1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing dwarf debug info into asm files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "DwarfDebug.h"
14 #include "ByteStreamer.h"
15 #include "DIEHash.h"
16 #include "DwarfCompileUnit.h"
17 #include "DwarfExpression.h"
18 #include "DwarfUnit.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/CodeGen/AsmPrinter.h"
24 #include "llvm/CodeGen/DIE.h"
25 #include "llvm/CodeGen/LexicalScopes.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/TargetInstrInfo.h"
31 #include "llvm/CodeGen/TargetLowering.h"
32 #include "llvm/CodeGen/TargetRegisterInfo.h"
33 #include "llvm/CodeGen/TargetSubtargetInfo.h"
34 #include "llvm/DebugInfo/DWARF/DWARFExpression.h"
35 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/MC/MCAsmInfo.h"
41 #include "llvm/MC/MCContext.h"
42 #include "llvm/MC/MCSection.h"
43 #include "llvm/MC/MCStreamer.h"
44 #include "llvm/MC/MCSymbol.h"
45 #include "llvm/MC/MCTargetOptions.h"
46 #include "llvm/MC/MachineLocation.h"
47 #include "llvm/MC/SectionKind.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/MD5.h"
54 #include "llvm/Support/MathExtras.h"
55 #include "llvm/Support/Timer.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Target/TargetLoweringObjectFile.h"
58 #include "llvm/Target/TargetMachine.h"
59 #include <algorithm>
60 #include <cstddef>
61 #include <iterator>
62 #include <string>
63 
64 using namespace llvm;
65 
66 #define DEBUG_TYPE "dwarfdebug"
67 
68 STATISTIC(NumCSParams, "Number of dbg call site params created");
69 
70 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier(
71     "use-dwarf-ranges-base-address-specifier", cl::Hidden,
72     cl::desc("Use base address specifiers in debug_ranges"), cl::init(false));
73 
74 static cl::opt<bool> GenerateARangeSection("generate-arange-section",
75                                            cl::Hidden,
76                                            cl::desc("Generate dwarf aranges"),
77                                            cl::init(false));
78 
79 static cl::opt<bool>
80     GenerateDwarfTypeUnits("generate-type-units", cl::Hidden,
81                            cl::desc("Generate DWARF4 type units."),
82                            cl::init(false));
83 
84 static cl::opt<bool> SplitDwarfCrossCuReferences(
85     "split-dwarf-cross-cu-references", cl::Hidden,
86     cl::desc("Enable cross-cu references in DWO files"), cl::init(false));
87 
88 enum DefaultOnOff { Default, Enable, Disable };
89 
90 static cl::opt<DefaultOnOff> UnknownLocations(
91     "use-unknown-locations", cl::Hidden,
92     cl::desc("Make an absence of debug location information explicit."),
93     cl::values(clEnumVal(Default, "At top of block or after label"),
94                clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")),
95     cl::init(Default));
96 
97 static cl::opt<AccelTableKind> AccelTables(
98     "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."),
99     cl::values(clEnumValN(AccelTableKind::Default, "Default",
100                           "Default for platform"),
101                clEnumValN(AccelTableKind::None, "Disable", "Disabled."),
102                clEnumValN(AccelTableKind::Apple, "Apple", "Apple"),
103                clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")),
104     cl::init(AccelTableKind::Default));
105 
106 static cl::opt<DefaultOnOff>
107 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden,
108                  cl::desc("Use inlined strings rather than string section."),
109                  cl::values(clEnumVal(Default, "Default for platform"),
110                             clEnumVal(Enable, "Enabled"),
111                             clEnumVal(Disable, "Disabled")),
112                  cl::init(Default));
113 
114 static cl::opt<bool>
115     NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden,
116                          cl::desc("Disable emission .debug_ranges section."),
117                          cl::init(false));
118 
119 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences(
120     "dwarf-sections-as-references", cl::Hidden,
121     cl::desc("Use sections+offset as references rather than labels."),
122     cl::values(clEnumVal(Default, "Default for platform"),
123                clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
124     cl::init(Default));
125 
126 static cl::opt<bool>
127     UseGNUDebugMacro("use-gnu-debug-macro", cl::Hidden,
128                      cl::desc("Emit the GNU .debug_macro format with DWARF <5"),
129                      cl::init(false));
130 
131 static cl::opt<DefaultOnOff> DwarfOpConvert(
132     "dwarf-op-convert", cl::Hidden,
133     cl::desc("Enable use of the DWARFv5 DW_OP_convert operator"),
134     cl::values(clEnumVal(Default, "Default for platform"),
135                clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
136     cl::init(Default));
137 
138 enum LinkageNameOption {
139   DefaultLinkageNames,
140   AllLinkageNames,
141   AbstractLinkageNames
142 };
143 
144 static cl::opt<LinkageNameOption>
145     DwarfLinkageNames("dwarf-linkage-names", cl::Hidden,
146                       cl::desc("Which DWARF linkage-name attributes to emit."),
147                       cl::values(clEnumValN(DefaultLinkageNames, "Default",
148                                             "Default for platform"),
149                                  clEnumValN(AllLinkageNames, "All", "All"),
150                                  clEnumValN(AbstractLinkageNames, "Abstract",
151                                             "Abstract subprograms")),
152                       cl::init(DefaultLinkageNames));
153 
154 static cl::opt<DwarfDebug::MinimizeAddrInV5> MinimizeAddrInV5Option(
155     "minimize-addr-in-v5", cl::Hidden,
156     cl::desc("Always use DW_AT_ranges in DWARFv5 whenever it could allow more "
157              "address pool entry sharing to reduce relocations/object size"),
158     cl::values(clEnumValN(DwarfDebug::MinimizeAddrInV5::Default, "Default",
159                           "Default address minimization strategy"),
160                clEnumValN(DwarfDebug::MinimizeAddrInV5::Ranges, "Ranges",
161                           "Use rnglists for contiguous ranges if that allows "
162                           "using a pre-existing base address"),
163                clEnumValN(DwarfDebug::MinimizeAddrInV5::Expressions,
164                           "Expressions",
165                           "Use exprloc addrx+offset expressions for any "
166                           "address with a prior base address"),
167                clEnumValN(DwarfDebug::MinimizeAddrInV5::Form, "Form",
168                           "Use addrx+offset extension form for any address "
169                           "with a prior base address"),
170                clEnumValN(DwarfDebug::MinimizeAddrInV5::Disabled, "Disabled",
171                           "Stuff")),
172     cl::init(DwarfDebug::MinimizeAddrInV5::Default));
173 
174 static constexpr unsigned ULEB128PadSize = 4;
175 
176 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) {
177   getActiveStreamer().emitInt8(
178       Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op)
179                   : dwarf::OperationEncodingString(Op));
180 }
181 
182 void DebugLocDwarfExpression::emitSigned(int64_t Value) {
183   getActiveStreamer().emitSLEB128(Value, Twine(Value));
184 }
185 
186 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) {
187   getActiveStreamer().emitULEB128(Value, Twine(Value));
188 }
189 
190 void DebugLocDwarfExpression::emitData1(uint8_t Value) {
191   getActiveStreamer().emitInt8(Value, Twine(Value));
192 }
193 
194 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) {
195   assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit");
196   getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize);
197 }
198 
199 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI,
200                                               llvm::Register MachineReg) {
201   // This information is not available while emitting .debug_loc entries.
202   return false;
203 }
204 
205 void DebugLocDwarfExpression::enableTemporaryBuffer() {
206   assert(!IsBuffering && "Already buffering?");
207   if (!TmpBuf)
208     TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments);
209   IsBuffering = true;
210 }
211 
212 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; }
213 
214 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() {
215   return TmpBuf ? TmpBuf->Bytes.size() : 0;
216 }
217 
218 void DebugLocDwarfExpression::commitTemporaryBuffer() {
219   if (!TmpBuf)
220     return;
221   for (auto Byte : enumerate(TmpBuf->Bytes)) {
222     const char *Comment = (Byte.index() < TmpBuf->Comments.size())
223                               ? TmpBuf->Comments[Byte.index()].c_str()
224                               : "";
225     OutBS.emitInt8(Byte.value(), Comment);
226   }
227   TmpBuf->Bytes.clear();
228   TmpBuf->Comments.clear();
229 }
230 
231 const DIType *DbgVariable::getType() const {
232   return getVariable()->getType();
233 }
234 
235 /// Get .debug_loc entry for the instruction range starting at MI.
236 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) {
237   const DIExpression *Expr = MI->getDebugExpression();
238   const bool IsVariadic = MI->isDebugValueList();
239   assert(MI->getNumOperands() >= 3);
240   SmallVector<DbgValueLocEntry, 4> DbgValueLocEntries;
241   for (const MachineOperand &Op : MI->debug_operands()) {
242     if (Op.isReg()) {
243       MachineLocation MLoc(Op.getReg(),
244                            MI->isNonListDebugValue() && MI->isDebugOffsetImm());
245       DbgValueLocEntries.push_back(DbgValueLocEntry(MLoc));
246     } else if (Op.isTargetIndex()) {
247       DbgValueLocEntries.push_back(
248           DbgValueLocEntry(TargetIndexLocation(Op.getIndex(), Op.getOffset())));
249     } else if (Op.isImm())
250       DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getImm()));
251     else if (Op.isFPImm())
252       DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getFPImm()));
253     else if (Op.isCImm())
254       DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getCImm()));
255     else
256       llvm_unreachable("Unexpected debug operand in DBG_VALUE* instruction!");
257   }
258   return DbgValueLoc(Expr, DbgValueLocEntries, IsVariadic);
259 }
260 
261 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) {
262   assert(FrameIndexExprs.empty() && "Already initialized?");
263   assert(!ValueLoc.get() && "Already initialized?");
264 
265   assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable");
266   assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() &&
267          "Wrong inlined-at");
268 
269   ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue));
270   if (auto *E = DbgValue->getDebugExpression())
271     if (E->getNumElements())
272       FrameIndexExprs.push_back({0, E});
273 }
274 
275 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const {
276   if (FrameIndexExprs.size() == 1)
277     return FrameIndexExprs;
278 
279   assert(llvm::all_of(FrameIndexExprs,
280                       [](const FrameIndexExpr &A) {
281                         return A.Expr->isFragment();
282                       }) &&
283          "multiple FI expressions without DW_OP_LLVM_fragment");
284   llvm::sort(FrameIndexExprs,
285              [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool {
286                return A.Expr->getFragmentInfo()->OffsetInBits <
287                       B.Expr->getFragmentInfo()->OffsetInBits;
288              });
289 
290   return FrameIndexExprs;
291 }
292 
293 void DbgVariable::addMMIEntry(const DbgVariable &V) {
294   assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry");
295   assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry");
296   assert(V.getVariable() == getVariable() && "conflicting variable");
297   assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location");
298 
299   assert(!FrameIndexExprs.empty() && "Expected an MMI entry");
300   assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry");
301 
302   // FIXME: This logic should not be necessary anymore, as we now have proper
303   // deduplication. However, without it, we currently run into the assertion
304   // below, which means that we are likely dealing with broken input, i.e. two
305   // non-fragment entries for the same variable at different frame indices.
306   if (FrameIndexExprs.size()) {
307     auto *Expr = FrameIndexExprs.back().Expr;
308     if (!Expr || !Expr->isFragment())
309       return;
310   }
311 
312   for (const auto &FIE : V.FrameIndexExprs)
313     // Ignore duplicate entries.
314     if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) {
315           return FIE.FI == Other.FI && FIE.Expr == Other.Expr;
316         }))
317       FrameIndexExprs.push_back(FIE);
318 
319   assert((FrameIndexExprs.size() == 1 ||
320           llvm::all_of(FrameIndexExprs,
321                        [](FrameIndexExpr &FIE) {
322                          return FIE.Expr && FIE.Expr->isFragment();
323                        })) &&
324          "conflicting locations for variable");
325 }
326 
327 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion,
328                                             bool GenerateTypeUnits,
329                                             DebuggerKind Tuning,
330                                             const Triple &TT) {
331   // Honor an explicit request.
332   if (AccelTables != AccelTableKind::Default)
333     return AccelTables;
334 
335   // Accelerator tables with type units are currently not supported.
336   if (GenerateTypeUnits)
337     return AccelTableKind::None;
338 
339   // Accelerator tables get emitted if targetting DWARF v5 or LLDB.  DWARF v5
340   // always implies debug_names. For lower standard versions we use apple
341   // accelerator tables on apple platforms and debug_names elsewhere.
342   if (DwarfVersion >= 5)
343     return AccelTableKind::Dwarf;
344   if (Tuning == DebuggerKind::LLDB)
345     return TT.isOSBinFormatMachO() ? AccelTableKind::Apple
346                                    : AccelTableKind::Dwarf;
347   return AccelTableKind::None;
348 }
349 
350 DwarfDebug::DwarfDebug(AsmPrinter *A)
351     : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()),
352       InfoHolder(A, "info_string", DIEValueAllocator),
353       SkeletonHolder(A, "skel_string", DIEValueAllocator),
354       IsDarwin(A->TM.getTargetTriple().isOSDarwin()) {
355   const Triple &TT = Asm->TM.getTargetTriple();
356 
357   // Make sure we know our "debugger tuning".  The target option takes
358   // precedence; fall back to triple-based defaults.
359   if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default)
360     DebuggerTuning = Asm->TM.Options.DebuggerTuning;
361   else if (IsDarwin)
362     DebuggerTuning = DebuggerKind::LLDB;
363   else if (TT.isPS4CPU())
364     DebuggerTuning = DebuggerKind::SCE;
365   else if (TT.isOSAIX())
366     DebuggerTuning = DebuggerKind::DBX;
367   else
368     DebuggerTuning = DebuggerKind::GDB;
369 
370   if (DwarfInlinedStrings == Default)
371     UseInlineStrings = TT.isNVPTX() || tuneForDBX();
372   else
373     UseInlineStrings = DwarfInlinedStrings == Enable;
374 
375   UseLocSection = !TT.isNVPTX();
376 
377   HasAppleExtensionAttributes = tuneForLLDB();
378 
379   // Handle split DWARF.
380   HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty();
381 
382   // SCE defaults to linkage names only for abstract subprograms.
383   if (DwarfLinkageNames == DefaultLinkageNames)
384     UseAllLinkageNames = !tuneForSCE();
385   else
386     UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames;
387 
388   unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion;
389   unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber
390                                     : MMI->getModule()->getDwarfVersion();
391   // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2.
392   DwarfVersion =
393       TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION);
394 
395   bool Dwarf64 = DwarfVersion >= 3 && // DWARF64 was introduced in DWARFv3.
396                  TT.isArch64Bit();    // DWARF64 requires 64-bit relocations.
397 
398   // Support DWARF64
399   // 1: For ELF when requested.
400   // 2: For XCOFF64: the AIX assembler will fill in debug section lengths
401   //    according to the DWARF64 format for 64-bit assembly, so we must use
402   //    DWARF64 in the compiler too for 64-bit mode.
403   Dwarf64 &=
404       ((Asm->TM.Options.MCOptions.Dwarf64 || MMI->getModule()->isDwarf64()) &&
405        TT.isOSBinFormatELF()) ||
406       TT.isOSBinFormatXCOFF();
407 
408   if (!Dwarf64 && TT.isArch64Bit() && TT.isOSBinFormatXCOFF())
409     report_fatal_error("XCOFF requires DWARF64 for 64-bit mode!");
410 
411   UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX();
412 
413   // Use sections as references. Force for NVPTX.
414   if (DwarfSectionsAsReferences == Default)
415     UseSectionsAsReferences = TT.isNVPTX();
416   else
417     UseSectionsAsReferences = DwarfSectionsAsReferences == Enable;
418 
419   // Don't generate type units for unsupported object file formats.
420   GenerateTypeUnits = (A->TM.getTargetTriple().isOSBinFormatELF() ||
421                        A->TM.getTargetTriple().isOSBinFormatWasm()) &&
422                       GenerateDwarfTypeUnits;
423 
424   TheAccelTableKind = computeAccelTableKind(
425       DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple());
426 
427   // Work around a GDB bug. GDB doesn't support the standard opcode;
428   // SCE doesn't support GNU's; LLDB prefers the standard opcode, which
429   // is defined as of DWARF 3.
430   // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented
431   // https://sourceware.org/bugzilla/show_bug.cgi?id=11616
432   UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3;
433 
434   // GDB does not fully support the DWARF 4 representation for bitfields.
435   UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB();
436 
437   // The DWARF v5 string offsets table has - possibly shared - contributions
438   // from each compile and type unit each preceded by a header. The string
439   // offsets table used by the pre-DWARF v5 split-DWARF implementation uses
440   // a monolithic string offsets table without any header.
441   UseSegmentedStringOffsetsTable = DwarfVersion >= 5;
442 
443   // Emit call-site-param debug info for GDB and LLDB, if the target supports
444   // the debug entry values feature. It can also be enabled explicitly.
445   EmitDebugEntryValues = Asm->TM.Options.ShouldEmitDebugEntryValues();
446 
447   // It is unclear if the GCC .debug_macro extension is well-specified
448   // for split DWARF. For now, do not allow LLVM to emit it.
449   UseDebugMacroSection =
450       DwarfVersion >= 5 || (UseGNUDebugMacro && !useSplitDwarf());
451   if (DwarfOpConvert == Default)
452     EnableOpConvert = !((tuneForGDB() && useSplitDwarf()) || (tuneForLLDB() && !TT.isOSBinFormatMachO()));
453   else
454     EnableOpConvert = (DwarfOpConvert == Enable);
455 
456   // Split DWARF would benefit object size significantly by trading reductions
457   // in address pool usage for slightly increased range list encodings.
458   if (DwarfVersion >= 5) {
459     MinimizeAddr = MinimizeAddrInV5Option;
460     // FIXME: In the future, enable this by default for Split DWARF where the
461     // tradeoff is more pronounced due to being able to offload the range
462     // lists to the dwo file and shrink object files/reduce relocations there.
463     if (MinimizeAddr == MinimizeAddrInV5::Default)
464       MinimizeAddr = MinimizeAddrInV5::Disabled;
465   }
466 
467   Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion);
468   Asm->OutStreamer->getContext().setDwarfFormat(Dwarf64 ? dwarf::DWARF64
469                                                         : dwarf::DWARF32);
470 }
471 
472 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h.
473 DwarfDebug::~DwarfDebug() = default;
474 
475 static bool isObjCClass(StringRef Name) {
476   return Name.startswith("+") || Name.startswith("-");
477 }
478 
479 static bool hasObjCCategory(StringRef Name) {
480   if (!isObjCClass(Name))
481     return false;
482 
483   return Name.find(") ") != StringRef::npos;
484 }
485 
486 static void getObjCClassCategory(StringRef In, StringRef &Class,
487                                  StringRef &Category) {
488   if (!hasObjCCategory(In)) {
489     Class = In.slice(In.find('[') + 1, In.find(' '));
490     Category = "";
491     return;
492   }
493 
494   Class = In.slice(In.find('[') + 1, In.find('('));
495   Category = In.slice(In.find('[') + 1, In.find(' '));
496 }
497 
498 static StringRef getObjCMethodName(StringRef In) {
499   return In.slice(In.find(' ') + 1, In.find(']'));
500 }
501 
502 // Add the various names to the Dwarf accelerator table names.
503 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU,
504                                     const DISubprogram *SP, DIE &Die) {
505   if (getAccelTableKind() != AccelTableKind::Apple &&
506       CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None)
507     return;
508 
509   if (!SP->isDefinition())
510     return;
511 
512   if (SP->getName() != "")
513     addAccelName(CU, SP->getName(), Die);
514 
515   // If the linkage name is different than the name, go ahead and output that as
516   // well into the name table. Only do that if we are going to actually emit
517   // that name.
518   if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() &&
519       (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP)))
520     addAccelName(CU, SP->getLinkageName(), Die);
521 
522   // If this is an Objective-C selector name add it to the ObjC accelerator
523   // too.
524   if (isObjCClass(SP->getName())) {
525     StringRef Class, Category;
526     getObjCClassCategory(SP->getName(), Class, Category);
527     addAccelObjC(CU, Class, Die);
528     if (Category != "")
529       addAccelObjC(CU, Category, Die);
530     // Also add the base method name to the name table.
531     addAccelName(CU, getObjCMethodName(SP->getName()), Die);
532   }
533 }
534 
535 /// Check whether we should create a DIE for the given Scope, return true
536 /// if we don't create a DIE (the corresponding DIE is null).
537 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) {
538   if (Scope->isAbstractScope())
539     return false;
540 
541   // We don't create a DIE if there is no Range.
542   const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges();
543   if (Ranges.empty())
544     return true;
545 
546   if (Ranges.size() > 1)
547     return false;
548 
549   // We don't create a DIE if we have a single Range and the end label
550   // is null.
551   return !getLabelAfterInsn(Ranges.front().second);
552 }
553 
554 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) {
555   F(CU);
556   if (auto *SkelCU = CU.getSkeleton())
557     if (CU.getCUNode()->getSplitDebugInlining())
558       F(*SkelCU);
559 }
560 
561 bool DwarfDebug::shareAcrossDWOCUs() const {
562   return SplitDwarfCrossCuReferences;
563 }
564 
565 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU,
566                                                      LexicalScope *Scope) {
567   assert(Scope && Scope->getScopeNode());
568   assert(Scope->isAbstractScope());
569   assert(!Scope->getInlinedAt());
570 
571   auto *SP = cast<DISubprogram>(Scope->getScopeNode());
572 
573   // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
574   // was inlined from another compile unit.
575   if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining())
576     // Avoid building the original CU if it won't be used
577     SrcCU.constructAbstractSubprogramScopeDIE(Scope);
578   else {
579     auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
580     if (auto *SkelCU = CU.getSkeleton()) {
581       (shareAcrossDWOCUs() ? CU : SrcCU)
582           .constructAbstractSubprogramScopeDIE(Scope);
583       if (CU.getCUNode()->getSplitDebugInlining())
584         SkelCU->constructAbstractSubprogramScopeDIE(Scope);
585     } else
586       CU.constructAbstractSubprogramScopeDIE(Scope);
587   }
588 }
589 
590 /// Represents a parameter whose call site value can be described by applying a
591 /// debug expression to a register in the forwarded register worklist.
592 struct FwdRegParamInfo {
593   /// The described parameter register.
594   unsigned ParamReg;
595 
596   /// Debug expression that has been built up when walking through the
597   /// instruction chain that produces the parameter's value.
598   const DIExpression *Expr;
599 };
600 
601 /// Register worklist for finding call site values.
602 using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>;
603 
604 /// Append the expression \p Addition to \p Original and return the result.
605 static const DIExpression *combineDIExpressions(const DIExpression *Original,
606                                                 const DIExpression *Addition) {
607   std::vector<uint64_t> Elts = Addition->getElements().vec();
608   // Avoid multiple DW_OP_stack_values.
609   if (Original->isImplicit() && Addition->isImplicit())
610     erase_value(Elts, dwarf::DW_OP_stack_value);
611   const DIExpression *CombinedExpr =
612       (Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original;
613   return CombinedExpr;
614 }
615 
616 /// Emit call site parameter entries that are described by the given value and
617 /// debug expression.
618 template <typename ValT>
619 static void finishCallSiteParams(ValT Val, const DIExpression *Expr,
620                                  ArrayRef<FwdRegParamInfo> DescribedParams,
621                                  ParamSet &Params) {
622   for (auto Param : DescribedParams) {
623     bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0;
624 
625     // TODO: Entry value operations can currently not be combined with any
626     // other expressions, so we can't emit call site entries in those cases.
627     if (ShouldCombineExpressions && Expr->isEntryValue())
628       continue;
629 
630     // If a parameter's call site value is produced by a chain of
631     // instructions we may have already created an expression for the
632     // parameter when walking through the instructions. Append that to the
633     // base expression.
634     const DIExpression *CombinedExpr =
635         ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr)
636                                  : Expr;
637     assert((!CombinedExpr || CombinedExpr->isValid()) &&
638            "Combined debug expression is invalid");
639 
640     DbgValueLoc DbgLocVal(CombinedExpr, DbgValueLocEntry(Val));
641     DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal);
642     Params.push_back(CSParm);
643     ++NumCSParams;
644   }
645 }
646 
647 /// Add \p Reg to the worklist, if it's not already present, and mark that the
648 /// given parameter registers' values can (potentially) be described using
649 /// that register and an debug expression.
650 static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg,
651                                 const DIExpression *Expr,
652                                 ArrayRef<FwdRegParamInfo> ParamsToAdd) {
653   auto I = Worklist.insert({Reg, {}});
654   auto &ParamsForFwdReg = I.first->second;
655   for (auto Param : ParamsToAdd) {
656     assert(none_of(ParamsForFwdReg,
657                    [Param](const FwdRegParamInfo &D) {
658                      return D.ParamReg == Param.ParamReg;
659                    }) &&
660            "Same parameter described twice by forwarding reg");
661 
662     // If a parameter's call site value is produced by a chain of
663     // instructions we may have already created an expression for the
664     // parameter when walking through the instructions. Append that to the
665     // new expression.
666     const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr);
667     ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr});
668   }
669 }
670 
671 /// Interpret values loaded into registers by \p CurMI.
672 static void interpretValues(const MachineInstr *CurMI,
673                             FwdRegWorklist &ForwardedRegWorklist,
674                             ParamSet &Params) {
675 
676   const MachineFunction *MF = CurMI->getMF();
677   const DIExpression *EmptyExpr =
678       DIExpression::get(MF->getFunction().getContext(), {});
679   const auto &TRI = *MF->getSubtarget().getRegisterInfo();
680   const auto &TII = *MF->getSubtarget().getInstrInfo();
681   const auto &TLI = *MF->getSubtarget().getTargetLowering();
682 
683   // If an instruction defines more than one item in the worklist, we may run
684   // into situations where a worklist register's value is (potentially)
685   // described by the previous value of another register that is also defined
686   // by that instruction.
687   //
688   // This can for example occur in cases like this:
689   //
690   //   $r1 = mov 123
691   //   $r0, $r1 = mvrr $r1, 456
692   //   call @foo, $r0, $r1
693   //
694   // When describing $r1's value for the mvrr instruction, we need to make sure
695   // that we don't finalize an entry value for $r0, as that is dependent on the
696   // previous value of $r1 (123 rather than 456).
697   //
698   // In order to not have to distinguish between those cases when finalizing
699   // entry values, we simply postpone adding new parameter registers to the
700   // worklist, by first keeping them in this temporary container until the
701   // instruction has been handled.
702   FwdRegWorklist TmpWorklistItems;
703 
704   // If the MI is an instruction defining one or more parameters' forwarding
705   // registers, add those defines.
706   auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI,
707                                           SmallSetVector<unsigned, 4> &Defs) {
708     if (MI.isDebugInstr())
709       return;
710 
711     for (const MachineOperand &MO : MI.operands()) {
712       if (MO.isReg() && MO.isDef() &&
713           Register::isPhysicalRegister(MO.getReg())) {
714         for (auto &FwdReg : ForwardedRegWorklist)
715           if (TRI.regsOverlap(FwdReg.first, MO.getReg()))
716             Defs.insert(FwdReg.first);
717       }
718     }
719   };
720 
721   // Set of worklist registers that are defined by this instruction.
722   SmallSetVector<unsigned, 4> FwdRegDefs;
723 
724   getForwardingRegsDefinedByMI(*CurMI, FwdRegDefs);
725   if (FwdRegDefs.empty())
726     return;
727 
728   for (auto ParamFwdReg : FwdRegDefs) {
729     if (auto ParamValue = TII.describeLoadedValue(*CurMI, ParamFwdReg)) {
730       if (ParamValue->first.isImm()) {
731         int64_t Val = ParamValue->first.getImm();
732         finishCallSiteParams(Val, ParamValue->second,
733                              ForwardedRegWorklist[ParamFwdReg], Params);
734       } else if (ParamValue->first.isReg()) {
735         Register RegLoc = ParamValue->first.getReg();
736         Register SP = TLI.getStackPointerRegisterToSaveRestore();
737         Register FP = TRI.getFrameRegister(*MF);
738         bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP);
739         if (TRI.isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) {
740           MachineLocation MLoc(RegLoc, /*Indirect=*/IsSPorFP);
741           finishCallSiteParams(MLoc, ParamValue->second,
742                                ForwardedRegWorklist[ParamFwdReg], Params);
743         } else {
744           // ParamFwdReg was described by the non-callee saved register
745           // RegLoc. Mark that the call site values for the parameters are
746           // dependent on that register instead of ParamFwdReg. Since RegLoc
747           // may be a register that will be handled in this iteration, we
748           // postpone adding the items to the worklist, and instead keep them
749           // in a temporary container.
750           addToFwdRegWorklist(TmpWorklistItems, RegLoc, ParamValue->second,
751                               ForwardedRegWorklist[ParamFwdReg]);
752         }
753       }
754     }
755   }
756 
757   // Remove all registers that this instruction defines from the worklist.
758   for (auto ParamFwdReg : FwdRegDefs)
759     ForwardedRegWorklist.erase(ParamFwdReg);
760 
761   // Now that we are done handling this instruction, add items from the
762   // temporary worklist to the real one.
763   for (auto &New : TmpWorklistItems)
764     addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, New.second);
765   TmpWorklistItems.clear();
766 }
767 
768 static bool interpretNextInstr(const MachineInstr *CurMI,
769                                FwdRegWorklist &ForwardedRegWorklist,
770                                ParamSet &Params) {
771   // Skip bundle headers.
772   if (CurMI->isBundle())
773     return true;
774 
775   // If the next instruction is a call we can not interpret parameter's
776   // forwarding registers or we finished the interpretation of all
777   // parameters.
778   if (CurMI->isCall())
779     return false;
780 
781   if (ForwardedRegWorklist.empty())
782     return false;
783 
784   // Avoid NOP description.
785   if (CurMI->getNumOperands() == 0)
786     return true;
787 
788   interpretValues(CurMI, ForwardedRegWorklist, Params);
789 
790   return true;
791 }
792 
793 /// Try to interpret values loaded into registers that forward parameters
794 /// for \p CallMI. Store parameters with interpreted value into \p Params.
795 static void collectCallSiteParameters(const MachineInstr *CallMI,
796                                       ParamSet &Params) {
797   const MachineFunction *MF = CallMI->getMF();
798   const auto &CalleesMap = MF->getCallSitesInfo();
799   auto CallFwdRegsInfo = CalleesMap.find(CallMI);
800 
801   // There is no information for the call instruction.
802   if (CallFwdRegsInfo == CalleesMap.end())
803     return;
804 
805   const MachineBasicBlock *MBB = CallMI->getParent();
806 
807   // Skip the call instruction.
808   auto I = std::next(CallMI->getReverseIterator());
809 
810   FwdRegWorklist ForwardedRegWorklist;
811 
812   const DIExpression *EmptyExpr =
813       DIExpression::get(MF->getFunction().getContext(), {});
814 
815   // Add all the forwarding registers into the ForwardedRegWorklist.
816   for (const auto &ArgReg : CallFwdRegsInfo->second) {
817     bool InsertedReg =
818         ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}})
819             .second;
820     assert(InsertedReg && "Single register used to forward two arguments?");
821     (void)InsertedReg;
822   }
823 
824   // Do not emit CSInfo for undef forwarding registers.
825   for (auto &MO : CallMI->uses())
826     if (MO.isReg() && MO.isUndef())
827       ForwardedRegWorklist.erase(MO.getReg());
828 
829   // We erase, from the ForwardedRegWorklist, those forwarding registers for
830   // which we successfully describe a loaded value (by using
831   // the describeLoadedValue()). For those remaining arguments in the working
832   // list, for which we do not describe a loaded value by
833   // the describeLoadedValue(), we try to generate an entry value expression
834   // for their call site value description, if the call is within the entry MBB.
835   // TODO: Handle situations when call site parameter value can be described
836   // as the entry value within basic blocks other than the first one.
837   bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin();
838 
839   // Search for a loading value in forwarding registers inside call delay slot.
840   if (CallMI->hasDelaySlot()) {
841     auto Suc = std::next(CallMI->getIterator());
842     // Only one-instruction delay slot is supported.
843     auto BundleEnd = llvm::getBundleEnd(CallMI->getIterator());
844     (void)BundleEnd;
845     assert(std::next(Suc) == BundleEnd &&
846            "More than one instruction in call delay slot");
847     // Try to interpret value loaded by instruction.
848     if (!interpretNextInstr(&*Suc, ForwardedRegWorklist, Params))
849       return;
850   }
851 
852   // Search for a loading value in forwarding registers.
853   for (; I != MBB->rend(); ++I) {
854     // Try to interpret values loaded by instruction.
855     if (!interpretNextInstr(&*I, ForwardedRegWorklist, Params))
856       return;
857   }
858 
859   // Emit the call site parameter's value as an entry value.
860   if (ShouldTryEmitEntryVals) {
861     // Create an expression where the register's entry value is used.
862     DIExpression *EntryExpr = DIExpression::get(
863         MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1});
864     for (auto &RegEntry : ForwardedRegWorklist) {
865       MachineLocation MLoc(RegEntry.first);
866       finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params);
867     }
868   }
869 }
870 
871 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP,
872                                             DwarfCompileUnit &CU, DIE &ScopeDIE,
873                                             const MachineFunction &MF) {
874   // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if
875   // the subprogram is required to have one.
876   if (!SP.areAllCallsDescribed() || !SP.isDefinition())
877     return;
878 
879   // Use DW_AT_call_all_calls to express that call site entries are present
880   // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls
881   // because one of its requirements is not met: call site entries for
882   // optimized-out calls are elided.
883   CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls));
884 
885   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
886   assert(TII && "TargetInstrInfo not found: cannot label tail calls");
887 
888   // Delay slot support check.
889   auto delaySlotSupported = [&](const MachineInstr &MI) {
890     if (!MI.isBundledWithSucc())
891       return false;
892     auto Suc = std::next(MI.getIterator());
893     auto CallInstrBundle = getBundleStart(MI.getIterator());
894     (void)CallInstrBundle;
895     auto DelaySlotBundle = getBundleStart(Suc);
896     (void)DelaySlotBundle;
897     // Ensure that label after call is following delay slot instruction.
898     // Ex. CALL_INSTRUCTION {
899     //       DELAY_SLOT_INSTRUCTION }
900     //      LABEL_AFTER_CALL
901     assert(getLabelAfterInsn(&*CallInstrBundle) ==
902                getLabelAfterInsn(&*DelaySlotBundle) &&
903            "Call and its successor instruction don't have same label after.");
904     return true;
905   };
906 
907   // Emit call site entries for each call or tail call in the function.
908   for (const MachineBasicBlock &MBB : MF) {
909     for (const MachineInstr &MI : MBB.instrs()) {
910       // Bundles with call in them will pass the isCall() test below but do not
911       // have callee operand information so skip them here. Iterator will
912       // eventually reach the call MI.
913       if (MI.isBundle())
914         continue;
915 
916       // Skip instructions which aren't calls. Both calls and tail-calling jump
917       // instructions (e.g TAILJMPd64) are classified correctly here.
918       if (!MI.isCandidateForCallSiteEntry())
919         continue;
920 
921       // Skip instructions marked as frame setup, as they are not interesting to
922       // the user.
923       if (MI.getFlag(MachineInstr::FrameSetup))
924         continue;
925 
926       // Check if delay slot support is enabled.
927       if (MI.hasDelaySlot() && !delaySlotSupported(*&MI))
928         return;
929 
930       // If this is a direct call, find the callee's subprogram.
931       // In the case of an indirect call find the register that holds
932       // the callee.
933       const MachineOperand &CalleeOp = TII->getCalleeOperand(MI);
934       if (!CalleeOp.isGlobal() &&
935           (!CalleeOp.isReg() ||
936            !Register::isPhysicalRegister(CalleeOp.getReg())))
937         continue;
938 
939       unsigned CallReg = 0;
940       const DISubprogram *CalleeSP = nullptr;
941       const Function *CalleeDecl = nullptr;
942       if (CalleeOp.isReg()) {
943         CallReg = CalleeOp.getReg();
944         if (!CallReg)
945           continue;
946       } else {
947         CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal());
948         if (!CalleeDecl || !CalleeDecl->getSubprogram())
949           continue;
950         CalleeSP = CalleeDecl->getSubprogram();
951       }
952 
953       // TODO: Omit call site entries for runtime calls (objc_msgSend, etc).
954 
955       bool IsTail = TII->isTailCall(MI);
956 
957       // If MI is in a bundle, the label was created after the bundle since
958       // EmitFunctionBody iterates over top-level MIs. Get that top-level MI
959       // to search for that label below.
960       const MachineInstr *TopLevelCallMI =
961           MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI;
962 
963       // For non-tail calls, the return PC is needed to disambiguate paths in
964       // the call graph which could lead to some target function. For tail
965       // calls, no return PC information is needed, unless tuning for GDB in
966       // DWARF4 mode in which case we fake a return PC for compatibility.
967       const MCSymbol *PCAddr =
968           (!IsTail || CU.useGNUAnalogForDwarf5Feature())
969               ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI))
970               : nullptr;
971 
972       // For tail calls, it's necessary to record the address of the branch
973       // instruction so that the debugger can show where the tail call occurred.
974       const MCSymbol *CallAddr =
975           IsTail ? getLabelBeforeInsn(TopLevelCallMI) : nullptr;
976 
977       assert((IsTail || PCAddr) && "Non-tail call without return PC");
978 
979       LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> "
980                         << (CalleeDecl ? CalleeDecl->getName()
981                                        : StringRef(MF.getSubtarget()
982                                                        .getRegisterInfo()
983                                                        ->getName(CallReg)))
984                         << (IsTail ? " [IsTail]" : "") << "\n");
985 
986       DIE &CallSiteDIE = CU.constructCallSiteEntryDIE(
987           ScopeDIE, CalleeSP, IsTail, PCAddr, CallAddr, CallReg);
988 
989       // Optionally emit call-site-param debug info.
990       if (emitDebugEntryValues()) {
991         ParamSet Params;
992         // Try to interpret values of call site parameters.
993         collectCallSiteParameters(&MI, Params);
994         CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params);
995       }
996     }
997   }
998 }
999 
1000 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const {
1001   if (!U.hasDwarfPubSections())
1002     return;
1003 
1004   U.addFlag(D, dwarf::DW_AT_GNU_pubnames);
1005 }
1006 
1007 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit,
1008                                       DwarfCompileUnit &NewCU) {
1009   DIE &Die = NewCU.getUnitDie();
1010   StringRef FN = DIUnit->getFilename();
1011 
1012   StringRef Producer = DIUnit->getProducer();
1013   StringRef Flags = DIUnit->getFlags();
1014   if (!Flags.empty() && !useAppleExtensionAttributes()) {
1015     std::string ProducerWithFlags = Producer.str() + " " + Flags.str();
1016     NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags);
1017   } else
1018     NewCU.addString(Die, dwarf::DW_AT_producer, Producer);
1019 
1020   NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
1021                 DIUnit->getSourceLanguage());
1022   NewCU.addString(Die, dwarf::DW_AT_name, FN);
1023   StringRef SysRoot = DIUnit->getSysRoot();
1024   if (!SysRoot.empty())
1025     NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot);
1026   StringRef SDK = DIUnit->getSDK();
1027   if (!SDK.empty())
1028     NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK);
1029 
1030   // Add DW_str_offsets_base to the unit DIE, except for split units.
1031   if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
1032     NewCU.addStringOffsetsStart();
1033 
1034   if (!useSplitDwarf()) {
1035     NewCU.initStmtList();
1036 
1037     // If we're using split dwarf the compilation dir is going to be in the
1038     // skeleton CU and so we don't need to duplicate it here.
1039     if (!CompilationDir.empty())
1040       NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
1041     addGnuPubAttributes(NewCU, Die);
1042   }
1043 
1044   if (useAppleExtensionAttributes()) {
1045     if (DIUnit->isOptimized())
1046       NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized);
1047 
1048     StringRef Flags = DIUnit->getFlags();
1049     if (!Flags.empty())
1050       NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags);
1051 
1052     if (unsigned RVer = DIUnit->getRuntimeVersion())
1053       NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers,
1054                     dwarf::DW_FORM_data1, RVer);
1055   }
1056 
1057   if (DIUnit->getDWOId()) {
1058     // This CU is either a clang module DWO or a skeleton CU.
1059     NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8,
1060                   DIUnit->getDWOId());
1061     if (!DIUnit->getSplitDebugFilename().empty()) {
1062       // This is a prefabricated skeleton CU.
1063       dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
1064                                          ? dwarf::DW_AT_dwo_name
1065                                          : dwarf::DW_AT_GNU_dwo_name;
1066       NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename());
1067     }
1068   }
1069 }
1070 // Create new DwarfCompileUnit for the given metadata node with tag
1071 // DW_TAG_compile_unit.
1072 DwarfCompileUnit &
1073 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) {
1074   if (auto *CU = CUMap.lookup(DIUnit))
1075     return *CU;
1076 
1077   CompilationDir = DIUnit->getDirectory();
1078 
1079   auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
1080       InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder);
1081   DwarfCompileUnit &NewCU = *OwnedUnit;
1082   InfoHolder.addUnit(std::move(OwnedUnit));
1083 
1084   for (auto *IE : DIUnit->getImportedEntities())
1085     NewCU.addImportedEntity(IE);
1086 
1087   // LTO with assembly output shares a single line table amongst multiple CUs.
1088   // To avoid the compilation directory being ambiguous, let the line table
1089   // explicitly describe the directory of all files, never relying on the
1090   // compilation directory.
1091   if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU)
1092     Asm->OutStreamer->emitDwarfFile0Directive(
1093         CompilationDir, DIUnit->getFilename(), getMD5AsBytes(DIUnit->getFile()),
1094         DIUnit->getSource(), NewCU.getUniqueID());
1095 
1096   if (useSplitDwarf()) {
1097     NewCU.setSkeleton(constructSkeletonCU(NewCU));
1098     NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection());
1099   } else {
1100     finishUnitAttributes(DIUnit, NewCU);
1101     NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
1102   }
1103 
1104   // Create DIEs for function declarations used for call site debug info.
1105   for (auto Scope : DIUnit->getRetainedTypes())
1106     if (auto *SP = dyn_cast_or_null<DISubprogram>(Scope))
1107       NewCU.getOrCreateSubprogramDIE(SP);
1108 
1109   CUMap.insert({DIUnit, &NewCU});
1110   CUDieMap.insert({&NewCU.getUnitDie(), &NewCU});
1111   return NewCU;
1112 }
1113 
1114 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU,
1115                                                   const DIImportedEntity *N) {
1116   if (isa<DILocalScope>(N->getScope()))
1117     return;
1118   if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope()))
1119     D->addChild(TheCU.constructImportedEntityDIE(N));
1120 }
1121 
1122 /// Sort and unique GVEs by comparing their fragment offset.
1123 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &
1124 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) {
1125   llvm::sort(
1126       GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) {
1127         // Sort order: first null exprs, then exprs without fragment
1128         // info, then sort by fragment offset in bits.
1129         // FIXME: Come up with a more comprehensive comparator so
1130         // the sorting isn't non-deterministic, and so the following
1131         // std::unique call works correctly.
1132         if (!A.Expr || !B.Expr)
1133           return !!B.Expr;
1134         auto FragmentA = A.Expr->getFragmentInfo();
1135         auto FragmentB = B.Expr->getFragmentInfo();
1136         if (!FragmentA || !FragmentB)
1137           return !!FragmentB;
1138         return FragmentA->OffsetInBits < FragmentB->OffsetInBits;
1139       });
1140   GVEs.erase(std::unique(GVEs.begin(), GVEs.end(),
1141                          [](DwarfCompileUnit::GlobalExpr A,
1142                             DwarfCompileUnit::GlobalExpr B) {
1143                            return A.Expr == B.Expr;
1144                          }),
1145              GVEs.end());
1146   return GVEs;
1147 }
1148 
1149 // Emit all Dwarf sections that should come prior to the content. Create
1150 // global DIEs and emit initial debug info sections. This is invoked by
1151 // the target AsmPrinter.
1152 void DwarfDebug::beginModule(Module *M) {
1153   DebugHandlerBase::beginModule(M);
1154 
1155   if (!Asm || !MMI->hasDebugInfo())
1156     return;
1157 
1158   unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(),
1159                                        M->debug_compile_units_end());
1160   assert(NumDebugCUs > 0 && "Asm unexpectedly initialized");
1161   assert(MMI->hasDebugInfo() &&
1162          "DebugInfoAvailabilty unexpectedly not initialized");
1163   SingleCU = NumDebugCUs == 1;
1164   DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>>
1165       GVMap;
1166   for (const GlobalVariable &Global : M->globals()) {
1167     SmallVector<DIGlobalVariableExpression *, 1> GVs;
1168     Global.getDebugInfo(GVs);
1169     for (auto *GVE : GVs)
1170       GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()});
1171   }
1172 
1173   // Create the symbol that designates the start of the unit's contribution
1174   // to the string offsets table. In a split DWARF scenario, only the skeleton
1175   // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol).
1176   if (useSegmentedStringOffsetsTable())
1177     (useSplitDwarf() ? SkeletonHolder : InfoHolder)
1178         .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base"));
1179 
1180 
1181   // Create the symbols that designates the start of the DWARF v5 range list
1182   // and locations list tables. They are located past the table headers.
1183   if (getDwarfVersion() >= 5) {
1184     DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1185     Holder.setRnglistsTableBaseSym(
1186         Asm->createTempSymbol("rnglists_table_base"));
1187 
1188     if (useSplitDwarf())
1189       InfoHolder.setRnglistsTableBaseSym(
1190           Asm->createTempSymbol("rnglists_dwo_table_base"));
1191   }
1192 
1193   // Create the symbol that points to the first entry following the debug
1194   // address table (.debug_addr) header.
1195   AddrPool.setLabel(Asm->createTempSymbol("addr_table_base"));
1196   DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base"));
1197 
1198   for (DICompileUnit *CUNode : M->debug_compile_units()) {
1199     // FIXME: Move local imported entities into a list attached to the
1200     // subprogram, then this search won't be needed and a
1201     // getImportedEntities().empty() test should go below with the rest.
1202     bool HasNonLocalImportedEntities = llvm::any_of(
1203         CUNode->getImportedEntities(), [](const DIImportedEntity *IE) {
1204           return !isa<DILocalScope>(IE->getScope());
1205         });
1206 
1207     if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() &&
1208         CUNode->getRetainedTypes().empty() &&
1209         CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty())
1210       continue;
1211 
1212     DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode);
1213 
1214     // Global Variables.
1215     for (auto *GVE : CUNode->getGlobalVariables()) {
1216       // Don't bother adding DIGlobalVariableExpressions listed in the CU if we
1217       // already know about the variable and it isn't adding a constant
1218       // expression.
1219       auto &GVMapEntry = GVMap[GVE->getVariable()];
1220       auto *Expr = GVE->getExpression();
1221       if (!GVMapEntry.size() || (Expr && Expr->isConstant()))
1222         GVMapEntry.push_back({nullptr, Expr});
1223     }
1224 
1225     DenseSet<DIGlobalVariable *> Processed;
1226     for (auto *GVE : CUNode->getGlobalVariables()) {
1227       DIGlobalVariable *GV = GVE->getVariable();
1228       if (Processed.insert(GV).second)
1229         CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV]));
1230     }
1231 
1232     for (auto *Ty : CUNode->getEnumTypes()) {
1233       // The enum types array by design contains pointers to
1234       // MDNodes rather than DIRefs. Unique them here.
1235       CU.getOrCreateTypeDIE(cast<DIType>(Ty));
1236     }
1237     for (auto *Ty : CUNode->getRetainedTypes()) {
1238       // The retained types array by design contains pointers to
1239       // MDNodes rather than DIRefs. Unique them here.
1240       if (DIType *RT = dyn_cast<DIType>(Ty))
1241           // There is no point in force-emitting a forward declaration.
1242           CU.getOrCreateTypeDIE(RT);
1243     }
1244     // Emit imported_modules last so that the relevant context is already
1245     // available.
1246     for (auto *IE : CUNode->getImportedEntities())
1247       constructAndAddImportedEntityDIE(CU, IE);
1248   }
1249 }
1250 
1251 void DwarfDebug::finishEntityDefinitions() {
1252   for (const auto &Entity : ConcreteEntities) {
1253     DIE *Die = Entity->getDIE();
1254     assert(Die);
1255     // FIXME: Consider the time-space tradeoff of just storing the unit pointer
1256     // in the ConcreteEntities list, rather than looking it up again here.
1257     // DIE::getUnit isn't simple - it walks parent pointers, etc.
1258     DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie());
1259     assert(Unit);
1260     Unit->finishEntityDefinition(Entity.get());
1261   }
1262 }
1263 
1264 void DwarfDebug::finishSubprogramDefinitions() {
1265   for (const DISubprogram *SP : ProcessedSPNodes) {
1266     assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug);
1267     forBothCUs(
1268         getOrCreateDwarfCompileUnit(SP->getUnit()),
1269         [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); });
1270   }
1271 }
1272 
1273 void DwarfDebug::finalizeModuleInfo() {
1274   const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
1275 
1276   finishSubprogramDefinitions();
1277 
1278   finishEntityDefinitions();
1279 
1280   // Include the DWO file name in the hash if there's more than one CU.
1281   // This handles ThinLTO's situation where imported CUs may very easily be
1282   // duplicate with the same CU partially imported into another ThinLTO unit.
1283   StringRef DWOName;
1284   if (CUMap.size() > 1)
1285     DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile;
1286 
1287   // Handle anything that needs to be done on a per-unit basis after
1288   // all other generation.
1289   for (const auto &P : CUMap) {
1290     auto &TheCU = *P.second;
1291     if (TheCU.getCUNode()->isDebugDirectivesOnly())
1292       continue;
1293     // Emit DW_AT_containing_type attribute to connect types with their
1294     // vtable holding type.
1295     TheCU.constructContainingTypeDIEs();
1296 
1297     // Add CU specific attributes if we need to add any.
1298     // If we're splitting the dwarf out now that we've got the entire
1299     // CU then add the dwo id to it.
1300     auto *SkCU = TheCU.getSkeleton();
1301 
1302     bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty();
1303 
1304     if (HasSplitUnit) {
1305       dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
1306                                          ? dwarf::DW_AT_dwo_name
1307                                          : dwarf::DW_AT_GNU_dwo_name;
1308       finishUnitAttributes(TheCU.getCUNode(), TheCU);
1309       TheCU.addString(TheCU.getUnitDie(), attrDWOName,
1310                       Asm->TM.Options.MCOptions.SplitDwarfFile);
1311       SkCU->addString(SkCU->getUnitDie(), attrDWOName,
1312                       Asm->TM.Options.MCOptions.SplitDwarfFile);
1313       // Emit a unique identifier for this CU.
1314       uint64_t ID =
1315           DIEHash(Asm, &TheCU).computeCUSignature(DWOName, TheCU.getUnitDie());
1316       if (getDwarfVersion() >= 5) {
1317         TheCU.setDWOId(ID);
1318         SkCU->setDWOId(ID);
1319       } else {
1320         TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1321                       dwarf::DW_FORM_data8, ID);
1322         SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1323                       dwarf::DW_FORM_data8, ID);
1324       }
1325 
1326       if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) {
1327         const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol();
1328         SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base,
1329                               Sym, Sym);
1330       }
1331     } else if (SkCU) {
1332       finishUnitAttributes(SkCU->getCUNode(), *SkCU);
1333     }
1334 
1335     // If we have code split among multiple sections or non-contiguous
1336     // ranges of code then emit a DW_AT_ranges attribute on the unit that will
1337     // remain in the .o file, otherwise add a DW_AT_low_pc.
1338     // FIXME: We should use ranges allow reordering of code ala
1339     // .subsections_via_symbols in mach-o. This would mean turning on
1340     // ranges for all subprogram DIEs for mach-o.
1341     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
1342 
1343     if (unsigned NumRanges = TheCU.getRanges().size()) {
1344       if (NumRanges > 1 && useRangesSection())
1345         // A DW_AT_low_pc attribute may also be specified in combination with
1346         // DW_AT_ranges to specify the default base address for use in
1347         // location lists (see Section 2.6.2) and range lists (see Section
1348         // 2.17.3).
1349         U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0);
1350       else
1351         U.setBaseAddress(TheCU.getRanges().front().Begin);
1352       U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges());
1353     }
1354 
1355     // We don't keep track of which addresses are used in which CU so this
1356     // is a bit pessimistic under LTO.
1357     if ((HasSplitUnit || getDwarfVersion() >= 5) && !AddrPool.isEmpty())
1358       U.addAddrTableBase();
1359 
1360     if (getDwarfVersion() >= 5) {
1361       if (U.hasRangeLists())
1362         U.addRnglistsBase();
1363 
1364       if (!DebugLocs.getLists().empty()) {
1365         if (!useSplitDwarf())
1366           U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base,
1367                             DebugLocs.getSym(),
1368                             TLOF.getDwarfLoclistsSection()->getBeginSymbol());
1369       }
1370     }
1371 
1372     auto *CUNode = cast<DICompileUnit>(P.first);
1373     // If compile Unit has macros, emit "DW_AT_macro_info/DW_AT_macros"
1374     // attribute.
1375     if (CUNode->getMacros()) {
1376       if (UseDebugMacroSection) {
1377         if (useSplitDwarf())
1378           TheCU.addSectionDelta(
1379               TheCU.getUnitDie(), dwarf::DW_AT_macros, U.getMacroLabelBegin(),
1380               TLOF.getDwarfMacroDWOSection()->getBeginSymbol());
1381         else {
1382           dwarf::Attribute MacrosAttr = getDwarfVersion() >= 5
1383                                             ? dwarf::DW_AT_macros
1384                                             : dwarf::DW_AT_GNU_macros;
1385           U.addSectionLabel(U.getUnitDie(), MacrosAttr, U.getMacroLabelBegin(),
1386                             TLOF.getDwarfMacroSection()->getBeginSymbol());
1387         }
1388       } else {
1389         if (useSplitDwarf())
1390           TheCU.addSectionDelta(
1391               TheCU.getUnitDie(), dwarf::DW_AT_macro_info,
1392               U.getMacroLabelBegin(),
1393               TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol());
1394         else
1395           U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info,
1396                             U.getMacroLabelBegin(),
1397                             TLOF.getDwarfMacinfoSection()->getBeginSymbol());
1398       }
1399     }
1400     }
1401 
1402   // Emit all frontend-produced Skeleton CUs, i.e., Clang modules.
1403   for (auto *CUNode : MMI->getModule()->debug_compile_units())
1404     if (CUNode->getDWOId())
1405       getOrCreateDwarfCompileUnit(CUNode);
1406 
1407   // Compute DIE offsets and sizes.
1408   InfoHolder.computeSizeAndOffsets();
1409   if (useSplitDwarf())
1410     SkeletonHolder.computeSizeAndOffsets();
1411 }
1412 
1413 // Emit all Dwarf sections that should come after the content.
1414 void DwarfDebug::endModule() {
1415   assert(CurFn == nullptr);
1416   assert(CurMI == nullptr);
1417 
1418   for (const auto &P : CUMap) {
1419     auto &CU = *P.second;
1420     CU.createBaseTypeDIEs();
1421   }
1422 
1423   // If we aren't actually generating debug info (check beginModule -
1424   // conditionalized on the presence of the llvm.dbg.cu metadata node)
1425   if (!Asm || !MMI->hasDebugInfo())
1426     return;
1427 
1428   // Finalize the debug info for the module.
1429   finalizeModuleInfo();
1430 
1431   if (useSplitDwarf())
1432     // Emit debug_loc.dwo/debug_loclists.dwo section.
1433     emitDebugLocDWO();
1434   else
1435     // Emit debug_loc/debug_loclists section.
1436     emitDebugLoc();
1437 
1438   // Corresponding abbreviations into a abbrev section.
1439   emitAbbreviations();
1440 
1441   // Emit all the DIEs into a debug info section.
1442   emitDebugInfo();
1443 
1444   // Emit info into a debug aranges section.
1445   if (GenerateARangeSection)
1446     emitDebugARanges();
1447 
1448   // Emit info into a debug ranges section.
1449   emitDebugRanges();
1450 
1451   if (useSplitDwarf())
1452   // Emit info into a debug macinfo.dwo section.
1453     emitDebugMacinfoDWO();
1454   else
1455     // Emit info into a debug macinfo/macro section.
1456     emitDebugMacinfo();
1457 
1458   emitDebugStr();
1459 
1460   if (useSplitDwarf()) {
1461     emitDebugStrDWO();
1462     emitDebugInfoDWO();
1463     emitDebugAbbrevDWO();
1464     emitDebugLineDWO();
1465     emitDebugRangesDWO();
1466   }
1467 
1468   emitDebugAddr();
1469 
1470   // Emit info into the dwarf accelerator table sections.
1471   switch (getAccelTableKind()) {
1472   case AccelTableKind::Apple:
1473     emitAccelNames();
1474     emitAccelObjC();
1475     emitAccelNamespaces();
1476     emitAccelTypes();
1477     break;
1478   case AccelTableKind::Dwarf:
1479     emitAccelDebugNames();
1480     break;
1481   case AccelTableKind::None:
1482     break;
1483   case AccelTableKind::Default:
1484     llvm_unreachable("Default should have already been resolved.");
1485   }
1486 
1487   // Emit the pubnames and pubtypes sections if requested.
1488   emitDebugPubSections();
1489 
1490   // clean up.
1491   // FIXME: AbstractVariables.clear();
1492 }
1493 
1494 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU,
1495                                                const DINode *Node,
1496                                                const MDNode *ScopeNode) {
1497   if (CU.getExistingAbstractEntity(Node))
1498     return;
1499 
1500   CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope(
1501                                        cast<DILocalScope>(ScopeNode)));
1502 }
1503 
1504 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU,
1505     const DINode *Node, const MDNode *ScopeNode) {
1506   if (CU.getExistingAbstractEntity(Node))
1507     return;
1508 
1509   if (LexicalScope *Scope =
1510           LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode)))
1511     CU.createAbstractEntity(Node, Scope);
1512 }
1513 
1514 // Collect variable information from side table maintained by MF.
1515 void DwarfDebug::collectVariableInfoFromMFTable(
1516     DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) {
1517   SmallDenseMap<InlinedEntity, DbgVariable *> MFVars;
1518   LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n");
1519   for (const auto &VI : Asm->MF->getVariableDbgInfo()) {
1520     if (!VI.Var)
1521       continue;
1522     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1523            "Expected inlined-at fields to agree");
1524 
1525     InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt());
1526     Processed.insert(Var);
1527     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1528 
1529     // If variable scope is not found then skip this variable.
1530     if (!Scope) {
1531       LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName()
1532                         << ", no variable scope found\n");
1533       continue;
1534     }
1535 
1536     ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode());
1537     auto RegVar = std::make_unique<DbgVariable>(
1538                     cast<DILocalVariable>(Var.first), Var.second);
1539     RegVar->initializeMMI(VI.Expr, VI.Slot);
1540     LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName()
1541                       << "\n");
1542 
1543     if (DbgVariable *DbgVar = MFVars.lookup(Var))
1544       DbgVar->addMMIEntry(*RegVar);
1545     else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) {
1546       MFVars.insert({Var, RegVar.get()});
1547       ConcreteEntities.push_back(std::move(RegVar));
1548     }
1549   }
1550 }
1551 
1552 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its
1553 /// enclosing lexical scope. The check ensures there are no other instructions
1554 /// in the same lexical scope preceding the DBG_VALUE and that its range is
1555 /// either open or otherwise rolls off the end of the scope.
1556 static bool validThroughout(LexicalScopes &LScopes,
1557                             const MachineInstr *DbgValue,
1558                             const MachineInstr *RangeEnd,
1559                             const InstructionOrdering &Ordering) {
1560   assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location");
1561   auto MBB = DbgValue->getParent();
1562   auto DL = DbgValue->getDebugLoc();
1563   auto *LScope = LScopes.findLexicalScope(DL);
1564   // Scope doesn't exist; this is a dead DBG_VALUE.
1565   if (!LScope)
1566     return false;
1567   auto &LSRange = LScope->getRanges();
1568   if (LSRange.size() == 0)
1569     return false;
1570 
1571   const MachineInstr *LScopeBegin = LSRange.front().first;
1572   // If the scope starts before the DBG_VALUE then we may have a negative
1573   // result. Otherwise the location is live coming into the scope and we
1574   // can skip the following checks.
1575   if (!Ordering.isBefore(DbgValue, LScopeBegin)) {
1576     // Exit if the lexical scope begins outside of the current block.
1577     if (LScopeBegin->getParent() != MBB)
1578       return false;
1579 
1580     MachineBasicBlock::const_reverse_iterator Pred(DbgValue);
1581     for (++Pred; Pred != MBB->rend(); ++Pred) {
1582       if (Pred->getFlag(MachineInstr::FrameSetup))
1583         break;
1584       auto PredDL = Pred->getDebugLoc();
1585       if (!PredDL || Pred->isMetaInstruction())
1586         continue;
1587       // Check whether the instruction preceding the DBG_VALUE is in the same
1588       // (sub)scope as the DBG_VALUE.
1589       if (DL->getScope() == PredDL->getScope())
1590         return false;
1591       auto *PredScope = LScopes.findLexicalScope(PredDL);
1592       if (!PredScope || LScope->dominates(PredScope))
1593         return false;
1594     }
1595   }
1596 
1597   // If the range of the DBG_VALUE is open-ended, report success.
1598   if (!RangeEnd)
1599     return true;
1600 
1601   // Single, constant DBG_VALUEs in the prologue are promoted to be live
1602   // throughout the function. This is a hack, presumably for DWARF v2 and not
1603   // necessarily correct. It would be much better to use a dbg.declare instead
1604   // if we know the constant is live throughout the scope.
1605   if (MBB->pred_empty() &&
1606       all_of(DbgValue->debug_operands(),
1607              [](const MachineOperand &Op) { return Op.isImm(); }))
1608     return true;
1609 
1610   // Test if the location terminates before the end of the scope.
1611   const MachineInstr *LScopeEnd = LSRange.back().second;
1612   if (Ordering.isBefore(RangeEnd, LScopeEnd))
1613     return false;
1614 
1615   // There's a single location which starts at the scope start, and ends at or
1616   // after the scope end.
1617   return true;
1618 }
1619 
1620 /// Build the location list for all DBG_VALUEs in the function that
1621 /// describe the same variable. The resulting DebugLocEntries will have
1622 /// strict monotonically increasing begin addresses and will never
1623 /// overlap. If the resulting list has only one entry that is valid
1624 /// throughout variable's scope return true.
1625 //
1626 // See the definition of DbgValueHistoryMap::Entry for an explanation of the
1627 // different kinds of history map entries. One thing to be aware of is that if
1628 // a debug value is ended by another entry (rather than being valid until the
1629 // end of the function), that entry's instruction may or may not be included in
1630 // the range, depending on if the entry is a clobbering entry (it has an
1631 // instruction that clobbers one or more preceding locations), or if it is an
1632 // (overlapping) debug value entry. This distinction can be seen in the example
1633 // below. The first debug value is ended by the clobbering entry 2, and the
1634 // second and third debug values are ended by the overlapping debug value entry
1635 // 4.
1636 //
1637 // Input:
1638 //
1639 //   History map entries [type, end index, mi]
1640 //
1641 // 0 |      [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)]
1642 // 1 | |    [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)]
1643 // 2 | |    [Clobber, $reg0 = [...], -, -]
1644 // 3   | |  [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)]
1645 // 4        [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)]
1646 //
1647 // Output [start, end) [Value...]:
1648 //
1649 // [0-1)    [(reg0, fragment 0, 32)]
1650 // [1-3)    [(reg0, fragment 0, 32), (reg1, fragment 32, 32)]
1651 // [3-4)    [(reg1, fragment 32, 32), (123, fragment 64, 32)]
1652 // [4-)     [(@g, fragment 0, 96)]
1653 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc,
1654                                    const DbgValueHistoryMap::Entries &Entries) {
1655   using OpenRange =
1656       std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>;
1657   SmallVector<OpenRange, 4> OpenRanges;
1658   bool isSafeForSingleLocation = true;
1659   const MachineInstr *StartDebugMI = nullptr;
1660   const MachineInstr *EndMI = nullptr;
1661 
1662   for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) {
1663     const MachineInstr *Instr = EI->getInstr();
1664 
1665     // Remove all values that are no longer live.
1666     size_t Index = std::distance(EB, EI);
1667     erase_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; });
1668 
1669     // If we are dealing with a clobbering entry, this iteration will result in
1670     // a location list entry starting after the clobbering instruction.
1671     const MCSymbol *StartLabel =
1672         EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr);
1673     assert(StartLabel &&
1674            "Forgot label before/after instruction starting a range!");
1675 
1676     const MCSymbol *EndLabel;
1677     if (std::next(EI) == Entries.end()) {
1678       const MachineBasicBlock &EndMBB = Asm->MF->back();
1679       EndLabel = Asm->MBBSectionRanges[EndMBB.getSectionIDNum()].EndLabel;
1680       if (EI->isClobber())
1681         EndMI = EI->getInstr();
1682     }
1683     else if (std::next(EI)->isClobber())
1684       EndLabel = getLabelAfterInsn(std::next(EI)->getInstr());
1685     else
1686       EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr());
1687     assert(EndLabel && "Forgot label after instruction ending a range!");
1688 
1689     if (EI->isDbgValue())
1690       LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n");
1691 
1692     // If this history map entry has a debug value, add that to the list of
1693     // open ranges and check if its location is valid for a single value
1694     // location.
1695     if (EI->isDbgValue()) {
1696       // Do not add undef debug values, as they are redundant information in
1697       // the location list entries. An undef debug results in an empty location
1698       // description. If there are any non-undef fragments then padding pieces
1699       // with empty location descriptions will automatically be inserted, and if
1700       // all fragments are undef then the whole location list entry is
1701       // redundant.
1702       if (!Instr->isUndefDebugValue()) {
1703         auto Value = getDebugLocValue(Instr);
1704         OpenRanges.emplace_back(EI->getEndIndex(), Value);
1705 
1706         // TODO: Add support for single value fragment locations.
1707         if (Instr->getDebugExpression()->isFragment())
1708           isSafeForSingleLocation = false;
1709 
1710         if (!StartDebugMI)
1711           StartDebugMI = Instr;
1712       } else {
1713         isSafeForSingleLocation = false;
1714       }
1715     }
1716 
1717     // Location list entries with empty location descriptions are redundant
1718     // information in DWARF, so do not emit those.
1719     if (OpenRanges.empty())
1720       continue;
1721 
1722     // Omit entries with empty ranges as they do not have any effect in DWARF.
1723     if (StartLabel == EndLabel) {
1724       LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n");
1725       continue;
1726     }
1727 
1728     SmallVector<DbgValueLoc, 4> Values;
1729     for (auto &R : OpenRanges)
1730       Values.push_back(R.second);
1731 
1732     // With Basic block sections, it is posssible that the StartLabel and the
1733     // Instr are not in the same section.  This happens when the StartLabel is
1734     // the function begin label and the dbg value appears in a basic block
1735     // that is not the entry.  In this case, the range needs to be split to
1736     // span each individual section in the range from StartLabel to EndLabel.
1737     if (Asm->MF->hasBBSections() && StartLabel == Asm->getFunctionBegin() &&
1738         !Instr->getParent()->sameSection(&Asm->MF->front())) {
1739       const MCSymbol *BeginSectionLabel = StartLabel;
1740 
1741       for (const MachineBasicBlock &MBB : *Asm->MF) {
1742         if (MBB.isBeginSection() && &MBB != &Asm->MF->front())
1743           BeginSectionLabel = MBB.getSymbol();
1744 
1745         if (MBB.sameSection(Instr->getParent())) {
1746           DebugLoc.emplace_back(BeginSectionLabel, EndLabel, Values);
1747           break;
1748         }
1749         if (MBB.isEndSection())
1750           DebugLoc.emplace_back(BeginSectionLabel, MBB.getEndSymbol(), Values);
1751       }
1752     } else {
1753       DebugLoc.emplace_back(StartLabel, EndLabel, Values);
1754     }
1755 
1756     // Attempt to coalesce the ranges of two otherwise identical
1757     // DebugLocEntries.
1758     auto CurEntry = DebugLoc.rbegin();
1759     LLVM_DEBUG({
1760       dbgs() << CurEntry->getValues().size() << " Values:\n";
1761       for (auto &Value : CurEntry->getValues())
1762         Value.dump();
1763       dbgs() << "-----\n";
1764     });
1765 
1766     auto PrevEntry = std::next(CurEntry);
1767     if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry))
1768       DebugLoc.pop_back();
1769   }
1770 
1771   if (!isSafeForSingleLocation ||
1772       !validThroughout(LScopes, StartDebugMI, EndMI, getInstOrdering()))
1773     return false;
1774 
1775   if (DebugLoc.size() == 1)
1776     return true;
1777 
1778   if (!Asm->MF->hasBBSections())
1779     return false;
1780 
1781   // Check here to see if loclist can be merged into a single range. If not,
1782   // we must keep the split loclists per section.  This does exactly what
1783   // MergeRanges does without sections.  We don't actually merge the ranges
1784   // as the split ranges must be kept intact if this cannot be collapsed
1785   // into a single range.
1786   const MachineBasicBlock *RangeMBB = nullptr;
1787   if (DebugLoc[0].getBeginSym() == Asm->getFunctionBegin())
1788     RangeMBB = &Asm->MF->front();
1789   else
1790     RangeMBB = Entries.begin()->getInstr()->getParent();
1791   auto *CurEntry = DebugLoc.begin();
1792   auto *NextEntry = std::next(CurEntry);
1793   while (NextEntry != DebugLoc.end()) {
1794     // Get the last machine basic block of this section.
1795     while (!RangeMBB->isEndSection())
1796       RangeMBB = RangeMBB->getNextNode();
1797     if (!RangeMBB->getNextNode())
1798       return false;
1799     // CurEntry should end the current section and NextEntry should start
1800     // the next section and the Values must match for these two ranges to be
1801     // merged.
1802     if (CurEntry->getEndSym() != RangeMBB->getEndSymbol() ||
1803         NextEntry->getBeginSym() != RangeMBB->getNextNode()->getSymbol() ||
1804         CurEntry->getValues() != NextEntry->getValues())
1805       return false;
1806     RangeMBB = RangeMBB->getNextNode();
1807     CurEntry = NextEntry;
1808     NextEntry = std::next(CurEntry);
1809   }
1810   return true;
1811 }
1812 
1813 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU,
1814                                             LexicalScope &Scope,
1815                                             const DINode *Node,
1816                                             const DILocation *Location,
1817                                             const MCSymbol *Sym) {
1818   ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode());
1819   if (isa<const DILocalVariable>(Node)) {
1820     ConcreteEntities.push_back(
1821         std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node),
1822                                        Location));
1823     InfoHolder.addScopeVariable(&Scope,
1824         cast<DbgVariable>(ConcreteEntities.back().get()));
1825   } else if (isa<const DILabel>(Node)) {
1826     ConcreteEntities.push_back(
1827         std::make_unique<DbgLabel>(cast<const DILabel>(Node),
1828                                     Location, Sym));
1829     InfoHolder.addScopeLabel(&Scope,
1830         cast<DbgLabel>(ConcreteEntities.back().get()));
1831   }
1832   return ConcreteEntities.back().get();
1833 }
1834 
1835 // Find variables for each lexical scope.
1836 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU,
1837                                    const DISubprogram *SP,
1838                                    DenseSet<InlinedEntity> &Processed) {
1839   // Grab the variable info that was squirreled away in the MMI side-table.
1840   collectVariableInfoFromMFTable(TheCU, Processed);
1841 
1842   for (const auto &I : DbgValues) {
1843     InlinedEntity IV = I.first;
1844     if (Processed.count(IV))
1845       continue;
1846 
1847     // Instruction ranges, specifying where IV is accessible.
1848     const auto &HistoryMapEntries = I.second;
1849 
1850     // Try to find any non-empty variable location. Do not create a concrete
1851     // entity if there are no locations.
1852     if (!DbgValues.hasNonEmptyLocation(HistoryMapEntries))
1853       continue;
1854 
1855     LexicalScope *Scope = nullptr;
1856     const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first);
1857     if (const DILocation *IA = IV.second)
1858       Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA);
1859     else
1860       Scope = LScopes.findLexicalScope(LocalVar->getScope());
1861     // If variable scope is not found then skip this variable.
1862     if (!Scope)
1863       continue;
1864 
1865     Processed.insert(IV);
1866     DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU,
1867                                             *Scope, LocalVar, IV.second));
1868 
1869     const MachineInstr *MInsn = HistoryMapEntries.front().getInstr();
1870     assert(MInsn->isDebugValue() && "History must begin with debug value");
1871 
1872     // Check if there is a single DBG_VALUE, valid throughout the var's scope.
1873     // If the history map contains a single debug value, there may be an
1874     // additional entry which clobbers the debug value.
1875     size_t HistSize = HistoryMapEntries.size();
1876     bool SingleValueWithClobber =
1877         HistSize == 2 && HistoryMapEntries[1].isClobber();
1878     if (HistSize == 1 || SingleValueWithClobber) {
1879       const auto *End =
1880           SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr;
1881       if (validThroughout(LScopes, MInsn, End, getInstOrdering())) {
1882         RegVar->initializeDbgValue(MInsn);
1883         continue;
1884       }
1885     }
1886 
1887     // Do not emit location lists if .debug_loc secton is disabled.
1888     if (!useLocSection())
1889       continue;
1890 
1891     // Handle multiple DBG_VALUE instructions describing one variable.
1892     DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn);
1893 
1894     // Build the location list for this variable.
1895     SmallVector<DebugLocEntry, 8> Entries;
1896     bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries);
1897 
1898     // Check whether buildLocationList managed to merge all locations to one
1899     // that is valid throughout the variable's scope. If so, produce single
1900     // value location.
1901     if (isValidSingleLocation) {
1902       RegVar->initializeDbgValue(Entries[0].getValues()[0]);
1903       continue;
1904     }
1905 
1906     // If the variable has a DIBasicType, extract it.  Basic types cannot have
1907     // unique identifiers, so don't bother resolving the type with the
1908     // identifier map.
1909     const DIBasicType *BT = dyn_cast<DIBasicType>(
1910         static_cast<const Metadata *>(LocalVar->getType()));
1911 
1912     // Finalize the entry by lowering it into a DWARF bytestream.
1913     for (auto &Entry : Entries)
1914       Entry.finalize(*Asm, List, BT, TheCU);
1915   }
1916 
1917   // For each InlinedEntity collected from DBG_LABEL instructions, convert to
1918   // DWARF-related DbgLabel.
1919   for (const auto &I : DbgLabels) {
1920     InlinedEntity IL = I.first;
1921     const MachineInstr *MI = I.second;
1922     if (MI == nullptr)
1923       continue;
1924 
1925     LexicalScope *Scope = nullptr;
1926     const DILabel *Label = cast<DILabel>(IL.first);
1927     // The scope could have an extra lexical block file.
1928     const DILocalScope *LocalScope =
1929         Label->getScope()->getNonLexicalBlockFileScope();
1930     // Get inlined DILocation if it is inlined label.
1931     if (const DILocation *IA = IL.second)
1932       Scope = LScopes.findInlinedScope(LocalScope, IA);
1933     else
1934       Scope = LScopes.findLexicalScope(LocalScope);
1935     // If label scope is not found then skip this label.
1936     if (!Scope)
1937       continue;
1938 
1939     Processed.insert(IL);
1940     /// At this point, the temporary label is created.
1941     /// Save the temporary label to DbgLabel entity to get the
1942     /// actually address when generating Dwarf DIE.
1943     MCSymbol *Sym = getLabelBeforeInsn(MI);
1944     createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym);
1945   }
1946 
1947   // Collect info for variables/labels that were optimized out.
1948   for (const DINode *DN : SP->getRetainedNodes()) {
1949     if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
1950       continue;
1951     LexicalScope *Scope = nullptr;
1952     if (auto *DV = dyn_cast<DILocalVariable>(DN)) {
1953       Scope = LScopes.findLexicalScope(DV->getScope());
1954     } else if (auto *DL = dyn_cast<DILabel>(DN)) {
1955       Scope = LScopes.findLexicalScope(DL->getScope());
1956     }
1957 
1958     if (Scope)
1959       createConcreteEntity(TheCU, *Scope, DN, nullptr);
1960   }
1961 }
1962 
1963 // Process beginning of an instruction.
1964 void DwarfDebug::beginInstruction(const MachineInstr *MI) {
1965   const MachineFunction &MF = *MI->getMF();
1966   const auto *SP = MF.getFunction().getSubprogram();
1967   bool NoDebug =
1968       !SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug;
1969 
1970   // Delay slot support check.
1971   auto delaySlotSupported = [](const MachineInstr &MI) {
1972     if (!MI.isBundledWithSucc())
1973       return false;
1974     auto Suc = std::next(MI.getIterator());
1975     (void)Suc;
1976     // Ensure that delay slot instruction is successor of the call instruction.
1977     // Ex. CALL_INSTRUCTION {
1978     //        DELAY_SLOT_INSTRUCTION }
1979     assert(Suc->isBundledWithPred() &&
1980            "Call bundle instructions are out of order");
1981     return true;
1982   };
1983 
1984   // When describing calls, we need a label for the call instruction.
1985   if (!NoDebug && SP->areAllCallsDescribed() &&
1986       MI->isCandidateForCallSiteEntry(MachineInstr::AnyInBundle) &&
1987       (!MI->hasDelaySlot() || delaySlotSupported(*MI))) {
1988     const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1989     bool IsTail = TII->isTailCall(*MI);
1990     // For tail calls, we need the address of the branch instruction for
1991     // DW_AT_call_pc.
1992     if (IsTail)
1993       requestLabelBeforeInsn(MI);
1994     // For non-tail calls, we need the return address for the call for
1995     // DW_AT_call_return_pc. Under GDB tuning, this information is needed for
1996     // tail calls as well.
1997     requestLabelAfterInsn(MI);
1998   }
1999 
2000   DebugHandlerBase::beginInstruction(MI);
2001   if (!CurMI)
2002     return;
2003 
2004   if (NoDebug)
2005     return;
2006 
2007   // Check if source location changes, but ignore DBG_VALUE and CFI locations.
2008   // If the instruction is part of the function frame setup code, do not emit
2009   // any line record, as there is no correspondence with any user code.
2010   if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup))
2011     return;
2012   const DebugLoc &DL = MI->getDebugLoc();
2013   // When we emit a line-0 record, we don't update PrevInstLoc; so look at
2014   // the last line number actually emitted, to see if it was line 0.
2015   unsigned LastAsmLine =
2016       Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine();
2017 
2018   if (DL == PrevInstLoc) {
2019     // If we have an ongoing unspecified location, nothing to do here.
2020     if (!DL)
2021       return;
2022     // We have an explicit location, same as the previous location.
2023     // But we might be coming back to it after a line 0 record.
2024     if (LastAsmLine == 0 && DL.getLine() != 0) {
2025       // Reinstate the source location but not marked as a statement.
2026       const MDNode *Scope = DL.getScope();
2027       recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0);
2028     }
2029     return;
2030   }
2031 
2032   if (!DL) {
2033     // We have an unspecified location, which might want to be line 0.
2034     // If we have already emitted a line-0 record, don't repeat it.
2035     if (LastAsmLine == 0)
2036       return;
2037     // If user said Don't Do That, don't do that.
2038     if (UnknownLocations == Disable)
2039       return;
2040     // See if we have a reason to emit a line-0 record now.
2041     // Reasons to emit a line-0 record include:
2042     // - User asked for it (UnknownLocations).
2043     // - Instruction has a label, so it's referenced from somewhere else,
2044     //   possibly debug information; we want it to have a source location.
2045     // - Instruction is at the top of a block; we don't want to inherit the
2046     //   location from the physically previous (maybe unrelated) block.
2047     if (UnknownLocations == Enable || PrevLabel ||
2048         (PrevInstBB && PrevInstBB != MI->getParent())) {
2049       // Preserve the file and column numbers, if we can, to save space in
2050       // the encoded line table.
2051       // Do not update PrevInstLoc, it remembers the last non-0 line.
2052       const MDNode *Scope = nullptr;
2053       unsigned Column = 0;
2054       if (PrevInstLoc) {
2055         Scope = PrevInstLoc.getScope();
2056         Column = PrevInstLoc.getCol();
2057       }
2058       recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0);
2059     }
2060     return;
2061   }
2062 
2063   // We have an explicit location, different from the previous location.
2064   // Don't repeat a line-0 record, but otherwise emit the new location.
2065   // (The new location might be an explicit line 0, which we do emit.)
2066   if (DL.getLine() == 0 && LastAsmLine == 0)
2067     return;
2068   unsigned Flags = 0;
2069   if (DL == PrologEndLoc) {
2070     Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT;
2071     PrologEndLoc = DebugLoc();
2072   }
2073   // If the line changed, we call that a new statement; unless we went to
2074   // line 0 and came back, in which case it is not a new statement.
2075   unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine;
2076   if (DL.getLine() && DL.getLine() != OldLine)
2077     Flags |= DWARF2_FLAG_IS_STMT;
2078 
2079   const MDNode *Scope = DL.getScope();
2080   recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
2081 
2082   // If we're not at line 0, remember this location.
2083   if (DL.getLine())
2084     PrevInstLoc = DL;
2085 }
2086 
2087 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) {
2088   // First known non-DBG_VALUE and non-frame setup location marks
2089   // the beginning of the function body.
2090   for (const auto &MBB : *MF)
2091     for (const auto &MI : MBB)
2092       if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
2093           MI.getDebugLoc())
2094         return MI.getDebugLoc();
2095   return DebugLoc();
2096 }
2097 
2098 /// Register a source line with debug info. Returns the  unique label that was
2099 /// emitted and which provides correspondence to the source line list.
2100 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col,
2101                              const MDNode *S, unsigned Flags, unsigned CUID,
2102                              uint16_t DwarfVersion,
2103                              ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) {
2104   StringRef Fn;
2105   unsigned FileNo = 1;
2106   unsigned Discriminator = 0;
2107   if (auto *Scope = cast_or_null<DIScope>(S)) {
2108     Fn = Scope->getFilename();
2109     if (Line != 0 && DwarfVersion >= 4)
2110       if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope))
2111         Discriminator = LBF->getDiscriminator();
2112 
2113     FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID])
2114                  .getOrCreateSourceID(Scope->getFile());
2115   }
2116   Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0,
2117                                          Discriminator, Fn);
2118 }
2119 
2120 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF,
2121                                              unsigned CUID) {
2122   // Get beginning of function.
2123   if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) {
2124     // Ensure the compile unit is created if the function is called before
2125     // beginFunction().
2126     (void)getOrCreateDwarfCompileUnit(
2127         MF.getFunction().getSubprogram()->getUnit());
2128     // We'd like to list the prologue as "not statements" but GDB behaves
2129     // poorly if we do that. Revisit this with caution/GDB (7.5+) testing.
2130     const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram();
2131     ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT,
2132                        CUID, getDwarfVersion(), getUnits());
2133     return PrologEndLoc;
2134   }
2135   return DebugLoc();
2136 }
2137 
2138 // Gather pre-function debug information.  Assumes being called immediately
2139 // after the function entry point has been emitted.
2140 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) {
2141   CurFn = MF;
2142 
2143   auto *SP = MF->getFunction().getSubprogram();
2144   assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode());
2145   if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
2146     return;
2147 
2148   DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
2149 
2150   Asm->OutStreamer->getContext().setDwarfCompileUnitID(
2151       getDwarfCompileUnitIDForLineTable(CU));
2152 
2153   // Record beginning of function.
2154   PrologEndLoc = emitInitialLocDirective(
2155       *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID());
2156 }
2157 
2158 unsigned
2159 DwarfDebug::getDwarfCompileUnitIDForLineTable(const DwarfCompileUnit &CU) {
2160   // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function
2161   // belongs to so that we add to the correct per-cu line table in the
2162   // non-asm case.
2163   if (Asm->OutStreamer->hasRawTextSupport())
2164     // Use a single line table if we are generating assembly.
2165     return 0;
2166   else
2167     return CU.getUniqueID();
2168 }
2169 
2170 void DwarfDebug::skippedNonDebugFunction() {
2171   // If we don't have a subprogram for this function then there will be a hole
2172   // in the range information. Keep note of this by setting the previously used
2173   // section to nullptr.
2174   PrevCU = nullptr;
2175   CurFn = nullptr;
2176 }
2177 
2178 // Gather and emit post-function debug information.
2179 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) {
2180   const DISubprogram *SP = MF->getFunction().getSubprogram();
2181 
2182   assert(CurFn == MF &&
2183       "endFunction should be called with the same function as beginFunction");
2184 
2185   // Set DwarfDwarfCompileUnitID in MCContext to default value.
2186   Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
2187 
2188   LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
2189   assert(!FnScope || SP == FnScope->getScopeNode());
2190   DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit());
2191   if (TheCU.getCUNode()->isDebugDirectivesOnly()) {
2192     PrevLabel = nullptr;
2193     CurFn = nullptr;
2194     return;
2195   }
2196 
2197   DenseSet<InlinedEntity> Processed;
2198   collectEntityInfo(TheCU, SP, Processed);
2199 
2200   // Add the range of this function to the list of ranges for the CU.
2201   // With basic block sections, add ranges for all basic block sections.
2202   for (const auto &R : Asm->MBBSectionRanges)
2203     TheCU.addRange({R.second.BeginLabel, R.second.EndLabel});
2204 
2205   // Under -gmlt, skip building the subprogram if there are no inlined
2206   // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram
2207   // is still needed as we need its source location.
2208   if (!TheCU.getCUNode()->getDebugInfoForProfiling() &&
2209       TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly &&
2210       LScopes.getAbstractScopesList().empty() && !IsDarwin) {
2211     assert(InfoHolder.getScopeVariables().empty());
2212     PrevLabel = nullptr;
2213     CurFn = nullptr;
2214     return;
2215   }
2216 
2217 #ifndef NDEBUG
2218   size_t NumAbstractScopes = LScopes.getAbstractScopesList().size();
2219 #endif
2220   // Construct abstract scopes.
2221   for (LexicalScope *AScope : LScopes.getAbstractScopesList()) {
2222     auto *SP = cast<DISubprogram>(AScope->getScopeNode());
2223     for (const DINode *DN : SP->getRetainedNodes()) {
2224       if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
2225         continue;
2226 
2227       const MDNode *Scope = nullptr;
2228       if (auto *DV = dyn_cast<DILocalVariable>(DN))
2229         Scope = DV->getScope();
2230       else if (auto *DL = dyn_cast<DILabel>(DN))
2231         Scope = DL->getScope();
2232       else
2233         llvm_unreachable("Unexpected DI type!");
2234 
2235       // Collect info for variables/labels that were optimized out.
2236       ensureAbstractEntityIsCreated(TheCU, DN, Scope);
2237       assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes
2238              && "ensureAbstractEntityIsCreated inserted abstract scopes");
2239     }
2240     constructAbstractSubprogramScopeDIE(TheCU, AScope);
2241   }
2242 
2243   ProcessedSPNodes.insert(SP);
2244   DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope);
2245   if (auto *SkelCU = TheCU.getSkeleton())
2246     if (!LScopes.getAbstractScopesList().empty() &&
2247         TheCU.getCUNode()->getSplitDebugInlining())
2248       SkelCU->constructSubprogramScopeDIE(SP, FnScope);
2249 
2250   // Construct call site entries.
2251   constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF);
2252 
2253   // Clear debug info
2254   // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the
2255   // DbgVariables except those that are also in AbstractVariables (since they
2256   // can be used cross-function)
2257   InfoHolder.getScopeVariables().clear();
2258   InfoHolder.getScopeLabels().clear();
2259   PrevLabel = nullptr;
2260   CurFn = nullptr;
2261 }
2262 
2263 // Register a source line with debug info. Returns the  unique label that was
2264 // emitted and which provides correspondence to the source line list.
2265 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S,
2266                                   unsigned Flags) {
2267   ::recordSourceLine(*Asm, Line, Col, S, Flags,
2268                      Asm->OutStreamer->getContext().getDwarfCompileUnitID(),
2269                      getDwarfVersion(), getUnits());
2270 }
2271 
2272 //===----------------------------------------------------------------------===//
2273 // Emit Methods
2274 //===----------------------------------------------------------------------===//
2275 
2276 // Emit the debug info section.
2277 void DwarfDebug::emitDebugInfo() {
2278   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2279   Holder.emitUnits(/* UseOffsets */ false);
2280 }
2281 
2282 // Emit the abbreviation section.
2283 void DwarfDebug::emitAbbreviations() {
2284   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2285 
2286   Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection());
2287 }
2288 
2289 void DwarfDebug::emitStringOffsetsTableHeader() {
2290   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2291   Holder.getStringPool().emitStringOffsetsTableHeader(
2292       *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(),
2293       Holder.getStringOffsetsStartSym());
2294 }
2295 
2296 template <typename AccelTableT>
2297 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section,
2298                            StringRef TableName) {
2299   Asm->OutStreamer->SwitchSection(Section);
2300 
2301   // Emit the full data.
2302   emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol());
2303 }
2304 
2305 void DwarfDebug::emitAccelDebugNames() {
2306   // Don't emit anything if we have no compilation units to index.
2307   if (getUnits().empty())
2308     return;
2309 
2310   emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits());
2311 }
2312 
2313 // Emit visible names into a hashed accelerator table section.
2314 void DwarfDebug::emitAccelNames() {
2315   emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(),
2316             "Names");
2317 }
2318 
2319 // Emit objective C classes and categories into a hashed accelerator table
2320 // section.
2321 void DwarfDebug::emitAccelObjC() {
2322   emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(),
2323             "ObjC");
2324 }
2325 
2326 // Emit namespace dies into a hashed accelerator table.
2327 void DwarfDebug::emitAccelNamespaces() {
2328   emitAccel(AccelNamespace,
2329             Asm->getObjFileLowering().getDwarfAccelNamespaceSection(),
2330             "namespac");
2331 }
2332 
2333 // Emit type dies into a hashed accelerator table.
2334 void DwarfDebug::emitAccelTypes() {
2335   emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(),
2336             "types");
2337 }
2338 
2339 // Public name handling.
2340 // The format for the various pubnames:
2341 //
2342 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU
2343 // for the DIE that is named.
2344 //
2345 // gnu pubnames - offset/index value/name tuples where the offset is the offset
2346 // into the CU and the index value is computed according to the type of value
2347 // for the DIE that is named.
2348 //
2349 // For type units the offset is the offset of the skeleton DIE. For split dwarf
2350 // it's the offset within the debug_info/debug_types dwo section, however, the
2351 // reference in the pubname header doesn't change.
2352 
2353 /// computeIndexValue - Compute the gdb index value for the DIE and CU.
2354 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU,
2355                                                         const DIE *Die) {
2356   // Entities that ended up only in a Type Unit reference the CU instead (since
2357   // the pub entry has offsets within the CU there's no real offset that can be
2358   // provided anyway). As it happens all such entities (namespaces and types,
2359   // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out
2360   // not to be true it would be necessary to persist this information from the
2361   // point at which the entry is added to the index data structure - since by
2362   // the time the index is built from that, the original type/namespace DIE in a
2363   // type unit has already been destroyed so it can't be queried for properties
2364   // like tag, etc.
2365   if (Die->getTag() == dwarf::DW_TAG_compile_unit)
2366     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE,
2367                                           dwarf::GIEL_EXTERNAL);
2368   dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC;
2369 
2370   // We could have a specification DIE that has our most of our knowledge,
2371   // look for that now.
2372   if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) {
2373     DIE &SpecDIE = SpecVal.getDIEEntry().getEntry();
2374     if (SpecDIE.findAttribute(dwarf::DW_AT_external))
2375       Linkage = dwarf::GIEL_EXTERNAL;
2376   } else if (Die->findAttribute(dwarf::DW_AT_external))
2377     Linkage = dwarf::GIEL_EXTERNAL;
2378 
2379   switch (Die->getTag()) {
2380   case dwarf::DW_TAG_class_type:
2381   case dwarf::DW_TAG_structure_type:
2382   case dwarf::DW_TAG_union_type:
2383   case dwarf::DW_TAG_enumeration_type:
2384     return dwarf::PubIndexEntryDescriptor(
2385         dwarf::GIEK_TYPE,
2386         dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage())
2387             ? dwarf::GIEL_EXTERNAL
2388             : dwarf::GIEL_STATIC);
2389   case dwarf::DW_TAG_typedef:
2390   case dwarf::DW_TAG_base_type:
2391   case dwarf::DW_TAG_subrange_type:
2392     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC);
2393   case dwarf::DW_TAG_namespace:
2394     return dwarf::GIEK_TYPE;
2395   case dwarf::DW_TAG_subprogram:
2396     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage);
2397   case dwarf::DW_TAG_variable:
2398     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage);
2399   case dwarf::DW_TAG_enumerator:
2400     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE,
2401                                           dwarf::GIEL_STATIC);
2402   default:
2403     return dwarf::GIEK_NONE;
2404   }
2405 }
2406 
2407 /// emitDebugPubSections - Emit visible names and types into debug pubnames and
2408 /// pubtypes sections.
2409 void DwarfDebug::emitDebugPubSections() {
2410   for (const auto &NU : CUMap) {
2411     DwarfCompileUnit *TheU = NU.second;
2412     if (!TheU->hasDwarfPubSections())
2413       continue;
2414 
2415     bool GnuStyle = TheU->getCUNode()->getNameTableKind() ==
2416                     DICompileUnit::DebugNameTableKind::GNU;
2417 
2418     Asm->OutStreamer->SwitchSection(
2419         GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection()
2420                  : Asm->getObjFileLowering().getDwarfPubNamesSection());
2421     emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames());
2422 
2423     Asm->OutStreamer->SwitchSection(
2424         GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection()
2425                  : Asm->getObjFileLowering().getDwarfPubTypesSection());
2426     emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes());
2427   }
2428 }
2429 
2430 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) {
2431   if (useSectionsAsReferences())
2432     Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(),
2433                          CU.getDebugSectionOffset());
2434   else
2435     Asm->emitDwarfSymbolReference(CU.getLabelBegin());
2436 }
2437 
2438 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name,
2439                                      DwarfCompileUnit *TheU,
2440                                      const StringMap<const DIE *> &Globals) {
2441   if (auto *Skeleton = TheU->getSkeleton())
2442     TheU = Skeleton;
2443 
2444   // Emit the header.
2445   MCSymbol *EndLabel = Asm->emitDwarfUnitLength(
2446       "pub" + Name, "Length of Public " + Name + " Info");
2447 
2448   Asm->OutStreamer->AddComment("DWARF Version");
2449   Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION);
2450 
2451   Asm->OutStreamer->AddComment("Offset of Compilation Unit Info");
2452   emitSectionReference(*TheU);
2453 
2454   Asm->OutStreamer->AddComment("Compilation Unit Length");
2455   Asm->emitDwarfLengthOrOffset(TheU->getLength());
2456 
2457   // Emit the pubnames for this compilation unit.
2458   for (const auto &GI : Globals) {
2459     const char *Name = GI.getKeyData();
2460     const DIE *Entity = GI.second;
2461 
2462     Asm->OutStreamer->AddComment("DIE offset");
2463     Asm->emitDwarfLengthOrOffset(Entity->getOffset());
2464 
2465     if (GnuStyle) {
2466       dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity);
2467       Asm->OutStreamer->AddComment(
2468           Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) +
2469           ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage));
2470       Asm->emitInt8(Desc.toBits());
2471     }
2472 
2473     Asm->OutStreamer->AddComment("External Name");
2474     Asm->OutStreamer->emitBytes(StringRef(Name, GI.getKeyLength() + 1));
2475   }
2476 
2477   Asm->OutStreamer->AddComment("End Mark");
2478   Asm->emitDwarfLengthOrOffset(0);
2479   Asm->OutStreamer->emitLabel(EndLabel);
2480 }
2481 
2482 /// Emit null-terminated strings into a debug str section.
2483 void DwarfDebug::emitDebugStr() {
2484   MCSection *StringOffsetsSection = nullptr;
2485   if (useSegmentedStringOffsetsTable()) {
2486     emitStringOffsetsTableHeader();
2487     StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection();
2488   }
2489   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2490   Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(),
2491                      StringOffsetsSection, /* UseRelativeOffsets = */ true);
2492 }
2493 
2494 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer,
2495                                    const DebugLocStream::Entry &Entry,
2496                                    const DwarfCompileUnit *CU) {
2497   auto &&Comments = DebugLocs.getComments(Entry);
2498   auto Comment = Comments.begin();
2499   auto End = Comments.end();
2500 
2501   // The expressions are inserted into a byte stream rather early (see
2502   // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that
2503   // need to reference a base_type DIE the offset of that DIE is not yet known.
2504   // To deal with this we instead insert a placeholder early and then extract
2505   // it here and replace it with the real reference.
2506   unsigned PtrSize = Asm->MAI->getCodePointerSize();
2507   DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(),
2508                                     DebugLocs.getBytes(Entry).size()),
2509                           Asm->getDataLayout().isLittleEndian(), PtrSize);
2510   DWARFExpression Expr(Data, PtrSize, Asm->OutContext.getDwarfFormat());
2511 
2512   using Encoding = DWARFExpression::Operation::Encoding;
2513   uint64_t Offset = 0;
2514   for (auto &Op : Expr) {
2515     assert(Op.getCode() != dwarf::DW_OP_const_type &&
2516            "3 operand ops not yet supported");
2517     Streamer.emitInt8(Op.getCode(), Comment != End ? *(Comment++) : "");
2518     Offset++;
2519     for (unsigned I = 0; I < 2; ++I) {
2520       if (Op.getDescription().Op[I] == Encoding::SizeNA)
2521         continue;
2522       if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) {
2523         uint64_t Offset =
2524             CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset();
2525         assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit");
2526         Streamer.emitULEB128(Offset, "", ULEB128PadSize);
2527         // Make sure comments stay aligned.
2528         for (unsigned J = 0; J < ULEB128PadSize; ++J)
2529           if (Comment != End)
2530             Comment++;
2531       } else {
2532         for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J)
2533           Streamer.emitInt8(Data.getData()[J], Comment != End ? *(Comment++) : "");
2534       }
2535       Offset = Op.getOperandEndOffset(I);
2536     }
2537     assert(Offset == Op.getEndOffset());
2538   }
2539 }
2540 
2541 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT,
2542                                    const DbgValueLoc &Value,
2543                                    DwarfExpression &DwarfExpr) {
2544   auto *DIExpr = Value.getExpression();
2545   DIExpressionCursor ExprCursor(DIExpr);
2546   DwarfExpr.addFragmentOffset(DIExpr);
2547 
2548   // If the DIExpr is is an Entry Value, we want to follow the same code path
2549   // regardless of whether the DBG_VALUE is variadic or not.
2550   if (DIExpr && DIExpr->isEntryValue()) {
2551     // Entry values can only be a single register with no additional DIExpr,
2552     // so just add it directly.
2553     assert(Value.getLocEntries().size() == 1);
2554     assert(Value.getLocEntries()[0].isLocation());
2555     MachineLocation Location = Value.getLocEntries()[0].getLoc();
2556     DwarfExpr.setLocation(Location, DIExpr);
2557 
2558     DwarfExpr.beginEntryValueExpression(ExprCursor);
2559 
2560     const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
2561     if (!DwarfExpr.addMachineRegExpression(TRI, ExprCursor, Location.getReg()))
2562       return;
2563     return DwarfExpr.addExpression(std::move(ExprCursor));
2564   }
2565 
2566   // Regular entry.
2567   auto EmitValueLocEntry = [&DwarfExpr, &BT,
2568                             &AP](const DbgValueLocEntry &Entry,
2569                                  DIExpressionCursor &Cursor) -> bool {
2570     if (Entry.isInt()) {
2571       if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed ||
2572                  BT->getEncoding() == dwarf::DW_ATE_signed_char))
2573         DwarfExpr.addSignedConstant(Entry.getInt());
2574       else
2575         DwarfExpr.addUnsignedConstant(Entry.getInt());
2576     } else if (Entry.isLocation()) {
2577       MachineLocation Location = Entry.getLoc();
2578       if (Location.isIndirect())
2579         DwarfExpr.setMemoryLocationKind();
2580 
2581       const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
2582       if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg()))
2583         return false;
2584     } else if (Entry.isTargetIndexLocation()) {
2585       TargetIndexLocation Loc = Entry.getTargetIndexLocation();
2586       // TODO TargetIndexLocation is a target-independent. Currently only the
2587       // WebAssembly-specific encoding is supported.
2588       assert(AP.TM.getTargetTriple().isWasm());
2589       DwarfExpr.addWasmLocation(Loc.Index, static_cast<uint64_t>(Loc.Offset));
2590     } else if (Entry.isConstantFP()) {
2591       if (AP.getDwarfVersion() >= 4 && !AP.getDwarfDebug()->tuneForSCE() &&
2592           !Cursor) {
2593         DwarfExpr.addConstantFP(Entry.getConstantFP()->getValueAPF(), AP);
2594       } else if (Entry.getConstantFP()
2595                      ->getValueAPF()
2596                      .bitcastToAPInt()
2597                      .getBitWidth() <= 64 /*bits*/) {
2598         DwarfExpr.addUnsignedConstant(
2599             Entry.getConstantFP()->getValueAPF().bitcastToAPInt());
2600       } else {
2601         LLVM_DEBUG(
2602             dbgs() << "Skipped DwarfExpression creation for ConstantFP of size"
2603                    << Entry.getConstantFP()
2604                           ->getValueAPF()
2605                           .bitcastToAPInt()
2606                           .getBitWidth()
2607                    << " bits\n");
2608         return false;
2609       }
2610     }
2611     return true;
2612   };
2613 
2614   if (!Value.isVariadic()) {
2615     if (!EmitValueLocEntry(Value.getLocEntries()[0], ExprCursor))
2616       return;
2617     DwarfExpr.addExpression(std::move(ExprCursor));
2618     return;
2619   }
2620 
2621   // If any of the location entries are registers with the value 0, then the
2622   // location is undefined.
2623   if (any_of(Value.getLocEntries(), [](const DbgValueLocEntry &Entry) {
2624         return Entry.isLocation() && !Entry.getLoc().getReg();
2625       }))
2626     return;
2627 
2628   DwarfExpr.addExpression(
2629       std::move(ExprCursor),
2630       [EmitValueLocEntry, &Value](unsigned Idx,
2631                                   DIExpressionCursor &Cursor) -> bool {
2632         return EmitValueLocEntry(Value.getLocEntries()[Idx], Cursor);
2633       });
2634 }
2635 
2636 void DebugLocEntry::finalize(const AsmPrinter &AP,
2637                              DebugLocStream::ListBuilder &List,
2638                              const DIBasicType *BT,
2639                              DwarfCompileUnit &TheCU) {
2640   assert(!Values.empty() &&
2641          "location list entries without values are redundant");
2642   assert(Begin != End && "unexpected location list entry with empty range");
2643   DebugLocStream::EntryBuilder Entry(List, Begin, End);
2644   BufferByteStreamer Streamer = Entry.getStreamer();
2645   DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU);
2646   const DbgValueLoc &Value = Values[0];
2647   if (Value.isFragment()) {
2648     // Emit all fragments that belong to the same variable and range.
2649     assert(llvm::all_of(Values, [](DbgValueLoc P) {
2650           return P.isFragment();
2651         }) && "all values are expected to be fragments");
2652     assert(llvm::is_sorted(Values) && "fragments are expected to be sorted");
2653 
2654     for (const auto &Fragment : Values)
2655       DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr);
2656 
2657   } else {
2658     assert(Values.size() == 1 && "only fragments may have >1 value");
2659     DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr);
2660   }
2661   DwarfExpr.finalize();
2662   if (DwarfExpr.TagOffset)
2663     List.setTagOffset(*DwarfExpr.TagOffset);
2664 }
2665 
2666 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry,
2667                                            const DwarfCompileUnit *CU) {
2668   // Emit the size.
2669   Asm->OutStreamer->AddComment("Loc expr size");
2670   if (getDwarfVersion() >= 5)
2671     Asm->emitULEB128(DebugLocs.getBytes(Entry).size());
2672   else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max())
2673     Asm->emitInt16(DebugLocs.getBytes(Entry).size());
2674   else {
2675     // The entry is too big to fit into 16 bit, drop it as there is nothing we
2676     // can do.
2677     Asm->emitInt16(0);
2678     return;
2679   }
2680   // Emit the entry.
2681   APByteStreamer Streamer(*Asm);
2682   emitDebugLocEntry(Streamer, Entry, CU);
2683 }
2684 
2685 // Emit the header of a DWARF 5 range list table list table. Returns the symbol
2686 // that designates the end of the table for the caller to emit when the table is
2687 // complete.
2688 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm,
2689                                          const DwarfFile &Holder) {
2690   MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer);
2691 
2692   Asm->OutStreamer->AddComment("Offset entry count");
2693   Asm->emitInt32(Holder.getRangeLists().size());
2694   Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym());
2695 
2696   for (const RangeSpanList &List : Holder.getRangeLists())
2697     Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(),
2698                              Asm->getDwarfOffsetByteSize());
2699 
2700   return TableEnd;
2701 }
2702 
2703 // Emit the header of a DWARF 5 locations list table. Returns the symbol that
2704 // designates the end of the table for the caller to emit when the table is
2705 // complete.
2706 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm,
2707                                          const DwarfDebug &DD) {
2708   MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer);
2709 
2710   const auto &DebugLocs = DD.getDebugLocs();
2711 
2712   Asm->OutStreamer->AddComment("Offset entry count");
2713   Asm->emitInt32(DebugLocs.getLists().size());
2714   Asm->OutStreamer->emitLabel(DebugLocs.getSym());
2715 
2716   for (const auto &List : DebugLocs.getLists())
2717     Asm->emitLabelDifference(List.Label, DebugLocs.getSym(),
2718                              Asm->getDwarfOffsetByteSize());
2719 
2720   return TableEnd;
2721 }
2722 
2723 template <typename Ranges, typename PayloadEmitter>
2724 static void emitRangeList(
2725     DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R,
2726     const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair,
2727     unsigned StartxLength, unsigned EndOfList,
2728     StringRef (*StringifyEnum)(unsigned),
2729     bool ShouldUseBaseAddress,
2730     PayloadEmitter EmitPayload) {
2731 
2732   auto Size = Asm->MAI->getCodePointerSize();
2733   bool UseDwarf5 = DD.getDwarfVersion() >= 5;
2734 
2735   // Emit our symbol so we can find the beginning of the range.
2736   Asm->OutStreamer->emitLabel(Sym);
2737 
2738   // Gather all the ranges that apply to the same section so they can share
2739   // a base address entry.
2740   MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges;
2741 
2742   for (const auto &Range : R)
2743     SectionRanges[&Range.Begin->getSection()].push_back(&Range);
2744 
2745   const MCSymbol *CUBase = CU.getBaseAddress();
2746   bool BaseIsSet = false;
2747   for (const auto &P : SectionRanges) {
2748     auto *Base = CUBase;
2749     if (!Base && ShouldUseBaseAddress) {
2750       const MCSymbol *Begin = P.second.front()->Begin;
2751       const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection());
2752       if (!UseDwarf5) {
2753         Base = NewBase;
2754         BaseIsSet = true;
2755         Asm->OutStreamer->emitIntValue(-1, Size);
2756         Asm->OutStreamer->AddComment("  base address");
2757         Asm->OutStreamer->emitSymbolValue(Base, Size);
2758       } else if (NewBase != Begin || P.second.size() > 1) {
2759         // Only use a base address if
2760         //  * the existing pool address doesn't match (NewBase != Begin)
2761         //  * or, there's more than one entry to share the base address
2762         Base = NewBase;
2763         BaseIsSet = true;
2764         Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx));
2765         Asm->emitInt8(BaseAddressx);
2766         Asm->OutStreamer->AddComment("  base address index");
2767         Asm->emitULEB128(DD.getAddressPool().getIndex(Base));
2768       }
2769     } else if (BaseIsSet && !UseDwarf5) {
2770       BaseIsSet = false;
2771       assert(!Base);
2772       Asm->OutStreamer->emitIntValue(-1, Size);
2773       Asm->OutStreamer->emitIntValue(0, Size);
2774     }
2775 
2776     for (const auto *RS : P.second) {
2777       const MCSymbol *Begin = RS->Begin;
2778       const MCSymbol *End = RS->End;
2779       assert(Begin && "Range without a begin symbol?");
2780       assert(End && "Range without an end symbol?");
2781       if (Base) {
2782         if (UseDwarf5) {
2783           // Emit offset_pair when we have a base.
2784           Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair));
2785           Asm->emitInt8(OffsetPair);
2786           Asm->OutStreamer->AddComment("  starting offset");
2787           Asm->emitLabelDifferenceAsULEB128(Begin, Base);
2788           Asm->OutStreamer->AddComment("  ending offset");
2789           Asm->emitLabelDifferenceAsULEB128(End, Base);
2790         } else {
2791           Asm->emitLabelDifference(Begin, Base, Size);
2792           Asm->emitLabelDifference(End, Base, Size);
2793         }
2794       } else if (UseDwarf5) {
2795         Asm->OutStreamer->AddComment(StringifyEnum(StartxLength));
2796         Asm->emitInt8(StartxLength);
2797         Asm->OutStreamer->AddComment("  start index");
2798         Asm->emitULEB128(DD.getAddressPool().getIndex(Begin));
2799         Asm->OutStreamer->AddComment("  length");
2800         Asm->emitLabelDifferenceAsULEB128(End, Begin);
2801       } else {
2802         Asm->OutStreamer->emitSymbolValue(Begin, Size);
2803         Asm->OutStreamer->emitSymbolValue(End, Size);
2804       }
2805       EmitPayload(*RS);
2806     }
2807   }
2808 
2809   if (UseDwarf5) {
2810     Asm->OutStreamer->AddComment(StringifyEnum(EndOfList));
2811     Asm->emitInt8(EndOfList);
2812   } else {
2813     // Terminate the list with two 0 values.
2814     Asm->OutStreamer->emitIntValue(0, Size);
2815     Asm->OutStreamer->emitIntValue(0, Size);
2816   }
2817 }
2818 
2819 // Handles emission of both debug_loclist / debug_loclist.dwo
2820 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) {
2821   emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List),
2822                 *List.CU, dwarf::DW_LLE_base_addressx,
2823                 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length,
2824                 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString,
2825                 /* ShouldUseBaseAddress */ true,
2826                 [&](const DebugLocStream::Entry &E) {
2827                   DD.emitDebugLocEntryLocation(E, List.CU);
2828                 });
2829 }
2830 
2831 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) {
2832   if (DebugLocs.getLists().empty())
2833     return;
2834 
2835   Asm->OutStreamer->SwitchSection(Sec);
2836 
2837   MCSymbol *TableEnd = nullptr;
2838   if (getDwarfVersion() >= 5)
2839     TableEnd = emitLoclistsTableHeader(Asm, *this);
2840 
2841   for (const auto &List : DebugLocs.getLists())
2842     emitLocList(*this, Asm, List);
2843 
2844   if (TableEnd)
2845     Asm->OutStreamer->emitLabel(TableEnd);
2846 }
2847 
2848 // Emit locations into the .debug_loc/.debug_loclists section.
2849 void DwarfDebug::emitDebugLoc() {
2850   emitDebugLocImpl(
2851       getDwarfVersion() >= 5
2852           ? Asm->getObjFileLowering().getDwarfLoclistsSection()
2853           : Asm->getObjFileLowering().getDwarfLocSection());
2854 }
2855 
2856 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section.
2857 void DwarfDebug::emitDebugLocDWO() {
2858   if (getDwarfVersion() >= 5) {
2859     emitDebugLocImpl(
2860         Asm->getObjFileLowering().getDwarfLoclistsDWOSection());
2861 
2862     return;
2863   }
2864 
2865   for (const auto &List : DebugLocs.getLists()) {
2866     Asm->OutStreamer->SwitchSection(
2867         Asm->getObjFileLowering().getDwarfLocDWOSection());
2868     Asm->OutStreamer->emitLabel(List.Label);
2869 
2870     for (const auto &Entry : DebugLocs.getEntries(List)) {
2871       // GDB only supports startx_length in pre-standard split-DWARF.
2872       // (in v5 standard loclists, it currently* /only/ supports base_address +
2873       // offset_pair, so the implementations can't really share much since they
2874       // need to use different representations)
2875       // * as of October 2018, at least
2876       //
2877       // In v5 (see emitLocList), this uses SectionLabels to reuse existing
2878       // addresses in the address pool to minimize object size/relocations.
2879       Asm->emitInt8(dwarf::DW_LLE_startx_length);
2880       unsigned idx = AddrPool.getIndex(Entry.Begin);
2881       Asm->emitULEB128(idx);
2882       // Also the pre-standard encoding is slightly different, emitting this as
2883       // an address-length entry here, but its a ULEB128 in DWARFv5 loclists.
2884       Asm->emitLabelDifference(Entry.End, Entry.Begin, 4);
2885       emitDebugLocEntryLocation(Entry, List.CU);
2886     }
2887     Asm->emitInt8(dwarf::DW_LLE_end_of_list);
2888   }
2889 }
2890 
2891 struct ArangeSpan {
2892   const MCSymbol *Start, *End;
2893 };
2894 
2895 // Emit a debug aranges section, containing a CU lookup for any
2896 // address we can tie back to a CU.
2897 void DwarfDebug::emitDebugARanges() {
2898   // Provides a unique id per text section.
2899   MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap;
2900 
2901   // Filter labels by section.
2902   for (const SymbolCU &SCU : ArangeLabels) {
2903     if (SCU.Sym->isInSection()) {
2904       // Make a note of this symbol and it's section.
2905       MCSection *Section = &SCU.Sym->getSection();
2906       if (!Section->getKind().isMetadata())
2907         SectionMap[Section].push_back(SCU);
2908     } else {
2909       // Some symbols (e.g. common/bss on mach-o) can have no section but still
2910       // appear in the output. This sucks as we rely on sections to build
2911       // arange spans. We can do it without, but it's icky.
2912       SectionMap[nullptr].push_back(SCU);
2913     }
2914   }
2915 
2916   DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans;
2917 
2918   for (auto &I : SectionMap) {
2919     MCSection *Section = I.first;
2920     SmallVector<SymbolCU, 8> &List = I.second;
2921     if (List.size() < 1)
2922       continue;
2923 
2924     // If we have no section (e.g. common), just write out
2925     // individual spans for each symbol.
2926     if (!Section) {
2927       for (const SymbolCU &Cur : List) {
2928         ArangeSpan Span;
2929         Span.Start = Cur.Sym;
2930         Span.End = nullptr;
2931         assert(Cur.CU);
2932         Spans[Cur.CU].push_back(Span);
2933       }
2934       continue;
2935     }
2936 
2937     // Sort the symbols by offset within the section.
2938     llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) {
2939       unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0;
2940       unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0;
2941 
2942       // Symbols with no order assigned should be placed at the end.
2943       // (e.g. section end labels)
2944       if (IA == 0)
2945         return false;
2946       if (IB == 0)
2947         return true;
2948       return IA < IB;
2949     });
2950 
2951     // Insert a final terminator.
2952     List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section)));
2953 
2954     // Build spans between each label.
2955     const MCSymbol *StartSym = List[0].Sym;
2956     for (size_t n = 1, e = List.size(); n < e; n++) {
2957       const SymbolCU &Prev = List[n - 1];
2958       const SymbolCU &Cur = List[n];
2959 
2960       // Try and build the longest span we can within the same CU.
2961       if (Cur.CU != Prev.CU) {
2962         ArangeSpan Span;
2963         Span.Start = StartSym;
2964         Span.End = Cur.Sym;
2965         assert(Prev.CU);
2966         Spans[Prev.CU].push_back(Span);
2967         StartSym = Cur.Sym;
2968       }
2969     }
2970   }
2971 
2972   // Start the dwarf aranges section.
2973   Asm->OutStreamer->SwitchSection(
2974       Asm->getObjFileLowering().getDwarfARangesSection());
2975 
2976   unsigned PtrSize = Asm->MAI->getCodePointerSize();
2977 
2978   // Build a list of CUs used.
2979   std::vector<DwarfCompileUnit *> CUs;
2980   for (const auto &it : Spans) {
2981     DwarfCompileUnit *CU = it.first;
2982     CUs.push_back(CU);
2983   }
2984 
2985   // Sort the CU list (again, to ensure consistent output order).
2986   llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) {
2987     return A->getUniqueID() < B->getUniqueID();
2988   });
2989 
2990   // Emit an arange table for each CU we used.
2991   for (DwarfCompileUnit *CU : CUs) {
2992     std::vector<ArangeSpan> &List = Spans[CU];
2993 
2994     // Describe the skeleton CU's offset and length, not the dwo file's.
2995     if (auto *Skel = CU->getSkeleton())
2996       CU = Skel;
2997 
2998     // Emit size of content not including length itself.
2999     unsigned ContentSize =
3000         sizeof(int16_t) +               // DWARF ARange version number
3001         Asm->getDwarfOffsetByteSize() + // Offset of CU in the .debug_info
3002                                         // section
3003         sizeof(int8_t) +                // Pointer Size (in bytes)
3004         sizeof(int8_t);                 // Segment Size (in bytes)
3005 
3006     unsigned TupleSize = PtrSize * 2;
3007 
3008     // 7.20 in the Dwarf specs requires the table to be aligned to a tuple.
3009     unsigned Padding = offsetToAlignment(
3010         Asm->getUnitLengthFieldByteSize() + ContentSize, Align(TupleSize));
3011 
3012     ContentSize += Padding;
3013     ContentSize += (List.size() + 1) * TupleSize;
3014 
3015     // For each compile unit, write the list of spans it covers.
3016     Asm->emitDwarfUnitLength(ContentSize, "Length of ARange Set");
3017     Asm->OutStreamer->AddComment("DWARF Arange version number");
3018     Asm->emitInt16(dwarf::DW_ARANGES_VERSION);
3019     Asm->OutStreamer->AddComment("Offset Into Debug Info Section");
3020     emitSectionReference(*CU);
3021     Asm->OutStreamer->AddComment("Address Size (in bytes)");
3022     Asm->emitInt8(PtrSize);
3023     Asm->OutStreamer->AddComment("Segment Size (in bytes)");
3024     Asm->emitInt8(0);
3025 
3026     Asm->OutStreamer->emitFill(Padding, 0xff);
3027 
3028     for (const ArangeSpan &Span : List) {
3029       Asm->emitLabelReference(Span.Start, PtrSize);
3030 
3031       // Calculate the size as being from the span start to it's end.
3032       if (Span.End) {
3033         Asm->emitLabelDifference(Span.End, Span.Start, PtrSize);
3034       } else {
3035         // For symbols without an end marker (e.g. common), we
3036         // write a single arange entry containing just that one symbol.
3037         uint64_t Size = SymSize[Span.Start];
3038         if (Size == 0)
3039           Size = 1;
3040 
3041         Asm->OutStreamer->emitIntValue(Size, PtrSize);
3042       }
3043     }
3044 
3045     Asm->OutStreamer->AddComment("ARange terminator");
3046     Asm->OutStreamer->emitIntValue(0, PtrSize);
3047     Asm->OutStreamer->emitIntValue(0, PtrSize);
3048   }
3049 }
3050 
3051 /// Emit a single range list. We handle both DWARF v5 and earlier.
3052 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm,
3053                           const RangeSpanList &List) {
3054   emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU,
3055                 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair,
3056                 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list,
3057                 llvm::dwarf::RangeListEncodingString,
3058                 List.CU->getCUNode()->getRangesBaseAddress() ||
3059                     DD.getDwarfVersion() >= 5,
3060                 [](auto) {});
3061 }
3062 
3063 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) {
3064   if (Holder.getRangeLists().empty())
3065     return;
3066 
3067   assert(useRangesSection());
3068   assert(!CUMap.empty());
3069   assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) {
3070     return !Pair.second->getCUNode()->isDebugDirectivesOnly();
3071   }));
3072 
3073   Asm->OutStreamer->SwitchSection(Section);
3074 
3075   MCSymbol *TableEnd = nullptr;
3076   if (getDwarfVersion() >= 5)
3077     TableEnd = emitRnglistsTableHeader(Asm, Holder);
3078 
3079   for (const RangeSpanList &List : Holder.getRangeLists())
3080     emitRangeList(*this, Asm, List);
3081 
3082   if (TableEnd)
3083     Asm->OutStreamer->emitLabel(TableEnd);
3084 }
3085 
3086 /// Emit address ranges into the .debug_ranges section or into the DWARF v5
3087 /// .debug_rnglists section.
3088 void DwarfDebug::emitDebugRanges() {
3089   const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
3090 
3091   emitDebugRangesImpl(Holder,
3092                       getDwarfVersion() >= 5
3093                           ? Asm->getObjFileLowering().getDwarfRnglistsSection()
3094                           : Asm->getObjFileLowering().getDwarfRangesSection());
3095 }
3096 
3097 void DwarfDebug::emitDebugRangesDWO() {
3098   emitDebugRangesImpl(InfoHolder,
3099                       Asm->getObjFileLowering().getDwarfRnglistsDWOSection());
3100 }
3101 
3102 /// Emit the header of a DWARF 5 macro section, or the GNU extension for
3103 /// DWARF 4.
3104 static void emitMacroHeader(AsmPrinter *Asm, const DwarfDebug &DD,
3105                             const DwarfCompileUnit &CU, uint16_t DwarfVersion) {
3106   enum HeaderFlagMask {
3107 #define HANDLE_MACRO_FLAG(ID, NAME) MACRO_FLAG_##NAME = ID,
3108 #include "llvm/BinaryFormat/Dwarf.def"
3109   };
3110   Asm->OutStreamer->AddComment("Macro information version");
3111   Asm->emitInt16(DwarfVersion >= 5 ? DwarfVersion : 4);
3112   // We emit the line offset flag unconditionally here, since line offset should
3113   // be mostly present.
3114   if (Asm->isDwarf64()) {
3115     Asm->OutStreamer->AddComment("Flags: 64 bit, debug_line_offset present");
3116     Asm->emitInt8(MACRO_FLAG_OFFSET_SIZE | MACRO_FLAG_DEBUG_LINE_OFFSET);
3117   } else {
3118     Asm->OutStreamer->AddComment("Flags: 32 bit, debug_line_offset present");
3119     Asm->emitInt8(MACRO_FLAG_DEBUG_LINE_OFFSET);
3120   }
3121   Asm->OutStreamer->AddComment("debug_line_offset");
3122   if (DD.useSplitDwarf())
3123     Asm->emitDwarfLengthOrOffset(0);
3124   else
3125     Asm->emitDwarfSymbolReference(CU.getLineTableStartSym());
3126 }
3127 
3128 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) {
3129   for (auto *MN : Nodes) {
3130     if (auto *M = dyn_cast<DIMacro>(MN))
3131       emitMacro(*M);
3132     else if (auto *F = dyn_cast<DIMacroFile>(MN))
3133       emitMacroFile(*F, U);
3134     else
3135       llvm_unreachable("Unexpected DI type!");
3136   }
3137 }
3138 
3139 void DwarfDebug::emitMacro(DIMacro &M) {
3140   StringRef Name = M.getName();
3141   StringRef Value = M.getValue();
3142 
3143   // There should be one space between the macro name and the macro value in
3144   // define entries. In undef entries, only the macro name is emitted.
3145   std::string Str = Value.empty() ? Name.str() : (Name + " " + Value).str();
3146 
3147   if (UseDebugMacroSection) {
3148     if (getDwarfVersion() >= 5) {
3149       unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define
3150                           ? dwarf::DW_MACRO_define_strx
3151                           : dwarf::DW_MACRO_undef_strx;
3152       Asm->OutStreamer->AddComment(dwarf::MacroString(Type));
3153       Asm->emitULEB128(Type);
3154       Asm->OutStreamer->AddComment("Line Number");
3155       Asm->emitULEB128(M.getLine());
3156       Asm->OutStreamer->AddComment("Macro String");
3157       Asm->emitULEB128(
3158           InfoHolder.getStringPool().getIndexedEntry(*Asm, Str).getIndex());
3159     } else {
3160       unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define
3161                           ? dwarf::DW_MACRO_GNU_define_indirect
3162                           : dwarf::DW_MACRO_GNU_undef_indirect;
3163       Asm->OutStreamer->AddComment(dwarf::GnuMacroString(Type));
3164       Asm->emitULEB128(Type);
3165       Asm->OutStreamer->AddComment("Line Number");
3166       Asm->emitULEB128(M.getLine());
3167       Asm->OutStreamer->AddComment("Macro String");
3168       Asm->emitDwarfSymbolReference(
3169           InfoHolder.getStringPool().getEntry(*Asm, Str).getSymbol());
3170     }
3171   } else {
3172     Asm->OutStreamer->AddComment(dwarf::MacinfoString(M.getMacinfoType()));
3173     Asm->emitULEB128(M.getMacinfoType());
3174     Asm->OutStreamer->AddComment("Line Number");
3175     Asm->emitULEB128(M.getLine());
3176     Asm->OutStreamer->AddComment("Macro String");
3177     Asm->OutStreamer->emitBytes(Str);
3178     Asm->emitInt8('\0');
3179   }
3180 }
3181 
3182 void DwarfDebug::emitMacroFileImpl(
3183     DIMacroFile &MF, DwarfCompileUnit &U, unsigned StartFile, unsigned EndFile,
3184     StringRef (*MacroFormToString)(unsigned Form)) {
3185 
3186   Asm->OutStreamer->AddComment(MacroFormToString(StartFile));
3187   Asm->emitULEB128(StartFile);
3188   Asm->OutStreamer->AddComment("Line Number");
3189   Asm->emitULEB128(MF.getLine());
3190   Asm->OutStreamer->AddComment("File Number");
3191   DIFile &F = *MF.getFile();
3192   if (useSplitDwarf())
3193     Asm->emitULEB128(getDwoLineTable(U)->getFile(
3194         F.getDirectory(), F.getFilename(), getMD5AsBytes(&F),
3195         Asm->OutContext.getDwarfVersion(), F.getSource()));
3196   else
3197     Asm->emitULEB128(U.getOrCreateSourceID(&F));
3198   handleMacroNodes(MF.getElements(), U);
3199   Asm->OutStreamer->AddComment(MacroFormToString(EndFile));
3200   Asm->emitULEB128(EndFile);
3201 }
3202 
3203 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) {
3204   // DWARFv5 macro and DWARFv4 macinfo share some common encodings,
3205   // so for readibility/uniformity, We are explicitly emitting those.
3206   assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file);
3207   if (UseDebugMacroSection)
3208     emitMacroFileImpl(
3209         F, U, dwarf::DW_MACRO_start_file, dwarf::DW_MACRO_end_file,
3210         (getDwarfVersion() >= 5) ? dwarf::MacroString : dwarf::GnuMacroString);
3211   else
3212     emitMacroFileImpl(F, U, dwarf::DW_MACINFO_start_file,
3213                       dwarf::DW_MACINFO_end_file, dwarf::MacinfoString);
3214 }
3215 
3216 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) {
3217   for (const auto &P : CUMap) {
3218     auto &TheCU = *P.second;
3219     auto *SkCU = TheCU.getSkeleton();
3220     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
3221     auto *CUNode = cast<DICompileUnit>(P.first);
3222     DIMacroNodeArray Macros = CUNode->getMacros();
3223     if (Macros.empty())
3224       continue;
3225     Asm->OutStreamer->SwitchSection(Section);
3226     Asm->OutStreamer->emitLabel(U.getMacroLabelBegin());
3227     if (UseDebugMacroSection)
3228       emitMacroHeader(Asm, *this, U, getDwarfVersion());
3229     handleMacroNodes(Macros, U);
3230     Asm->OutStreamer->AddComment("End Of Macro List Mark");
3231     Asm->emitInt8(0);
3232   }
3233 }
3234 
3235 /// Emit macros into a debug macinfo/macro section.
3236 void DwarfDebug::emitDebugMacinfo() {
3237   auto &ObjLower = Asm->getObjFileLowering();
3238   emitDebugMacinfoImpl(UseDebugMacroSection
3239                            ? ObjLower.getDwarfMacroSection()
3240                            : ObjLower.getDwarfMacinfoSection());
3241 }
3242 
3243 void DwarfDebug::emitDebugMacinfoDWO() {
3244   auto &ObjLower = Asm->getObjFileLowering();
3245   emitDebugMacinfoImpl(UseDebugMacroSection
3246                            ? ObjLower.getDwarfMacroDWOSection()
3247                            : ObjLower.getDwarfMacinfoDWOSection());
3248 }
3249 
3250 // DWARF5 Experimental Separate Dwarf emitters.
3251 
3252 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die,
3253                                   std::unique_ptr<DwarfCompileUnit> NewU) {
3254 
3255   if (!CompilationDir.empty())
3256     NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
3257   addGnuPubAttributes(*NewU, Die);
3258 
3259   SkeletonHolder.addUnit(std::move(NewU));
3260 }
3261 
3262 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) {
3263 
3264   auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
3265       CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder,
3266       UnitKind::Skeleton);
3267   DwarfCompileUnit &NewCU = *OwnedUnit;
3268   NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
3269 
3270   NewCU.initStmtList();
3271 
3272   if (useSegmentedStringOffsetsTable())
3273     NewCU.addStringOffsetsStart();
3274 
3275   initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit));
3276 
3277   return NewCU;
3278 }
3279 
3280 // Emit the .debug_info.dwo section for separated dwarf. This contains the
3281 // compile units that would normally be in debug_info.
3282 void DwarfDebug::emitDebugInfoDWO() {
3283   assert(useSplitDwarf() && "No split dwarf debug info?");
3284   // Don't emit relocations into the dwo file.
3285   InfoHolder.emitUnits(/* UseOffsets */ true);
3286 }
3287 
3288 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the
3289 // abbreviations for the .debug_info.dwo section.
3290 void DwarfDebug::emitDebugAbbrevDWO() {
3291   assert(useSplitDwarf() && "No split dwarf?");
3292   InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection());
3293 }
3294 
3295 void DwarfDebug::emitDebugLineDWO() {
3296   assert(useSplitDwarf() && "No split dwarf?");
3297   SplitTypeUnitFileTable.Emit(
3298       *Asm->OutStreamer, MCDwarfLineTableParams(),
3299       Asm->getObjFileLowering().getDwarfLineDWOSection());
3300 }
3301 
3302 void DwarfDebug::emitStringOffsetsTableHeaderDWO() {
3303   assert(useSplitDwarf() && "No split dwarf?");
3304   InfoHolder.getStringPool().emitStringOffsetsTableHeader(
3305       *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(),
3306       InfoHolder.getStringOffsetsStartSym());
3307 }
3308 
3309 // Emit the .debug_str.dwo section for separated dwarf. This contains the
3310 // string section and is identical in format to traditional .debug_str
3311 // sections.
3312 void DwarfDebug::emitDebugStrDWO() {
3313   if (useSegmentedStringOffsetsTable())
3314     emitStringOffsetsTableHeaderDWO();
3315   assert(useSplitDwarf() && "No split dwarf?");
3316   MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection();
3317   InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(),
3318                          OffSec, /* UseRelativeOffsets = */ false);
3319 }
3320 
3321 // Emit address pool.
3322 void DwarfDebug::emitDebugAddr() {
3323   AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection());
3324 }
3325 
3326 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) {
3327   if (!useSplitDwarf())
3328     return nullptr;
3329   const DICompileUnit *DIUnit = CU.getCUNode();
3330   SplitTypeUnitFileTable.maybeSetRootFile(
3331       DIUnit->getDirectory(), DIUnit->getFilename(),
3332       getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource());
3333   return &SplitTypeUnitFileTable;
3334 }
3335 
3336 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) {
3337   MD5 Hash;
3338   Hash.update(Identifier);
3339   // ... take the least significant 8 bytes and return those. Our MD5
3340   // implementation always returns its results in little endian, so we actually
3341   // need the "high" word.
3342   MD5::MD5Result Result;
3343   Hash.final(Result);
3344   return Result.high();
3345 }
3346 
3347 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
3348                                       StringRef Identifier, DIE &RefDie,
3349                                       const DICompositeType *CTy) {
3350   // Fast path if we're building some type units and one has already used the
3351   // address pool we know we're going to throw away all this work anyway, so
3352   // don't bother building dependent types.
3353   if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed())
3354     return;
3355 
3356   auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0));
3357   if (!Ins.second) {
3358     CU.addDIETypeSignature(RefDie, Ins.first->second);
3359     return;
3360   }
3361 
3362   bool TopLevelType = TypeUnitsUnderConstruction.empty();
3363   AddrPool.resetUsedFlag();
3364 
3365   auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder,
3366                                                     getDwoLineTable(CU));
3367   DwarfTypeUnit &NewTU = *OwnedUnit;
3368   DIE &UnitDie = NewTU.getUnitDie();
3369   TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy);
3370 
3371   NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
3372                 CU.getLanguage());
3373 
3374   uint64_t Signature = makeTypeSignature(Identifier);
3375   NewTU.setTypeSignature(Signature);
3376   Ins.first->second = Signature;
3377 
3378   if (useSplitDwarf()) {
3379     MCSection *Section =
3380         getDwarfVersion() <= 4
3381             ? Asm->getObjFileLowering().getDwarfTypesDWOSection()
3382             : Asm->getObjFileLowering().getDwarfInfoDWOSection();
3383     NewTU.setSection(Section);
3384   } else {
3385     MCSection *Section =
3386         getDwarfVersion() <= 4
3387             ? Asm->getObjFileLowering().getDwarfTypesSection(Signature)
3388             : Asm->getObjFileLowering().getDwarfInfoSection(Signature);
3389     NewTU.setSection(Section);
3390     // Non-split type units reuse the compile unit's line table.
3391     CU.applyStmtList(UnitDie);
3392   }
3393 
3394   // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type
3395   // units.
3396   if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
3397     NewTU.addStringOffsetsStart();
3398 
3399   NewTU.setType(NewTU.createTypeDIE(CTy));
3400 
3401   if (TopLevelType) {
3402     auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction);
3403     TypeUnitsUnderConstruction.clear();
3404 
3405     // Types referencing entries in the address table cannot be placed in type
3406     // units.
3407     if (AddrPool.hasBeenUsed()) {
3408 
3409       // Remove all the types built while building this type.
3410       // This is pessimistic as some of these types might not be dependent on
3411       // the type that used an address.
3412       for (const auto &TU : TypeUnitsToAdd)
3413         TypeSignatures.erase(TU.second);
3414 
3415       // Construct this type in the CU directly.
3416       // This is inefficient because all the dependent types will be rebuilt
3417       // from scratch, including building them in type units, discovering that
3418       // they depend on addresses, throwing them out and rebuilding them.
3419       CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy));
3420       return;
3421     }
3422 
3423     // If the type wasn't dependent on fission addresses, finish adding the type
3424     // and all its dependent types.
3425     for (auto &TU : TypeUnitsToAdd) {
3426       InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get());
3427       InfoHolder.emitUnit(TU.first.get(), useSplitDwarf());
3428     }
3429   }
3430   CU.addDIETypeSignature(RefDie, Signature);
3431 }
3432 
3433 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD)
3434     : DD(DD),
3435       TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)), AddrPoolUsed(DD->AddrPool.hasBeenUsed()) {
3436   DD->TypeUnitsUnderConstruction.clear();
3437   DD->AddrPool.resetUsedFlag();
3438 }
3439 
3440 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() {
3441   DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction);
3442   DD->AddrPool.resetUsedFlag(AddrPoolUsed);
3443 }
3444 
3445 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() {
3446   return NonTypeUnitContext(this);
3447 }
3448 
3449 // Add the Name along with its companion DIE to the appropriate accelerator
3450 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for
3451 // AccelTableKind::Apple, we use the table we got as an argument). If
3452 // accelerator tables are disabled, this function does nothing.
3453 template <typename DataT>
3454 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU,
3455                                   AccelTable<DataT> &AppleAccel, StringRef Name,
3456                                   const DIE &Die) {
3457   if (getAccelTableKind() == AccelTableKind::None)
3458     return;
3459 
3460   if (getAccelTableKind() != AccelTableKind::Apple &&
3461       CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default)
3462     return;
3463 
3464   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
3465   DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name);
3466 
3467   switch (getAccelTableKind()) {
3468   case AccelTableKind::Apple:
3469     AppleAccel.addName(Ref, Die);
3470     break;
3471   case AccelTableKind::Dwarf:
3472     AccelDebugNames.addName(Ref, Die);
3473     break;
3474   case AccelTableKind::Default:
3475     llvm_unreachable("Default should have already been resolved.");
3476   case AccelTableKind::None:
3477     llvm_unreachable("None handled above");
3478   }
3479 }
3480 
3481 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name,
3482                               const DIE &Die) {
3483   addAccelNameImpl(CU, AccelNames, Name, Die);
3484 }
3485 
3486 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name,
3487                               const DIE &Die) {
3488   // ObjC names go only into the Apple accelerator tables.
3489   if (getAccelTableKind() == AccelTableKind::Apple)
3490     addAccelNameImpl(CU, AccelObjC, Name, Die);
3491 }
3492 
3493 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name,
3494                                    const DIE &Die) {
3495   addAccelNameImpl(CU, AccelNamespace, Name, Die);
3496 }
3497 
3498 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name,
3499                               const DIE &Die, char Flags) {
3500   addAccelNameImpl(CU, AccelTypes, Name, Die);
3501 }
3502 
3503 uint16_t DwarfDebug::getDwarfVersion() const {
3504   return Asm->OutStreamer->getContext().getDwarfVersion();
3505 }
3506 
3507 dwarf::Form DwarfDebug::getDwarfSectionOffsetForm() const {
3508   if (Asm->getDwarfVersion() >= 4)
3509     return dwarf::Form::DW_FORM_sec_offset;
3510   assert((!Asm->isDwarf64() || (Asm->getDwarfVersion() == 3)) &&
3511          "DWARF64 is not defined prior DWARFv3");
3512   return Asm->isDwarf64() ? dwarf::Form::DW_FORM_data8
3513                           : dwarf::Form::DW_FORM_data4;
3514 }
3515 
3516 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) {
3517   auto I = SectionLabels.find(S);
3518   if (I == SectionLabels.end())
3519     return nullptr;
3520   return I->second;
3521 }
3522 void DwarfDebug::insertSectionLabel(const MCSymbol *S) {
3523   if (SectionLabels.insert(std::make_pair(&S->getSection(), S)).second)
3524     if (useSplitDwarf() || getDwarfVersion() >= 5)
3525       AddrPool.getIndex(S);
3526 }
3527 
3528 Optional<MD5::MD5Result> DwarfDebug::getMD5AsBytes(const DIFile *File) const {
3529   assert(File);
3530   if (getDwarfVersion() < 5)
3531     return None;
3532   Optional<DIFile::ChecksumInfo<StringRef>> Checksum = File->getChecksum();
3533   if (!Checksum || Checksum->Kind != DIFile::CSK_MD5)
3534     return None;
3535 
3536   // Convert the string checksum to an MD5Result for the streamer.
3537   // The verifier validates the checksum so we assume it's okay.
3538   // An MD5 checksum is 16 bytes.
3539   std::string ChecksumString = fromHex(Checksum->Value);
3540   MD5::MD5Result CKMem;
3541   std::copy(ChecksumString.begin(), ChecksumString.end(), CKMem.Bytes.data());
3542   return CKMem;
3543 }
3544