1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing dwarf debug info into asm files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "DwarfDebug.h" 14 #include "ByteStreamer.h" 15 #include "DIEHash.h" 16 #include "DwarfCompileUnit.h" 17 #include "DwarfExpression.h" 18 #include "DwarfUnit.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/CodeGen/AsmPrinter.h" 24 #include "llvm/CodeGen/DIE.h" 25 #include "llvm/CodeGen/LexicalScopes.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineModuleInfo.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/TargetInstrInfo.h" 31 #include "llvm/CodeGen/TargetLowering.h" 32 #include "llvm/CodeGen/TargetRegisterInfo.h" 33 #include "llvm/CodeGen/TargetSubtargetInfo.h" 34 #include "llvm/DebugInfo/DWARF/DWARFExpression.h" 35 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/MC/MCAsmInfo.h" 41 #include "llvm/MC/MCContext.h" 42 #include "llvm/MC/MCSection.h" 43 #include "llvm/MC/MCStreamer.h" 44 #include "llvm/MC/MCSymbol.h" 45 #include "llvm/MC/MCTargetOptions.h" 46 #include "llvm/MC/MachineLocation.h" 47 #include "llvm/MC/SectionKind.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/MD5.h" 54 #include "llvm/Support/MathExtras.h" 55 #include "llvm/Support/Timer.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include "llvm/Target/TargetLoweringObjectFile.h" 58 #include "llvm/Target/TargetMachine.h" 59 #include <algorithm> 60 #include <cstddef> 61 #include <iterator> 62 #include <string> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "dwarfdebug" 67 68 STATISTIC(NumCSParams, "Number of dbg call site params created"); 69 70 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier( 71 "use-dwarf-ranges-base-address-specifier", cl::Hidden, 72 cl::desc("Use base address specifiers in debug_ranges"), cl::init(false)); 73 74 static cl::opt<bool> GenerateARangeSection("generate-arange-section", 75 cl::Hidden, 76 cl::desc("Generate dwarf aranges"), 77 cl::init(false)); 78 79 static cl::opt<bool> 80 GenerateDwarfTypeUnits("generate-type-units", cl::Hidden, 81 cl::desc("Generate DWARF4 type units."), 82 cl::init(false)); 83 84 static cl::opt<bool> SplitDwarfCrossCuReferences( 85 "split-dwarf-cross-cu-references", cl::Hidden, 86 cl::desc("Enable cross-cu references in DWO files"), cl::init(false)); 87 88 enum DefaultOnOff { Default, Enable, Disable }; 89 90 static cl::opt<DefaultOnOff> UnknownLocations( 91 "use-unknown-locations", cl::Hidden, 92 cl::desc("Make an absence of debug location information explicit."), 93 cl::values(clEnumVal(Default, "At top of block or after label"), 94 clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")), 95 cl::init(Default)); 96 97 static cl::opt<AccelTableKind> AccelTables( 98 "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."), 99 cl::values(clEnumValN(AccelTableKind::Default, "Default", 100 "Default for platform"), 101 clEnumValN(AccelTableKind::None, "Disable", "Disabled."), 102 clEnumValN(AccelTableKind::Apple, "Apple", "Apple"), 103 clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")), 104 cl::init(AccelTableKind::Default)); 105 106 static cl::opt<DefaultOnOff> 107 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden, 108 cl::desc("Use inlined strings rather than string section."), 109 cl::values(clEnumVal(Default, "Default for platform"), 110 clEnumVal(Enable, "Enabled"), 111 clEnumVal(Disable, "Disabled")), 112 cl::init(Default)); 113 114 static cl::opt<bool> 115 NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden, 116 cl::desc("Disable emission .debug_ranges section."), 117 cl::init(false)); 118 119 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences( 120 "dwarf-sections-as-references", cl::Hidden, 121 cl::desc("Use sections+offset as references rather than labels."), 122 cl::values(clEnumVal(Default, "Default for platform"), 123 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 124 cl::init(Default)); 125 126 static cl::opt<bool> 127 UseGNUDebugMacro("use-gnu-debug-macro", cl::Hidden, 128 cl::desc("Emit the GNU .debug_macro format with DWARF <5"), 129 cl::init(false)); 130 131 static cl::opt<DefaultOnOff> DwarfOpConvert( 132 "dwarf-op-convert", cl::Hidden, 133 cl::desc("Enable use of the DWARFv5 DW_OP_convert operator"), 134 cl::values(clEnumVal(Default, "Default for platform"), 135 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 136 cl::init(Default)); 137 138 enum LinkageNameOption { 139 DefaultLinkageNames, 140 AllLinkageNames, 141 AbstractLinkageNames 142 }; 143 144 static cl::opt<LinkageNameOption> 145 DwarfLinkageNames("dwarf-linkage-names", cl::Hidden, 146 cl::desc("Which DWARF linkage-name attributes to emit."), 147 cl::values(clEnumValN(DefaultLinkageNames, "Default", 148 "Default for platform"), 149 clEnumValN(AllLinkageNames, "All", "All"), 150 clEnumValN(AbstractLinkageNames, "Abstract", 151 "Abstract subprograms")), 152 cl::init(DefaultLinkageNames)); 153 154 static cl::opt<DwarfDebug::MinimizeAddrInV5> MinimizeAddrInV5Option( 155 "minimize-addr-in-v5", cl::Hidden, 156 cl::desc("Always use DW_AT_ranges in DWARFv5 whenever it could allow more " 157 "address pool entry sharing to reduce relocations/object size"), 158 cl::values(clEnumValN(DwarfDebug::MinimizeAddrInV5::Default, "Default", 159 "Default address minimization strategy"), 160 clEnumValN(DwarfDebug::MinimizeAddrInV5::Ranges, "Ranges", 161 "Use rnglists for contiguous ranges if that allows " 162 "using a pre-existing base address"), 163 clEnumValN(DwarfDebug::MinimizeAddrInV5::Expressions, 164 "Expressions", 165 "Use exprloc addrx+offset expressions for any " 166 "address with a prior base address"), 167 clEnumValN(DwarfDebug::MinimizeAddrInV5::Form, "Form", 168 "Use addrx+offset extension form for any address " 169 "with a prior base address"), 170 clEnumValN(DwarfDebug::MinimizeAddrInV5::Disabled, "Disabled", 171 "Stuff")), 172 cl::init(DwarfDebug::MinimizeAddrInV5::Default)); 173 174 static constexpr unsigned ULEB128PadSize = 4; 175 176 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) { 177 getActiveStreamer().emitInt8( 178 Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op) 179 : dwarf::OperationEncodingString(Op)); 180 } 181 182 void DebugLocDwarfExpression::emitSigned(int64_t Value) { 183 getActiveStreamer().emitSLEB128(Value, Twine(Value)); 184 } 185 186 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) { 187 getActiveStreamer().emitULEB128(Value, Twine(Value)); 188 } 189 190 void DebugLocDwarfExpression::emitData1(uint8_t Value) { 191 getActiveStreamer().emitInt8(Value, Twine(Value)); 192 } 193 194 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) { 195 assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit"); 196 getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize); 197 } 198 199 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI, 200 llvm::Register MachineReg) { 201 // This information is not available while emitting .debug_loc entries. 202 return false; 203 } 204 205 void DebugLocDwarfExpression::enableTemporaryBuffer() { 206 assert(!IsBuffering && "Already buffering?"); 207 if (!TmpBuf) 208 TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments); 209 IsBuffering = true; 210 } 211 212 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; } 213 214 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() { 215 return TmpBuf ? TmpBuf->Bytes.size() : 0; 216 } 217 218 void DebugLocDwarfExpression::commitTemporaryBuffer() { 219 if (!TmpBuf) 220 return; 221 for (auto Byte : enumerate(TmpBuf->Bytes)) { 222 const char *Comment = (Byte.index() < TmpBuf->Comments.size()) 223 ? TmpBuf->Comments[Byte.index()].c_str() 224 : ""; 225 OutBS.emitInt8(Byte.value(), Comment); 226 } 227 TmpBuf->Bytes.clear(); 228 TmpBuf->Comments.clear(); 229 } 230 231 const DIType *DbgVariable::getType() const { 232 return getVariable()->getType(); 233 } 234 235 /// Get .debug_loc entry for the instruction range starting at MI. 236 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) { 237 const DIExpression *Expr = MI->getDebugExpression(); 238 assert(MI->getNumOperands() == 4); 239 if (MI->getDebugOperand(0).isReg()) { 240 const auto &RegOp = MI->getDebugOperand(0); 241 const auto &Op1 = MI->getDebugOffset(); 242 // If the second operand is an immediate, this is a 243 // register-indirect address. 244 assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset"); 245 MachineLocation MLoc(RegOp.getReg(), Op1.isImm()); 246 return DbgValueLoc(Expr, MLoc); 247 } 248 if (MI->getDebugOperand(0).isTargetIndex()) { 249 const auto &Op = MI->getDebugOperand(0); 250 return DbgValueLoc(Expr, 251 TargetIndexLocation(Op.getIndex(), Op.getOffset())); 252 } 253 if (MI->getDebugOperand(0).isImm()) 254 return DbgValueLoc(Expr, MI->getDebugOperand(0).getImm()); 255 if (MI->getDebugOperand(0).isFPImm()) 256 return DbgValueLoc(Expr, MI->getDebugOperand(0).getFPImm()); 257 if (MI->getDebugOperand(0).isCImm()) 258 return DbgValueLoc(Expr, MI->getDebugOperand(0).getCImm()); 259 260 llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!"); 261 } 262 263 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) { 264 assert(FrameIndexExprs.empty() && "Already initialized?"); 265 assert(!ValueLoc.get() && "Already initialized?"); 266 267 assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable"); 268 assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() && 269 "Wrong inlined-at"); 270 271 ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue)); 272 if (auto *E = DbgValue->getDebugExpression()) 273 if (E->getNumElements()) 274 FrameIndexExprs.push_back({0, E}); 275 } 276 277 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const { 278 if (FrameIndexExprs.size() == 1) 279 return FrameIndexExprs; 280 281 assert(llvm::all_of(FrameIndexExprs, 282 [](const FrameIndexExpr &A) { 283 return A.Expr->isFragment(); 284 }) && 285 "multiple FI expressions without DW_OP_LLVM_fragment"); 286 llvm::sort(FrameIndexExprs, 287 [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool { 288 return A.Expr->getFragmentInfo()->OffsetInBits < 289 B.Expr->getFragmentInfo()->OffsetInBits; 290 }); 291 292 return FrameIndexExprs; 293 } 294 295 void DbgVariable::addMMIEntry(const DbgVariable &V) { 296 assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry"); 297 assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry"); 298 assert(V.getVariable() == getVariable() && "conflicting variable"); 299 assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location"); 300 301 assert(!FrameIndexExprs.empty() && "Expected an MMI entry"); 302 assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry"); 303 304 // FIXME: This logic should not be necessary anymore, as we now have proper 305 // deduplication. However, without it, we currently run into the assertion 306 // below, which means that we are likely dealing with broken input, i.e. two 307 // non-fragment entries for the same variable at different frame indices. 308 if (FrameIndexExprs.size()) { 309 auto *Expr = FrameIndexExprs.back().Expr; 310 if (!Expr || !Expr->isFragment()) 311 return; 312 } 313 314 for (const auto &FIE : V.FrameIndexExprs) 315 // Ignore duplicate entries. 316 if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) { 317 return FIE.FI == Other.FI && FIE.Expr == Other.Expr; 318 })) 319 FrameIndexExprs.push_back(FIE); 320 321 assert((FrameIndexExprs.size() == 1 || 322 llvm::all_of(FrameIndexExprs, 323 [](FrameIndexExpr &FIE) { 324 return FIE.Expr && FIE.Expr->isFragment(); 325 })) && 326 "conflicting locations for variable"); 327 } 328 329 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion, 330 bool GenerateTypeUnits, 331 DebuggerKind Tuning, 332 const Triple &TT) { 333 // Honor an explicit request. 334 if (AccelTables != AccelTableKind::Default) 335 return AccelTables; 336 337 // Accelerator tables with type units are currently not supported. 338 if (GenerateTypeUnits) 339 return AccelTableKind::None; 340 341 // Accelerator tables get emitted if targetting DWARF v5 or LLDB. DWARF v5 342 // always implies debug_names. For lower standard versions we use apple 343 // accelerator tables on apple platforms and debug_names elsewhere. 344 if (DwarfVersion >= 5) 345 return AccelTableKind::Dwarf; 346 if (Tuning == DebuggerKind::LLDB) 347 return TT.isOSBinFormatMachO() ? AccelTableKind::Apple 348 : AccelTableKind::Dwarf; 349 return AccelTableKind::None; 350 } 351 352 DwarfDebug::DwarfDebug(AsmPrinter *A) 353 : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()), 354 InfoHolder(A, "info_string", DIEValueAllocator), 355 SkeletonHolder(A, "skel_string", DIEValueAllocator), 356 IsDarwin(A->TM.getTargetTriple().isOSDarwin()) { 357 const Triple &TT = Asm->TM.getTargetTriple(); 358 359 // Make sure we know our "debugger tuning". The target option takes 360 // precedence; fall back to triple-based defaults. 361 if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default) 362 DebuggerTuning = Asm->TM.Options.DebuggerTuning; 363 else if (IsDarwin) 364 DebuggerTuning = DebuggerKind::LLDB; 365 else if (TT.isPS4CPU()) 366 DebuggerTuning = DebuggerKind::SCE; 367 else 368 DebuggerTuning = DebuggerKind::GDB; 369 370 if (DwarfInlinedStrings == Default) 371 UseInlineStrings = TT.isNVPTX(); 372 else 373 UseInlineStrings = DwarfInlinedStrings == Enable; 374 375 UseLocSection = !TT.isNVPTX(); 376 377 HasAppleExtensionAttributes = tuneForLLDB(); 378 379 // Handle split DWARF. 380 HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty(); 381 382 // SCE defaults to linkage names only for abstract subprograms. 383 if (DwarfLinkageNames == DefaultLinkageNames) 384 UseAllLinkageNames = !tuneForSCE(); 385 else 386 UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames; 387 388 unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion; 389 unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber 390 : MMI->getModule()->getDwarfVersion(); 391 // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2. 392 DwarfVersion = 393 TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION); 394 395 bool Dwarf64 = Asm->TM.Options.MCOptions.Dwarf64 && 396 DwarfVersion >= 3 && // DWARF64 was introduced in DWARFv3. 397 TT.isArch64Bit() && // DWARF64 requires 64-bit relocations. 398 TT.isOSBinFormatELF(); // Support only ELF for now. 399 400 UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX(); 401 402 // Use sections as references. Force for NVPTX. 403 if (DwarfSectionsAsReferences == Default) 404 UseSectionsAsReferences = TT.isNVPTX(); 405 else 406 UseSectionsAsReferences = DwarfSectionsAsReferences == Enable; 407 408 // Don't generate type units for unsupported object file formats. 409 GenerateTypeUnits = (A->TM.getTargetTriple().isOSBinFormatELF() || 410 A->TM.getTargetTriple().isOSBinFormatWasm()) && 411 GenerateDwarfTypeUnits; 412 413 TheAccelTableKind = computeAccelTableKind( 414 DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple()); 415 416 // Work around a GDB bug. GDB doesn't support the standard opcode; 417 // SCE doesn't support GNU's; LLDB prefers the standard opcode, which 418 // is defined as of DWARF 3. 419 // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented 420 // https://sourceware.org/bugzilla/show_bug.cgi?id=11616 421 UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3; 422 423 // GDB does not fully support the DWARF 4 representation for bitfields. 424 UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB(); 425 426 // The DWARF v5 string offsets table has - possibly shared - contributions 427 // from each compile and type unit each preceded by a header. The string 428 // offsets table used by the pre-DWARF v5 split-DWARF implementation uses 429 // a monolithic string offsets table without any header. 430 UseSegmentedStringOffsetsTable = DwarfVersion >= 5; 431 432 // Emit call-site-param debug info for GDB and LLDB, if the target supports 433 // the debug entry values feature. It can also be enabled explicitly. 434 EmitDebugEntryValues = Asm->TM.Options.ShouldEmitDebugEntryValues(); 435 436 // It is unclear if the GCC .debug_macro extension is well-specified 437 // for split DWARF. For now, do not allow LLVM to emit it. 438 UseDebugMacroSection = 439 DwarfVersion >= 5 || (UseGNUDebugMacro && !useSplitDwarf()); 440 if (DwarfOpConvert == Default) 441 EnableOpConvert = !((tuneForGDB() && useSplitDwarf()) || (tuneForLLDB() && !TT.isOSBinFormatMachO())); 442 else 443 EnableOpConvert = (DwarfOpConvert == Enable); 444 445 // Split DWARF would benefit object size significantly by trading reductions 446 // in address pool usage for slightly increased range list encodings. 447 if (DwarfVersion >= 5) { 448 MinimizeAddr = MinimizeAddrInV5Option; 449 // FIXME: In the future, enable this by default for Split DWARF where the 450 // tradeoff is more pronounced due to being able to offload the range 451 // lists to the dwo file and shrink object files/reduce relocations there. 452 if (MinimizeAddr == MinimizeAddrInV5::Default) 453 MinimizeAddr = MinimizeAddrInV5::Disabled; 454 } 455 456 Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion); 457 Asm->OutStreamer->getContext().setDwarfFormat(Dwarf64 ? dwarf::DWARF64 458 : dwarf::DWARF32); 459 } 460 461 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h. 462 DwarfDebug::~DwarfDebug() = default; 463 464 static bool isObjCClass(StringRef Name) { 465 return Name.startswith("+") || Name.startswith("-"); 466 } 467 468 static bool hasObjCCategory(StringRef Name) { 469 if (!isObjCClass(Name)) 470 return false; 471 472 return Name.find(") ") != StringRef::npos; 473 } 474 475 static void getObjCClassCategory(StringRef In, StringRef &Class, 476 StringRef &Category) { 477 if (!hasObjCCategory(In)) { 478 Class = In.slice(In.find('[') + 1, In.find(' ')); 479 Category = ""; 480 return; 481 } 482 483 Class = In.slice(In.find('[') + 1, In.find('(')); 484 Category = In.slice(In.find('[') + 1, In.find(' ')); 485 } 486 487 static StringRef getObjCMethodName(StringRef In) { 488 return In.slice(In.find(' ') + 1, In.find(']')); 489 } 490 491 // Add the various names to the Dwarf accelerator table names. 492 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU, 493 const DISubprogram *SP, DIE &Die) { 494 if (getAccelTableKind() != AccelTableKind::Apple && 495 CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None) 496 return; 497 498 if (!SP->isDefinition()) 499 return; 500 501 if (SP->getName() != "") 502 addAccelName(CU, SP->getName(), Die); 503 504 // If the linkage name is different than the name, go ahead and output that as 505 // well into the name table. Only do that if we are going to actually emit 506 // that name. 507 if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() && 508 (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP))) 509 addAccelName(CU, SP->getLinkageName(), Die); 510 511 // If this is an Objective-C selector name add it to the ObjC accelerator 512 // too. 513 if (isObjCClass(SP->getName())) { 514 StringRef Class, Category; 515 getObjCClassCategory(SP->getName(), Class, Category); 516 addAccelObjC(CU, Class, Die); 517 if (Category != "") 518 addAccelObjC(CU, Category, Die); 519 // Also add the base method name to the name table. 520 addAccelName(CU, getObjCMethodName(SP->getName()), Die); 521 } 522 } 523 524 /// Check whether we should create a DIE for the given Scope, return true 525 /// if we don't create a DIE (the corresponding DIE is null). 526 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) { 527 if (Scope->isAbstractScope()) 528 return false; 529 530 // We don't create a DIE if there is no Range. 531 const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges(); 532 if (Ranges.empty()) 533 return true; 534 535 if (Ranges.size() > 1) 536 return false; 537 538 // We don't create a DIE if we have a single Range and the end label 539 // is null. 540 return !getLabelAfterInsn(Ranges.front().second); 541 } 542 543 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) { 544 F(CU); 545 if (auto *SkelCU = CU.getSkeleton()) 546 if (CU.getCUNode()->getSplitDebugInlining()) 547 F(*SkelCU); 548 } 549 550 bool DwarfDebug::shareAcrossDWOCUs() const { 551 return SplitDwarfCrossCuReferences; 552 } 553 554 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU, 555 LexicalScope *Scope) { 556 assert(Scope && Scope->getScopeNode()); 557 assert(Scope->isAbstractScope()); 558 assert(!Scope->getInlinedAt()); 559 560 auto *SP = cast<DISubprogram>(Scope->getScopeNode()); 561 562 // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram 563 // was inlined from another compile unit. 564 if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining()) 565 // Avoid building the original CU if it won't be used 566 SrcCU.constructAbstractSubprogramScopeDIE(Scope); 567 else { 568 auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 569 if (auto *SkelCU = CU.getSkeleton()) { 570 (shareAcrossDWOCUs() ? CU : SrcCU) 571 .constructAbstractSubprogramScopeDIE(Scope); 572 if (CU.getCUNode()->getSplitDebugInlining()) 573 SkelCU->constructAbstractSubprogramScopeDIE(Scope); 574 } else 575 CU.constructAbstractSubprogramScopeDIE(Scope); 576 } 577 } 578 579 DIE &DwarfDebug::constructSubprogramDefinitionDIE(const DISubprogram *SP) { 580 DICompileUnit *Unit = SP->getUnit(); 581 assert(SP->isDefinition() && "Subprogram not a definition"); 582 assert(Unit && "Subprogram definition without parent unit"); 583 auto &CU = getOrCreateDwarfCompileUnit(Unit); 584 return *CU.getOrCreateSubprogramDIE(SP); 585 } 586 587 /// Represents a parameter whose call site value can be described by applying a 588 /// debug expression to a register in the forwarded register worklist. 589 struct FwdRegParamInfo { 590 /// The described parameter register. 591 unsigned ParamReg; 592 593 /// Debug expression that has been built up when walking through the 594 /// instruction chain that produces the parameter's value. 595 const DIExpression *Expr; 596 }; 597 598 /// Register worklist for finding call site values. 599 using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>; 600 601 /// Append the expression \p Addition to \p Original and return the result. 602 static const DIExpression *combineDIExpressions(const DIExpression *Original, 603 const DIExpression *Addition) { 604 std::vector<uint64_t> Elts = Addition->getElements().vec(); 605 // Avoid multiple DW_OP_stack_values. 606 if (Original->isImplicit() && Addition->isImplicit()) 607 erase_value(Elts, dwarf::DW_OP_stack_value); 608 const DIExpression *CombinedExpr = 609 (Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original; 610 return CombinedExpr; 611 } 612 613 /// Emit call site parameter entries that are described by the given value and 614 /// debug expression. 615 template <typename ValT> 616 static void finishCallSiteParams(ValT Val, const DIExpression *Expr, 617 ArrayRef<FwdRegParamInfo> DescribedParams, 618 ParamSet &Params) { 619 for (auto Param : DescribedParams) { 620 bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0; 621 622 // TODO: Entry value operations can currently not be combined with any 623 // other expressions, so we can't emit call site entries in those cases. 624 if (ShouldCombineExpressions && Expr->isEntryValue()) 625 continue; 626 627 // If a parameter's call site value is produced by a chain of 628 // instructions we may have already created an expression for the 629 // parameter when walking through the instructions. Append that to the 630 // base expression. 631 const DIExpression *CombinedExpr = 632 ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr) 633 : Expr; 634 assert((!CombinedExpr || CombinedExpr->isValid()) && 635 "Combined debug expression is invalid"); 636 637 DbgValueLoc DbgLocVal(CombinedExpr, Val); 638 DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal); 639 Params.push_back(CSParm); 640 ++NumCSParams; 641 } 642 } 643 644 /// Add \p Reg to the worklist, if it's not already present, and mark that the 645 /// given parameter registers' values can (potentially) be described using 646 /// that register and an debug expression. 647 static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg, 648 const DIExpression *Expr, 649 ArrayRef<FwdRegParamInfo> ParamsToAdd) { 650 auto I = Worklist.insert({Reg, {}}); 651 auto &ParamsForFwdReg = I.first->second; 652 for (auto Param : ParamsToAdd) { 653 assert(none_of(ParamsForFwdReg, 654 [Param](const FwdRegParamInfo &D) { 655 return D.ParamReg == Param.ParamReg; 656 }) && 657 "Same parameter described twice by forwarding reg"); 658 659 // If a parameter's call site value is produced by a chain of 660 // instructions we may have already created an expression for the 661 // parameter when walking through the instructions. Append that to the 662 // new expression. 663 const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr); 664 ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr}); 665 } 666 } 667 668 /// Interpret values loaded into registers by \p CurMI. 669 static void interpretValues(const MachineInstr *CurMI, 670 FwdRegWorklist &ForwardedRegWorklist, 671 ParamSet &Params) { 672 673 const MachineFunction *MF = CurMI->getMF(); 674 const DIExpression *EmptyExpr = 675 DIExpression::get(MF->getFunction().getContext(), {}); 676 const auto &TRI = *MF->getSubtarget().getRegisterInfo(); 677 const auto &TII = *MF->getSubtarget().getInstrInfo(); 678 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 679 680 // If an instruction defines more than one item in the worklist, we may run 681 // into situations where a worklist register's value is (potentially) 682 // described by the previous value of another register that is also defined 683 // by that instruction. 684 // 685 // This can for example occur in cases like this: 686 // 687 // $r1 = mov 123 688 // $r0, $r1 = mvrr $r1, 456 689 // call @foo, $r0, $r1 690 // 691 // When describing $r1's value for the mvrr instruction, we need to make sure 692 // that we don't finalize an entry value for $r0, as that is dependent on the 693 // previous value of $r1 (123 rather than 456). 694 // 695 // In order to not have to distinguish between those cases when finalizing 696 // entry values, we simply postpone adding new parameter registers to the 697 // worklist, by first keeping them in this temporary container until the 698 // instruction has been handled. 699 FwdRegWorklist TmpWorklistItems; 700 701 // If the MI is an instruction defining one or more parameters' forwarding 702 // registers, add those defines. 703 auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI, 704 SmallSetVector<unsigned, 4> &Defs) { 705 if (MI.isDebugInstr()) 706 return; 707 708 for (const MachineOperand &MO : MI.operands()) { 709 if (MO.isReg() && MO.isDef() && 710 Register::isPhysicalRegister(MO.getReg())) { 711 for (auto FwdReg : ForwardedRegWorklist) 712 if (TRI.regsOverlap(FwdReg.first, MO.getReg())) 713 Defs.insert(FwdReg.first); 714 } 715 } 716 }; 717 718 // Set of worklist registers that are defined by this instruction. 719 SmallSetVector<unsigned, 4> FwdRegDefs; 720 721 getForwardingRegsDefinedByMI(*CurMI, FwdRegDefs); 722 if (FwdRegDefs.empty()) 723 return; 724 725 for (auto ParamFwdReg : FwdRegDefs) { 726 if (auto ParamValue = TII.describeLoadedValue(*CurMI, ParamFwdReg)) { 727 if (ParamValue->first.isImm()) { 728 int64_t Val = ParamValue->first.getImm(); 729 finishCallSiteParams(Val, ParamValue->second, 730 ForwardedRegWorklist[ParamFwdReg], Params); 731 } else if (ParamValue->first.isReg()) { 732 Register RegLoc = ParamValue->first.getReg(); 733 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 734 Register FP = TRI.getFrameRegister(*MF); 735 bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP); 736 if (TRI.isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) { 737 MachineLocation MLoc(RegLoc, /*Indirect=*/IsSPorFP); 738 finishCallSiteParams(MLoc, ParamValue->second, 739 ForwardedRegWorklist[ParamFwdReg], Params); 740 } else { 741 // ParamFwdReg was described by the non-callee saved register 742 // RegLoc. Mark that the call site values for the parameters are 743 // dependent on that register instead of ParamFwdReg. Since RegLoc 744 // may be a register that will be handled in this iteration, we 745 // postpone adding the items to the worklist, and instead keep them 746 // in a temporary container. 747 addToFwdRegWorklist(TmpWorklistItems, RegLoc, ParamValue->second, 748 ForwardedRegWorklist[ParamFwdReg]); 749 } 750 } 751 } 752 } 753 754 // Remove all registers that this instruction defines from the worklist. 755 for (auto ParamFwdReg : FwdRegDefs) 756 ForwardedRegWorklist.erase(ParamFwdReg); 757 758 // Now that we are done handling this instruction, add items from the 759 // temporary worklist to the real one. 760 for (auto New : TmpWorklistItems) 761 addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, New.second); 762 TmpWorklistItems.clear(); 763 } 764 765 static bool interpretNextInstr(const MachineInstr *CurMI, 766 FwdRegWorklist &ForwardedRegWorklist, 767 ParamSet &Params) { 768 // Skip bundle headers. 769 if (CurMI->isBundle()) 770 return true; 771 772 // If the next instruction is a call we can not interpret parameter's 773 // forwarding registers or we finished the interpretation of all 774 // parameters. 775 if (CurMI->isCall()) 776 return false; 777 778 if (ForwardedRegWorklist.empty()) 779 return false; 780 781 // Avoid NOP description. 782 if (CurMI->getNumOperands() == 0) 783 return true; 784 785 interpretValues(CurMI, ForwardedRegWorklist, Params); 786 787 return true; 788 } 789 790 /// Try to interpret values loaded into registers that forward parameters 791 /// for \p CallMI. Store parameters with interpreted value into \p Params. 792 static void collectCallSiteParameters(const MachineInstr *CallMI, 793 ParamSet &Params) { 794 const MachineFunction *MF = CallMI->getMF(); 795 auto CalleesMap = MF->getCallSitesInfo(); 796 auto CallFwdRegsInfo = CalleesMap.find(CallMI); 797 798 // There is no information for the call instruction. 799 if (CallFwdRegsInfo == CalleesMap.end()) 800 return; 801 802 const MachineBasicBlock *MBB = CallMI->getParent(); 803 804 // Skip the call instruction. 805 auto I = std::next(CallMI->getReverseIterator()); 806 807 FwdRegWorklist ForwardedRegWorklist; 808 809 const DIExpression *EmptyExpr = 810 DIExpression::get(MF->getFunction().getContext(), {}); 811 812 // Add all the forwarding registers into the ForwardedRegWorklist. 813 for (auto ArgReg : CallFwdRegsInfo->second) { 814 bool InsertedReg = 815 ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}}) 816 .second; 817 assert(InsertedReg && "Single register used to forward two arguments?"); 818 (void)InsertedReg; 819 } 820 821 // Do not emit CSInfo for undef forwarding registers. 822 for (auto &MO : CallMI->uses()) 823 if (MO.isReg() && MO.isUndef()) 824 ForwardedRegWorklist.erase(MO.getReg()); 825 826 // We erase, from the ForwardedRegWorklist, those forwarding registers for 827 // which we successfully describe a loaded value (by using 828 // the describeLoadedValue()). For those remaining arguments in the working 829 // list, for which we do not describe a loaded value by 830 // the describeLoadedValue(), we try to generate an entry value expression 831 // for their call site value description, if the call is within the entry MBB. 832 // TODO: Handle situations when call site parameter value can be described 833 // as the entry value within basic blocks other than the first one. 834 bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin(); 835 836 // Search for a loading value in forwarding registers inside call delay slot. 837 if (CallMI->hasDelaySlot()) { 838 auto Suc = std::next(CallMI->getIterator()); 839 // Only one-instruction delay slot is supported. 840 auto BundleEnd = llvm::getBundleEnd(CallMI->getIterator()); 841 (void)BundleEnd; 842 assert(std::next(Suc) == BundleEnd && 843 "More than one instruction in call delay slot"); 844 // Try to interpret value loaded by instruction. 845 if (!interpretNextInstr(&*Suc, ForwardedRegWorklist, Params)) 846 return; 847 } 848 849 // Search for a loading value in forwarding registers. 850 for (; I != MBB->rend(); ++I) { 851 // Try to interpret values loaded by instruction. 852 if (!interpretNextInstr(&*I, ForwardedRegWorklist, Params)) 853 return; 854 } 855 856 // Emit the call site parameter's value as an entry value. 857 if (ShouldTryEmitEntryVals) { 858 // Create an expression where the register's entry value is used. 859 DIExpression *EntryExpr = DIExpression::get( 860 MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1}); 861 for (auto RegEntry : ForwardedRegWorklist) { 862 MachineLocation MLoc(RegEntry.first); 863 finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params); 864 } 865 } 866 } 867 868 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP, 869 DwarfCompileUnit &CU, DIE &ScopeDIE, 870 const MachineFunction &MF) { 871 // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if 872 // the subprogram is required to have one. 873 if (!SP.areAllCallsDescribed() || !SP.isDefinition()) 874 return; 875 876 // Use DW_AT_call_all_calls to express that call site entries are present 877 // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls 878 // because one of its requirements is not met: call site entries for 879 // optimized-out calls are elided. 880 CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls)); 881 882 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 883 assert(TII && "TargetInstrInfo not found: cannot label tail calls"); 884 885 // Delay slot support check. 886 auto delaySlotSupported = [&](const MachineInstr &MI) { 887 if (!MI.isBundledWithSucc()) 888 return false; 889 auto Suc = std::next(MI.getIterator()); 890 auto CallInstrBundle = getBundleStart(MI.getIterator()); 891 (void)CallInstrBundle; 892 auto DelaySlotBundle = getBundleStart(Suc); 893 (void)DelaySlotBundle; 894 // Ensure that label after call is following delay slot instruction. 895 // Ex. CALL_INSTRUCTION { 896 // DELAY_SLOT_INSTRUCTION } 897 // LABEL_AFTER_CALL 898 assert(getLabelAfterInsn(&*CallInstrBundle) == 899 getLabelAfterInsn(&*DelaySlotBundle) && 900 "Call and its successor instruction don't have same label after."); 901 return true; 902 }; 903 904 // Emit call site entries for each call or tail call in the function. 905 for (const MachineBasicBlock &MBB : MF) { 906 for (const MachineInstr &MI : MBB.instrs()) { 907 // Bundles with call in them will pass the isCall() test below but do not 908 // have callee operand information so skip them here. Iterator will 909 // eventually reach the call MI. 910 if (MI.isBundle()) 911 continue; 912 913 // Skip instructions which aren't calls. Both calls and tail-calling jump 914 // instructions (e.g TAILJMPd64) are classified correctly here. 915 if (!MI.isCandidateForCallSiteEntry()) 916 continue; 917 918 // Skip instructions marked as frame setup, as they are not interesting to 919 // the user. 920 if (MI.getFlag(MachineInstr::FrameSetup)) 921 continue; 922 923 // Check if delay slot support is enabled. 924 if (MI.hasDelaySlot() && !delaySlotSupported(*&MI)) 925 return; 926 927 // If this is a direct call, find the callee's subprogram. 928 // In the case of an indirect call find the register that holds 929 // the callee. 930 const MachineOperand &CalleeOp = MI.getOperand(0); 931 if (!CalleeOp.isGlobal() && !CalleeOp.isReg()) 932 continue; 933 934 unsigned CallReg = 0; 935 DIE *CalleeDIE = nullptr; 936 const Function *CalleeDecl = nullptr; 937 if (CalleeOp.isReg()) { 938 CallReg = CalleeOp.getReg(); 939 if (!CallReg) 940 continue; 941 } else { 942 CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal()); 943 if (!CalleeDecl || !CalleeDecl->getSubprogram()) 944 continue; 945 const DISubprogram *CalleeSP = CalleeDecl->getSubprogram(); 946 947 if (CalleeSP->isDefinition()) { 948 // Ensure that a subprogram DIE for the callee is available in the 949 // appropriate CU. 950 CalleeDIE = &constructSubprogramDefinitionDIE(CalleeSP); 951 } else { 952 // Create the declaration DIE if it is missing. This is required to 953 // support compilation of old bitcode with an incomplete list of 954 // retained metadata. 955 CalleeDIE = CU.getOrCreateSubprogramDIE(CalleeSP); 956 } 957 assert(CalleeDIE && "Must have a DIE for the callee"); 958 } 959 960 // TODO: Omit call site entries for runtime calls (objc_msgSend, etc). 961 962 bool IsTail = TII->isTailCall(MI); 963 964 // If MI is in a bundle, the label was created after the bundle since 965 // EmitFunctionBody iterates over top-level MIs. Get that top-level MI 966 // to search for that label below. 967 const MachineInstr *TopLevelCallMI = 968 MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI; 969 970 // For non-tail calls, the return PC is needed to disambiguate paths in 971 // the call graph which could lead to some target function. For tail 972 // calls, no return PC information is needed, unless tuning for GDB in 973 // DWARF4 mode in which case we fake a return PC for compatibility. 974 const MCSymbol *PCAddr = 975 (!IsTail || CU.useGNUAnalogForDwarf5Feature()) 976 ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI)) 977 : nullptr; 978 979 // For tail calls, it's necessary to record the address of the branch 980 // instruction so that the debugger can show where the tail call occurred. 981 const MCSymbol *CallAddr = 982 IsTail ? getLabelBeforeInsn(TopLevelCallMI) : nullptr; 983 984 assert((IsTail || PCAddr) && "Non-tail call without return PC"); 985 986 LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> " 987 << (CalleeDecl ? CalleeDecl->getName() 988 : StringRef(MF.getSubtarget() 989 .getRegisterInfo() 990 ->getName(CallReg))) 991 << (IsTail ? " [IsTail]" : "") << "\n"); 992 993 DIE &CallSiteDIE = CU.constructCallSiteEntryDIE( 994 ScopeDIE, CalleeDIE, IsTail, PCAddr, CallAddr, CallReg); 995 996 // Optionally emit call-site-param debug info. 997 if (emitDebugEntryValues()) { 998 ParamSet Params; 999 // Try to interpret values of call site parameters. 1000 collectCallSiteParameters(&MI, Params); 1001 CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params); 1002 } 1003 } 1004 } 1005 } 1006 1007 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const { 1008 if (!U.hasDwarfPubSections()) 1009 return; 1010 1011 U.addFlag(D, dwarf::DW_AT_GNU_pubnames); 1012 } 1013 1014 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit, 1015 DwarfCompileUnit &NewCU) { 1016 DIE &Die = NewCU.getUnitDie(); 1017 StringRef FN = DIUnit->getFilename(); 1018 1019 StringRef Producer = DIUnit->getProducer(); 1020 StringRef Flags = DIUnit->getFlags(); 1021 if (!Flags.empty() && !useAppleExtensionAttributes()) { 1022 std::string ProducerWithFlags = Producer.str() + " " + Flags.str(); 1023 NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags); 1024 } else 1025 NewCU.addString(Die, dwarf::DW_AT_producer, Producer); 1026 1027 NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 1028 DIUnit->getSourceLanguage()); 1029 NewCU.addString(Die, dwarf::DW_AT_name, FN); 1030 StringRef SysRoot = DIUnit->getSysRoot(); 1031 if (!SysRoot.empty()) 1032 NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot); 1033 StringRef SDK = DIUnit->getSDK(); 1034 if (!SDK.empty()) 1035 NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK); 1036 1037 // Add DW_str_offsets_base to the unit DIE, except for split units. 1038 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 1039 NewCU.addStringOffsetsStart(); 1040 1041 if (!useSplitDwarf()) { 1042 NewCU.initStmtList(); 1043 1044 // If we're using split dwarf the compilation dir is going to be in the 1045 // skeleton CU and so we don't need to duplicate it here. 1046 if (!CompilationDir.empty()) 1047 NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 1048 addGnuPubAttributes(NewCU, Die); 1049 } 1050 1051 if (useAppleExtensionAttributes()) { 1052 if (DIUnit->isOptimized()) 1053 NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized); 1054 1055 StringRef Flags = DIUnit->getFlags(); 1056 if (!Flags.empty()) 1057 NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags); 1058 1059 if (unsigned RVer = DIUnit->getRuntimeVersion()) 1060 NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers, 1061 dwarf::DW_FORM_data1, RVer); 1062 } 1063 1064 if (DIUnit->getDWOId()) { 1065 // This CU is either a clang module DWO or a skeleton CU. 1066 NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, 1067 DIUnit->getDWOId()); 1068 if (!DIUnit->getSplitDebugFilename().empty()) { 1069 // This is a prefabricated skeleton CU. 1070 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1071 ? dwarf::DW_AT_dwo_name 1072 : dwarf::DW_AT_GNU_dwo_name; 1073 NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename()); 1074 } 1075 } 1076 } 1077 // Create new DwarfCompileUnit for the given metadata node with tag 1078 // DW_TAG_compile_unit. 1079 DwarfCompileUnit & 1080 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) { 1081 if (auto *CU = CUMap.lookup(DIUnit)) 1082 return *CU; 1083 1084 CompilationDir = DIUnit->getDirectory(); 1085 1086 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 1087 InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder); 1088 DwarfCompileUnit &NewCU = *OwnedUnit; 1089 InfoHolder.addUnit(std::move(OwnedUnit)); 1090 1091 for (auto *IE : DIUnit->getImportedEntities()) 1092 NewCU.addImportedEntity(IE); 1093 1094 // LTO with assembly output shares a single line table amongst multiple CUs. 1095 // To avoid the compilation directory being ambiguous, let the line table 1096 // explicitly describe the directory of all files, never relying on the 1097 // compilation directory. 1098 if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU) 1099 Asm->OutStreamer->emitDwarfFile0Directive( 1100 CompilationDir, DIUnit->getFilename(), getMD5AsBytes(DIUnit->getFile()), 1101 DIUnit->getSource(), NewCU.getUniqueID()); 1102 1103 if (useSplitDwarf()) { 1104 NewCU.setSkeleton(constructSkeletonCU(NewCU)); 1105 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection()); 1106 } else { 1107 finishUnitAttributes(DIUnit, NewCU); 1108 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 1109 } 1110 1111 CUMap.insert({DIUnit, &NewCU}); 1112 CUDieMap.insert({&NewCU.getUnitDie(), &NewCU}); 1113 return NewCU; 1114 } 1115 1116 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU, 1117 const DIImportedEntity *N) { 1118 if (isa<DILocalScope>(N->getScope())) 1119 return; 1120 if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope())) 1121 D->addChild(TheCU.constructImportedEntityDIE(N)); 1122 } 1123 1124 /// Sort and unique GVEs by comparing their fragment offset. 1125 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> & 1126 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) { 1127 llvm::sort( 1128 GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) { 1129 // Sort order: first null exprs, then exprs without fragment 1130 // info, then sort by fragment offset in bits. 1131 // FIXME: Come up with a more comprehensive comparator so 1132 // the sorting isn't non-deterministic, and so the following 1133 // std::unique call works correctly. 1134 if (!A.Expr || !B.Expr) 1135 return !!B.Expr; 1136 auto FragmentA = A.Expr->getFragmentInfo(); 1137 auto FragmentB = B.Expr->getFragmentInfo(); 1138 if (!FragmentA || !FragmentB) 1139 return !!FragmentB; 1140 return FragmentA->OffsetInBits < FragmentB->OffsetInBits; 1141 }); 1142 GVEs.erase(std::unique(GVEs.begin(), GVEs.end(), 1143 [](DwarfCompileUnit::GlobalExpr A, 1144 DwarfCompileUnit::GlobalExpr B) { 1145 return A.Expr == B.Expr; 1146 }), 1147 GVEs.end()); 1148 return GVEs; 1149 } 1150 1151 // Emit all Dwarf sections that should come prior to the content. Create 1152 // global DIEs and emit initial debug info sections. This is invoked by 1153 // the target AsmPrinter. 1154 void DwarfDebug::beginModule(Module *M) { 1155 DebugHandlerBase::beginModule(M); 1156 1157 if (!Asm || !MMI->hasDebugInfo()) 1158 return; 1159 1160 unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(), 1161 M->debug_compile_units_end()); 1162 assert(NumDebugCUs > 0 && "Asm unexpectedly initialized"); 1163 assert(MMI->hasDebugInfo() && 1164 "DebugInfoAvailabilty unexpectedly not initialized"); 1165 SingleCU = NumDebugCUs == 1; 1166 DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>> 1167 GVMap; 1168 for (const GlobalVariable &Global : M->globals()) { 1169 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1170 Global.getDebugInfo(GVs); 1171 for (auto *GVE : GVs) 1172 GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()}); 1173 } 1174 1175 // Create the symbol that designates the start of the unit's contribution 1176 // to the string offsets table. In a split DWARF scenario, only the skeleton 1177 // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol). 1178 if (useSegmentedStringOffsetsTable()) 1179 (useSplitDwarf() ? SkeletonHolder : InfoHolder) 1180 .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base")); 1181 1182 1183 // Create the symbols that designates the start of the DWARF v5 range list 1184 // and locations list tables. They are located past the table headers. 1185 if (getDwarfVersion() >= 5) { 1186 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1187 Holder.setRnglistsTableBaseSym( 1188 Asm->createTempSymbol("rnglists_table_base")); 1189 1190 if (useSplitDwarf()) 1191 InfoHolder.setRnglistsTableBaseSym( 1192 Asm->createTempSymbol("rnglists_dwo_table_base")); 1193 } 1194 1195 // Create the symbol that points to the first entry following the debug 1196 // address table (.debug_addr) header. 1197 AddrPool.setLabel(Asm->createTempSymbol("addr_table_base")); 1198 DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base")); 1199 1200 for (DICompileUnit *CUNode : M->debug_compile_units()) { 1201 // FIXME: Move local imported entities into a list attached to the 1202 // subprogram, then this search won't be needed and a 1203 // getImportedEntities().empty() test should go below with the rest. 1204 bool HasNonLocalImportedEntities = llvm::any_of( 1205 CUNode->getImportedEntities(), [](const DIImportedEntity *IE) { 1206 return !isa<DILocalScope>(IE->getScope()); 1207 }); 1208 1209 if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() && 1210 CUNode->getRetainedTypes().empty() && 1211 CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty()) 1212 continue; 1213 1214 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode); 1215 1216 // Global Variables. 1217 for (auto *GVE : CUNode->getGlobalVariables()) { 1218 // Don't bother adding DIGlobalVariableExpressions listed in the CU if we 1219 // already know about the variable and it isn't adding a constant 1220 // expression. 1221 auto &GVMapEntry = GVMap[GVE->getVariable()]; 1222 auto *Expr = GVE->getExpression(); 1223 if (!GVMapEntry.size() || (Expr && Expr->isConstant())) 1224 GVMapEntry.push_back({nullptr, Expr}); 1225 } 1226 DenseSet<DIGlobalVariable *> Processed; 1227 for (auto *GVE : CUNode->getGlobalVariables()) { 1228 DIGlobalVariable *GV = GVE->getVariable(); 1229 if (Processed.insert(GV).second) 1230 CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV])); 1231 } 1232 1233 for (auto *Ty : CUNode->getEnumTypes()) { 1234 // The enum types array by design contains pointers to 1235 // MDNodes rather than DIRefs. Unique them here. 1236 CU.getOrCreateTypeDIE(cast<DIType>(Ty)); 1237 } 1238 for (auto *Ty : CUNode->getRetainedTypes()) { 1239 // The retained types array by design contains pointers to 1240 // MDNodes rather than DIRefs. Unique them here. 1241 if (DIType *RT = dyn_cast<DIType>(Ty)) 1242 // There is no point in force-emitting a forward declaration. 1243 CU.getOrCreateTypeDIE(RT); 1244 } 1245 // Emit imported_modules last so that the relevant context is already 1246 // available. 1247 for (auto *IE : CUNode->getImportedEntities()) 1248 constructAndAddImportedEntityDIE(CU, IE); 1249 } 1250 } 1251 1252 void DwarfDebug::finishEntityDefinitions() { 1253 for (const auto &Entity : ConcreteEntities) { 1254 DIE *Die = Entity->getDIE(); 1255 assert(Die); 1256 // FIXME: Consider the time-space tradeoff of just storing the unit pointer 1257 // in the ConcreteEntities list, rather than looking it up again here. 1258 // DIE::getUnit isn't simple - it walks parent pointers, etc. 1259 DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie()); 1260 assert(Unit); 1261 Unit->finishEntityDefinition(Entity.get()); 1262 } 1263 } 1264 1265 void DwarfDebug::finishSubprogramDefinitions() { 1266 for (const DISubprogram *SP : ProcessedSPNodes) { 1267 assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug); 1268 forBothCUs( 1269 getOrCreateDwarfCompileUnit(SP->getUnit()), 1270 [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); }); 1271 } 1272 } 1273 1274 void DwarfDebug::finalizeModuleInfo() { 1275 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); 1276 1277 finishSubprogramDefinitions(); 1278 1279 finishEntityDefinitions(); 1280 1281 // Include the DWO file name in the hash if there's more than one CU. 1282 // This handles ThinLTO's situation where imported CUs may very easily be 1283 // duplicate with the same CU partially imported into another ThinLTO unit. 1284 StringRef DWOName; 1285 if (CUMap.size() > 1) 1286 DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile; 1287 1288 // Handle anything that needs to be done on a per-unit basis after 1289 // all other generation. 1290 for (const auto &P : CUMap) { 1291 auto &TheCU = *P.second; 1292 if (TheCU.getCUNode()->isDebugDirectivesOnly()) 1293 continue; 1294 // Emit DW_AT_containing_type attribute to connect types with their 1295 // vtable holding type. 1296 TheCU.constructContainingTypeDIEs(); 1297 1298 // Add CU specific attributes if we need to add any. 1299 // If we're splitting the dwarf out now that we've got the entire 1300 // CU then add the dwo id to it. 1301 auto *SkCU = TheCU.getSkeleton(); 1302 1303 bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty(); 1304 1305 if (HasSplitUnit) { 1306 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1307 ? dwarf::DW_AT_dwo_name 1308 : dwarf::DW_AT_GNU_dwo_name; 1309 finishUnitAttributes(TheCU.getCUNode(), TheCU); 1310 TheCU.addString(TheCU.getUnitDie(), attrDWOName, 1311 Asm->TM.Options.MCOptions.SplitDwarfFile); 1312 SkCU->addString(SkCU->getUnitDie(), attrDWOName, 1313 Asm->TM.Options.MCOptions.SplitDwarfFile); 1314 // Emit a unique identifier for this CU. 1315 uint64_t ID = 1316 DIEHash(Asm, &TheCU).computeCUSignature(DWOName, TheCU.getUnitDie()); 1317 if (getDwarfVersion() >= 5) { 1318 TheCU.setDWOId(ID); 1319 SkCU->setDWOId(ID); 1320 } else { 1321 TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1322 dwarf::DW_FORM_data8, ID); 1323 SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1324 dwarf::DW_FORM_data8, ID); 1325 } 1326 1327 if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) { 1328 const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol(); 1329 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base, 1330 Sym, Sym); 1331 } 1332 } else if (SkCU) { 1333 finishUnitAttributes(SkCU->getCUNode(), *SkCU); 1334 } 1335 1336 // If we have code split among multiple sections or non-contiguous 1337 // ranges of code then emit a DW_AT_ranges attribute on the unit that will 1338 // remain in the .o file, otherwise add a DW_AT_low_pc. 1339 // FIXME: We should use ranges allow reordering of code ala 1340 // .subsections_via_symbols in mach-o. This would mean turning on 1341 // ranges for all subprogram DIEs for mach-o. 1342 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 1343 1344 if (unsigned NumRanges = TheCU.getRanges().size()) { 1345 if (NumRanges > 1 && useRangesSection()) 1346 // A DW_AT_low_pc attribute may also be specified in combination with 1347 // DW_AT_ranges to specify the default base address for use in 1348 // location lists (see Section 2.6.2) and range lists (see Section 1349 // 2.17.3). 1350 U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0); 1351 else 1352 U.setBaseAddress(TheCU.getRanges().front().Begin); 1353 U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges()); 1354 } 1355 1356 // We don't keep track of which addresses are used in which CU so this 1357 // is a bit pessimistic under LTO. 1358 if ((HasSplitUnit || getDwarfVersion() >= 5) && !AddrPool.isEmpty()) 1359 U.addAddrTableBase(); 1360 1361 if (getDwarfVersion() >= 5) { 1362 if (U.hasRangeLists()) 1363 U.addRnglistsBase(); 1364 1365 if (!DebugLocs.getLists().empty()) { 1366 if (!useSplitDwarf()) 1367 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base, 1368 DebugLocs.getSym(), 1369 TLOF.getDwarfLoclistsSection()->getBeginSymbol()); 1370 } 1371 } 1372 1373 auto *CUNode = cast<DICompileUnit>(P.first); 1374 // If compile Unit has macros, emit "DW_AT_macro_info/DW_AT_macros" 1375 // attribute. 1376 if (CUNode->getMacros()) { 1377 if (UseDebugMacroSection) { 1378 if (useSplitDwarf()) 1379 TheCU.addSectionDelta( 1380 TheCU.getUnitDie(), dwarf::DW_AT_macros, U.getMacroLabelBegin(), 1381 TLOF.getDwarfMacroDWOSection()->getBeginSymbol()); 1382 else { 1383 dwarf::Attribute MacrosAttr = getDwarfVersion() >= 5 1384 ? dwarf::DW_AT_macros 1385 : dwarf::DW_AT_GNU_macros; 1386 U.addSectionLabel(U.getUnitDie(), MacrosAttr, U.getMacroLabelBegin(), 1387 TLOF.getDwarfMacroSection()->getBeginSymbol()); 1388 } 1389 } else { 1390 if (useSplitDwarf()) 1391 TheCU.addSectionDelta( 1392 TheCU.getUnitDie(), dwarf::DW_AT_macro_info, 1393 U.getMacroLabelBegin(), 1394 TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol()); 1395 else 1396 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info, 1397 U.getMacroLabelBegin(), 1398 TLOF.getDwarfMacinfoSection()->getBeginSymbol()); 1399 } 1400 } 1401 } 1402 1403 // Emit all frontend-produced Skeleton CUs, i.e., Clang modules. 1404 for (auto *CUNode : MMI->getModule()->debug_compile_units()) 1405 if (CUNode->getDWOId()) 1406 getOrCreateDwarfCompileUnit(CUNode); 1407 1408 // Compute DIE offsets and sizes. 1409 InfoHolder.computeSizeAndOffsets(); 1410 if (useSplitDwarf()) 1411 SkeletonHolder.computeSizeAndOffsets(); 1412 } 1413 1414 // Emit all Dwarf sections that should come after the content. 1415 void DwarfDebug::endModule() { 1416 assert(CurFn == nullptr); 1417 assert(CurMI == nullptr); 1418 1419 for (const auto &P : CUMap) { 1420 auto &CU = *P.second; 1421 CU.createBaseTypeDIEs(); 1422 } 1423 1424 // If we aren't actually generating debug info (check beginModule - 1425 // conditionalized on the presence of the llvm.dbg.cu metadata node) 1426 if (!Asm || !MMI->hasDebugInfo()) 1427 return; 1428 1429 // Finalize the debug info for the module. 1430 finalizeModuleInfo(); 1431 1432 if (useSplitDwarf()) 1433 // Emit debug_loc.dwo/debug_loclists.dwo section. 1434 emitDebugLocDWO(); 1435 else 1436 // Emit debug_loc/debug_loclists section. 1437 emitDebugLoc(); 1438 1439 // Corresponding abbreviations into a abbrev section. 1440 emitAbbreviations(); 1441 1442 // Emit all the DIEs into a debug info section. 1443 emitDebugInfo(); 1444 1445 // Emit info into a debug aranges section. 1446 if (GenerateARangeSection) 1447 emitDebugARanges(); 1448 1449 // Emit info into a debug ranges section. 1450 emitDebugRanges(); 1451 1452 if (useSplitDwarf()) 1453 // Emit info into a debug macinfo.dwo section. 1454 emitDebugMacinfoDWO(); 1455 else 1456 // Emit info into a debug macinfo/macro section. 1457 emitDebugMacinfo(); 1458 1459 emitDebugStr(); 1460 1461 if (useSplitDwarf()) { 1462 emitDebugStrDWO(); 1463 emitDebugInfoDWO(); 1464 emitDebugAbbrevDWO(); 1465 emitDebugLineDWO(); 1466 emitDebugRangesDWO(); 1467 } 1468 1469 emitDebugAddr(); 1470 1471 // Emit info into the dwarf accelerator table sections. 1472 switch (getAccelTableKind()) { 1473 case AccelTableKind::Apple: 1474 emitAccelNames(); 1475 emitAccelObjC(); 1476 emitAccelNamespaces(); 1477 emitAccelTypes(); 1478 break; 1479 case AccelTableKind::Dwarf: 1480 emitAccelDebugNames(); 1481 break; 1482 case AccelTableKind::None: 1483 break; 1484 case AccelTableKind::Default: 1485 llvm_unreachable("Default should have already been resolved."); 1486 } 1487 1488 // Emit the pubnames and pubtypes sections if requested. 1489 emitDebugPubSections(); 1490 1491 // clean up. 1492 // FIXME: AbstractVariables.clear(); 1493 } 1494 1495 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU, 1496 const DINode *Node, 1497 const MDNode *ScopeNode) { 1498 if (CU.getExistingAbstractEntity(Node)) 1499 return; 1500 1501 CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope( 1502 cast<DILocalScope>(ScopeNode))); 1503 } 1504 1505 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU, 1506 const DINode *Node, const MDNode *ScopeNode) { 1507 if (CU.getExistingAbstractEntity(Node)) 1508 return; 1509 1510 if (LexicalScope *Scope = 1511 LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode))) 1512 CU.createAbstractEntity(Node, Scope); 1513 } 1514 1515 // Collect variable information from side table maintained by MF. 1516 void DwarfDebug::collectVariableInfoFromMFTable( 1517 DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) { 1518 SmallDenseMap<InlinedEntity, DbgVariable *> MFVars; 1519 LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n"); 1520 for (const auto &VI : Asm->MF->getVariableDbgInfo()) { 1521 if (!VI.Var) 1522 continue; 1523 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1524 "Expected inlined-at fields to agree"); 1525 1526 InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt()); 1527 Processed.insert(Var); 1528 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1529 1530 // If variable scope is not found then skip this variable. 1531 if (!Scope) { 1532 LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName() 1533 << ", no variable scope found\n"); 1534 continue; 1535 } 1536 1537 ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode()); 1538 auto RegVar = std::make_unique<DbgVariable>( 1539 cast<DILocalVariable>(Var.first), Var.second); 1540 RegVar->initializeMMI(VI.Expr, VI.Slot); 1541 LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName() 1542 << "\n"); 1543 if (DbgVariable *DbgVar = MFVars.lookup(Var)) 1544 DbgVar->addMMIEntry(*RegVar); 1545 else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) { 1546 MFVars.insert({Var, RegVar.get()}); 1547 ConcreteEntities.push_back(std::move(RegVar)); 1548 } 1549 } 1550 } 1551 1552 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its 1553 /// enclosing lexical scope. The check ensures there are no other instructions 1554 /// in the same lexical scope preceding the DBG_VALUE and that its range is 1555 /// either open or otherwise rolls off the end of the scope. 1556 static bool validThroughout(LexicalScopes &LScopes, 1557 const MachineInstr *DbgValue, 1558 const MachineInstr *RangeEnd, 1559 const InstructionOrdering &Ordering) { 1560 assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location"); 1561 auto MBB = DbgValue->getParent(); 1562 auto DL = DbgValue->getDebugLoc(); 1563 auto *LScope = LScopes.findLexicalScope(DL); 1564 // Scope doesn't exist; this is a dead DBG_VALUE. 1565 if (!LScope) 1566 return false; 1567 auto &LSRange = LScope->getRanges(); 1568 if (LSRange.size() == 0) 1569 return false; 1570 1571 const MachineInstr *LScopeBegin = LSRange.front().first; 1572 // If the scope starts before the DBG_VALUE then we may have a negative 1573 // result. Otherwise the location is live coming into the scope and we 1574 // can skip the following checks. 1575 if (!Ordering.isBefore(DbgValue, LScopeBegin)) { 1576 // Exit if the lexical scope begins outside of the current block. 1577 if (LScopeBegin->getParent() != MBB) 1578 return false; 1579 1580 MachineBasicBlock::const_reverse_iterator Pred(DbgValue); 1581 for (++Pred; Pred != MBB->rend(); ++Pred) { 1582 if (Pred->getFlag(MachineInstr::FrameSetup)) 1583 break; 1584 auto PredDL = Pred->getDebugLoc(); 1585 if (!PredDL || Pred->isMetaInstruction()) 1586 continue; 1587 // Check whether the instruction preceding the DBG_VALUE is in the same 1588 // (sub)scope as the DBG_VALUE. 1589 if (DL->getScope() == PredDL->getScope()) 1590 return false; 1591 auto *PredScope = LScopes.findLexicalScope(PredDL); 1592 if (!PredScope || LScope->dominates(PredScope)) 1593 return false; 1594 } 1595 } 1596 1597 // If the range of the DBG_VALUE is open-ended, report success. 1598 if (!RangeEnd) 1599 return true; 1600 1601 // Single, constant DBG_VALUEs in the prologue are promoted to be live 1602 // throughout the function. This is a hack, presumably for DWARF v2 and not 1603 // necessarily correct. It would be much better to use a dbg.declare instead 1604 // if we know the constant is live throughout the scope. 1605 if (DbgValue->getDebugOperand(0).isImm() && MBB->pred_empty()) 1606 return true; 1607 1608 // Test if the location terminates before the end of the scope. 1609 const MachineInstr *LScopeEnd = LSRange.back().second; 1610 if (Ordering.isBefore(RangeEnd, LScopeEnd)) 1611 return false; 1612 1613 // There's a single location which starts at the scope start, and ends at or 1614 // after the scope end. 1615 return true; 1616 } 1617 1618 /// Build the location list for all DBG_VALUEs in the function that 1619 /// describe the same variable. The resulting DebugLocEntries will have 1620 /// strict monotonically increasing begin addresses and will never 1621 /// overlap. If the resulting list has only one entry that is valid 1622 /// throughout variable's scope return true. 1623 // 1624 // See the definition of DbgValueHistoryMap::Entry for an explanation of the 1625 // different kinds of history map entries. One thing to be aware of is that if 1626 // a debug value is ended by another entry (rather than being valid until the 1627 // end of the function), that entry's instruction may or may not be included in 1628 // the range, depending on if the entry is a clobbering entry (it has an 1629 // instruction that clobbers one or more preceding locations), or if it is an 1630 // (overlapping) debug value entry. This distinction can be seen in the example 1631 // below. The first debug value is ended by the clobbering entry 2, and the 1632 // second and third debug values are ended by the overlapping debug value entry 1633 // 4. 1634 // 1635 // Input: 1636 // 1637 // History map entries [type, end index, mi] 1638 // 1639 // 0 | [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)] 1640 // 1 | | [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)] 1641 // 2 | | [Clobber, $reg0 = [...], -, -] 1642 // 3 | | [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)] 1643 // 4 [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)] 1644 // 1645 // Output [start, end) [Value...]: 1646 // 1647 // [0-1) [(reg0, fragment 0, 32)] 1648 // [1-3) [(reg0, fragment 0, 32), (reg1, fragment 32, 32)] 1649 // [3-4) [(reg1, fragment 32, 32), (123, fragment 64, 32)] 1650 // [4-) [(@g, fragment 0, 96)] 1651 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc, 1652 const DbgValueHistoryMap::Entries &Entries) { 1653 using OpenRange = 1654 std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>; 1655 SmallVector<OpenRange, 4> OpenRanges; 1656 bool isSafeForSingleLocation = true; 1657 const MachineInstr *StartDebugMI = nullptr; 1658 const MachineInstr *EndMI = nullptr; 1659 1660 for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) { 1661 const MachineInstr *Instr = EI->getInstr(); 1662 1663 // Remove all values that are no longer live. 1664 size_t Index = std::distance(EB, EI); 1665 erase_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; }); 1666 1667 // If we are dealing with a clobbering entry, this iteration will result in 1668 // a location list entry starting after the clobbering instruction. 1669 const MCSymbol *StartLabel = 1670 EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr); 1671 assert(StartLabel && 1672 "Forgot label before/after instruction starting a range!"); 1673 1674 const MCSymbol *EndLabel; 1675 if (std::next(EI) == Entries.end()) { 1676 const MachineBasicBlock &EndMBB = Asm->MF->back(); 1677 EndLabel = Asm->MBBSectionRanges[EndMBB.getSectionIDNum()].EndLabel; 1678 if (EI->isClobber()) 1679 EndMI = EI->getInstr(); 1680 } 1681 else if (std::next(EI)->isClobber()) 1682 EndLabel = getLabelAfterInsn(std::next(EI)->getInstr()); 1683 else 1684 EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr()); 1685 assert(EndLabel && "Forgot label after instruction ending a range!"); 1686 1687 if (EI->isDbgValue()) 1688 LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n"); 1689 1690 // If this history map entry has a debug value, add that to the list of 1691 // open ranges and check if its location is valid for a single value 1692 // location. 1693 if (EI->isDbgValue()) { 1694 // Do not add undef debug values, as they are redundant information in 1695 // the location list entries. An undef debug results in an empty location 1696 // description. If there are any non-undef fragments then padding pieces 1697 // with empty location descriptions will automatically be inserted, and if 1698 // all fragments are undef then the whole location list entry is 1699 // redundant. 1700 if (!Instr->isUndefDebugValue()) { 1701 auto Value = getDebugLocValue(Instr); 1702 OpenRanges.emplace_back(EI->getEndIndex(), Value); 1703 1704 // TODO: Add support for single value fragment locations. 1705 if (Instr->getDebugExpression()->isFragment()) 1706 isSafeForSingleLocation = false; 1707 1708 if (!StartDebugMI) 1709 StartDebugMI = Instr; 1710 } else { 1711 isSafeForSingleLocation = false; 1712 } 1713 } 1714 1715 // Location list entries with empty location descriptions are redundant 1716 // information in DWARF, so do not emit those. 1717 if (OpenRanges.empty()) 1718 continue; 1719 1720 // Omit entries with empty ranges as they do not have any effect in DWARF. 1721 if (StartLabel == EndLabel) { 1722 LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n"); 1723 continue; 1724 } 1725 1726 SmallVector<DbgValueLoc, 4> Values; 1727 for (auto &R : OpenRanges) 1728 Values.push_back(R.second); 1729 DebugLoc.emplace_back(StartLabel, EndLabel, Values); 1730 1731 // Attempt to coalesce the ranges of two otherwise identical 1732 // DebugLocEntries. 1733 auto CurEntry = DebugLoc.rbegin(); 1734 LLVM_DEBUG({ 1735 dbgs() << CurEntry->getValues().size() << " Values:\n"; 1736 for (auto &Value : CurEntry->getValues()) 1737 Value.dump(); 1738 dbgs() << "-----\n"; 1739 }); 1740 1741 auto PrevEntry = std::next(CurEntry); 1742 if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry)) 1743 DebugLoc.pop_back(); 1744 } 1745 1746 return DebugLoc.size() == 1 && isSafeForSingleLocation && 1747 validThroughout(LScopes, StartDebugMI, EndMI, getInstOrdering()); 1748 } 1749 1750 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU, 1751 LexicalScope &Scope, 1752 const DINode *Node, 1753 const DILocation *Location, 1754 const MCSymbol *Sym) { 1755 ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode()); 1756 if (isa<const DILocalVariable>(Node)) { 1757 ConcreteEntities.push_back( 1758 std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node), 1759 Location)); 1760 InfoHolder.addScopeVariable(&Scope, 1761 cast<DbgVariable>(ConcreteEntities.back().get())); 1762 } else if (isa<const DILabel>(Node)) { 1763 ConcreteEntities.push_back( 1764 std::make_unique<DbgLabel>(cast<const DILabel>(Node), 1765 Location, Sym)); 1766 InfoHolder.addScopeLabel(&Scope, 1767 cast<DbgLabel>(ConcreteEntities.back().get())); 1768 } 1769 return ConcreteEntities.back().get(); 1770 } 1771 1772 // Find variables for each lexical scope. 1773 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU, 1774 const DISubprogram *SP, 1775 DenseSet<InlinedEntity> &Processed) { 1776 // Grab the variable info that was squirreled away in the MMI side-table. 1777 collectVariableInfoFromMFTable(TheCU, Processed); 1778 1779 for (const auto &I : DbgValues) { 1780 InlinedEntity IV = I.first; 1781 if (Processed.count(IV)) 1782 continue; 1783 1784 // Instruction ranges, specifying where IV is accessible. 1785 const auto &HistoryMapEntries = I.second; 1786 if (HistoryMapEntries.empty()) 1787 continue; 1788 1789 LexicalScope *Scope = nullptr; 1790 const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first); 1791 if (const DILocation *IA = IV.second) 1792 Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA); 1793 else 1794 Scope = LScopes.findLexicalScope(LocalVar->getScope()); 1795 // If variable scope is not found then skip this variable. 1796 if (!Scope) 1797 continue; 1798 1799 Processed.insert(IV); 1800 DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU, 1801 *Scope, LocalVar, IV.second)); 1802 1803 const MachineInstr *MInsn = HistoryMapEntries.front().getInstr(); 1804 assert(MInsn->isDebugValue() && "History must begin with debug value"); 1805 1806 // Check if there is a single DBG_VALUE, valid throughout the var's scope. 1807 // If the history map contains a single debug value, there may be an 1808 // additional entry which clobbers the debug value. 1809 size_t HistSize = HistoryMapEntries.size(); 1810 bool SingleValueWithClobber = 1811 HistSize == 2 && HistoryMapEntries[1].isClobber(); 1812 if (HistSize == 1 || SingleValueWithClobber) { 1813 const auto *End = 1814 SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr; 1815 if (validThroughout(LScopes, MInsn, End, getInstOrdering())) { 1816 RegVar->initializeDbgValue(MInsn); 1817 continue; 1818 } 1819 } 1820 1821 // Do not emit location lists if .debug_loc secton is disabled. 1822 if (!useLocSection()) 1823 continue; 1824 1825 // Handle multiple DBG_VALUE instructions describing one variable. 1826 DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn); 1827 1828 // Build the location list for this variable. 1829 SmallVector<DebugLocEntry, 8> Entries; 1830 bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries); 1831 1832 // Check whether buildLocationList managed to merge all locations to one 1833 // that is valid throughout the variable's scope. If so, produce single 1834 // value location. 1835 if (isValidSingleLocation) { 1836 RegVar->initializeDbgValue(Entries[0].getValues()[0]); 1837 continue; 1838 } 1839 1840 // If the variable has a DIBasicType, extract it. Basic types cannot have 1841 // unique identifiers, so don't bother resolving the type with the 1842 // identifier map. 1843 const DIBasicType *BT = dyn_cast<DIBasicType>( 1844 static_cast<const Metadata *>(LocalVar->getType())); 1845 1846 // Finalize the entry by lowering it into a DWARF bytestream. 1847 for (auto &Entry : Entries) 1848 Entry.finalize(*Asm, List, BT, TheCU); 1849 } 1850 1851 // For each InlinedEntity collected from DBG_LABEL instructions, convert to 1852 // DWARF-related DbgLabel. 1853 for (const auto &I : DbgLabels) { 1854 InlinedEntity IL = I.first; 1855 const MachineInstr *MI = I.second; 1856 if (MI == nullptr) 1857 continue; 1858 1859 LexicalScope *Scope = nullptr; 1860 const DILabel *Label = cast<DILabel>(IL.first); 1861 // The scope could have an extra lexical block file. 1862 const DILocalScope *LocalScope = 1863 Label->getScope()->getNonLexicalBlockFileScope(); 1864 // Get inlined DILocation if it is inlined label. 1865 if (const DILocation *IA = IL.second) 1866 Scope = LScopes.findInlinedScope(LocalScope, IA); 1867 else 1868 Scope = LScopes.findLexicalScope(LocalScope); 1869 // If label scope is not found then skip this label. 1870 if (!Scope) 1871 continue; 1872 1873 Processed.insert(IL); 1874 /// At this point, the temporary label is created. 1875 /// Save the temporary label to DbgLabel entity to get the 1876 /// actually address when generating Dwarf DIE. 1877 MCSymbol *Sym = getLabelBeforeInsn(MI); 1878 createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym); 1879 } 1880 1881 // Collect info for variables/labels that were optimized out. 1882 for (const DINode *DN : SP->getRetainedNodes()) { 1883 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 1884 continue; 1885 LexicalScope *Scope = nullptr; 1886 if (auto *DV = dyn_cast<DILocalVariable>(DN)) { 1887 Scope = LScopes.findLexicalScope(DV->getScope()); 1888 } else if (auto *DL = dyn_cast<DILabel>(DN)) { 1889 Scope = LScopes.findLexicalScope(DL->getScope()); 1890 } 1891 1892 if (Scope) 1893 createConcreteEntity(TheCU, *Scope, DN, nullptr); 1894 } 1895 } 1896 1897 // Process beginning of an instruction. 1898 void DwarfDebug::beginInstruction(const MachineInstr *MI) { 1899 const MachineFunction &MF = *MI->getMF(); 1900 const auto *SP = MF.getFunction().getSubprogram(); 1901 bool NoDebug = 1902 !SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug; 1903 1904 // Delay slot support check. 1905 auto delaySlotSupported = [](const MachineInstr &MI) { 1906 if (!MI.isBundledWithSucc()) 1907 return false; 1908 auto Suc = std::next(MI.getIterator()); 1909 (void)Suc; 1910 // Ensure that delay slot instruction is successor of the call instruction. 1911 // Ex. CALL_INSTRUCTION { 1912 // DELAY_SLOT_INSTRUCTION } 1913 assert(Suc->isBundledWithPred() && 1914 "Call bundle instructions are out of order"); 1915 return true; 1916 }; 1917 1918 // When describing calls, we need a label for the call instruction. 1919 if (!NoDebug && SP->areAllCallsDescribed() && 1920 MI->isCandidateForCallSiteEntry(MachineInstr::AnyInBundle) && 1921 (!MI->hasDelaySlot() || delaySlotSupported(*MI))) { 1922 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1923 bool IsTail = TII->isTailCall(*MI); 1924 // For tail calls, we need the address of the branch instruction for 1925 // DW_AT_call_pc. 1926 if (IsTail) 1927 requestLabelBeforeInsn(MI); 1928 // For non-tail calls, we need the return address for the call for 1929 // DW_AT_call_return_pc. Under GDB tuning, this information is needed for 1930 // tail calls as well. 1931 requestLabelAfterInsn(MI); 1932 } 1933 1934 DebugHandlerBase::beginInstruction(MI); 1935 if (!CurMI) 1936 return; 1937 1938 if (NoDebug) 1939 return; 1940 1941 // Check if source location changes, but ignore DBG_VALUE and CFI locations. 1942 // If the instruction is part of the function frame setup code, do not emit 1943 // any line record, as there is no correspondence with any user code. 1944 if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup)) 1945 return; 1946 const DebugLoc &DL = MI->getDebugLoc(); 1947 // When we emit a line-0 record, we don't update PrevInstLoc; so look at 1948 // the last line number actually emitted, to see if it was line 0. 1949 unsigned LastAsmLine = 1950 Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine(); 1951 1952 if (DL == PrevInstLoc) { 1953 // If we have an ongoing unspecified location, nothing to do here. 1954 if (!DL) 1955 return; 1956 // We have an explicit location, same as the previous location. 1957 // But we might be coming back to it after a line 0 record. 1958 if (LastAsmLine == 0 && DL.getLine() != 0) { 1959 // Reinstate the source location but not marked as a statement. 1960 const MDNode *Scope = DL.getScope(); 1961 recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0); 1962 } 1963 return; 1964 } 1965 1966 if (!DL) { 1967 // We have an unspecified location, which might want to be line 0. 1968 // If we have already emitted a line-0 record, don't repeat it. 1969 if (LastAsmLine == 0) 1970 return; 1971 // If user said Don't Do That, don't do that. 1972 if (UnknownLocations == Disable) 1973 return; 1974 // See if we have a reason to emit a line-0 record now. 1975 // Reasons to emit a line-0 record include: 1976 // - User asked for it (UnknownLocations). 1977 // - Instruction has a label, so it's referenced from somewhere else, 1978 // possibly debug information; we want it to have a source location. 1979 // - Instruction is at the top of a block; we don't want to inherit the 1980 // location from the physically previous (maybe unrelated) block. 1981 if (UnknownLocations == Enable || PrevLabel || 1982 (PrevInstBB && PrevInstBB != MI->getParent())) { 1983 // Preserve the file and column numbers, if we can, to save space in 1984 // the encoded line table. 1985 // Do not update PrevInstLoc, it remembers the last non-0 line. 1986 const MDNode *Scope = nullptr; 1987 unsigned Column = 0; 1988 if (PrevInstLoc) { 1989 Scope = PrevInstLoc.getScope(); 1990 Column = PrevInstLoc.getCol(); 1991 } 1992 recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0); 1993 } 1994 return; 1995 } 1996 1997 // We have an explicit location, different from the previous location. 1998 // Don't repeat a line-0 record, but otherwise emit the new location. 1999 // (The new location might be an explicit line 0, which we do emit.) 2000 if (DL.getLine() == 0 && LastAsmLine == 0) 2001 return; 2002 unsigned Flags = 0; 2003 if (DL == PrologEndLoc) { 2004 Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT; 2005 PrologEndLoc = DebugLoc(); 2006 } 2007 // If the line changed, we call that a new statement; unless we went to 2008 // line 0 and came back, in which case it is not a new statement. 2009 unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine; 2010 if (DL.getLine() && DL.getLine() != OldLine) 2011 Flags |= DWARF2_FLAG_IS_STMT; 2012 2013 const MDNode *Scope = DL.getScope(); 2014 recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags); 2015 2016 // If we're not at line 0, remember this location. 2017 if (DL.getLine()) 2018 PrevInstLoc = DL; 2019 } 2020 2021 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) { 2022 // First known non-DBG_VALUE and non-frame setup location marks 2023 // the beginning of the function body. 2024 for (const auto &MBB : *MF) 2025 for (const auto &MI : MBB) 2026 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 2027 MI.getDebugLoc()) 2028 return MI.getDebugLoc(); 2029 return DebugLoc(); 2030 } 2031 2032 /// Register a source line with debug info. Returns the unique label that was 2033 /// emitted and which provides correspondence to the source line list. 2034 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col, 2035 const MDNode *S, unsigned Flags, unsigned CUID, 2036 uint16_t DwarfVersion, 2037 ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) { 2038 StringRef Fn; 2039 unsigned FileNo = 1; 2040 unsigned Discriminator = 0; 2041 if (auto *Scope = cast_or_null<DIScope>(S)) { 2042 Fn = Scope->getFilename(); 2043 if (Line != 0 && DwarfVersion >= 4) 2044 if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope)) 2045 Discriminator = LBF->getDiscriminator(); 2046 2047 FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID]) 2048 .getOrCreateSourceID(Scope->getFile()); 2049 } 2050 Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0, 2051 Discriminator, Fn); 2052 } 2053 2054 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF, 2055 unsigned CUID) { 2056 // Get beginning of function. 2057 if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) { 2058 // Ensure the compile unit is created if the function is called before 2059 // beginFunction(). 2060 (void)getOrCreateDwarfCompileUnit( 2061 MF.getFunction().getSubprogram()->getUnit()); 2062 // We'd like to list the prologue as "not statements" but GDB behaves 2063 // poorly if we do that. Revisit this with caution/GDB (7.5+) testing. 2064 const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram(); 2065 ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT, 2066 CUID, getDwarfVersion(), getUnits()); 2067 return PrologEndLoc; 2068 } 2069 return DebugLoc(); 2070 } 2071 2072 // Gather pre-function debug information. Assumes being called immediately 2073 // after the function entry point has been emitted. 2074 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) { 2075 CurFn = MF; 2076 2077 auto *SP = MF->getFunction().getSubprogram(); 2078 assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode()); 2079 if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) 2080 return; 2081 2082 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 2083 2084 // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function 2085 // belongs to so that we add to the correct per-cu line table in the 2086 // non-asm case. 2087 if (Asm->OutStreamer->hasRawTextSupport()) 2088 // Use a single line table if we are generating assembly. 2089 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 2090 else 2091 Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID()); 2092 2093 // Record beginning of function. 2094 PrologEndLoc = emitInitialLocDirective( 2095 *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID()); 2096 } 2097 2098 void DwarfDebug::skippedNonDebugFunction() { 2099 // If we don't have a subprogram for this function then there will be a hole 2100 // in the range information. Keep note of this by setting the previously used 2101 // section to nullptr. 2102 PrevCU = nullptr; 2103 CurFn = nullptr; 2104 } 2105 2106 // Gather and emit post-function debug information. 2107 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) { 2108 const DISubprogram *SP = MF->getFunction().getSubprogram(); 2109 2110 assert(CurFn == MF && 2111 "endFunction should be called with the same function as beginFunction"); 2112 2113 // Set DwarfDwarfCompileUnitID in MCContext to default value. 2114 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 2115 2116 LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); 2117 assert(!FnScope || SP == FnScope->getScopeNode()); 2118 DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit()); 2119 if (TheCU.getCUNode()->isDebugDirectivesOnly()) { 2120 PrevLabel = nullptr; 2121 CurFn = nullptr; 2122 return; 2123 } 2124 2125 DenseSet<InlinedEntity> Processed; 2126 collectEntityInfo(TheCU, SP, Processed); 2127 2128 // Add the range of this function to the list of ranges for the CU. 2129 // With basic block sections, add ranges for all basic block sections. 2130 for (const auto &R : Asm->MBBSectionRanges) 2131 TheCU.addRange({R.second.BeginLabel, R.second.EndLabel}); 2132 2133 // Under -gmlt, skip building the subprogram if there are no inlined 2134 // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram 2135 // is still needed as we need its source location. 2136 if (!TheCU.getCUNode()->getDebugInfoForProfiling() && 2137 TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly && 2138 LScopes.getAbstractScopesList().empty() && !IsDarwin) { 2139 assert(InfoHolder.getScopeVariables().empty()); 2140 PrevLabel = nullptr; 2141 CurFn = nullptr; 2142 return; 2143 } 2144 2145 #ifndef NDEBUG 2146 size_t NumAbstractScopes = LScopes.getAbstractScopesList().size(); 2147 #endif 2148 // Construct abstract scopes. 2149 for (LexicalScope *AScope : LScopes.getAbstractScopesList()) { 2150 auto *SP = cast<DISubprogram>(AScope->getScopeNode()); 2151 for (const DINode *DN : SP->getRetainedNodes()) { 2152 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 2153 continue; 2154 2155 const MDNode *Scope = nullptr; 2156 if (auto *DV = dyn_cast<DILocalVariable>(DN)) 2157 Scope = DV->getScope(); 2158 else if (auto *DL = dyn_cast<DILabel>(DN)) 2159 Scope = DL->getScope(); 2160 else 2161 llvm_unreachable("Unexpected DI type!"); 2162 2163 // Collect info for variables/labels that were optimized out. 2164 ensureAbstractEntityIsCreated(TheCU, DN, Scope); 2165 assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes 2166 && "ensureAbstractEntityIsCreated inserted abstract scopes"); 2167 } 2168 constructAbstractSubprogramScopeDIE(TheCU, AScope); 2169 } 2170 2171 ProcessedSPNodes.insert(SP); 2172 DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope); 2173 if (auto *SkelCU = TheCU.getSkeleton()) 2174 if (!LScopes.getAbstractScopesList().empty() && 2175 TheCU.getCUNode()->getSplitDebugInlining()) 2176 SkelCU->constructSubprogramScopeDIE(SP, FnScope); 2177 2178 // Construct call site entries. 2179 constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF); 2180 2181 // Clear debug info 2182 // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the 2183 // DbgVariables except those that are also in AbstractVariables (since they 2184 // can be used cross-function) 2185 InfoHolder.getScopeVariables().clear(); 2186 InfoHolder.getScopeLabels().clear(); 2187 PrevLabel = nullptr; 2188 CurFn = nullptr; 2189 } 2190 2191 // Register a source line with debug info. Returns the unique label that was 2192 // emitted and which provides correspondence to the source line list. 2193 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S, 2194 unsigned Flags) { 2195 ::recordSourceLine(*Asm, Line, Col, S, Flags, 2196 Asm->OutStreamer->getContext().getDwarfCompileUnitID(), 2197 getDwarfVersion(), getUnits()); 2198 } 2199 2200 //===----------------------------------------------------------------------===// 2201 // Emit Methods 2202 //===----------------------------------------------------------------------===// 2203 2204 // Emit the debug info section. 2205 void DwarfDebug::emitDebugInfo() { 2206 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2207 Holder.emitUnits(/* UseOffsets */ false); 2208 } 2209 2210 // Emit the abbreviation section. 2211 void DwarfDebug::emitAbbreviations() { 2212 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2213 2214 Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection()); 2215 } 2216 2217 void DwarfDebug::emitStringOffsetsTableHeader() { 2218 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2219 Holder.getStringPool().emitStringOffsetsTableHeader( 2220 *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(), 2221 Holder.getStringOffsetsStartSym()); 2222 } 2223 2224 template <typename AccelTableT> 2225 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section, 2226 StringRef TableName) { 2227 Asm->OutStreamer->SwitchSection(Section); 2228 2229 // Emit the full data. 2230 emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol()); 2231 } 2232 2233 void DwarfDebug::emitAccelDebugNames() { 2234 // Don't emit anything if we have no compilation units to index. 2235 if (getUnits().empty()) 2236 return; 2237 2238 emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits()); 2239 } 2240 2241 // Emit visible names into a hashed accelerator table section. 2242 void DwarfDebug::emitAccelNames() { 2243 emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(), 2244 "Names"); 2245 } 2246 2247 // Emit objective C classes and categories into a hashed accelerator table 2248 // section. 2249 void DwarfDebug::emitAccelObjC() { 2250 emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(), 2251 "ObjC"); 2252 } 2253 2254 // Emit namespace dies into a hashed accelerator table. 2255 void DwarfDebug::emitAccelNamespaces() { 2256 emitAccel(AccelNamespace, 2257 Asm->getObjFileLowering().getDwarfAccelNamespaceSection(), 2258 "namespac"); 2259 } 2260 2261 // Emit type dies into a hashed accelerator table. 2262 void DwarfDebug::emitAccelTypes() { 2263 emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(), 2264 "types"); 2265 } 2266 2267 // Public name handling. 2268 // The format for the various pubnames: 2269 // 2270 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU 2271 // for the DIE that is named. 2272 // 2273 // gnu pubnames - offset/index value/name tuples where the offset is the offset 2274 // into the CU and the index value is computed according to the type of value 2275 // for the DIE that is named. 2276 // 2277 // For type units the offset is the offset of the skeleton DIE. For split dwarf 2278 // it's the offset within the debug_info/debug_types dwo section, however, the 2279 // reference in the pubname header doesn't change. 2280 2281 /// computeIndexValue - Compute the gdb index value for the DIE and CU. 2282 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU, 2283 const DIE *Die) { 2284 // Entities that ended up only in a Type Unit reference the CU instead (since 2285 // the pub entry has offsets within the CU there's no real offset that can be 2286 // provided anyway). As it happens all such entities (namespaces and types, 2287 // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out 2288 // not to be true it would be necessary to persist this information from the 2289 // point at which the entry is added to the index data structure - since by 2290 // the time the index is built from that, the original type/namespace DIE in a 2291 // type unit has already been destroyed so it can't be queried for properties 2292 // like tag, etc. 2293 if (Die->getTag() == dwarf::DW_TAG_compile_unit) 2294 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, 2295 dwarf::GIEL_EXTERNAL); 2296 dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC; 2297 2298 // We could have a specification DIE that has our most of our knowledge, 2299 // look for that now. 2300 if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) { 2301 DIE &SpecDIE = SpecVal.getDIEEntry().getEntry(); 2302 if (SpecDIE.findAttribute(dwarf::DW_AT_external)) 2303 Linkage = dwarf::GIEL_EXTERNAL; 2304 } else if (Die->findAttribute(dwarf::DW_AT_external)) 2305 Linkage = dwarf::GIEL_EXTERNAL; 2306 2307 switch (Die->getTag()) { 2308 case dwarf::DW_TAG_class_type: 2309 case dwarf::DW_TAG_structure_type: 2310 case dwarf::DW_TAG_union_type: 2311 case dwarf::DW_TAG_enumeration_type: 2312 return dwarf::PubIndexEntryDescriptor( 2313 dwarf::GIEK_TYPE, 2314 dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage()) 2315 ? dwarf::GIEL_EXTERNAL 2316 : dwarf::GIEL_STATIC); 2317 case dwarf::DW_TAG_typedef: 2318 case dwarf::DW_TAG_base_type: 2319 case dwarf::DW_TAG_subrange_type: 2320 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC); 2321 case dwarf::DW_TAG_namespace: 2322 return dwarf::GIEK_TYPE; 2323 case dwarf::DW_TAG_subprogram: 2324 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage); 2325 case dwarf::DW_TAG_variable: 2326 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage); 2327 case dwarf::DW_TAG_enumerator: 2328 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, 2329 dwarf::GIEL_STATIC); 2330 default: 2331 return dwarf::GIEK_NONE; 2332 } 2333 } 2334 2335 /// emitDebugPubSections - Emit visible names and types into debug pubnames and 2336 /// pubtypes sections. 2337 void DwarfDebug::emitDebugPubSections() { 2338 for (const auto &NU : CUMap) { 2339 DwarfCompileUnit *TheU = NU.second; 2340 if (!TheU->hasDwarfPubSections()) 2341 continue; 2342 2343 bool GnuStyle = TheU->getCUNode()->getNameTableKind() == 2344 DICompileUnit::DebugNameTableKind::GNU; 2345 2346 Asm->OutStreamer->SwitchSection( 2347 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection() 2348 : Asm->getObjFileLowering().getDwarfPubNamesSection()); 2349 emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames()); 2350 2351 Asm->OutStreamer->SwitchSection( 2352 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection() 2353 : Asm->getObjFileLowering().getDwarfPubTypesSection()); 2354 emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes()); 2355 } 2356 } 2357 2358 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) { 2359 if (useSectionsAsReferences()) 2360 Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(), 2361 CU.getDebugSectionOffset()); 2362 else 2363 Asm->emitDwarfSymbolReference(CU.getLabelBegin()); 2364 } 2365 2366 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name, 2367 DwarfCompileUnit *TheU, 2368 const StringMap<const DIE *> &Globals) { 2369 if (auto *Skeleton = TheU->getSkeleton()) 2370 TheU = Skeleton; 2371 2372 // Emit the header. 2373 MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin"); 2374 MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end"); 2375 Asm->emitDwarfUnitLength(EndLabel, BeginLabel, 2376 "Length of Public " + Name + " Info"); 2377 2378 Asm->OutStreamer->emitLabel(BeginLabel); 2379 2380 Asm->OutStreamer->AddComment("DWARF Version"); 2381 Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION); 2382 2383 Asm->OutStreamer->AddComment("Offset of Compilation Unit Info"); 2384 emitSectionReference(*TheU); 2385 2386 Asm->OutStreamer->AddComment("Compilation Unit Length"); 2387 Asm->emitDwarfLengthOrOffset(TheU->getLength()); 2388 2389 // Emit the pubnames for this compilation unit. 2390 for (const auto &GI : Globals) { 2391 const char *Name = GI.getKeyData(); 2392 const DIE *Entity = GI.second; 2393 2394 Asm->OutStreamer->AddComment("DIE offset"); 2395 Asm->emitDwarfLengthOrOffset(Entity->getOffset()); 2396 2397 if (GnuStyle) { 2398 dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity); 2399 Asm->OutStreamer->AddComment( 2400 Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + 2401 ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage)); 2402 Asm->emitInt8(Desc.toBits()); 2403 } 2404 2405 Asm->OutStreamer->AddComment("External Name"); 2406 Asm->OutStreamer->emitBytes(StringRef(Name, GI.getKeyLength() + 1)); 2407 } 2408 2409 Asm->OutStreamer->AddComment("End Mark"); 2410 Asm->emitDwarfLengthOrOffset(0); 2411 Asm->OutStreamer->emitLabel(EndLabel); 2412 } 2413 2414 /// Emit null-terminated strings into a debug str section. 2415 void DwarfDebug::emitDebugStr() { 2416 MCSection *StringOffsetsSection = nullptr; 2417 if (useSegmentedStringOffsetsTable()) { 2418 emitStringOffsetsTableHeader(); 2419 StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection(); 2420 } 2421 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2422 Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(), 2423 StringOffsetsSection, /* UseRelativeOffsets = */ true); 2424 } 2425 2426 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer, 2427 const DebugLocStream::Entry &Entry, 2428 const DwarfCompileUnit *CU) { 2429 auto &&Comments = DebugLocs.getComments(Entry); 2430 auto Comment = Comments.begin(); 2431 auto End = Comments.end(); 2432 2433 // The expressions are inserted into a byte stream rather early (see 2434 // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that 2435 // need to reference a base_type DIE the offset of that DIE is not yet known. 2436 // To deal with this we instead insert a placeholder early and then extract 2437 // it here and replace it with the real reference. 2438 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2439 DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(), 2440 DebugLocs.getBytes(Entry).size()), 2441 Asm->getDataLayout().isLittleEndian(), PtrSize); 2442 DWARFExpression Expr(Data, PtrSize, Asm->OutContext.getDwarfFormat()); 2443 2444 using Encoding = DWARFExpression::Operation::Encoding; 2445 uint64_t Offset = 0; 2446 for (auto &Op : Expr) { 2447 assert(Op.getCode() != dwarf::DW_OP_const_type && 2448 "3 operand ops not yet supported"); 2449 Streamer.emitInt8(Op.getCode(), Comment != End ? *(Comment++) : ""); 2450 Offset++; 2451 for (unsigned I = 0; I < 2; ++I) { 2452 if (Op.getDescription().Op[I] == Encoding::SizeNA) 2453 continue; 2454 if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) { 2455 uint64_t Offset = 2456 CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset(); 2457 assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit"); 2458 Streamer.emitULEB128(Offset, "", ULEB128PadSize); 2459 // Make sure comments stay aligned. 2460 for (unsigned J = 0; J < ULEB128PadSize; ++J) 2461 if (Comment != End) 2462 Comment++; 2463 } else { 2464 for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J) 2465 Streamer.emitInt8(Data.getData()[J], Comment != End ? *(Comment++) : ""); 2466 } 2467 Offset = Op.getOperandEndOffset(I); 2468 } 2469 assert(Offset == Op.getEndOffset()); 2470 } 2471 } 2472 2473 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT, 2474 const DbgValueLoc &Value, 2475 DwarfExpression &DwarfExpr) { 2476 auto *DIExpr = Value.getExpression(); 2477 DIExpressionCursor ExprCursor(DIExpr); 2478 DwarfExpr.addFragmentOffset(DIExpr); 2479 // Regular entry. 2480 if (Value.isInt()) { 2481 if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed || 2482 BT->getEncoding() == dwarf::DW_ATE_signed_char)) 2483 DwarfExpr.addSignedConstant(Value.getInt()); 2484 else 2485 DwarfExpr.addUnsignedConstant(Value.getInt()); 2486 } else if (Value.isLocation()) { 2487 MachineLocation Location = Value.getLoc(); 2488 DwarfExpr.setLocation(Location, DIExpr); 2489 DIExpressionCursor Cursor(DIExpr); 2490 2491 if (DIExpr->isEntryValue()) 2492 DwarfExpr.beginEntryValueExpression(Cursor); 2493 2494 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); 2495 if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg())) 2496 return; 2497 return DwarfExpr.addExpression(std::move(Cursor)); 2498 } else if (Value.isTargetIndexLocation()) { 2499 TargetIndexLocation Loc = Value.getTargetIndexLocation(); 2500 // TODO TargetIndexLocation is a target-independent. Currently only the WebAssembly-specific 2501 // encoding is supported. 2502 assert(AP.TM.getTargetTriple().isWasm()); 2503 DwarfExpr.addWasmLocation(Loc.Index, static_cast<uint64_t>(Loc.Offset)); 2504 DwarfExpr.addExpression(std::move(ExprCursor)); 2505 return; 2506 } else if (Value.isConstantFP()) { 2507 if (AP.getDwarfVersion() >= 4 && !AP.getDwarfDebug()->tuneForSCE() && 2508 !ExprCursor) { 2509 DwarfExpr.addConstantFP(Value.getConstantFP()->getValueAPF(), AP); 2510 return; 2511 } 2512 if (Value.getConstantFP()->getValueAPF().bitcastToAPInt().getBitWidth() <= 2513 64 /*bits*/) 2514 DwarfExpr.addUnsignedConstant( 2515 Value.getConstantFP()->getValueAPF().bitcastToAPInt()); 2516 else 2517 LLVM_DEBUG( 2518 dbgs() 2519 << "Skipped DwarfExpression creation for ConstantFP of size" 2520 << Value.getConstantFP()->getValueAPF().bitcastToAPInt().getBitWidth() 2521 << " bits\n"); 2522 } 2523 DwarfExpr.addExpression(std::move(ExprCursor)); 2524 } 2525 2526 void DebugLocEntry::finalize(const AsmPrinter &AP, 2527 DebugLocStream::ListBuilder &List, 2528 const DIBasicType *BT, 2529 DwarfCompileUnit &TheCU) { 2530 assert(!Values.empty() && 2531 "location list entries without values are redundant"); 2532 assert(Begin != End && "unexpected location list entry with empty range"); 2533 DebugLocStream::EntryBuilder Entry(List, Begin, End); 2534 BufferByteStreamer Streamer = Entry.getStreamer(); 2535 DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU); 2536 const DbgValueLoc &Value = Values[0]; 2537 if (Value.isFragment()) { 2538 // Emit all fragments that belong to the same variable and range. 2539 assert(llvm::all_of(Values, [](DbgValueLoc P) { 2540 return P.isFragment(); 2541 }) && "all values are expected to be fragments"); 2542 assert(llvm::is_sorted(Values) && "fragments are expected to be sorted"); 2543 2544 for (const auto &Fragment : Values) 2545 DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr); 2546 2547 } else { 2548 assert(Values.size() == 1 && "only fragments may have >1 value"); 2549 DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr); 2550 } 2551 DwarfExpr.finalize(); 2552 if (DwarfExpr.TagOffset) 2553 List.setTagOffset(*DwarfExpr.TagOffset); 2554 } 2555 2556 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry, 2557 const DwarfCompileUnit *CU) { 2558 // Emit the size. 2559 Asm->OutStreamer->AddComment("Loc expr size"); 2560 if (getDwarfVersion() >= 5) 2561 Asm->emitULEB128(DebugLocs.getBytes(Entry).size()); 2562 else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max()) 2563 Asm->emitInt16(DebugLocs.getBytes(Entry).size()); 2564 else { 2565 // The entry is too big to fit into 16 bit, drop it as there is nothing we 2566 // can do. 2567 Asm->emitInt16(0); 2568 return; 2569 } 2570 // Emit the entry. 2571 APByteStreamer Streamer(*Asm); 2572 emitDebugLocEntry(Streamer, Entry, CU); 2573 } 2574 2575 // Emit the header of a DWARF 5 range list table list table. Returns the symbol 2576 // that designates the end of the table for the caller to emit when the table is 2577 // complete. 2578 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm, 2579 const DwarfFile &Holder) { 2580 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2581 2582 Asm->OutStreamer->AddComment("Offset entry count"); 2583 Asm->emitInt32(Holder.getRangeLists().size()); 2584 Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym()); 2585 2586 for (const RangeSpanList &List : Holder.getRangeLists()) 2587 Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(), 2588 Asm->getDwarfOffsetByteSize()); 2589 2590 return TableEnd; 2591 } 2592 2593 // Emit the header of a DWARF 5 locations list table. Returns the symbol that 2594 // designates the end of the table for the caller to emit when the table is 2595 // complete. 2596 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm, 2597 const DwarfDebug &DD) { 2598 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2599 2600 const auto &DebugLocs = DD.getDebugLocs(); 2601 2602 Asm->OutStreamer->AddComment("Offset entry count"); 2603 Asm->emitInt32(DebugLocs.getLists().size()); 2604 Asm->OutStreamer->emitLabel(DebugLocs.getSym()); 2605 2606 for (const auto &List : DebugLocs.getLists()) 2607 Asm->emitLabelDifference(List.Label, DebugLocs.getSym(), 2608 Asm->getDwarfOffsetByteSize()); 2609 2610 return TableEnd; 2611 } 2612 2613 template <typename Ranges, typename PayloadEmitter> 2614 static void emitRangeList( 2615 DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R, 2616 const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair, 2617 unsigned StartxLength, unsigned EndOfList, 2618 StringRef (*StringifyEnum)(unsigned), 2619 bool ShouldUseBaseAddress, 2620 PayloadEmitter EmitPayload) { 2621 2622 auto Size = Asm->MAI->getCodePointerSize(); 2623 bool UseDwarf5 = DD.getDwarfVersion() >= 5; 2624 2625 // Emit our symbol so we can find the beginning of the range. 2626 Asm->OutStreamer->emitLabel(Sym); 2627 2628 // Gather all the ranges that apply to the same section so they can share 2629 // a base address entry. 2630 MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges; 2631 2632 for (const auto &Range : R) 2633 SectionRanges[&Range.Begin->getSection()].push_back(&Range); 2634 2635 const MCSymbol *CUBase = CU.getBaseAddress(); 2636 bool BaseIsSet = false; 2637 for (const auto &P : SectionRanges) { 2638 auto *Base = CUBase; 2639 if (!Base && ShouldUseBaseAddress) { 2640 const MCSymbol *Begin = P.second.front()->Begin; 2641 const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection()); 2642 if (!UseDwarf5) { 2643 Base = NewBase; 2644 BaseIsSet = true; 2645 Asm->OutStreamer->emitIntValue(-1, Size); 2646 Asm->OutStreamer->AddComment(" base address"); 2647 Asm->OutStreamer->emitSymbolValue(Base, Size); 2648 } else if (NewBase != Begin || P.second.size() > 1) { 2649 // Only use a base address if 2650 // * the existing pool address doesn't match (NewBase != Begin) 2651 // * or, there's more than one entry to share the base address 2652 Base = NewBase; 2653 BaseIsSet = true; 2654 Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx)); 2655 Asm->emitInt8(BaseAddressx); 2656 Asm->OutStreamer->AddComment(" base address index"); 2657 Asm->emitULEB128(DD.getAddressPool().getIndex(Base)); 2658 } 2659 } else if (BaseIsSet && !UseDwarf5) { 2660 BaseIsSet = false; 2661 assert(!Base); 2662 Asm->OutStreamer->emitIntValue(-1, Size); 2663 Asm->OutStreamer->emitIntValue(0, Size); 2664 } 2665 2666 for (const auto *RS : P.second) { 2667 const MCSymbol *Begin = RS->Begin; 2668 const MCSymbol *End = RS->End; 2669 assert(Begin && "Range without a begin symbol?"); 2670 assert(End && "Range without an end symbol?"); 2671 if (Base) { 2672 if (UseDwarf5) { 2673 // Emit offset_pair when we have a base. 2674 Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair)); 2675 Asm->emitInt8(OffsetPair); 2676 Asm->OutStreamer->AddComment(" starting offset"); 2677 Asm->emitLabelDifferenceAsULEB128(Begin, Base); 2678 Asm->OutStreamer->AddComment(" ending offset"); 2679 Asm->emitLabelDifferenceAsULEB128(End, Base); 2680 } else { 2681 Asm->emitLabelDifference(Begin, Base, Size); 2682 Asm->emitLabelDifference(End, Base, Size); 2683 } 2684 } else if (UseDwarf5) { 2685 Asm->OutStreamer->AddComment(StringifyEnum(StartxLength)); 2686 Asm->emitInt8(StartxLength); 2687 Asm->OutStreamer->AddComment(" start index"); 2688 Asm->emitULEB128(DD.getAddressPool().getIndex(Begin)); 2689 Asm->OutStreamer->AddComment(" length"); 2690 Asm->emitLabelDifferenceAsULEB128(End, Begin); 2691 } else { 2692 Asm->OutStreamer->emitSymbolValue(Begin, Size); 2693 Asm->OutStreamer->emitSymbolValue(End, Size); 2694 } 2695 EmitPayload(*RS); 2696 } 2697 } 2698 2699 if (UseDwarf5) { 2700 Asm->OutStreamer->AddComment(StringifyEnum(EndOfList)); 2701 Asm->emitInt8(EndOfList); 2702 } else { 2703 // Terminate the list with two 0 values. 2704 Asm->OutStreamer->emitIntValue(0, Size); 2705 Asm->OutStreamer->emitIntValue(0, Size); 2706 } 2707 } 2708 2709 // Handles emission of both debug_loclist / debug_loclist.dwo 2710 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) { 2711 emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List), 2712 *List.CU, dwarf::DW_LLE_base_addressx, 2713 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length, 2714 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString, 2715 /* ShouldUseBaseAddress */ true, 2716 [&](const DebugLocStream::Entry &E) { 2717 DD.emitDebugLocEntryLocation(E, List.CU); 2718 }); 2719 } 2720 2721 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) { 2722 if (DebugLocs.getLists().empty()) 2723 return; 2724 2725 Asm->OutStreamer->SwitchSection(Sec); 2726 2727 MCSymbol *TableEnd = nullptr; 2728 if (getDwarfVersion() >= 5) 2729 TableEnd = emitLoclistsTableHeader(Asm, *this); 2730 2731 for (const auto &List : DebugLocs.getLists()) 2732 emitLocList(*this, Asm, List); 2733 2734 if (TableEnd) 2735 Asm->OutStreamer->emitLabel(TableEnd); 2736 } 2737 2738 // Emit locations into the .debug_loc/.debug_loclists section. 2739 void DwarfDebug::emitDebugLoc() { 2740 emitDebugLocImpl( 2741 getDwarfVersion() >= 5 2742 ? Asm->getObjFileLowering().getDwarfLoclistsSection() 2743 : Asm->getObjFileLowering().getDwarfLocSection()); 2744 } 2745 2746 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section. 2747 void DwarfDebug::emitDebugLocDWO() { 2748 if (getDwarfVersion() >= 5) { 2749 emitDebugLocImpl( 2750 Asm->getObjFileLowering().getDwarfLoclistsDWOSection()); 2751 2752 return; 2753 } 2754 2755 for (const auto &List : DebugLocs.getLists()) { 2756 Asm->OutStreamer->SwitchSection( 2757 Asm->getObjFileLowering().getDwarfLocDWOSection()); 2758 Asm->OutStreamer->emitLabel(List.Label); 2759 2760 for (const auto &Entry : DebugLocs.getEntries(List)) { 2761 // GDB only supports startx_length in pre-standard split-DWARF. 2762 // (in v5 standard loclists, it currently* /only/ supports base_address + 2763 // offset_pair, so the implementations can't really share much since they 2764 // need to use different representations) 2765 // * as of October 2018, at least 2766 // 2767 // In v5 (see emitLocList), this uses SectionLabels to reuse existing 2768 // addresses in the address pool to minimize object size/relocations. 2769 Asm->emitInt8(dwarf::DW_LLE_startx_length); 2770 unsigned idx = AddrPool.getIndex(Entry.Begin); 2771 Asm->emitULEB128(idx); 2772 // Also the pre-standard encoding is slightly different, emitting this as 2773 // an address-length entry here, but its a ULEB128 in DWARFv5 loclists. 2774 Asm->emitLabelDifference(Entry.End, Entry.Begin, 4); 2775 emitDebugLocEntryLocation(Entry, List.CU); 2776 } 2777 Asm->emitInt8(dwarf::DW_LLE_end_of_list); 2778 } 2779 } 2780 2781 struct ArangeSpan { 2782 const MCSymbol *Start, *End; 2783 }; 2784 2785 // Emit a debug aranges section, containing a CU lookup for any 2786 // address we can tie back to a CU. 2787 void DwarfDebug::emitDebugARanges() { 2788 // Provides a unique id per text section. 2789 MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap; 2790 2791 // Filter labels by section. 2792 for (const SymbolCU &SCU : ArangeLabels) { 2793 if (SCU.Sym->isInSection()) { 2794 // Make a note of this symbol and it's section. 2795 MCSection *Section = &SCU.Sym->getSection(); 2796 if (!Section->getKind().isMetadata()) 2797 SectionMap[Section].push_back(SCU); 2798 } else { 2799 // Some symbols (e.g. common/bss on mach-o) can have no section but still 2800 // appear in the output. This sucks as we rely on sections to build 2801 // arange spans. We can do it without, but it's icky. 2802 SectionMap[nullptr].push_back(SCU); 2803 } 2804 } 2805 2806 DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans; 2807 2808 for (auto &I : SectionMap) { 2809 MCSection *Section = I.first; 2810 SmallVector<SymbolCU, 8> &List = I.second; 2811 if (List.size() < 1) 2812 continue; 2813 2814 // If we have no section (e.g. common), just write out 2815 // individual spans for each symbol. 2816 if (!Section) { 2817 for (const SymbolCU &Cur : List) { 2818 ArangeSpan Span; 2819 Span.Start = Cur.Sym; 2820 Span.End = nullptr; 2821 assert(Cur.CU); 2822 Spans[Cur.CU].push_back(Span); 2823 } 2824 continue; 2825 } 2826 2827 // Sort the symbols by offset within the section. 2828 llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) { 2829 unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0; 2830 unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0; 2831 2832 // Symbols with no order assigned should be placed at the end. 2833 // (e.g. section end labels) 2834 if (IA == 0) 2835 return false; 2836 if (IB == 0) 2837 return true; 2838 return IA < IB; 2839 }); 2840 2841 // Insert a final terminator. 2842 List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section))); 2843 2844 // Build spans between each label. 2845 const MCSymbol *StartSym = List[0].Sym; 2846 for (size_t n = 1, e = List.size(); n < e; n++) { 2847 const SymbolCU &Prev = List[n - 1]; 2848 const SymbolCU &Cur = List[n]; 2849 2850 // Try and build the longest span we can within the same CU. 2851 if (Cur.CU != Prev.CU) { 2852 ArangeSpan Span; 2853 Span.Start = StartSym; 2854 Span.End = Cur.Sym; 2855 assert(Prev.CU); 2856 Spans[Prev.CU].push_back(Span); 2857 StartSym = Cur.Sym; 2858 } 2859 } 2860 } 2861 2862 // Start the dwarf aranges section. 2863 Asm->OutStreamer->SwitchSection( 2864 Asm->getObjFileLowering().getDwarfARangesSection()); 2865 2866 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2867 2868 // Build a list of CUs used. 2869 std::vector<DwarfCompileUnit *> CUs; 2870 for (const auto &it : Spans) { 2871 DwarfCompileUnit *CU = it.first; 2872 CUs.push_back(CU); 2873 } 2874 2875 // Sort the CU list (again, to ensure consistent output order). 2876 llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) { 2877 return A->getUniqueID() < B->getUniqueID(); 2878 }); 2879 2880 // Emit an arange table for each CU we used. 2881 for (DwarfCompileUnit *CU : CUs) { 2882 std::vector<ArangeSpan> &List = Spans[CU]; 2883 2884 // Describe the skeleton CU's offset and length, not the dwo file's. 2885 if (auto *Skel = CU->getSkeleton()) 2886 CU = Skel; 2887 2888 // Emit size of content not including length itself. 2889 unsigned ContentSize = 2890 sizeof(int16_t) + // DWARF ARange version number 2891 Asm->getDwarfOffsetByteSize() + // Offset of CU in the .debug_info 2892 // section 2893 sizeof(int8_t) + // Pointer Size (in bytes) 2894 sizeof(int8_t); // Segment Size (in bytes) 2895 2896 unsigned TupleSize = PtrSize * 2; 2897 2898 // 7.20 in the Dwarf specs requires the table to be aligned to a tuple. 2899 unsigned Padding = offsetToAlignment( 2900 Asm->getUnitLengthFieldByteSize() + ContentSize, Align(TupleSize)); 2901 2902 ContentSize += Padding; 2903 ContentSize += (List.size() + 1) * TupleSize; 2904 2905 // For each compile unit, write the list of spans it covers. 2906 Asm->emitDwarfUnitLength(ContentSize, "Length of ARange Set"); 2907 Asm->OutStreamer->AddComment("DWARF Arange version number"); 2908 Asm->emitInt16(dwarf::DW_ARANGES_VERSION); 2909 Asm->OutStreamer->AddComment("Offset Into Debug Info Section"); 2910 emitSectionReference(*CU); 2911 Asm->OutStreamer->AddComment("Address Size (in bytes)"); 2912 Asm->emitInt8(PtrSize); 2913 Asm->OutStreamer->AddComment("Segment Size (in bytes)"); 2914 Asm->emitInt8(0); 2915 2916 Asm->OutStreamer->emitFill(Padding, 0xff); 2917 2918 for (const ArangeSpan &Span : List) { 2919 Asm->emitLabelReference(Span.Start, PtrSize); 2920 2921 // Calculate the size as being from the span start to it's end. 2922 if (Span.End) { 2923 Asm->emitLabelDifference(Span.End, Span.Start, PtrSize); 2924 } else { 2925 // For symbols without an end marker (e.g. common), we 2926 // write a single arange entry containing just that one symbol. 2927 uint64_t Size = SymSize[Span.Start]; 2928 if (Size == 0) 2929 Size = 1; 2930 2931 Asm->OutStreamer->emitIntValue(Size, PtrSize); 2932 } 2933 } 2934 2935 Asm->OutStreamer->AddComment("ARange terminator"); 2936 Asm->OutStreamer->emitIntValue(0, PtrSize); 2937 Asm->OutStreamer->emitIntValue(0, PtrSize); 2938 } 2939 } 2940 2941 /// Emit a single range list. We handle both DWARF v5 and earlier. 2942 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm, 2943 const RangeSpanList &List) { 2944 emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU, 2945 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair, 2946 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list, 2947 llvm::dwarf::RangeListEncodingString, 2948 List.CU->getCUNode()->getRangesBaseAddress() || 2949 DD.getDwarfVersion() >= 5, 2950 [](auto) {}); 2951 } 2952 2953 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) { 2954 if (Holder.getRangeLists().empty()) 2955 return; 2956 2957 assert(useRangesSection()); 2958 assert(!CUMap.empty()); 2959 assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) { 2960 return !Pair.second->getCUNode()->isDebugDirectivesOnly(); 2961 })); 2962 2963 Asm->OutStreamer->SwitchSection(Section); 2964 2965 MCSymbol *TableEnd = nullptr; 2966 if (getDwarfVersion() >= 5) 2967 TableEnd = emitRnglistsTableHeader(Asm, Holder); 2968 2969 for (const RangeSpanList &List : Holder.getRangeLists()) 2970 emitRangeList(*this, Asm, List); 2971 2972 if (TableEnd) 2973 Asm->OutStreamer->emitLabel(TableEnd); 2974 } 2975 2976 /// Emit address ranges into the .debug_ranges section or into the DWARF v5 2977 /// .debug_rnglists section. 2978 void DwarfDebug::emitDebugRanges() { 2979 const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2980 2981 emitDebugRangesImpl(Holder, 2982 getDwarfVersion() >= 5 2983 ? Asm->getObjFileLowering().getDwarfRnglistsSection() 2984 : Asm->getObjFileLowering().getDwarfRangesSection()); 2985 } 2986 2987 void DwarfDebug::emitDebugRangesDWO() { 2988 emitDebugRangesImpl(InfoHolder, 2989 Asm->getObjFileLowering().getDwarfRnglistsDWOSection()); 2990 } 2991 2992 /// Emit the header of a DWARF 5 macro section, or the GNU extension for 2993 /// DWARF 4. 2994 static void emitMacroHeader(AsmPrinter *Asm, const DwarfDebug &DD, 2995 const DwarfCompileUnit &CU, uint16_t DwarfVersion) { 2996 enum HeaderFlagMask { 2997 #define HANDLE_MACRO_FLAG(ID, NAME) MACRO_FLAG_##NAME = ID, 2998 #include "llvm/BinaryFormat/Dwarf.def" 2999 }; 3000 Asm->OutStreamer->AddComment("Macro information version"); 3001 Asm->emitInt16(DwarfVersion >= 5 ? DwarfVersion : 4); 3002 // We emit the line offset flag unconditionally here, since line offset should 3003 // be mostly present. 3004 if (Asm->isDwarf64()) { 3005 Asm->OutStreamer->AddComment("Flags: 64 bit, debug_line_offset present"); 3006 Asm->emitInt8(MACRO_FLAG_OFFSET_SIZE | MACRO_FLAG_DEBUG_LINE_OFFSET); 3007 } else { 3008 Asm->OutStreamer->AddComment("Flags: 32 bit, debug_line_offset present"); 3009 Asm->emitInt8(MACRO_FLAG_DEBUG_LINE_OFFSET); 3010 } 3011 Asm->OutStreamer->AddComment("debug_line_offset"); 3012 if (DD.useSplitDwarf()) 3013 Asm->emitDwarfLengthOrOffset(0); 3014 else 3015 Asm->emitDwarfSymbolReference(CU.getLineTableStartSym()); 3016 } 3017 3018 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) { 3019 for (auto *MN : Nodes) { 3020 if (auto *M = dyn_cast<DIMacro>(MN)) 3021 emitMacro(*M); 3022 else if (auto *F = dyn_cast<DIMacroFile>(MN)) 3023 emitMacroFile(*F, U); 3024 else 3025 llvm_unreachable("Unexpected DI type!"); 3026 } 3027 } 3028 3029 void DwarfDebug::emitMacro(DIMacro &M) { 3030 StringRef Name = M.getName(); 3031 StringRef Value = M.getValue(); 3032 3033 // There should be one space between the macro name and the macro value in 3034 // define entries. In undef entries, only the macro name is emitted. 3035 std::string Str = Value.empty() ? Name.str() : (Name + " " + Value).str(); 3036 3037 if (UseDebugMacroSection) { 3038 if (getDwarfVersion() >= 5) { 3039 unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define 3040 ? dwarf::DW_MACRO_define_strx 3041 : dwarf::DW_MACRO_undef_strx; 3042 Asm->OutStreamer->AddComment(dwarf::MacroString(Type)); 3043 Asm->emitULEB128(Type); 3044 Asm->OutStreamer->AddComment("Line Number"); 3045 Asm->emitULEB128(M.getLine()); 3046 Asm->OutStreamer->AddComment("Macro String"); 3047 Asm->emitULEB128( 3048 InfoHolder.getStringPool().getIndexedEntry(*Asm, Str).getIndex()); 3049 } else { 3050 unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define 3051 ? dwarf::DW_MACRO_GNU_define_indirect 3052 : dwarf::DW_MACRO_GNU_undef_indirect; 3053 Asm->OutStreamer->AddComment(dwarf::GnuMacroString(Type)); 3054 Asm->emitULEB128(Type); 3055 Asm->OutStreamer->AddComment("Line Number"); 3056 Asm->emitULEB128(M.getLine()); 3057 Asm->OutStreamer->AddComment("Macro String"); 3058 Asm->emitDwarfSymbolReference( 3059 InfoHolder.getStringPool().getEntry(*Asm, Str).getSymbol()); 3060 } 3061 } else { 3062 Asm->OutStreamer->AddComment(dwarf::MacinfoString(M.getMacinfoType())); 3063 Asm->emitULEB128(M.getMacinfoType()); 3064 Asm->OutStreamer->AddComment("Line Number"); 3065 Asm->emitULEB128(M.getLine()); 3066 Asm->OutStreamer->AddComment("Macro String"); 3067 Asm->OutStreamer->emitBytes(Str); 3068 Asm->emitInt8('\0'); 3069 } 3070 } 3071 3072 void DwarfDebug::emitMacroFileImpl( 3073 DIMacroFile &MF, DwarfCompileUnit &U, unsigned StartFile, unsigned EndFile, 3074 StringRef (*MacroFormToString)(unsigned Form)) { 3075 3076 Asm->OutStreamer->AddComment(MacroFormToString(StartFile)); 3077 Asm->emitULEB128(StartFile); 3078 Asm->OutStreamer->AddComment("Line Number"); 3079 Asm->emitULEB128(MF.getLine()); 3080 Asm->OutStreamer->AddComment("File Number"); 3081 DIFile &F = *MF.getFile(); 3082 if (useSplitDwarf()) 3083 Asm->emitULEB128(getDwoLineTable(U)->getFile( 3084 F.getDirectory(), F.getFilename(), getMD5AsBytes(&F), 3085 Asm->OutContext.getDwarfVersion(), F.getSource())); 3086 else 3087 Asm->emitULEB128(U.getOrCreateSourceID(&F)); 3088 handleMacroNodes(MF.getElements(), U); 3089 Asm->OutStreamer->AddComment(MacroFormToString(EndFile)); 3090 Asm->emitULEB128(EndFile); 3091 } 3092 3093 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) { 3094 // DWARFv5 macro and DWARFv4 macinfo share some common encodings, 3095 // so for readibility/uniformity, We are explicitly emitting those. 3096 assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file); 3097 if (UseDebugMacroSection) 3098 emitMacroFileImpl( 3099 F, U, dwarf::DW_MACRO_start_file, dwarf::DW_MACRO_end_file, 3100 (getDwarfVersion() >= 5) ? dwarf::MacroString : dwarf::GnuMacroString); 3101 else 3102 emitMacroFileImpl(F, U, dwarf::DW_MACINFO_start_file, 3103 dwarf::DW_MACINFO_end_file, dwarf::MacinfoString); 3104 } 3105 3106 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) { 3107 for (const auto &P : CUMap) { 3108 auto &TheCU = *P.second; 3109 auto *SkCU = TheCU.getSkeleton(); 3110 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 3111 auto *CUNode = cast<DICompileUnit>(P.first); 3112 DIMacroNodeArray Macros = CUNode->getMacros(); 3113 if (Macros.empty()) 3114 continue; 3115 Asm->OutStreamer->SwitchSection(Section); 3116 Asm->OutStreamer->emitLabel(U.getMacroLabelBegin()); 3117 if (UseDebugMacroSection) 3118 emitMacroHeader(Asm, *this, U, getDwarfVersion()); 3119 handleMacroNodes(Macros, U); 3120 Asm->OutStreamer->AddComment("End Of Macro List Mark"); 3121 Asm->emitInt8(0); 3122 } 3123 } 3124 3125 /// Emit macros into a debug macinfo/macro section. 3126 void DwarfDebug::emitDebugMacinfo() { 3127 auto &ObjLower = Asm->getObjFileLowering(); 3128 emitDebugMacinfoImpl(UseDebugMacroSection 3129 ? ObjLower.getDwarfMacroSection() 3130 : ObjLower.getDwarfMacinfoSection()); 3131 } 3132 3133 void DwarfDebug::emitDebugMacinfoDWO() { 3134 auto &ObjLower = Asm->getObjFileLowering(); 3135 emitDebugMacinfoImpl(UseDebugMacroSection 3136 ? ObjLower.getDwarfMacroDWOSection() 3137 : ObjLower.getDwarfMacinfoDWOSection()); 3138 } 3139 3140 // DWARF5 Experimental Separate Dwarf emitters. 3141 3142 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die, 3143 std::unique_ptr<DwarfCompileUnit> NewU) { 3144 3145 if (!CompilationDir.empty()) 3146 NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 3147 addGnuPubAttributes(*NewU, Die); 3148 3149 SkeletonHolder.addUnit(std::move(NewU)); 3150 } 3151 3152 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) { 3153 3154 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 3155 CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder, 3156 UnitKind::Skeleton); 3157 DwarfCompileUnit &NewCU = *OwnedUnit; 3158 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 3159 3160 NewCU.initStmtList(); 3161 3162 if (useSegmentedStringOffsetsTable()) 3163 NewCU.addStringOffsetsStart(); 3164 3165 initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit)); 3166 3167 return NewCU; 3168 } 3169 3170 // Emit the .debug_info.dwo section for separated dwarf. This contains the 3171 // compile units that would normally be in debug_info. 3172 void DwarfDebug::emitDebugInfoDWO() { 3173 assert(useSplitDwarf() && "No split dwarf debug info?"); 3174 // Don't emit relocations into the dwo file. 3175 InfoHolder.emitUnits(/* UseOffsets */ true); 3176 } 3177 3178 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the 3179 // abbreviations for the .debug_info.dwo section. 3180 void DwarfDebug::emitDebugAbbrevDWO() { 3181 assert(useSplitDwarf() && "No split dwarf?"); 3182 InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection()); 3183 } 3184 3185 void DwarfDebug::emitDebugLineDWO() { 3186 assert(useSplitDwarf() && "No split dwarf?"); 3187 SplitTypeUnitFileTable.Emit( 3188 *Asm->OutStreamer, MCDwarfLineTableParams(), 3189 Asm->getObjFileLowering().getDwarfLineDWOSection()); 3190 } 3191 3192 void DwarfDebug::emitStringOffsetsTableHeaderDWO() { 3193 assert(useSplitDwarf() && "No split dwarf?"); 3194 InfoHolder.getStringPool().emitStringOffsetsTableHeader( 3195 *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(), 3196 InfoHolder.getStringOffsetsStartSym()); 3197 } 3198 3199 // Emit the .debug_str.dwo section for separated dwarf. This contains the 3200 // string section and is identical in format to traditional .debug_str 3201 // sections. 3202 void DwarfDebug::emitDebugStrDWO() { 3203 if (useSegmentedStringOffsetsTable()) 3204 emitStringOffsetsTableHeaderDWO(); 3205 assert(useSplitDwarf() && "No split dwarf?"); 3206 MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection(); 3207 InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(), 3208 OffSec, /* UseRelativeOffsets = */ false); 3209 } 3210 3211 // Emit address pool. 3212 void DwarfDebug::emitDebugAddr() { 3213 AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection()); 3214 } 3215 3216 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) { 3217 if (!useSplitDwarf()) 3218 return nullptr; 3219 const DICompileUnit *DIUnit = CU.getCUNode(); 3220 SplitTypeUnitFileTable.maybeSetRootFile( 3221 DIUnit->getDirectory(), DIUnit->getFilename(), 3222 getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource()); 3223 return &SplitTypeUnitFileTable; 3224 } 3225 3226 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) { 3227 MD5 Hash; 3228 Hash.update(Identifier); 3229 // ... take the least significant 8 bytes and return those. Our MD5 3230 // implementation always returns its results in little endian, so we actually 3231 // need the "high" word. 3232 MD5::MD5Result Result; 3233 Hash.final(Result); 3234 return Result.high(); 3235 } 3236 3237 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU, 3238 StringRef Identifier, DIE &RefDie, 3239 const DICompositeType *CTy) { 3240 // Fast path if we're building some type units and one has already used the 3241 // address pool we know we're going to throw away all this work anyway, so 3242 // don't bother building dependent types. 3243 if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed()) 3244 return; 3245 3246 auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0)); 3247 if (!Ins.second) { 3248 CU.addDIETypeSignature(RefDie, Ins.first->second); 3249 return; 3250 } 3251 3252 bool TopLevelType = TypeUnitsUnderConstruction.empty(); 3253 AddrPool.resetUsedFlag(); 3254 3255 auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder, 3256 getDwoLineTable(CU)); 3257 DwarfTypeUnit &NewTU = *OwnedUnit; 3258 DIE &UnitDie = NewTU.getUnitDie(); 3259 TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy); 3260 3261 NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 3262 CU.getLanguage()); 3263 3264 uint64_t Signature = makeTypeSignature(Identifier); 3265 NewTU.setTypeSignature(Signature); 3266 Ins.first->second = Signature; 3267 3268 if (useSplitDwarf()) { 3269 MCSection *Section = 3270 getDwarfVersion() <= 4 3271 ? Asm->getObjFileLowering().getDwarfTypesDWOSection() 3272 : Asm->getObjFileLowering().getDwarfInfoDWOSection(); 3273 NewTU.setSection(Section); 3274 } else { 3275 MCSection *Section = 3276 getDwarfVersion() <= 4 3277 ? Asm->getObjFileLowering().getDwarfTypesSection(Signature) 3278 : Asm->getObjFileLowering().getDwarfInfoSection(Signature); 3279 NewTU.setSection(Section); 3280 // Non-split type units reuse the compile unit's line table. 3281 CU.applyStmtList(UnitDie); 3282 } 3283 3284 // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type 3285 // units. 3286 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 3287 NewTU.addStringOffsetsStart(); 3288 3289 NewTU.setType(NewTU.createTypeDIE(CTy)); 3290 3291 if (TopLevelType) { 3292 auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction); 3293 TypeUnitsUnderConstruction.clear(); 3294 3295 // Types referencing entries in the address table cannot be placed in type 3296 // units. 3297 if (AddrPool.hasBeenUsed()) { 3298 3299 // Remove all the types built while building this type. 3300 // This is pessimistic as some of these types might not be dependent on 3301 // the type that used an address. 3302 for (const auto &TU : TypeUnitsToAdd) 3303 TypeSignatures.erase(TU.second); 3304 3305 // Construct this type in the CU directly. 3306 // This is inefficient because all the dependent types will be rebuilt 3307 // from scratch, including building them in type units, discovering that 3308 // they depend on addresses, throwing them out and rebuilding them. 3309 CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy)); 3310 return; 3311 } 3312 3313 // If the type wasn't dependent on fission addresses, finish adding the type 3314 // and all its dependent types. 3315 for (auto &TU : TypeUnitsToAdd) { 3316 InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get()); 3317 InfoHolder.emitUnit(TU.first.get(), useSplitDwarf()); 3318 } 3319 } 3320 CU.addDIETypeSignature(RefDie, Signature); 3321 } 3322 3323 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD) 3324 : DD(DD), 3325 TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)), AddrPoolUsed(DD->AddrPool.hasBeenUsed()) { 3326 DD->TypeUnitsUnderConstruction.clear(); 3327 DD->AddrPool.resetUsedFlag(); 3328 } 3329 3330 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() { 3331 DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction); 3332 DD->AddrPool.resetUsedFlag(AddrPoolUsed); 3333 } 3334 3335 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() { 3336 return NonTypeUnitContext(this); 3337 } 3338 3339 // Add the Name along with its companion DIE to the appropriate accelerator 3340 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for 3341 // AccelTableKind::Apple, we use the table we got as an argument). If 3342 // accelerator tables are disabled, this function does nothing. 3343 template <typename DataT> 3344 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU, 3345 AccelTable<DataT> &AppleAccel, StringRef Name, 3346 const DIE &Die) { 3347 if (getAccelTableKind() == AccelTableKind::None) 3348 return; 3349 3350 if (getAccelTableKind() != AccelTableKind::Apple && 3351 CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default) 3352 return; 3353 3354 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 3355 DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name); 3356 3357 switch (getAccelTableKind()) { 3358 case AccelTableKind::Apple: 3359 AppleAccel.addName(Ref, Die); 3360 break; 3361 case AccelTableKind::Dwarf: 3362 AccelDebugNames.addName(Ref, Die); 3363 break; 3364 case AccelTableKind::Default: 3365 llvm_unreachable("Default should have already been resolved."); 3366 case AccelTableKind::None: 3367 llvm_unreachable("None handled above"); 3368 } 3369 } 3370 3371 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name, 3372 const DIE &Die) { 3373 addAccelNameImpl(CU, AccelNames, Name, Die); 3374 } 3375 3376 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name, 3377 const DIE &Die) { 3378 // ObjC names go only into the Apple accelerator tables. 3379 if (getAccelTableKind() == AccelTableKind::Apple) 3380 addAccelNameImpl(CU, AccelObjC, Name, Die); 3381 } 3382 3383 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name, 3384 const DIE &Die) { 3385 addAccelNameImpl(CU, AccelNamespace, Name, Die); 3386 } 3387 3388 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name, 3389 const DIE &Die, char Flags) { 3390 addAccelNameImpl(CU, AccelTypes, Name, Die); 3391 } 3392 3393 uint16_t DwarfDebug::getDwarfVersion() const { 3394 return Asm->OutStreamer->getContext().getDwarfVersion(); 3395 } 3396 3397 dwarf::Form DwarfDebug::getDwarfSectionOffsetForm() const { 3398 if (Asm->getDwarfVersion() >= 4) 3399 return dwarf::Form::DW_FORM_sec_offset; 3400 assert((!Asm->isDwarf64() || (Asm->getDwarfVersion() == 3)) && 3401 "DWARF64 is not defined prior DWARFv3"); 3402 return Asm->isDwarf64() ? dwarf::Form::DW_FORM_data8 3403 : dwarf::Form::DW_FORM_data4; 3404 } 3405 3406 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) { 3407 auto I = SectionLabels.find(S); 3408 if (I == SectionLabels.end()) 3409 return nullptr; 3410 return I->second; 3411 } 3412 void DwarfDebug::insertSectionLabel(const MCSymbol *S) { 3413 if (SectionLabels.insert(std::make_pair(&S->getSection(), S)).second) 3414 if (useSplitDwarf() || getDwarfVersion() >= 5) 3415 AddrPool.getIndex(S); 3416 } 3417 3418 Optional<MD5::MD5Result> DwarfDebug::getMD5AsBytes(const DIFile *File) const { 3419 assert(File); 3420 if (getDwarfVersion() < 5) 3421 return None; 3422 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = File->getChecksum(); 3423 if (!Checksum || Checksum->Kind != DIFile::CSK_MD5) 3424 return None; 3425 3426 // Convert the string checksum to an MD5Result for the streamer. 3427 // The verifier validates the checksum so we assume it's okay. 3428 // An MD5 checksum is 16 bytes. 3429 std::string ChecksumString = fromHex(Checksum->Value); 3430 MD5::MD5Result CKMem; 3431 std::copy(ChecksumString.begin(), ChecksumString.end(), CKMem.Bytes.data()); 3432 return CKMem; 3433 } 3434