1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing dwarf debug info into asm files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "DwarfDebug.h"
14 #include "ByteStreamer.h"
15 #include "DIEHash.h"
16 #include "DebugLocEntry.h"
17 #include "DebugLocStream.h"
18 #include "DwarfCompileUnit.h"
19 #include "DwarfExpression.h"
20 #include "DwarfFile.h"
21 #include "DwarfUnit.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/DenseSet.h"
25 #include "llvm/ADT/MapVector.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/BinaryFormat/Dwarf.h"
33 #include "llvm/CodeGen/AccelTable.h"
34 #include "llvm/CodeGen/AsmPrinter.h"
35 #include "llvm/CodeGen/DIE.h"
36 #include "llvm/CodeGen/LexicalScopes.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineInstr.h"
40 #include "llvm/CodeGen/MachineModuleInfo.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/TargetInstrInfo.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/DebugInfo/DWARF/DWARFExpression.h"
47 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GlobalVariable.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/MC/MCAsmInfo.h"
55 #include "llvm/MC/MCContext.h"
56 #include "llvm/MC/MCDwarf.h"
57 #include "llvm/MC/MCSection.h"
58 #include "llvm/MC/MCStreamer.h"
59 #include "llvm/MC/MCSymbol.h"
60 #include "llvm/MC/MCTargetOptions.h"
61 #include "llvm/MC/MachineLocation.h"
62 #include "llvm/MC/SectionKind.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/MD5.h"
69 #include "llvm/Support/MathExtras.h"
70 #include "llvm/Support/Timer.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include "llvm/Target/TargetLoweringObjectFile.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include "llvm/Target/TargetOptions.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstddef>
78 #include <cstdint>
79 #include <iterator>
80 #include <string>
81 #include <utility>
82 #include <vector>
83 
84 using namespace llvm;
85 
86 #define DEBUG_TYPE "dwarfdebug"
87 
88 STATISTIC(NumCSParams, "Number of dbg call site params created");
89 
90 static cl::opt<bool>
91 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden,
92                          cl::desc("Disable debug info printing"));
93 
94 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier(
95     "use-dwarf-ranges-base-address-specifier", cl::Hidden,
96     cl::desc("Use base address specifiers in debug_ranges"), cl::init(false));
97 
98 static cl::opt<bool> GenerateARangeSection("generate-arange-section",
99                                            cl::Hidden,
100                                            cl::desc("Generate dwarf aranges"),
101                                            cl::init(false));
102 
103 static cl::opt<bool>
104     GenerateDwarfTypeUnits("generate-type-units", cl::Hidden,
105                            cl::desc("Generate DWARF4 type units."),
106                            cl::init(false));
107 
108 static cl::opt<bool> SplitDwarfCrossCuReferences(
109     "split-dwarf-cross-cu-references", cl::Hidden,
110     cl::desc("Enable cross-cu references in DWO files"), cl::init(false));
111 
112 enum DefaultOnOff { Default, Enable, Disable };
113 
114 static cl::opt<DefaultOnOff> UnknownLocations(
115     "use-unknown-locations", cl::Hidden,
116     cl::desc("Make an absence of debug location information explicit."),
117     cl::values(clEnumVal(Default, "At top of block or after label"),
118                clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")),
119     cl::init(Default));
120 
121 static cl::opt<AccelTableKind> AccelTables(
122     "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."),
123     cl::values(clEnumValN(AccelTableKind::Default, "Default",
124                           "Default for platform"),
125                clEnumValN(AccelTableKind::None, "Disable", "Disabled."),
126                clEnumValN(AccelTableKind::Apple, "Apple", "Apple"),
127                clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")),
128     cl::init(AccelTableKind::Default));
129 
130 static cl::opt<DefaultOnOff>
131 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden,
132                  cl::desc("Use inlined strings rather than string section."),
133                  cl::values(clEnumVal(Default, "Default for platform"),
134                             clEnumVal(Enable, "Enabled"),
135                             clEnumVal(Disable, "Disabled")),
136                  cl::init(Default));
137 
138 static cl::opt<bool>
139     NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden,
140                          cl::desc("Disable emission .debug_ranges section."),
141                          cl::init(false));
142 
143 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences(
144     "dwarf-sections-as-references", cl::Hidden,
145     cl::desc("Use sections+offset as references rather than labels."),
146     cl::values(clEnumVal(Default, "Default for platform"),
147                clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
148     cl::init(Default));
149 
150 enum LinkageNameOption {
151   DefaultLinkageNames,
152   AllLinkageNames,
153   AbstractLinkageNames
154 };
155 
156 static cl::opt<LinkageNameOption>
157     DwarfLinkageNames("dwarf-linkage-names", cl::Hidden,
158                       cl::desc("Which DWARF linkage-name attributes to emit."),
159                       cl::values(clEnumValN(DefaultLinkageNames, "Default",
160                                             "Default for platform"),
161                                  clEnumValN(AllLinkageNames, "All", "All"),
162                                  clEnumValN(AbstractLinkageNames, "Abstract",
163                                             "Abstract subprograms")),
164                       cl::init(DefaultLinkageNames));
165 
166 static const char *const DWARFGroupName = "dwarf";
167 static const char *const DWARFGroupDescription = "DWARF Emission";
168 static const char *const DbgTimerName = "writer";
169 static const char *const DbgTimerDescription = "DWARF Debug Writer";
170 static constexpr unsigned ULEB128PadSize = 4;
171 
172 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) {
173   getActiveStreamer().EmitInt8(
174       Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op)
175                   : dwarf::OperationEncodingString(Op));
176 }
177 
178 void DebugLocDwarfExpression::emitSigned(int64_t Value) {
179   getActiveStreamer().EmitSLEB128(Value, Twine(Value));
180 }
181 
182 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) {
183   getActiveStreamer().EmitULEB128(Value, Twine(Value));
184 }
185 
186 void DebugLocDwarfExpression::emitData1(uint8_t Value) {
187   getActiveStreamer().EmitInt8(Value, Twine(Value));
188 }
189 
190 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) {
191   assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit");
192   getActiveStreamer().EmitULEB128(Idx, Twine(Idx), ULEB128PadSize);
193 }
194 
195 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI,
196                                               unsigned MachineReg) {
197   // This information is not available while emitting .debug_loc entries.
198   return false;
199 }
200 
201 void DebugLocDwarfExpression::enableTemporaryBuffer() {
202   assert(!IsBuffering && "Already buffering?");
203   if (!TmpBuf)
204     TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments);
205   IsBuffering = true;
206 }
207 
208 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; }
209 
210 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() {
211   return TmpBuf ? TmpBuf->Bytes.size() : 0;
212 }
213 
214 void DebugLocDwarfExpression::commitTemporaryBuffer() {
215   if (!TmpBuf)
216     return;
217   for (auto Byte : enumerate(TmpBuf->Bytes)) {
218     const char *Comment = (Byte.index() < TmpBuf->Comments.size())
219                               ? TmpBuf->Comments[Byte.index()].c_str()
220                               : "";
221     OutBS.EmitInt8(Byte.value(), Comment);
222   }
223   TmpBuf->Bytes.clear();
224   TmpBuf->Comments.clear();
225 }
226 
227 const DIType *DbgVariable::getType() const {
228   return getVariable()->getType();
229 }
230 
231 /// Get .debug_loc entry for the instruction range starting at MI.
232 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) {
233   const DIExpression *Expr = MI->getDebugExpression();
234   assert(MI->getNumOperands() == 4);
235   if (MI->getOperand(0).isReg()) {
236     auto RegOp = MI->getOperand(0);
237     auto Op1 = MI->getOperand(1);
238     // If the second operand is an immediate, this is a
239     // register-indirect address.
240     assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset");
241     MachineLocation MLoc(RegOp.getReg(), Op1.isImm());
242     return DbgValueLoc(Expr, MLoc);
243   }
244   if (MI->getOperand(0).isImm())
245     return DbgValueLoc(Expr, MI->getOperand(0).getImm());
246   if (MI->getOperand(0).isFPImm())
247     return DbgValueLoc(Expr, MI->getOperand(0).getFPImm());
248   if (MI->getOperand(0).isCImm())
249     return DbgValueLoc(Expr, MI->getOperand(0).getCImm());
250 
251   llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!");
252 }
253 
254 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) {
255   assert(FrameIndexExprs.empty() && "Already initialized?");
256   assert(!ValueLoc.get() && "Already initialized?");
257 
258   assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable");
259   assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() &&
260          "Wrong inlined-at");
261 
262   ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue));
263   if (auto *E = DbgValue->getDebugExpression())
264     if (E->getNumElements())
265       FrameIndexExprs.push_back({0, E});
266 }
267 
268 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const {
269   if (FrameIndexExprs.size() == 1)
270     return FrameIndexExprs;
271 
272   assert(llvm::all_of(FrameIndexExprs,
273                       [](const FrameIndexExpr &A) {
274                         return A.Expr->isFragment();
275                       }) &&
276          "multiple FI expressions without DW_OP_LLVM_fragment");
277   llvm::sort(FrameIndexExprs,
278              [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool {
279                return A.Expr->getFragmentInfo()->OffsetInBits <
280                       B.Expr->getFragmentInfo()->OffsetInBits;
281              });
282 
283   return FrameIndexExprs;
284 }
285 
286 void DbgVariable::addMMIEntry(const DbgVariable &V) {
287   assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry");
288   assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry");
289   assert(V.getVariable() == getVariable() && "conflicting variable");
290   assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location");
291 
292   assert(!FrameIndexExprs.empty() && "Expected an MMI entry");
293   assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry");
294 
295   // FIXME: This logic should not be necessary anymore, as we now have proper
296   // deduplication. However, without it, we currently run into the assertion
297   // below, which means that we are likely dealing with broken input, i.e. two
298   // non-fragment entries for the same variable at different frame indices.
299   if (FrameIndexExprs.size()) {
300     auto *Expr = FrameIndexExprs.back().Expr;
301     if (!Expr || !Expr->isFragment())
302       return;
303   }
304 
305   for (const auto &FIE : V.FrameIndexExprs)
306     // Ignore duplicate entries.
307     if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) {
308           return FIE.FI == Other.FI && FIE.Expr == Other.Expr;
309         }))
310       FrameIndexExprs.push_back(FIE);
311 
312   assert((FrameIndexExprs.size() == 1 ||
313           llvm::all_of(FrameIndexExprs,
314                        [](FrameIndexExpr &FIE) {
315                          return FIE.Expr && FIE.Expr->isFragment();
316                        })) &&
317          "conflicting locations for variable");
318 }
319 
320 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion,
321                                             bool GenerateTypeUnits,
322                                             DebuggerKind Tuning,
323                                             const Triple &TT) {
324   // Honor an explicit request.
325   if (AccelTables != AccelTableKind::Default)
326     return AccelTables;
327 
328   // Accelerator tables with type units are currently not supported.
329   if (GenerateTypeUnits)
330     return AccelTableKind::None;
331 
332   // Accelerator tables get emitted if targetting DWARF v5 or LLDB.  DWARF v5
333   // always implies debug_names. For lower standard versions we use apple
334   // accelerator tables on apple platforms and debug_names elsewhere.
335   if (DwarfVersion >= 5)
336     return AccelTableKind::Dwarf;
337   if (Tuning == DebuggerKind::LLDB)
338     return TT.isOSBinFormatMachO() ? AccelTableKind::Apple
339                                    : AccelTableKind::Dwarf;
340   return AccelTableKind::None;
341 }
342 
343 DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M)
344     : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()),
345       InfoHolder(A, "info_string", DIEValueAllocator),
346       SkeletonHolder(A, "skel_string", DIEValueAllocator),
347       IsDarwin(A->TM.getTargetTriple().isOSDarwin()) {
348   const Triple &TT = Asm->TM.getTargetTriple();
349 
350   // Make sure we know our "debugger tuning".  The target option takes
351   // precedence; fall back to triple-based defaults.
352   if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default)
353     DebuggerTuning = Asm->TM.Options.DebuggerTuning;
354   else if (IsDarwin)
355     DebuggerTuning = DebuggerKind::LLDB;
356   else if (TT.isPS4CPU())
357     DebuggerTuning = DebuggerKind::SCE;
358   else
359     DebuggerTuning = DebuggerKind::GDB;
360 
361   if (DwarfInlinedStrings == Default)
362     UseInlineStrings = TT.isNVPTX();
363   else
364     UseInlineStrings = DwarfInlinedStrings == Enable;
365 
366   UseLocSection = !TT.isNVPTX();
367 
368   HasAppleExtensionAttributes = tuneForLLDB();
369 
370   // Handle split DWARF.
371   HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty();
372 
373   // SCE defaults to linkage names only for abstract subprograms.
374   if (DwarfLinkageNames == DefaultLinkageNames)
375     UseAllLinkageNames = !tuneForSCE();
376   else
377     UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames;
378 
379   unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion;
380   unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber
381                                     : MMI->getModule()->getDwarfVersion();
382   // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2.
383   DwarfVersion =
384       TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION);
385 
386   UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX();
387 
388   // Use sections as references. Force for NVPTX.
389   if (DwarfSectionsAsReferences == Default)
390     UseSectionsAsReferences = TT.isNVPTX();
391   else
392     UseSectionsAsReferences = DwarfSectionsAsReferences == Enable;
393 
394   // Don't generate type units for unsupported object file formats.
395   GenerateTypeUnits =
396       A->TM.getTargetTriple().isOSBinFormatELF() && GenerateDwarfTypeUnits;
397 
398   TheAccelTableKind = computeAccelTableKind(
399       DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple());
400 
401   // Work around a GDB bug. GDB doesn't support the standard opcode;
402   // SCE doesn't support GNU's; LLDB prefers the standard opcode, which
403   // is defined as of DWARF 3.
404   // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented
405   // https://sourceware.org/bugzilla/show_bug.cgi?id=11616
406   UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3;
407 
408   // GDB does not fully support the DWARF 4 representation for bitfields.
409   UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB();
410 
411   // The DWARF v5 string offsets table has - possibly shared - contributions
412   // from each compile and type unit each preceded by a header. The string
413   // offsets table used by the pre-DWARF v5 split-DWARF implementation uses
414   // a monolithic string offsets table without any header.
415   UseSegmentedStringOffsetsTable = DwarfVersion >= 5;
416 
417   Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion);
418 }
419 
420 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h.
421 DwarfDebug::~DwarfDebug() = default;
422 
423 static bool isObjCClass(StringRef Name) {
424   return Name.startswith("+") || Name.startswith("-");
425 }
426 
427 static bool hasObjCCategory(StringRef Name) {
428   if (!isObjCClass(Name))
429     return false;
430 
431   return Name.find(") ") != StringRef::npos;
432 }
433 
434 static void getObjCClassCategory(StringRef In, StringRef &Class,
435                                  StringRef &Category) {
436   if (!hasObjCCategory(In)) {
437     Class = In.slice(In.find('[') + 1, In.find(' '));
438     Category = "";
439     return;
440   }
441 
442   Class = In.slice(In.find('[') + 1, In.find('('));
443   Category = In.slice(In.find('[') + 1, In.find(' '));
444 }
445 
446 static StringRef getObjCMethodName(StringRef In) {
447   return In.slice(In.find(' ') + 1, In.find(']'));
448 }
449 
450 // Add the various names to the Dwarf accelerator table names.
451 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU,
452                                     const DISubprogram *SP, DIE &Die) {
453   if (getAccelTableKind() != AccelTableKind::Apple &&
454       CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None)
455     return;
456 
457   if (!SP->isDefinition())
458     return;
459 
460   if (SP->getName() != "")
461     addAccelName(CU, SP->getName(), Die);
462 
463   // If the linkage name is different than the name, go ahead and output that as
464   // well into the name table. Only do that if we are going to actually emit
465   // that name.
466   if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() &&
467       (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP)))
468     addAccelName(CU, SP->getLinkageName(), Die);
469 
470   // If this is an Objective-C selector name add it to the ObjC accelerator
471   // too.
472   if (isObjCClass(SP->getName())) {
473     StringRef Class, Category;
474     getObjCClassCategory(SP->getName(), Class, Category);
475     addAccelObjC(CU, Class, Die);
476     if (Category != "")
477       addAccelObjC(CU, Category, Die);
478     // Also add the base method name to the name table.
479     addAccelName(CU, getObjCMethodName(SP->getName()), Die);
480   }
481 }
482 
483 /// Check whether we should create a DIE for the given Scope, return true
484 /// if we don't create a DIE (the corresponding DIE is null).
485 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) {
486   if (Scope->isAbstractScope())
487     return false;
488 
489   // We don't create a DIE if there is no Range.
490   const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges();
491   if (Ranges.empty())
492     return true;
493 
494   if (Ranges.size() > 1)
495     return false;
496 
497   // We don't create a DIE if we have a single Range and the end label
498   // is null.
499   return !getLabelAfterInsn(Ranges.front().second);
500 }
501 
502 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) {
503   F(CU);
504   if (auto *SkelCU = CU.getSkeleton())
505     if (CU.getCUNode()->getSplitDebugInlining())
506       F(*SkelCU);
507 }
508 
509 bool DwarfDebug::shareAcrossDWOCUs() const {
510   return SplitDwarfCrossCuReferences;
511 }
512 
513 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU,
514                                                      LexicalScope *Scope) {
515   assert(Scope && Scope->getScopeNode());
516   assert(Scope->isAbstractScope());
517   assert(!Scope->getInlinedAt());
518 
519   auto *SP = cast<DISubprogram>(Scope->getScopeNode());
520 
521   // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
522   // was inlined from another compile unit.
523   if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining())
524     // Avoid building the original CU if it won't be used
525     SrcCU.constructAbstractSubprogramScopeDIE(Scope);
526   else {
527     auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
528     if (auto *SkelCU = CU.getSkeleton()) {
529       (shareAcrossDWOCUs() ? CU : SrcCU)
530           .constructAbstractSubprogramScopeDIE(Scope);
531       if (CU.getCUNode()->getSplitDebugInlining())
532         SkelCU->constructAbstractSubprogramScopeDIE(Scope);
533     } else
534       CU.constructAbstractSubprogramScopeDIE(Scope);
535   }
536 }
537 
538 /// Try to interpret values loaded into registers that forward parameters
539 /// for \p CallMI. Store parameters with interpreted value into \p Params.
540 static void collectCallSiteParameters(const MachineInstr *CallMI,
541                                       ParamSet &Params) {
542   auto *MF = CallMI->getMF();
543   auto CalleesMap = MF->getCallSitesInfo();
544   auto CallFwdRegsInfo = CalleesMap.find(CallMI);
545 
546   // There is no information for the call instruction.
547   if (CallFwdRegsInfo == CalleesMap.end())
548     return;
549 
550   auto *MBB = CallMI->getParent();
551   const auto &TRI = MF->getSubtarget().getRegisterInfo();
552   const auto &TII = MF->getSubtarget().getInstrInfo();
553   const auto &TLI = MF->getSubtarget().getTargetLowering();
554 
555   // Skip the call instruction.
556   auto I = std::next(CallMI->getReverseIterator());
557 
558   DenseSet<unsigned> ForwardedRegWorklist;
559   // Add all the forwarding registers into the ForwardedRegWorklist.
560   for (auto ArgReg : CallFwdRegsInfo->second) {
561     bool InsertedReg = ForwardedRegWorklist.insert(ArgReg.Reg).second;
562     assert(InsertedReg && "Single register used to forward two arguments?");
563     (void)InsertedReg;
564   }
565 
566   // We erase, from the ForwardedRegWorklist, those forwarding registers for
567   // which we successfully describe a loaded value (by using
568   // the describeLoadedValue()). For those remaining arguments in the working
569   // list, for which we do not describe a loaded value by
570   // the describeLoadedValue(), we try to generate an entry value expression
571   // for their call site value desctipion, if the call is within the entry MBB.
572   // The RegsForEntryValues maps a forwarding register into the register holding
573   // the entry value.
574   // TODO: Handle situations when call site parameter value can be described
575   // as the entry value within basic blocks other then the first one.
576   bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin();
577   DenseMap<unsigned, unsigned> RegsForEntryValues;
578 
579   // If the MI is an instruction defining one or more parameters' forwarding
580   // registers, add those defines. We can currently only describe forwarded
581   // registers that are explicitly defined, but keep track of implicit defines
582   // also to remove those registers from the work list.
583   auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI,
584                                           SmallVectorImpl<unsigned> &Explicit,
585                                           SmallVectorImpl<unsigned> &Implicit) {
586     if (MI.isDebugInstr())
587       return;
588 
589     for (const MachineOperand &MO : MI.operands()) {
590       if (MO.isReg() && MO.isDef() &&
591           Register::isPhysicalRegister(MO.getReg())) {
592         for (auto FwdReg : ForwardedRegWorklist) {
593           if (TRI->regsOverlap(FwdReg, MO.getReg())) {
594             if (MO.isImplicit())
595               Implicit.push_back(FwdReg);
596             else
597               Explicit.push_back(FwdReg);
598             break;
599           }
600         }
601       }
602     }
603   };
604 
605   auto finishCallSiteParam = [&](DbgValueLoc DbgLocVal, unsigned Reg) {
606     unsigned FwdReg = Reg;
607     if (ShouldTryEmitEntryVals) {
608       auto EntryValReg = RegsForEntryValues.find(Reg);
609       if (EntryValReg != RegsForEntryValues.end())
610         FwdReg = EntryValReg->second;
611     }
612 
613     DbgCallSiteParam CSParm(FwdReg, DbgLocVal);
614     Params.push_back(CSParm);
615     ++NumCSParams;
616   };
617 
618   // Search for a loading value in forwaring registers.
619   for (; I != MBB->rend(); ++I) {
620     // If the next instruction is a call we can not interpret parameter's
621     // forwarding registers or we finished the interpretation of all parameters.
622     if (I->isCall())
623       return;
624 
625     if (ForwardedRegWorklist.empty())
626       return;
627 
628     SmallVector<unsigned, 4> ExplicitFwdRegDefs;
629     SmallVector<unsigned, 4> ImplicitFwdRegDefs;
630     getForwardingRegsDefinedByMI(*I, ExplicitFwdRegDefs, ImplicitFwdRegDefs);
631     if (ExplicitFwdRegDefs.empty() && ImplicitFwdRegDefs.empty())
632       continue;
633 
634     // If the MI clobbers more then one forwarding register we must remove
635     // all of them from the working list.
636     for (auto Reg : concat<unsigned>(ExplicitFwdRegDefs, ImplicitFwdRegDefs))
637       ForwardedRegWorklist.erase(Reg);
638 
639     // The describeLoadedValue() hook currently does not have any information
640     // about which register it should describe in case of multiple defines, so
641     // for now we only handle instructions where a forwarded register is (at
642     // least partially) defined by the instruction's single explicit define.
643     if (I->getNumExplicitDefs() != 1 || ExplicitFwdRegDefs.empty())
644       continue;
645     unsigned Reg = ExplicitFwdRegDefs[0];
646 
647     if (auto ParamValue = TII->describeLoadedValue(*I)) {
648       if (ParamValue->first.isImm()) {
649         int64_t Val = ParamValue->first.getImm();
650         DbgValueLoc DbgLocVal(ParamValue->second, Val);
651         finishCallSiteParam(DbgLocVal, Reg);
652       } else if (ParamValue->first.isReg()) {
653         Register RegLoc = ParamValue->first.getReg();
654         unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
655         Register FP = TRI->getFrameRegister(*MF);
656         bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP);
657         if (TRI->isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) {
658           DbgValueLoc DbgLocVal(ParamValue->second,
659                                 MachineLocation(RegLoc,
660                                                 /*IsIndirect=*/IsSPorFP));
661           finishCallSiteParam(DbgLocVal, Reg);
662         } else if (ShouldTryEmitEntryVals) {
663           ForwardedRegWorklist.insert(RegLoc);
664           RegsForEntryValues[RegLoc] = Reg;
665         }
666       }
667     }
668   }
669 
670   // Emit the call site parameter's value as an entry value.
671   if (ShouldTryEmitEntryVals) {
672     // Create an expression where the register's entry value is used.
673     DIExpression *EntryExpr = DIExpression::get(
674         MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1});
675     for (auto RegEntry : ForwardedRegWorklist) {
676       unsigned FwdReg = RegEntry;
677       auto EntryValReg = RegsForEntryValues.find(RegEntry);
678         if (EntryValReg != RegsForEntryValues.end())
679           FwdReg = EntryValReg->second;
680 
681       DbgValueLoc DbgLocVal(EntryExpr, MachineLocation(RegEntry));
682       DbgCallSiteParam CSParm(FwdReg, DbgLocVal);
683       Params.push_back(CSParm);
684       ++NumCSParams;
685     }
686   }
687 }
688 
689 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP,
690                                             DwarfCompileUnit &CU, DIE &ScopeDIE,
691                                             const MachineFunction &MF) {
692   // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if
693   // the subprogram is required to have one.
694   if (!SP.areAllCallsDescribed() || !SP.isDefinition())
695     return;
696 
697   // Use DW_AT_call_all_calls to express that call site entries are present
698   // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls
699   // because one of its requirements is not met: call site entries for
700   // optimized-out calls are elided.
701   CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls));
702 
703   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
704   assert(TII && "TargetInstrInfo not found: cannot label tail calls");
705   bool ApplyGNUExtensions = getDwarfVersion() == 4 && tuneForGDB();
706 
707   // Emit call site entries for each call or tail call in the function.
708   for (const MachineBasicBlock &MBB : MF) {
709     for (const MachineInstr &MI : MBB.instrs()) {
710       // Skip instructions which aren't calls. Both calls and tail-calling jump
711       // instructions (e.g TAILJMPd64) are classified correctly here.
712       if (!MI.isCall())
713         continue;
714 
715       // TODO: Add support for targets with delay slots (see: beginInstruction).
716       if (MI.hasDelaySlot())
717         return;
718 
719       // If this is a direct call, find the callee's subprogram.
720       // In the case of an indirect call find the register that holds
721       // the callee.
722       const MachineOperand &CalleeOp = MI.getOperand(0);
723       if (!CalleeOp.isGlobal() && !CalleeOp.isReg())
724         continue;
725 
726       unsigned CallReg = 0;
727       const DISubprogram *CalleeSP = nullptr;
728       const Function *CalleeDecl = nullptr;
729       if (CalleeOp.isReg()) {
730         CallReg = CalleeOp.getReg();
731         if (!CallReg)
732           continue;
733       } else {
734         CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal());
735         if (!CalleeDecl || !CalleeDecl->getSubprogram())
736           continue;
737         CalleeSP = CalleeDecl->getSubprogram();
738       }
739 
740       // TODO: Omit call site entries for runtime calls (objc_msgSend, etc).
741 
742       bool IsTail = TII->isTailCall(MI);
743 
744       // For tail calls, for non-gdb tuning, no return PC information is needed.
745       // For regular calls (and tail calls in GDB tuning), the return PC
746       // is needed to disambiguate paths in the call graph which could lead to
747       // some target function.
748       const MCExpr *PCOffset =
749           (IsTail && !tuneForGDB()) ? nullptr
750                                     : getFunctionLocalOffsetAfterInsn(&MI);
751 
752       // Address of a call-like instruction for a normal call or a jump-like
753       // instruction for a tail call. This is needed for GDB + DWARF 4 tuning.
754       const MCSymbol *PCAddr =
755           ApplyGNUExtensions ? const_cast<MCSymbol*>(getLabelAfterInsn(&MI))
756                              : nullptr;
757 
758       assert((IsTail || PCOffset || PCAddr) &&
759              "Call without return PC information");
760 
761       LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> "
762                         << (CalleeDecl ? CalleeDecl->getName()
763                                        : StringRef(MF.getSubtarget()
764                                                        .getRegisterInfo()
765                                                        ->getName(CallReg)))
766                         << (IsTail ? " [IsTail]" : "") << "\n");
767 
768       DIE &CallSiteDIE =
769             CU.constructCallSiteEntryDIE(ScopeDIE, CalleeSP, IsTail, PCAddr,
770                                          PCOffset, CallReg);
771 
772       // GDB and LLDB support call site parameter debug info.
773       if (Asm->TM.Options.EnableDebugEntryValues &&
774           (tuneForGDB() || tuneForLLDB())) {
775         ParamSet Params;
776         // Try to interpret values of call site parameters.
777         collectCallSiteParameters(&MI, Params);
778         CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params);
779       }
780     }
781   }
782 }
783 
784 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const {
785   if (!U.hasDwarfPubSections())
786     return;
787 
788   U.addFlag(D, dwarf::DW_AT_GNU_pubnames);
789 }
790 
791 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit,
792                                       DwarfCompileUnit &NewCU) {
793   DIE &Die = NewCU.getUnitDie();
794   StringRef FN = DIUnit->getFilename();
795 
796   StringRef Producer = DIUnit->getProducer();
797   StringRef Flags = DIUnit->getFlags();
798   if (!Flags.empty() && !useAppleExtensionAttributes()) {
799     std::string ProducerWithFlags = Producer.str() + " " + Flags.str();
800     NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags);
801   } else
802     NewCU.addString(Die, dwarf::DW_AT_producer, Producer);
803 
804   NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
805                 DIUnit->getSourceLanguage());
806   NewCU.addString(Die, dwarf::DW_AT_name, FN);
807 
808   // Add DW_str_offsets_base to the unit DIE, except for split units.
809   if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
810     NewCU.addStringOffsetsStart();
811 
812   if (!useSplitDwarf()) {
813     NewCU.initStmtList();
814 
815     // If we're using split dwarf the compilation dir is going to be in the
816     // skeleton CU and so we don't need to duplicate it here.
817     if (!CompilationDir.empty())
818       NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
819 
820     addGnuPubAttributes(NewCU, Die);
821   }
822 
823   if (useAppleExtensionAttributes()) {
824     if (DIUnit->isOptimized())
825       NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized);
826 
827     StringRef Flags = DIUnit->getFlags();
828     if (!Flags.empty())
829       NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags);
830 
831     if (unsigned RVer = DIUnit->getRuntimeVersion())
832       NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers,
833                     dwarf::DW_FORM_data1, RVer);
834   }
835 
836   if (DIUnit->getDWOId()) {
837     // This CU is either a clang module DWO or a skeleton CU.
838     NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8,
839                   DIUnit->getDWOId());
840     if (!DIUnit->getSplitDebugFilename().empty())
841       // This is a prefabricated skeleton CU.
842       NewCU.addString(Die, dwarf::DW_AT_GNU_dwo_name,
843                       DIUnit->getSplitDebugFilename());
844   }
845 }
846 // Create new DwarfCompileUnit for the given metadata node with tag
847 // DW_TAG_compile_unit.
848 DwarfCompileUnit &
849 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) {
850   if (auto *CU = CUMap.lookup(DIUnit))
851     return *CU;
852 
853   CompilationDir = DIUnit->getDirectory();
854 
855   auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
856       InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder);
857   DwarfCompileUnit &NewCU = *OwnedUnit;
858   InfoHolder.addUnit(std::move(OwnedUnit));
859 
860   for (auto *IE : DIUnit->getImportedEntities())
861     NewCU.addImportedEntity(IE);
862 
863   // LTO with assembly output shares a single line table amongst multiple CUs.
864   // To avoid the compilation directory being ambiguous, let the line table
865   // explicitly describe the directory of all files, never relying on the
866   // compilation directory.
867   if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU)
868     Asm->OutStreamer->emitDwarfFile0Directive(
869         CompilationDir, DIUnit->getFilename(),
870         NewCU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource(),
871         NewCU.getUniqueID());
872 
873   if (useSplitDwarf()) {
874     NewCU.setSkeleton(constructSkeletonCU(NewCU));
875     NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection());
876   } else {
877     finishUnitAttributes(DIUnit, NewCU);
878     NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
879   }
880 
881   // Create DIEs for function declarations used for call site debug info.
882   for (auto Scope : DIUnit->getRetainedTypes())
883     if (auto *SP = dyn_cast_or_null<DISubprogram>(Scope))
884       NewCU.getOrCreateSubprogramDIE(SP);
885 
886   CUMap.insert({DIUnit, &NewCU});
887   CUDieMap.insert({&NewCU.getUnitDie(), &NewCU});
888   return NewCU;
889 }
890 
891 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU,
892                                                   const DIImportedEntity *N) {
893   if (isa<DILocalScope>(N->getScope()))
894     return;
895   if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope()))
896     D->addChild(TheCU.constructImportedEntityDIE(N));
897 }
898 
899 /// Sort and unique GVEs by comparing their fragment offset.
900 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &
901 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) {
902   llvm::sort(
903       GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) {
904         // Sort order: first null exprs, then exprs without fragment
905         // info, then sort by fragment offset in bits.
906         // FIXME: Come up with a more comprehensive comparator so
907         // the sorting isn't non-deterministic, and so the following
908         // std::unique call works correctly.
909         if (!A.Expr || !B.Expr)
910           return !!B.Expr;
911         auto FragmentA = A.Expr->getFragmentInfo();
912         auto FragmentB = B.Expr->getFragmentInfo();
913         if (!FragmentA || !FragmentB)
914           return !!FragmentB;
915         return FragmentA->OffsetInBits < FragmentB->OffsetInBits;
916       });
917   GVEs.erase(std::unique(GVEs.begin(), GVEs.end(),
918                          [](DwarfCompileUnit::GlobalExpr A,
919                             DwarfCompileUnit::GlobalExpr B) {
920                            return A.Expr == B.Expr;
921                          }),
922              GVEs.end());
923   return GVEs;
924 }
925 
926 // Emit all Dwarf sections that should come prior to the content. Create
927 // global DIEs and emit initial debug info sections. This is invoked by
928 // the target AsmPrinter.
929 void DwarfDebug::beginModule() {
930   NamedRegionTimer T(DbgTimerName, DbgTimerDescription, DWARFGroupName,
931                      DWARFGroupDescription, TimePassesIsEnabled);
932   if (DisableDebugInfoPrinting) {
933     MMI->setDebugInfoAvailability(false);
934     return;
935   }
936 
937   const Module *M = MMI->getModule();
938 
939   unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(),
940                                        M->debug_compile_units_end());
941   // Tell MMI whether we have debug info.
942   assert(MMI->hasDebugInfo() == (NumDebugCUs > 0) &&
943          "DebugInfoAvailabilty initialized unexpectedly");
944   SingleCU = NumDebugCUs == 1;
945   DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>>
946       GVMap;
947   for (const GlobalVariable &Global : M->globals()) {
948     SmallVector<DIGlobalVariableExpression *, 1> GVs;
949     Global.getDebugInfo(GVs);
950     for (auto *GVE : GVs)
951       GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()});
952   }
953 
954   // Create the symbol that designates the start of the unit's contribution
955   // to the string offsets table. In a split DWARF scenario, only the skeleton
956   // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol).
957   if (useSegmentedStringOffsetsTable())
958     (useSplitDwarf() ? SkeletonHolder : InfoHolder)
959         .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base"));
960 
961 
962   // Create the symbols that designates the start of the DWARF v5 range list
963   // and locations list tables. They are located past the table headers.
964   if (getDwarfVersion() >= 5) {
965     DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
966     Holder.setRnglistsTableBaseSym(
967         Asm->createTempSymbol("rnglists_table_base"));
968     Holder.setLoclistsTableBaseSym(
969         Asm->createTempSymbol("loclists_table_base"));
970 
971     if (useSplitDwarf())
972       InfoHolder.setRnglistsTableBaseSym(
973           Asm->createTempSymbol("rnglists_dwo_table_base"));
974   }
975 
976   // Create the symbol that points to the first entry following the debug
977   // address table (.debug_addr) header.
978   AddrPool.setLabel(Asm->createTempSymbol("addr_table_base"));
979 
980   for (DICompileUnit *CUNode : M->debug_compile_units()) {
981     // FIXME: Move local imported entities into a list attached to the
982     // subprogram, then this search won't be needed and a
983     // getImportedEntities().empty() test should go below with the rest.
984     bool HasNonLocalImportedEntities = llvm::any_of(
985         CUNode->getImportedEntities(), [](const DIImportedEntity *IE) {
986           return !isa<DILocalScope>(IE->getScope());
987         });
988 
989     if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() &&
990         CUNode->getRetainedTypes().empty() &&
991         CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty())
992       continue;
993 
994     DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode);
995 
996     // Global Variables.
997     for (auto *GVE : CUNode->getGlobalVariables()) {
998       // Don't bother adding DIGlobalVariableExpressions listed in the CU if we
999       // already know about the variable and it isn't adding a constant
1000       // expression.
1001       auto &GVMapEntry = GVMap[GVE->getVariable()];
1002       auto *Expr = GVE->getExpression();
1003       if (!GVMapEntry.size() || (Expr && Expr->isConstant()))
1004         GVMapEntry.push_back({nullptr, Expr});
1005     }
1006     DenseSet<DIGlobalVariable *> Processed;
1007     for (auto *GVE : CUNode->getGlobalVariables()) {
1008       DIGlobalVariable *GV = GVE->getVariable();
1009       if (Processed.insert(GV).second)
1010         CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV]));
1011     }
1012 
1013     for (auto *Ty : CUNode->getEnumTypes()) {
1014       // The enum types array by design contains pointers to
1015       // MDNodes rather than DIRefs. Unique them here.
1016       CU.getOrCreateTypeDIE(cast<DIType>(Ty));
1017     }
1018     for (auto *Ty : CUNode->getRetainedTypes()) {
1019       // The retained types array by design contains pointers to
1020       // MDNodes rather than DIRefs. Unique them here.
1021       if (DIType *RT = dyn_cast<DIType>(Ty))
1022           // There is no point in force-emitting a forward declaration.
1023           CU.getOrCreateTypeDIE(RT);
1024     }
1025     // Emit imported_modules last so that the relevant context is already
1026     // available.
1027     for (auto *IE : CUNode->getImportedEntities())
1028       constructAndAddImportedEntityDIE(CU, IE);
1029   }
1030 }
1031 
1032 void DwarfDebug::finishEntityDefinitions() {
1033   for (const auto &Entity : ConcreteEntities) {
1034     DIE *Die = Entity->getDIE();
1035     assert(Die);
1036     // FIXME: Consider the time-space tradeoff of just storing the unit pointer
1037     // in the ConcreteEntities list, rather than looking it up again here.
1038     // DIE::getUnit isn't simple - it walks parent pointers, etc.
1039     DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie());
1040     assert(Unit);
1041     Unit->finishEntityDefinition(Entity.get());
1042   }
1043 }
1044 
1045 void DwarfDebug::finishSubprogramDefinitions() {
1046   for (const DISubprogram *SP : ProcessedSPNodes) {
1047     assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug);
1048     forBothCUs(
1049         getOrCreateDwarfCompileUnit(SP->getUnit()),
1050         [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); });
1051   }
1052 }
1053 
1054 void DwarfDebug::finalizeModuleInfo() {
1055   const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
1056 
1057   finishSubprogramDefinitions();
1058 
1059   finishEntityDefinitions();
1060 
1061   // Include the DWO file name in the hash if there's more than one CU.
1062   // This handles ThinLTO's situation where imported CUs may very easily be
1063   // duplicate with the same CU partially imported into another ThinLTO unit.
1064   StringRef DWOName;
1065   if (CUMap.size() > 1)
1066     DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile;
1067 
1068   // Handle anything that needs to be done on a per-unit basis after
1069   // all other generation.
1070   for (const auto &P : CUMap) {
1071     auto &TheCU = *P.second;
1072     if (TheCU.getCUNode()->isDebugDirectivesOnly())
1073       continue;
1074     // Emit DW_AT_containing_type attribute to connect types with their
1075     // vtable holding type.
1076     TheCU.constructContainingTypeDIEs();
1077 
1078     // Add CU specific attributes if we need to add any.
1079     // If we're splitting the dwarf out now that we've got the entire
1080     // CU then add the dwo id to it.
1081     auto *SkCU = TheCU.getSkeleton();
1082     if (useSplitDwarf() && !TheCU.getUnitDie().children().empty()) {
1083       finishUnitAttributes(TheCU.getCUNode(), TheCU);
1084       TheCU.addString(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_name,
1085                       Asm->TM.Options.MCOptions.SplitDwarfFile);
1086       SkCU->addString(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_name,
1087                       Asm->TM.Options.MCOptions.SplitDwarfFile);
1088       // Emit a unique identifier for this CU.
1089       uint64_t ID =
1090           DIEHash(Asm).computeCUSignature(DWOName, TheCU.getUnitDie());
1091       if (getDwarfVersion() >= 5) {
1092         TheCU.setDWOId(ID);
1093         SkCU->setDWOId(ID);
1094       } else {
1095         TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1096                       dwarf::DW_FORM_data8, ID);
1097         SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1098                       dwarf::DW_FORM_data8, ID);
1099       }
1100 
1101       if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) {
1102         const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol();
1103         SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base,
1104                               Sym, Sym);
1105       }
1106     } else if (SkCU) {
1107       finishUnitAttributes(SkCU->getCUNode(), *SkCU);
1108     }
1109 
1110     // If we have code split among multiple sections or non-contiguous
1111     // ranges of code then emit a DW_AT_ranges attribute on the unit that will
1112     // remain in the .o file, otherwise add a DW_AT_low_pc.
1113     // FIXME: We should use ranges allow reordering of code ala
1114     // .subsections_via_symbols in mach-o. This would mean turning on
1115     // ranges for all subprogram DIEs for mach-o.
1116     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
1117 
1118     if (unsigned NumRanges = TheCU.getRanges().size()) {
1119       if (NumRanges > 1 && useRangesSection())
1120         // A DW_AT_low_pc attribute may also be specified in combination with
1121         // DW_AT_ranges to specify the default base address for use in
1122         // location lists (see Section 2.6.2) and range lists (see Section
1123         // 2.17.3).
1124         U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0);
1125       else
1126         U.setBaseAddress(TheCU.getRanges().front().Begin);
1127       U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges());
1128     }
1129 
1130     // We don't keep track of which addresses are used in which CU so this
1131     // is a bit pessimistic under LTO.
1132     if (!AddrPool.isEmpty() &&
1133         (getDwarfVersion() >= 5 ||
1134          (SkCU && !TheCU.getUnitDie().children().empty())))
1135       U.addAddrTableBase();
1136 
1137     if (getDwarfVersion() >= 5) {
1138       if (U.hasRangeLists())
1139         U.addRnglistsBase();
1140 
1141       if (!DebugLocs.getLists().empty() && !useSplitDwarf())
1142         U.addLoclistsBase();
1143     }
1144 
1145     auto *CUNode = cast<DICompileUnit>(P.first);
1146     // If compile Unit has macros, emit "DW_AT_macro_info" attribute.
1147     if (CUNode->getMacros())
1148       U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info,
1149                         U.getMacroLabelBegin(),
1150                         TLOF.getDwarfMacinfoSection()->getBeginSymbol());
1151   }
1152 
1153   // Emit all frontend-produced Skeleton CUs, i.e., Clang modules.
1154   for (auto *CUNode : MMI->getModule()->debug_compile_units())
1155     if (CUNode->getDWOId())
1156       getOrCreateDwarfCompileUnit(CUNode);
1157 
1158   // Compute DIE offsets and sizes.
1159   InfoHolder.computeSizeAndOffsets();
1160   if (useSplitDwarf())
1161     SkeletonHolder.computeSizeAndOffsets();
1162 }
1163 
1164 // Emit all Dwarf sections that should come after the content.
1165 void DwarfDebug::endModule() {
1166   assert(CurFn == nullptr);
1167   assert(CurMI == nullptr);
1168 
1169   for (const auto &P : CUMap) {
1170     auto &CU = *P.second;
1171     CU.createBaseTypeDIEs();
1172   }
1173 
1174   // If we aren't actually generating debug info (check beginModule -
1175   // conditionalized on !DisableDebugInfoPrinting and the presence of the
1176   // llvm.dbg.cu metadata node)
1177   if (!MMI->hasDebugInfo())
1178     return;
1179 
1180   // Finalize the debug info for the module.
1181   finalizeModuleInfo();
1182 
1183   emitDebugStr();
1184 
1185   if (useSplitDwarf())
1186     emitDebugLocDWO();
1187   else
1188     // Emit info into a debug loc section.
1189     emitDebugLoc();
1190 
1191   // Corresponding abbreviations into a abbrev section.
1192   emitAbbreviations();
1193 
1194   // Emit all the DIEs into a debug info section.
1195   emitDebugInfo();
1196 
1197   // Emit info into a debug aranges section.
1198   if (GenerateARangeSection)
1199     emitDebugARanges();
1200 
1201   // Emit info into a debug ranges section.
1202   emitDebugRanges();
1203 
1204   // Emit info into a debug macinfo section.
1205   emitDebugMacinfo();
1206 
1207   if (useSplitDwarf()) {
1208     emitDebugStrDWO();
1209     emitDebugInfoDWO();
1210     emitDebugAbbrevDWO();
1211     emitDebugLineDWO();
1212     emitDebugRangesDWO();
1213   }
1214 
1215   emitDebugAddr();
1216 
1217   // Emit info into the dwarf accelerator table sections.
1218   switch (getAccelTableKind()) {
1219   case AccelTableKind::Apple:
1220     emitAccelNames();
1221     emitAccelObjC();
1222     emitAccelNamespaces();
1223     emitAccelTypes();
1224     break;
1225   case AccelTableKind::Dwarf:
1226     emitAccelDebugNames();
1227     break;
1228   case AccelTableKind::None:
1229     break;
1230   case AccelTableKind::Default:
1231     llvm_unreachable("Default should have already been resolved.");
1232   }
1233 
1234   // Emit the pubnames and pubtypes sections if requested.
1235   emitDebugPubSections();
1236 
1237   // clean up.
1238   // FIXME: AbstractVariables.clear();
1239 }
1240 
1241 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU,
1242                                                const DINode *Node,
1243                                                const MDNode *ScopeNode) {
1244   if (CU.getExistingAbstractEntity(Node))
1245     return;
1246 
1247   CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope(
1248                                        cast<DILocalScope>(ScopeNode)));
1249 }
1250 
1251 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU,
1252     const DINode *Node, const MDNode *ScopeNode) {
1253   if (CU.getExistingAbstractEntity(Node))
1254     return;
1255 
1256   if (LexicalScope *Scope =
1257           LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode)))
1258     CU.createAbstractEntity(Node, Scope);
1259 }
1260 
1261 // Collect variable information from side table maintained by MF.
1262 void DwarfDebug::collectVariableInfoFromMFTable(
1263     DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) {
1264   SmallDenseMap<InlinedEntity, DbgVariable *> MFVars;
1265   for (const auto &VI : Asm->MF->getVariableDbgInfo()) {
1266     if (!VI.Var)
1267       continue;
1268     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1269            "Expected inlined-at fields to agree");
1270 
1271     InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt());
1272     Processed.insert(Var);
1273     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1274 
1275     // If variable scope is not found then skip this variable.
1276     if (!Scope)
1277       continue;
1278 
1279     ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode());
1280     auto RegVar = std::make_unique<DbgVariable>(
1281                     cast<DILocalVariable>(Var.first), Var.second);
1282     RegVar->initializeMMI(VI.Expr, VI.Slot);
1283     if (DbgVariable *DbgVar = MFVars.lookup(Var))
1284       DbgVar->addMMIEntry(*RegVar);
1285     else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) {
1286       MFVars.insert({Var, RegVar.get()});
1287       ConcreteEntities.push_back(std::move(RegVar));
1288     }
1289   }
1290 }
1291 
1292 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its
1293 /// enclosing lexical scope. The check ensures there are no other instructions
1294 /// in the same lexical scope preceding the DBG_VALUE and that its range is
1295 /// either open or otherwise rolls off the end of the scope.
1296 static bool validThroughout(LexicalScopes &LScopes,
1297                             const MachineInstr *DbgValue,
1298                             const MachineInstr *RangeEnd) {
1299   assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location");
1300   auto MBB = DbgValue->getParent();
1301   auto DL = DbgValue->getDebugLoc();
1302   auto *LScope = LScopes.findLexicalScope(DL);
1303   // Scope doesn't exist; this is a dead DBG_VALUE.
1304   if (!LScope)
1305     return false;
1306   auto &LSRange = LScope->getRanges();
1307   if (LSRange.size() == 0)
1308     return false;
1309 
1310   // Determine if the DBG_VALUE is valid at the beginning of its lexical block.
1311   const MachineInstr *LScopeBegin = LSRange.front().first;
1312   // Early exit if the lexical scope begins outside of the current block.
1313   if (LScopeBegin->getParent() != MBB)
1314     return false;
1315   MachineBasicBlock::const_reverse_iterator Pred(DbgValue);
1316   for (++Pred; Pred != MBB->rend(); ++Pred) {
1317     if (Pred->getFlag(MachineInstr::FrameSetup))
1318       break;
1319     auto PredDL = Pred->getDebugLoc();
1320     if (!PredDL || Pred->isMetaInstruction())
1321       continue;
1322     // Check whether the instruction preceding the DBG_VALUE is in the same
1323     // (sub)scope as the DBG_VALUE.
1324     if (DL->getScope() == PredDL->getScope())
1325       return false;
1326     auto *PredScope = LScopes.findLexicalScope(PredDL);
1327     if (!PredScope || LScope->dominates(PredScope))
1328       return false;
1329   }
1330 
1331   // If the range of the DBG_VALUE is open-ended, report success.
1332   if (!RangeEnd)
1333     return true;
1334 
1335   // Fail if there are instructions belonging to our scope in another block.
1336   const MachineInstr *LScopeEnd = LSRange.back().second;
1337   if (LScopeEnd->getParent() != MBB)
1338     return false;
1339 
1340   // Single, constant DBG_VALUEs in the prologue are promoted to be live
1341   // throughout the function. This is a hack, presumably for DWARF v2 and not
1342   // necessarily correct. It would be much better to use a dbg.declare instead
1343   // if we know the constant is live throughout the scope.
1344   if (DbgValue->getOperand(0).isImm() && MBB->pred_empty())
1345     return true;
1346 
1347   return false;
1348 }
1349 
1350 /// Build the location list for all DBG_VALUEs in the function that
1351 /// describe the same variable. The resulting DebugLocEntries will have
1352 /// strict monotonically increasing begin addresses and will never
1353 /// overlap. If the resulting list has only one entry that is valid
1354 /// throughout variable's scope return true.
1355 //
1356 // See the definition of DbgValueHistoryMap::Entry for an explanation of the
1357 // different kinds of history map entries. One thing to be aware of is that if
1358 // a debug value is ended by another entry (rather than being valid until the
1359 // end of the function), that entry's instruction may or may not be included in
1360 // the range, depending on if the entry is a clobbering entry (it has an
1361 // instruction that clobbers one or more preceding locations), or if it is an
1362 // (overlapping) debug value entry. This distinction can be seen in the example
1363 // below. The first debug value is ended by the clobbering entry 2, and the
1364 // second and third debug values are ended by the overlapping debug value entry
1365 // 4.
1366 //
1367 // Input:
1368 //
1369 //   History map entries [type, end index, mi]
1370 //
1371 // 0 |      [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)]
1372 // 1 | |    [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)]
1373 // 2 | |    [Clobber, $reg0 = [...], -, -]
1374 // 3   | |  [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)]
1375 // 4        [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)]
1376 //
1377 // Output [start, end) [Value...]:
1378 //
1379 // [0-1)    [(reg0, fragment 0, 32)]
1380 // [1-3)    [(reg0, fragment 0, 32), (reg1, fragment 32, 32)]
1381 // [3-4)    [(reg1, fragment 32, 32), (123, fragment 64, 32)]
1382 // [4-)     [(@g, fragment 0, 96)]
1383 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc,
1384                                    const DbgValueHistoryMap::Entries &Entries) {
1385   using OpenRange =
1386       std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>;
1387   SmallVector<OpenRange, 4> OpenRanges;
1388   bool isSafeForSingleLocation = true;
1389   const MachineInstr *StartDebugMI = nullptr;
1390   const MachineInstr *EndMI = nullptr;
1391 
1392   for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) {
1393     const MachineInstr *Instr = EI->getInstr();
1394 
1395     // Remove all values that are no longer live.
1396     size_t Index = std::distance(EB, EI);
1397     auto Last =
1398         remove_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; });
1399     OpenRanges.erase(Last, OpenRanges.end());
1400 
1401     // If we are dealing with a clobbering entry, this iteration will result in
1402     // a location list entry starting after the clobbering instruction.
1403     const MCSymbol *StartLabel =
1404         EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr);
1405     assert(StartLabel &&
1406            "Forgot label before/after instruction starting a range!");
1407 
1408     const MCSymbol *EndLabel;
1409     if (std::next(EI) == Entries.end()) {
1410       EndLabel = Asm->getFunctionEnd();
1411       if (EI->isClobber())
1412         EndMI = EI->getInstr();
1413     }
1414     else if (std::next(EI)->isClobber())
1415       EndLabel = getLabelAfterInsn(std::next(EI)->getInstr());
1416     else
1417       EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr());
1418     assert(EndLabel && "Forgot label after instruction ending a range!");
1419 
1420     if (EI->isDbgValue())
1421       LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n");
1422 
1423     // If this history map entry has a debug value, add that to the list of
1424     // open ranges and check if its location is valid for a single value
1425     // location.
1426     if (EI->isDbgValue()) {
1427       // Do not add undef debug values, as they are redundant information in
1428       // the location list entries. An undef debug results in an empty location
1429       // description. If there are any non-undef fragments then padding pieces
1430       // with empty location descriptions will automatically be inserted, and if
1431       // all fragments are undef then the whole location list entry is
1432       // redundant.
1433       if (!Instr->isUndefDebugValue()) {
1434         auto Value = getDebugLocValue(Instr);
1435         OpenRanges.emplace_back(EI->getEndIndex(), Value);
1436 
1437         // TODO: Add support for single value fragment locations.
1438         if (Instr->getDebugExpression()->isFragment())
1439           isSafeForSingleLocation = false;
1440 
1441         if (!StartDebugMI)
1442           StartDebugMI = Instr;
1443       } else {
1444         isSafeForSingleLocation = false;
1445       }
1446     }
1447 
1448     // Location list entries with empty location descriptions are redundant
1449     // information in DWARF, so do not emit those.
1450     if (OpenRanges.empty())
1451       continue;
1452 
1453     // Omit entries with empty ranges as they do not have any effect in DWARF.
1454     if (StartLabel == EndLabel) {
1455       LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n");
1456       continue;
1457     }
1458 
1459     SmallVector<DbgValueLoc, 4> Values;
1460     for (auto &R : OpenRanges)
1461       Values.push_back(R.second);
1462     DebugLoc.emplace_back(StartLabel, EndLabel, Values);
1463 
1464     // Attempt to coalesce the ranges of two otherwise identical
1465     // DebugLocEntries.
1466     auto CurEntry = DebugLoc.rbegin();
1467     LLVM_DEBUG({
1468       dbgs() << CurEntry->getValues().size() << " Values:\n";
1469       for (auto &Value : CurEntry->getValues())
1470         Value.dump();
1471       dbgs() << "-----\n";
1472     });
1473 
1474     auto PrevEntry = std::next(CurEntry);
1475     if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry))
1476       DebugLoc.pop_back();
1477   }
1478 
1479   return DebugLoc.size() == 1 && isSafeForSingleLocation &&
1480          validThroughout(LScopes, StartDebugMI, EndMI);
1481 }
1482 
1483 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU,
1484                                             LexicalScope &Scope,
1485                                             const DINode *Node,
1486                                             const DILocation *Location,
1487                                             const MCSymbol *Sym) {
1488   ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode());
1489   if (isa<const DILocalVariable>(Node)) {
1490     ConcreteEntities.push_back(
1491         std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node),
1492                                        Location));
1493     InfoHolder.addScopeVariable(&Scope,
1494         cast<DbgVariable>(ConcreteEntities.back().get()));
1495   } else if (isa<const DILabel>(Node)) {
1496     ConcreteEntities.push_back(
1497         std::make_unique<DbgLabel>(cast<const DILabel>(Node),
1498                                     Location, Sym));
1499     InfoHolder.addScopeLabel(&Scope,
1500         cast<DbgLabel>(ConcreteEntities.back().get()));
1501   }
1502   return ConcreteEntities.back().get();
1503 }
1504 
1505 // Find variables for each lexical scope.
1506 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU,
1507                                    const DISubprogram *SP,
1508                                    DenseSet<InlinedEntity> &Processed) {
1509   // Grab the variable info that was squirreled away in the MMI side-table.
1510   collectVariableInfoFromMFTable(TheCU, Processed);
1511 
1512   for (const auto &I : DbgValues) {
1513     InlinedEntity IV = I.first;
1514     if (Processed.count(IV))
1515       continue;
1516 
1517     // Instruction ranges, specifying where IV is accessible.
1518     const auto &HistoryMapEntries = I.second;
1519     if (HistoryMapEntries.empty())
1520       continue;
1521 
1522     LexicalScope *Scope = nullptr;
1523     const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first);
1524     if (const DILocation *IA = IV.second)
1525       Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA);
1526     else
1527       Scope = LScopes.findLexicalScope(LocalVar->getScope());
1528     // If variable scope is not found then skip this variable.
1529     if (!Scope)
1530       continue;
1531 
1532     Processed.insert(IV);
1533     DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU,
1534                                             *Scope, LocalVar, IV.second));
1535 
1536     const MachineInstr *MInsn = HistoryMapEntries.front().getInstr();
1537     assert(MInsn->isDebugValue() && "History must begin with debug value");
1538 
1539     // Check if there is a single DBG_VALUE, valid throughout the var's scope.
1540     // If the history map contains a single debug value, there may be an
1541     // additional entry which clobbers the debug value.
1542     size_t HistSize = HistoryMapEntries.size();
1543     bool SingleValueWithClobber =
1544         HistSize == 2 && HistoryMapEntries[1].isClobber();
1545     if (HistSize == 1 || SingleValueWithClobber) {
1546       const auto *End =
1547           SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr;
1548       if (validThroughout(LScopes, MInsn, End)) {
1549         RegVar->initializeDbgValue(MInsn);
1550         continue;
1551       }
1552     }
1553 
1554     // Do not emit location lists if .debug_loc secton is disabled.
1555     if (!useLocSection())
1556       continue;
1557 
1558     // Handle multiple DBG_VALUE instructions describing one variable.
1559     DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn);
1560 
1561     // Build the location list for this variable.
1562     SmallVector<DebugLocEntry, 8> Entries;
1563     bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries);
1564 
1565     // Check whether buildLocationList managed to merge all locations to one
1566     // that is valid throughout the variable's scope. If so, produce single
1567     // value location.
1568     if (isValidSingleLocation) {
1569       RegVar->initializeDbgValue(Entries[0].getValues()[0]);
1570       continue;
1571     }
1572 
1573     // If the variable has a DIBasicType, extract it.  Basic types cannot have
1574     // unique identifiers, so don't bother resolving the type with the
1575     // identifier map.
1576     const DIBasicType *BT = dyn_cast<DIBasicType>(
1577         static_cast<const Metadata *>(LocalVar->getType()));
1578 
1579     // Finalize the entry by lowering it into a DWARF bytestream.
1580     for (auto &Entry : Entries)
1581       Entry.finalize(*Asm, List, BT, TheCU);
1582   }
1583 
1584   // For each InlinedEntity collected from DBG_LABEL instructions, convert to
1585   // DWARF-related DbgLabel.
1586   for (const auto &I : DbgLabels) {
1587     InlinedEntity IL = I.first;
1588     const MachineInstr *MI = I.second;
1589     if (MI == nullptr)
1590       continue;
1591 
1592     LexicalScope *Scope = nullptr;
1593     const DILabel *Label = cast<DILabel>(IL.first);
1594     // The scope could have an extra lexical block file.
1595     const DILocalScope *LocalScope =
1596         Label->getScope()->getNonLexicalBlockFileScope();
1597     // Get inlined DILocation if it is inlined label.
1598     if (const DILocation *IA = IL.second)
1599       Scope = LScopes.findInlinedScope(LocalScope, IA);
1600     else
1601       Scope = LScopes.findLexicalScope(LocalScope);
1602     // If label scope is not found then skip this label.
1603     if (!Scope)
1604       continue;
1605 
1606     Processed.insert(IL);
1607     /// At this point, the temporary label is created.
1608     /// Save the temporary label to DbgLabel entity to get the
1609     /// actually address when generating Dwarf DIE.
1610     MCSymbol *Sym = getLabelBeforeInsn(MI);
1611     createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym);
1612   }
1613 
1614   // Collect info for variables/labels that were optimized out.
1615   for (const DINode *DN : SP->getRetainedNodes()) {
1616     if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
1617       continue;
1618     LexicalScope *Scope = nullptr;
1619     if (auto *DV = dyn_cast<DILocalVariable>(DN)) {
1620       Scope = LScopes.findLexicalScope(DV->getScope());
1621     } else if (auto *DL = dyn_cast<DILabel>(DN)) {
1622       Scope = LScopes.findLexicalScope(DL->getScope());
1623     }
1624 
1625     if (Scope)
1626       createConcreteEntity(TheCU, *Scope, DN, nullptr);
1627   }
1628 }
1629 
1630 // Process beginning of an instruction.
1631 void DwarfDebug::beginInstruction(const MachineInstr *MI) {
1632   DebugHandlerBase::beginInstruction(MI);
1633   assert(CurMI);
1634 
1635   const auto *SP = MI->getMF()->getFunction().getSubprogram();
1636   if (!SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
1637     return;
1638 
1639   // Check if source location changes, but ignore DBG_VALUE and CFI locations.
1640   // If the instruction is part of the function frame setup code, do not emit
1641   // any line record, as there is no correspondence with any user code.
1642   if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup))
1643     return;
1644   const DebugLoc &DL = MI->getDebugLoc();
1645   // When we emit a line-0 record, we don't update PrevInstLoc; so look at
1646   // the last line number actually emitted, to see if it was line 0.
1647   unsigned LastAsmLine =
1648       Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine();
1649 
1650   // Request a label after the call in order to emit AT_return_pc information
1651   // in call site entries. TODO: Add support for targets with delay slots.
1652   if (SP->areAllCallsDescribed() && MI->isCall() && !MI->hasDelaySlot())
1653     requestLabelAfterInsn(MI);
1654 
1655   if (DL == PrevInstLoc) {
1656     // If we have an ongoing unspecified location, nothing to do here.
1657     if (!DL)
1658       return;
1659     // We have an explicit location, same as the previous location.
1660     // But we might be coming back to it after a line 0 record.
1661     if (LastAsmLine == 0 && DL.getLine() != 0) {
1662       // Reinstate the source location but not marked as a statement.
1663       const MDNode *Scope = DL.getScope();
1664       recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0);
1665     }
1666     return;
1667   }
1668 
1669   if (!DL) {
1670     // We have an unspecified location, which might want to be line 0.
1671     // If we have already emitted a line-0 record, don't repeat it.
1672     if (LastAsmLine == 0)
1673       return;
1674     // If user said Don't Do That, don't do that.
1675     if (UnknownLocations == Disable)
1676       return;
1677     // See if we have a reason to emit a line-0 record now.
1678     // Reasons to emit a line-0 record include:
1679     // - User asked for it (UnknownLocations).
1680     // - Instruction has a label, so it's referenced from somewhere else,
1681     //   possibly debug information; we want it to have a source location.
1682     // - Instruction is at the top of a block; we don't want to inherit the
1683     //   location from the physically previous (maybe unrelated) block.
1684     if (UnknownLocations == Enable || PrevLabel ||
1685         (PrevInstBB && PrevInstBB != MI->getParent())) {
1686       // Preserve the file and column numbers, if we can, to save space in
1687       // the encoded line table.
1688       // Do not update PrevInstLoc, it remembers the last non-0 line.
1689       const MDNode *Scope = nullptr;
1690       unsigned Column = 0;
1691       if (PrevInstLoc) {
1692         Scope = PrevInstLoc.getScope();
1693         Column = PrevInstLoc.getCol();
1694       }
1695       recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0);
1696     }
1697     return;
1698   }
1699 
1700   // We have an explicit location, different from the previous location.
1701   // Don't repeat a line-0 record, but otherwise emit the new location.
1702   // (The new location might be an explicit line 0, which we do emit.)
1703   if (DL.getLine() == 0 && LastAsmLine == 0)
1704     return;
1705   unsigned Flags = 0;
1706   if (DL == PrologEndLoc) {
1707     Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT;
1708     PrologEndLoc = DebugLoc();
1709   }
1710   // If the line changed, we call that a new statement; unless we went to
1711   // line 0 and came back, in which case it is not a new statement.
1712   unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine;
1713   if (DL.getLine() && DL.getLine() != OldLine)
1714     Flags |= DWARF2_FLAG_IS_STMT;
1715 
1716   const MDNode *Scope = DL.getScope();
1717   recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
1718 
1719   // If we're not at line 0, remember this location.
1720   if (DL.getLine())
1721     PrevInstLoc = DL;
1722 }
1723 
1724 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) {
1725   // First known non-DBG_VALUE and non-frame setup location marks
1726   // the beginning of the function body.
1727   for (const auto &MBB : *MF)
1728     for (const auto &MI : MBB)
1729       if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
1730           MI.getDebugLoc())
1731         return MI.getDebugLoc();
1732   return DebugLoc();
1733 }
1734 
1735 /// Register a source line with debug info. Returns the  unique label that was
1736 /// emitted and which provides correspondence to the source line list.
1737 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col,
1738                              const MDNode *S, unsigned Flags, unsigned CUID,
1739                              uint16_t DwarfVersion,
1740                              ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) {
1741   StringRef Fn;
1742   unsigned FileNo = 1;
1743   unsigned Discriminator = 0;
1744   if (auto *Scope = cast_or_null<DIScope>(S)) {
1745     Fn = Scope->getFilename();
1746     if (Line != 0 && DwarfVersion >= 4)
1747       if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope))
1748         Discriminator = LBF->getDiscriminator();
1749 
1750     FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID])
1751                  .getOrCreateSourceID(Scope->getFile());
1752   }
1753   Asm.OutStreamer->EmitDwarfLocDirective(FileNo, Line, Col, Flags, 0,
1754                                          Discriminator, Fn);
1755 }
1756 
1757 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF,
1758                                              unsigned CUID) {
1759   // Get beginning of function.
1760   if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) {
1761     // Ensure the compile unit is created if the function is called before
1762     // beginFunction().
1763     (void)getOrCreateDwarfCompileUnit(
1764         MF.getFunction().getSubprogram()->getUnit());
1765     // We'd like to list the prologue as "not statements" but GDB behaves
1766     // poorly if we do that. Revisit this with caution/GDB (7.5+) testing.
1767     const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram();
1768     ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT,
1769                        CUID, getDwarfVersion(), getUnits());
1770     return PrologEndLoc;
1771   }
1772   return DebugLoc();
1773 }
1774 
1775 // Gather pre-function debug information.  Assumes being called immediately
1776 // after the function entry point has been emitted.
1777 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) {
1778   CurFn = MF;
1779 
1780   auto *SP = MF->getFunction().getSubprogram();
1781   assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode());
1782   if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
1783     return;
1784 
1785   SectionLabels.insert(std::make_pair(&Asm->getFunctionBegin()->getSection(),
1786                                       Asm->getFunctionBegin()));
1787 
1788   DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
1789 
1790   // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function
1791   // belongs to so that we add to the correct per-cu line table in the
1792   // non-asm case.
1793   if (Asm->OutStreamer->hasRawTextSupport())
1794     // Use a single line table if we are generating assembly.
1795     Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
1796   else
1797     Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID());
1798 
1799   // Record beginning of function.
1800   PrologEndLoc = emitInitialLocDirective(
1801       *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID());
1802 }
1803 
1804 void DwarfDebug::skippedNonDebugFunction() {
1805   // If we don't have a subprogram for this function then there will be a hole
1806   // in the range information. Keep note of this by setting the previously used
1807   // section to nullptr.
1808   PrevCU = nullptr;
1809   CurFn = nullptr;
1810 }
1811 
1812 // Gather and emit post-function debug information.
1813 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) {
1814   const DISubprogram *SP = MF->getFunction().getSubprogram();
1815 
1816   assert(CurFn == MF &&
1817       "endFunction should be called with the same function as beginFunction");
1818 
1819   // Set DwarfDwarfCompileUnitID in MCContext to default value.
1820   Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
1821 
1822   LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
1823   assert(!FnScope || SP == FnScope->getScopeNode());
1824   DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit());
1825   if (TheCU.getCUNode()->isDebugDirectivesOnly()) {
1826     PrevLabel = nullptr;
1827     CurFn = nullptr;
1828     return;
1829   }
1830 
1831   DenseSet<InlinedEntity> Processed;
1832   collectEntityInfo(TheCU, SP, Processed);
1833 
1834   // Add the range of this function to the list of ranges for the CU.
1835   TheCU.addRange({Asm->getFunctionBegin(), Asm->getFunctionEnd()});
1836 
1837   // Under -gmlt, skip building the subprogram if there are no inlined
1838   // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram
1839   // is still needed as we need its source location.
1840   if (!TheCU.getCUNode()->getDebugInfoForProfiling() &&
1841       TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly &&
1842       LScopes.getAbstractScopesList().empty() && !IsDarwin) {
1843     assert(InfoHolder.getScopeVariables().empty());
1844     PrevLabel = nullptr;
1845     CurFn = nullptr;
1846     return;
1847   }
1848 
1849 #ifndef NDEBUG
1850   size_t NumAbstractScopes = LScopes.getAbstractScopesList().size();
1851 #endif
1852   // Construct abstract scopes.
1853   for (LexicalScope *AScope : LScopes.getAbstractScopesList()) {
1854     auto *SP = cast<DISubprogram>(AScope->getScopeNode());
1855     for (const DINode *DN : SP->getRetainedNodes()) {
1856       if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
1857         continue;
1858 
1859       const MDNode *Scope = nullptr;
1860       if (auto *DV = dyn_cast<DILocalVariable>(DN))
1861         Scope = DV->getScope();
1862       else if (auto *DL = dyn_cast<DILabel>(DN))
1863         Scope = DL->getScope();
1864       else
1865         llvm_unreachable("Unexpected DI type!");
1866 
1867       // Collect info for variables/labels that were optimized out.
1868       ensureAbstractEntityIsCreated(TheCU, DN, Scope);
1869       assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes
1870              && "ensureAbstractEntityIsCreated inserted abstract scopes");
1871     }
1872     constructAbstractSubprogramScopeDIE(TheCU, AScope);
1873   }
1874 
1875   ProcessedSPNodes.insert(SP);
1876   DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope);
1877   if (auto *SkelCU = TheCU.getSkeleton())
1878     if (!LScopes.getAbstractScopesList().empty() &&
1879         TheCU.getCUNode()->getSplitDebugInlining())
1880       SkelCU->constructSubprogramScopeDIE(SP, FnScope);
1881 
1882   // Construct call site entries.
1883   constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF);
1884 
1885   // Clear debug info
1886   // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the
1887   // DbgVariables except those that are also in AbstractVariables (since they
1888   // can be used cross-function)
1889   InfoHolder.getScopeVariables().clear();
1890   InfoHolder.getScopeLabels().clear();
1891   PrevLabel = nullptr;
1892   CurFn = nullptr;
1893 }
1894 
1895 // Register a source line with debug info. Returns the  unique label that was
1896 // emitted and which provides correspondence to the source line list.
1897 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S,
1898                                   unsigned Flags) {
1899   ::recordSourceLine(*Asm, Line, Col, S, Flags,
1900                      Asm->OutStreamer->getContext().getDwarfCompileUnitID(),
1901                      getDwarfVersion(), getUnits());
1902 }
1903 
1904 //===----------------------------------------------------------------------===//
1905 // Emit Methods
1906 //===----------------------------------------------------------------------===//
1907 
1908 // Emit the debug info section.
1909 void DwarfDebug::emitDebugInfo() {
1910   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1911   Holder.emitUnits(/* UseOffsets */ false);
1912 }
1913 
1914 // Emit the abbreviation section.
1915 void DwarfDebug::emitAbbreviations() {
1916   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1917 
1918   Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection());
1919 }
1920 
1921 void DwarfDebug::emitStringOffsetsTableHeader() {
1922   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1923   Holder.getStringPool().emitStringOffsetsTableHeader(
1924       *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(),
1925       Holder.getStringOffsetsStartSym());
1926 }
1927 
1928 template <typename AccelTableT>
1929 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section,
1930                            StringRef TableName) {
1931   Asm->OutStreamer->SwitchSection(Section);
1932 
1933   // Emit the full data.
1934   emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol());
1935 }
1936 
1937 void DwarfDebug::emitAccelDebugNames() {
1938   // Don't emit anything if we have no compilation units to index.
1939   if (getUnits().empty())
1940     return;
1941 
1942   emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits());
1943 }
1944 
1945 // Emit visible names into a hashed accelerator table section.
1946 void DwarfDebug::emitAccelNames() {
1947   emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(),
1948             "Names");
1949 }
1950 
1951 // Emit objective C classes and categories into a hashed accelerator table
1952 // section.
1953 void DwarfDebug::emitAccelObjC() {
1954   emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(),
1955             "ObjC");
1956 }
1957 
1958 // Emit namespace dies into a hashed accelerator table.
1959 void DwarfDebug::emitAccelNamespaces() {
1960   emitAccel(AccelNamespace,
1961             Asm->getObjFileLowering().getDwarfAccelNamespaceSection(),
1962             "namespac");
1963 }
1964 
1965 // Emit type dies into a hashed accelerator table.
1966 void DwarfDebug::emitAccelTypes() {
1967   emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(),
1968             "types");
1969 }
1970 
1971 // Public name handling.
1972 // The format for the various pubnames:
1973 //
1974 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU
1975 // for the DIE that is named.
1976 //
1977 // gnu pubnames - offset/index value/name tuples where the offset is the offset
1978 // into the CU and the index value is computed according to the type of value
1979 // for the DIE that is named.
1980 //
1981 // For type units the offset is the offset of the skeleton DIE. For split dwarf
1982 // it's the offset within the debug_info/debug_types dwo section, however, the
1983 // reference in the pubname header doesn't change.
1984 
1985 /// computeIndexValue - Compute the gdb index value for the DIE and CU.
1986 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU,
1987                                                         const DIE *Die) {
1988   // Entities that ended up only in a Type Unit reference the CU instead (since
1989   // the pub entry has offsets within the CU there's no real offset that can be
1990   // provided anyway). As it happens all such entities (namespaces and types,
1991   // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out
1992   // not to be true it would be necessary to persist this information from the
1993   // point at which the entry is added to the index data structure - since by
1994   // the time the index is built from that, the original type/namespace DIE in a
1995   // type unit has already been destroyed so it can't be queried for properties
1996   // like tag, etc.
1997   if (Die->getTag() == dwarf::DW_TAG_compile_unit)
1998     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE,
1999                                           dwarf::GIEL_EXTERNAL);
2000   dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC;
2001 
2002   // We could have a specification DIE that has our most of our knowledge,
2003   // look for that now.
2004   if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) {
2005     DIE &SpecDIE = SpecVal.getDIEEntry().getEntry();
2006     if (SpecDIE.findAttribute(dwarf::DW_AT_external))
2007       Linkage = dwarf::GIEL_EXTERNAL;
2008   } else if (Die->findAttribute(dwarf::DW_AT_external))
2009     Linkage = dwarf::GIEL_EXTERNAL;
2010 
2011   switch (Die->getTag()) {
2012   case dwarf::DW_TAG_class_type:
2013   case dwarf::DW_TAG_structure_type:
2014   case dwarf::DW_TAG_union_type:
2015   case dwarf::DW_TAG_enumeration_type:
2016     return dwarf::PubIndexEntryDescriptor(
2017         dwarf::GIEK_TYPE,
2018         dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage())
2019             ? dwarf::GIEL_EXTERNAL
2020             : dwarf::GIEL_STATIC);
2021   case dwarf::DW_TAG_typedef:
2022   case dwarf::DW_TAG_base_type:
2023   case dwarf::DW_TAG_subrange_type:
2024     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC);
2025   case dwarf::DW_TAG_namespace:
2026     return dwarf::GIEK_TYPE;
2027   case dwarf::DW_TAG_subprogram:
2028     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage);
2029   case dwarf::DW_TAG_variable:
2030     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage);
2031   case dwarf::DW_TAG_enumerator:
2032     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE,
2033                                           dwarf::GIEL_STATIC);
2034   default:
2035     return dwarf::GIEK_NONE;
2036   }
2037 }
2038 
2039 /// emitDebugPubSections - Emit visible names and types into debug pubnames and
2040 /// pubtypes sections.
2041 void DwarfDebug::emitDebugPubSections() {
2042   for (const auto &NU : CUMap) {
2043     DwarfCompileUnit *TheU = NU.second;
2044     if (!TheU->hasDwarfPubSections())
2045       continue;
2046 
2047     bool GnuStyle = TheU->getCUNode()->getNameTableKind() ==
2048                     DICompileUnit::DebugNameTableKind::GNU;
2049 
2050     Asm->OutStreamer->SwitchSection(
2051         GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection()
2052                  : Asm->getObjFileLowering().getDwarfPubNamesSection());
2053     emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames());
2054 
2055     Asm->OutStreamer->SwitchSection(
2056         GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection()
2057                  : Asm->getObjFileLowering().getDwarfPubTypesSection());
2058     emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes());
2059   }
2060 }
2061 
2062 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) {
2063   if (useSectionsAsReferences())
2064     Asm->EmitDwarfOffset(CU.getSection()->getBeginSymbol(),
2065                          CU.getDebugSectionOffset());
2066   else
2067     Asm->emitDwarfSymbolReference(CU.getLabelBegin());
2068 }
2069 
2070 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name,
2071                                      DwarfCompileUnit *TheU,
2072                                      const StringMap<const DIE *> &Globals) {
2073   if (auto *Skeleton = TheU->getSkeleton())
2074     TheU = Skeleton;
2075 
2076   // Emit the header.
2077   Asm->OutStreamer->AddComment("Length of Public " + Name + " Info");
2078   MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin");
2079   MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end");
2080   Asm->EmitLabelDifference(EndLabel, BeginLabel, 4);
2081 
2082   Asm->OutStreamer->EmitLabel(BeginLabel);
2083 
2084   Asm->OutStreamer->AddComment("DWARF Version");
2085   Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION);
2086 
2087   Asm->OutStreamer->AddComment("Offset of Compilation Unit Info");
2088   emitSectionReference(*TheU);
2089 
2090   Asm->OutStreamer->AddComment("Compilation Unit Length");
2091   Asm->emitInt32(TheU->getLength());
2092 
2093   // Emit the pubnames for this compilation unit.
2094   for (const auto &GI : Globals) {
2095     const char *Name = GI.getKeyData();
2096     const DIE *Entity = GI.second;
2097 
2098     Asm->OutStreamer->AddComment("DIE offset");
2099     Asm->emitInt32(Entity->getOffset());
2100 
2101     if (GnuStyle) {
2102       dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity);
2103       Asm->OutStreamer->AddComment(
2104           Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) +
2105           ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage));
2106       Asm->emitInt8(Desc.toBits());
2107     }
2108 
2109     Asm->OutStreamer->AddComment("External Name");
2110     Asm->OutStreamer->EmitBytes(StringRef(Name, GI.getKeyLength() + 1));
2111   }
2112 
2113   Asm->OutStreamer->AddComment("End Mark");
2114   Asm->emitInt32(0);
2115   Asm->OutStreamer->EmitLabel(EndLabel);
2116 }
2117 
2118 /// Emit null-terminated strings into a debug str section.
2119 void DwarfDebug::emitDebugStr() {
2120   MCSection *StringOffsetsSection = nullptr;
2121   if (useSegmentedStringOffsetsTable()) {
2122     emitStringOffsetsTableHeader();
2123     StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection();
2124   }
2125   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2126   Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(),
2127                      StringOffsetsSection, /* UseRelativeOffsets = */ true);
2128 }
2129 
2130 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer,
2131                                    const DebugLocStream::Entry &Entry,
2132                                    const DwarfCompileUnit *CU) {
2133   auto &&Comments = DebugLocs.getComments(Entry);
2134   auto Comment = Comments.begin();
2135   auto End = Comments.end();
2136 
2137   // The expressions are inserted into a byte stream rather early (see
2138   // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that
2139   // need to reference a base_type DIE the offset of that DIE is not yet known.
2140   // To deal with this we instead insert a placeholder early and then extract
2141   // it here and replace it with the real reference.
2142   unsigned PtrSize = Asm->MAI->getCodePointerSize();
2143   DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(),
2144                                     DebugLocs.getBytes(Entry).size()),
2145                           Asm->getDataLayout().isLittleEndian(), PtrSize);
2146   DWARFExpression Expr(Data, getDwarfVersion(), PtrSize);
2147 
2148   using Encoding = DWARFExpression::Operation::Encoding;
2149   uint64_t Offset = 0;
2150   for (auto &Op : Expr) {
2151     assert(Op.getCode() != dwarf::DW_OP_const_type &&
2152            "3 operand ops not yet supported");
2153     Streamer.EmitInt8(Op.getCode(), Comment != End ? *(Comment++) : "");
2154     Offset++;
2155     for (unsigned I = 0; I < 2; ++I) {
2156       if (Op.getDescription().Op[I] == Encoding::SizeNA)
2157         continue;
2158       if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) {
2159           if (CU) {
2160             uint64_t Offset = CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset();
2161             assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit");
2162             Asm->EmitULEB128(Offset, nullptr, ULEB128PadSize);
2163           } else {
2164             // Emit a reference to the 'generic type'.
2165             Asm->EmitULEB128(0, nullptr, ULEB128PadSize);
2166           }
2167           // Make sure comments stay aligned.
2168           for (unsigned J = 0; J < ULEB128PadSize; ++J)
2169             if (Comment != End)
2170               Comment++;
2171       } else {
2172         for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J)
2173           Streamer.EmitInt8(Data.getData()[J], Comment != End ? *(Comment++) : "");
2174       }
2175       Offset = Op.getOperandEndOffset(I);
2176     }
2177     assert(Offset == Op.getEndOffset());
2178   }
2179 }
2180 
2181 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT,
2182                                    const DbgValueLoc &Value,
2183                                    DwarfExpression &DwarfExpr) {
2184   auto *DIExpr = Value.getExpression();
2185   DIExpressionCursor ExprCursor(DIExpr);
2186   DwarfExpr.addFragmentOffset(DIExpr);
2187   // Regular entry.
2188   if (Value.isInt()) {
2189     if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed ||
2190                BT->getEncoding() == dwarf::DW_ATE_signed_char))
2191       DwarfExpr.addSignedConstant(Value.getInt());
2192     else
2193       DwarfExpr.addUnsignedConstant(Value.getInt());
2194   } else if (Value.isLocation()) {
2195     MachineLocation Location = Value.getLoc();
2196     if (Location.isIndirect())
2197       DwarfExpr.setMemoryLocationKind();
2198     DIExpressionCursor Cursor(DIExpr);
2199 
2200     if (DIExpr->isEntryValue()) {
2201       DwarfExpr.setEntryValueFlag();
2202       DwarfExpr.beginEntryValueExpression(Cursor);
2203     }
2204 
2205     const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
2206     if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg()))
2207       return;
2208     return DwarfExpr.addExpression(std::move(Cursor));
2209   } else if (Value.isConstantFP()) {
2210     APInt RawBytes = Value.getConstantFP()->getValueAPF().bitcastToAPInt();
2211     DwarfExpr.addUnsignedConstant(RawBytes);
2212   }
2213   DwarfExpr.addExpression(std::move(ExprCursor));
2214 }
2215 
2216 void DebugLocEntry::finalize(const AsmPrinter &AP,
2217                              DebugLocStream::ListBuilder &List,
2218                              const DIBasicType *BT,
2219                              DwarfCompileUnit &TheCU) {
2220   assert(!Values.empty() &&
2221          "location list entries without values are redundant");
2222   assert(Begin != End && "unexpected location list entry with empty range");
2223   DebugLocStream::EntryBuilder Entry(List, Begin, End);
2224   BufferByteStreamer Streamer = Entry.getStreamer();
2225   DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU);
2226   const DbgValueLoc &Value = Values[0];
2227   if (Value.isFragment()) {
2228     // Emit all fragments that belong to the same variable and range.
2229     assert(llvm::all_of(Values, [](DbgValueLoc P) {
2230           return P.isFragment();
2231         }) && "all values are expected to be fragments");
2232     assert(std::is_sorted(Values.begin(), Values.end()) &&
2233            "fragments are expected to be sorted");
2234 
2235     for (auto Fragment : Values)
2236       DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr);
2237 
2238   } else {
2239     assert(Values.size() == 1 && "only fragments may have >1 value");
2240     DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr);
2241   }
2242   DwarfExpr.finalize();
2243 }
2244 
2245 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry,
2246                                            const DwarfCompileUnit *CU) {
2247   // Emit the size.
2248   Asm->OutStreamer->AddComment("Loc expr size");
2249   if (getDwarfVersion() >= 5)
2250     Asm->EmitULEB128(DebugLocs.getBytes(Entry).size());
2251   else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max())
2252     Asm->emitInt16(DebugLocs.getBytes(Entry).size());
2253   else {
2254     // The entry is too big to fit into 16 bit, drop it as there is nothing we
2255     // can do.
2256     Asm->emitInt16(0);
2257     return;
2258   }
2259   // Emit the entry.
2260   APByteStreamer Streamer(*Asm);
2261   emitDebugLocEntry(Streamer, Entry, CU);
2262 }
2263 
2264 // Emit the common part of the DWARF 5 range/locations list tables header.
2265 static void emitListsTableHeaderStart(AsmPrinter *Asm, const DwarfFile &Holder,
2266                                       MCSymbol *TableStart,
2267                                       MCSymbol *TableEnd) {
2268   // Build the table header, which starts with the length field.
2269   Asm->OutStreamer->AddComment("Length");
2270   Asm->EmitLabelDifference(TableEnd, TableStart, 4);
2271   Asm->OutStreamer->EmitLabel(TableStart);
2272   // Version number (DWARF v5 and later).
2273   Asm->OutStreamer->AddComment("Version");
2274   Asm->emitInt16(Asm->OutStreamer->getContext().getDwarfVersion());
2275   // Address size.
2276   Asm->OutStreamer->AddComment("Address size");
2277   Asm->emitInt8(Asm->MAI->getCodePointerSize());
2278   // Segment selector size.
2279   Asm->OutStreamer->AddComment("Segment selector size");
2280   Asm->emitInt8(0);
2281 }
2282 
2283 // Emit the header of a DWARF 5 range list table list table. Returns the symbol
2284 // that designates the end of the table for the caller to emit when the table is
2285 // complete.
2286 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm,
2287                                          const DwarfFile &Holder) {
2288   MCSymbol *TableStart = Asm->createTempSymbol("debug_rnglist_table_start");
2289   MCSymbol *TableEnd = Asm->createTempSymbol("debug_rnglist_table_end");
2290   emitListsTableHeaderStart(Asm, Holder, TableStart, TableEnd);
2291 
2292   Asm->OutStreamer->AddComment("Offset entry count");
2293   Asm->emitInt32(Holder.getRangeLists().size());
2294   Asm->OutStreamer->EmitLabel(Holder.getRnglistsTableBaseSym());
2295 
2296   for (const RangeSpanList &List : Holder.getRangeLists())
2297     Asm->EmitLabelDifference(List.getSym(), Holder.getRnglistsTableBaseSym(),
2298                              4);
2299 
2300   return TableEnd;
2301 }
2302 
2303 // Emit the header of a DWARF 5 locations list table. Returns the symbol that
2304 // designates the end of the table for the caller to emit when the table is
2305 // complete.
2306 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm,
2307                                          const DwarfFile &Holder) {
2308   MCSymbol *TableStart = Asm->createTempSymbol("debug_loclist_table_start");
2309   MCSymbol *TableEnd = Asm->createTempSymbol("debug_loclist_table_end");
2310   emitListsTableHeaderStart(Asm, Holder, TableStart, TableEnd);
2311 
2312   // FIXME: Generate the offsets table and use DW_FORM_loclistx with the
2313   // DW_AT_loclists_base attribute. Until then set the number of offsets to 0.
2314   Asm->OutStreamer->AddComment("Offset entry count");
2315   Asm->emitInt32(0);
2316   Asm->OutStreamer->EmitLabel(Holder.getLoclistsTableBaseSym());
2317 
2318   return TableEnd;
2319 }
2320 
2321 template <typename Ranges, typename PayloadEmitter>
2322 static void emitRangeList(
2323     DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R,
2324     const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair,
2325     unsigned StartxLength, unsigned EndOfList,
2326     StringRef (*StringifyEnum)(unsigned),
2327     bool ShouldUseBaseAddress,
2328     PayloadEmitter EmitPayload) {
2329 
2330   auto Size = Asm->MAI->getCodePointerSize();
2331   bool UseDwarf5 = DD.getDwarfVersion() >= 5;
2332 
2333   // Emit our symbol so we can find the beginning of the range.
2334   Asm->OutStreamer->EmitLabel(Sym);
2335 
2336   // Gather all the ranges that apply to the same section so they can share
2337   // a base address entry.
2338   MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges;
2339 
2340   for (const auto &Range : R)
2341     SectionRanges[&Range.Begin->getSection()].push_back(&Range);
2342 
2343   const MCSymbol *CUBase = CU.getBaseAddress();
2344   bool BaseIsSet = false;
2345   for (const auto &P : SectionRanges) {
2346     auto *Base = CUBase;
2347     if (!Base && ShouldUseBaseAddress) {
2348       const MCSymbol *Begin = P.second.front()->Begin;
2349       const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection());
2350       if (!UseDwarf5) {
2351         Base = NewBase;
2352         BaseIsSet = true;
2353         Asm->OutStreamer->EmitIntValue(-1, Size);
2354         Asm->OutStreamer->AddComment("  base address");
2355         Asm->OutStreamer->EmitSymbolValue(Base, Size);
2356       } else if (NewBase != Begin || P.second.size() > 1) {
2357         // Only use a base address if
2358         //  * the existing pool address doesn't match (NewBase != Begin)
2359         //  * or, there's more than one entry to share the base address
2360         Base = NewBase;
2361         BaseIsSet = true;
2362         Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx));
2363         Asm->emitInt8(BaseAddressx);
2364         Asm->OutStreamer->AddComment("  base address index");
2365         Asm->EmitULEB128(DD.getAddressPool().getIndex(Base));
2366       }
2367     } else if (BaseIsSet && !UseDwarf5) {
2368       BaseIsSet = false;
2369       assert(!Base);
2370       Asm->OutStreamer->EmitIntValue(-1, Size);
2371       Asm->OutStreamer->EmitIntValue(0, Size);
2372     }
2373 
2374     for (const auto *RS : P.second) {
2375       const MCSymbol *Begin = RS->Begin;
2376       const MCSymbol *End = RS->End;
2377       assert(Begin && "Range without a begin symbol?");
2378       assert(End && "Range without an end symbol?");
2379       if (Base) {
2380         if (UseDwarf5) {
2381           // Emit offset_pair when we have a base.
2382           Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair));
2383           Asm->emitInt8(OffsetPair);
2384           Asm->OutStreamer->AddComment("  starting offset");
2385           Asm->EmitLabelDifferenceAsULEB128(Begin, Base);
2386           Asm->OutStreamer->AddComment("  ending offset");
2387           Asm->EmitLabelDifferenceAsULEB128(End, Base);
2388         } else {
2389           Asm->EmitLabelDifference(Begin, Base, Size);
2390           Asm->EmitLabelDifference(End, Base, Size);
2391         }
2392       } else if (UseDwarf5) {
2393         Asm->OutStreamer->AddComment(StringifyEnum(StartxLength));
2394         Asm->emitInt8(StartxLength);
2395         Asm->OutStreamer->AddComment("  start index");
2396         Asm->EmitULEB128(DD.getAddressPool().getIndex(Begin));
2397         Asm->OutStreamer->AddComment("  length");
2398         Asm->EmitLabelDifferenceAsULEB128(End, Begin);
2399       } else {
2400         Asm->OutStreamer->EmitSymbolValue(Begin, Size);
2401         Asm->OutStreamer->EmitSymbolValue(End, Size);
2402       }
2403       EmitPayload(*RS);
2404     }
2405   }
2406 
2407   if (UseDwarf5) {
2408     Asm->OutStreamer->AddComment(StringifyEnum(EndOfList));
2409     Asm->emitInt8(EndOfList);
2410   } else {
2411     // Terminate the list with two 0 values.
2412     Asm->OutStreamer->EmitIntValue(0, Size);
2413     Asm->OutStreamer->EmitIntValue(0, Size);
2414   }
2415 }
2416 
2417 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) {
2418   emitRangeList(
2419       DD, Asm, List.Label, DD.getDebugLocs().getEntries(List), *List.CU,
2420       dwarf::DW_LLE_base_addressx, dwarf::DW_LLE_offset_pair,
2421       dwarf::DW_LLE_startx_length, dwarf::DW_LLE_end_of_list,
2422       llvm::dwarf::LocListEncodingString,
2423       /* ShouldUseBaseAddress */ true,
2424       [&](const DebugLocStream::Entry &E) {
2425         DD.emitDebugLocEntryLocation(E, List.CU);
2426       });
2427 }
2428 
2429 // Emit locations into the .debug_loc/.debug_rnglists section.
2430 void DwarfDebug::emitDebugLoc() {
2431   if (DebugLocs.getLists().empty())
2432     return;
2433 
2434   MCSymbol *TableEnd = nullptr;
2435   if (getDwarfVersion() >= 5) {
2436     Asm->OutStreamer->SwitchSection(
2437         Asm->getObjFileLowering().getDwarfLoclistsSection());
2438     TableEnd = emitLoclistsTableHeader(Asm, useSplitDwarf() ? SkeletonHolder
2439                                                             : InfoHolder);
2440   } else {
2441     Asm->OutStreamer->SwitchSection(
2442         Asm->getObjFileLowering().getDwarfLocSection());
2443   }
2444 
2445   for (const auto &List : DebugLocs.getLists())
2446     emitLocList(*this, Asm, List);
2447 
2448   if (TableEnd)
2449     Asm->OutStreamer->EmitLabel(TableEnd);
2450 }
2451 
2452 void DwarfDebug::emitDebugLocDWO() {
2453   for (const auto &List : DebugLocs.getLists()) {
2454     Asm->OutStreamer->SwitchSection(
2455         Asm->getObjFileLowering().getDwarfLocDWOSection());
2456     Asm->OutStreamer->EmitLabel(List.Label);
2457     for (const auto &Entry : DebugLocs.getEntries(List)) {
2458       // GDB only supports startx_length in pre-standard split-DWARF.
2459       // (in v5 standard loclists, it currently* /only/ supports base_address +
2460       // offset_pair, so the implementations can't really share much since they
2461       // need to use different representations)
2462       // * as of October 2018, at least
2463       // Ideally/in v5, this could use SectionLabels to reuse existing addresses
2464       // in the address pool to minimize object size/relocations.
2465       Asm->emitInt8(dwarf::DW_LLE_startx_length);
2466       unsigned idx = AddrPool.getIndex(Entry.Begin);
2467       Asm->EmitULEB128(idx);
2468       Asm->EmitLabelDifference(Entry.End, Entry.Begin, 4);
2469 
2470       emitDebugLocEntryLocation(Entry, List.CU);
2471     }
2472     Asm->emitInt8(dwarf::DW_LLE_end_of_list);
2473   }
2474 }
2475 
2476 struct ArangeSpan {
2477   const MCSymbol *Start, *End;
2478 };
2479 
2480 // Emit a debug aranges section, containing a CU lookup for any
2481 // address we can tie back to a CU.
2482 void DwarfDebug::emitDebugARanges() {
2483   // Provides a unique id per text section.
2484   MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap;
2485 
2486   // Filter labels by section.
2487   for (const SymbolCU &SCU : ArangeLabels) {
2488     if (SCU.Sym->isInSection()) {
2489       // Make a note of this symbol and it's section.
2490       MCSection *Section = &SCU.Sym->getSection();
2491       if (!Section->getKind().isMetadata())
2492         SectionMap[Section].push_back(SCU);
2493     } else {
2494       // Some symbols (e.g. common/bss on mach-o) can have no section but still
2495       // appear in the output. This sucks as we rely on sections to build
2496       // arange spans. We can do it without, but it's icky.
2497       SectionMap[nullptr].push_back(SCU);
2498     }
2499   }
2500 
2501   DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans;
2502 
2503   for (auto &I : SectionMap) {
2504     MCSection *Section = I.first;
2505     SmallVector<SymbolCU, 8> &List = I.second;
2506     if (List.size() < 1)
2507       continue;
2508 
2509     // If we have no section (e.g. common), just write out
2510     // individual spans for each symbol.
2511     if (!Section) {
2512       for (const SymbolCU &Cur : List) {
2513         ArangeSpan Span;
2514         Span.Start = Cur.Sym;
2515         Span.End = nullptr;
2516         assert(Cur.CU);
2517         Spans[Cur.CU].push_back(Span);
2518       }
2519       continue;
2520     }
2521 
2522     // Sort the symbols by offset within the section.
2523     llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) {
2524       unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0;
2525       unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0;
2526 
2527       // Symbols with no order assigned should be placed at the end.
2528       // (e.g. section end labels)
2529       if (IA == 0)
2530         return false;
2531       if (IB == 0)
2532         return true;
2533       return IA < IB;
2534     });
2535 
2536     // Insert a final terminator.
2537     List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section)));
2538 
2539     // Build spans between each label.
2540     const MCSymbol *StartSym = List[0].Sym;
2541     for (size_t n = 1, e = List.size(); n < e; n++) {
2542       const SymbolCU &Prev = List[n - 1];
2543       const SymbolCU &Cur = List[n];
2544 
2545       // Try and build the longest span we can within the same CU.
2546       if (Cur.CU != Prev.CU) {
2547         ArangeSpan Span;
2548         Span.Start = StartSym;
2549         Span.End = Cur.Sym;
2550         assert(Prev.CU);
2551         Spans[Prev.CU].push_back(Span);
2552         StartSym = Cur.Sym;
2553       }
2554     }
2555   }
2556 
2557   // Start the dwarf aranges section.
2558   Asm->OutStreamer->SwitchSection(
2559       Asm->getObjFileLowering().getDwarfARangesSection());
2560 
2561   unsigned PtrSize = Asm->MAI->getCodePointerSize();
2562 
2563   // Build a list of CUs used.
2564   std::vector<DwarfCompileUnit *> CUs;
2565   for (const auto &it : Spans) {
2566     DwarfCompileUnit *CU = it.first;
2567     CUs.push_back(CU);
2568   }
2569 
2570   // Sort the CU list (again, to ensure consistent output order).
2571   llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) {
2572     return A->getUniqueID() < B->getUniqueID();
2573   });
2574 
2575   // Emit an arange table for each CU we used.
2576   for (DwarfCompileUnit *CU : CUs) {
2577     std::vector<ArangeSpan> &List = Spans[CU];
2578 
2579     // Describe the skeleton CU's offset and length, not the dwo file's.
2580     if (auto *Skel = CU->getSkeleton())
2581       CU = Skel;
2582 
2583     // Emit size of content not including length itself.
2584     unsigned ContentSize =
2585         sizeof(int16_t) + // DWARF ARange version number
2586         sizeof(int32_t) + // Offset of CU in the .debug_info section
2587         sizeof(int8_t) +  // Pointer Size (in bytes)
2588         sizeof(int8_t);   // Segment Size (in bytes)
2589 
2590     unsigned TupleSize = PtrSize * 2;
2591 
2592     // 7.20 in the Dwarf specs requires the table to be aligned to a tuple.
2593     unsigned Padding =
2594         offsetToAlignment(sizeof(int32_t) + ContentSize, Align(TupleSize));
2595 
2596     ContentSize += Padding;
2597     ContentSize += (List.size() + 1) * TupleSize;
2598 
2599     // For each compile unit, write the list of spans it covers.
2600     Asm->OutStreamer->AddComment("Length of ARange Set");
2601     Asm->emitInt32(ContentSize);
2602     Asm->OutStreamer->AddComment("DWARF Arange version number");
2603     Asm->emitInt16(dwarf::DW_ARANGES_VERSION);
2604     Asm->OutStreamer->AddComment("Offset Into Debug Info Section");
2605     emitSectionReference(*CU);
2606     Asm->OutStreamer->AddComment("Address Size (in bytes)");
2607     Asm->emitInt8(PtrSize);
2608     Asm->OutStreamer->AddComment("Segment Size (in bytes)");
2609     Asm->emitInt8(0);
2610 
2611     Asm->OutStreamer->emitFill(Padding, 0xff);
2612 
2613     for (const ArangeSpan &Span : List) {
2614       Asm->EmitLabelReference(Span.Start, PtrSize);
2615 
2616       // Calculate the size as being from the span start to it's end.
2617       if (Span.End) {
2618         Asm->EmitLabelDifference(Span.End, Span.Start, PtrSize);
2619       } else {
2620         // For symbols without an end marker (e.g. common), we
2621         // write a single arange entry containing just that one symbol.
2622         uint64_t Size = SymSize[Span.Start];
2623         if (Size == 0)
2624           Size = 1;
2625 
2626         Asm->OutStreamer->EmitIntValue(Size, PtrSize);
2627       }
2628     }
2629 
2630     Asm->OutStreamer->AddComment("ARange terminator");
2631     Asm->OutStreamer->EmitIntValue(0, PtrSize);
2632     Asm->OutStreamer->EmitIntValue(0, PtrSize);
2633   }
2634 }
2635 
2636 /// Emit a single range list. We handle both DWARF v5 and earlier.
2637 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm,
2638                           const RangeSpanList &List) {
2639   emitRangeList(DD, Asm, List.getSym(), List.getRanges(), List.getCU(),
2640                 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair,
2641                 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list,
2642                 llvm::dwarf::RangeListEncodingString,
2643                 List.getCU().getCUNode()->getRangesBaseAddress() ||
2644                     DD.getDwarfVersion() >= 5,
2645                 [](auto) {});
2646 }
2647 
2648 static void emitDebugRangesImpl(DwarfDebug &DD, AsmPrinter *Asm,
2649                                 const DwarfFile &Holder, MCSymbol *TableEnd) {
2650   for (const RangeSpanList &List : Holder.getRangeLists())
2651     emitRangeList(DD, Asm, List);
2652 
2653   if (TableEnd)
2654     Asm->OutStreamer->EmitLabel(TableEnd);
2655 }
2656 
2657 /// Emit address ranges into the .debug_ranges section or into the DWARF v5
2658 /// .debug_rnglists section.
2659 void DwarfDebug::emitDebugRanges() {
2660   if (CUMap.empty())
2661     return;
2662 
2663   const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2664 
2665   if (Holder.getRangeLists().empty())
2666     return;
2667 
2668   assert(useRangesSection());
2669   assert(llvm::none_of(CUMap, [](const decltype(CUMap)::value_type &Pair) {
2670     return Pair.second->getCUNode()->isDebugDirectivesOnly();
2671   }));
2672 
2673   // Start the dwarf ranges section.
2674   MCSymbol *TableEnd = nullptr;
2675   if (getDwarfVersion() >= 5) {
2676     Asm->OutStreamer->SwitchSection(
2677         Asm->getObjFileLowering().getDwarfRnglistsSection());
2678     TableEnd = emitRnglistsTableHeader(Asm, Holder);
2679   } else
2680     Asm->OutStreamer->SwitchSection(
2681         Asm->getObjFileLowering().getDwarfRangesSection());
2682 
2683   emitDebugRangesImpl(*this, Asm, Holder, TableEnd);
2684 }
2685 
2686 void DwarfDebug::emitDebugRangesDWO() {
2687   assert(useSplitDwarf());
2688 
2689   if (CUMap.empty())
2690     return;
2691 
2692   const auto &Holder = InfoHolder;
2693 
2694   if (Holder.getRangeLists().empty())
2695     return;
2696 
2697   assert(getDwarfVersion() >= 5);
2698   assert(useRangesSection());
2699   assert(llvm::none_of(CUMap, [](const decltype(CUMap)::value_type &Pair) {
2700     return Pair.second->getCUNode()->isDebugDirectivesOnly();
2701   }));
2702 
2703   // Start the dwarf ranges section.
2704   Asm->OutStreamer->SwitchSection(
2705       Asm->getObjFileLowering().getDwarfRnglistsDWOSection());
2706   MCSymbol *TableEnd = emitRnglistsTableHeader(Asm, Holder);
2707 
2708   emitDebugRangesImpl(*this, Asm, Holder, TableEnd);
2709 }
2710 
2711 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) {
2712   for (auto *MN : Nodes) {
2713     if (auto *M = dyn_cast<DIMacro>(MN))
2714       emitMacro(*M);
2715     else if (auto *F = dyn_cast<DIMacroFile>(MN))
2716       emitMacroFile(*F, U);
2717     else
2718       llvm_unreachable("Unexpected DI type!");
2719   }
2720 }
2721 
2722 void DwarfDebug::emitMacro(DIMacro &M) {
2723   Asm->EmitULEB128(M.getMacinfoType());
2724   Asm->EmitULEB128(M.getLine());
2725   StringRef Name = M.getName();
2726   StringRef Value = M.getValue();
2727   Asm->OutStreamer->EmitBytes(Name);
2728   if (!Value.empty()) {
2729     // There should be one space between macro name and macro value.
2730     Asm->emitInt8(' ');
2731     Asm->OutStreamer->EmitBytes(Value);
2732   }
2733   Asm->emitInt8('\0');
2734 }
2735 
2736 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) {
2737   assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file);
2738   Asm->EmitULEB128(dwarf::DW_MACINFO_start_file);
2739   Asm->EmitULEB128(F.getLine());
2740   Asm->EmitULEB128(U.getOrCreateSourceID(F.getFile()));
2741   handleMacroNodes(F.getElements(), U);
2742   Asm->EmitULEB128(dwarf::DW_MACINFO_end_file);
2743 }
2744 
2745 /// Emit macros into a debug macinfo section.
2746 void DwarfDebug::emitDebugMacinfo() {
2747   if (CUMap.empty())
2748     return;
2749 
2750   if (llvm::all_of(CUMap, [](const decltype(CUMap)::value_type &Pair) {
2751         return Pair.second->getCUNode()->isDebugDirectivesOnly();
2752       }))
2753     return;
2754 
2755   // Start the dwarf macinfo section.
2756   Asm->OutStreamer->SwitchSection(
2757       Asm->getObjFileLowering().getDwarfMacinfoSection());
2758 
2759   for (const auto &P : CUMap) {
2760     auto &TheCU = *P.second;
2761     if (TheCU.getCUNode()->isDebugDirectivesOnly())
2762       continue;
2763     auto *SkCU = TheCU.getSkeleton();
2764     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
2765     auto *CUNode = cast<DICompileUnit>(P.first);
2766     DIMacroNodeArray Macros = CUNode->getMacros();
2767     if (!Macros.empty()) {
2768       Asm->OutStreamer->EmitLabel(U.getMacroLabelBegin());
2769       handleMacroNodes(Macros, U);
2770     }
2771   }
2772   Asm->OutStreamer->AddComment("End Of Macro List Mark");
2773   Asm->emitInt8(0);
2774 }
2775 
2776 // DWARF5 Experimental Separate Dwarf emitters.
2777 
2778 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die,
2779                                   std::unique_ptr<DwarfCompileUnit> NewU) {
2780 
2781   if (!CompilationDir.empty())
2782     NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
2783 
2784   addGnuPubAttributes(*NewU, Die);
2785 
2786   SkeletonHolder.addUnit(std::move(NewU));
2787 }
2788 
2789 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) {
2790 
2791   auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
2792       CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder);
2793   DwarfCompileUnit &NewCU = *OwnedUnit;
2794   NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
2795 
2796   NewCU.initStmtList();
2797 
2798   if (useSegmentedStringOffsetsTable())
2799     NewCU.addStringOffsetsStart();
2800 
2801   initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit));
2802 
2803   return NewCU;
2804 }
2805 
2806 // Emit the .debug_info.dwo section for separated dwarf. This contains the
2807 // compile units that would normally be in debug_info.
2808 void DwarfDebug::emitDebugInfoDWO() {
2809   assert(useSplitDwarf() && "No split dwarf debug info?");
2810   // Don't emit relocations into the dwo file.
2811   InfoHolder.emitUnits(/* UseOffsets */ true);
2812 }
2813 
2814 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the
2815 // abbreviations for the .debug_info.dwo section.
2816 void DwarfDebug::emitDebugAbbrevDWO() {
2817   assert(useSplitDwarf() && "No split dwarf?");
2818   InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection());
2819 }
2820 
2821 void DwarfDebug::emitDebugLineDWO() {
2822   assert(useSplitDwarf() && "No split dwarf?");
2823   SplitTypeUnitFileTable.Emit(
2824       *Asm->OutStreamer, MCDwarfLineTableParams(),
2825       Asm->getObjFileLowering().getDwarfLineDWOSection());
2826 }
2827 
2828 void DwarfDebug::emitStringOffsetsTableHeaderDWO() {
2829   assert(useSplitDwarf() && "No split dwarf?");
2830   InfoHolder.getStringPool().emitStringOffsetsTableHeader(
2831       *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(),
2832       InfoHolder.getStringOffsetsStartSym());
2833 }
2834 
2835 // Emit the .debug_str.dwo section for separated dwarf. This contains the
2836 // string section and is identical in format to traditional .debug_str
2837 // sections.
2838 void DwarfDebug::emitDebugStrDWO() {
2839   if (useSegmentedStringOffsetsTable())
2840     emitStringOffsetsTableHeaderDWO();
2841   assert(useSplitDwarf() && "No split dwarf?");
2842   MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection();
2843   InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(),
2844                          OffSec, /* UseRelativeOffsets = */ false);
2845 }
2846 
2847 // Emit address pool.
2848 void DwarfDebug::emitDebugAddr() {
2849   AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection());
2850 }
2851 
2852 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) {
2853   if (!useSplitDwarf())
2854     return nullptr;
2855   const DICompileUnit *DIUnit = CU.getCUNode();
2856   SplitTypeUnitFileTable.maybeSetRootFile(
2857       DIUnit->getDirectory(), DIUnit->getFilename(),
2858       CU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource());
2859   return &SplitTypeUnitFileTable;
2860 }
2861 
2862 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) {
2863   MD5 Hash;
2864   Hash.update(Identifier);
2865   // ... take the least significant 8 bytes and return those. Our MD5
2866   // implementation always returns its results in little endian, so we actually
2867   // need the "high" word.
2868   MD5::MD5Result Result;
2869   Hash.final(Result);
2870   return Result.high();
2871 }
2872 
2873 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
2874                                       StringRef Identifier, DIE &RefDie,
2875                                       const DICompositeType *CTy) {
2876   // Fast path if we're building some type units and one has already used the
2877   // address pool we know we're going to throw away all this work anyway, so
2878   // don't bother building dependent types.
2879   if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed())
2880     return;
2881 
2882   auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0));
2883   if (!Ins.second) {
2884     CU.addDIETypeSignature(RefDie, Ins.first->second);
2885     return;
2886   }
2887 
2888   bool TopLevelType = TypeUnitsUnderConstruction.empty();
2889   AddrPool.resetUsedFlag();
2890 
2891   auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder,
2892                                                     getDwoLineTable(CU));
2893   DwarfTypeUnit &NewTU = *OwnedUnit;
2894   DIE &UnitDie = NewTU.getUnitDie();
2895   TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy);
2896 
2897   NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
2898                 CU.getLanguage());
2899 
2900   uint64_t Signature = makeTypeSignature(Identifier);
2901   NewTU.setTypeSignature(Signature);
2902   Ins.first->second = Signature;
2903 
2904   if (useSplitDwarf()) {
2905     MCSection *Section =
2906         getDwarfVersion() <= 4
2907             ? Asm->getObjFileLowering().getDwarfTypesDWOSection()
2908             : Asm->getObjFileLowering().getDwarfInfoDWOSection();
2909     NewTU.setSection(Section);
2910   } else {
2911     MCSection *Section =
2912         getDwarfVersion() <= 4
2913             ? Asm->getObjFileLowering().getDwarfTypesSection(Signature)
2914             : Asm->getObjFileLowering().getDwarfInfoSection(Signature);
2915     NewTU.setSection(Section);
2916     // Non-split type units reuse the compile unit's line table.
2917     CU.applyStmtList(UnitDie);
2918   }
2919 
2920   // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type
2921   // units.
2922   if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
2923     NewTU.addStringOffsetsStart();
2924 
2925   NewTU.setType(NewTU.createTypeDIE(CTy));
2926 
2927   if (TopLevelType) {
2928     auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction);
2929     TypeUnitsUnderConstruction.clear();
2930 
2931     // Types referencing entries in the address table cannot be placed in type
2932     // units.
2933     if (AddrPool.hasBeenUsed()) {
2934 
2935       // Remove all the types built while building this type.
2936       // This is pessimistic as some of these types might not be dependent on
2937       // the type that used an address.
2938       for (const auto &TU : TypeUnitsToAdd)
2939         TypeSignatures.erase(TU.second);
2940 
2941       // Construct this type in the CU directly.
2942       // This is inefficient because all the dependent types will be rebuilt
2943       // from scratch, including building them in type units, discovering that
2944       // they depend on addresses, throwing them out and rebuilding them.
2945       CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy));
2946       return;
2947     }
2948 
2949     // If the type wasn't dependent on fission addresses, finish adding the type
2950     // and all its dependent types.
2951     for (auto &TU : TypeUnitsToAdd) {
2952       InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get());
2953       InfoHolder.emitUnit(TU.first.get(), useSplitDwarf());
2954     }
2955   }
2956   CU.addDIETypeSignature(RefDie, Signature);
2957 }
2958 
2959 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD)
2960     : DD(DD),
2961       TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)) {
2962   DD->TypeUnitsUnderConstruction.clear();
2963   assert(TypeUnitsUnderConstruction.empty() || !DD->AddrPool.hasBeenUsed());
2964 }
2965 
2966 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() {
2967   DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction);
2968   DD->AddrPool.resetUsedFlag();
2969 }
2970 
2971 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() {
2972   return NonTypeUnitContext(this);
2973 }
2974 
2975 // Add the Name along with its companion DIE to the appropriate accelerator
2976 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for
2977 // AccelTableKind::Apple, we use the table we got as an argument). If
2978 // accelerator tables are disabled, this function does nothing.
2979 template <typename DataT>
2980 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU,
2981                                   AccelTable<DataT> &AppleAccel, StringRef Name,
2982                                   const DIE &Die) {
2983   if (getAccelTableKind() == AccelTableKind::None)
2984     return;
2985 
2986   if (getAccelTableKind() != AccelTableKind::Apple &&
2987       CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default)
2988     return;
2989 
2990   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2991   DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name);
2992 
2993   switch (getAccelTableKind()) {
2994   case AccelTableKind::Apple:
2995     AppleAccel.addName(Ref, Die);
2996     break;
2997   case AccelTableKind::Dwarf:
2998     AccelDebugNames.addName(Ref, Die);
2999     break;
3000   case AccelTableKind::Default:
3001     llvm_unreachable("Default should have already been resolved.");
3002   case AccelTableKind::None:
3003     llvm_unreachable("None handled above");
3004   }
3005 }
3006 
3007 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name,
3008                               const DIE &Die) {
3009   addAccelNameImpl(CU, AccelNames, Name, Die);
3010 }
3011 
3012 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name,
3013                               const DIE &Die) {
3014   // ObjC names go only into the Apple accelerator tables.
3015   if (getAccelTableKind() == AccelTableKind::Apple)
3016     addAccelNameImpl(CU, AccelObjC, Name, Die);
3017 }
3018 
3019 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name,
3020                                    const DIE &Die) {
3021   addAccelNameImpl(CU, AccelNamespace, Name, Die);
3022 }
3023 
3024 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name,
3025                               const DIE &Die, char Flags) {
3026   addAccelNameImpl(CU, AccelTypes, Name, Die);
3027 }
3028 
3029 uint16_t DwarfDebug::getDwarfVersion() const {
3030   return Asm->OutStreamer->getContext().getDwarfVersion();
3031 }
3032 
3033 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) {
3034   return SectionLabels.find(S)->second;
3035 }
3036