1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing dwarf debug info into asm files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "DwarfDebug.h"
14 #include "ByteStreamer.h"
15 #include "DIEHash.h"
16 #include "DebugLocEntry.h"
17 #include "DebugLocStream.h"
18 #include "DwarfCompileUnit.h"
19 #include "DwarfExpression.h"
20 #include "DwarfFile.h"
21 #include "DwarfUnit.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/DenseSet.h"
25 #include "llvm/ADT/MapVector.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/BinaryFormat/Dwarf.h"
33 #include "llvm/CodeGen/AccelTable.h"
34 #include "llvm/CodeGen/AsmPrinter.h"
35 #include "llvm/CodeGen/DIE.h"
36 #include "llvm/CodeGen/LexicalScopes.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineInstr.h"
40 #include "llvm/CodeGen/MachineModuleInfo.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/TargetInstrInfo.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/DebugInfo/DWARF/DWARFExpression.h"
47 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GlobalVariable.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/MC/MCAsmInfo.h"
55 #include "llvm/MC/MCContext.h"
56 #include "llvm/MC/MCDwarf.h"
57 #include "llvm/MC/MCSection.h"
58 #include "llvm/MC/MCStreamer.h"
59 #include "llvm/MC/MCSymbol.h"
60 #include "llvm/MC/MCTargetOptions.h"
61 #include "llvm/MC/MachineLocation.h"
62 #include "llvm/MC/SectionKind.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/MD5.h"
69 #include "llvm/Support/MathExtras.h"
70 #include "llvm/Support/Timer.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include "llvm/Target/TargetLoweringObjectFile.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include "llvm/Target/TargetOptions.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstddef>
78 #include <cstdint>
79 #include <iterator>
80 #include <string>
81 #include <utility>
82 #include <vector>
83 
84 using namespace llvm;
85 
86 #define DEBUG_TYPE "dwarfdebug"
87 
88 STATISTIC(NumCSParams, "Number of dbg call site params created");
89 
90 static cl::opt<bool>
91 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden,
92                          cl::desc("Disable debug info printing"));
93 
94 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier(
95     "use-dwarf-ranges-base-address-specifier", cl::Hidden,
96     cl::desc("Use base address specifiers in debug_ranges"), cl::init(false));
97 
98 static cl::opt<bool> GenerateARangeSection("generate-arange-section",
99                                            cl::Hidden,
100                                            cl::desc("Generate dwarf aranges"),
101                                            cl::init(false));
102 
103 static cl::opt<bool>
104     GenerateDwarfTypeUnits("generate-type-units", cl::Hidden,
105                            cl::desc("Generate DWARF4 type units."),
106                            cl::init(false));
107 
108 static cl::opt<bool> SplitDwarfCrossCuReferences(
109     "split-dwarf-cross-cu-references", cl::Hidden,
110     cl::desc("Enable cross-cu references in DWO files"), cl::init(false));
111 
112 enum DefaultOnOff { Default, Enable, Disable };
113 
114 static cl::opt<DefaultOnOff> UnknownLocations(
115     "use-unknown-locations", cl::Hidden,
116     cl::desc("Make an absence of debug location information explicit."),
117     cl::values(clEnumVal(Default, "At top of block or after label"),
118                clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")),
119     cl::init(Default));
120 
121 static cl::opt<AccelTableKind> AccelTables(
122     "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."),
123     cl::values(clEnumValN(AccelTableKind::Default, "Default",
124                           "Default for platform"),
125                clEnumValN(AccelTableKind::None, "Disable", "Disabled."),
126                clEnumValN(AccelTableKind::Apple, "Apple", "Apple"),
127                clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")),
128     cl::init(AccelTableKind::Default));
129 
130 static cl::opt<DefaultOnOff>
131 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden,
132                  cl::desc("Use inlined strings rather than string section."),
133                  cl::values(clEnumVal(Default, "Default for platform"),
134                             clEnumVal(Enable, "Enabled"),
135                             clEnumVal(Disable, "Disabled")),
136                  cl::init(Default));
137 
138 static cl::opt<bool>
139     NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden,
140                          cl::desc("Disable emission .debug_ranges section."),
141                          cl::init(false));
142 
143 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences(
144     "dwarf-sections-as-references", cl::Hidden,
145     cl::desc("Use sections+offset as references rather than labels."),
146     cl::values(clEnumVal(Default, "Default for platform"),
147                clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
148     cl::init(Default));
149 
150 enum LinkageNameOption {
151   DefaultLinkageNames,
152   AllLinkageNames,
153   AbstractLinkageNames
154 };
155 
156 static cl::opt<LinkageNameOption>
157     DwarfLinkageNames("dwarf-linkage-names", cl::Hidden,
158                       cl::desc("Which DWARF linkage-name attributes to emit."),
159                       cl::values(clEnumValN(DefaultLinkageNames, "Default",
160                                             "Default for platform"),
161                                  clEnumValN(AllLinkageNames, "All", "All"),
162                                  clEnumValN(AbstractLinkageNames, "Abstract",
163                                             "Abstract subprograms")),
164                       cl::init(DefaultLinkageNames));
165 
166 static const char *const DWARFGroupName = "dwarf";
167 static const char *const DWARFGroupDescription = "DWARF Emission";
168 static const char *const DbgTimerName = "writer";
169 static const char *const DbgTimerDescription = "DWARF Debug Writer";
170 static constexpr unsigned ULEB128PadSize = 4;
171 
172 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) {
173   getActiveStreamer().EmitInt8(
174       Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op)
175                   : dwarf::OperationEncodingString(Op));
176 }
177 
178 void DebugLocDwarfExpression::emitSigned(int64_t Value) {
179   getActiveStreamer().EmitSLEB128(Value, Twine(Value));
180 }
181 
182 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) {
183   getActiveStreamer().EmitULEB128(Value, Twine(Value));
184 }
185 
186 void DebugLocDwarfExpression::emitData1(uint8_t Value) {
187   getActiveStreamer().EmitInt8(Value, Twine(Value));
188 }
189 
190 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) {
191   assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit");
192   getActiveStreamer().EmitULEB128(Idx, Twine(Idx), ULEB128PadSize);
193 }
194 
195 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI,
196                                               unsigned MachineReg) {
197   // This information is not available while emitting .debug_loc entries.
198   return false;
199 }
200 
201 void DebugLocDwarfExpression::enableTemporaryBuffer() {
202   assert(!IsBuffering && "Already buffering?");
203   if (!TmpBuf)
204     TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments);
205   IsBuffering = true;
206 }
207 
208 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; }
209 
210 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() {
211   return TmpBuf ? TmpBuf->Bytes.size() : 0;
212 }
213 
214 void DebugLocDwarfExpression::commitTemporaryBuffer() {
215   if (!TmpBuf)
216     return;
217   for (auto Byte : enumerate(TmpBuf->Bytes)) {
218     const char *Comment = (Byte.index() < TmpBuf->Comments.size())
219                               ? TmpBuf->Comments[Byte.index()].c_str()
220                               : "";
221     OutBS.EmitInt8(Byte.value(), Comment);
222   }
223   TmpBuf->Bytes.clear();
224   TmpBuf->Comments.clear();
225 }
226 
227 const DIType *DbgVariable::getType() const {
228   return getVariable()->getType();
229 }
230 
231 /// Get .debug_loc entry for the instruction range starting at MI.
232 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) {
233   const DIExpression *Expr = MI->getDebugExpression();
234   assert(MI->getNumOperands() == 4);
235   if (MI->getOperand(0).isReg()) {
236     auto RegOp = MI->getOperand(0);
237     auto Op1 = MI->getOperand(1);
238     // If the second operand is an immediate, this is a
239     // register-indirect address.
240     assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset");
241     MachineLocation MLoc(RegOp.getReg(), Op1.isImm());
242     return DbgValueLoc(Expr, MLoc);
243   }
244   if (MI->getOperand(0).isImm())
245     return DbgValueLoc(Expr, MI->getOperand(0).getImm());
246   if (MI->getOperand(0).isFPImm())
247     return DbgValueLoc(Expr, MI->getOperand(0).getFPImm());
248   if (MI->getOperand(0).isCImm())
249     return DbgValueLoc(Expr, MI->getOperand(0).getCImm());
250 
251   llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!");
252 }
253 
254 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) {
255   assert(FrameIndexExprs.empty() && "Already initialized?");
256   assert(!ValueLoc.get() && "Already initialized?");
257 
258   assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable");
259   assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() &&
260          "Wrong inlined-at");
261 
262   ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue));
263   if (auto *E = DbgValue->getDebugExpression())
264     if (E->getNumElements())
265       FrameIndexExprs.push_back({0, E});
266 }
267 
268 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const {
269   if (FrameIndexExprs.size() == 1)
270     return FrameIndexExprs;
271 
272   assert(llvm::all_of(FrameIndexExprs,
273                       [](const FrameIndexExpr &A) {
274                         return A.Expr->isFragment();
275                       }) &&
276          "multiple FI expressions without DW_OP_LLVM_fragment");
277   llvm::sort(FrameIndexExprs,
278              [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool {
279                return A.Expr->getFragmentInfo()->OffsetInBits <
280                       B.Expr->getFragmentInfo()->OffsetInBits;
281              });
282 
283   return FrameIndexExprs;
284 }
285 
286 void DbgVariable::addMMIEntry(const DbgVariable &V) {
287   assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry");
288   assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry");
289   assert(V.getVariable() == getVariable() && "conflicting variable");
290   assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location");
291 
292   assert(!FrameIndexExprs.empty() && "Expected an MMI entry");
293   assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry");
294 
295   // FIXME: This logic should not be necessary anymore, as we now have proper
296   // deduplication. However, without it, we currently run into the assertion
297   // below, which means that we are likely dealing with broken input, i.e. two
298   // non-fragment entries for the same variable at different frame indices.
299   if (FrameIndexExprs.size()) {
300     auto *Expr = FrameIndexExprs.back().Expr;
301     if (!Expr || !Expr->isFragment())
302       return;
303   }
304 
305   for (const auto &FIE : V.FrameIndexExprs)
306     // Ignore duplicate entries.
307     if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) {
308           return FIE.FI == Other.FI && FIE.Expr == Other.Expr;
309         }))
310       FrameIndexExprs.push_back(FIE);
311 
312   assert((FrameIndexExprs.size() == 1 ||
313           llvm::all_of(FrameIndexExprs,
314                        [](FrameIndexExpr &FIE) {
315                          return FIE.Expr && FIE.Expr->isFragment();
316                        })) &&
317          "conflicting locations for variable");
318 }
319 
320 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion,
321                                             bool GenerateTypeUnits,
322                                             DebuggerKind Tuning,
323                                             const Triple &TT) {
324   // Honor an explicit request.
325   if (AccelTables != AccelTableKind::Default)
326     return AccelTables;
327 
328   // Accelerator tables with type units are currently not supported.
329   if (GenerateTypeUnits)
330     return AccelTableKind::None;
331 
332   // Accelerator tables get emitted if targetting DWARF v5 or LLDB.  DWARF v5
333   // always implies debug_names. For lower standard versions we use apple
334   // accelerator tables on apple platforms and debug_names elsewhere.
335   if (DwarfVersion >= 5)
336     return AccelTableKind::Dwarf;
337   if (Tuning == DebuggerKind::LLDB)
338     return TT.isOSBinFormatMachO() ? AccelTableKind::Apple
339                                    : AccelTableKind::Dwarf;
340   return AccelTableKind::None;
341 }
342 
343 DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M)
344     : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()),
345       InfoHolder(A, "info_string", DIEValueAllocator),
346       SkeletonHolder(A, "skel_string", DIEValueAllocator),
347       IsDarwin(A->TM.getTargetTriple().isOSDarwin()) {
348   const Triple &TT = Asm->TM.getTargetTriple();
349 
350   // Make sure we know our "debugger tuning".  The target option takes
351   // precedence; fall back to triple-based defaults.
352   if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default)
353     DebuggerTuning = Asm->TM.Options.DebuggerTuning;
354   else if (IsDarwin)
355     DebuggerTuning = DebuggerKind::LLDB;
356   else if (TT.isPS4CPU())
357     DebuggerTuning = DebuggerKind::SCE;
358   else
359     DebuggerTuning = DebuggerKind::GDB;
360 
361   if (DwarfInlinedStrings == Default)
362     UseInlineStrings = TT.isNVPTX();
363   else
364     UseInlineStrings = DwarfInlinedStrings == Enable;
365 
366   UseLocSection = !TT.isNVPTX();
367 
368   HasAppleExtensionAttributes = tuneForLLDB();
369 
370   // Handle split DWARF.
371   HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty();
372 
373   // SCE defaults to linkage names only for abstract subprograms.
374   if (DwarfLinkageNames == DefaultLinkageNames)
375     UseAllLinkageNames = !tuneForSCE();
376   else
377     UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames;
378 
379   unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion;
380   unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber
381                                     : MMI->getModule()->getDwarfVersion();
382   // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2.
383   DwarfVersion =
384       TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION);
385 
386   UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX();
387 
388   // Use sections as references. Force for NVPTX.
389   if (DwarfSectionsAsReferences == Default)
390     UseSectionsAsReferences = TT.isNVPTX();
391   else
392     UseSectionsAsReferences = DwarfSectionsAsReferences == Enable;
393 
394   // Don't generate type units for unsupported object file formats.
395   GenerateTypeUnits =
396       A->TM.getTargetTriple().isOSBinFormatELF() && GenerateDwarfTypeUnits;
397 
398   TheAccelTableKind = computeAccelTableKind(
399       DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple());
400 
401   // Work around a GDB bug. GDB doesn't support the standard opcode;
402   // SCE doesn't support GNU's; LLDB prefers the standard opcode, which
403   // is defined as of DWARF 3.
404   // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented
405   // https://sourceware.org/bugzilla/show_bug.cgi?id=11616
406   UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3;
407 
408   // GDB does not fully support the DWARF 4 representation for bitfields.
409   UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB();
410 
411   // The DWARF v5 string offsets table has - possibly shared - contributions
412   // from each compile and type unit each preceded by a header. The string
413   // offsets table used by the pre-DWARF v5 split-DWARF implementation uses
414   // a monolithic string offsets table without any header.
415   UseSegmentedStringOffsetsTable = DwarfVersion >= 5;
416 
417   Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion);
418 }
419 
420 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h.
421 DwarfDebug::~DwarfDebug() = default;
422 
423 static bool isObjCClass(StringRef Name) {
424   return Name.startswith("+") || Name.startswith("-");
425 }
426 
427 static bool hasObjCCategory(StringRef Name) {
428   if (!isObjCClass(Name))
429     return false;
430 
431   return Name.find(") ") != StringRef::npos;
432 }
433 
434 static void getObjCClassCategory(StringRef In, StringRef &Class,
435                                  StringRef &Category) {
436   if (!hasObjCCategory(In)) {
437     Class = In.slice(In.find('[') + 1, In.find(' '));
438     Category = "";
439     return;
440   }
441 
442   Class = In.slice(In.find('[') + 1, In.find('('));
443   Category = In.slice(In.find('[') + 1, In.find(' '));
444 }
445 
446 static StringRef getObjCMethodName(StringRef In) {
447   return In.slice(In.find(' ') + 1, In.find(']'));
448 }
449 
450 // Add the various names to the Dwarf accelerator table names.
451 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU,
452                                     const DISubprogram *SP, DIE &Die) {
453   if (getAccelTableKind() != AccelTableKind::Apple &&
454       CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None)
455     return;
456 
457   if (!SP->isDefinition())
458     return;
459 
460   if (SP->getName() != "")
461     addAccelName(CU, SP->getName(), Die);
462 
463   // If the linkage name is different than the name, go ahead and output that as
464   // well into the name table. Only do that if we are going to actually emit
465   // that name.
466   if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() &&
467       (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP)))
468     addAccelName(CU, SP->getLinkageName(), Die);
469 
470   // If this is an Objective-C selector name add it to the ObjC accelerator
471   // too.
472   if (isObjCClass(SP->getName())) {
473     StringRef Class, Category;
474     getObjCClassCategory(SP->getName(), Class, Category);
475     addAccelObjC(CU, Class, Die);
476     if (Category != "")
477       addAccelObjC(CU, Category, Die);
478     // Also add the base method name to the name table.
479     addAccelName(CU, getObjCMethodName(SP->getName()), Die);
480   }
481 }
482 
483 /// Check whether we should create a DIE for the given Scope, return true
484 /// if we don't create a DIE (the corresponding DIE is null).
485 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) {
486   if (Scope->isAbstractScope())
487     return false;
488 
489   // We don't create a DIE if there is no Range.
490   const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges();
491   if (Ranges.empty())
492     return true;
493 
494   if (Ranges.size() > 1)
495     return false;
496 
497   // We don't create a DIE if we have a single Range and the end label
498   // is null.
499   return !getLabelAfterInsn(Ranges.front().second);
500 }
501 
502 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) {
503   F(CU);
504   if (auto *SkelCU = CU.getSkeleton())
505     if (CU.getCUNode()->getSplitDebugInlining())
506       F(*SkelCU);
507 }
508 
509 bool DwarfDebug::shareAcrossDWOCUs() const {
510   return SplitDwarfCrossCuReferences;
511 }
512 
513 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU,
514                                                      LexicalScope *Scope) {
515   assert(Scope && Scope->getScopeNode());
516   assert(Scope->isAbstractScope());
517   assert(!Scope->getInlinedAt());
518 
519   auto *SP = cast<DISubprogram>(Scope->getScopeNode());
520 
521   // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
522   // was inlined from another compile unit.
523   if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining())
524     // Avoid building the original CU if it won't be used
525     SrcCU.constructAbstractSubprogramScopeDIE(Scope);
526   else {
527     auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
528     if (auto *SkelCU = CU.getSkeleton()) {
529       (shareAcrossDWOCUs() ? CU : SrcCU)
530           .constructAbstractSubprogramScopeDIE(Scope);
531       if (CU.getCUNode()->getSplitDebugInlining())
532         SkelCU->constructAbstractSubprogramScopeDIE(Scope);
533     } else
534       CU.constructAbstractSubprogramScopeDIE(Scope);
535   }
536 }
537 
538 /// Try to interpret values loaded into registers that forward parameters
539 /// for \p CallMI. Store parameters with interpreted value into \p Params.
540 static void collectCallSiteParameters(const MachineInstr *CallMI,
541                                       ParamSet &Params) {
542   auto *MF = CallMI->getMF();
543   auto CalleesMap = MF->getCallSitesInfo();
544   auto CallFwdRegsInfo = CalleesMap.find(CallMI);
545 
546   // There is no information for the call instruction.
547   if (CallFwdRegsInfo == CalleesMap.end())
548     return;
549 
550   auto *MBB = CallMI->getParent();
551   const auto &TRI = MF->getSubtarget().getRegisterInfo();
552   const auto &TII = MF->getSubtarget().getInstrInfo();
553   const auto &TLI = MF->getSubtarget().getTargetLowering();
554 
555   // Skip the call instruction.
556   auto I = std::next(CallMI->getReverseIterator());
557 
558   DenseSet<unsigned> ForwardedRegWorklist;
559   // Add all the forwarding registers into the ForwardedRegWorklist.
560   for (auto ArgReg : CallFwdRegsInfo->second) {
561     bool InsertedReg = ForwardedRegWorklist.insert(ArgReg.Reg).second;
562     assert(InsertedReg && "Single register used to forward two arguments?");
563     (void)InsertedReg;
564   }
565 
566   // We erase, from the ForwardedRegWorklist, those forwarding registers for
567   // which we successfully describe a loaded value (by using
568   // the describeLoadedValue()). For those remaining arguments in the working
569   // list, for which we do not describe a loaded value by
570   // the describeLoadedValue(), we try to generate an entry value expression
571   // for their call site value desctipion, if the call is within the entry MBB.
572   // The RegsForEntryValues maps a forwarding register into the register holding
573   // the entry value.
574   // TODO: Handle situations when call site parameter value can be described
575   // as the entry value within basic blocks other then the first one.
576   bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin();
577   DenseMap<unsigned, unsigned> RegsForEntryValues;
578 
579   // If the MI is an instruction defining one or more parameters' forwarding
580   // registers, add those defines. We can currently only describe forwarded
581   // registers that are explicitly defined, but keep track of implicit defines
582   // also to remove those registers from the work list.
583   auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI,
584                                           SmallVectorImpl<unsigned> &Explicit,
585                                           SmallVectorImpl<unsigned> &Implicit) {
586     if (MI.isDebugInstr())
587       return;
588 
589     for (const MachineOperand &MO : MI.operands()) {
590       if (MO.isReg() && MO.isDef() &&
591           Register::isPhysicalRegister(MO.getReg())) {
592         for (auto FwdReg : ForwardedRegWorklist) {
593           if (TRI->regsOverlap(FwdReg, MO.getReg())) {
594             if (MO.isImplicit())
595               Implicit.push_back(FwdReg);
596             else
597               Explicit.push_back(FwdReg);
598           }
599         }
600       }
601     }
602   };
603 
604   auto finishCallSiteParam = [&](DbgValueLoc DbgLocVal, unsigned Reg) {
605     unsigned FwdReg = Reg;
606     if (ShouldTryEmitEntryVals) {
607       auto EntryValReg = RegsForEntryValues.find(Reg);
608       if (EntryValReg != RegsForEntryValues.end())
609         FwdReg = EntryValReg->second;
610     }
611 
612     DbgCallSiteParam CSParm(FwdReg, DbgLocVal);
613     Params.push_back(CSParm);
614     ++NumCSParams;
615   };
616 
617   // Search for a loading value in forwarding registers.
618   for (; I != MBB->rend(); ++I) {
619     // Skip bundle headers.
620     if (I->isBundle())
621       continue;
622 
623     // If the next instruction is a call we can not interpret parameter's
624     // forwarding registers or we finished the interpretation of all parameters.
625     if (I->isCall())
626       return;
627 
628     if (ForwardedRegWorklist.empty())
629       return;
630 
631     SmallVector<unsigned, 4> ExplicitFwdRegDefs;
632     SmallVector<unsigned, 4> ImplicitFwdRegDefs;
633     getForwardingRegsDefinedByMI(*I, ExplicitFwdRegDefs, ImplicitFwdRegDefs);
634     if (ExplicitFwdRegDefs.empty() && ImplicitFwdRegDefs.empty())
635       continue;
636 
637     // If the MI clobbers more then one forwarding register we must remove
638     // all of them from the working list.
639     for (auto Reg : concat<unsigned>(ExplicitFwdRegDefs, ImplicitFwdRegDefs))
640       ForwardedRegWorklist.erase(Reg);
641 
642     for (auto ParamFwdReg : ExplicitFwdRegDefs) {
643       if (auto ParamValue = TII->describeLoadedValue(*I, ParamFwdReg)) {
644         if (ParamValue->first.isImm()) {
645           int64_t Val = ParamValue->first.getImm();
646           DbgValueLoc DbgLocVal(ParamValue->second, Val);
647           finishCallSiteParam(DbgLocVal, ParamFwdReg);
648         } else if (ParamValue->first.isReg()) {
649           Register RegLoc = ParamValue->first.getReg();
650           // TODO: For now, there is no use of describing the value loaded into the
651           //       register that is also the source registers (e.g. $r0 = add $r0, x).
652           if (ParamFwdReg == RegLoc)
653             continue;
654 
655           unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
656           Register FP = TRI->getFrameRegister(*MF);
657           bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP);
658           if (TRI->isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) {
659             DbgValueLoc DbgLocVal(ParamValue->second,
660                                   MachineLocation(RegLoc,
661                                                   /*IsIndirect=*/IsSPorFP));
662             finishCallSiteParam(DbgLocVal, ParamFwdReg);
663           // TODO: Add support for entry value plus an expression.
664           } else if (ShouldTryEmitEntryVals &&
665                      ParamValue->second->getNumElements() == 0) {
666             ForwardedRegWorklist.insert(RegLoc);
667             RegsForEntryValues[RegLoc] = ParamFwdReg;
668           }
669         }
670       }
671     }
672   }
673 
674   // Emit the call site parameter's value as an entry value.
675   if (ShouldTryEmitEntryVals) {
676     // Create an expression where the register's entry value is used.
677     DIExpression *EntryExpr = DIExpression::get(
678         MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1});
679     for (auto RegEntry : ForwardedRegWorklist) {
680       unsigned FwdReg = RegEntry;
681       auto EntryValReg = RegsForEntryValues.find(RegEntry);
682         if (EntryValReg != RegsForEntryValues.end())
683           FwdReg = EntryValReg->second;
684 
685       DbgValueLoc DbgLocVal(EntryExpr, MachineLocation(RegEntry));
686       DbgCallSiteParam CSParm(FwdReg, DbgLocVal);
687       Params.push_back(CSParm);
688       ++NumCSParams;
689     }
690   }
691 }
692 
693 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP,
694                                             DwarfCompileUnit &CU, DIE &ScopeDIE,
695                                             const MachineFunction &MF) {
696   // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if
697   // the subprogram is required to have one.
698   if (!SP.areAllCallsDescribed() || !SP.isDefinition())
699     return;
700 
701   // Use DW_AT_call_all_calls to express that call site entries are present
702   // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls
703   // because one of its requirements is not met: call site entries for
704   // optimized-out calls are elided.
705   CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls));
706 
707   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
708   assert(TII && "TargetInstrInfo not found: cannot label tail calls");
709   bool ApplyGNUExtensions = getDwarfVersion() == 4 && tuneForGDB();
710 
711   // Emit call site entries for each call or tail call in the function.
712   for (const MachineBasicBlock &MBB : MF) {
713     for (const MachineInstr &MI : MBB.instrs()) {
714       // Bundles with call in them will pass the isCall() test below but do not
715       // have callee operand information so skip them here. Iterator will
716       // eventually reach the call MI.
717       if (MI.isBundle())
718         continue;
719 
720       // Skip instructions which aren't calls. Both calls and tail-calling jump
721       // instructions (e.g TAILJMPd64) are classified correctly here.
722       if (!MI.isCall())
723         continue;
724 
725       // TODO: Add support for targets with delay slots (see: beginInstruction).
726       if (MI.hasDelaySlot())
727         return;
728 
729       // If this is a direct call, find the callee's subprogram.
730       // In the case of an indirect call find the register that holds
731       // the callee.
732       const MachineOperand &CalleeOp = MI.getOperand(0);
733       if (!CalleeOp.isGlobal() && !CalleeOp.isReg())
734         continue;
735 
736       unsigned CallReg = 0;
737       const DISubprogram *CalleeSP = nullptr;
738       const Function *CalleeDecl = nullptr;
739       if (CalleeOp.isReg()) {
740         CallReg = CalleeOp.getReg();
741         if (!CallReg)
742           continue;
743       } else {
744         CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal());
745         if (!CalleeDecl || !CalleeDecl->getSubprogram())
746           continue;
747         CalleeSP = CalleeDecl->getSubprogram();
748       }
749 
750       // TODO: Omit call site entries for runtime calls (objc_msgSend, etc).
751 
752       bool IsTail = TII->isTailCall(MI);
753 
754       // If MI is in a bundle, the label was created after the bundle since
755       // EmitFunctionBody iterates over top-level MIs. Get that top-level MI
756       // to search for that label below.
757       const MachineInstr *TopLevelCallMI =
758           MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI;
759 
760       // For tail calls, for non-gdb tuning, no return PC information is needed.
761       // For regular calls (and tail calls in GDB tuning), the return PC
762       // is needed to disambiguate paths in the call graph which could lead to
763       // some target function.
764       const MCExpr *PCOffset =
765           (IsTail && !tuneForGDB())
766               ? nullptr
767               : getFunctionLocalOffsetAfterInsn(TopLevelCallMI);
768 
769       // Return address of a call-like instruction for a normal call or a
770       // jump-like instruction for a tail call. This is needed for
771       // GDB + DWARF 4 tuning.
772       const MCSymbol *PCAddr =
773           ApplyGNUExtensions
774               ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI))
775               : nullptr;
776 
777       assert((IsTail || PCOffset || PCAddr) &&
778              "Call without return PC information");
779 
780       LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> "
781                         << (CalleeDecl ? CalleeDecl->getName()
782                                        : StringRef(MF.getSubtarget()
783                                                        .getRegisterInfo()
784                                                        ->getName(CallReg)))
785                         << (IsTail ? " [IsTail]" : "") << "\n");
786 
787       DIE &CallSiteDIE =
788             CU.constructCallSiteEntryDIE(ScopeDIE, CalleeSP, IsTail, PCAddr,
789                                          PCOffset, CallReg);
790 
791       // GDB and LLDB support call site parameter debug info.
792       if (Asm->TM.Options.EnableDebugEntryValues &&
793           (tuneForGDB() || tuneForLLDB())) {
794         ParamSet Params;
795         // Try to interpret values of call site parameters.
796         collectCallSiteParameters(&MI, Params);
797         CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params);
798       }
799     }
800   }
801 }
802 
803 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const {
804   if (!U.hasDwarfPubSections())
805     return;
806 
807   U.addFlag(D, dwarf::DW_AT_GNU_pubnames);
808 }
809 
810 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit,
811                                       DwarfCompileUnit &NewCU) {
812   DIE &Die = NewCU.getUnitDie();
813   StringRef FN = DIUnit->getFilename();
814 
815   StringRef Producer = DIUnit->getProducer();
816   StringRef Flags = DIUnit->getFlags();
817   if (!Flags.empty() && !useAppleExtensionAttributes()) {
818     std::string ProducerWithFlags = Producer.str() + " " + Flags.str();
819     NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags);
820   } else
821     NewCU.addString(Die, dwarf::DW_AT_producer, Producer);
822 
823   NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
824                 DIUnit->getSourceLanguage());
825   NewCU.addString(Die, dwarf::DW_AT_name, FN);
826 
827   // Add DW_str_offsets_base to the unit DIE, except for split units.
828   if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
829     NewCU.addStringOffsetsStart();
830 
831   if (!useSplitDwarf()) {
832     NewCU.initStmtList();
833 
834     // If we're using split dwarf the compilation dir is going to be in the
835     // skeleton CU and so we don't need to duplicate it here.
836     if (!CompilationDir.empty())
837       NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
838 
839     addGnuPubAttributes(NewCU, Die);
840   }
841 
842   if (useAppleExtensionAttributes()) {
843     if (DIUnit->isOptimized())
844       NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized);
845 
846     StringRef Flags = DIUnit->getFlags();
847     if (!Flags.empty())
848       NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags);
849 
850     if (unsigned RVer = DIUnit->getRuntimeVersion())
851       NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers,
852                     dwarf::DW_FORM_data1, RVer);
853   }
854 
855   if (DIUnit->getDWOId()) {
856     // This CU is either a clang module DWO or a skeleton CU.
857     NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8,
858                   DIUnit->getDWOId());
859     if (!DIUnit->getSplitDebugFilename().empty())
860       // This is a prefabricated skeleton CU.
861       NewCU.addString(Die, dwarf::DW_AT_GNU_dwo_name,
862                       DIUnit->getSplitDebugFilename());
863   }
864 }
865 // Create new DwarfCompileUnit for the given metadata node with tag
866 // DW_TAG_compile_unit.
867 DwarfCompileUnit &
868 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) {
869   if (auto *CU = CUMap.lookup(DIUnit))
870     return *CU;
871 
872   CompilationDir = DIUnit->getDirectory();
873 
874   auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
875       InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder);
876   DwarfCompileUnit &NewCU = *OwnedUnit;
877   InfoHolder.addUnit(std::move(OwnedUnit));
878 
879   for (auto *IE : DIUnit->getImportedEntities())
880     NewCU.addImportedEntity(IE);
881 
882   // LTO with assembly output shares a single line table amongst multiple CUs.
883   // To avoid the compilation directory being ambiguous, let the line table
884   // explicitly describe the directory of all files, never relying on the
885   // compilation directory.
886   if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU)
887     Asm->OutStreamer->emitDwarfFile0Directive(
888         CompilationDir, DIUnit->getFilename(),
889         NewCU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource(),
890         NewCU.getUniqueID());
891 
892   if (useSplitDwarf()) {
893     NewCU.setSkeleton(constructSkeletonCU(NewCU));
894     NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection());
895   } else {
896     finishUnitAttributes(DIUnit, NewCU);
897     NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
898   }
899 
900   // Create DIEs for function declarations used for call site debug info.
901   for (auto Scope : DIUnit->getRetainedTypes())
902     if (auto *SP = dyn_cast_or_null<DISubprogram>(Scope))
903       NewCU.getOrCreateSubprogramDIE(SP);
904 
905   CUMap.insert({DIUnit, &NewCU});
906   CUDieMap.insert({&NewCU.getUnitDie(), &NewCU});
907   return NewCU;
908 }
909 
910 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU,
911                                                   const DIImportedEntity *N) {
912   if (isa<DILocalScope>(N->getScope()))
913     return;
914   if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope()))
915     D->addChild(TheCU.constructImportedEntityDIE(N));
916 }
917 
918 /// Sort and unique GVEs by comparing their fragment offset.
919 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &
920 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) {
921   llvm::sort(
922       GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) {
923         // Sort order: first null exprs, then exprs without fragment
924         // info, then sort by fragment offset in bits.
925         // FIXME: Come up with a more comprehensive comparator so
926         // the sorting isn't non-deterministic, and so the following
927         // std::unique call works correctly.
928         if (!A.Expr || !B.Expr)
929           return !!B.Expr;
930         auto FragmentA = A.Expr->getFragmentInfo();
931         auto FragmentB = B.Expr->getFragmentInfo();
932         if (!FragmentA || !FragmentB)
933           return !!FragmentB;
934         return FragmentA->OffsetInBits < FragmentB->OffsetInBits;
935       });
936   GVEs.erase(std::unique(GVEs.begin(), GVEs.end(),
937                          [](DwarfCompileUnit::GlobalExpr A,
938                             DwarfCompileUnit::GlobalExpr B) {
939                            return A.Expr == B.Expr;
940                          }),
941              GVEs.end());
942   return GVEs;
943 }
944 
945 // Emit all Dwarf sections that should come prior to the content. Create
946 // global DIEs and emit initial debug info sections. This is invoked by
947 // the target AsmPrinter.
948 void DwarfDebug::beginModule() {
949   NamedRegionTimer T(DbgTimerName, DbgTimerDescription, DWARFGroupName,
950                      DWARFGroupDescription, TimePassesIsEnabled);
951   if (DisableDebugInfoPrinting) {
952     MMI->setDebugInfoAvailability(false);
953     return;
954   }
955 
956   const Module *M = MMI->getModule();
957 
958   unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(),
959                                        M->debug_compile_units_end());
960   // Tell MMI whether we have debug info.
961   assert(MMI->hasDebugInfo() == (NumDebugCUs > 0) &&
962          "DebugInfoAvailabilty initialized unexpectedly");
963   SingleCU = NumDebugCUs == 1;
964   DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>>
965       GVMap;
966   for (const GlobalVariable &Global : M->globals()) {
967     SmallVector<DIGlobalVariableExpression *, 1> GVs;
968     Global.getDebugInfo(GVs);
969     for (auto *GVE : GVs)
970       GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()});
971   }
972 
973   // Create the symbol that designates the start of the unit's contribution
974   // to the string offsets table. In a split DWARF scenario, only the skeleton
975   // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol).
976   if (useSegmentedStringOffsetsTable())
977     (useSplitDwarf() ? SkeletonHolder : InfoHolder)
978         .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base"));
979 
980 
981   // Create the symbols that designates the start of the DWARF v5 range list
982   // and locations list tables. They are located past the table headers.
983   if (getDwarfVersion() >= 5) {
984     DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
985     Holder.setRnglistsTableBaseSym(
986         Asm->createTempSymbol("rnglists_table_base"));
987 
988     if (useSplitDwarf())
989       InfoHolder.setRnglistsTableBaseSym(
990           Asm->createTempSymbol("rnglists_dwo_table_base"));
991   }
992 
993   // Create the symbol that points to the first entry following the debug
994   // address table (.debug_addr) header.
995   AddrPool.setLabel(Asm->createTempSymbol("addr_table_base"));
996   DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base"));
997 
998   for (DICompileUnit *CUNode : M->debug_compile_units()) {
999     // FIXME: Move local imported entities into a list attached to the
1000     // subprogram, then this search won't be needed and a
1001     // getImportedEntities().empty() test should go below with the rest.
1002     bool HasNonLocalImportedEntities = llvm::any_of(
1003         CUNode->getImportedEntities(), [](const DIImportedEntity *IE) {
1004           return !isa<DILocalScope>(IE->getScope());
1005         });
1006 
1007     if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() &&
1008         CUNode->getRetainedTypes().empty() &&
1009         CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty())
1010       continue;
1011 
1012     DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode);
1013 
1014     // Global Variables.
1015     for (auto *GVE : CUNode->getGlobalVariables()) {
1016       // Don't bother adding DIGlobalVariableExpressions listed in the CU if we
1017       // already know about the variable and it isn't adding a constant
1018       // expression.
1019       auto &GVMapEntry = GVMap[GVE->getVariable()];
1020       auto *Expr = GVE->getExpression();
1021       if (!GVMapEntry.size() || (Expr && Expr->isConstant()))
1022         GVMapEntry.push_back({nullptr, Expr});
1023     }
1024     DenseSet<DIGlobalVariable *> Processed;
1025     for (auto *GVE : CUNode->getGlobalVariables()) {
1026       DIGlobalVariable *GV = GVE->getVariable();
1027       if (Processed.insert(GV).second)
1028         CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV]));
1029     }
1030 
1031     for (auto *Ty : CUNode->getEnumTypes()) {
1032       // The enum types array by design contains pointers to
1033       // MDNodes rather than DIRefs. Unique them here.
1034       CU.getOrCreateTypeDIE(cast<DIType>(Ty));
1035     }
1036     for (auto *Ty : CUNode->getRetainedTypes()) {
1037       // The retained types array by design contains pointers to
1038       // MDNodes rather than DIRefs. Unique them here.
1039       if (DIType *RT = dyn_cast<DIType>(Ty))
1040           // There is no point in force-emitting a forward declaration.
1041           CU.getOrCreateTypeDIE(RT);
1042     }
1043     // Emit imported_modules last so that the relevant context is already
1044     // available.
1045     for (auto *IE : CUNode->getImportedEntities())
1046       constructAndAddImportedEntityDIE(CU, IE);
1047   }
1048 }
1049 
1050 void DwarfDebug::finishEntityDefinitions() {
1051   for (const auto &Entity : ConcreteEntities) {
1052     DIE *Die = Entity->getDIE();
1053     assert(Die);
1054     // FIXME: Consider the time-space tradeoff of just storing the unit pointer
1055     // in the ConcreteEntities list, rather than looking it up again here.
1056     // DIE::getUnit isn't simple - it walks parent pointers, etc.
1057     DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie());
1058     assert(Unit);
1059     Unit->finishEntityDefinition(Entity.get());
1060   }
1061 }
1062 
1063 void DwarfDebug::finishSubprogramDefinitions() {
1064   for (const DISubprogram *SP : ProcessedSPNodes) {
1065     assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug);
1066     forBothCUs(
1067         getOrCreateDwarfCompileUnit(SP->getUnit()),
1068         [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); });
1069   }
1070 }
1071 
1072 void DwarfDebug::finalizeModuleInfo() {
1073   const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
1074 
1075   finishSubprogramDefinitions();
1076 
1077   finishEntityDefinitions();
1078 
1079   // Include the DWO file name in the hash if there's more than one CU.
1080   // This handles ThinLTO's situation where imported CUs may very easily be
1081   // duplicate with the same CU partially imported into another ThinLTO unit.
1082   StringRef DWOName;
1083   if (CUMap.size() > 1)
1084     DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile;
1085 
1086   // Handle anything that needs to be done on a per-unit basis after
1087   // all other generation.
1088   for (const auto &P : CUMap) {
1089     auto &TheCU = *P.second;
1090     if (TheCU.getCUNode()->isDebugDirectivesOnly())
1091       continue;
1092     // Emit DW_AT_containing_type attribute to connect types with their
1093     // vtable holding type.
1094     TheCU.constructContainingTypeDIEs();
1095 
1096     // Add CU specific attributes if we need to add any.
1097     // If we're splitting the dwarf out now that we've got the entire
1098     // CU then add the dwo id to it.
1099     auto *SkCU = TheCU.getSkeleton();
1100 
1101     bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty();
1102 
1103     if (HasSplitUnit) {
1104       finishUnitAttributes(TheCU.getCUNode(), TheCU);
1105       TheCU.addString(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_name,
1106                       Asm->TM.Options.MCOptions.SplitDwarfFile);
1107       SkCU->addString(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_name,
1108                       Asm->TM.Options.MCOptions.SplitDwarfFile);
1109       // Emit a unique identifier for this CU.
1110       uint64_t ID =
1111           DIEHash(Asm).computeCUSignature(DWOName, TheCU.getUnitDie());
1112       if (getDwarfVersion() >= 5) {
1113         TheCU.setDWOId(ID);
1114         SkCU->setDWOId(ID);
1115       } else {
1116         TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1117                       dwarf::DW_FORM_data8, ID);
1118         SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1119                       dwarf::DW_FORM_data8, ID);
1120       }
1121 
1122       if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) {
1123         const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol();
1124         SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base,
1125                               Sym, Sym);
1126       }
1127     } else if (SkCU) {
1128       finishUnitAttributes(SkCU->getCUNode(), *SkCU);
1129     }
1130 
1131     // If we have code split among multiple sections or non-contiguous
1132     // ranges of code then emit a DW_AT_ranges attribute on the unit that will
1133     // remain in the .o file, otherwise add a DW_AT_low_pc.
1134     // FIXME: We should use ranges allow reordering of code ala
1135     // .subsections_via_symbols in mach-o. This would mean turning on
1136     // ranges for all subprogram DIEs for mach-o.
1137     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
1138 
1139     if (unsigned NumRanges = TheCU.getRanges().size()) {
1140       if (NumRanges > 1 && useRangesSection())
1141         // A DW_AT_low_pc attribute may also be specified in combination with
1142         // DW_AT_ranges to specify the default base address for use in
1143         // location lists (see Section 2.6.2) and range lists (see Section
1144         // 2.17.3).
1145         U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0);
1146       else
1147         U.setBaseAddress(TheCU.getRanges().front().Begin);
1148       U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges());
1149     }
1150 
1151     // We don't keep track of which addresses are used in which CU so this
1152     // is a bit pessimistic under LTO.
1153     if (!AddrPool.isEmpty() &&
1154         (getDwarfVersion() >= 5 || HasSplitUnit))
1155       U.addAddrTableBase();
1156 
1157     if (getDwarfVersion() >= 5) {
1158       if (U.hasRangeLists())
1159         U.addRnglistsBase();
1160 
1161       if (!DebugLocs.getLists().empty()) {
1162         if (!useSplitDwarf())
1163           U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base,
1164                             DebugLocs.getSym(),
1165                             TLOF.getDwarfLoclistsSection()->getBeginSymbol());
1166       }
1167     }
1168 
1169     auto *CUNode = cast<DICompileUnit>(P.first);
1170     // If compile Unit has macros, emit "DW_AT_macro_info" attribute.
1171     if (CUNode->getMacros() && !useSplitDwarf())
1172       U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info,
1173                         U.getMacroLabelBegin(),
1174                         TLOF.getDwarfMacinfoSection()->getBeginSymbol());
1175   }
1176 
1177   // Emit all frontend-produced Skeleton CUs, i.e., Clang modules.
1178   for (auto *CUNode : MMI->getModule()->debug_compile_units())
1179     if (CUNode->getDWOId())
1180       getOrCreateDwarfCompileUnit(CUNode);
1181 
1182   // Compute DIE offsets and sizes.
1183   InfoHolder.computeSizeAndOffsets();
1184   if (useSplitDwarf())
1185     SkeletonHolder.computeSizeAndOffsets();
1186 }
1187 
1188 // Emit all Dwarf sections that should come after the content.
1189 void DwarfDebug::endModule() {
1190   assert(CurFn == nullptr);
1191   assert(CurMI == nullptr);
1192 
1193   for (const auto &P : CUMap) {
1194     auto &CU = *P.second;
1195     CU.createBaseTypeDIEs();
1196   }
1197 
1198   // If we aren't actually generating debug info (check beginModule -
1199   // conditionalized on !DisableDebugInfoPrinting and the presence of the
1200   // llvm.dbg.cu metadata node)
1201   if (!MMI->hasDebugInfo())
1202     return;
1203 
1204   // Finalize the debug info for the module.
1205   finalizeModuleInfo();
1206 
1207   emitDebugStr();
1208 
1209   if (useSplitDwarf())
1210     // Emit debug_loc.dwo/debug_loclists.dwo section.
1211     emitDebugLocDWO();
1212   else
1213     // Emit debug_loc/debug_loclists section.
1214     emitDebugLoc();
1215 
1216   // Corresponding abbreviations into a abbrev section.
1217   emitAbbreviations();
1218 
1219   // Emit all the DIEs into a debug info section.
1220   emitDebugInfo();
1221 
1222   // Emit info into a debug aranges section.
1223   if (GenerateARangeSection)
1224     emitDebugARanges();
1225 
1226   // Emit info into a debug ranges section.
1227   emitDebugRanges();
1228 
1229   if (useSplitDwarf())
1230   // Emit info into a debug macinfo.dwo section.
1231     emitDebugMacinfoDWO();
1232   else
1233   // Emit info into a debug macinfo section.
1234     emitDebugMacinfo();
1235 
1236   if (useSplitDwarf()) {
1237     emitDebugStrDWO();
1238     emitDebugInfoDWO();
1239     emitDebugAbbrevDWO();
1240     emitDebugLineDWO();
1241     emitDebugRangesDWO();
1242   }
1243 
1244   emitDebugAddr();
1245 
1246   // Emit info into the dwarf accelerator table sections.
1247   switch (getAccelTableKind()) {
1248   case AccelTableKind::Apple:
1249     emitAccelNames();
1250     emitAccelObjC();
1251     emitAccelNamespaces();
1252     emitAccelTypes();
1253     break;
1254   case AccelTableKind::Dwarf:
1255     emitAccelDebugNames();
1256     break;
1257   case AccelTableKind::None:
1258     break;
1259   case AccelTableKind::Default:
1260     llvm_unreachable("Default should have already been resolved.");
1261   }
1262 
1263   // Emit the pubnames and pubtypes sections if requested.
1264   emitDebugPubSections();
1265 
1266   // clean up.
1267   // FIXME: AbstractVariables.clear();
1268 }
1269 
1270 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU,
1271                                                const DINode *Node,
1272                                                const MDNode *ScopeNode) {
1273   if (CU.getExistingAbstractEntity(Node))
1274     return;
1275 
1276   CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope(
1277                                        cast<DILocalScope>(ScopeNode)));
1278 }
1279 
1280 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU,
1281     const DINode *Node, const MDNode *ScopeNode) {
1282   if (CU.getExistingAbstractEntity(Node))
1283     return;
1284 
1285   if (LexicalScope *Scope =
1286           LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode)))
1287     CU.createAbstractEntity(Node, Scope);
1288 }
1289 
1290 // Collect variable information from side table maintained by MF.
1291 void DwarfDebug::collectVariableInfoFromMFTable(
1292     DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) {
1293   SmallDenseMap<InlinedEntity, DbgVariable *> MFVars;
1294   for (const auto &VI : Asm->MF->getVariableDbgInfo()) {
1295     if (!VI.Var)
1296       continue;
1297     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1298            "Expected inlined-at fields to agree");
1299 
1300     InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt());
1301     Processed.insert(Var);
1302     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1303 
1304     // If variable scope is not found then skip this variable.
1305     if (!Scope)
1306       continue;
1307 
1308     ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode());
1309     auto RegVar = std::make_unique<DbgVariable>(
1310                     cast<DILocalVariable>(Var.first), Var.second);
1311     RegVar->initializeMMI(VI.Expr, VI.Slot);
1312     if (DbgVariable *DbgVar = MFVars.lookup(Var))
1313       DbgVar->addMMIEntry(*RegVar);
1314     else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) {
1315       MFVars.insert({Var, RegVar.get()});
1316       ConcreteEntities.push_back(std::move(RegVar));
1317     }
1318   }
1319 }
1320 
1321 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its
1322 /// enclosing lexical scope. The check ensures there are no other instructions
1323 /// in the same lexical scope preceding the DBG_VALUE and that its range is
1324 /// either open or otherwise rolls off the end of the scope.
1325 static bool validThroughout(LexicalScopes &LScopes,
1326                             const MachineInstr *DbgValue,
1327                             const MachineInstr *RangeEnd) {
1328   assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location");
1329   auto MBB = DbgValue->getParent();
1330   auto DL = DbgValue->getDebugLoc();
1331   auto *LScope = LScopes.findLexicalScope(DL);
1332   // Scope doesn't exist; this is a dead DBG_VALUE.
1333   if (!LScope)
1334     return false;
1335   auto &LSRange = LScope->getRanges();
1336   if (LSRange.size() == 0)
1337     return false;
1338 
1339   // Determine if the DBG_VALUE is valid at the beginning of its lexical block.
1340   const MachineInstr *LScopeBegin = LSRange.front().first;
1341   // Early exit if the lexical scope begins outside of the current block.
1342   if (LScopeBegin->getParent() != MBB)
1343     return false;
1344   MachineBasicBlock::const_reverse_iterator Pred(DbgValue);
1345   for (++Pred; Pred != MBB->rend(); ++Pred) {
1346     if (Pred->getFlag(MachineInstr::FrameSetup))
1347       break;
1348     auto PredDL = Pred->getDebugLoc();
1349     if (!PredDL || Pred->isMetaInstruction())
1350       continue;
1351     // Check whether the instruction preceding the DBG_VALUE is in the same
1352     // (sub)scope as the DBG_VALUE.
1353     if (DL->getScope() == PredDL->getScope())
1354       return false;
1355     auto *PredScope = LScopes.findLexicalScope(PredDL);
1356     if (!PredScope || LScope->dominates(PredScope))
1357       return false;
1358   }
1359 
1360   // If the range of the DBG_VALUE is open-ended, report success.
1361   if (!RangeEnd)
1362     return true;
1363 
1364   // Fail if there are instructions belonging to our scope in another block.
1365   const MachineInstr *LScopeEnd = LSRange.back().second;
1366   if (LScopeEnd->getParent() != MBB)
1367     return false;
1368 
1369   // Single, constant DBG_VALUEs in the prologue are promoted to be live
1370   // throughout the function. This is a hack, presumably for DWARF v2 and not
1371   // necessarily correct. It would be much better to use a dbg.declare instead
1372   // if we know the constant is live throughout the scope.
1373   if (DbgValue->getOperand(0).isImm() && MBB->pred_empty())
1374     return true;
1375 
1376   return false;
1377 }
1378 
1379 /// Build the location list for all DBG_VALUEs in the function that
1380 /// describe the same variable. The resulting DebugLocEntries will have
1381 /// strict monotonically increasing begin addresses and will never
1382 /// overlap. If the resulting list has only one entry that is valid
1383 /// throughout variable's scope return true.
1384 //
1385 // See the definition of DbgValueHistoryMap::Entry for an explanation of the
1386 // different kinds of history map entries. One thing to be aware of is that if
1387 // a debug value is ended by another entry (rather than being valid until the
1388 // end of the function), that entry's instruction may or may not be included in
1389 // the range, depending on if the entry is a clobbering entry (it has an
1390 // instruction that clobbers one or more preceding locations), or if it is an
1391 // (overlapping) debug value entry. This distinction can be seen in the example
1392 // below. The first debug value is ended by the clobbering entry 2, and the
1393 // second and third debug values are ended by the overlapping debug value entry
1394 // 4.
1395 //
1396 // Input:
1397 //
1398 //   History map entries [type, end index, mi]
1399 //
1400 // 0 |      [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)]
1401 // 1 | |    [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)]
1402 // 2 | |    [Clobber, $reg0 = [...], -, -]
1403 // 3   | |  [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)]
1404 // 4        [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)]
1405 //
1406 // Output [start, end) [Value...]:
1407 //
1408 // [0-1)    [(reg0, fragment 0, 32)]
1409 // [1-3)    [(reg0, fragment 0, 32), (reg1, fragment 32, 32)]
1410 // [3-4)    [(reg1, fragment 32, 32), (123, fragment 64, 32)]
1411 // [4-)     [(@g, fragment 0, 96)]
1412 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc,
1413                                    const DbgValueHistoryMap::Entries &Entries) {
1414   using OpenRange =
1415       std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>;
1416   SmallVector<OpenRange, 4> OpenRanges;
1417   bool isSafeForSingleLocation = true;
1418   const MachineInstr *StartDebugMI = nullptr;
1419   const MachineInstr *EndMI = nullptr;
1420 
1421   for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) {
1422     const MachineInstr *Instr = EI->getInstr();
1423 
1424     // Remove all values that are no longer live.
1425     size_t Index = std::distance(EB, EI);
1426     auto Last =
1427         remove_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; });
1428     OpenRanges.erase(Last, OpenRanges.end());
1429 
1430     // If we are dealing with a clobbering entry, this iteration will result in
1431     // a location list entry starting after the clobbering instruction.
1432     const MCSymbol *StartLabel =
1433         EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr);
1434     assert(StartLabel &&
1435            "Forgot label before/after instruction starting a range!");
1436 
1437     const MCSymbol *EndLabel;
1438     if (std::next(EI) == Entries.end()) {
1439       EndLabel = Asm->getFunctionEnd();
1440       if (EI->isClobber())
1441         EndMI = EI->getInstr();
1442     }
1443     else if (std::next(EI)->isClobber())
1444       EndLabel = getLabelAfterInsn(std::next(EI)->getInstr());
1445     else
1446       EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr());
1447     assert(EndLabel && "Forgot label after instruction ending a range!");
1448 
1449     if (EI->isDbgValue())
1450       LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n");
1451 
1452     // If this history map entry has a debug value, add that to the list of
1453     // open ranges and check if its location is valid for a single value
1454     // location.
1455     if (EI->isDbgValue()) {
1456       // Do not add undef debug values, as they are redundant information in
1457       // the location list entries. An undef debug results in an empty location
1458       // description. If there are any non-undef fragments then padding pieces
1459       // with empty location descriptions will automatically be inserted, and if
1460       // all fragments are undef then the whole location list entry is
1461       // redundant.
1462       if (!Instr->isUndefDebugValue()) {
1463         auto Value = getDebugLocValue(Instr);
1464         OpenRanges.emplace_back(EI->getEndIndex(), Value);
1465 
1466         // TODO: Add support for single value fragment locations.
1467         if (Instr->getDebugExpression()->isFragment())
1468           isSafeForSingleLocation = false;
1469 
1470         if (!StartDebugMI)
1471           StartDebugMI = Instr;
1472       } else {
1473         isSafeForSingleLocation = false;
1474       }
1475     }
1476 
1477     // Location list entries with empty location descriptions are redundant
1478     // information in DWARF, so do not emit those.
1479     if (OpenRanges.empty())
1480       continue;
1481 
1482     // Omit entries with empty ranges as they do not have any effect in DWARF.
1483     if (StartLabel == EndLabel) {
1484       LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n");
1485       continue;
1486     }
1487 
1488     SmallVector<DbgValueLoc, 4> Values;
1489     for (auto &R : OpenRanges)
1490       Values.push_back(R.second);
1491     DebugLoc.emplace_back(StartLabel, EndLabel, Values);
1492 
1493     // Attempt to coalesce the ranges of two otherwise identical
1494     // DebugLocEntries.
1495     auto CurEntry = DebugLoc.rbegin();
1496     LLVM_DEBUG({
1497       dbgs() << CurEntry->getValues().size() << " Values:\n";
1498       for (auto &Value : CurEntry->getValues())
1499         Value.dump();
1500       dbgs() << "-----\n";
1501     });
1502 
1503     auto PrevEntry = std::next(CurEntry);
1504     if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry))
1505       DebugLoc.pop_back();
1506   }
1507 
1508   return DebugLoc.size() == 1 && isSafeForSingleLocation &&
1509          validThroughout(LScopes, StartDebugMI, EndMI);
1510 }
1511 
1512 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU,
1513                                             LexicalScope &Scope,
1514                                             const DINode *Node,
1515                                             const DILocation *Location,
1516                                             const MCSymbol *Sym) {
1517   ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode());
1518   if (isa<const DILocalVariable>(Node)) {
1519     ConcreteEntities.push_back(
1520         std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node),
1521                                        Location));
1522     InfoHolder.addScopeVariable(&Scope,
1523         cast<DbgVariable>(ConcreteEntities.back().get()));
1524   } else if (isa<const DILabel>(Node)) {
1525     ConcreteEntities.push_back(
1526         std::make_unique<DbgLabel>(cast<const DILabel>(Node),
1527                                     Location, Sym));
1528     InfoHolder.addScopeLabel(&Scope,
1529         cast<DbgLabel>(ConcreteEntities.back().get()));
1530   }
1531   return ConcreteEntities.back().get();
1532 }
1533 
1534 // Find variables for each lexical scope.
1535 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU,
1536                                    const DISubprogram *SP,
1537                                    DenseSet<InlinedEntity> &Processed) {
1538   // Grab the variable info that was squirreled away in the MMI side-table.
1539   collectVariableInfoFromMFTable(TheCU, Processed);
1540 
1541   for (const auto &I : DbgValues) {
1542     InlinedEntity IV = I.first;
1543     if (Processed.count(IV))
1544       continue;
1545 
1546     // Instruction ranges, specifying where IV is accessible.
1547     const auto &HistoryMapEntries = I.second;
1548     if (HistoryMapEntries.empty())
1549       continue;
1550 
1551     LexicalScope *Scope = nullptr;
1552     const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first);
1553     if (const DILocation *IA = IV.second)
1554       Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA);
1555     else
1556       Scope = LScopes.findLexicalScope(LocalVar->getScope());
1557     // If variable scope is not found then skip this variable.
1558     if (!Scope)
1559       continue;
1560 
1561     Processed.insert(IV);
1562     DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU,
1563                                             *Scope, LocalVar, IV.second));
1564 
1565     const MachineInstr *MInsn = HistoryMapEntries.front().getInstr();
1566     assert(MInsn->isDebugValue() && "History must begin with debug value");
1567 
1568     // Check if there is a single DBG_VALUE, valid throughout the var's scope.
1569     // If the history map contains a single debug value, there may be an
1570     // additional entry which clobbers the debug value.
1571     size_t HistSize = HistoryMapEntries.size();
1572     bool SingleValueWithClobber =
1573         HistSize == 2 && HistoryMapEntries[1].isClobber();
1574     if (HistSize == 1 || SingleValueWithClobber) {
1575       const auto *End =
1576           SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr;
1577       if (validThroughout(LScopes, MInsn, End)) {
1578         RegVar->initializeDbgValue(MInsn);
1579         continue;
1580       }
1581     }
1582 
1583     // Do not emit location lists if .debug_loc secton is disabled.
1584     if (!useLocSection())
1585       continue;
1586 
1587     // Handle multiple DBG_VALUE instructions describing one variable.
1588     DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn);
1589 
1590     // Build the location list for this variable.
1591     SmallVector<DebugLocEntry, 8> Entries;
1592     bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries);
1593 
1594     // Check whether buildLocationList managed to merge all locations to one
1595     // that is valid throughout the variable's scope. If so, produce single
1596     // value location.
1597     if (isValidSingleLocation) {
1598       RegVar->initializeDbgValue(Entries[0].getValues()[0]);
1599       continue;
1600     }
1601 
1602     // If the variable has a DIBasicType, extract it.  Basic types cannot have
1603     // unique identifiers, so don't bother resolving the type with the
1604     // identifier map.
1605     const DIBasicType *BT = dyn_cast<DIBasicType>(
1606         static_cast<const Metadata *>(LocalVar->getType()));
1607 
1608     // Finalize the entry by lowering it into a DWARF bytestream.
1609     for (auto &Entry : Entries)
1610       Entry.finalize(*Asm, List, BT, TheCU);
1611   }
1612 
1613   // For each InlinedEntity collected from DBG_LABEL instructions, convert to
1614   // DWARF-related DbgLabel.
1615   for (const auto &I : DbgLabels) {
1616     InlinedEntity IL = I.first;
1617     const MachineInstr *MI = I.second;
1618     if (MI == nullptr)
1619       continue;
1620 
1621     LexicalScope *Scope = nullptr;
1622     const DILabel *Label = cast<DILabel>(IL.first);
1623     // The scope could have an extra lexical block file.
1624     const DILocalScope *LocalScope =
1625         Label->getScope()->getNonLexicalBlockFileScope();
1626     // Get inlined DILocation if it is inlined label.
1627     if (const DILocation *IA = IL.second)
1628       Scope = LScopes.findInlinedScope(LocalScope, IA);
1629     else
1630       Scope = LScopes.findLexicalScope(LocalScope);
1631     // If label scope is not found then skip this label.
1632     if (!Scope)
1633       continue;
1634 
1635     Processed.insert(IL);
1636     /// At this point, the temporary label is created.
1637     /// Save the temporary label to DbgLabel entity to get the
1638     /// actually address when generating Dwarf DIE.
1639     MCSymbol *Sym = getLabelBeforeInsn(MI);
1640     createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym);
1641   }
1642 
1643   // Collect info for variables/labels that were optimized out.
1644   for (const DINode *DN : SP->getRetainedNodes()) {
1645     if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
1646       continue;
1647     LexicalScope *Scope = nullptr;
1648     if (auto *DV = dyn_cast<DILocalVariable>(DN)) {
1649       Scope = LScopes.findLexicalScope(DV->getScope());
1650     } else if (auto *DL = dyn_cast<DILabel>(DN)) {
1651       Scope = LScopes.findLexicalScope(DL->getScope());
1652     }
1653 
1654     if (Scope)
1655       createConcreteEntity(TheCU, *Scope, DN, nullptr);
1656   }
1657 }
1658 
1659 // Process beginning of an instruction.
1660 void DwarfDebug::beginInstruction(const MachineInstr *MI) {
1661   DebugHandlerBase::beginInstruction(MI);
1662   assert(CurMI);
1663 
1664   const auto *SP = MI->getMF()->getFunction().getSubprogram();
1665   if (!SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
1666     return;
1667 
1668   // Check if source location changes, but ignore DBG_VALUE and CFI locations.
1669   // If the instruction is part of the function frame setup code, do not emit
1670   // any line record, as there is no correspondence with any user code.
1671   if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup))
1672     return;
1673   const DebugLoc &DL = MI->getDebugLoc();
1674   // When we emit a line-0 record, we don't update PrevInstLoc; so look at
1675   // the last line number actually emitted, to see if it was line 0.
1676   unsigned LastAsmLine =
1677       Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine();
1678 
1679   // Request a label after the call in order to emit AT_return_pc information
1680   // in call site entries. TODO: Add support for targets with delay slots.
1681   if (SP->areAllCallsDescribed() && MI->isCall() && !MI->hasDelaySlot())
1682     requestLabelAfterInsn(MI);
1683 
1684   if (DL == PrevInstLoc) {
1685     // If we have an ongoing unspecified location, nothing to do here.
1686     if (!DL)
1687       return;
1688     // We have an explicit location, same as the previous location.
1689     // But we might be coming back to it after a line 0 record.
1690     if (LastAsmLine == 0 && DL.getLine() != 0) {
1691       // Reinstate the source location but not marked as a statement.
1692       const MDNode *Scope = DL.getScope();
1693       recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0);
1694     }
1695     return;
1696   }
1697 
1698   if (!DL) {
1699     // We have an unspecified location, which might want to be line 0.
1700     // If we have already emitted a line-0 record, don't repeat it.
1701     if (LastAsmLine == 0)
1702       return;
1703     // If user said Don't Do That, don't do that.
1704     if (UnknownLocations == Disable)
1705       return;
1706     // See if we have a reason to emit a line-0 record now.
1707     // Reasons to emit a line-0 record include:
1708     // - User asked for it (UnknownLocations).
1709     // - Instruction has a label, so it's referenced from somewhere else,
1710     //   possibly debug information; we want it to have a source location.
1711     // - Instruction is at the top of a block; we don't want to inherit the
1712     //   location from the physically previous (maybe unrelated) block.
1713     if (UnknownLocations == Enable || PrevLabel ||
1714         (PrevInstBB && PrevInstBB != MI->getParent())) {
1715       // Preserve the file and column numbers, if we can, to save space in
1716       // the encoded line table.
1717       // Do not update PrevInstLoc, it remembers the last non-0 line.
1718       const MDNode *Scope = nullptr;
1719       unsigned Column = 0;
1720       if (PrevInstLoc) {
1721         Scope = PrevInstLoc.getScope();
1722         Column = PrevInstLoc.getCol();
1723       }
1724       recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0);
1725     }
1726     return;
1727   }
1728 
1729   // We have an explicit location, different from the previous location.
1730   // Don't repeat a line-0 record, but otherwise emit the new location.
1731   // (The new location might be an explicit line 0, which we do emit.)
1732   if (DL.getLine() == 0 && LastAsmLine == 0)
1733     return;
1734   unsigned Flags = 0;
1735   if (DL == PrologEndLoc) {
1736     Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT;
1737     PrologEndLoc = DebugLoc();
1738   }
1739   // If the line changed, we call that a new statement; unless we went to
1740   // line 0 and came back, in which case it is not a new statement.
1741   unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine;
1742   if (DL.getLine() && DL.getLine() != OldLine)
1743     Flags |= DWARF2_FLAG_IS_STMT;
1744 
1745   const MDNode *Scope = DL.getScope();
1746   recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
1747 
1748   // If we're not at line 0, remember this location.
1749   if (DL.getLine())
1750     PrevInstLoc = DL;
1751 }
1752 
1753 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) {
1754   // First known non-DBG_VALUE and non-frame setup location marks
1755   // the beginning of the function body.
1756   for (const auto &MBB : *MF)
1757     for (const auto &MI : MBB)
1758       if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
1759           MI.getDebugLoc())
1760         return MI.getDebugLoc();
1761   return DebugLoc();
1762 }
1763 
1764 /// Register a source line with debug info. Returns the  unique label that was
1765 /// emitted and which provides correspondence to the source line list.
1766 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col,
1767                              const MDNode *S, unsigned Flags, unsigned CUID,
1768                              uint16_t DwarfVersion,
1769                              ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) {
1770   StringRef Fn;
1771   unsigned FileNo = 1;
1772   unsigned Discriminator = 0;
1773   if (auto *Scope = cast_or_null<DIScope>(S)) {
1774     Fn = Scope->getFilename();
1775     if (Line != 0 && DwarfVersion >= 4)
1776       if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope))
1777         Discriminator = LBF->getDiscriminator();
1778 
1779     FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID])
1780                  .getOrCreateSourceID(Scope->getFile());
1781   }
1782   Asm.OutStreamer->EmitDwarfLocDirective(FileNo, Line, Col, Flags, 0,
1783                                          Discriminator, Fn);
1784 }
1785 
1786 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF,
1787                                              unsigned CUID) {
1788   // Get beginning of function.
1789   if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) {
1790     // Ensure the compile unit is created if the function is called before
1791     // beginFunction().
1792     (void)getOrCreateDwarfCompileUnit(
1793         MF.getFunction().getSubprogram()->getUnit());
1794     // We'd like to list the prologue as "not statements" but GDB behaves
1795     // poorly if we do that. Revisit this with caution/GDB (7.5+) testing.
1796     const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram();
1797     ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT,
1798                        CUID, getDwarfVersion(), getUnits());
1799     return PrologEndLoc;
1800   }
1801   return DebugLoc();
1802 }
1803 
1804 // Gather pre-function debug information.  Assumes being called immediately
1805 // after the function entry point has been emitted.
1806 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) {
1807   CurFn = MF;
1808 
1809   auto *SP = MF->getFunction().getSubprogram();
1810   assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode());
1811   if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
1812     return;
1813 
1814   SectionLabels.insert(std::make_pair(&Asm->getFunctionBegin()->getSection(),
1815                                       Asm->getFunctionBegin()));
1816 
1817   DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
1818 
1819   // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function
1820   // belongs to so that we add to the correct per-cu line table in the
1821   // non-asm case.
1822   if (Asm->OutStreamer->hasRawTextSupport())
1823     // Use a single line table if we are generating assembly.
1824     Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
1825   else
1826     Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID());
1827 
1828   // Record beginning of function.
1829   PrologEndLoc = emitInitialLocDirective(
1830       *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID());
1831 }
1832 
1833 void DwarfDebug::skippedNonDebugFunction() {
1834   // If we don't have a subprogram for this function then there will be a hole
1835   // in the range information. Keep note of this by setting the previously used
1836   // section to nullptr.
1837   PrevCU = nullptr;
1838   CurFn = nullptr;
1839 }
1840 
1841 // Gather and emit post-function debug information.
1842 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) {
1843   const DISubprogram *SP = MF->getFunction().getSubprogram();
1844 
1845   assert(CurFn == MF &&
1846       "endFunction should be called with the same function as beginFunction");
1847 
1848   // Set DwarfDwarfCompileUnitID in MCContext to default value.
1849   Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
1850 
1851   LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
1852   assert(!FnScope || SP == FnScope->getScopeNode());
1853   DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit());
1854   if (TheCU.getCUNode()->isDebugDirectivesOnly()) {
1855     PrevLabel = nullptr;
1856     CurFn = nullptr;
1857     return;
1858   }
1859 
1860   DenseSet<InlinedEntity> Processed;
1861   collectEntityInfo(TheCU, SP, Processed);
1862 
1863   // Add the range of this function to the list of ranges for the CU.
1864   TheCU.addRange({Asm->getFunctionBegin(), Asm->getFunctionEnd()});
1865 
1866   // Under -gmlt, skip building the subprogram if there are no inlined
1867   // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram
1868   // is still needed as we need its source location.
1869   if (!TheCU.getCUNode()->getDebugInfoForProfiling() &&
1870       TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly &&
1871       LScopes.getAbstractScopesList().empty() && !IsDarwin) {
1872     assert(InfoHolder.getScopeVariables().empty());
1873     PrevLabel = nullptr;
1874     CurFn = nullptr;
1875     return;
1876   }
1877 
1878 #ifndef NDEBUG
1879   size_t NumAbstractScopes = LScopes.getAbstractScopesList().size();
1880 #endif
1881   // Construct abstract scopes.
1882   for (LexicalScope *AScope : LScopes.getAbstractScopesList()) {
1883     auto *SP = cast<DISubprogram>(AScope->getScopeNode());
1884     for (const DINode *DN : SP->getRetainedNodes()) {
1885       if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
1886         continue;
1887 
1888       const MDNode *Scope = nullptr;
1889       if (auto *DV = dyn_cast<DILocalVariable>(DN))
1890         Scope = DV->getScope();
1891       else if (auto *DL = dyn_cast<DILabel>(DN))
1892         Scope = DL->getScope();
1893       else
1894         llvm_unreachable("Unexpected DI type!");
1895 
1896       // Collect info for variables/labels that were optimized out.
1897       ensureAbstractEntityIsCreated(TheCU, DN, Scope);
1898       assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes
1899              && "ensureAbstractEntityIsCreated inserted abstract scopes");
1900     }
1901     constructAbstractSubprogramScopeDIE(TheCU, AScope);
1902   }
1903 
1904   ProcessedSPNodes.insert(SP);
1905   DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope);
1906   if (auto *SkelCU = TheCU.getSkeleton())
1907     if (!LScopes.getAbstractScopesList().empty() &&
1908         TheCU.getCUNode()->getSplitDebugInlining())
1909       SkelCU->constructSubprogramScopeDIE(SP, FnScope);
1910 
1911   // Construct call site entries.
1912   constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF);
1913 
1914   // Clear debug info
1915   // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the
1916   // DbgVariables except those that are also in AbstractVariables (since they
1917   // can be used cross-function)
1918   InfoHolder.getScopeVariables().clear();
1919   InfoHolder.getScopeLabels().clear();
1920   PrevLabel = nullptr;
1921   CurFn = nullptr;
1922 }
1923 
1924 // Register a source line with debug info. Returns the  unique label that was
1925 // emitted and which provides correspondence to the source line list.
1926 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S,
1927                                   unsigned Flags) {
1928   ::recordSourceLine(*Asm, Line, Col, S, Flags,
1929                      Asm->OutStreamer->getContext().getDwarfCompileUnitID(),
1930                      getDwarfVersion(), getUnits());
1931 }
1932 
1933 //===----------------------------------------------------------------------===//
1934 // Emit Methods
1935 //===----------------------------------------------------------------------===//
1936 
1937 // Emit the debug info section.
1938 void DwarfDebug::emitDebugInfo() {
1939   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1940   Holder.emitUnits(/* UseOffsets */ false);
1941 }
1942 
1943 // Emit the abbreviation section.
1944 void DwarfDebug::emitAbbreviations() {
1945   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1946 
1947   Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection());
1948 }
1949 
1950 void DwarfDebug::emitStringOffsetsTableHeader() {
1951   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1952   Holder.getStringPool().emitStringOffsetsTableHeader(
1953       *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(),
1954       Holder.getStringOffsetsStartSym());
1955 }
1956 
1957 template <typename AccelTableT>
1958 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section,
1959                            StringRef TableName) {
1960   Asm->OutStreamer->SwitchSection(Section);
1961 
1962   // Emit the full data.
1963   emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol());
1964 }
1965 
1966 void DwarfDebug::emitAccelDebugNames() {
1967   // Don't emit anything if we have no compilation units to index.
1968   if (getUnits().empty())
1969     return;
1970 
1971   emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits());
1972 }
1973 
1974 // Emit visible names into a hashed accelerator table section.
1975 void DwarfDebug::emitAccelNames() {
1976   emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(),
1977             "Names");
1978 }
1979 
1980 // Emit objective C classes and categories into a hashed accelerator table
1981 // section.
1982 void DwarfDebug::emitAccelObjC() {
1983   emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(),
1984             "ObjC");
1985 }
1986 
1987 // Emit namespace dies into a hashed accelerator table.
1988 void DwarfDebug::emitAccelNamespaces() {
1989   emitAccel(AccelNamespace,
1990             Asm->getObjFileLowering().getDwarfAccelNamespaceSection(),
1991             "namespac");
1992 }
1993 
1994 // Emit type dies into a hashed accelerator table.
1995 void DwarfDebug::emitAccelTypes() {
1996   emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(),
1997             "types");
1998 }
1999 
2000 // Public name handling.
2001 // The format for the various pubnames:
2002 //
2003 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU
2004 // for the DIE that is named.
2005 //
2006 // gnu pubnames - offset/index value/name tuples where the offset is the offset
2007 // into the CU and the index value is computed according to the type of value
2008 // for the DIE that is named.
2009 //
2010 // For type units the offset is the offset of the skeleton DIE. For split dwarf
2011 // it's the offset within the debug_info/debug_types dwo section, however, the
2012 // reference in the pubname header doesn't change.
2013 
2014 /// computeIndexValue - Compute the gdb index value for the DIE and CU.
2015 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU,
2016                                                         const DIE *Die) {
2017   // Entities that ended up only in a Type Unit reference the CU instead (since
2018   // the pub entry has offsets within the CU there's no real offset that can be
2019   // provided anyway). As it happens all such entities (namespaces and types,
2020   // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out
2021   // not to be true it would be necessary to persist this information from the
2022   // point at which the entry is added to the index data structure - since by
2023   // the time the index is built from that, the original type/namespace DIE in a
2024   // type unit has already been destroyed so it can't be queried for properties
2025   // like tag, etc.
2026   if (Die->getTag() == dwarf::DW_TAG_compile_unit)
2027     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE,
2028                                           dwarf::GIEL_EXTERNAL);
2029   dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC;
2030 
2031   // We could have a specification DIE that has our most of our knowledge,
2032   // look for that now.
2033   if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) {
2034     DIE &SpecDIE = SpecVal.getDIEEntry().getEntry();
2035     if (SpecDIE.findAttribute(dwarf::DW_AT_external))
2036       Linkage = dwarf::GIEL_EXTERNAL;
2037   } else if (Die->findAttribute(dwarf::DW_AT_external))
2038     Linkage = dwarf::GIEL_EXTERNAL;
2039 
2040   switch (Die->getTag()) {
2041   case dwarf::DW_TAG_class_type:
2042   case dwarf::DW_TAG_structure_type:
2043   case dwarf::DW_TAG_union_type:
2044   case dwarf::DW_TAG_enumeration_type:
2045     return dwarf::PubIndexEntryDescriptor(
2046         dwarf::GIEK_TYPE,
2047         dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage())
2048             ? dwarf::GIEL_EXTERNAL
2049             : dwarf::GIEL_STATIC);
2050   case dwarf::DW_TAG_typedef:
2051   case dwarf::DW_TAG_base_type:
2052   case dwarf::DW_TAG_subrange_type:
2053     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC);
2054   case dwarf::DW_TAG_namespace:
2055     return dwarf::GIEK_TYPE;
2056   case dwarf::DW_TAG_subprogram:
2057     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage);
2058   case dwarf::DW_TAG_variable:
2059     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage);
2060   case dwarf::DW_TAG_enumerator:
2061     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE,
2062                                           dwarf::GIEL_STATIC);
2063   default:
2064     return dwarf::GIEK_NONE;
2065   }
2066 }
2067 
2068 /// emitDebugPubSections - Emit visible names and types into debug pubnames and
2069 /// pubtypes sections.
2070 void DwarfDebug::emitDebugPubSections() {
2071   for (const auto &NU : CUMap) {
2072     DwarfCompileUnit *TheU = NU.second;
2073     if (!TheU->hasDwarfPubSections())
2074       continue;
2075 
2076     bool GnuStyle = TheU->getCUNode()->getNameTableKind() ==
2077                     DICompileUnit::DebugNameTableKind::GNU;
2078 
2079     Asm->OutStreamer->SwitchSection(
2080         GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection()
2081                  : Asm->getObjFileLowering().getDwarfPubNamesSection());
2082     emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames());
2083 
2084     Asm->OutStreamer->SwitchSection(
2085         GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection()
2086                  : Asm->getObjFileLowering().getDwarfPubTypesSection());
2087     emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes());
2088   }
2089 }
2090 
2091 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) {
2092   if (useSectionsAsReferences())
2093     Asm->EmitDwarfOffset(CU.getSection()->getBeginSymbol(),
2094                          CU.getDebugSectionOffset());
2095   else
2096     Asm->emitDwarfSymbolReference(CU.getLabelBegin());
2097 }
2098 
2099 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name,
2100                                      DwarfCompileUnit *TheU,
2101                                      const StringMap<const DIE *> &Globals) {
2102   if (auto *Skeleton = TheU->getSkeleton())
2103     TheU = Skeleton;
2104 
2105   // Emit the header.
2106   Asm->OutStreamer->AddComment("Length of Public " + Name + " Info");
2107   MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin");
2108   MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end");
2109   Asm->EmitLabelDifference(EndLabel, BeginLabel, 4);
2110 
2111   Asm->OutStreamer->EmitLabel(BeginLabel);
2112 
2113   Asm->OutStreamer->AddComment("DWARF Version");
2114   Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION);
2115 
2116   Asm->OutStreamer->AddComment("Offset of Compilation Unit Info");
2117   emitSectionReference(*TheU);
2118 
2119   Asm->OutStreamer->AddComment("Compilation Unit Length");
2120   Asm->emitInt32(TheU->getLength());
2121 
2122   // Emit the pubnames for this compilation unit.
2123   for (const auto &GI : Globals) {
2124     const char *Name = GI.getKeyData();
2125     const DIE *Entity = GI.second;
2126 
2127     Asm->OutStreamer->AddComment("DIE offset");
2128     Asm->emitInt32(Entity->getOffset());
2129 
2130     if (GnuStyle) {
2131       dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity);
2132       Asm->OutStreamer->AddComment(
2133           Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) +
2134           ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage));
2135       Asm->emitInt8(Desc.toBits());
2136     }
2137 
2138     Asm->OutStreamer->AddComment("External Name");
2139     Asm->OutStreamer->EmitBytes(StringRef(Name, GI.getKeyLength() + 1));
2140   }
2141 
2142   Asm->OutStreamer->AddComment("End Mark");
2143   Asm->emitInt32(0);
2144   Asm->OutStreamer->EmitLabel(EndLabel);
2145 }
2146 
2147 /// Emit null-terminated strings into a debug str section.
2148 void DwarfDebug::emitDebugStr() {
2149   MCSection *StringOffsetsSection = nullptr;
2150   if (useSegmentedStringOffsetsTable()) {
2151     emitStringOffsetsTableHeader();
2152     StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection();
2153   }
2154   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2155   Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(),
2156                      StringOffsetsSection, /* UseRelativeOffsets = */ true);
2157 }
2158 
2159 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer,
2160                                    const DebugLocStream::Entry &Entry,
2161                                    const DwarfCompileUnit *CU) {
2162   auto &&Comments = DebugLocs.getComments(Entry);
2163   auto Comment = Comments.begin();
2164   auto End = Comments.end();
2165 
2166   // The expressions are inserted into a byte stream rather early (see
2167   // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that
2168   // need to reference a base_type DIE the offset of that DIE is not yet known.
2169   // To deal with this we instead insert a placeholder early and then extract
2170   // it here and replace it with the real reference.
2171   unsigned PtrSize = Asm->MAI->getCodePointerSize();
2172   DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(),
2173                                     DebugLocs.getBytes(Entry).size()),
2174                           Asm->getDataLayout().isLittleEndian(), PtrSize);
2175   DWARFExpression Expr(Data, getDwarfVersion(), PtrSize);
2176 
2177   using Encoding = DWARFExpression::Operation::Encoding;
2178   uint64_t Offset = 0;
2179   for (auto &Op : Expr) {
2180     assert(Op.getCode() != dwarf::DW_OP_const_type &&
2181            "3 operand ops not yet supported");
2182     Streamer.EmitInt8(Op.getCode(), Comment != End ? *(Comment++) : "");
2183     Offset++;
2184     for (unsigned I = 0; I < 2; ++I) {
2185       if (Op.getDescription().Op[I] == Encoding::SizeNA)
2186         continue;
2187       if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) {
2188           if (CU) {
2189             uint64_t Offset = CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset();
2190             assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit");
2191             Asm->EmitULEB128(Offset, nullptr, ULEB128PadSize);
2192           } else {
2193             // Emit a reference to the 'generic type'.
2194             Asm->EmitULEB128(0, nullptr, ULEB128PadSize);
2195           }
2196           // Make sure comments stay aligned.
2197           for (unsigned J = 0; J < ULEB128PadSize; ++J)
2198             if (Comment != End)
2199               Comment++;
2200       } else {
2201         for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J)
2202           Streamer.EmitInt8(Data.getData()[J], Comment != End ? *(Comment++) : "");
2203       }
2204       Offset = Op.getOperandEndOffset(I);
2205     }
2206     assert(Offset == Op.getEndOffset());
2207   }
2208 }
2209 
2210 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT,
2211                                    const DbgValueLoc &Value,
2212                                    DwarfExpression &DwarfExpr) {
2213   auto *DIExpr = Value.getExpression();
2214   DIExpressionCursor ExprCursor(DIExpr);
2215   DwarfExpr.addFragmentOffset(DIExpr);
2216   // Regular entry.
2217   if (Value.isInt()) {
2218     if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed ||
2219                BT->getEncoding() == dwarf::DW_ATE_signed_char))
2220       DwarfExpr.addSignedConstant(Value.getInt());
2221     else
2222       DwarfExpr.addUnsignedConstant(Value.getInt());
2223   } else if (Value.isLocation()) {
2224     MachineLocation Location = Value.getLoc();
2225     if (Location.isIndirect())
2226       DwarfExpr.setMemoryLocationKind();
2227     DIExpressionCursor Cursor(DIExpr);
2228 
2229     if (DIExpr->isEntryValue()) {
2230       DwarfExpr.setEntryValueFlag();
2231       DwarfExpr.beginEntryValueExpression(Cursor);
2232     }
2233 
2234     const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
2235     if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg()))
2236       return;
2237     return DwarfExpr.addExpression(std::move(Cursor));
2238   } else if (Value.isConstantFP()) {
2239     APInt RawBytes = Value.getConstantFP()->getValueAPF().bitcastToAPInt();
2240     DwarfExpr.addUnsignedConstant(RawBytes);
2241   }
2242   DwarfExpr.addExpression(std::move(ExprCursor));
2243 }
2244 
2245 void DebugLocEntry::finalize(const AsmPrinter &AP,
2246                              DebugLocStream::ListBuilder &List,
2247                              const DIBasicType *BT,
2248                              DwarfCompileUnit &TheCU) {
2249   assert(!Values.empty() &&
2250          "location list entries without values are redundant");
2251   assert(Begin != End && "unexpected location list entry with empty range");
2252   DebugLocStream::EntryBuilder Entry(List, Begin, End);
2253   BufferByteStreamer Streamer = Entry.getStreamer();
2254   DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU);
2255   const DbgValueLoc &Value = Values[0];
2256   if (Value.isFragment()) {
2257     // Emit all fragments that belong to the same variable and range.
2258     assert(llvm::all_of(Values, [](DbgValueLoc P) {
2259           return P.isFragment();
2260         }) && "all values are expected to be fragments");
2261     assert(std::is_sorted(Values.begin(), Values.end()) &&
2262            "fragments are expected to be sorted");
2263 
2264     for (auto Fragment : Values)
2265       DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr);
2266 
2267   } else {
2268     assert(Values.size() == 1 && "only fragments may have >1 value");
2269     DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr);
2270   }
2271   DwarfExpr.finalize();
2272 }
2273 
2274 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry,
2275                                            const DwarfCompileUnit *CU) {
2276   // Emit the size.
2277   Asm->OutStreamer->AddComment("Loc expr size");
2278   if (getDwarfVersion() >= 5)
2279     Asm->EmitULEB128(DebugLocs.getBytes(Entry).size());
2280   else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max())
2281     Asm->emitInt16(DebugLocs.getBytes(Entry).size());
2282   else {
2283     // The entry is too big to fit into 16 bit, drop it as there is nothing we
2284     // can do.
2285     Asm->emitInt16(0);
2286     return;
2287   }
2288   // Emit the entry.
2289   APByteStreamer Streamer(*Asm);
2290   emitDebugLocEntry(Streamer, Entry, CU);
2291 }
2292 
2293 // Emit the common part of the DWARF 5 range/locations list tables header.
2294 static void emitListsTableHeaderStart(AsmPrinter *Asm,
2295                                       MCSymbol *TableStart,
2296                                       MCSymbol *TableEnd) {
2297   // Build the table header, which starts with the length field.
2298   Asm->OutStreamer->AddComment("Length");
2299   Asm->EmitLabelDifference(TableEnd, TableStart, 4);
2300   Asm->OutStreamer->EmitLabel(TableStart);
2301   // Version number (DWARF v5 and later).
2302   Asm->OutStreamer->AddComment("Version");
2303   Asm->emitInt16(Asm->OutStreamer->getContext().getDwarfVersion());
2304   // Address size.
2305   Asm->OutStreamer->AddComment("Address size");
2306   Asm->emitInt8(Asm->MAI->getCodePointerSize());
2307   // Segment selector size.
2308   Asm->OutStreamer->AddComment("Segment selector size");
2309   Asm->emitInt8(0);
2310 }
2311 
2312 // Emit the header of a DWARF 5 range list table list table. Returns the symbol
2313 // that designates the end of the table for the caller to emit when the table is
2314 // complete.
2315 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm,
2316                                          const DwarfFile &Holder) {
2317   MCSymbol *TableStart = Asm->createTempSymbol("debug_rnglist_table_start");
2318   MCSymbol *TableEnd = Asm->createTempSymbol("debug_rnglist_table_end");
2319   emitListsTableHeaderStart(Asm, TableStart, TableEnd);
2320 
2321   Asm->OutStreamer->AddComment("Offset entry count");
2322   Asm->emitInt32(Holder.getRangeLists().size());
2323   Asm->OutStreamer->EmitLabel(Holder.getRnglistsTableBaseSym());
2324 
2325   for (const RangeSpanList &List : Holder.getRangeLists())
2326     Asm->EmitLabelDifference(List.getSym(), Holder.getRnglistsTableBaseSym(),
2327                              4);
2328 
2329   return TableEnd;
2330 }
2331 
2332 // Emit the header of a DWARF 5 locations list table. Returns the symbol that
2333 // designates the end of the table for the caller to emit when the table is
2334 // complete.
2335 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm,
2336                                          const DwarfDebug &DD) {
2337   MCSymbol *TableStart = Asm->createTempSymbol("debug_loclist_table_start");
2338   MCSymbol *TableEnd = Asm->createTempSymbol("debug_loclist_table_end");
2339   emitListsTableHeaderStart(Asm, TableStart, TableEnd);
2340 
2341   const auto &DebugLocs = DD.getDebugLocs();
2342 
2343   Asm->OutStreamer->AddComment("Offset entry count");
2344   Asm->emitInt32(DebugLocs.getLists().size());
2345   Asm->OutStreamer->EmitLabel(DebugLocs.getSym());
2346 
2347   for (const auto &List : DebugLocs.getLists())
2348     Asm->EmitLabelDifference(List.Label, DebugLocs.getSym(), 4);
2349 
2350   return TableEnd;
2351 }
2352 
2353 template <typename Ranges, typename PayloadEmitter>
2354 static void emitRangeList(
2355     DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R,
2356     const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair,
2357     unsigned StartxLength, unsigned EndOfList,
2358     StringRef (*StringifyEnum)(unsigned),
2359     bool ShouldUseBaseAddress,
2360     PayloadEmitter EmitPayload) {
2361 
2362   auto Size = Asm->MAI->getCodePointerSize();
2363   bool UseDwarf5 = DD.getDwarfVersion() >= 5;
2364 
2365   // Emit our symbol so we can find the beginning of the range.
2366   Asm->OutStreamer->EmitLabel(Sym);
2367 
2368   // Gather all the ranges that apply to the same section so they can share
2369   // a base address entry.
2370   MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges;
2371 
2372   for (const auto &Range : R)
2373     SectionRanges[&Range.Begin->getSection()].push_back(&Range);
2374 
2375   const MCSymbol *CUBase = CU.getBaseAddress();
2376   bool BaseIsSet = false;
2377   for (const auto &P : SectionRanges) {
2378     auto *Base = CUBase;
2379     if (!Base && ShouldUseBaseAddress) {
2380       const MCSymbol *Begin = P.second.front()->Begin;
2381       const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection());
2382       if (!UseDwarf5) {
2383         Base = NewBase;
2384         BaseIsSet = true;
2385         Asm->OutStreamer->EmitIntValue(-1, Size);
2386         Asm->OutStreamer->AddComment("  base address");
2387         Asm->OutStreamer->EmitSymbolValue(Base, Size);
2388       } else if (NewBase != Begin || P.second.size() > 1) {
2389         // Only use a base address if
2390         //  * the existing pool address doesn't match (NewBase != Begin)
2391         //  * or, there's more than one entry to share the base address
2392         Base = NewBase;
2393         BaseIsSet = true;
2394         Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx));
2395         Asm->emitInt8(BaseAddressx);
2396         Asm->OutStreamer->AddComment("  base address index");
2397         Asm->EmitULEB128(DD.getAddressPool().getIndex(Base));
2398       }
2399     } else if (BaseIsSet && !UseDwarf5) {
2400       BaseIsSet = false;
2401       assert(!Base);
2402       Asm->OutStreamer->EmitIntValue(-1, Size);
2403       Asm->OutStreamer->EmitIntValue(0, Size);
2404     }
2405 
2406     for (const auto *RS : P.second) {
2407       const MCSymbol *Begin = RS->Begin;
2408       const MCSymbol *End = RS->End;
2409       assert(Begin && "Range without a begin symbol?");
2410       assert(End && "Range without an end symbol?");
2411       if (Base) {
2412         if (UseDwarf5) {
2413           // Emit offset_pair when we have a base.
2414           Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair));
2415           Asm->emitInt8(OffsetPair);
2416           Asm->OutStreamer->AddComment("  starting offset");
2417           Asm->EmitLabelDifferenceAsULEB128(Begin, Base);
2418           Asm->OutStreamer->AddComment("  ending offset");
2419           Asm->EmitLabelDifferenceAsULEB128(End, Base);
2420         } else {
2421           Asm->EmitLabelDifference(Begin, Base, Size);
2422           Asm->EmitLabelDifference(End, Base, Size);
2423         }
2424       } else if (UseDwarf5) {
2425         Asm->OutStreamer->AddComment(StringifyEnum(StartxLength));
2426         Asm->emitInt8(StartxLength);
2427         Asm->OutStreamer->AddComment("  start index");
2428         Asm->EmitULEB128(DD.getAddressPool().getIndex(Begin));
2429         Asm->OutStreamer->AddComment("  length");
2430         Asm->EmitLabelDifferenceAsULEB128(End, Begin);
2431       } else {
2432         Asm->OutStreamer->EmitSymbolValue(Begin, Size);
2433         Asm->OutStreamer->EmitSymbolValue(End, Size);
2434       }
2435       EmitPayload(*RS);
2436     }
2437   }
2438 
2439   if (UseDwarf5) {
2440     Asm->OutStreamer->AddComment(StringifyEnum(EndOfList));
2441     Asm->emitInt8(EndOfList);
2442   } else {
2443     // Terminate the list with two 0 values.
2444     Asm->OutStreamer->EmitIntValue(0, Size);
2445     Asm->OutStreamer->EmitIntValue(0, Size);
2446   }
2447 }
2448 
2449 // Handles emission of both debug_loclist / debug_loclist.dwo
2450 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) {
2451   emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List),
2452                 *List.CU, dwarf::DW_LLE_base_addressx,
2453                 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length,
2454                 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString,
2455                 /* ShouldUseBaseAddress */ true,
2456                 [&](const DebugLocStream::Entry &E) {
2457                   DD.emitDebugLocEntryLocation(E, List.CU);
2458                 });
2459 }
2460 
2461 // Emit locations into the .debug_loc/.debug_loclists section.
2462 void DwarfDebug::emitDebugLoc() {
2463   if (DebugLocs.getLists().empty())
2464     return;
2465 
2466   MCSymbol *TableEnd = nullptr;
2467   if (getDwarfVersion() >= 5) {
2468 
2469     Asm->OutStreamer->SwitchSection(
2470         Asm->getObjFileLowering().getDwarfLoclistsSection());
2471 
2472     TableEnd = emitLoclistsTableHeader(Asm, *this);
2473   } else {
2474     Asm->OutStreamer->SwitchSection(
2475         Asm->getObjFileLowering().getDwarfLocSection());
2476   }
2477 
2478   for (const auto &List : DebugLocs.getLists())
2479     emitLocList(*this, Asm, List);
2480 
2481   if (TableEnd)
2482     Asm->OutStreamer->EmitLabel(TableEnd);
2483 }
2484 
2485 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section.
2486 void DwarfDebug::emitDebugLocDWO() {
2487   if (DebugLocs.getLists().empty())
2488     return;
2489 
2490   if (getDwarfVersion() >= 5) {
2491     MCSymbol *TableEnd = nullptr;
2492     Asm->OutStreamer->SwitchSection(
2493         Asm->getObjFileLowering().getDwarfLoclistsDWOSection());
2494     TableEnd = emitLoclistsTableHeader(Asm, *this);
2495     for (const auto &List : DebugLocs.getLists())
2496       emitLocList(*this, Asm, List);
2497 
2498     if (TableEnd)
2499       Asm->OutStreamer->EmitLabel(TableEnd);
2500     return;
2501   }
2502 
2503   for (const auto &List : DebugLocs.getLists()) {
2504     Asm->OutStreamer->SwitchSection(
2505         Asm->getObjFileLowering().getDwarfLocDWOSection());
2506     Asm->OutStreamer->EmitLabel(List.Label);
2507 
2508     for (const auto &Entry : DebugLocs.getEntries(List)) {
2509       // GDB only supports startx_length in pre-standard split-DWARF.
2510       // (in v5 standard loclists, it currently* /only/ supports base_address +
2511       // offset_pair, so the implementations can't really share much since they
2512       // need to use different representations)
2513       // * as of October 2018, at least
2514       // Ideally/in v5, this could use SectionLabels to reuse existing addresses
2515       // in the address pool to minimize object size/relocations.
2516       Asm->emitInt8(dwarf::DW_LLE_startx_length);
2517       unsigned idx = AddrPool.getIndex(Entry.Begin);
2518       Asm->EmitULEB128(idx);
2519       Asm->EmitLabelDifference(Entry.End, Entry.Begin, 4);
2520       emitDebugLocEntryLocation(Entry, List.CU);
2521     }
2522     Asm->emitInt8(dwarf::DW_LLE_end_of_list);
2523   }
2524 }
2525 
2526 struct ArangeSpan {
2527   const MCSymbol *Start, *End;
2528 };
2529 
2530 // Emit a debug aranges section, containing a CU lookup for any
2531 // address we can tie back to a CU.
2532 void DwarfDebug::emitDebugARanges() {
2533   // Provides a unique id per text section.
2534   MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap;
2535 
2536   // Filter labels by section.
2537   for (const SymbolCU &SCU : ArangeLabels) {
2538     if (SCU.Sym->isInSection()) {
2539       // Make a note of this symbol and it's section.
2540       MCSection *Section = &SCU.Sym->getSection();
2541       if (!Section->getKind().isMetadata())
2542         SectionMap[Section].push_back(SCU);
2543     } else {
2544       // Some symbols (e.g. common/bss on mach-o) can have no section but still
2545       // appear in the output. This sucks as we rely on sections to build
2546       // arange spans. We can do it without, but it's icky.
2547       SectionMap[nullptr].push_back(SCU);
2548     }
2549   }
2550 
2551   DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans;
2552 
2553   for (auto &I : SectionMap) {
2554     MCSection *Section = I.first;
2555     SmallVector<SymbolCU, 8> &List = I.second;
2556     if (List.size() < 1)
2557       continue;
2558 
2559     // If we have no section (e.g. common), just write out
2560     // individual spans for each symbol.
2561     if (!Section) {
2562       for (const SymbolCU &Cur : List) {
2563         ArangeSpan Span;
2564         Span.Start = Cur.Sym;
2565         Span.End = nullptr;
2566         assert(Cur.CU);
2567         Spans[Cur.CU].push_back(Span);
2568       }
2569       continue;
2570     }
2571 
2572     // Sort the symbols by offset within the section.
2573     llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) {
2574       unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0;
2575       unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0;
2576 
2577       // Symbols with no order assigned should be placed at the end.
2578       // (e.g. section end labels)
2579       if (IA == 0)
2580         return false;
2581       if (IB == 0)
2582         return true;
2583       return IA < IB;
2584     });
2585 
2586     // Insert a final terminator.
2587     List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section)));
2588 
2589     // Build spans between each label.
2590     const MCSymbol *StartSym = List[0].Sym;
2591     for (size_t n = 1, e = List.size(); n < e; n++) {
2592       const SymbolCU &Prev = List[n - 1];
2593       const SymbolCU &Cur = List[n];
2594 
2595       // Try and build the longest span we can within the same CU.
2596       if (Cur.CU != Prev.CU) {
2597         ArangeSpan Span;
2598         Span.Start = StartSym;
2599         Span.End = Cur.Sym;
2600         assert(Prev.CU);
2601         Spans[Prev.CU].push_back(Span);
2602         StartSym = Cur.Sym;
2603       }
2604     }
2605   }
2606 
2607   // Start the dwarf aranges section.
2608   Asm->OutStreamer->SwitchSection(
2609       Asm->getObjFileLowering().getDwarfARangesSection());
2610 
2611   unsigned PtrSize = Asm->MAI->getCodePointerSize();
2612 
2613   // Build a list of CUs used.
2614   std::vector<DwarfCompileUnit *> CUs;
2615   for (const auto &it : Spans) {
2616     DwarfCompileUnit *CU = it.first;
2617     CUs.push_back(CU);
2618   }
2619 
2620   // Sort the CU list (again, to ensure consistent output order).
2621   llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) {
2622     return A->getUniqueID() < B->getUniqueID();
2623   });
2624 
2625   // Emit an arange table for each CU we used.
2626   for (DwarfCompileUnit *CU : CUs) {
2627     std::vector<ArangeSpan> &List = Spans[CU];
2628 
2629     // Describe the skeleton CU's offset and length, not the dwo file's.
2630     if (auto *Skel = CU->getSkeleton())
2631       CU = Skel;
2632 
2633     // Emit size of content not including length itself.
2634     unsigned ContentSize =
2635         sizeof(int16_t) + // DWARF ARange version number
2636         sizeof(int32_t) + // Offset of CU in the .debug_info section
2637         sizeof(int8_t) +  // Pointer Size (in bytes)
2638         sizeof(int8_t);   // Segment Size (in bytes)
2639 
2640     unsigned TupleSize = PtrSize * 2;
2641 
2642     // 7.20 in the Dwarf specs requires the table to be aligned to a tuple.
2643     unsigned Padding =
2644         offsetToAlignment(sizeof(int32_t) + ContentSize, Align(TupleSize));
2645 
2646     ContentSize += Padding;
2647     ContentSize += (List.size() + 1) * TupleSize;
2648 
2649     // For each compile unit, write the list of spans it covers.
2650     Asm->OutStreamer->AddComment("Length of ARange Set");
2651     Asm->emitInt32(ContentSize);
2652     Asm->OutStreamer->AddComment("DWARF Arange version number");
2653     Asm->emitInt16(dwarf::DW_ARANGES_VERSION);
2654     Asm->OutStreamer->AddComment("Offset Into Debug Info Section");
2655     emitSectionReference(*CU);
2656     Asm->OutStreamer->AddComment("Address Size (in bytes)");
2657     Asm->emitInt8(PtrSize);
2658     Asm->OutStreamer->AddComment("Segment Size (in bytes)");
2659     Asm->emitInt8(0);
2660 
2661     Asm->OutStreamer->emitFill(Padding, 0xff);
2662 
2663     for (const ArangeSpan &Span : List) {
2664       Asm->EmitLabelReference(Span.Start, PtrSize);
2665 
2666       // Calculate the size as being from the span start to it's end.
2667       if (Span.End) {
2668         Asm->EmitLabelDifference(Span.End, Span.Start, PtrSize);
2669       } else {
2670         // For symbols without an end marker (e.g. common), we
2671         // write a single arange entry containing just that one symbol.
2672         uint64_t Size = SymSize[Span.Start];
2673         if (Size == 0)
2674           Size = 1;
2675 
2676         Asm->OutStreamer->EmitIntValue(Size, PtrSize);
2677       }
2678     }
2679 
2680     Asm->OutStreamer->AddComment("ARange terminator");
2681     Asm->OutStreamer->EmitIntValue(0, PtrSize);
2682     Asm->OutStreamer->EmitIntValue(0, PtrSize);
2683   }
2684 }
2685 
2686 /// Emit a single range list. We handle both DWARF v5 and earlier.
2687 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm,
2688                           const RangeSpanList &List) {
2689   emitRangeList(DD, Asm, List.getSym(), List.getRanges(), List.getCU(),
2690                 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair,
2691                 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list,
2692                 llvm::dwarf::RangeListEncodingString,
2693                 List.getCU().getCUNode()->getRangesBaseAddress() ||
2694                     DD.getDwarfVersion() >= 5,
2695                 [](auto) {});
2696 }
2697 
2698 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) {
2699   if (Holder.getRangeLists().empty())
2700     return;
2701 
2702   assert(useRangesSection());
2703   assert(!CUMap.empty());
2704   assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) {
2705     return !Pair.second->getCUNode()->isDebugDirectivesOnly();
2706   }));
2707 
2708   Asm->OutStreamer->SwitchSection(Section);
2709 
2710   MCSymbol *TableEnd =
2711       getDwarfVersion() < 5 ? nullptr : emitRnglistsTableHeader(Asm, Holder);
2712 
2713   for (const RangeSpanList &List : Holder.getRangeLists())
2714     emitRangeList(*this, Asm, List);
2715 
2716   if (TableEnd)
2717     Asm->OutStreamer->EmitLabel(TableEnd);
2718 }
2719 
2720 /// Emit address ranges into the .debug_ranges section or into the DWARF v5
2721 /// .debug_rnglists section.
2722 void DwarfDebug::emitDebugRanges() {
2723   const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2724 
2725   emitDebugRangesImpl(Holder,
2726                       getDwarfVersion() >= 5
2727                           ? Asm->getObjFileLowering().getDwarfRnglistsSection()
2728                           : Asm->getObjFileLowering().getDwarfRangesSection());
2729 }
2730 
2731 void DwarfDebug::emitDebugRangesDWO() {
2732   emitDebugRangesImpl(InfoHolder,
2733                       Asm->getObjFileLowering().getDwarfRnglistsDWOSection());
2734 }
2735 
2736 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) {
2737   for (auto *MN : Nodes) {
2738     if (auto *M = dyn_cast<DIMacro>(MN))
2739       emitMacro(*M);
2740     else if (auto *F = dyn_cast<DIMacroFile>(MN))
2741       emitMacroFile(*F, U);
2742     else
2743       llvm_unreachable("Unexpected DI type!");
2744   }
2745 }
2746 
2747 void DwarfDebug::emitMacro(DIMacro &M) {
2748   Asm->EmitULEB128(M.getMacinfoType());
2749   Asm->EmitULEB128(M.getLine());
2750   StringRef Name = M.getName();
2751   StringRef Value = M.getValue();
2752   Asm->OutStreamer->EmitBytes(Name);
2753   if (!Value.empty()) {
2754     // There should be one space between macro name and macro value.
2755     Asm->emitInt8(' ');
2756     Asm->OutStreamer->EmitBytes(Value);
2757   }
2758   Asm->emitInt8('\0');
2759 }
2760 
2761 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) {
2762   assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file);
2763   Asm->EmitULEB128(dwarf::DW_MACINFO_start_file);
2764   Asm->EmitULEB128(F.getLine());
2765   Asm->EmitULEB128(U.getOrCreateSourceID(F.getFile()));
2766   handleMacroNodes(F.getElements(), U);
2767   Asm->EmitULEB128(dwarf::DW_MACINFO_end_file);
2768 }
2769 
2770 /// Emit macros into a debug macinfo section.
2771 void DwarfDebug::emitDebugMacinfo() {
2772   for (const auto &P : CUMap) {
2773     auto &TheCU = *P.second;
2774     auto *SkCU = TheCU.getSkeleton();
2775     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
2776     auto *CUNode = cast<DICompileUnit>(P.first);
2777     DIMacroNodeArray Macros = CUNode->getMacros();
2778     if (Macros.empty())
2779       continue;
2780     Asm->OutStreamer->SwitchSection(
2781         Asm->getObjFileLowering().getDwarfMacinfoSection());
2782     Asm->OutStreamer->EmitLabel(U.getMacroLabelBegin());
2783     handleMacroNodes(Macros, U);
2784     Asm->OutStreamer->AddComment("End Of Macro List Mark");
2785     Asm->emitInt8(0);
2786   }
2787 }
2788 
2789 void DwarfDebug::emitDebugMacinfoDWO() {
2790   for (const auto &P : CUMap) {
2791     auto &TheCU = *P.second;
2792     auto *SkCU = TheCU.getSkeleton();
2793     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
2794     auto *CUNode = cast<DICompileUnit>(P.first);
2795     DIMacroNodeArray Macros = CUNode->getMacros();
2796     if (Macros.empty())
2797       continue;
2798     Asm->OutStreamer->SwitchSection(
2799         Asm->getObjFileLowering().getDwarfMacinfoDWOSection());
2800     Asm->OutStreamer->EmitLabel(U.getMacroLabelBegin());
2801     handleMacroNodes(Macros, U);
2802     Asm->OutStreamer->AddComment("End Of Macro List Mark");
2803     Asm->emitInt8(0);
2804   }
2805 }
2806 
2807 // DWARF5 Experimental Separate Dwarf emitters.
2808 
2809 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die,
2810                                   std::unique_ptr<DwarfCompileUnit> NewU) {
2811 
2812   if (!CompilationDir.empty())
2813     NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
2814 
2815   addGnuPubAttributes(*NewU, Die);
2816 
2817   SkeletonHolder.addUnit(std::move(NewU));
2818 }
2819 
2820 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) {
2821 
2822   auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
2823       CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder,
2824       UnitKind::Skeleton);
2825   DwarfCompileUnit &NewCU = *OwnedUnit;
2826   NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
2827 
2828   NewCU.initStmtList();
2829 
2830   if (useSegmentedStringOffsetsTable())
2831     NewCU.addStringOffsetsStart();
2832 
2833   initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit));
2834 
2835   return NewCU;
2836 }
2837 
2838 // Emit the .debug_info.dwo section for separated dwarf. This contains the
2839 // compile units that would normally be in debug_info.
2840 void DwarfDebug::emitDebugInfoDWO() {
2841   assert(useSplitDwarf() && "No split dwarf debug info?");
2842   // Don't emit relocations into the dwo file.
2843   InfoHolder.emitUnits(/* UseOffsets */ true);
2844 }
2845 
2846 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the
2847 // abbreviations for the .debug_info.dwo section.
2848 void DwarfDebug::emitDebugAbbrevDWO() {
2849   assert(useSplitDwarf() && "No split dwarf?");
2850   InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection());
2851 }
2852 
2853 void DwarfDebug::emitDebugLineDWO() {
2854   assert(useSplitDwarf() && "No split dwarf?");
2855   SplitTypeUnitFileTable.Emit(
2856       *Asm->OutStreamer, MCDwarfLineTableParams(),
2857       Asm->getObjFileLowering().getDwarfLineDWOSection());
2858 }
2859 
2860 void DwarfDebug::emitStringOffsetsTableHeaderDWO() {
2861   assert(useSplitDwarf() && "No split dwarf?");
2862   InfoHolder.getStringPool().emitStringOffsetsTableHeader(
2863       *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(),
2864       InfoHolder.getStringOffsetsStartSym());
2865 }
2866 
2867 // Emit the .debug_str.dwo section for separated dwarf. This contains the
2868 // string section and is identical in format to traditional .debug_str
2869 // sections.
2870 void DwarfDebug::emitDebugStrDWO() {
2871   if (useSegmentedStringOffsetsTable())
2872     emitStringOffsetsTableHeaderDWO();
2873   assert(useSplitDwarf() && "No split dwarf?");
2874   MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection();
2875   InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(),
2876                          OffSec, /* UseRelativeOffsets = */ false);
2877 }
2878 
2879 // Emit address pool.
2880 void DwarfDebug::emitDebugAddr() {
2881   AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection());
2882 }
2883 
2884 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) {
2885   if (!useSplitDwarf())
2886     return nullptr;
2887   const DICompileUnit *DIUnit = CU.getCUNode();
2888   SplitTypeUnitFileTable.maybeSetRootFile(
2889       DIUnit->getDirectory(), DIUnit->getFilename(),
2890       CU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource());
2891   return &SplitTypeUnitFileTable;
2892 }
2893 
2894 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) {
2895   MD5 Hash;
2896   Hash.update(Identifier);
2897   // ... take the least significant 8 bytes and return those. Our MD5
2898   // implementation always returns its results in little endian, so we actually
2899   // need the "high" word.
2900   MD5::MD5Result Result;
2901   Hash.final(Result);
2902   return Result.high();
2903 }
2904 
2905 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
2906                                       StringRef Identifier, DIE &RefDie,
2907                                       const DICompositeType *CTy) {
2908   // Fast path if we're building some type units and one has already used the
2909   // address pool we know we're going to throw away all this work anyway, so
2910   // don't bother building dependent types.
2911   if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed())
2912     return;
2913 
2914   auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0));
2915   if (!Ins.second) {
2916     CU.addDIETypeSignature(RefDie, Ins.first->second);
2917     return;
2918   }
2919 
2920   bool TopLevelType = TypeUnitsUnderConstruction.empty();
2921   AddrPool.resetUsedFlag();
2922 
2923   auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder,
2924                                                     getDwoLineTable(CU));
2925   DwarfTypeUnit &NewTU = *OwnedUnit;
2926   DIE &UnitDie = NewTU.getUnitDie();
2927   TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy);
2928 
2929   NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
2930                 CU.getLanguage());
2931 
2932   uint64_t Signature = makeTypeSignature(Identifier);
2933   NewTU.setTypeSignature(Signature);
2934   Ins.first->second = Signature;
2935 
2936   if (useSplitDwarf()) {
2937     MCSection *Section =
2938         getDwarfVersion() <= 4
2939             ? Asm->getObjFileLowering().getDwarfTypesDWOSection()
2940             : Asm->getObjFileLowering().getDwarfInfoDWOSection();
2941     NewTU.setSection(Section);
2942   } else {
2943     MCSection *Section =
2944         getDwarfVersion() <= 4
2945             ? Asm->getObjFileLowering().getDwarfTypesSection(Signature)
2946             : Asm->getObjFileLowering().getDwarfInfoSection(Signature);
2947     NewTU.setSection(Section);
2948     // Non-split type units reuse the compile unit's line table.
2949     CU.applyStmtList(UnitDie);
2950   }
2951 
2952   // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type
2953   // units.
2954   if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
2955     NewTU.addStringOffsetsStart();
2956 
2957   NewTU.setType(NewTU.createTypeDIE(CTy));
2958 
2959   if (TopLevelType) {
2960     auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction);
2961     TypeUnitsUnderConstruction.clear();
2962 
2963     // Types referencing entries in the address table cannot be placed in type
2964     // units.
2965     if (AddrPool.hasBeenUsed()) {
2966 
2967       // Remove all the types built while building this type.
2968       // This is pessimistic as some of these types might not be dependent on
2969       // the type that used an address.
2970       for (const auto &TU : TypeUnitsToAdd)
2971         TypeSignatures.erase(TU.second);
2972 
2973       // Construct this type in the CU directly.
2974       // This is inefficient because all the dependent types will be rebuilt
2975       // from scratch, including building them in type units, discovering that
2976       // they depend on addresses, throwing them out and rebuilding them.
2977       CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy));
2978       return;
2979     }
2980 
2981     // If the type wasn't dependent on fission addresses, finish adding the type
2982     // and all its dependent types.
2983     for (auto &TU : TypeUnitsToAdd) {
2984       InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get());
2985       InfoHolder.emitUnit(TU.first.get(), useSplitDwarf());
2986     }
2987   }
2988   CU.addDIETypeSignature(RefDie, Signature);
2989 }
2990 
2991 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD)
2992     : DD(DD),
2993       TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)) {
2994   DD->TypeUnitsUnderConstruction.clear();
2995   assert(TypeUnitsUnderConstruction.empty() || !DD->AddrPool.hasBeenUsed());
2996 }
2997 
2998 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() {
2999   DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction);
3000   DD->AddrPool.resetUsedFlag();
3001 }
3002 
3003 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() {
3004   return NonTypeUnitContext(this);
3005 }
3006 
3007 // Add the Name along with its companion DIE to the appropriate accelerator
3008 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for
3009 // AccelTableKind::Apple, we use the table we got as an argument). If
3010 // accelerator tables are disabled, this function does nothing.
3011 template <typename DataT>
3012 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU,
3013                                   AccelTable<DataT> &AppleAccel, StringRef Name,
3014                                   const DIE &Die) {
3015   if (getAccelTableKind() == AccelTableKind::None)
3016     return;
3017 
3018   if (getAccelTableKind() != AccelTableKind::Apple &&
3019       CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default)
3020     return;
3021 
3022   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
3023   DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name);
3024 
3025   switch (getAccelTableKind()) {
3026   case AccelTableKind::Apple:
3027     AppleAccel.addName(Ref, Die);
3028     break;
3029   case AccelTableKind::Dwarf:
3030     AccelDebugNames.addName(Ref, Die);
3031     break;
3032   case AccelTableKind::Default:
3033     llvm_unreachable("Default should have already been resolved.");
3034   case AccelTableKind::None:
3035     llvm_unreachable("None handled above");
3036   }
3037 }
3038 
3039 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name,
3040                               const DIE &Die) {
3041   addAccelNameImpl(CU, AccelNames, Name, Die);
3042 }
3043 
3044 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name,
3045                               const DIE &Die) {
3046   // ObjC names go only into the Apple accelerator tables.
3047   if (getAccelTableKind() == AccelTableKind::Apple)
3048     addAccelNameImpl(CU, AccelObjC, Name, Die);
3049 }
3050 
3051 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name,
3052                                    const DIE &Die) {
3053   addAccelNameImpl(CU, AccelNamespace, Name, Die);
3054 }
3055 
3056 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name,
3057                               const DIE &Die, char Flags) {
3058   addAccelNameImpl(CU, AccelTypes, Name, Die);
3059 }
3060 
3061 uint16_t DwarfDebug::getDwarfVersion() const {
3062   return Asm->OutStreamer->getContext().getDwarfVersion();
3063 }
3064 
3065 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) {
3066   return SectionLabels.find(S)->second;
3067 }
3068