1 //===-- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing dwarf debug info into asm files.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "DwarfDebug.h"
15 #include "ByteStreamer.h"
16 #include "DIEHash.h"
17 #include "DwarfCompileUnit.h"
18 #include "DwarfExpression.h"
19 #include "DwarfUnit.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/Triple.h"
24 #include "llvm/CodeGen/DIE.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DIBuilder.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DebugInfo.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/ValueHandle.h"
34 #include "llvm/MC/MCAsmInfo.h"
35 #include "llvm/MC/MCSection.h"
36 #include "llvm/MC/MCStreamer.h"
37 #include "llvm/MC/MCSymbol.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/Dwarf.h"
41 #include "llvm/Support/Endian.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/FormattedStream.h"
44 #include "llvm/Support/LEB128.h"
45 #include "llvm/Support/MD5.h"
46 #include "llvm/Support/Path.h"
47 #include "llvm/Support/Timer.h"
48 #include "llvm/Target/TargetFrameLowering.h"
49 #include "llvm/Target/TargetLoweringObjectFile.h"
50 #include "llvm/Target/TargetMachine.h"
51 #include "llvm/Target/TargetOptions.h"
52 #include "llvm/Target/TargetRegisterInfo.h"
53 #include "llvm/Target/TargetSubtargetInfo.h"
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "dwarfdebug"
57 
58 static cl::opt<bool>
59 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden,
60                          cl::desc("Disable debug info printing"));
61 
62 static cl::opt<bool> UnknownLocations(
63     "use-unknown-locations", cl::Hidden,
64     cl::desc("Make an absence of debug location information explicit."),
65     cl::init(false));
66 
67 static cl::opt<bool>
68 GenerateGnuPubSections("generate-gnu-dwarf-pub-sections", cl::Hidden,
69                        cl::desc("Generate GNU-style pubnames and pubtypes"),
70                        cl::init(false));
71 
72 static cl::opt<bool> GenerateARangeSection("generate-arange-section",
73                                            cl::Hidden,
74                                            cl::desc("Generate dwarf aranges"),
75                                            cl::init(false));
76 
77 namespace {
78 enum DefaultOnOff { Default, Enable, Disable };
79 }
80 
81 static cl::opt<DefaultOnOff>
82 DwarfAccelTables("dwarf-accel-tables", cl::Hidden,
83                  cl::desc("Output prototype dwarf accelerator tables."),
84                  cl::values(clEnumVal(Default, "Default for platform"),
85                             clEnumVal(Enable, "Enabled"),
86                             clEnumVal(Disable, "Disabled"), clEnumValEnd),
87                  cl::init(Default));
88 
89 static cl::opt<DefaultOnOff>
90 SplitDwarf("split-dwarf", cl::Hidden,
91            cl::desc("Output DWARF5 split debug info."),
92            cl::values(clEnumVal(Default, "Default for platform"),
93                       clEnumVal(Enable, "Enabled"),
94                       clEnumVal(Disable, "Disabled"), clEnumValEnd),
95            cl::init(Default));
96 
97 static cl::opt<DefaultOnOff>
98 DwarfPubSections("generate-dwarf-pub-sections", cl::Hidden,
99                  cl::desc("Generate DWARF pubnames and pubtypes sections"),
100                  cl::values(clEnumVal(Default, "Default for platform"),
101                             clEnumVal(Enable, "Enabled"),
102                             clEnumVal(Disable, "Disabled"), clEnumValEnd),
103                  cl::init(Default));
104 
105 static const char *const DWARFGroupName = "DWARF Emission";
106 static const char *const DbgTimerName = "DWARF Debug Writer";
107 
108 //===----------------------------------------------------------------------===//
109 
110 /// resolve - Look in the DwarfDebug map for the MDNode that
111 /// corresponds to the reference.
112 template <typename T> T DbgVariable::resolve(DIRef<T> Ref) const {
113   return DD->resolve(Ref);
114 }
115 
116 bool DbgVariable::isBlockByrefVariable() const {
117   assert(Var.isVariable() && "Invalid complex DbgVariable!");
118   return Var.isBlockByrefVariable(DD->getTypeIdentifierMap());
119 }
120 
121 DIType DbgVariable::getType() const {
122   DIType Ty = Var.getType().resolve(DD->getTypeIdentifierMap());
123   // FIXME: isBlockByrefVariable should be reformulated in terms of complex
124   // addresses instead.
125   if (Var.isBlockByrefVariable(DD->getTypeIdentifierMap())) {
126     /* Byref variables, in Blocks, are declared by the programmer as
127        "SomeType VarName;", but the compiler creates a
128        __Block_byref_x_VarName struct, and gives the variable VarName
129        either the struct, or a pointer to the struct, as its type.  This
130        is necessary for various behind-the-scenes things the compiler
131        needs to do with by-reference variables in blocks.
132 
133        However, as far as the original *programmer* is concerned, the
134        variable should still have type 'SomeType', as originally declared.
135 
136        The following function dives into the __Block_byref_x_VarName
137        struct to find the original type of the variable.  This will be
138        passed back to the code generating the type for the Debug
139        Information Entry for the variable 'VarName'.  'VarName' will then
140        have the original type 'SomeType' in its debug information.
141 
142        The original type 'SomeType' will be the type of the field named
143        'VarName' inside the __Block_byref_x_VarName struct.
144 
145        NOTE: In order for this to not completely fail on the debugger
146        side, the Debug Information Entry for the variable VarName needs to
147        have a DW_AT_location that tells the debugger how to unwind through
148        the pointers and __Block_byref_x_VarName struct to find the actual
149        value of the variable.  The function addBlockByrefType does this.  */
150     DIType subType = Ty;
151     uint16_t tag = Ty.getTag();
152 
153     if (tag == dwarf::DW_TAG_pointer_type)
154       subType = resolve(DIDerivedType(Ty).getTypeDerivedFrom());
155 
156     DIArray Elements = DICompositeType(subType).getElements();
157     for (unsigned i = 0, N = Elements.getNumElements(); i < N; ++i) {
158       DIDerivedType DT(Elements.getElement(i));
159       if (getName() == DT.getName())
160         return (resolve(DT.getTypeDerivedFrom()));
161     }
162   }
163   return Ty;
164 }
165 
166 static LLVM_CONSTEXPR DwarfAccelTable::Atom TypeAtoms[] = {
167     DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset, dwarf::DW_FORM_data4),
168     DwarfAccelTable::Atom(dwarf::DW_ATOM_die_tag, dwarf::DW_FORM_data2),
169     DwarfAccelTable::Atom(dwarf::DW_ATOM_type_flags, dwarf::DW_FORM_data1)};
170 
171 DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M)
172     : Asm(A), MMI(Asm->MMI), PrevLabel(nullptr), GlobalRangeCount(0),
173       InfoHolder(A, *this, "info_string", DIEValueAllocator),
174       UsedNonDefaultText(false),
175       SkeletonHolder(A, *this, "skel_string", DIEValueAllocator),
176       IsDarwin(Triple(A->getTargetTriple()).isOSDarwin()),
177       AccelNames(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset,
178                                        dwarf::DW_FORM_data4)),
179       AccelObjC(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset,
180                                       dwarf::DW_FORM_data4)),
181       AccelNamespace(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset,
182                                            dwarf::DW_FORM_data4)),
183       AccelTypes(TypeAtoms) {
184 
185   DwarfInfoSectionSym = DwarfAbbrevSectionSym = DwarfStrSectionSym = nullptr;
186   DwarfDebugRangeSectionSym = DwarfDebugLocSectionSym = nullptr;
187   DwarfLineSectionSym = nullptr;
188   DwarfAddrSectionSym = nullptr;
189   DwarfAbbrevDWOSectionSym = DwarfStrDWOSectionSym = nullptr;
190   FunctionBeginSym = FunctionEndSym = nullptr;
191   CurFn = nullptr;
192   CurMI = nullptr;
193 
194   // Turn on accelerator tables for Darwin by default, pubnames by
195   // default for non-Darwin, and handle split dwarf.
196   if (DwarfAccelTables == Default)
197     HasDwarfAccelTables = IsDarwin;
198   else
199     HasDwarfAccelTables = DwarfAccelTables == Enable;
200 
201   if (SplitDwarf == Default)
202     HasSplitDwarf = false;
203   else
204     HasSplitDwarf = SplitDwarf == Enable;
205 
206   if (DwarfPubSections == Default)
207     HasDwarfPubSections = !IsDarwin;
208   else
209     HasDwarfPubSections = DwarfPubSections == Enable;
210 
211   unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion;
212   DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber
213                                     : MMI->getModule()->getDwarfVersion();
214 
215   Asm->OutStreamer.getContext().setDwarfVersion(DwarfVersion);
216 
217   {
218     NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
219     beginModule();
220   }
221 }
222 
223 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h.
224 DwarfDebug::~DwarfDebug() { }
225 
226 // Switch to the specified MCSection and emit an assembler
227 // temporary label to it if SymbolStem is specified.
228 static MCSymbol *emitSectionSym(AsmPrinter *Asm, const MCSection *Section,
229                                 const char *SymbolStem = nullptr) {
230   Asm->OutStreamer.SwitchSection(Section);
231   if (!SymbolStem)
232     return nullptr;
233 
234   MCSymbol *TmpSym = Asm->GetTempSymbol(SymbolStem);
235   Asm->OutStreamer.EmitLabel(TmpSym);
236   return TmpSym;
237 }
238 
239 static bool isObjCClass(StringRef Name) {
240   return Name.startswith("+") || Name.startswith("-");
241 }
242 
243 static bool hasObjCCategory(StringRef Name) {
244   if (!isObjCClass(Name))
245     return false;
246 
247   return Name.find(") ") != StringRef::npos;
248 }
249 
250 static void getObjCClassCategory(StringRef In, StringRef &Class,
251                                  StringRef &Category) {
252   if (!hasObjCCategory(In)) {
253     Class = In.slice(In.find('[') + 1, In.find(' '));
254     Category = "";
255     return;
256   }
257 
258   Class = In.slice(In.find('[') + 1, In.find('('));
259   Category = In.slice(In.find('[') + 1, In.find(' '));
260   return;
261 }
262 
263 static StringRef getObjCMethodName(StringRef In) {
264   return In.slice(In.find(' ') + 1, In.find(']'));
265 }
266 
267 // Helper for sorting sections into a stable output order.
268 static bool SectionSort(const MCSection *A, const MCSection *B) {
269   std::string LA = (A ? A->getLabelBeginName() : "");
270   std::string LB = (B ? B->getLabelBeginName() : "");
271   return LA < LB;
272 }
273 
274 // Add the various names to the Dwarf accelerator table names.
275 // TODO: Determine whether or not we should add names for programs
276 // that do not have a DW_AT_name or DW_AT_linkage_name field - this
277 // is only slightly different than the lookup of non-standard ObjC names.
278 void DwarfDebug::addSubprogramNames(DISubprogram SP, DIE &Die) {
279   if (!SP.isDefinition())
280     return;
281   addAccelName(SP.getName(), Die);
282 
283   // If the linkage name is different than the name, go ahead and output
284   // that as well into the name table.
285   if (SP.getLinkageName() != "" && SP.getName() != SP.getLinkageName())
286     addAccelName(SP.getLinkageName(), Die);
287 
288   // If this is an Objective-C selector name add it to the ObjC accelerator
289   // too.
290   if (isObjCClass(SP.getName())) {
291     StringRef Class, Category;
292     getObjCClassCategory(SP.getName(), Class, Category);
293     addAccelObjC(Class, Die);
294     if (Category != "")
295       addAccelObjC(Category, Die);
296     // Also add the base method name to the name table.
297     addAccelName(getObjCMethodName(SP.getName()), Die);
298   }
299 }
300 
301 /// isSubprogramContext - Return true if Context is either a subprogram
302 /// or another context nested inside a subprogram.
303 bool DwarfDebug::isSubprogramContext(const MDNode *Context) {
304   if (!Context)
305     return false;
306   DIDescriptor D(Context);
307   if (D.isSubprogram())
308     return true;
309   if (D.isType())
310     return isSubprogramContext(resolve(DIType(Context).getContext()));
311   return false;
312 }
313 
314 /// Check whether we should create a DIE for the given Scope, return true
315 /// if we don't create a DIE (the corresponding DIE is null).
316 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) {
317   if (Scope->isAbstractScope())
318     return false;
319 
320   // We don't create a DIE if there is no Range.
321   const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges();
322   if (Ranges.empty())
323     return true;
324 
325   if (Ranges.size() > 1)
326     return false;
327 
328   // We don't create a DIE if we have a single Range and the end label
329   // is null.
330   return !getLabelAfterInsn(Ranges.front().second);
331 }
332 
333 template <typename Func> void forBothCUs(DwarfCompileUnit &CU, Func F) {
334   F(CU);
335   if (auto *SkelCU = CU.getSkeleton())
336     F(*SkelCU);
337 }
338 
339 void DwarfDebug::constructAbstractSubprogramScopeDIE(LexicalScope *Scope) {
340   assert(Scope && Scope->getScopeNode());
341   assert(Scope->isAbstractScope());
342   assert(!Scope->getInlinedAt());
343 
344   const MDNode *SP = Scope->getScopeNode();
345 
346   ProcessedSPNodes.insert(SP);
347 
348   // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
349   // was inlined from another compile unit.
350   auto &CU = SPMap[SP];
351   forBothCUs(*CU, [&](DwarfCompileUnit &CU) {
352     CU.constructAbstractSubprogramScopeDIE(Scope);
353   });
354 }
355 
356 void DwarfDebug::addGnuPubAttributes(DwarfUnit &U, DIE &D) const {
357   if (!GenerateGnuPubSections)
358     return;
359 
360   U.addFlag(D, dwarf::DW_AT_GNU_pubnames);
361 }
362 
363 // Create new DwarfCompileUnit for the given metadata node with tag
364 // DW_TAG_compile_unit.
365 DwarfCompileUnit &DwarfDebug::constructDwarfCompileUnit(DICompileUnit DIUnit) {
366   StringRef FN = DIUnit.getFilename();
367   CompilationDir = DIUnit.getDirectory();
368 
369   auto OwnedUnit = make_unique<DwarfCompileUnit>(
370       InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder);
371   DwarfCompileUnit &NewCU = *OwnedUnit;
372   DIE &Die = NewCU.getUnitDie();
373   InfoHolder.addUnit(std::move(OwnedUnit));
374   if (useSplitDwarf())
375     NewCU.setSkeleton(constructSkeletonCU(NewCU));
376 
377   // LTO with assembly output shares a single line table amongst multiple CUs.
378   // To avoid the compilation directory being ambiguous, let the line table
379   // explicitly describe the directory of all files, never relying on the
380   // compilation directory.
381   if (!Asm->OutStreamer.hasRawTextSupport() || SingleCU)
382     Asm->OutStreamer.getContext().setMCLineTableCompilationDir(
383         NewCU.getUniqueID(), CompilationDir);
384 
385   NewCU.addString(Die, dwarf::DW_AT_producer, DIUnit.getProducer());
386   NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
387                 DIUnit.getLanguage());
388   NewCU.addString(Die, dwarf::DW_AT_name, FN);
389 
390   if (!useSplitDwarf()) {
391     NewCU.initStmtList(DwarfLineSectionSym);
392 
393     // If we're using split dwarf the compilation dir is going to be in the
394     // skeleton CU and so we don't need to duplicate it here.
395     if (!CompilationDir.empty())
396       NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
397 
398     addGnuPubAttributes(NewCU, Die);
399   }
400 
401   if (DIUnit.isOptimized())
402     NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized);
403 
404   StringRef Flags = DIUnit.getFlags();
405   if (!Flags.empty())
406     NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags);
407 
408   if (unsigned RVer = DIUnit.getRunTimeVersion())
409     NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers,
410                   dwarf::DW_FORM_data1, RVer);
411 
412   if (useSplitDwarf())
413     NewCU.initSection(Asm->getObjFileLowering().getDwarfInfoDWOSection(),
414                       DwarfInfoDWOSectionSym);
415   else
416     NewCU.initSection(Asm->getObjFileLowering().getDwarfInfoSection(),
417                       DwarfInfoSectionSym);
418 
419   CUMap.insert(std::make_pair(DIUnit, &NewCU));
420   CUDieMap.insert(std::make_pair(&Die, &NewCU));
421   return NewCU;
422 }
423 
424 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU,
425                                                   const MDNode *N) {
426   DIImportedEntity Module(N);
427   assert(Module.Verify());
428   if (DIE *D = TheCU.getOrCreateContextDIE(Module.getContext()))
429     D->addChild(TheCU.constructImportedEntityDIE(Module));
430 }
431 
432 // Emit all Dwarf sections that should come prior to the content. Create
433 // global DIEs and emit initial debug info sections. This is invoked by
434 // the target AsmPrinter.
435 void DwarfDebug::beginModule() {
436   if (DisableDebugInfoPrinting)
437     return;
438 
439   const Module *M = MMI->getModule();
440 
441   FunctionDIs = makeSubprogramMap(*M);
442 
443   NamedMDNode *CU_Nodes = M->getNamedMetadata("llvm.dbg.cu");
444   if (!CU_Nodes)
445     return;
446   TypeIdentifierMap = generateDITypeIdentifierMap(CU_Nodes);
447 
448   // Emit initial sections so we can reference labels later.
449   emitSectionLabels();
450 
451   SingleCU = CU_Nodes->getNumOperands() == 1;
452 
453   for (MDNode *N : CU_Nodes->operands()) {
454     DICompileUnit CUNode(N);
455     DwarfCompileUnit &CU = constructDwarfCompileUnit(CUNode);
456     DIArray ImportedEntities = CUNode.getImportedEntities();
457     for (unsigned i = 0, e = ImportedEntities.getNumElements(); i != e; ++i)
458       ScopesWithImportedEntities.push_back(std::make_pair(
459           DIImportedEntity(ImportedEntities.getElement(i)).getContext(),
460           ImportedEntities.getElement(i)));
461     std::sort(ScopesWithImportedEntities.begin(),
462               ScopesWithImportedEntities.end(), less_first());
463     DIArray GVs = CUNode.getGlobalVariables();
464     for (unsigned i = 0, e = GVs.getNumElements(); i != e; ++i)
465       CU.getOrCreateGlobalVariableDIE(DIGlobalVariable(GVs.getElement(i)));
466     DIArray SPs = CUNode.getSubprograms();
467     for (unsigned i = 0, e = SPs.getNumElements(); i != e; ++i)
468       SPMap.insert(std::make_pair(SPs.getElement(i), &CU));
469     DIArray EnumTypes = CUNode.getEnumTypes();
470     for (unsigned i = 0, e = EnumTypes.getNumElements(); i != e; ++i) {
471       DIType Ty(EnumTypes.getElement(i));
472       // The enum types array by design contains pointers to
473       // MDNodes rather than DIRefs. Unique them here.
474       DIType UniqueTy(resolve(Ty.getRef()));
475       CU.getOrCreateTypeDIE(UniqueTy);
476     }
477     DIArray RetainedTypes = CUNode.getRetainedTypes();
478     for (unsigned i = 0, e = RetainedTypes.getNumElements(); i != e; ++i) {
479       DIType Ty(RetainedTypes.getElement(i));
480       // The retained types array by design contains pointers to
481       // MDNodes rather than DIRefs. Unique them here.
482       DIType UniqueTy(resolve(Ty.getRef()));
483       CU.getOrCreateTypeDIE(UniqueTy);
484     }
485     // Emit imported_modules last so that the relevant context is already
486     // available.
487     for (unsigned i = 0, e = ImportedEntities.getNumElements(); i != e; ++i)
488       constructAndAddImportedEntityDIE(CU, ImportedEntities.getElement(i));
489   }
490 
491   // Tell MMI that we have debug info.
492   MMI->setDebugInfoAvailability(true);
493 
494   // Prime section data.
495   SectionMap[Asm->getObjFileLowering().getTextSection()];
496 }
497 
498 void DwarfDebug::finishVariableDefinitions() {
499   for (const auto &Var : ConcreteVariables) {
500     DIE *VariableDie = Var->getDIE();
501     assert(VariableDie);
502     // FIXME: Consider the time-space tradeoff of just storing the unit pointer
503     // in the ConcreteVariables list, rather than looking it up again here.
504     // DIE::getUnit isn't simple - it walks parent pointers, etc.
505     DwarfCompileUnit *Unit = lookupUnit(VariableDie->getUnit());
506     assert(Unit);
507     DbgVariable *AbsVar = getExistingAbstractVariable(Var->getVariable());
508     if (AbsVar && AbsVar->getDIE()) {
509       Unit->addDIEEntry(*VariableDie, dwarf::DW_AT_abstract_origin,
510                         *AbsVar->getDIE());
511     } else
512       Unit->applyVariableAttributes(*Var, *VariableDie);
513   }
514 }
515 
516 void DwarfDebug::finishSubprogramDefinitions() {
517   for (const auto &P : SPMap)
518     forBothCUs(*P.second, [&](DwarfCompileUnit &CU) {
519       CU.finishSubprogramDefinition(DISubprogram(P.first));
520     });
521 }
522 
523 
524 // Collect info for variables that were optimized out.
525 void DwarfDebug::collectDeadVariables() {
526   const Module *M = MMI->getModule();
527 
528   if (NamedMDNode *CU_Nodes = M->getNamedMetadata("llvm.dbg.cu")) {
529     for (MDNode *N : CU_Nodes->operands()) {
530       DICompileUnit TheCU(N);
531       // Construct subprogram DIE and add variables DIEs.
532       DwarfCompileUnit *SPCU =
533           static_cast<DwarfCompileUnit *>(CUMap.lookup(TheCU));
534       assert(SPCU && "Unable to find Compile Unit!");
535       DIArray Subprograms = TheCU.getSubprograms();
536       for (unsigned i = 0, e = Subprograms.getNumElements(); i != e; ++i) {
537         DISubprogram SP(Subprograms.getElement(i));
538         if (ProcessedSPNodes.count(SP) != 0)
539           continue;
540         SPCU->collectDeadVariables(SP);
541       }
542     }
543   }
544 }
545 
546 void DwarfDebug::finalizeModuleInfo() {
547   finishSubprogramDefinitions();
548 
549   finishVariableDefinitions();
550 
551   // Collect info for variables that were optimized out.
552   collectDeadVariables();
553 
554   // Handle anything that needs to be done on a per-unit basis after
555   // all other generation.
556   for (const auto &P : CUMap) {
557     auto &TheCU = *P.second;
558     // Emit DW_AT_containing_type attribute to connect types with their
559     // vtable holding type.
560     TheCU.constructContainingTypeDIEs();
561 
562     // Add CU specific attributes if we need to add any.
563     // If we're splitting the dwarf out now that we've got the entire
564     // CU then add the dwo id to it.
565     auto *SkCU = TheCU.getSkeleton();
566     if (useSplitDwarf()) {
567       // Emit a unique identifier for this CU.
568       uint64_t ID = DIEHash(Asm).computeCUSignature(TheCU.getUnitDie());
569       TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
570                     dwarf::DW_FORM_data8, ID);
571       SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
572                     dwarf::DW_FORM_data8, ID);
573 
574       // We don't keep track of which addresses are used in which CU so this
575       // is a bit pessimistic under LTO.
576       if (!AddrPool.isEmpty())
577         SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_addr_base,
578                               DwarfAddrSectionSym, DwarfAddrSectionSym);
579       if (!SkCU->getRangeLists().empty())
580         SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base,
581                               DwarfDebugRangeSectionSym,
582                               DwarfDebugRangeSectionSym);
583     }
584 
585     // If we have code split among multiple sections or non-contiguous
586     // ranges of code then emit a DW_AT_ranges attribute on the unit that will
587     // remain in the .o file, otherwise add a DW_AT_low_pc.
588     // FIXME: We should use ranges allow reordering of code ala
589     // .subsections_via_symbols in mach-o. This would mean turning on
590     // ranges for all subprogram DIEs for mach-o.
591     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
592     if (unsigned NumRanges = TheCU.getRanges().size()) {
593       if (NumRanges > 1)
594         // A DW_AT_low_pc attribute may also be specified in combination with
595         // DW_AT_ranges to specify the default base address for use in
596         // location lists (see Section 2.6.2) and range lists (see Section
597         // 2.17.3).
598         U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0);
599       else
600         TheCU.setBaseAddress(TheCU.getRanges().front().getStart());
601       U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges());
602     }
603   }
604 
605   // Compute DIE offsets and sizes.
606   InfoHolder.computeSizeAndOffsets();
607   if (useSplitDwarf())
608     SkeletonHolder.computeSizeAndOffsets();
609 }
610 
611 void DwarfDebug::endSections() {
612   // Filter labels by section.
613   for (const SymbolCU &SCU : ArangeLabels) {
614     if (SCU.Sym->isInSection()) {
615       // Make a note of this symbol and it's section.
616       const MCSection *Section = &SCU.Sym->getSection();
617       if (!Section->getKind().isMetadata())
618         SectionMap[Section].push_back(SCU);
619     } else {
620       // Some symbols (e.g. common/bss on mach-o) can have no section but still
621       // appear in the output. This sucks as we rely on sections to build
622       // arange spans. We can do it without, but it's icky.
623       SectionMap[nullptr].push_back(SCU);
624     }
625   }
626 
627   // Build a list of sections used.
628   std::vector<const MCSection *> Sections;
629   for (const auto &it : SectionMap) {
630     const MCSection *Section = it.first;
631     Sections.push_back(Section);
632   }
633 
634   // Sort the sections into order.
635   // This is only done to ensure consistent output order across different runs.
636   std::sort(Sections.begin(), Sections.end(), SectionSort);
637 
638   // Add terminating symbols for each section.
639   for (unsigned ID = 0, E = Sections.size(); ID != E; ID++) {
640     const MCSection *Section = Sections[ID];
641     MCSymbol *Sym = nullptr;
642 
643     if (Section) {
644       // We can't call MCSection::getLabelEndName, as it's only safe to do so
645       // if we know the section name up-front. For user-created sections, the
646       // resulting label may not be valid to use as a label. (section names can
647       // use a greater set of characters on some systems)
648       Sym = Asm->GetTempSymbol("debug_end", ID);
649       Asm->OutStreamer.SwitchSection(Section);
650       Asm->OutStreamer.EmitLabel(Sym);
651     }
652 
653     // Insert a final terminator.
654     SectionMap[Section].push_back(SymbolCU(nullptr, Sym));
655   }
656 }
657 
658 // Emit all Dwarf sections that should come after the content.
659 void DwarfDebug::endModule() {
660   assert(CurFn == nullptr);
661   assert(CurMI == nullptr);
662 
663   // If we aren't actually generating debug info (check beginModule -
664   // conditionalized on !DisableDebugInfoPrinting and the presence of the
665   // llvm.dbg.cu metadata node)
666   if (!DwarfInfoSectionSym)
667     return;
668 
669   // End any existing sections.
670   // TODO: Does this need to happen?
671   endSections();
672 
673   // Finalize the debug info for the module.
674   finalizeModuleInfo();
675 
676   emitDebugStr();
677 
678   // Emit all the DIEs into a debug info section.
679   emitDebugInfo();
680 
681   // Corresponding abbreviations into a abbrev section.
682   emitAbbreviations();
683 
684   // Emit info into a debug aranges section.
685   if (GenerateARangeSection)
686     emitDebugARanges();
687 
688   // Emit info into a debug ranges section.
689   emitDebugRanges();
690 
691   if (useSplitDwarf()) {
692     emitDebugStrDWO();
693     emitDebugInfoDWO();
694     emitDebugAbbrevDWO();
695     emitDebugLineDWO();
696     emitDebugLocDWO();
697     // Emit DWO addresses.
698     AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection());
699   } else
700     // Emit info into a debug loc section.
701     emitDebugLoc();
702 
703   // Emit info into the dwarf accelerator table sections.
704   if (useDwarfAccelTables()) {
705     emitAccelNames();
706     emitAccelObjC();
707     emitAccelNamespaces();
708     emitAccelTypes();
709   }
710 
711   // Emit the pubnames and pubtypes sections if requested.
712   if (HasDwarfPubSections) {
713     emitDebugPubNames(GenerateGnuPubSections);
714     emitDebugPubTypes(GenerateGnuPubSections);
715   }
716 
717   // clean up.
718   SPMap.clear();
719   AbstractVariables.clear();
720 }
721 
722 // Find abstract variable, if any, associated with Var.
723 DbgVariable *DwarfDebug::getExistingAbstractVariable(const DIVariable &DV,
724                                                      DIVariable &Cleansed) {
725   LLVMContext &Ctx = DV->getContext();
726   // More then one inlined variable corresponds to one abstract variable.
727   // FIXME: This duplication of variables when inlining should probably be
728   // removed. It's done to allow each DIVariable to describe its location
729   // because the DebugLoc on the dbg.value/declare isn't accurate. We should
730   // make it accurate then remove this duplication/cleansing stuff.
731   Cleansed = cleanseInlinedVariable(DV, Ctx);
732   auto I = AbstractVariables.find(Cleansed);
733   if (I != AbstractVariables.end())
734     return I->second.get();
735   return nullptr;
736 }
737 
738 DbgVariable *DwarfDebug::getExistingAbstractVariable(const DIVariable &DV) {
739   DIVariable Cleansed;
740   return getExistingAbstractVariable(DV, Cleansed);
741 }
742 
743 void DwarfDebug::createAbstractVariable(const DIVariable &Var,
744                                         LexicalScope *Scope) {
745   auto AbsDbgVariable = make_unique<DbgVariable>(Var, DIExpression(), this);
746   InfoHolder.addScopeVariable(Scope, AbsDbgVariable.get());
747   AbstractVariables[Var] = std::move(AbsDbgVariable);
748 }
749 
750 void DwarfDebug::ensureAbstractVariableIsCreated(const DIVariable &DV,
751                                                  const MDNode *ScopeNode) {
752   DIVariable Cleansed = DV;
753   if (getExistingAbstractVariable(DV, Cleansed))
754     return;
755 
756   createAbstractVariable(Cleansed, LScopes.getOrCreateAbstractScope(ScopeNode));
757 }
758 
759 void
760 DwarfDebug::ensureAbstractVariableIsCreatedIfScoped(const DIVariable &DV,
761                                                     const MDNode *ScopeNode) {
762   DIVariable Cleansed = DV;
763   if (getExistingAbstractVariable(DV, Cleansed))
764     return;
765 
766   if (LexicalScope *Scope = LScopes.findAbstractScope(ScopeNode))
767     createAbstractVariable(Cleansed, Scope);
768 }
769 
770 // Collect variable information from side table maintained by MMI.
771 void DwarfDebug::collectVariableInfoFromMMITable(
772     SmallPtrSetImpl<const MDNode *> &Processed) {
773   for (const auto &VI : MMI->getVariableDbgInfo()) {
774     if (!VI.Var)
775       continue;
776     Processed.insert(VI.Var);
777     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
778 
779     // If variable scope is not found then skip this variable.
780     if (!Scope)
781       continue;
782 
783     DIVariable DV(VI.Var);
784     DIExpression Expr(VI.Expr);
785     ensureAbstractVariableIsCreatedIfScoped(DV, Scope->getScopeNode());
786     auto RegVar = make_unique<DbgVariable>(DV, Expr, this, VI.Slot);
787     if (InfoHolder.addScopeVariable(Scope, RegVar.get()))
788       ConcreteVariables.push_back(std::move(RegVar));
789   }
790 }
791 
792 // Get .debug_loc entry for the instruction range starting at MI.
793 static DebugLocEntry::Value getDebugLocValue(const MachineInstr *MI) {
794   const MDNode *Expr = MI->getDebugExpression();
795   const MDNode *Var = MI->getDebugVariable();
796 
797   assert(MI->getNumOperands() == 4);
798   if (MI->getOperand(0).isReg()) {
799     MachineLocation MLoc;
800     // If the second operand is an immediate, this is a
801     // register-indirect address.
802     if (!MI->getOperand(1).isImm())
803       MLoc.set(MI->getOperand(0).getReg());
804     else
805       MLoc.set(MI->getOperand(0).getReg(), MI->getOperand(1).getImm());
806     return DebugLocEntry::Value(Var, Expr, MLoc);
807   }
808   if (MI->getOperand(0).isImm())
809     return DebugLocEntry::Value(Var, Expr, MI->getOperand(0).getImm());
810   if (MI->getOperand(0).isFPImm())
811     return DebugLocEntry::Value(Var, Expr, MI->getOperand(0).getFPImm());
812   if (MI->getOperand(0).isCImm())
813     return DebugLocEntry::Value(Var, Expr, MI->getOperand(0).getCImm());
814 
815   llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!");
816 }
817 
818 /// Determine whether two variable pieces overlap.
819 static bool piecesOverlap(DIExpression P1, DIExpression P2) {
820   if (!P1.isBitPiece() || !P2.isBitPiece())
821     return true;
822   unsigned l1 = P1.getBitPieceOffset();
823   unsigned l2 = P2.getBitPieceOffset();
824   unsigned r1 = l1 + P1.getBitPieceSize();
825   unsigned r2 = l2 + P2.getBitPieceSize();
826   // True where [l1,r1[ and [r1,r2[ overlap.
827   return (l1 < r2) && (l2 < r1);
828 }
829 
830 /// Build the location list for all DBG_VALUEs in the function that
831 /// describe the same variable.  If the ranges of several independent
832 /// pieces of the same variable overlap partially, split them up and
833 /// combine the ranges. The resulting DebugLocEntries are will have
834 /// strict monotonically increasing begin addresses and will never
835 /// overlap.
836 //
837 // Input:
838 //
839 //   Ranges History [var, loc, piece ofs size]
840 // 0 |      [x, (reg0, piece 0, 32)]
841 // 1 | |    [x, (reg1, piece 32, 32)] <- IsPieceOfPrevEntry
842 // 2 | |    ...
843 // 3   |    [clobber reg0]
844 // 4        [x, (mem, piece 0, 64)] <- overlapping with both previous pieces of x.
845 //
846 // Output:
847 //
848 // [0-1]    [x, (reg0, piece  0, 32)]
849 // [1-3]    [x, (reg0, piece  0, 32), (reg1, piece 32, 32)]
850 // [3-4]    [x, (reg1, piece 32, 32)]
851 // [4- ]    [x, (mem,  piece  0, 64)]
852 void
853 DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc,
854                               const DbgValueHistoryMap::InstrRanges &Ranges) {
855   SmallVector<DebugLocEntry::Value, 4> OpenRanges;
856 
857   for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) {
858     const MachineInstr *Begin = I->first;
859     const MachineInstr *End = I->second;
860     assert(Begin->isDebugValue() && "Invalid History entry");
861 
862     // Check if a variable is inaccessible in this range.
863     if (Begin->getNumOperands() > 1 &&
864         Begin->getOperand(0).isReg() && !Begin->getOperand(0).getReg()) {
865       OpenRanges.clear();
866       continue;
867     }
868 
869     // If this piece overlaps with any open ranges, truncate them.
870     DIExpression DIExpr = Begin->getDebugExpression();
871     auto Last = std::remove_if(OpenRanges.begin(), OpenRanges.end(),
872                                [&](DebugLocEntry::Value R) {
873       return piecesOverlap(DIExpr, R.getExpression());
874     });
875     OpenRanges.erase(Last, OpenRanges.end());
876 
877     const MCSymbol *StartLabel = getLabelBeforeInsn(Begin);
878     assert(StartLabel && "Forgot label before DBG_VALUE starting a range!");
879 
880     const MCSymbol *EndLabel;
881     if (End != nullptr)
882       EndLabel = getLabelAfterInsn(End);
883     else if (std::next(I) == Ranges.end())
884       EndLabel = FunctionEndSym;
885     else
886       EndLabel = getLabelBeforeInsn(std::next(I)->first);
887     assert(EndLabel && "Forgot label after instruction ending a range!");
888 
889     DEBUG(dbgs() << "DotDebugLoc: " << *Begin << "\n");
890 
891     auto Value = getDebugLocValue(Begin);
892     DebugLocEntry Loc(StartLabel, EndLabel, Value);
893     bool couldMerge = false;
894 
895     // If this is a piece, it may belong to the current DebugLocEntry.
896     if (DIExpr.isBitPiece()) {
897       // Add this value to the list of open ranges.
898       OpenRanges.push_back(Value);
899 
900       // Attempt to add the piece to the last entry.
901       if (!DebugLoc.empty())
902         if (DebugLoc.back().MergeValues(Loc))
903           couldMerge = true;
904     }
905 
906     if (!couldMerge) {
907       // Need to add a new DebugLocEntry. Add all values from still
908       // valid non-overlapping pieces.
909       if (OpenRanges.size())
910         Loc.addValues(OpenRanges);
911 
912       DebugLoc.push_back(std::move(Loc));
913     }
914 
915     // Attempt to coalesce the ranges of two otherwise identical
916     // DebugLocEntries.
917     auto CurEntry = DebugLoc.rbegin();
918     auto PrevEntry = std::next(CurEntry);
919     if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry))
920       DebugLoc.pop_back();
921 
922     DEBUG({
923       dbgs() << CurEntry->getValues().size() << " Values:\n";
924       for (auto Value : CurEntry->getValues()) {
925         Value.getVariable()->dump();
926         Value.getExpression()->dump();
927       }
928       dbgs() << "-----\n";
929     });
930   }
931 }
932 
933 
934 // Find variables for each lexical scope.
935 void
936 DwarfDebug::collectVariableInfo(DwarfCompileUnit &TheCU, DISubprogram SP,
937                                 SmallPtrSetImpl<const MDNode *> &Processed) {
938   // Grab the variable info that was squirreled away in the MMI side-table.
939   collectVariableInfoFromMMITable(Processed);
940 
941   for (const auto &I : DbgValues) {
942     DIVariable DV(I.first);
943     if (Processed.count(DV))
944       continue;
945 
946     // Instruction ranges, specifying where DV is accessible.
947     const auto &Ranges = I.second;
948     if (Ranges.empty())
949       continue;
950 
951     LexicalScope *Scope = nullptr;
952     if (MDNode *IA = DV.getInlinedAt()) {
953       DebugLoc DL = DebugLoc::getFromDILocation(IA);
954       Scope = LScopes.findInlinedScope(DebugLoc::get(
955           DL.getLine(), DL.getCol(), DV.getContext(), IA));
956     } else
957       Scope = LScopes.findLexicalScope(DV.getContext());
958     // If variable scope is not found then skip this variable.
959     if (!Scope)
960       continue;
961 
962     Processed.insert(DV);
963     const MachineInstr *MInsn = Ranges.front().first;
964     assert(MInsn->isDebugValue() && "History must begin with debug value");
965     ensureAbstractVariableIsCreatedIfScoped(DV, Scope->getScopeNode());
966     ConcreteVariables.push_back(make_unique<DbgVariable>(MInsn, this));
967     DbgVariable *RegVar = ConcreteVariables.back().get();
968     InfoHolder.addScopeVariable(Scope, RegVar);
969 
970     // Check if the first DBG_VALUE is valid for the rest of the function.
971     if (Ranges.size() == 1 && Ranges.front().second == nullptr)
972       continue;
973 
974     // Handle multiple DBG_VALUE instructions describing one variable.
975     RegVar->setDotDebugLocOffset(DotDebugLocEntries.size());
976 
977     DotDebugLocEntries.resize(DotDebugLocEntries.size() + 1);
978     DebugLocList &LocList = DotDebugLocEntries.back();
979     LocList.CU = &TheCU;
980     LocList.Label =
981         Asm->GetTempSymbol("debug_loc", DotDebugLocEntries.size() - 1);
982 
983     // Build the location list for this variable.
984     buildLocationList(LocList.List, Ranges);
985   }
986 
987   // Collect info for variables that were optimized out.
988   DIArray Variables = SP.getVariables();
989   for (unsigned i = 0, e = Variables.getNumElements(); i != e; ++i) {
990     DIVariable DV(Variables.getElement(i));
991     assert(DV.isVariable());
992     if (!Processed.insert(DV).second)
993       continue;
994     if (LexicalScope *Scope = LScopes.findLexicalScope(DV.getContext())) {
995       ensureAbstractVariableIsCreatedIfScoped(DV, Scope->getScopeNode());
996       DIExpression NoExpr;
997       ConcreteVariables.push_back(make_unique<DbgVariable>(DV, NoExpr, this));
998       InfoHolder.addScopeVariable(Scope, ConcreteVariables.back().get());
999     }
1000   }
1001 }
1002 
1003 // Return Label preceding the instruction.
1004 MCSymbol *DwarfDebug::getLabelBeforeInsn(const MachineInstr *MI) {
1005   MCSymbol *Label = LabelsBeforeInsn.lookup(MI);
1006   assert(Label && "Didn't insert label before instruction");
1007   return Label;
1008 }
1009 
1010 // Return Label immediately following the instruction.
1011 MCSymbol *DwarfDebug::getLabelAfterInsn(const MachineInstr *MI) {
1012   return LabelsAfterInsn.lookup(MI);
1013 }
1014 
1015 // Process beginning of an instruction.
1016 void DwarfDebug::beginInstruction(const MachineInstr *MI) {
1017   assert(CurMI == nullptr);
1018   CurMI = MI;
1019   // Check if source location changes, but ignore DBG_VALUE locations.
1020   if (!MI->isDebugValue()) {
1021     DebugLoc DL = MI->getDebugLoc();
1022     if (DL != PrevInstLoc && (!DL.isUnknown() || UnknownLocations)) {
1023       unsigned Flags = 0;
1024       PrevInstLoc = DL;
1025       if (DL == PrologEndLoc) {
1026         Flags |= DWARF2_FLAG_PROLOGUE_END;
1027         PrologEndLoc = DebugLoc();
1028         Flags |= DWARF2_FLAG_IS_STMT;
1029       }
1030       if (DL.getLine() !=
1031           Asm->OutStreamer.getContext().getCurrentDwarfLoc().getLine())
1032         Flags |= DWARF2_FLAG_IS_STMT;
1033 
1034       if (!DL.isUnknown()) {
1035         const MDNode *Scope = DL.getScope(Asm->MF->getFunction()->getContext());
1036         recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
1037       } else
1038         recordSourceLine(0, 0, nullptr, 0);
1039     }
1040   }
1041 
1042   // Insert labels where requested.
1043   DenseMap<const MachineInstr *, MCSymbol *>::iterator I =
1044       LabelsBeforeInsn.find(MI);
1045 
1046   // No label needed.
1047   if (I == LabelsBeforeInsn.end())
1048     return;
1049 
1050   // Label already assigned.
1051   if (I->second)
1052     return;
1053 
1054   if (!PrevLabel) {
1055     PrevLabel = MMI->getContext().CreateTempSymbol();
1056     Asm->OutStreamer.EmitLabel(PrevLabel);
1057   }
1058   I->second = PrevLabel;
1059 }
1060 
1061 // Process end of an instruction.
1062 void DwarfDebug::endInstruction() {
1063   assert(CurMI != nullptr);
1064   // Don't create a new label after DBG_VALUE instructions.
1065   // They don't generate code.
1066   if (!CurMI->isDebugValue())
1067     PrevLabel = nullptr;
1068 
1069   DenseMap<const MachineInstr *, MCSymbol *>::iterator I =
1070       LabelsAfterInsn.find(CurMI);
1071   CurMI = nullptr;
1072 
1073   // No label needed.
1074   if (I == LabelsAfterInsn.end())
1075     return;
1076 
1077   // Label already assigned.
1078   if (I->second)
1079     return;
1080 
1081   // We need a label after this instruction.
1082   if (!PrevLabel) {
1083     PrevLabel = MMI->getContext().CreateTempSymbol();
1084     Asm->OutStreamer.EmitLabel(PrevLabel);
1085   }
1086   I->second = PrevLabel;
1087 }
1088 
1089 // Each LexicalScope has first instruction and last instruction to mark
1090 // beginning and end of a scope respectively. Create an inverse map that list
1091 // scopes starts (and ends) with an instruction. One instruction may start (or
1092 // end) multiple scopes. Ignore scopes that are not reachable.
1093 void DwarfDebug::identifyScopeMarkers() {
1094   SmallVector<LexicalScope *, 4> WorkList;
1095   WorkList.push_back(LScopes.getCurrentFunctionScope());
1096   while (!WorkList.empty()) {
1097     LexicalScope *S = WorkList.pop_back_val();
1098 
1099     const SmallVectorImpl<LexicalScope *> &Children = S->getChildren();
1100     if (!Children.empty())
1101       WorkList.append(Children.begin(), Children.end());
1102 
1103     if (S->isAbstractScope())
1104       continue;
1105 
1106     for (const InsnRange &R : S->getRanges()) {
1107       assert(R.first && "InsnRange does not have first instruction!");
1108       assert(R.second && "InsnRange does not have second instruction!");
1109       requestLabelBeforeInsn(R.first);
1110       requestLabelAfterInsn(R.second);
1111     }
1112   }
1113 }
1114 
1115 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) {
1116   // First known non-DBG_VALUE and non-frame setup location marks
1117   // the beginning of the function body.
1118   for (const auto &MBB : *MF)
1119     for (const auto &MI : MBB)
1120       if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) &&
1121           !MI.getDebugLoc().isUnknown()) {
1122         // Did the target forget to set the FrameSetup flag for CFI insns?
1123         assert(!MI.isCFIInstruction() &&
1124                "First non-frame-setup instruction is a CFI instruction.");
1125         return MI.getDebugLoc();
1126       }
1127   return DebugLoc();
1128 }
1129 
1130 // Gather pre-function debug information.  Assumes being called immediately
1131 // after the function entry point has been emitted.
1132 void DwarfDebug::beginFunction(const MachineFunction *MF) {
1133   CurFn = MF;
1134 
1135   // If there's no debug info for the function we're not going to do anything.
1136   if (!MMI->hasDebugInfo())
1137     return;
1138 
1139   auto DI = FunctionDIs.find(MF->getFunction());
1140   if (DI == FunctionDIs.end())
1141     return;
1142 
1143   // Grab the lexical scopes for the function, if we don't have any of those
1144   // then we're not going to be able to do anything.
1145   LScopes.initialize(*MF);
1146   if (LScopes.empty())
1147     return;
1148 
1149   assert(DbgValues.empty() && "DbgValues map wasn't cleaned!");
1150 
1151   // Make sure that each lexical scope will have a begin/end label.
1152   identifyScopeMarkers();
1153 
1154   // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function
1155   // belongs to so that we add to the correct per-cu line table in the
1156   // non-asm case.
1157   LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
1158   // FnScope->getScopeNode() and DI->second should represent the same function,
1159   // though they may not be the same MDNode due to inline functions merged in
1160   // LTO where the debug info metadata still differs (either due to distinct
1161   // written differences - two versions of a linkonce_odr function
1162   // written/copied into two separate files, or some sub-optimal metadata that
1163   // isn't structurally identical (see: file path/name info from clang, which
1164   // includes the directory of the cpp file being built, even when the file name
1165   // is absolute (such as an <> lookup header)))
1166   DwarfCompileUnit *TheCU = SPMap.lookup(FnScope->getScopeNode());
1167   assert(TheCU && "Unable to find compile unit!");
1168   if (Asm->OutStreamer.hasRawTextSupport())
1169     // Use a single line table if we are generating assembly.
1170     Asm->OutStreamer.getContext().setDwarfCompileUnitID(0);
1171   else
1172     Asm->OutStreamer.getContext().setDwarfCompileUnitID(TheCU->getUniqueID());
1173 
1174   // Emit a label for the function so that we have a beginning address.
1175   FunctionBeginSym = Asm->GetTempSymbol("func_begin", Asm->getFunctionNumber());
1176   // Assumes in correct section after the entry point.
1177   Asm->OutStreamer.EmitLabel(FunctionBeginSym);
1178 
1179   // Calculate history for local variables.
1180   calculateDbgValueHistory(MF, Asm->TM.getSubtargetImpl()->getRegisterInfo(),
1181                            DbgValues);
1182 
1183   // Request labels for the full history.
1184   for (const auto &I : DbgValues) {
1185     const auto &Ranges = I.second;
1186     if (Ranges.empty())
1187       continue;
1188 
1189     // The first mention of a function argument gets the FunctionBeginSym
1190     // label, so arguments are visible when breaking at function entry.
1191     DIVariable DIVar(Ranges.front().first->getDebugVariable());
1192     if (DIVar.isVariable() && DIVar.getTag() == dwarf::DW_TAG_arg_variable &&
1193         getDISubprogram(DIVar.getContext()).describes(MF->getFunction())) {
1194       LabelsBeforeInsn[Ranges.front().first] = FunctionBeginSym;
1195       if (Ranges.front().first->getDebugExpression().isBitPiece()) {
1196         // Mark all non-overlapping initial pieces.
1197         for (auto I = Ranges.begin(); I != Ranges.end(); ++I) {
1198           DIExpression Piece = I->first->getDebugExpression();
1199           if (std::all_of(Ranges.begin(), I,
1200                           [&](DbgValueHistoryMap::InstrRange Pred) {
1201                 return !piecesOverlap(Piece, Pred.first->getDebugExpression());
1202               }))
1203             LabelsBeforeInsn[I->first] = FunctionBeginSym;
1204           else
1205             break;
1206         }
1207       }
1208     }
1209 
1210     for (const auto &Range : Ranges) {
1211       requestLabelBeforeInsn(Range.first);
1212       if (Range.second)
1213         requestLabelAfterInsn(Range.second);
1214     }
1215   }
1216 
1217   PrevInstLoc = DebugLoc();
1218   PrevLabel = FunctionBeginSym;
1219 
1220   // Record beginning of function.
1221   PrologEndLoc = findPrologueEndLoc(MF);
1222   if (!PrologEndLoc.isUnknown()) {
1223     DebugLoc FnStartDL =
1224         PrologEndLoc.getFnDebugLoc(MF->getFunction()->getContext());
1225 
1226     // We'd like to list the prologue as "not statements" but GDB behaves
1227     // poorly if we do that. Revisit this with caution/GDB (7.5+) testing.
1228     recordSourceLine(FnStartDL.getLine(), FnStartDL.getCol(),
1229                      FnStartDL.getScope(MF->getFunction()->getContext()),
1230                      DWARF2_FLAG_IS_STMT);
1231   }
1232 }
1233 
1234 // Gather and emit post-function debug information.
1235 void DwarfDebug::endFunction(const MachineFunction *MF) {
1236   assert(CurFn == MF &&
1237       "endFunction should be called with the same function as beginFunction");
1238 
1239   if (!MMI->hasDebugInfo() || LScopes.empty() ||
1240       !FunctionDIs.count(MF->getFunction())) {
1241     // If we don't have a lexical scope for this function then there will
1242     // be a hole in the range information. Keep note of this by setting the
1243     // previously used section to nullptr.
1244     PrevCU = nullptr;
1245     CurFn = nullptr;
1246     return;
1247   }
1248 
1249   // Define end label for subprogram.
1250   FunctionEndSym = Asm->GetTempSymbol("func_end", Asm->getFunctionNumber());
1251   // Assumes in correct section after the entry point.
1252   Asm->OutStreamer.EmitLabel(FunctionEndSym);
1253 
1254   // Set DwarfDwarfCompileUnitID in MCContext to default value.
1255   Asm->OutStreamer.getContext().setDwarfCompileUnitID(0);
1256 
1257   LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
1258   DISubprogram SP(FnScope->getScopeNode());
1259   DwarfCompileUnit &TheCU = *SPMap.lookup(SP);
1260 
1261   SmallPtrSet<const MDNode *, 16> ProcessedVars;
1262   collectVariableInfo(TheCU, SP, ProcessedVars);
1263 
1264   // Add the range of this function to the list of ranges for the CU.
1265   TheCU.addRange(RangeSpan(FunctionBeginSym, FunctionEndSym));
1266 
1267   // Under -gmlt, skip building the subprogram if there are no inlined
1268   // subroutines inside it.
1269   if (TheCU.getCUNode().getEmissionKind() == DIBuilder::LineTablesOnly &&
1270       LScopes.getAbstractScopesList().empty() && !IsDarwin) {
1271     assert(InfoHolder.getScopeVariables().empty());
1272     assert(DbgValues.empty());
1273     // FIXME: This wouldn't be true in LTO with a -g (with inlining) CU followed
1274     // by a -gmlt CU. Add a test and remove this assertion.
1275     assert(AbstractVariables.empty());
1276     LabelsBeforeInsn.clear();
1277     LabelsAfterInsn.clear();
1278     PrevLabel = nullptr;
1279     CurFn = nullptr;
1280     return;
1281   }
1282 
1283 #ifndef NDEBUG
1284   size_t NumAbstractScopes = LScopes.getAbstractScopesList().size();
1285 #endif
1286   // Construct abstract scopes.
1287   for (LexicalScope *AScope : LScopes.getAbstractScopesList()) {
1288     DISubprogram SP(AScope->getScopeNode());
1289     assert(SP.isSubprogram());
1290     // Collect info for variables that were optimized out.
1291     DIArray Variables = SP.getVariables();
1292     for (unsigned i = 0, e = Variables.getNumElements(); i != e; ++i) {
1293       DIVariable DV(Variables.getElement(i));
1294       assert(DV && DV.isVariable());
1295       if (!ProcessedVars.insert(DV).second)
1296         continue;
1297       ensureAbstractVariableIsCreated(DV, DV.getContext());
1298       assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes
1299              && "ensureAbstractVariableIsCreated inserted abstract scopes");
1300     }
1301     constructAbstractSubprogramScopeDIE(AScope);
1302   }
1303 
1304   TheCU.constructSubprogramScopeDIE(FnScope);
1305   if (auto *SkelCU = TheCU.getSkeleton())
1306     if (!LScopes.getAbstractScopesList().empty())
1307       SkelCU->constructSubprogramScopeDIE(FnScope);
1308 
1309   // Clear debug info
1310   // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the
1311   // DbgVariables except those that are also in AbstractVariables (since they
1312   // can be used cross-function)
1313   InfoHolder.getScopeVariables().clear();
1314   DbgValues.clear();
1315   LabelsBeforeInsn.clear();
1316   LabelsAfterInsn.clear();
1317   PrevLabel = nullptr;
1318   CurFn = nullptr;
1319 }
1320 
1321 // Register a source line with debug info. Returns the  unique label that was
1322 // emitted and which provides correspondence to the source line list.
1323 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S,
1324                                   unsigned Flags) {
1325   StringRef Fn;
1326   StringRef Dir;
1327   unsigned Src = 1;
1328   unsigned Discriminator = 0;
1329   if (DIScope Scope = DIScope(S)) {
1330     assert(Scope.isScope());
1331     Fn = Scope.getFilename();
1332     Dir = Scope.getDirectory();
1333     if (Scope.isLexicalBlockFile())
1334       Discriminator = DILexicalBlockFile(S).getDiscriminator();
1335 
1336     unsigned CUID = Asm->OutStreamer.getContext().getDwarfCompileUnitID();
1337     Src = static_cast<DwarfCompileUnit &>(*InfoHolder.getUnits()[CUID])
1338               .getOrCreateSourceID(Fn, Dir);
1339   }
1340   Asm->OutStreamer.EmitDwarfLocDirective(Src, Line, Col, Flags, 0,
1341                                          Discriminator, Fn);
1342 }
1343 
1344 //===----------------------------------------------------------------------===//
1345 // Emit Methods
1346 //===----------------------------------------------------------------------===//
1347 
1348 // Emit initial Dwarf sections with a label at the start of each one.
1349 void DwarfDebug::emitSectionLabels() {
1350   const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
1351 
1352   // Dwarf sections base addresses.
1353   DwarfInfoSectionSym =
1354       emitSectionSym(Asm, TLOF.getDwarfInfoSection(), "section_info");
1355   if (useSplitDwarf()) {
1356     DwarfInfoDWOSectionSym =
1357         emitSectionSym(Asm, TLOF.getDwarfInfoDWOSection(), "section_info_dwo");
1358     DwarfTypesDWOSectionSym =
1359         emitSectionSym(Asm, TLOF.getDwarfTypesDWOSection(), "section_types_dwo");
1360   }
1361   DwarfAbbrevSectionSym =
1362       emitSectionSym(Asm, TLOF.getDwarfAbbrevSection(), "section_abbrev");
1363   if (useSplitDwarf())
1364     DwarfAbbrevDWOSectionSym = emitSectionSym(
1365         Asm, TLOF.getDwarfAbbrevDWOSection(), "section_abbrev_dwo");
1366   if (GenerateARangeSection)
1367     emitSectionSym(Asm, TLOF.getDwarfARangesSection());
1368 
1369   DwarfLineSectionSym =
1370       emitSectionSym(Asm, TLOF.getDwarfLineSection(), "section_line");
1371   if (GenerateGnuPubSections) {
1372     DwarfGnuPubNamesSectionSym =
1373         emitSectionSym(Asm, TLOF.getDwarfGnuPubNamesSection());
1374     DwarfGnuPubTypesSectionSym =
1375         emitSectionSym(Asm, TLOF.getDwarfGnuPubTypesSection());
1376   } else if (HasDwarfPubSections) {
1377     emitSectionSym(Asm, TLOF.getDwarfPubNamesSection());
1378     emitSectionSym(Asm, TLOF.getDwarfPubTypesSection());
1379   }
1380 
1381   DwarfStrSectionSym =
1382       emitSectionSym(Asm, TLOF.getDwarfStrSection(), "info_string");
1383   if (useSplitDwarf()) {
1384     DwarfStrDWOSectionSym =
1385         emitSectionSym(Asm, TLOF.getDwarfStrDWOSection(), "skel_string");
1386     DwarfAddrSectionSym =
1387         emitSectionSym(Asm, TLOF.getDwarfAddrSection(), "addr_sec");
1388     DwarfDebugLocSectionSym =
1389         emitSectionSym(Asm, TLOF.getDwarfLocDWOSection(), "skel_loc");
1390   } else
1391     DwarfDebugLocSectionSym =
1392         emitSectionSym(Asm, TLOF.getDwarfLocSection(), "section_debug_loc");
1393   DwarfDebugRangeSectionSym =
1394       emitSectionSym(Asm, TLOF.getDwarfRangesSection(), "debug_range");
1395 }
1396 
1397 // Recursively emits a debug information entry.
1398 void DwarfDebug::emitDIE(DIE &Die) {
1399   // Get the abbreviation for this DIE.
1400   const DIEAbbrev &Abbrev = Die.getAbbrev();
1401 
1402   // Emit the code (index) for the abbreviation.
1403   if (Asm->isVerbose())
1404     Asm->OutStreamer.AddComment("Abbrev [" + Twine(Abbrev.getNumber()) +
1405                                 "] 0x" + Twine::utohexstr(Die.getOffset()) +
1406                                 ":0x" + Twine::utohexstr(Die.getSize()) + " " +
1407                                 dwarf::TagString(Abbrev.getTag()));
1408   Asm->EmitULEB128(Abbrev.getNumber());
1409 
1410   const SmallVectorImpl<DIEValue *> &Values = Die.getValues();
1411   const SmallVectorImpl<DIEAbbrevData> &AbbrevData = Abbrev.getData();
1412 
1413   // Emit the DIE attribute values.
1414   for (unsigned i = 0, N = Values.size(); i < N; ++i) {
1415     dwarf::Attribute Attr = AbbrevData[i].getAttribute();
1416     dwarf::Form Form = AbbrevData[i].getForm();
1417     assert(Form && "Too many attributes for DIE (check abbreviation)");
1418 
1419     if (Asm->isVerbose()) {
1420       Asm->OutStreamer.AddComment(dwarf::AttributeString(Attr));
1421       if (Attr == dwarf::DW_AT_accessibility)
1422         Asm->OutStreamer.AddComment(dwarf::AccessibilityString(
1423             cast<DIEInteger>(Values[i])->getValue()));
1424     }
1425 
1426     // Emit an attribute using the defined form.
1427     Values[i]->EmitValue(Asm, Form);
1428   }
1429 
1430   // Emit the DIE children if any.
1431   if (Abbrev.hasChildren()) {
1432     for (auto &Child : Die.getChildren())
1433       emitDIE(*Child);
1434 
1435     Asm->OutStreamer.AddComment("End Of Children Mark");
1436     Asm->EmitInt8(0);
1437   }
1438 }
1439 
1440 // Emit the debug info section.
1441 void DwarfDebug::emitDebugInfo() {
1442   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1443 
1444   Holder.emitUnits(DwarfAbbrevSectionSym);
1445 }
1446 
1447 // Emit the abbreviation section.
1448 void DwarfDebug::emitAbbreviations() {
1449   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1450 
1451   Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection());
1452 }
1453 
1454 // Emit the last address of the section and the end of the line matrix.
1455 void DwarfDebug::emitEndOfLineMatrix(unsigned SectionEnd) {
1456   // Define last address of section.
1457   Asm->OutStreamer.AddComment("Extended Op");
1458   Asm->EmitInt8(0);
1459 
1460   Asm->OutStreamer.AddComment("Op size");
1461   Asm->EmitInt8(Asm->getDataLayout().getPointerSize() + 1);
1462   Asm->OutStreamer.AddComment("DW_LNE_set_address");
1463   Asm->EmitInt8(dwarf::DW_LNE_set_address);
1464 
1465   Asm->OutStreamer.AddComment("Section end label");
1466 
1467   Asm->OutStreamer.EmitSymbolValue(
1468       Asm->GetTempSymbol("section_end", SectionEnd),
1469       Asm->getDataLayout().getPointerSize());
1470 
1471   // Mark end of matrix.
1472   Asm->OutStreamer.AddComment("DW_LNE_end_sequence");
1473   Asm->EmitInt8(0);
1474   Asm->EmitInt8(1);
1475   Asm->EmitInt8(1);
1476 }
1477 
1478 void DwarfDebug::emitAccel(DwarfAccelTable &Accel, const MCSection *Section,
1479                            StringRef TableName, StringRef SymName) {
1480   Accel.FinalizeTable(Asm, TableName);
1481   Asm->OutStreamer.SwitchSection(Section);
1482   auto *SectionBegin = Asm->GetTempSymbol(SymName);
1483   Asm->OutStreamer.EmitLabel(SectionBegin);
1484 
1485   // Emit the full data.
1486   Accel.Emit(Asm, SectionBegin, this, DwarfStrSectionSym);
1487 }
1488 
1489 // Emit visible names into a hashed accelerator table section.
1490 void DwarfDebug::emitAccelNames() {
1491   emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(),
1492             "Names", "names_begin");
1493 }
1494 
1495 // Emit objective C classes and categories into a hashed accelerator table
1496 // section.
1497 void DwarfDebug::emitAccelObjC() {
1498   emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(),
1499             "ObjC", "objc_begin");
1500 }
1501 
1502 // Emit namespace dies into a hashed accelerator table.
1503 void DwarfDebug::emitAccelNamespaces() {
1504   emitAccel(AccelNamespace,
1505             Asm->getObjFileLowering().getDwarfAccelNamespaceSection(),
1506             "namespac", "namespac_begin");
1507 }
1508 
1509 // Emit type dies into a hashed accelerator table.
1510 void DwarfDebug::emitAccelTypes() {
1511   emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(),
1512             "types", "types_begin");
1513 }
1514 
1515 // Public name handling.
1516 // The format for the various pubnames:
1517 //
1518 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU
1519 // for the DIE that is named.
1520 //
1521 // gnu pubnames - offset/index value/name tuples where the offset is the offset
1522 // into the CU and the index value is computed according to the type of value
1523 // for the DIE that is named.
1524 //
1525 // For type units the offset is the offset of the skeleton DIE. For split dwarf
1526 // it's the offset within the debug_info/debug_types dwo section, however, the
1527 // reference in the pubname header doesn't change.
1528 
1529 /// computeIndexValue - Compute the gdb index value for the DIE and CU.
1530 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU,
1531                                                         const DIE *Die) {
1532   dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC;
1533 
1534   // We could have a specification DIE that has our most of our knowledge,
1535   // look for that now.
1536   DIEValue *SpecVal = Die->findAttribute(dwarf::DW_AT_specification);
1537   if (SpecVal) {
1538     DIE &SpecDIE = cast<DIEEntry>(SpecVal)->getEntry();
1539     if (SpecDIE.findAttribute(dwarf::DW_AT_external))
1540       Linkage = dwarf::GIEL_EXTERNAL;
1541   } else if (Die->findAttribute(dwarf::DW_AT_external))
1542     Linkage = dwarf::GIEL_EXTERNAL;
1543 
1544   switch (Die->getTag()) {
1545   case dwarf::DW_TAG_class_type:
1546   case dwarf::DW_TAG_structure_type:
1547   case dwarf::DW_TAG_union_type:
1548   case dwarf::DW_TAG_enumeration_type:
1549     return dwarf::PubIndexEntryDescriptor(
1550         dwarf::GIEK_TYPE, CU->getLanguage() != dwarf::DW_LANG_C_plus_plus
1551                               ? dwarf::GIEL_STATIC
1552                               : dwarf::GIEL_EXTERNAL);
1553   case dwarf::DW_TAG_typedef:
1554   case dwarf::DW_TAG_base_type:
1555   case dwarf::DW_TAG_subrange_type:
1556     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC);
1557   case dwarf::DW_TAG_namespace:
1558     return dwarf::GIEK_TYPE;
1559   case dwarf::DW_TAG_subprogram:
1560     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage);
1561   case dwarf::DW_TAG_variable:
1562     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage);
1563   case dwarf::DW_TAG_enumerator:
1564     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE,
1565                                           dwarf::GIEL_STATIC);
1566   default:
1567     return dwarf::GIEK_NONE;
1568   }
1569 }
1570 
1571 /// emitDebugPubNames - Emit visible names into a debug pubnames section.
1572 ///
1573 void DwarfDebug::emitDebugPubNames(bool GnuStyle) {
1574   const MCSection *PSec =
1575       GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection()
1576                : Asm->getObjFileLowering().getDwarfPubNamesSection();
1577 
1578   emitDebugPubSection(GnuStyle, PSec, "Names",
1579                       &DwarfCompileUnit::getGlobalNames);
1580 }
1581 
1582 void DwarfDebug::emitDebugPubSection(
1583     bool GnuStyle, const MCSection *PSec, StringRef Name,
1584     const StringMap<const DIE *> &(DwarfCompileUnit::*Accessor)() const) {
1585   for (const auto &NU : CUMap) {
1586     DwarfCompileUnit *TheU = NU.second;
1587 
1588     const auto &Globals = (TheU->*Accessor)();
1589 
1590     if (Globals.empty())
1591       continue;
1592 
1593     if (auto *Skeleton = TheU->getSkeleton())
1594       TheU = Skeleton;
1595     unsigned ID = TheU->getUniqueID();
1596 
1597     // Start the dwarf pubnames section.
1598     Asm->OutStreamer.SwitchSection(PSec);
1599 
1600     // Emit the header.
1601     Asm->OutStreamer.AddComment("Length of Public " + Name + " Info");
1602     MCSymbol *BeginLabel = Asm->GetTempSymbol("pub" + Name + "_begin", ID);
1603     MCSymbol *EndLabel = Asm->GetTempSymbol("pub" + Name + "_end", ID);
1604     Asm->EmitLabelDifference(EndLabel, BeginLabel, 4);
1605 
1606     Asm->OutStreamer.EmitLabel(BeginLabel);
1607 
1608     Asm->OutStreamer.AddComment("DWARF Version");
1609     Asm->EmitInt16(dwarf::DW_PUBNAMES_VERSION);
1610 
1611     Asm->OutStreamer.AddComment("Offset of Compilation Unit Info");
1612     Asm->EmitSectionOffset(TheU->getLabelBegin(), TheU->getSectionSym());
1613 
1614     Asm->OutStreamer.AddComment("Compilation Unit Length");
1615     Asm->EmitInt32(TheU->getLength());
1616 
1617     // Emit the pubnames for this compilation unit.
1618     for (const auto &GI : Globals) {
1619       const char *Name = GI.getKeyData();
1620       const DIE *Entity = GI.second;
1621 
1622       Asm->OutStreamer.AddComment("DIE offset");
1623       Asm->EmitInt32(Entity->getOffset());
1624 
1625       if (GnuStyle) {
1626         dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity);
1627         Asm->OutStreamer.AddComment(
1628             Twine("Kind: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + ", " +
1629             dwarf::GDBIndexEntryLinkageString(Desc.Linkage));
1630         Asm->EmitInt8(Desc.toBits());
1631       }
1632 
1633       Asm->OutStreamer.AddComment("External Name");
1634       Asm->OutStreamer.EmitBytes(StringRef(Name, GI.getKeyLength() + 1));
1635     }
1636 
1637     Asm->OutStreamer.AddComment("End Mark");
1638     Asm->EmitInt32(0);
1639     Asm->OutStreamer.EmitLabel(EndLabel);
1640   }
1641 }
1642 
1643 void DwarfDebug::emitDebugPubTypes(bool GnuStyle) {
1644   const MCSection *PSec =
1645       GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection()
1646                : Asm->getObjFileLowering().getDwarfPubTypesSection();
1647 
1648   emitDebugPubSection(GnuStyle, PSec, "Types",
1649                       &DwarfCompileUnit::getGlobalTypes);
1650 }
1651 
1652 // Emit visible names into a debug str section.
1653 void DwarfDebug::emitDebugStr() {
1654   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1655   Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection());
1656 }
1657 
1658 /// Emits an optimal (=sorted) sequence of DW_OP_pieces.
1659 void DwarfDebug::emitLocPieces(ByteStreamer &Streamer,
1660                                const DITypeIdentifierMap &Map,
1661                                ArrayRef<DebugLocEntry::Value> Values) {
1662   assert(std::all_of(Values.begin(), Values.end(), [](DebugLocEntry::Value P) {
1663         return P.isBitPiece();
1664       }) && "all values are expected to be pieces");
1665   assert(std::is_sorted(Values.begin(), Values.end()) &&
1666          "pieces are expected to be sorted");
1667 
1668   unsigned Offset = 0;
1669   for (auto Piece : Values) {
1670     DIExpression Expr = Piece.getExpression();
1671     unsigned PieceOffset = Expr.getBitPieceOffset();
1672     unsigned PieceSize = Expr.getBitPieceSize();
1673     assert(Offset <= PieceOffset && "overlapping or duplicate pieces");
1674     if (Offset < PieceOffset) {
1675       // The DWARF spec seriously mandates pieces with no locations for gaps.
1676       Asm->EmitDwarfOpPiece(Streamer, PieceOffset-Offset);
1677       Offset += PieceOffset-Offset;
1678     }
1679     Offset += PieceSize;
1680 
1681 #ifndef NDEBUG
1682     DIVariable Var = Piece.getVariable();
1683     unsigned VarSize = Var.getSizeInBits(Map);
1684     assert(PieceSize+PieceOffset <= VarSize
1685            && "piece is larger than or outside of variable");
1686     assert(PieceSize != VarSize
1687            && "piece covers entire variable");
1688 #endif
1689     emitDebugLocValue(Streamer, Piece, PieceOffset);
1690   }
1691 }
1692 
1693 
1694 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer,
1695                                    const DebugLocEntry &Entry) {
1696   const DebugLocEntry::Value Value = Entry.getValues()[0];
1697   if (Value.isBitPiece())
1698     // Emit all pieces that belong to the same variable and range.
1699     return emitLocPieces(Streamer, TypeIdentifierMap, Entry.getValues());
1700 
1701   assert(Entry.getValues().size() == 1 && "only pieces may have >1 value");
1702   emitDebugLocValue(Streamer, Value);
1703 }
1704 
1705 void DwarfDebug::emitDebugLocValue(ByteStreamer &Streamer,
1706                                    const DebugLocEntry::Value &Value,
1707                                    unsigned PieceOffsetInBits) {
1708   DIVariable DV = Value.getVariable();
1709   DebugLocDwarfExpression DwarfExpr(*Asm, Streamer);
1710 
1711   // Regular entry.
1712   if (Value.isInt()) {
1713     DIBasicType BTy(resolve(DV.getType()));
1714     if (BTy.Verify() && (BTy.getEncoding() == dwarf::DW_ATE_signed ||
1715                          BTy.getEncoding() == dwarf::DW_ATE_signed_char))
1716       DwarfExpr.AddSignedConstant(Value.getInt());
1717     else
1718       DwarfExpr.AddUnsignedConstant(Value.getInt());
1719   } else if (Value.isLocation()) {
1720     MachineLocation Loc = Value.getLoc();
1721     DIExpression Expr = Value.getExpression();
1722     if (!Expr || (Expr.getNumElements() == 0))
1723       // Regular entry.
1724       Asm->EmitDwarfRegOp(Streamer, Loc);
1725     else {
1726       // Complex address entry.
1727       if (Loc.getOffset()) {
1728         DwarfExpr.AddMachineRegIndirect(Loc.getReg(), Loc.getOffset());
1729         DwarfExpr.AddExpression(Expr, PieceOffsetInBits);
1730       } else
1731         DwarfExpr.AddMachineRegExpression(Expr, Loc.getReg(),
1732                                           PieceOffsetInBits);
1733     }
1734   }
1735   // else ... ignore constant fp. There is not any good way to
1736   // to represent them here in dwarf.
1737   // FIXME: ^
1738 }
1739 
1740 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocEntry &Entry) {
1741   Asm->OutStreamer.AddComment("Loc expr size");
1742   MCSymbol *begin = Asm->OutStreamer.getContext().CreateTempSymbol();
1743   MCSymbol *end = Asm->OutStreamer.getContext().CreateTempSymbol();
1744   Asm->EmitLabelDifference(end, begin, 2);
1745   Asm->OutStreamer.EmitLabel(begin);
1746   // Emit the entry.
1747   APByteStreamer Streamer(*Asm);
1748   emitDebugLocEntry(Streamer, Entry);
1749   // Close the range.
1750   Asm->OutStreamer.EmitLabel(end);
1751 }
1752 
1753 // Emit locations into the debug loc section.
1754 void DwarfDebug::emitDebugLoc() {
1755   // Start the dwarf loc section.
1756   Asm->OutStreamer.SwitchSection(
1757       Asm->getObjFileLowering().getDwarfLocSection());
1758   unsigned char Size = Asm->getDataLayout().getPointerSize();
1759   for (const auto &DebugLoc : DotDebugLocEntries) {
1760     Asm->OutStreamer.EmitLabel(DebugLoc.Label);
1761     const DwarfCompileUnit *CU = DebugLoc.CU;
1762     for (const auto &Entry : DebugLoc.List) {
1763       // Set up the range. This range is relative to the entry point of the
1764       // compile unit. This is a hard coded 0 for low_pc when we're emitting
1765       // ranges, or the DW_AT_low_pc on the compile unit otherwise.
1766       if (auto *Base = CU->getBaseAddress()) {
1767         Asm->EmitLabelDifference(Entry.getBeginSym(), Base, Size);
1768         Asm->EmitLabelDifference(Entry.getEndSym(), Base, Size);
1769       } else {
1770         Asm->OutStreamer.EmitSymbolValue(Entry.getBeginSym(), Size);
1771         Asm->OutStreamer.EmitSymbolValue(Entry.getEndSym(), Size);
1772       }
1773 
1774       emitDebugLocEntryLocation(Entry);
1775     }
1776     Asm->OutStreamer.EmitIntValue(0, Size);
1777     Asm->OutStreamer.EmitIntValue(0, Size);
1778   }
1779 }
1780 
1781 void DwarfDebug::emitDebugLocDWO() {
1782   Asm->OutStreamer.SwitchSection(
1783       Asm->getObjFileLowering().getDwarfLocDWOSection());
1784   for (const auto &DebugLoc : DotDebugLocEntries) {
1785     Asm->OutStreamer.EmitLabel(DebugLoc.Label);
1786     for (const auto &Entry : DebugLoc.List) {
1787       // Just always use start_length for now - at least that's one address
1788       // rather than two. We could get fancier and try to, say, reuse an
1789       // address we know we've emitted elsewhere (the start of the function?
1790       // The start of the CU or CU subrange that encloses this range?)
1791       Asm->EmitInt8(dwarf::DW_LLE_start_length_entry);
1792       unsigned idx = AddrPool.getIndex(Entry.getBeginSym());
1793       Asm->EmitULEB128(idx);
1794       Asm->EmitLabelDifference(Entry.getEndSym(), Entry.getBeginSym(), 4);
1795 
1796       emitDebugLocEntryLocation(Entry);
1797     }
1798     Asm->EmitInt8(dwarf::DW_LLE_end_of_list_entry);
1799   }
1800 }
1801 
1802 struct ArangeSpan {
1803   const MCSymbol *Start, *End;
1804 };
1805 
1806 // Emit a debug aranges section, containing a CU lookup for any
1807 // address we can tie back to a CU.
1808 void DwarfDebug::emitDebugARanges() {
1809   // Start the dwarf aranges section.
1810   Asm->OutStreamer.SwitchSection(
1811       Asm->getObjFileLowering().getDwarfARangesSection());
1812 
1813   typedef DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> SpansType;
1814 
1815   SpansType Spans;
1816 
1817   // Build a list of sections used.
1818   std::vector<const MCSection *> Sections;
1819   for (const auto &it : SectionMap) {
1820     const MCSection *Section = it.first;
1821     Sections.push_back(Section);
1822   }
1823 
1824   // Sort the sections into order.
1825   // This is only done to ensure consistent output order across different runs.
1826   std::sort(Sections.begin(), Sections.end(), SectionSort);
1827 
1828   // Build a set of address spans, sorted by CU.
1829   for (const MCSection *Section : Sections) {
1830     SmallVector<SymbolCU, 8> &List = SectionMap[Section];
1831     if (List.size() < 2)
1832       continue;
1833 
1834     // If we have no section (e.g. common), just write out
1835     // individual spans for each symbol.
1836     if (!Section) {
1837       for (const SymbolCU &Cur : List) {
1838         ArangeSpan Span;
1839         Span.Start = Cur.Sym;
1840         Span.End = nullptr;
1841         if (Cur.CU)
1842           Spans[Cur.CU].push_back(Span);
1843       }
1844       continue;
1845     }
1846 
1847     // Sort the symbols by offset within the section.
1848     std::sort(List.begin(), List.end(),
1849               [&](const SymbolCU &A, const SymbolCU &B) {
1850       unsigned IA = A.Sym ? Asm->OutStreamer.GetSymbolOrder(A.Sym) : 0;
1851       unsigned IB = B.Sym ? Asm->OutStreamer.GetSymbolOrder(B.Sym) : 0;
1852 
1853       // Symbols with no order assigned should be placed at the end.
1854       // (e.g. section end labels)
1855       if (IA == 0)
1856         return false;
1857       if (IB == 0)
1858         return true;
1859       return IA < IB;
1860     });
1861 
1862     // Build spans between each label.
1863     const MCSymbol *StartSym = List[0].Sym;
1864     for (size_t n = 1, e = List.size(); n < e; n++) {
1865       const SymbolCU &Prev = List[n - 1];
1866       const SymbolCU &Cur = List[n];
1867 
1868       // Try and build the longest span we can within the same CU.
1869       if (Cur.CU != Prev.CU) {
1870         ArangeSpan Span;
1871         Span.Start = StartSym;
1872         Span.End = Cur.Sym;
1873         Spans[Prev.CU].push_back(Span);
1874         StartSym = Cur.Sym;
1875       }
1876     }
1877   }
1878 
1879   unsigned PtrSize = Asm->getDataLayout().getPointerSize();
1880 
1881   // Build a list of CUs used.
1882   std::vector<DwarfCompileUnit *> CUs;
1883   for (const auto &it : Spans) {
1884     DwarfCompileUnit *CU = it.first;
1885     CUs.push_back(CU);
1886   }
1887 
1888   // Sort the CU list (again, to ensure consistent output order).
1889   std::sort(CUs.begin(), CUs.end(), [](const DwarfUnit *A, const DwarfUnit *B) {
1890     return A->getUniqueID() < B->getUniqueID();
1891   });
1892 
1893   // Emit an arange table for each CU we used.
1894   for (DwarfCompileUnit *CU : CUs) {
1895     std::vector<ArangeSpan> &List = Spans[CU];
1896 
1897     // Describe the skeleton CU's offset and length, not the dwo file's.
1898     if (auto *Skel = CU->getSkeleton())
1899       CU = Skel;
1900 
1901     // Emit size of content not including length itself.
1902     unsigned ContentSize =
1903         sizeof(int16_t) + // DWARF ARange version number
1904         sizeof(int32_t) + // Offset of CU in the .debug_info section
1905         sizeof(int8_t) +  // Pointer Size (in bytes)
1906         sizeof(int8_t);   // Segment Size (in bytes)
1907 
1908     unsigned TupleSize = PtrSize * 2;
1909 
1910     // 7.20 in the Dwarf specs requires the table to be aligned to a tuple.
1911     unsigned Padding =
1912         OffsetToAlignment(sizeof(int32_t) + ContentSize, TupleSize);
1913 
1914     ContentSize += Padding;
1915     ContentSize += (List.size() + 1) * TupleSize;
1916 
1917     // For each compile unit, write the list of spans it covers.
1918     Asm->OutStreamer.AddComment("Length of ARange Set");
1919     Asm->EmitInt32(ContentSize);
1920     Asm->OutStreamer.AddComment("DWARF Arange version number");
1921     Asm->EmitInt16(dwarf::DW_ARANGES_VERSION);
1922     Asm->OutStreamer.AddComment("Offset Into Debug Info Section");
1923     Asm->EmitSectionOffset(CU->getLabelBegin(), CU->getSectionSym());
1924     Asm->OutStreamer.AddComment("Address Size (in bytes)");
1925     Asm->EmitInt8(PtrSize);
1926     Asm->OutStreamer.AddComment("Segment Size (in bytes)");
1927     Asm->EmitInt8(0);
1928 
1929     Asm->OutStreamer.EmitFill(Padding, 0xff);
1930 
1931     for (const ArangeSpan &Span : List) {
1932       Asm->EmitLabelReference(Span.Start, PtrSize);
1933 
1934       // Calculate the size as being from the span start to it's end.
1935       if (Span.End) {
1936         Asm->EmitLabelDifference(Span.End, Span.Start, PtrSize);
1937       } else {
1938         // For symbols without an end marker (e.g. common), we
1939         // write a single arange entry containing just that one symbol.
1940         uint64_t Size = SymSize[Span.Start];
1941         if (Size == 0)
1942           Size = 1;
1943 
1944         Asm->OutStreamer.EmitIntValue(Size, PtrSize);
1945       }
1946     }
1947 
1948     Asm->OutStreamer.AddComment("ARange terminator");
1949     Asm->OutStreamer.EmitIntValue(0, PtrSize);
1950     Asm->OutStreamer.EmitIntValue(0, PtrSize);
1951   }
1952 }
1953 
1954 // Emit visible names into a debug ranges section.
1955 void DwarfDebug::emitDebugRanges() {
1956   // Start the dwarf ranges section.
1957   Asm->OutStreamer.SwitchSection(
1958       Asm->getObjFileLowering().getDwarfRangesSection());
1959 
1960   // Size for our labels.
1961   unsigned char Size = Asm->getDataLayout().getPointerSize();
1962 
1963   // Grab the specific ranges for the compile units in the module.
1964   for (const auto &I : CUMap) {
1965     DwarfCompileUnit *TheCU = I.second;
1966 
1967     if (auto *Skel = TheCU->getSkeleton())
1968       TheCU = Skel;
1969 
1970     // Iterate over the misc ranges for the compile units in the module.
1971     for (const RangeSpanList &List : TheCU->getRangeLists()) {
1972       // Emit our symbol so we can find the beginning of the range.
1973       Asm->OutStreamer.EmitLabel(List.getSym());
1974 
1975       for (const RangeSpan &Range : List.getRanges()) {
1976         const MCSymbol *Begin = Range.getStart();
1977         const MCSymbol *End = Range.getEnd();
1978         assert(Begin && "Range without a begin symbol?");
1979         assert(End && "Range without an end symbol?");
1980         if (auto *Base = TheCU->getBaseAddress()) {
1981           Asm->EmitLabelDifference(Begin, Base, Size);
1982           Asm->EmitLabelDifference(End, Base, Size);
1983         } else {
1984           Asm->OutStreamer.EmitSymbolValue(Begin, Size);
1985           Asm->OutStreamer.EmitSymbolValue(End, Size);
1986         }
1987       }
1988 
1989       // And terminate the list with two 0 values.
1990       Asm->OutStreamer.EmitIntValue(0, Size);
1991       Asm->OutStreamer.EmitIntValue(0, Size);
1992     }
1993   }
1994 }
1995 
1996 // DWARF5 Experimental Separate Dwarf emitters.
1997 
1998 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die,
1999                                   std::unique_ptr<DwarfUnit> NewU) {
2000   NewU->addString(Die, dwarf::DW_AT_GNU_dwo_name,
2001                   U.getCUNode().getSplitDebugFilename());
2002 
2003   if (!CompilationDir.empty())
2004     NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
2005 
2006   addGnuPubAttributes(*NewU, Die);
2007 
2008   SkeletonHolder.addUnit(std::move(NewU));
2009 }
2010 
2011 // This DIE has the following attributes: DW_AT_comp_dir, DW_AT_stmt_list,
2012 // DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges, DW_AT_dwo_name, DW_AT_dwo_id,
2013 // DW_AT_addr_base, DW_AT_ranges_base.
2014 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) {
2015 
2016   auto OwnedUnit = make_unique<DwarfCompileUnit>(
2017       CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder);
2018   DwarfCompileUnit &NewCU = *OwnedUnit;
2019   NewCU.initSection(Asm->getObjFileLowering().getDwarfInfoSection(),
2020                     DwarfInfoSectionSym);
2021 
2022   NewCU.initStmtList(DwarfLineSectionSym);
2023 
2024   initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit));
2025 
2026   return NewCU;
2027 }
2028 
2029 // Emit the .debug_info.dwo section for separated dwarf. This contains the
2030 // compile units that would normally be in debug_info.
2031 void DwarfDebug::emitDebugInfoDWO() {
2032   assert(useSplitDwarf() && "No split dwarf debug info?");
2033   // Don't pass an abbrev symbol, using a constant zero instead so as not to
2034   // emit relocations into the dwo file.
2035   InfoHolder.emitUnits(/* AbbrevSymbol */ nullptr);
2036 }
2037 
2038 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the
2039 // abbreviations for the .debug_info.dwo section.
2040 void DwarfDebug::emitDebugAbbrevDWO() {
2041   assert(useSplitDwarf() && "No split dwarf?");
2042   InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection());
2043 }
2044 
2045 void DwarfDebug::emitDebugLineDWO() {
2046   assert(useSplitDwarf() && "No split dwarf?");
2047   Asm->OutStreamer.SwitchSection(
2048       Asm->getObjFileLowering().getDwarfLineDWOSection());
2049   SplitTypeUnitFileTable.Emit(Asm->OutStreamer);
2050 }
2051 
2052 // Emit the .debug_str.dwo section for separated dwarf. This contains the
2053 // string section and is identical in format to traditional .debug_str
2054 // sections.
2055 void DwarfDebug::emitDebugStrDWO() {
2056   assert(useSplitDwarf() && "No split dwarf?");
2057   const MCSection *OffSec =
2058       Asm->getObjFileLowering().getDwarfStrOffDWOSection();
2059   InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(),
2060                          OffSec);
2061 }
2062 
2063 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) {
2064   if (!useSplitDwarf())
2065     return nullptr;
2066   if (SingleCU)
2067     SplitTypeUnitFileTable.setCompilationDir(CU.getCUNode().getDirectory());
2068   return &SplitTypeUnitFileTable;
2069 }
2070 
2071 static uint64_t makeTypeSignature(StringRef Identifier) {
2072   MD5 Hash;
2073   Hash.update(Identifier);
2074   // ... take the least significant 8 bytes and return those. Our MD5
2075   // implementation always returns its results in little endian, swap bytes
2076   // appropriately.
2077   MD5::MD5Result Result;
2078   Hash.final(Result);
2079   return *reinterpret_cast<support::ulittle64_t *>(Result + 8);
2080 }
2081 
2082 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
2083                                       StringRef Identifier, DIE &RefDie,
2084                                       DICompositeType CTy) {
2085   // Fast path if we're building some type units and one has already used the
2086   // address pool we know we're going to throw away all this work anyway, so
2087   // don't bother building dependent types.
2088   if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed())
2089     return;
2090 
2091   const DwarfTypeUnit *&TU = DwarfTypeUnits[CTy];
2092   if (TU) {
2093     CU.addDIETypeSignature(RefDie, *TU);
2094     return;
2095   }
2096 
2097   bool TopLevelType = TypeUnitsUnderConstruction.empty();
2098   AddrPool.resetUsedFlag();
2099 
2100   auto OwnedUnit = make_unique<DwarfTypeUnit>(
2101       InfoHolder.getUnits().size() + TypeUnitsUnderConstruction.size(), CU, Asm,
2102       this, &InfoHolder, getDwoLineTable(CU));
2103   DwarfTypeUnit &NewTU = *OwnedUnit;
2104   DIE &UnitDie = NewTU.getUnitDie();
2105   TU = &NewTU;
2106   TypeUnitsUnderConstruction.push_back(
2107       std::make_pair(std::move(OwnedUnit), CTy));
2108 
2109   NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
2110                 CU.getLanguage());
2111 
2112   uint64_t Signature = makeTypeSignature(Identifier);
2113   NewTU.setTypeSignature(Signature);
2114 
2115   if (useSplitDwarf())
2116     NewTU.initSection(Asm->getObjFileLowering().getDwarfTypesDWOSection());
2117   else {
2118     CU.applyStmtList(UnitDie);
2119     NewTU.initSection(
2120         Asm->getObjFileLowering().getDwarfTypesSection(Signature));
2121   }
2122 
2123   NewTU.setType(NewTU.createTypeDIE(CTy));
2124 
2125   if (TopLevelType) {
2126     auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction);
2127     TypeUnitsUnderConstruction.clear();
2128 
2129     // Types referencing entries in the address table cannot be placed in type
2130     // units.
2131     if (AddrPool.hasBeenUsed()) {
2132 
2133       // Remove all the types built while building this type.
2134       // This is pessimistic as some of these types might not be dependent on
2135       // the type that used an address.
2136       for (const auto &TU : TypeUnitsToAdd)
2137         DwarfTypeUnits.erase(TU.second);
2138 
2139       // Construct this type in the CU directly.
2140       // This is inefficient because all the dependent types will be rebuilt
2141       // from scratch, including building them in type units, discovering that
2142       // they depend on addresses, throwing them out and rebuilding them.
2143       CU.constructTypeDIE(RefDie, CTy);
2144       return;
2145     }
2146 
2147     // If the type wasn't dependent on fission addresses, finish adding the type
2148     // and all its dependent types.
2149     for (auto &TU : TypeUnitsToAdd)
2150       InfoHolder.addUnit(std::move(TU.first));
2151   }
2152   CU.addDIETypeSignature(RefDie, NewTU);
2153 }
2154 
2155 // Accelerator table mutators - add each name along with its companion
2156 // DIE to the proper table while ensuring that the name that we're going
2157 // to reference is in the string table. We do this since the names we
2158 // add may not only be identical to the names in the DIE.
2159 void DwarfDebug::addAccelName(StringRef Name, const DIE &Die) {
2160   if (!useDwarfAccelTables())
2161     return;
2162   AccelNames.AddName(Name, InfoHolder.getStringPool().getSymbol(*Asm, Name),
2163                      &Die);
2164 }
2165 
2166 void DwarfDebug::addAccelObjC(StringRef Name, const DIE &Die) {
2167   if (!useDwarfAccelTables())
2168     return;
2169   AccelObjC.AddName(Name, InfoHolder.getStringPool().getSymbol(*Asm, Name),
2170                     &Die);
2171 }
2172 
2173 void DwarfDebug::addAccelNamespace(StringRef Name, const DIE &Die) {
2174   if (!useDwarfAccelTables())
2175     return;
2176   AccelNamespace.AddName(Name, InfoHolder.getStringPool().getSymbol(*Asm, Name),
2177                          &Die);
2178 }
2179 
2180 void DwarfDebug::addAccelType(StringRef Name, const DIE &Die, char Flags) {
2181   if (!useDwarfAccelTables())
2182     return;
2183   AccelTypes.AddName(Name, InfoHolder.getStringPool().getSymbol(*Asm, Name),
2184                      &Die);
2185 }
2186