the worklist, and instead keep them 766 // in a temporary container. 767 addToFwdRegWorklist(NewWorklistItems, RegLoc, ParamValue->second, 768 ForwardedRegWorklist[ParamFwdReg]); 769 } 770 } 771 } 772 } 773 774 // Remove all registers that this instruction defines from the worklist. 775 for (auto ParamFwdReg : FwdRegDefs) 776 ForwardedRegWorklist.erase(ParamFwdReg); 777 778 // Now that we are done handling this instruction, add items from the 779 // temporary worklist to the real one. 780 for (auto New : NewWorklistItems) 781 addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, 782 New.second); 783 NewWorklistItems.clear(); 784 } 785 786 // Emit the call site parameter's value as an entry value. 787 if (ShouldTryEmitEntryVals) { 788 // Create an expression where the register's entry value is used. 789 DIExpression *EntryExpr = DIExpression::get( 790 MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1}); 791 for (auto RegEntry : ForwardedRegWorklist) { 792 MachineLocation MLoc(RegEntry.first); 793 finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params); 794 } 795 } 796 } 797 798 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP, 799 DwarfCompileUnit &CU, DIE &ScopeDIE, 800 const MachineFunction &MF) { 801 // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if 802 // the subprogram is required to have one. 803 if (!SP.areAllCallsDescribed() || !SP.isDefinition()) 804 return; 805 806 // Use DW_AT_call_all_calls to express that call site entries are present 807 // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls 808 // because one of its requirements is not met: call site entries for 809 // optimized-out calls are elided. 810 CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls)); 811 812 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 813 assert(TII && "TargetInstrInfo not found: cannot label tail calls"); 814 815 // Emit call site entries for each call or tail call in the function. 816 for (const MachineBasicBlock &MBB : MF) { 817 for (const MachineInstr &MI : MBB.instrs()) { 818 // Bundles with call in them will pass the isCall() test below but do not 819 // have callee operand information so skip them here. Iterator will 820 // eventually reach the call MI. 821 if (MI.isBundle()) 822 continue; 823 824 // Skip instructions which aren't calls. Both calls and tail-calling jump 825 // instructions (e.g TAILJMPd64) are classified correctly here. 826 if (!MI.isCandidateForCallSiteEntry()) 827 continue; 828 829 // Skip instructions marked as frame setup, as they are not interesting to 830 // the user. 831 if (MI.getFlag(MachineInstr::FrameSetup)) 832 continue; 833 834 // TODO: Add support for targets with delay slots (see: beginInstruction). 835 if (MI.hasDelaySlot()) 836 return; 837 838 // If this is a direct call, find the callee's subprogram. 839 // In the case of an indirect call find the register that holds 840 // the callee. 841 const MachineOperand &CalleeOp = MI.getOperand(0); 842 if (!CalleeOp.isGlobal() && !CalleeOp.isReg()) 843 continue; 844 845 unsigned CallReg = 0; 846 DIE *CalleeDIE = nullptr; 847 const Function *CalleeDecl = nullptr; 848 if (CalleeOp.isReg()) { 849 CallReg = CalleeOp.getReg(); 850 if (!CallReg) 851 continue; 852 } else { 853 CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal()); 854 if (!CalleeDecl || !CalleeDecl->getSubprogram()) 855 continue; 856 const DISubprogram *CalleeSP = CalleeDecl->getSubprogram(); 857 858 if (CalleeSP->isDefinition()) { 859 // Ensure that a subprogram DIE for the callee is available in the 860 // appropriate CU. 861 CalleeDIE = &constructSubprogramDefinitionDIE(CalleeSP); 862 } else { 863 // Create the declaration DIE if it is missing. This is required to 864 // support compilation of old bitcode with an incomplete list of 865 // retained metadata. 866 CalleeDIE = CU.getOrCreateSubprogramDIE(CalleeSP); 867 } 868 assert(CalleeDIE && "Must have a DIE for the callee"); 869 } 870 871 // TODO: Omit call site entries for runtime calls (objc_msgSend, etc). 872 873 bool IsTail = TII->isTailCall(MI); 874 875 // If MI is in a bundle, the label was created after the bundle since 876 // EmitFunctionBody iterates over top-level MIs. Get that top-level MI 877 // to search for that label below. 878 const MachineInstr *TopLevelCallMI = 879 MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI; 880 881 // For non-tail calls, the return PC is needed to disambiguate paths in 882 // the call graph which could lead to some target function. For tail 883 // calls, no return PC information is needed, unless tuning for GDB in 884 // DWARF4 mode in which case we fake a return PC for compatibility. 885 const MCSymbol *PCAddr = 886 (!IsTail || CU.useGNUAnalogForDwarf5Feature()) 887 ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI)) 888 : nullptr; 889 890 // For tail calls, it's necessary to record the address of the branch 891 // instruction so that the debugger can show where the tail call occurred. 892 const MCSymbol *CallAddr = 893 IsTail ? getLabelBeforeInsn(TopLevelCallMI) : nullptr; 894 895 assert((IsTail || PCAddr) && "Non-tail call without return PC"); 896 897 LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> " 898 << (CalleeDecl ? CalleeDecl->getName() 899 : StringRef(MF.getSubtarget() 900 .getRegisterInfo() 901 ->getName(CallReg))) 902 << (IsTail ? " [IsTail]" : "") << "\n"); 903 904 DIE &CallSiteDIE = CU.constructCallSiteEntryDIE( 905 ScopeDIE, CalleeDIE, IsTail, PCAddr, CallAddr, CallReg); 906 907 // Optionally emit call-site-param debug info. 908 if (emitDebugEntryValues()) { 909 ParamSet Params; 910 // Try to interpret values of call site parameters. 911 collectCallSiteParameters(&MI, Params); 912 CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params); 913 } 914 } 915 } 916 } 917 918 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const { 919 if (!U.hasDwarfPubSections()) 920 return; 921 922 U.addFlag(D, dwarf::DW_AT_GNU_pubnames); 923 } 924 925 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit, 926 DwarfCompileUnit &NewCU) { 927 DIE &Die = NewCU.getUnitDie(); 928 StringRef FN = DIUnit->getFilename(); 929 930 StringRef Producer = DIUnit->getProducer(); 931 StringRef Flags = DIUnit->getFlags(); 932 if (!Flags.empty() && !useAppleExtensionAttributes()) { 933 std::string ProducerWithFlags = Producer.str() + " " + Flags.str(); 934 NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags); 935 } else 936 NewCU.addString(Die, dwarf::DW_AT_producer, Producer); 937 938 NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 939 DIUnit->getSourceLanguage()); 940 NewCU.addString(Die, dwarf::DW_AT_name, FN); 941 StringRef SysRoot = DIUnit->getSysRoot(); 942 if (!SysRoot.empty()) 943 NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot); 944 StringRef SDK = DIUnit->getSDK(); 945 if (!SDK.empty()) 946 NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK); 947 948 // Add DW_str_offsets_base to the unit DIE, except for split units. 949 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 950 NewCU.addStringOffsetsStart(); 951 952 if (!useSplitDwarf()) { 953 NewCU.initStmtList(); 954 955 // If we're using split dwarf the compilation dir is going to be in the 956 // skeleton CU and so we don't need to duplicate it here. 957 if (!CompilationDir.empty()) 958 NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 959 addGnuPubAttributes(NewCU, Die); 960 } 961 962 if (useAppleExtensionAttributes()) { 963 if (DIUnit->isOptimized()) 964 NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized); 965 966 StringRef Flags = DIUnit->getFlags(); 967 if (!Flags.empty()) 968 NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags); 969 970 if (unsigned RVer = DIUnit->getRuntimeVersion()) 971 NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers, 972 dwarf::DW_FORM_data1, RVer); 973 } 974 975 if (DIUnit->getDWOId()) { 976 // This CU is either a clang module DWO or a skeleton CU. 977 NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, 978 DIUnit->getDWOId()); 979 if (!DIUnit->getSplitDebugFilename().empty()) { 980 // This is a prefabricated skeleton CU. 981 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 982 ? dwarf::DW_AT_dwo_name 983 : dwarf::DW_AT_GNU_dwo_name; 984 NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename()); 985 } 986 } 987 } 988 // Create new DwarfCompileUnit for the given metadata node with tag 989 // DW_TAG_compile_unit. 990 DwarfCompileUnit & 991 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) { 992 if (auto *CU = CUMap.lookup(DIUnit)) 993 return *CU; 994 995 CompilationDir = DIUnit->getDirectory(); 996 997 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 998 InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder); 999 DwarfCompileUnit &NewCU = *OwnedUnit; 1000 InfoHolder.addUnit(std::move(OwnedUnit)); 1001 1002 for (auto *IE : DIUnit->getImportedEntities()) 1003 NewCU.addImportedEntity(IE); 1004 1005 // LTO with assembly output shares a single line table amongst multiple CUs. 1006 // To avoid the compilation directory being ambiguous, let the line table 1007 // explicitly describe the directory of all files, never relying on the 1008 // compilation directory. 1009 if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU) 1010 Asm->OutStreamer->emitDwarfFile0Directive( 1011 CompilationDir, DIUnit->getFilename(), 1012 NewCU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource(), 1013 NewCU.getUniqueID()); 1014 1015 if (useSplitDwarf()) { 1016 NewCU.setSkeleton(constructSkeletonCU(NewCU)); 1017 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection()); 1018 } else { 1019 finishUnitAttributes(DIUnit, NewCU); 1020 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 1021 } 1022 1023 CUMap.insert({DIUnit, &NewCU}); 1024 CUDieMap.insert({&NewCU.getUnitDie(), &NewCU}); 1025 return NewCU; 1026 } 1027 1028 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU, 1029 const DIImportedEntity *N) { 1030 if (isa<DILocalScope>(N->getScope())) 1031 return; 1032 if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope())) 1033 D->addChild(TheCU.constructImportedEntityDIE(N)); 1034 } 1035 1036 /// Sort and unique GVEs by comparing their fragment offset. 1037 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> & 1038 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) { 1039 llvm::sort( 1040 GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) { 1041 // Sort order: first null exprs, then exprs without fragment 1042 // info, then sort by fragment offset in bits. 1043 // FIXME: Come up with a more comprehensive comparator so 1044 // the sorting isn't non-deterministic, and so the following 1045 // std::unique call works correctly. 1046 if (!A.Expr || !B.Expr) 1047 return !!B.Expr; 1048 auto FragmentA = A.Expr->getFragmentInfo(); 1049 auto FragmentB = B.Expr->getFragmentInfo(); 1050 if (!FragmentA || !FragmentB) 1051 return !!FragmentB; 1052 return FragmentA->OffsetInBits < FragmentB->OffsetInBits; 1053 }); 1054 GVEs.erase(std::unique(GVEs.begin(), GVEs.end(), 1055 [](DwarfCompileUnit::GlobalExpr A, 1056 DwarfCompileUnit::GlobalExpr B) { 1057 return A.Expr == B.Expr; 1058 }), 1059 GVEs.end()); 1060 return GVEs; 1061 } 1062 1063 // Emit all Dwarf sections that should come prior to the content. Create 1064 // global DIEs and emit initial debug info sections. This is invoked by 1065 // the target AsmPrinter. 1066 void DwarfDebug::beginModule() { 1067 NamedRegionTimer T(DbgTimerName, DbgTimerDescription, DWARFGroupName, 1068 DWARFGroupDescription, TimePassesIsEnabled); 1069 if (DisableDebugInfoPrinting) { 1070 MMI->setDebugInfoAvailability(false); 1071 return; 1072 } 1073 1074 const Module *M = MMI->getModule(); 1075 1076 unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(), 1077 M->debug_compile_units_end()); 1078 // Tell MMI whether we have debug info. 1079 assert(MMI->hasDebugInfo() == (NumDebugCUs > 0) && 1080 "DebugInfoAvailabilty initialized unexpectedly"); 1081 SingleCU = NumDebugCUs == 1; 1082 DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>> 1083 GVMap; 1084 for (const GlobalVariable &Global : M->globals()) { 1085 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1086 Global.getDebugInfo(GVs); 1087 for (auto *GVE : GVs) 1088 GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()}); 1089 } 1090 1091 // Create the symbol that designates the start of the unit's contribution 1092 // to the string offsets table. In a split DWARF scenario, only the skeleton 1093 // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol). 1094 if (useSegmentedStringOffsetsTable()) 1095 (useSplitDwarf() ? SkeletonHolder : InfoHolder) 1096 .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base")); 1097 1098 1099 // Create the symbols that designates the start of the DWARF v5 range list 1100 // and locations list tables. They are located past the table headers. 1101 if (getDwarfVersion() >= 5) { 1102 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1103 Holder.setRnglistsTableBaseSym( 1104 Asm->createTempSymbol("rnglists_table_base")); 1105 1106 if (useSplitDwarf()) 1107 InfoHolder.setRnglistsTableBaseSym( 1108 Asm->createTempSymbol("rnglists_dwo_table_base")); 1109 } 1110 1111 // Create the symbol that points to the first entry following the debug 1112 // address table (.debug_addr) header. 1113 AddrPool.setLabel(Asm->createTempSymbol("addr_table_base")); 1114 DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base")); 1115 1116 for (DICompileUnit *CUNode : M->debug_compile_units()) { 1117 // FIXME: Move local imported entities into a list attached to the 1118 // subprogram, then this search won't be needed and a 1119 // getImportedEntities().empty() test should go below with the rest. 1120 bool HasNonLocalImportedEntities = llvm::any_of( 1121 CUNode->getImportedEntities(), [](const DIImportedEntity *IE) { 1122 return !isa<DILocalScope>(IE->getScope()); 1123 }); 1124 1125 if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() && 1126 CUNode->getRetainedTypes().empty() && 1127 CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty()) 1128 continue; 1129 1130 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode); 1131 1132 // Global Variables. 1133 for (auto *GVE : CUNode->getGlobalVariables()) { 1134 // Don't bother adding DIGlobalVariableExpressions listed in the CU if we 1135 // already know about the variable and it isn't adding a constant 1136 // expression. 1137 auto &GVMapEntry = GVMap[GVE->getVariable()]; 1138 auto *Expr = GVE->getExpression(); 1139 if (!GVMapEntry.size() || (Expr && Expr->isConstant())) 1140 GVMapEntry.push_back({nullptr, Expr}); 1141 } 1142 DenseSet<DIGlobalVariable *> Processed; 1143 for (auto *GVE : CUNode->getGlobalVariables()) { 1144 DIGlobalVariable *GV = GVE->getVariable(); 1145 if (Processed.insert(GV).second) 1146 CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV])); 1147 } 1148 1149 for (auto *Ty : CUNode->getEnumTypes()) { 1150 // The enum types array by design contains pointers to 1151 // MDNodes rather than DIRefs. Unique them here. 1152 CU.getOrCreateTypeDIE(cast<DIType>(Ty)); 1153 } 1154 for (auto *Ty : CUNode->getRetainedTypes()) { 1155 // The retained types array by design contains pointers to 1156 // MDNodes rather than DIRefs. Unique them here. 1157 if (DIType *RT = dyn_cast<DIType>(Ty)) 1158 // There is no point in force-emitting a forward declaration. 1159 CU.getOrCreateTypeDIE(RT); 1160 } 1161 // Emit imported_modules last so that the relevant context is already 1162 // available. 1163 for (auto *IE : CUNode->getImportedEntities()) 1164 constructAndAddImportedEntityDIE(CU, IE); 1165 } 1166 } 1167 1168 void DwarfDebug::finishEntityDefinitions() { 1169 for (const auto &Entity : ConcreteEntities) { 1170 DIE *Die = Entity->getDIE(); 1171 assert(Die); 1172 // FIXME: Consider the time-space tradeoff of just storing the unit pointer 1173 // in the ConcreteEntities list, rather than looking it up again here. 1174 // DIE::getUnit isn't simple - it walks parent pointers, etc. 1175 DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie()); 1176 assert(Unit); 1177 Unit->finishEntityDefinition(Entity.get()); 1178 } 1179 } 1180 1181 void DwarfDebug::finishSubprogramDefinitions() { 1182 for (const DISubprogram *SP : ProcessedSPNodes) { 1183 assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug); 1184 forBothCUs( 1185 getOrCreateDwarfCompileUnit(SP->getUnit()), 1186 [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); }); 1187 } 1188 } 1189 1190 void DwarfDebug::finalizeModuleInfo() { 1191 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); 1192 1193 finishSubprogramDefinitions(); 1194 1195 finishEntityDefinitions(); 1196 1197 // Include the DWO file name in the hash if there's more than one CU. 1198 // This handles ThinLTO's situation where imported CUs may very easily be 1199 // duplicate with the same CU partially imported into another ThinLTO unit. 1200 StringRef DWOName; 1201 if (CUMap.size() > 1) 1202 DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile; 1203 1204 // Handle anything that needs to be done on a per-unit basis after 1205 // all other generation. 1206 for (const auto &P : CUMap) { 1207 auto &TheCU = *P.second; 1208 if (TheCU.getCUNode()->isDebugDirectivesOnly()) 1209 continue; 1210 // Emit DW_AT_containing_type attribute to connect types with their 1211 // vtable holding type. 1212 TheCU.constructContainingTypeDIEs(); 1213 1214 // Add CU specific attributes if we need to add any. 1215 // If we're splitting the dwarf out now that we've got the entire 1216 // CU then add the dwo id to it. 1217 auto *SkCU = TheCU.getSkeleton(); 1218 1219 bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty(); 1220 1221 if (HasSplitUnit) { 1222 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1223 ? dwarf::DW_AT_dwo_name 1224 : dwarf::DW_AT_GNU_dwo_name; 1225 finishUnitAttributes(TheCU.getCUNode(), TheCU); 1226 TheCU.addString(TheCU.getUnitDie(), attrDWOName, 1227 Asm->TM.Options.MCOptions.SplitDwarfFile); 1228 SkCU->addString(SkCU->getUnitDie(), attrDWOName, 1229 Asm->TM.Options.MCOptions.SplitDwarfFile); 1230 // Emit a unique identifier for this CU. 1231 uint64_t ID = 1232 DIEHash(Asm).computeCUSignature(DWOName, TheCU.getUnitDie()); 1233 if (getDwarfVersion() >= 5) { 1234 TheCU.setDWOId(ID); 1235 SkCU->setDWOId(ID); 1236 } else { 1237 TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1238 dwarf::DW_FORM_data8, ID); 1239 SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1240 dwarf::DW_FORM_data8, ID); 1241 } 1242 1243 if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) { 1244 const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol(); 1245 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base, 1246 Sym, Sym); 1247 } 1248 } else if (SkCU) { 1249 finishUnitAttributes(SkCU->getCUNode(), *SkCU); 1250 } 1251 1252 // If we have code split among multiple sections or non-contiguous 1253 // ranges of code then emit a DW_AT_ranges attribute on the unit that will 1254 // remain in the .o file, otherwise add a DW_AT_low_pc. 1255 // FIXME: We should use ranges allow reordering of code ala 1256 // .subsections_via_symbols in mach-o. This would mean turning on 1257 // ranges for all subprogram DIEs for mach-o. 1258 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 1259 1260 if (unsigned NumRanges = TheCU.getRanges().size()) { 1261 if (NumRanges > 1 && useRangesSection()) 1262 // A DW_AT_low_pc attribute may also be specified in combination with 1263 // DW_AT_ranges to specify the default base address for use in 1264 // location lists (see Section 2.6.2) and range lists (see Section 1265 // 2.17.3). 1266 U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0); 1267 else 1268 U.setBaseAddress(TheCU.getRanges().front().Begin); 1269 U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges()); 1270 } 1271 1272 // We don't keep track of which addresses are used in which CU so this 1273 // is a bit pessimistic under LTO. 1274 if ((!AddrPool.isEmpty() || TheCU.hasRangeLists()) && 1275 (getDwarfVersion() >= 5 || HasSplitUnit)) 1276 U.addAddrTableBase(); 1277 1278 if (getDwarfVersion() >= 5) { 1279 if (U.hasRangeLists()) 1280 U.addRnglistsBase(); 1281 1282 if (!DebugLocs.getLists().empty()) { 1283 if (!useSplitDwarf()) 1284 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base, 1285 DebugLocs.getSym(), 1286 TLOF.getDwarfLoclistsSection()->getBeginSymbol()); 1287 } 1288 } 1289 1290 auto *CUNode = cast<DICompileUnit>(P.first); 1291 // If compile Unit has macros, emit "DW_AT_macro_info/DW_AT_macros" 1292 // attribute. 1293 if (CUNode->getMacros()) { 1294 if (getDwarfVersion() >= 5) { 1295 // FIXME: Add support for DWARFv5 DW_AT_macros attribute for split 1296 // case. 1297 if (!useSplitDwarf()) 1298 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macros, 1299 U.getMacroLabelBegin(), 1300 TLOF.getDwarfMacroSection()->getBeginSymbol()); 1301 } else { 1302 if (useSplitDwarf()) 1303 TheCU.addSectionDelta( 1304 TheCU.getUnitDie(), dwarf::DW_AT_macro_info, 1305 U.getMacroLabelBegin(), 1306 TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol()); 1307 else 1308 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info, 1309 U.getMacroLabelBegin(), 1310 TLOF.getDwarfMacinfoSection()->getBeginSymbol()); 1311 } 1312 } 1313 } 1314 1315 // Emit all frontend-produced Skeleton CUs, i.e., Clang modules. 1316 for (auto *CUNode : MMI->getModule()->debug_compile_units()) 1317 if (CUNode->getDWOId()) 1318 getOrCreateDwarfCompileUnit(CUNode); 1319 1320 // Compute DIE offsets and sizes. 1321 InfoHolder.computeSizeAndOffsets(); 1322 if (useSplitDwarf()) 1323 SkeletonHolder.computeSizeAndOffsets(); 1324 } 1325 1326 // Emit all Dwarf sections that should come after the content. 1327 void DwarfDebug::endModule() { 1328 assert(CurFn == nullptr); 1329 assert(CurMI == nullptr); 1330 1331 for (const auto &P : CUMap) { 1332 auto &CU = *P.second; 1333 CU.createBaseTypeDIEs(); 1334 } 1335 1336 // If we aren't actually generating debug info (check beginModule - 1337 // conditionalized on !DisableDebugInfoPrinting and the presence of the 1338 // llvm.dbg.cu metadata node) 1339 if (!MMI->hasDebugInfo()) 1340 return; 1341 1342 // Finalize the debug info for the module. 1343 finalizeModuleInfo(); 1344 1345 if (useSplitDwarf()) 1346 // Emit debug_loc.dwo/debug_loclists.dwo section. 1347 emitDebugLocDWO(); 1348 else 1349 // Emit debug_loc/debug_loclists section. 1350 emitDebugLoc(); 1351 1352 // Corresponding abbreviations into a abbrev section. 1353 emitAbbreviations(); 1354 1355 // Emit all the DIEs into a debug info section. 1356 emitDebugInfo(); 1357 1358 // Emit info into a debug aranges section. 1359 if (GenerateARangeSection) 1360 emitDebugARanges(); 1361 1362 // Emit info into a debug ranges section. 1363 emitDebugRanges(); 1364 1365 if (useSplitDwarf()) 1366 // Emit info into a debug macinfo.dwo section. 1367 emitDebugMacinfoDWO(); 1368 else 1369 // Emit info into a debug macinfo/macro section. 1370 emitDebugMacinfo(); 1371 1372 emitDebugStr(); 1373 1374 if (useSplitDwarf()) { 1375 emitDebugStrDWO(); 1376 emitDebugInfoDWO(); 1377 emitDebugAbbrevDWO(); 1378 emitDebugLineDWO(); 1379 emitDebugRangesDWO(); 1380 } 1381 1382 emitDebugAddr(); 1383 1384 // Emit info into the dwarf accelerator table sections. 1385 switch (getAccelTableKind()) { 1386 case AccelTableKind::Apple: 1387 emitAccelNames(); 1388 emitAccelObjC(); 1389 emitAccelNamespaces(); 1390 emitAccelTypes(); 1391 break; 1392 case AccelTableKind::Dwarf: 1393 emitAccelDebugNames(); 1394 break; 1395 case AccelTableKind::None: 1396 break; 1397 case AccelTableKind::Default: 1398 llvm_unreachable("Default should have already been resolved."); 1399 } 1400 1401 // Emit the pubnames and pubtypes sections if requested. 1402 emitDebugPubSections(); 1403 1404 // clean up. 1405 // FIXME: AbstractVariables.clear(); 1406 } 1407 1408 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU, 1409 const DINode *Node, 1410 const MDNode *ScopeNode) { 1411 if (CU.getExistingAbstractEntity(Node)) 1412 return; 1413 1414 CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope( 1415 cast<DILocalScope>(ScopeNode))); 1416 } 1417 1418 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU, 1419 const DINode *Node, const MDNode *ScopeNode) { 1420 if (CU.getExistingAbstractEntity(Node)) 1421 return; 1422 1423 if (LexicalScope *Scope = 1424 LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode))) 1425 CU.createAbstractEntity(Node, Scope); 1426 } 1427 1428 // Collect variable information from side table maintained by MF. 1429 void DwarfDebug::collectVariableInfoFromMFTable( 1430 DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) { 1431 SmallDenseMap<InlinedEntity, DbgVariable *> MFVars; 1432 LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n"); 1433 for (const auto &VI : Asm->MF->getVariableDbgInfo()) { 1434 if (!VI.Var) 1435 continue; 1436 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1437 "Expected inlined-at fields to agree"); 1438 1439 InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt()); 1440 Processed.insert(Var); 1441 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1442 1443 // If variable scope is not found then skip this variable. 1444 if (!Scope) { 1445 LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName() 1446 << ", no variable scope found\n"); 1447 continue; 1448 } 1449 1450 ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode()); 1451 auto RegVar = std::make_unique<DbgVariable>( 1452 cast<DILocalVariable>(Var.first), Var.second); 1453 RegVar->initializeMMI(VI.Expr, VI.Slot); 1454 LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName() 1455 << "\n"); 1456 if (DbgVariable *DbgVar = MFVars.lookup(Var)) 1457 DbgVar->addMMIEntry(*RegVar); 1458 else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) { 1459 MFVars.insert({Var, RegVar.get()}); 1460 ConcreteEntities.push_back(std::move(RegVar)); 1461 } 1462 } 1463 } 1464 1465 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its 1466 /// enclosing lexical scope. The check ensures there are no other instructions 1467 /// in the same lexical scope preceding the DBG_VALUE and that its range is 1468 /// either open or otherwise rolls off the end of the scope. 1469 static bool validThroughout(LexicalScopes &LScopes, 1470 const MachineInstr *DbgValue, 1471 const MachineInstr *RangeEnd) { 1472 assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location"); 1473 auto MBB = DbgValue->getParent(); 1474 auto DL = DbgValue->getDebugLoc(); 1475 auto *LScope = LScopes.findLexicalScope(DL); 1476 // Scope doesn't exist; this is a dead DBG_VALUE. 1477 if (!LScope) 1478 return false; 1479 auto &LSRange = LScope->getRanges(); 1480 if (LSRange.size() == 0) 1481 return false; 1482 1483 // Determine if the DBG_VALUE is valid at the beginning of its lexical block. 1484 const MachineInstr *LScopeBegin = LSRange.front().first; 1485 // Early exit if the lexical scope begins outside of the current block. 1486 if (LScopeBegin->getParent() != MBB) 1487 return false; 1488 MachineBasicBlock::const_reverse_iterator Pred(DbgValue); 1489 for (++Pred; Pred != MBB->rend(); ++Pred) { 1490 if (Pred->getFlag(MachineInstr::FrameSetup)) 1491 break; 1492 auto PredDL = Pred->getDebugLoc(); 1493 if (!PredDL || Pred->isMetaInstruction()) 1494 continue; 1495 // Check whether the instruction preceding the DBG_VALUE is in the same 1496 // (sub)scope as the DBG_VALUE. 1497 if (DL->getScope() == PredDL->getScope()) 1498 return false; 1499 auto *PredScope = LScopes.findLexicalScope(PredDL); 1500 if (!PredScope || LScope->dominates(PredScope)) 1501 return false; 1502 } 1503 1504 // If the range of the DBG_VALUE is open-ended, report success. 1505 if (!RangeEnd) 1506 return true; 1507 1508 // Fail if there are instructions belonging to our scope in another block. 1509 const MachineInstr *LScopeEnd = LSRange.back().second; 1510 if (LScopeEnd->getParent() != MBB) 1511 return false; 1512 1513 // Single, constant DBG_VALUEs in the prologue are promoted to be live 1514 // throughout the function. This is a hack, presumably for DWARF v2 and not 1515 // necessarily correct. It would be much better to use a dbg.declare instead 1516 // if we know the constant is live throughout the scope. 1517 if (DbgValue->getOperand(0).isImm() && MBB->pred_empty()) 1518 return true; 1519 1520 return false; 1521 } 1522 1523 /// Build the location list for all DBG_VALUEs in the function that 1524 /// describe the same variable. The resulting DebugLocEntries will have 1525 /// strict monotonically increasing begin addresses and will never 1526 /// overlap. If the resulting list has only one entry that is valid 1527 /// throughout variable's scope return true. 1528 // 1529 // See the definition of DbgValueHistoryMap::Entry for an explanation of the 1530 // different kinds of history map entries. One thing to be aware of is that if 1531 // a debug value is ended by another entry (rather than being valid until the 1532 // end of the function), that entry's instruction may or may not be included in 1533 // the range, depending on if the entry is a clobbering entry (it has an 1534 // instruction that clobbers one or more preceding locations), or if it is an 1535 // (overlapping) debug value entry. This distinction can be seen in the example 1536 // below. The first debug value is ended by the clobbering entry 2, and the 1537 // second and third debug values are ended by the overlapping debug value entry 1538 // 4. 1539 // 1540 // Input: 1541 // 1542 // History map entries [type, end index, mi] 1543 // 1544 // 0 | [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)] 1545 // 1 | | [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)] 1546 // 2 | | [Clobber, $reg0 = [...], -, -] 1547 // 3 | | [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)] 1548 // 4 [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)] 1549 // 1550 // Output [start, end) [Value...]: 1551 // 1552 // [0-1) [(reg0, fragment 0, 32)] 1553 // [1-3) [(reg0, fragment 0, 32), (reg1, fragment 32, 32)] 1554 // [3-4) [(reg1, fragment 32, 32), (123, fragment 64, 32)] 1555 // [4-) [(@g, fragment 0, 96)] 1556 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc, 1557 const DbgValueHistoryMap::Entries &Entries) { 1558 using OpenRange = 1559 std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>; 1560 SmallVector<OpenRange, 4> OpenRanges; 1561 bool isSafeForSingleLocation = true; 1562 const MachineInstr *StartDebugMI = nullptr; 1563 const MachineInstr *EndMI = nullptr; 1564 1565 for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) { 1566 const MachineInstr *Instr = EI->getInstr(); 1567 1568 // Remove all values that are no longer live. 1569 size_t Index = std::distance(EB, EI); 1570 auto Last = 1571 remove_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; }); 1572 OpenRanges.erase(Last, OpenRanges.end()); 1573 1574 // If we are dealing with a clobbering entry, this iteration will result in 1575 // a location list entry starting after the clobbering instruction. 1576 const MCSymbol *StartLabel = 1577 EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr); 1578 assert(StartLabel && 1579 "Forgot label before/after instruction starting a range!"); 1580 1581 const MCSymbol *EndLabel; 1582 if (std::next(EI) == Entries.end()) { 1583 EndLabel = Asm->getFunctionEnd(); 1584 if (EI->isClobber()) 1585 EndMI = EI->getInstr(); 1586 } 1587 else if (std::next(EI)->isClobber()) 1588 EndLabel = getLabelAfterInsn(std::next(EI)->getInstr()); 1589 else 1590 EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr()); 1591 assert(EndLabel && "Forgot label after instruction ending a range!"); 1592 1593 if (EI->isDbgValue()) 1594 LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n"); 1595 1596 // If this history map entry has a debug value, add that to the list of 1597 // open ranges and check if its location is valid for a single value 1598 // location. 1599 if (EI->isDbgValue()) { 1600 // Do not add undef debug values, as they are redundant information in 1601 // the location list entries. An undef debug results in an empty location 1602 // description. If there are any non-undef fragments then padding pieces 1603 // with empty location descriptions will automatically be inserted, and if 1604 // all fragments are undef then the whole location list entry is 1605 // redundant. 1606 if (!Instr->isUndefDebugValue()) { 1607 auto Value = getDebugLocValue(Instr); 1608 OpenRanges.emplace_back(EI->getEndIndex(), Value); 1609 1610 // TODO: Add support for single value fragment locations. 1611 if (Instr->getDebugExpression()->isFragment()) 1612 isSafeForSingleLocation = false; 1613 1614 if (!StartDebugMI) 1615 StartDebugMI = Instr; 1616 } else { 1617 isSafeForSingleLocation = false; 1618 } 1619 } 1620 1621 // Location list entries with empty location descriptions are redundant 1622 // information in DWARF, so do not emit those. 1623 if (OpenRanges.empty()) 1624 continue; 1625 1626 // Omit entries with empty ranges as they do not have any effect in DWARF. 1627 if (StartLabel == EndLabel) { 1628 LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n"); 1629 continue; 1630 } 1631 1632 SmallVector<DbgValueLoc, 4> Values; 1633 for (auto &R : OpenRanges) 1634 Values.push_back(R.second); 1635 DebugLoc.emplace_back(StartLabel, EndLabel, Values); 1636 1637 // Attempt to coalesce the ranges of two otherwise identical 1638 // DebugLocEntries. 1639 auto CurEntry = DebugLoc.rbegin(); 1640 LLVM_DEBUG({ 1641 dbgs() << CurEntry->getValues().size() << " Values:\n"; 1642 for (auto &Value : CurEntry->getValues()) 1643 Value.dump(); 1644 dbgs() << "-----\n"; 1645 }); 1646 1647 auto PrevEntry = std::next(CurEntry); 1648 if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry)) 1649 DebugLoc.pop_back(); 1650 } 1651 1652 return DebugLoc.size() == 1 && isSafeForSingleLocation && 1653 validThroughout(LScopes, StartDebugMI, EndMI); 1654 } 1655 1656 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU, 1657 LexicalScope &Scope, 1658 const DINode *Node, 1659 const DILocation *Location, 1660 const MCSymbol *Sym) { 1661 ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode()); 1662 if (isa<const DILocalVariable>(Node)) { 1663 ConcreteEntities.push_back( 1664 std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node), 1665 Location)); 1666 InfoHolder.addScopeVariable(&Scope, 1667 cast<DbgVariable>(ConcreteEntities.back().get())); 1668 } else if (isa<const DILabel>(Node)) { 1669 ConcreteEntities.push_back( 1670 std::make_unique<DbgLabel>(cast<const DILabel>(Node), 1671 Location, Sym)); 1672 InfoHolder.addScopeLabel(&Scope, 1673 cast<DbgLabel>(ConcreteEntities.back().get())); 1674 } 1675 return ConcreteEntities.back().get(); 1676 } 1677 1678 // Find variables for each lexical scope. 1679 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU, 1680 const DISubprogram *SP, 1681 DenseSet<InlinedEntity> &Processed) { 1682 // Grab the variable info that was squirreled away in the MMI side-table. 1683 collectVariableInfoFromMFTable(TheCU, Processed); 1684 1685 for (const auto &I : DbgValues) { 1686 InlinedEntity IV = I.first; 1687 if (Processed.count(IV)) 1688 continue; 1689 1690 // Instruction ranges, specifying where IV is accessible. 1691 const auto &HistoryMapEntries = I.second; 1692 if (HistoryMapEntries.empty()) 1693 continue; 1694 1695 LexicalScope *Scope = nullptr; 1696 const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first); 1697 if (const DILocation *IA = IV.second) 1698 Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA); 1699 else 1700 Scope = LScopes.findLexicalScope(LocalVar->getScope()); 1701 // If variable scope is not found then skip this variable. 1702 if (!Scope) 1703 continue; 1704 1705 Processed.insert(IV); 1706 DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU, 1707 *Scope, LocalVar, IV.second)); 1708 1709 const MachineInstr *MInsn = HistoryMapEntries.front().getInstr(); 1710 assert(MInsn->isDebugValue() && "History must begin with debug value"); 1711 1712 // Check if there is a single DBG_VALUE, valid throughout the var's scope. 1713 // If the history map contains a single debug value, there may be an 1714 // additional entry which clobbers the debug value. 1715 size_t HistSize = HistoryMapEntries.size(); 1716 bool SingleValueWithClobber = 1717 HistSize == 2 && HistoryMapEntries[1].isClobber(); 1718 if (HistSize == 1 || SingleValueWithClobber) { 1719 const auto *End = 1720 SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr; 1721 if (validThroughout(LScopes, MInsn, End)) { 1722 RegVar->initializeDbgValue(MInsn); 1723 continue; 1724 } 1725 } 1726 1727 // Do not emit location lists if .debug_loc secton is disabled. 1728 if (!useLocSection()) 1729 continue; 1730 1731 // Handle multiple DBG_VALUE instructions describing one variable. 1732 DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn); 1733 1734 // Build the location list for this variable. 1735 SmallVector<DebugLocEntry, 8> Entries; 1736 bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries); 1737 1738 // Check whether buildLocationList managed to merge all locations to one 1739 // that is valid throughout the variable's scope. If so, produce single 1740 // value location. 1741 if (isValidSingleLocation) { 1742 RegVar->initializeDbgValue(Entries[0].getValues()[0]); 1743 continue; 1744 } 1745 1746 // If the variable has a DIBasicType, extract it. Basic types cannot have 1747 // unique identifiers, so don't bother resolving the type with the 1748 // identifier map. 1749 const DIBasicType *BT = dyn_cast<DIBasicType>( 1750 static_cast<const Metadata *>(LocalVar->getType())); 1751 1752 // Finalize the entry by lowering it into a DWARF bytestream. 1753 for (auto &Entry : Entries) 1754 Entry.finalize(*Asm, List, BT, TheCU); 1755 } 1756 1757 // For each InlinedEntity collected from DBG_LABEL instructions, convert to 1758 // DWARF-related DbgLabel. 1759 for (const auto &I : DbgLabels) { 1760 InlinedEntity IL = I.first; 1761 const MachineInstr *MI = I.second; 1762 if (MI == nullptr) 1763 continue; 1764 1765 LexicalScope *Scope = nullptr; 1766 const DILabel *Label = cast<DILabel>(IL.first); 1767 // The scope could have an extra lexical block file. 1768 const DILocalScope *LocalScope = 1769 Label->getScope()->getNonLexicalBlockFileScope(); 1770 // Get inlined DILocation if it is inlined label. 1771 if (const DILocation *IA = IL.second) 1772 Scope = LScopes.findInlinedScope(LocalScope, IA); 1773 else 1774 Scope = LScopes.findLexicalScope(LocalScope); 1775 // If label scope is not found then skip this label. 1776 if (!Scope) 1777 continue; 1778 1779 Processed.insert(IL); 1780 /// At this point, the temporary label is created. 1781 /// Save the temporary label to DbgLabel entity to get the 1782 /// actually address when generating Dwarf DIE. 1783 MCSymbol *Sym = getLabelBeforeInsn(MI); 1784 createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym); 1785 } 1786 1787 // Collect info for variables/labels that were optimized out. 1788 for (const DINode *DN : SP->getRetainedNodes()) { 1789 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 1790 continue; 1791 LexicalScope *Scope = nullptr; 1792 if (auto *DV = dyn_cast<DILocalVariable>(DN)) { 1793 Scope = LScopes.findLexicalScope(DV->getScope()); 1794 } else if (auto *DL = dyn_cast<DILabel>(DN)) { 1795 Scope = LScopes.findLexicalScope(DL->getScope()); 1796 } 1797 1798 if (Scope) 1799 createConcreteEntity(TheCU, *Scope, DN, nullptr); 1800 } 1801 } 1802 1803 // Process beginning of an instruction. 1804 void DwarfDebug::beginInstruction(const MachineInstr *MI) { 1805 const MachineFunction &MF = *MI->getMF(); 1806 const auto *SP = MF.getFunction().getSubprogram(); 1807 bool NoDebug = 1808 !SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug; 1809 1810 // When describing calls, we need a label for the call instruction. 1811 // TODO: Add support for targets with delay slots. 1812 if (!NoDebug && SP->areAllCallsDescribed() && 1813 MI->isCandidateForCallSiteEntry(MachineInstr::AnyInBundle) && 1814 !MI->hasDelaySlot()) { 1815 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1816 bool IsTail = TII->isTailCall(*MI); 1817 // For tail calls, we need the address of the branch instruction for 1818 // DW_AT_call_pc. 1819 if (IsTail) 1820 requestLabelBeforeInsn(MI); 1821 // For non-tail calls, we need the return address for the call for 1822 // DW_AT_call_return_pc. Under GDB tuning, this information is needed for 1823 // tail calls as well. 1824 requestLabelAfterInsn(MI); 1825 } 1826 1827 DebugHandlerBase::beginInstruction(MI); 1828 assert(CurMI); 1829 1830 if (NoDebug) 1831 return; 1832 1833 // Check if source location changes, but ignore DBG_VALUE and CFI locations. 1834 // If the instruction is part of the function frame setup code, do not emit 1835 // any line record, as there is no correspondence with any user code. 1836 if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup)) 1837 return; 1838 const DebugLoc &DL = MI->getDebugLoc(); 1839 // When we emit a line-0 record, we don't update PrevInstLoc; so look at 1840 // the last line number actually emitted, to see if it was line 0. 1841 unsigned LastAsmLine = 1842 Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine(); 1843 1844 if (DL == PrevInstLoc) { 1845 // If we have an ongoing unspecified location, nothing to do here. 1846 if (!DL) 1847 return; 1848 // We have an explicit location, same as the previous location. 1849 // But we might be coming back to it after a line 0 record. 1850 if (LastAsmLine == 0 && DL.getLine() != 0) { 1851 // Reinstate the source location but not marked as a statement. 1852 const MDNode *Scope = DL.getScope(); 1853 recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0); 1854 } 1855 return; 1856 } 1857 1858 if (!DL) { 1859 // We have an unspecified location, which might want to be line 0. 1860 // If we have already emitted a line-0 record, don't repeat it. 1861 if (LastAsmLine == 0) 1862 return; 1863 // If user said Don't Do That, don't do that. 1864 if (UnknownLocations == Disable) 1865 return; 1866 // See if we have a reason to emit a line-0 record now. 1867 // Reasons to emit a line-0 record include: 1868 // - User asked for it (UnknownLocations). 1869 // - Instruction has a label, so it's referenced from somewhere else, 1870 // possibly debug information; we want it to have a source location. 1871 // - Instruction is at the top of a block; we don't want to inherit the 1872 // location from the physically previous (maybe unrelated) block. 1873 if (UnknownLocations == Enable || PrevLabel || 1874 (PrevInstBB && PrevInstBB != MI->getParent())) { 1875 // Preserve the file and column numbers, if we can, to save space in 1876 // the encoded line table. 1877 // Do not update PrevInstLoc, it remembers the last non-0 line. 1878 const MDNode *Scope = nullptr; 1879 unsigned Column = 0; 1880 if (PrevInstLoc) { 1881 Scope = PrevInstLoc.getScope(); 1882 Column = PrevInstLoc.getCol(); 1883 } 1884 recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0); 1885 } 1886 return; 1887 } 1888 1889 // We have an explicit location, different from the previous location. 1890 // Don't repeat a line-0 record, but otherwise emit the new location. 1891 // (The new location might be an explicit line 0, which we do emit.) 1892 if (DL.getLine() == 0 && LastAsmLine == 0) 1893 return; 1894 unsigned Flags = 0; 1895 if (DL == PrologEndLoc) { 1896 Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT; 1897 PrologEndLoc = DebugLoc(); 1898 } 1899 // If the line changed, we call that a new statement; unless we went to 1900 // line 0 and came back, in which case it is not a new statement. 1901 unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine; 1902 if (DL.getLine() && DL.getLine() != OldLine) 1903 Flags |= DWARF2_FLAG_IS_STMT; 1904 1905 const MDNode *Scope = DL.getScope(); 1906 recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags); 1907 1908 // If we're not at line 0, remember this location. 1909 if (DL.getLine()) 1910 PrevInstLoc = DL; 1911 } 1912 1913 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) { 1914 // First known non-DBG_VALUE and non-frame setup location marks 1915 // the beginning of the function body. 1916 for (const auto &MBB : *MF) 1917 for (const auto &MI : MBB) 1918 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1919 MI.getDebugLoc()) 1920 return MI.getDebugLoc(); 1921 return DebugLoc(); 1922 } 1923 1924 /// Register a source line with debug info. Returns the unique label that was 1925 /// emitted and which provides correspondence to the source line list. 1926 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col, 1927 const MDNode *S, unsigned Flags, unsigned CUID, 1928 uint16_t DwarfVersion, 1929 ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) { 1930 StringRef Fn; 1931 unsigned FileNo = 1; 1932 unsigned Discriminator = 0; 1933 if (auto *Scope = cast_or_null<DIScope>(S)) { 1934 Fn = Scope->getFilename(); 1935 if (Line != 0 && DwarfVersion >= 4) 1936 if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope)) 1937 Discriminator = LBF->getDiscriminator(); 1938 1939 FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID]) 1940 .getOrCreateSourceID(Scope->getFile()); 1941 } 1942 Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0, 1943 Discriminator, Fn); 1944 } 1945 1946 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF, 1947 unsigned CUID) { 1948 // Get beginning of function. 1949 if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) { 1950 // Ensure the compile unit is created if the function is called before 1951 // beginFunction(). 1952 (void)getOrCreateDwarfCompileUnit( 1953 MF.getFunction().getSubprogram()->getUnit()); 1954 // We'd like to list the prologue as "not statements" but GDB behaves 1955 // poorly if we do that. Revisit this with caution/GDB (7.5+) testing. 1956 const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram(); 1957 ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT, 1958 CUID, getDwarfVersion(), getUnits()); 1959 return PrologEndLoc; 1960 } 1961 return DebugLoc(); 1962 } 1963 1964 // Gather pre-function debug information. Assumes being called immediately 1965 // after the function entry point has been emitted. 1966 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) { 1967 CurFn = MF; 1968 1969 auto *SP = MF->getFunction().getSubprogram(); 1970 assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode()); 1971 if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) 1972 return; 1973 1974 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 1975 1976 // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function 1977 // belongs to so that we add to the correct per-cu line table in the 1978 // non-asm case. 1979 if (Asm->OutStreamer->hasRawTextSupport()) 1980 // Use a single line table if we are generating assembly. 1981 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 1982 else 1983 Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID()); 1984 1985 // Record beginning of function. 1986 PrologEndLoc = emitInitialLocDirective( 1987 *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID()); 1988 } 1989 1990 void DwarfDebug::skippedNonDebugFunction() { 1991 // If we don't have a subprogram for this function then there will be a hole 1992 // in the range information. Keep note of this by setting the previously used 1993 // section to nullptr. 1994 PrevCU = nullptr; 1995 CurFn = nullptr; 1996 } 1997 1998 // Gather and emit post-function debug information. 1999 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) { 2000 const DISubprogram *SP = MF->getFunction().getSubprogram(); 2001 2002 assert(CurFn == MF && 2003 "endFunction should be called with the same function as beginFunction"); 2004 2005 // Set DwarfDwarfCompileUnitID in MCContext to default value. 2006 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 2007 2008 LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); 2009 assert(!FnScope || SP == FnScope->getScopeNode()); 2010 DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit()); 2011 if (TheCU.getCUNode()->isDebugDirectivesOnly()) { 2012 PrevLabel = nullptr; 2013 CurFn = nullptr; 2014 return; 2015 } 2016 2017 DenseSet<InlinedEntity> Processed; 2018 collectEntityInfo(TheCU, SP, Processed); 2019 2020 // Add the range of this function to the list of ranges for the CU. 2021 TheCU.addRange({Asm->getFunctionBegin(), Asm->getFunctionEnd()}); 2022 2023 // Under -gmlt, skip building the subprogram if there are no inlined 2024 // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram 2025 // is still needed as we need its source location. 2026 if (!TheCU.getCUNode()->getDebugInfoForProfiling() && 2027 TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly && 2028 LScopes.getAbstractScopesList().empty() && !IsDarwin) { 2029 assert(InfoHolder.getScopeVariables().empty()); 2030 PrevLabel = nullptr; 2031 CurFn = nullptr; 2032 return; 2033 } 2034 2035 #ifndef NDEBUG 2036 size_t NumAbstractScopes = LScopes.getAbstractScopesList().size(); 2037 #endif 2038 // Construct abstract scopes. 2039 for (LexicalScope *AScope : LScopes.getAbstractScopesList()) { 2040 auto *SP = cast<DISubprogram>(AScope->getScopeNode()); 2041 for (const DINode *DN : SP->getRetainedNodes()) { 2042 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 2043 continue; 2044 2045 const MDNode *Scope = nullptr; 2046 if (auto *DV = dyn_cast<DILocalVariable>(DN)) 2047 Scope = DV->getScope(); 2048 else if (auto *DL = dyn_cast<DILabel>(DN)) 2049 Scope = DL->getScope(); 2050 else 2051 llvm_unreachable("Unexpected DI type!"); 2052 2053 // Collect info for variables/labels that were optimized out. 2054 ensureAbstractEntityIsCreated(TheCU, DN, Scope); 2055 assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes 2056 && "ensureAbstractEntityIsCreated inserted abstract scopes"); 2057 } 2058 constructAbstractSubprogramScopeDIE(TheCU, AScope); 2059 } 2060 2061 ProcessedSPNodes.insert(SP); 2062 DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope); 2063 if (auto *SkelCU = TheCU.getSkeleton()) 2064 if (!LScopes.getAbstractScopesList().empty() && 2065 TheCU.getCUNode()->getSplitDebugInlining()) 2066 SkelCU->constructSubprogramScopeDIE(SP, FnScope); 2067 2068 // Construct call site entries. 2069 constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF); 2070 2071 // Clear debug info 2072 // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the 2073 // DbgVariables except those that are also in AbstractVariables (since they 2074 // can be used cross-function) 2075 InfoHolder.getScopeVariables().clear(); 2076 InfoHolder.getScopeLabels().clear(); 2077 PrevLabel = nullptr; 2078 CurFn = nullptr; 2079 } 2080 2081 // Register a source line with debug info. Returns the unique label that was 2082 // emitted and which provides correspondence to the source line list. 2083 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S, 2084 unsigned Flags) { 2085 ::recordSourceLine(*Asm, Line, Col, S, Flags, 2086 Asm->OutStreamer->getContext().getDwarfCompileUnitID(), 2087 getDwarfVersion(), getUnits()); 2088 } 2089 2090 //===----------------------------------------------------------------------===// 2091 // Emit Methods 2092 //===----------------------------------------------------------------------===// 2093 2094 // Emit the debug info section. 2095 void DwarfDebug::emitDebugInfo() { 2096 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2097 Holder.emitUnits(/* UseOffsets */ false); 2098 } 2099 2100 // Emit the abbreviation section. 2101 void DwarfDebug::emitAbbreviations() { 2102 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2103 2104 Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection()); 2105 } 2106 2107 void DwarfDebug::emitStringOffsetsTableHeader() { 2108 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2109 Holder.getStringPool().emitStringOffsetsTableHeader( 2110 *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(), 2111 Holder.getStringOffsetsStartSym()); 2112 } 2113 2114 template <typename AccelTableT> 2115 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section, 2116 StringRef TableName) { 2117 Asm->OutStreamer->SwitchSection(Section); 2118 2119 // Emit the full data. 2120 emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol()); 2121 } 2122 2123 void DwarfDebug::emitAccelDebugNames() { 2124 // Don't emit anything if we have no compilation units to index. 2125 if (getUnits().empty()) 2126 return; 2127 2128 emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits()); 2129 } 2130 2131 // Emit visible names into a hashed accelerator table section. 2132 void DwarfDebug::emitAccelNames() { 2133 emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(), 2134 "Names"); 2135 } 2136 2137 // Emit objective C classes and categories into a hashed accelerator table 2138 // section. 2139 void DwarfDebug::emitAccelObjC() { 2140 emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(), 2141 "ObjC"); 2142 } 2143 2144 // Emit namespace dies into a hashed accelerator table. 2145 void DwarfDebug::emitAccelNamespaces() { 2146 emitAccel(AccelNamespace, 2147 Asm->getObjFileLowering().getDwarfAccelNamespaceSection(), 2148 "namespac"); 2149 } 2150 2151 // Emit type dies into a hashed accelerator table. 2152 void DwarfDebug::emitAccelTypes() { 2153 emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(), 2154 "types"); 2155 } 2156 2157 // Public name handling. 2158 // The format for the various pubnames: 2159 // 2160 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU 2161 // for the DIE that is named. 2162 // 2163 // gnu pubnames - offset/index value/name tuples where the offset is the offset 2164 // into the CU and the index value is computed according to the type of value 2165 // for the DIE that is named. 2166 // 2167 // For type units the offset is the offset of the skeleton DIE. For split dwarf 2168 // it's the offset within the debug_info/debug_types dwo section, however, the 2169 // reference in the pubname header doesn't change. 2170 2171 /// computeIndexValue - Compute the gdb index value for the DIE and CU. 2172 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU, 2173 const DIE *Die) { 2174 // Entities that ended up only in a Type Unit reference the CU instead (since 2175 // the pub entry has offsets within the CU there's no real offset that can be 2176 // provided anyway). As it happens all such entities (namespaces and types, 2177 // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out 2178 // not to be true it would be necessary to persist this information from the 2179 // point at which the entry is added to the index data structure - since by 2180 // the time the index is built from that, the original type/namespace DIE in a 2181 // type unit has already been destroyed so it can't be queried for properties 2182 // like tag, etc. 2183 if (Die->getTag() == dwarf::DW_TAG_compile_unit) 2184 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, 2185 dwarf::GIEL_EXTERNAL); 2186 dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC; 2187 2188 // We could have a specification DIE that has our most of our knowledge, 2189 // look for that now. 2190 if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) { 2191 DIE &SpecDIE = SpecVal.getDIEEntry().getEntry(); 2192 if (SpecDIE.findAttribute(dwarf::DW_AT_external)) 2193 Linkage = dwarf::GIEL_EXTERNAL; 2194 } else if (Die->findAttribute(dwarf::DW_AT_external)) 2195 Linkage = dwarf::GIEL_EXTERNAL; 2196 2197 switch (Die->getTag()) { 2198 case dwarf::DW_TAG_class_type: 2199 case dwarf::DW_TAG_structure_type: 2200 case dwarf::DW_TAG_union_type: 2201 case dwarf::DW_TAG_enumeration_type: 2202 return dwarf::PubIndexEntryDescriptor( 2203 dwarf::GIEK_TYPE, 2204 dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage()) 2205 ? dwarf::GIEL_EXTERNAL 2206 : dwarf::GIEL_STATIC); 2207 case dwarf::DW_TAG_typedef: 2208 case dwarf::DW_TAG_base_type: 2209 case dwarf::DW_TAG_subrange_type: 2210 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC); 2211 case dwarf::DW_TAG_namespace: 2212 return dwarf::GIEK_TYPE; 2213 case dwarf::DW_TAG_subprogram: 2214 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage); 2215 case dwarf::DW_TAG_variable: 2216 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage); 2217 case dwarf::DW_TAG_enumerator: 2218 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, 2219 dwarf::GIEL_STATIC); 2220 default: 2221 return dwarf::GIEK_NONE; 2222 } 2223 } 2224 2225 /// emitDebugPubSections - Emit visible names and types into debug pubnames and 2226 /// pubtypes sections. 2227 void DwarfDebug::emitDebugPubSections() { 2228 for (const auto &NU : CUMap) { 2229 DwarfCompileUnit *TheU = NU.second; 2230 if (!TheU->hasDwarfPubSections()) 2231 continue; 2232 2233 bool GnuStyle = TheU->getCUNode()->getNameTableKind() == 2234 DICompileUnit::DebugNameTableKind::GNU; 2235 2236 Asm->OutStreamer->SwitchSection( 2237 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection() 2238 : Asm->getObjFileLowering().getDwarfPubNamesSection()); 2239 emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames()); 2240 2241 Asm->OutStreamer->SwitchSection( 2242 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection() 2243 : Asm->getObjFileLowering().getDwarfPubTypesSection()); 2244 emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes()); 2245 } 2246 } 2247 2248 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) { 2249 if (useSectionsAsReferences()) 2250 Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(), 2251 CU.getDebugSectionOffset()); 2252 else 2253 Asm->emitDwarfSymbolReference(CU.getLabelBegin()); 2254 } 2255 2256 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name, 2257 DwarfCompileUnit *TheU, 2258 const StringMap<const DIE *> &Globals) { 2259 if (auto *Skeleton = TheU->getSkeleton()) 2260 TheU = Skeleton; 2261 2262 // Emit the header. 2263 Asm->OutStreamer->AddComment("Length of Public " + Name + " Info"); 2264 MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin"); 2265 MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end"); 2266 Asm->emitLabelDifference(EndLabel, BeginLabel, 4); 2267 2268 Asm->OutStreamer->emitLabel(BeginLabel); 2269 2270 Asm->OutStreamer->AddComment("DWARF Version"); 2271 Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION); 2272 2273 Asm->OutStreamer->AddComment("Offset of Compilation Unit Info"); 2274 emitSectionReference(*TheU); 2275 2276 Asm->OutStreamer->AddComment("Compilation Unit Length"); 2277 Asm->emitInt32(TheU->getLength()); 2278 2279 // Emit the pubnames for this compilation unit. 2280 for (const auto &GI : Globals) { 2281 const char *Name = GI.getKeyData(); 2282 const DIE *Entity = GI.second; 2283 2284 Asm->OutStreamer->AddComment("DIE offset"); 2285 Asm->emitInt32(Entity->getOffset()); 2286 2287 if (GnuStyle) { 2288 dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity); 2289 Asm->OutStreamer->AddComment( 2290 Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + 2291 ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage)); 2292 Asm->emitInt8(Desc.toBits()); 2293 } 2294 2295 Asm->OutStreamer->AddComment("External Name"); 2296 Asm->OutStreamer->emitBytes(StringRef(Name, GI.getKeyLength() + 1)); 2297 } 2298 2299 Asm->OutStreamer->AddComment("End Mark"); 2300 Asm->emitInt32(0); 2301 Asm->OutStreamer->emitLabel(EndLabel); 2302 } 2303 2304 /// Emit null-terminated strings into a debug str section. 2305 void DwarfDebug::emitDebugStr() { 2306 MCSection *StringOffsetsSection = nullptr; 2307 if (useSegmentedStringOffsetsTable()) { 2308 emitStringOffsetsTableHeader(); 2309 StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection(); 2310 } 2311 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2312 Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(), 2313 StringOffsetsSection, /* UseRelativeOffsets = */ true); 2314 } 2315 2316 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer, 2317 const DebugLocStream::Entry &Entry, 2318 const DwarfCompileUnit *CU) { 2319 auto &&Comments = DebugLocs.getComments(Entry); 2320 auto Comment = Comments.begin(); 2321 auto End = Comments.end(); 2322 2323 // The expressions are inserted into a byte stream rather early (see 2324 // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that 2325 // need to reference a base_type DIE the offset of that DIE is not yet known. 2326 // To deal with this we instead insert a placeholder early and then extract 2327 // it here and replace it with the real reference. 2328 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2329 DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(), 2330 DebugLocs.getBytes(Entry).size()), 2331 Asm->getDataLayout().isLittleEndian(), PtrSize); 2332 DWARFExpression Expr(Data, PtrSize); 2333 2334 using Encoding = DWARFExpression::Operation::Encoding; 2335 uint64_t Offset = 0; 2336 for (auto &Op : Expr) { 2337 assert(Op.getCode() != dwarf::DW_OP_const_type && 2338 "3 operand ops not yet supported"); 2339 Streamer.EmitInt8(Op.getCode(), Comment != End ? *(Comment++) : ""); 2340 Offset++; 2341 for (unsigned I = 0; I < 2; ++I) { 2342 if (Op.getDescription().Op[I] == Encoding::SizeNA) 2343 continue; 2344 if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) { 2345 uint64_t Offset = 2346 CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset(); 2347 assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit"); 2348 Streamer.emitULEB128(Offset, "", ULEB128PadSize); 2349 // Make sure comments stay aligned. 2350 for (unsigned J = 0; J < ULEB128PadSize; ++J) 2351 if (Comment != End) 2352 Comment++; 2353 } else { 2354 for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J) 2355 Streamer.EmitInt8(Data.getData()[J], Comment != End ? *(Comment++) : ""); 2356 } 2357 Offset = Op.getOperandEndOffset(I); 2358 } 2359 assert(Offset == Op.getEndOffset()); 2360 } 2361 } 2362 2363 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT, 2364 const DbgValueLoc &Value, 2365 DwarfExpression &DwarfExpr) { 2366 auto *DIExpr = Value.getExpression(); 2367 DIExpressionCursor ExprCursor(DIExpr); 2368 DwarfExpr.addFragmentOffset(DIExpr); 2369 // Regular entry. 2370 if (Value.isInt()) { 2371 if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed || 2372 BT->getEncoding() == dwarf::DW_ATE_signed_char)) 2373 DwarfExpr.addSignedConstant(Value.getInt()); 2374 else 2375 DwarfExpr.addUnsignedConstant(Value.getInt()); 2376 } else if (Value.isLocation()) { 2377 MachineLocation Location = Value.getLoc(); 2378 if (Location.isIndirect()) 2379 DwarfExpr.setMemoryLocationKind(); 2380 DIExpressionCursor Cursor(DIExpr); 2381 2382 if (DIExpr->isEntryValue()) { 2383 DwarfExpr.setEntryValueFlag(); 2384 DwarfExpr.beginEntryValueExpression(Cursor); 2385 } 2386 2387 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); 2388 if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg())) 2389 return; 2390 return DwarfExpr.addExpression(std::move(Cursor)); 2391 } else if (Value.isTargetIndexLocation()) { 2392 TargetIndexLocation Loc = Value.getTargetIndexLocation(); 2393 // TODO TargetIndexLocation is a target-independent. Currently only the WebAssembly-specific 2394 // encoding is supported. 2395 DwarfExpr.addWasmLocation(Loc.Index, Loc.Offset); 2396 } else if (Value.isConstantFP()) { 2397 APInt RawBytes = Value.getConstantFP()->getValueAPF().bitcastToAPInt(); 2398 DwarfExpr.addUnsignedConstant(RawBytes); 2399 } 2400 DwarfExpr.addExpression(std::move(ExprCursor)); 2401 } 2402 2403 void DebugLocEntry::finalize(const AsmPrinter &AP, 2404 DebugLocStream::ListBuilder &List, 2405 const DIBasicType *BT, 2406 DwarfCompileUnit &TheCU) { 2407 assert(!Values.empty() && 2408 "location list entries without values are redundant"); 2409 assert(Begin != End && "unexpected location list entry with empty range"); 2410 DebugLocStream::EntryBuilder Entry(List, Begin, End); 2411 BufferByteStreamer Streamer = Entry.getStreamer(); 2412 DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU); 2413 const DbgValueLoc &Value = Values[0]; 2414 if (Value.isFragment()) { 2415 // Emit all fragments that belong to the same variable and range. 2416 assert(llvm::all_of(Values, [](DbgValueLoc P) { 2417 return P.isFragment(); 2418 }) && "all values are expected to be fragments"); 2419 assert(std::is_sorted(Values.begin(), Values.end()) && 2420 "fragments are expected to be sorted"); 2421 2422 for (auto Fragment : Values) 2423 DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr); 2424 2425 } else { 2426 assert(Values.size() == 1 && "only fragments may have >1 value"); 2427 DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr); 2428 } 2429 DwarfExpr.finalize(); 2430 if (DwarfExpr.TagOffset) 2431 List.setTagOffset(*DwarfExpr.TagOffset); 2432 } 2433 2434 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry, 2435 const DwarfCompileUnit *CU) { 2436 // Emit the size. 2437 Asm->OutStreamer->AddComment("Loc expr size"); 2438 if (getDwarfVersion() >= 5) 2439 Asm->emitULEB128(DebugLocs.getBytes(Entry).size()); 2440 else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max()) 2441 Asm->emitInt16(DebugLocs.getBytes(Entry).size()); 2442 else { 2443 // The entry is too big to fit into 16 bit, drop it as there is nothing we 2444 // can do. 2445 Asm->emitInt16(0); 2446 return; 2447 } 2448 // Emit the entry. 2449 APByteStreamer Streamer(*Asm); 2450 emitDebugLocEntry(Streamer, Entry, CU); 2451 } 2452 2453 // Emit the header of a DWARF 5 range list table list table. Returns the symbol 2454 // that designates the end of the table for the caller to emit when the table is 2455 // complete. 2456 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm, 2457 const DwarfFile &Holder) { 2458 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2459 2460 Asm->OutStreamer->AddComment("Offset entry count"); 2461 Asm->emitInt32(Holder.getRangeLists().size()); 2462 Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym()); 2463 2464 for (const RangeSpanList &List : Holder.getRangeLists()) 2465 Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(), 4); 2466 2467 return TableEnd; 2468 } 2469 2470 // Emit the header of a DWARF 5 locations list table. Returns the symbol that 2471 // designates the end of the table for the caller to emit when the table is 2472 // complete. 2473 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm, 2474 const DwarfDebug &DD) { 2475 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2476 2477 const auto &DebugLocs = DD.getDebugLocs(); 2478 2479 Asm->OutStreamer->AddComment("Offset entry count"); 2480 Asm->emitInt32(DebugLocs.getLists().size()); 2481 Asm->OutStreamer->emitLabel(DebugLocs.getSym()); 2482 2483 for (const auto &List : DebugLocs.getLists()) 2484 Asm->emitLabelDifference(List.Label, DebugLocs.getSym(), 4); 2485 2486 return TableEnd; 2487 } 2488 2489 template <typename Ranges, typename PayloadEmitter> 2490 static void emitRangeList( 2491 DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R, 2492 const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair, 2493 unsigned StartxLength, unsigned EndOfList, 2494 StringRef (*StringifyEnum)(unsigned), 2495 bool ShouldUseBaseAddress, 2496 PayloadEmitter EmitPayload) { 2497 2498 auto Size = Asm->MAI->getCodePointerSize(); 2499 bool UseDwarf5 = DD.getDwarfVersion() >= 5; 2500 2501 // Emit our symbol so we can find the beginning of the range. 2502 Asm->OutStreamer->emitLabel(Sym); 2503 2504 // Gather all the ranges that apply to the same section so they can share 2505 // a base address entry. 2506 MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges; 2507 2508 for (const auto &Range : R) 2509 SectionRanges[&Range.Begin->getSection()].push_back(&Range); 2510 2511 const MCSymbol *CUBase = CU.getBaseAddress(); 2512 bool BaseIsSet = false; 2513 for (const auto &P : SectionRanges) { 2514 auto *Base = CUBase; 2515 if (!Base && ShouldUseBaseAddress) { 2516 const MCSymbol *Begin = P.second.front()->Begin; 2517 const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection()); 2518 if (!UseDwarf5) { 2519 Base = NewBase; 2520 BaseIsSet = true; 2521 Asm->OutStreamer->emitIntValue(-1, Size); 2522 Asm->OutStreamer->AddComment(" base address"); 2523 Asm->OutStreamer->emitSymbolValue(Base, Size); 2524 } else if (NewBase != Begin || P.second.size() > 1) { 2525 // Only use a base address if 2526 // * the existing pool address doesn't match (NewBase != Begin) 2527 // * or, there's more than one entry to share the base address 2528 Base = NewBase; 2529 BaseIsSet = true; 2530 Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx)); 2531 Asm->emitInt8(BaseAddressx); 2532 Asm->OutStreamer->AddComment(" base address index"); 2533 Asm->emitULEB128(DD.getAddressPool().getIndex(Base)); 2534 } 2535 } else if (BaseIsSet && !UseDwarf5) { 2536 BaseIsSet = false; 2537 assert(!Base); 2538 Asm->OutStreamer->emitIntValue(-1, Size); 2539 Asm->OutStreamer->emitIntValue(0, Size); 2540 } 2541 2542 for (const auto *RS : P.second) { 2543 const MCSymbol *Begin = RS->Begin; 2544 const MCSymbol *End = RS->End; 2545 assert(Begin && "Range without a begin symbol?"); 2546 assert(End && "Range without an end symbol?"); 2547 if (Base) { 2548 if (UseDwarf5) { 2549 // Emit offset_pair when we have a base. 2550 Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair)); 2551 Asm->emitInt8(OffsetPair); 2552 Asm->OutStreamer->AddComment(" starting offset"); 2553 Asm->emitLabelDifferenceAsULEB128(Begin, Base); 2554 Asm->OutStreamer->AddComment(" ending offset"); 2555 Asm->emitLabelDifferenceAsULEB128(End, Base); 2556 } else { 2557 Asm->emitLabelDifference(Begin, Base, Size); 2558 Asm->emitLabelDifference(End, Base, Size); 2559 } 2560 } else if (UseDwarf5) { 2561 Asm->OutStreamer->AddComment(StringifyEnum(StartxLength)); 2562 Asm->emitInt8(StartxLength); 2563 Asm->OutStreamer->AddComment(" start index"); 2564 Asm->emitULEB128(DD.getAddressPool().getIndex(Begin)); 2565 Asm->OutStreamer->AddComment(" length"); 2566 Asm->emitLabelDifferenceAsULEB128(End, Begin); 2567 } else { 2568 Asm->OutStreamer->emitSymbolValue(Begin, Size); 2569 Asm->OutStreamer->emitSymbolValue(End, Size); 2570 } 2571 EmitPayload(*RS); 2572 } 2573 } 2574 2575 if (UseDwarf5) { 2576 Asm->OutStreamer->AddComment(StringifyEnum(EndOfList)); 2577 Asm->emitInt8(EndOfList); 2578 } else { 2579 // Terminate the list with two 0 values. 2580 Asm->OutStreamer->emitIntValue(0, Size); 2581 Asm->OutStreamer->emitIntValue(0, Size); 2582 } 2583 } 2584 2585 // Handles emission of both debug_loclist / debug_loclist.dwo 2586 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) { 2587 emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List), 2588 *List.CU, dwarf::DW_LLE_base_addressx, 2589 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length, 2590 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString, 2591 /* ShouldUseBaseAddress */ true, 2592 [&](const DebugLocStream::Entry &E) { 2593 DD.emitDebugLocEntryLocation(E, List.CU); 2594 }); 2595 } 2596 2597 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) { 2598 if (DebugLocs.getLists().empty()) 2599 return; 2600 2601 Asm->OutStreamer->SwitchSection(Sec); 2602 2603 MCSymbol *TableEnd = nullptr; 2604 if (getDwarfVersion() >= 5) 2605 TableEnd = emitLoclistsTableHeader(Asm, *this); 2606 2607 for (const auto &List : DebugLocs.getLists()) 2608 emitLocList(*this, Asm, List); 2609 2610 if (TableEnd) 2611 Asm->OutStreamer->emitLabel(TableEnd); 2612 } 2613 2614 // Emit locations into the .debug_loc/.debug_loclists section. 2615 void DwarfDebug::emitDebugLoc() { 2616 emitDebugLocImpl( 2617 getDwarfVersion() >= 5 2618 ? Asm->getObjFileLowering().getDwarfLoclistsSection() 2619 : Asm->getObjFileLowering().getDwarfLocSection()); 2620 } 2621 2622 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section. 2623 void DwarfDebug::emitDebugLocDWO() { 2624 if (getDwarfVersion() >= 5) { 2625 emitDebugLocImpl( 2626 Asm->getObjFileLowering().getDwarfLoclistsDWOSection()); 2627 2628 return; 2629 } 2630 2631 for (const auto &List : DebugLocs.getLists()) { 2632 Asm->OutStreamer->SwitchSection( 2633 Asm->getObjFileLowering().getDwarfLocDWOSection()); 2634 Asm->OutStreamer->emitLabel(List.Label); 2635 2636 for (const auto &Entry : DebugLocs.getEntries(List)) { 2637 // GDB only supports startx_length in pre-standard split-DWARF. 2638 // (in v5 standard loclists, it currently* /only/ supports base_address + 2639 // offset_pair, so the implementations can't really share much since they 2640 // need to use different representations) 2641 // * as of October 2018, at least 2642 // 2643 // In v5 (see emitLocList), this uses SectionLabels to reuse existing 2644 // addresses in the address pool to minimize object size/relocations. 2645 Asm->emitInt8(dwarf::DW_LLE_startx_length); 2646 unsigned idx = AddrPool.getIndex(Entry.Begin); 2647 Asm->emitULEB128(idx); 2648 // Also the pre-standard encoding is slightly different, emitting this as 2649 // an address-length entry here, but its a ULEB128 in DWARFv5 loclists. 2650 Asm->emitLabelDifference(Entry.End, Entry.Begin, 4); 2651 emitDebugLocEntryLocation(Entry, List.CU); 2652 } 2653 Asm->emitInt8(dwarf::DW_LLE_end_of_list); 2654 } 2655 } 2656 2657 struct ArangeSpan { 2658 const MCSymbol *Start, *End; 2659 }; 2660 2661 // Emit a debug aranges section, containing a CU lookup for any 2662 // address we can tie back to a CU. 2663 void DwarfDebug::emitDebugARanges() { 2664 // Provides a unique id per text section. 2665 MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap; 2666 2667 // Filter labels by section. 2668 for (const SymbolCU &SCU : ArangeLabels) { 2669 if (SCU.Sym->isInSection()) { 2670 // Make a note of this symbol and it's section. 2671 MCSection *Section = &SCU.Sym->getSection(); 2672 if (!Section->getKind().isMetadata()) 2673 SectionMap[Section].push_back(SCU); 2674 } else { 2675 // Some symbols (e.g. common/bss on mach-o) can have no section but still 2676 // appear in the output. This sucks as we rely on sections to build 2677 // arange spans. We can do it without, but it's icky. 2678 SectionMap[nullptr].push_back(SCU); 2679 } 2680 } 2681 2682 DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans; 2683 2684 for (auto &I : SectionMap) { 2685 MCSection *Section = I.first; 2686 SmallVector<SymbolCU, 8> &List = I.second; 2687 if (List.size() < 1) 2688 continue; 2689 2690 // If we have no section (e.g. common), just write out 2691 // individual spans for each symbol. 2692 if (!Section) { 2693 for (const SymbolCU &Cur : List) { 2694 ArangeSpan Span; 2695 Span.Start = Cur.Sym; 2696 Span.End = nullptr; 2697 assert(Cur.CU); 2698 Spans[Cur.CU].push_back(Span); 2699 } 2700 continue; 2701 } 2702 2703 // Sort the symbols by offset within the section. 2704 llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) { 2705 unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0; 2706 unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0; 2707 2708 // Symbols with no order assigned should be placed at the end. 2709 // (e.g. section end labels) 2710 if (IA == 0) 2711 return false; 2712 if (IB == 0) 2713 return true; 2714 return IA < IB; 2715 }); 2716 2717 // Insert a final terminator. 2718 List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section))); 2719 2720 // Build spans between each label. 2721 const MCSymbol *StartSym = List[0].Sym; 2722 for (size_t n = 1, e = List.size(); n < e; n++) { 2723 const SymbolCU &Prev = List[n - 1]; 2724 const SymbolCU &Cur = List[n]; 2725 2726 // Try and build the longest span we can within the same CU. 2727 if (Cur.CU != Prev.CU) { 2728 ArangeSpan Span; 2729 Span.Start = StartSym; 2730 Span.End = Cur.Sym; 2731 assert(Prev.CU); 2732 Spans[Prev.CU].push_back(Span); 2733 StartSym = Cur.Sym; 2734 } 2735 } 2736 } 2737 2738 // Start the dwarf aranges section. 2739 Asm->OutStreamer->SwitchSection( 2740 Asm->getObjFileLowering().getDwarfARangesSection()); 2741 2742 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2743 2744 // Build a list of CUs used. 2745 std::vector<DwarfCompileUnit *> CUs; 2746 for (const auto &it : Spans) { 2747 DwarfCompileUnit *CU = it.first; 2748 CUs.push_back(CU); 2749 } 2750 2751 // Sort the CU list (again, to ensure consistent output order). 2752 llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) { 2753 return A->getUniqueID() < B->getUniqueID(); 2754 }); 2755 2756 // Emit an arange table for each CU we used. 2757 for (DwarfCompileUnit *CU : CUs) { 2758 std::vector<ArangeSpan> &List = Spans[CU]; 2759 2760 // Describe the skeleton CU's offset and length, not the dwo file's. 2761 if (auto *Skel = CU->getSkeleton()) 2762 CU = Skel; 2763 2764 // Emit size of content not including length itself. 2765 unsigned ContentSize = 2766 sizeof(int16_t) + // DWARF ARange version number 2767 sizeof(int32_t) + // Offset of CU in the .debug_info section 2768 sizeof(int8_t) + // Pointer Size (in bytes) 2769 sizeof(int8_t); // Segment Size (in bytes) 2770 2771 unsigned TupleSize = PtrSize * 2; 2772 2773 // 7.20 in the Dwarf specs requires the table to be aligned to a tuple. 2774 unsigned Padding = 2775 offsetToAlignment(sizeof(int32_t) + ContentSize, Align(TupleSize)); 2776 2777 ContentSize += Padding; 2778 ContentSize += (List.size() + 1) * TupleSize; 2779 2780 // For each compile unit, write the list of spans it covers. 2781 Asm->OutStreamer->AddComment("Length of ARange Set"); 2782 Asm->emitInt32(ContentSize); 2783 Asm->OutStreamer->AddComment("DWARF Arange version number"); 2784 Asm->emitInt16(dwarf::DW_ARANGES_VERSION); 2785 Asm->OutStreamer->AddComment("Offset Into Debug Info Section"); 2786 emitSectionReference(*CU); 2787 Asm->OutStreamer->AddComment("Address Size (in bytes)"); 2788 Asm->emitInt8(PtrSize); 2789 Asm->OutStreamer->AddComment("Segment Size (in bytes)"); 2790 Asm->emitInt8(0); 2791 2792 Asm->OutStreamer->emitFill(Padding, 0xff); 2793 2794 for (const ArangeSpan &Span : List) { 2795 Asm->emitLabelReference(Span.Start, PtrSize); 2796 2797 // Calculate the size as being from the span start to it's end. 2798 if (Span.End) { 2799 Asm->emitLabelDifference(Span.End, Span.Start, PtrSize); 2800 } else { 2801 // For symbols without an end marker (e.g. common), we 2802 // write a single arange entry containing just that one symbol. 2803 uint64_t Size = SymSize[Span.Start]; 2804 if (Size == 0) 2805 Size = 1; 2806 2807 Asm->OutStreamer->emitIntValue(Size, PtrSize); 2808 } 2809 } 2810 2811 Asm->OutStreamer->AddComment("ARange terminator"); 2812 Asm->OutStreamer->emitIntValue(0, PtrSize); 2813 Asm->OutStreamer->emitIntValue(0, PtrSize); 2814 } 2815 } 2816 2817 /// Emit a single range list. We handle both DWARF v5 and earlier. 2818 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm, 2819 const RangeSpanList &List) { 2820 emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU, 2821 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair, 2822 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list, 2823 llvm::dwarf::RangeListEncodingString, 2824 List.CU->getCUNode()->getRangesBaseAddress() || 2825 DD.getDwarfVersion() >= 5, 2826 [](auto) {}); 2827 } 2828 2829 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) { 2830 if (Holder.getRangeLists().empty()) 2831 return; 2832 2833 assert(useRangesSection()); 2834 assert(!CUMap.empty()); 2835 assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) { 2836 return !Pair.second->getCUNode()->isDebugDirectivesOnly(); 2837 })); 2838 2839 Asm->OutStreamer->SwitchSection(Section); 2840 2841 MCSymbol *TableEnd = nullptr; 2842 if (getDwarfVersion() >= 5) 2843 TableEnd = emitRnglistsTableHeader(Asm, Holder); 2844 2845 for (const RangeSpanList &List : Holder.getRangeLists()) 2846 emitRangeList(*this, Asm, List); 2847 2848 if (TableEnd) 2849 Asm->OutStreamer->emitLabel(TableEnd); 2850 } 2851 2852 /// Emit address ranges into the .debug_ranges section or into the DWARF v5 2853 /// .debug_rnglists section. 2854 void DwarfDebug::emitDebugRanges() { 2855 const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2856 2857 emitDebugRangesImpl(Holder, 2858 getDwarfVersion() >= 5 2859 ? Asm->getObjFileLowering().getDwarfRnglistsSection() 2860 : Asm->getObjFileLowering().getDwarfRangesSection()); 2861 } 2862 2863 void DwarfDebug::emitDebugRangesDWO() { 2864 emitDebugRangesImpl(InfoHolder, 2865 Asm->getObjFileLowering().getDwarfRnglistsDWOSection()); 2866 } 2867 2868 /// Emit the header of a DWARF 5 macro section. 2869 static void emitMacroHeader(AsmPrinter *Asm, const DwarfDebug &DD, 2870 const DwarfCompileUnit &CU) { 2871 enum HeaderFlagMask { 2872 #define HANDLE_MACRO_FLAG(ID, NAME) MACRO_FLAG_##NAME = ID, 2873 #include "llvm/BinaryFormat/Dwarf.def" 2874 }; 2875 uint8_t Flags = 0; 2876 Asm->OutStreamer->AddComment("Macro information version"); 2877 Asm->emitInt16(5); 2878 // We are setting Offset and line offset flags unconditionally here, 2879 // since we're only supporting DWARF32 and line offset should be mostly 2880 // present. 2881 // FIXME: Add support for DWARF64. 2882 Flags |= MACRO_FLAG_DEBUG_LINE_OFFSET; 2883 Asm->OutStreamer->AddComment("Flags: 32 bit, debug_line_offset present"); 2884 Asm->emitInt8(Flags); 2885 Asm->OutStreamer->AddComment("debug_line_offset"); 2886 Asm->OutStreamer->emitSymbolValue(CU.getLineTableStartSym(), /*Size=*/4); 2887 } 2888 2889 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) { 2890 for (auto *MN : Nodes) { 2891 if (auto *M = dyn_cast<DIMacro>(MN)) 2892 emitMacro(*M); 2893 else if (auto *F = dyn_cast<DIMacroFile>(MN)) 2894 emitMacroFile(*F, U); 2895 else 2896 llvm_unreachable("Unexpected DI type!"); 2897 } 2898 } 2899 2900 void DwarfDebug::emitMacro(DIMacro &M) { 2901 StringRef Name = M.getName(); 2902 StringRef Value = M.getValue(); 2903 bool UseMacro = getDwarfVersion() >= 5; 2904 2905 if (UseMacro) { 2906 unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define 2907 ? dwarf::DW_MACRO_define_strp 2908 : dwarf::DW_MACRO_undef_strp; 2909 Asm->OutStreamer->AddComment(dwarf::MacroString(Type)); 2910 Asm->emitULEB128(Type); 2911 Asm->OutStreamer->AddComment("Line Number"); 2912 Asm->emitULEB128(M.getLine()); 2913 Asm->OutStreamer->AddComment("Macro String"); 2914 if (!Value.empty()) 2915 Asm->OutStreamer->emitSymbolValue( 2916 this->InfoHolder.getStringPool() 2917 .getEntry(*Asm, (Name + " " + Value).str()) 2918 .getSymbol(), 2919 4); 2920 else 2921 // DW_MACRO_undef_strp doesn't have a value, so just emit the macro 2922 // string. 2923 Asm->OutStreamer->emitSymbolValue(this->InfoHolder.getStringPool() 2924 .getEntry(*Asm, (Name).str()) 2925 .getSymbol(), 2926 4); 2927 } else { 2928 Asm->OutStreamer->AddComment(dwarf::MacinfoString(M.getMacinfoType())); 2929 Asm->emitULEB128(M.getMacinfoType()); 2930 Asm->OutStreamer->AddComment("Line Number"); 2931 Asm->emitULEB128(M.getLine()); 2932 Asm->OutStreamer->AddComment("Macro String"); 2933 Asm->OutStreamer->emitBytes(Name); 2934 if (!Value.empty()) { 2935 // There should be one space between macro name and macro value. 2936 Asm->emitInt8(' '); 2937 Asm->OutStreamer->AddComment("Macro Value="); 2938 Asm->OutStreamer->emitBytes(Value); 2939 } 2940 Asm->emitInt8('\0'); 2941 } 2942 } 2943 2944 void DwarfDebug::emitMacroFileImpl( 2945 DIMacroFile &F, DwarfCompileUnit &U, unsigned StartFile, unsigned EndFile, 2946 StringRef (*MacroFormToString)(unsigned Form)) { 2947 2948 Asm->OutStreamer->AddComment(MacroFormToString(StartFile)); 2949 Asm->emitULEB128(StartFile); 2950 Asm->OutStreamer->AddComment("Line Number"); 2951 Asm->emitULEB128(F.getLine()); 2952 Asm->OutStreamer->AddComment("File Number"); 2953 Asm->emitULEB128(U.getOrCreateSourceID(F.getFile())); 2954 handleMacroNodes(F.getElements(), U); 2955 Asm->OutStreamer->AddComment(MacroFormToString(EndFile)); 2956 Asm->emitULEB128(EndFile); 2957 } 2958 2959 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) { 2960 // DWARFv5 macro and DWARFv4 macinfo share some common encodings, 2961 // so for readibility/uniformity, We are explicitly emitting those. 2962 assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file); 2963 bool UseMacro = getDwarfVersion() >= 5; 2964 if (UseMacro) 2965 emitMacroFileImpl(F, U, dwarf::DW_MACRO_start_file, 2966 dwarf::DW_MACRO_end_file, dwarf::MacroString); 2967 else 2968 emitMacroFileImpl(F, U, dwarf::DW_MACINFO_start_file, 2969 dwarf::DW_MACINFO_end_file, dwarf::MacinfoString); 2970 } 2971 2972 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) { 2973 for (const auto &P : CUMap) { 2974 auto &TheCU = *P.second; 2975 auto *SkCU = TheCU.getSkeleton(); 2976 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 2977 auto *CUNode = cast<DICompileUnit>(P.first); 2978 DIMacroNodeArray Macros = CUNode->getMacros(); 2979 if (Macros.empty()) 2980 continue; 2981 Asm->OutStreamer->SwitchSection(Section); 2982 Asm->OutStreamer->emitLabel(U.getMacroLabelBegin()); 2983 if (getDwarfVersion() >= 5) 2984 emitMacroHeader(Asm, *this, U); 2985 handleMacroNodes(Macros, U); 2986 Asm->OutStreamer->AddComment("End Of Macro List Mark"); 2987 Asm->emitInt8(0); 2988 } 2989 } 2990 2991 /// Emit macros into a debug macinfo/macro section. 2992 void DwarfDebug::emitDebugMacinfo() { 2993 auto &ObjLower = Asm->getObjFileLowering(); 2994 emitDebugMacinfoImpl(getDwarfVersion() >= 5 2995 ? ObjLower.getDwarfMacroSection() 2996 : ObjLower.getDwarfMacinfoSection()); 2997 } 2998 2999 void DwarfDebug::emitDebugMacinfoDWO() { 3000 // FIXME: Add support for macro.dwo section. 3001 if (getDwarfVersion() >= 5) 3002 return; 3003 emitDebugMacinfoImpl(Asm->getObjFileLowering().getDwarfMacinfoDWOSection()); 3004 } 3005 3006 // DWARF5 Experimental Separate Dwarf emitters. 3007 3008 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die, 3009 std::unique_ptr<DwarfCompileUnit> NewU) { 3010 3011 if (!CompilationDir.empty()) 3012 NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 3013 addGnuPubAttributes(*NewU, Die); 3014 3015 SkeletonHolder.addUnit(std::move(NewU)); 3016 } 3017 3018 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) { 3019 3020 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 3021 CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder, 3022 UnitKind::Skeleton); 3023 DwarfCompileUnit &NewCU = *OwnedUnit; 3024 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 3025 3026 NewCU.initStmtList(); 3027 3028 if (useSegmentedStringOffsetsTable()) 3029 NewCU.addStringOffsetsStart(); 3030 3031 initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit)); 3032 3033 return NewCU; 3034 } 3035 3036 // Emit the .debug_info.dwo section for separated dwarf. This contains the 3037 // compile units that would normally be in debug_info. 3038 void DwarfDebug::emitDebugInfoDWO() { 3039 assert(useSplitDwarf() && "No split dwarf debug info?"); 3040 // Don't emit relocations into the dwo file. 3041 InfoHolder.emitUnits(/* UseOffsets */ true); 3042 } 3043 3044 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the 3045 // abbreviations for the .debug_info.dwo section. 3046 void DwarfDebug::emitDebugAbbrevDWO() { 3047 assert(useSplitDwarf() && "No split dwarf?"); 3048 InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection()); 3049 } 3050 3051 void DwarfDebug::emitDebugLineDWO() { 3052 assert(useSplitDwarf() && "No split dwarf?"); 3053 SplitTypeUnitFileTable.Emit( 3054 *Asm->OutStreamer, MCDwarfLineTableParams(), 3055 Asm->getObjFileLowering().getDwarfLineDWOSection()); 3056 } 3057 3058 void DwarfDebug::emitStringOffsetsTableHeaderDWO() { 3059 assert(useSplitDwarf() && "No split dwarf?"); 3060 InfoHolder.getStringPool().emitStringOffsetsTableHeader( 3061 *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(), 3062 InfoHolder.getStringOffsetsStartSym()); 3063 } 3064 3065 // Emit the .debug_str.dwo section for separated dwarf. This contains the 3066 // string section and is identical in format to traditional .debug_str 3067 // sections. 3068 void DwarfDebug::emitDebugStrDWO() { 3069 if (useSegmentedStringOffsetsTable()) 3070 emitStringOffsetsTableHeaderDWO(); 3071 assert(useSplitDwarf() && "No split dwarf?"); 3072 MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection(); 3073 InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(), 3074 OffSec, /* UseRelativeOffsets = */ false); 3075 } 3076 3077 // Emit address pool. 3078 void DwarfDebug::emitDebugAddr() { 3079 AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection()); 3080 } 3081 3082 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) { 3083 if (!useSplitDwarf()) 3084 return nullptr; 3085 const DICompileUnit *DIUnit = CU.getCUNode(); 3086 SplitTypeUnitFileTable.maybeSetRootFile( 3087 DIUnit->getDirectory(), DIUnit->getFilename(), 3088 CU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource()); 3089 return &SplitTypeUnitFileTable; 3090 } 3091 3092 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) { 3093 MD5 Hash; 3094 Hash.update(Identifier); 3095 // ... take the least significant 8 bytes and return those. Our MD5 3096 // implementation always returns its results in little endian, so we actually 3097 // need the "high" word. 3098 MD5::MD5Result Result; 3099 Hash.final(Result); 3100 return Result.high(); 3101 } 3102 3103 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU, 3104 StringRef Identifier, DIE &RefDie, 3105 const DICompositeType *CTy) { 3106 // Fast path if we're building some type units and one has already used the 3107 // address pool we know we're going to throw away all this work anyway, so 3108 // don't bother building dependent types. 3109 if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed()) 3110 return; 3111 3112 auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0)); 3113 if (!Ins.second) { 3114 CU.addDIETypeSignature(RefDie, Ins.first->second); 3115 return; 3116 } 3117 3118 bool TopLevelType = TypeUnitsUnderConstruction.empty(); 3119 AddrPool.resetUsedFlag(); 3120 3121 auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder, 3122 getDwoLineTable(CU)); 3123 DwarfTypeUnit &NewTU = *OwnedUnit; 3124 DIE &UnitDie = NewTU.getUnitDie(); 3125 TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy); 3126 3127 NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 3128 CU.getLanguage()); 3129 3130 uint64_t Signature = makeTypeSignature(Identifier); 3131 NewTU.setTypeSignature(Signature); 3132 Ins.first->second = Signature; 3133 3134 if (useSplitDwarf()) { 3135 MCSection *Section = 3136 getDwarfVersion() <= 4 3137 ? Asm->getObjFileLowering().getDwarfTypesDWOSection() 3138 : Asm->getObjFileLowering().getDwarfInfoDWOSection(); 3139 NewTU.setSection(Section); 3140 } else { 3141 MCSection *Section = 3142 getDwarfVersion() <= 4 3143 ? Asm->getObjFileLowering().getDwarfTypesSection(Signature) 3144 : Asm->getObjFileLowering().getDwarfInfoSection(Signature); 3145 NewTU.setSection(Section); 3146 // Non-split type units reuse the compile unit's line table. 3147 CU.applyStmtList(UnitDie); 3148 } 3149 3150 // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type 3151 // units. 3152 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 3153 NewTU.addStringOffsetsStart(); 3154 3155 NewTU.setType(NewTU.createTypeDIE(CTy)); 3156 3157 if (TopLevelType) { 3158 auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction); 3159 TypeUnitsUnderConstruction.clear(); 3160 3161 // Types referencing entries in the address table cannot be placed in type 3162 // units. 3163 if (AddrPool.hasBeenUsed()) { 3164 3165 // Remove all the types built while building this type. 3166 // This is pessimistic as some of these types might not be dependent on 3167 // the type that used an address. 3168 for (const auto &TU : TypeUnitsToAdd) 3169 TypeSignatures.erase(TU.second); 3170 3171 // Construct this type in the CU directly. 3172 // This is inefficient because all the dependent types will be rebuilt 3173 // from scratch, including building them in type units, discovering that 3174 // they depend on addresses, throwing them out and rebuilding them. 3175 CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy)); 3176 return; 3177 } 3178 3179 // If the type wasn't dependent on fission addresses, finish adding the type 3180 // and all its dependent types. 3181 for (auto &TU : TypeUnitsToAdd) { 3182 InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get()); 3183 InfoHolder.emitUnit(TU.first.get(), useSplitDwarf()); 3184 } 3185 } 3186 CU.addDIETypeSignature(RefDie, Signature); 3187 } 3188 3189 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD) 3190 : DD(DD), 3191 TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)) { 3192 DD->TypeUnitsUnderConstruction.clear(); 3193 assert(TypeUnitsUnderConstruction.empty() || !DD->AddrPool.hasBeenUsed()); 3194 } 3195 3196 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() { 3197 DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction); 3198 DD->AddrPool.resetUsedFlag(); 3199 } 3200 3201 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() { 3202 return NonTypeUnitContext(this); 3203 } 3204 3205 // Add the Name along with its companion DIE to the appropriate accelerator 3206 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for 3207 // AccelTableKind::Apple, we use the table we got as an argument). If 3208 // accelerator tables are disabled, this function does nothing. 3209 template <typename DataT> 3210 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU, 3211 AccelTable<DataT> &AppleAccel, StringRef Name, 3212 const DIE &Die) { 3213 if (getAccelTableKind() == AccelTableKind::None) 3214 return; 3215 3216 if (getAccelTableKind() != AccelTableKind::Apple && 3217 CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default) 3218 return; 3219 3220 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 3221 DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name); 3222 3223 switch (getAccelTableKind()) { 3224 case AccelTableKind::Apple: 3225 AppleAccel.addName(Ref, Die); 3226 break; 3227 case AccelTableKind::Dwarf: 3228 AccelDebugNames.addName(Ref, Die); 3229 break; 3230 case AccelTableKind::Default: 3231 llvm_unreachable("Default should have already been resolved."); 3232 case AccelTableKind::None: 3233 llvm_unreachable("None handled above"); 3234 } 3235 } 3236 3237 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name, 3238 const DIE &Die) { 3239 addAccelNameImpl(CU, AccelNames, Name, Die); 3240 } 3241 3242 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name, 3243 const DIE &Die) { 3244 // ObjC names go only into the Apple accelerator tables. 3245 if (getAccelTableKind() == AccelTableKind::Apple) 3246 addAccelNameImpl(CU, AccelObjC, Name, Die); 3247 } 3248 3249 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name, 3250 const DIE &Die) { 3251 addAccelNameImpl(CU, AccelNamespace, Name, Die); 3252 } 3253 3254 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name, 3255 const DIE &Die, char Flags) { 3256 addAccelNameImpl(CU, AccelTypes, Name, Die); 3257 } 3258 3259 uint16_t DwarfDebug::getDwarfVersion() const { 3260 return Asm->OutStreamer->getContext().getDwarfVersion(); 3261 } 3262 3263 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) { 3264 return SectionLabels.find(S)->second; 3265 } 3266 void DwarfDebug::insertSectionLabel(const MCSymbol *S) { 3267 SectionLabels.insert(std::make_pair(&S->getSection(), S)); 3268 } 3269