1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing dwarf debug info into asm files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "DwarfDebug.h" 14 #include "ByteStreamer.h" 15 #include "DIEHash.h" 16 #include "DebugLocEntry.h" 17 #include "DebugLocStream.h" 18 #include "DwarfCompileUnit.h" 19 #include "DwarfExpression.h" 20 #include "DwarfFile.h" 21 #include "DwarfUnit.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/DenseSet.h" 25 #include "llvm/ADT/MapVector.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/BinaryFormat/Dwarf.h" 33 #include "llvm/CodeGen/AccelTable.h" 34 #include "llvm/CodeGen/AsmPrinter.h" 35 #include "llvm/CodeGen/DIE.h" 36 #include "llvm/CodeGen/LexicalScopes.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineInstr.h" 40 #include "llvm/CodeGen/MachineModuleInfo.h" 41 #include "llvm/CodeGen/MachineOperand.h" 42 #include "llvm/CodeGen/TargetInstrInfo.h" 43 #include "llvm/CodeGen/TargetLowering.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/DebugInfo/DWARF/DWARFExpression.h" 47 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GlobalVariable.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/MC/MCAsmInfo.h" 55 #include "llvm/MC/MCContext.h" 56 #include "llvm/MC/MCDwarf.h" 57 #include "llvm/MC/MCSection.h" 58 #include "llvm/MC/MCStreamer.h" 59 #include "llvm/MC/MCSymbol.h" 60 #include "llvm/MC/MCTargetOptions.h" 61 #include "llvm/MC/MachineLocation.h" 62 #include "llvm/MC/SectionKind.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MD5.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/Timer.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Target/TargetLoweringObjectFile.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include "llvm/Target/TargetOptions.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <iterator> 80 #include <string> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 #define DEBUG_TYPE "dwarfdebug" 87 88 STATISTIC(NumCSParams, "Number of dbg call site params created"); 89 90 static cl::opt<bool> 91 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, 92 cl::desc("Disable debug info printing")); 93 94 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier( 95 "use-dwarf-ranges-base-address-specifier", cl::Hidden, 96 cl::desc("Use base address specifiers in debug_ranges"), cl::init(false)); 97 98 static cl::opt<bool> GenerateARangeSection("generate-arange-section", 99 cl::Hidden, 100 cl::desc("Generate dwarf aranges"), 101 cl::init(false)); 102 103 static cl::opt<bool> 104 GenerateDwarfTypeUnits("generate-type-units", cl::Hidden, 105 cl::desc("Generate DWARF4 type units."), 106 cl::init(false)); 107 108 static cl::opt<bool> SplitDwarfCrossCuReferences( 109 "split-dwarf-cross-cu-references", cl::Hidden, 110 cl::desc("Enable cross-cu references in DWO files"), cl::init(false)); 111 112 enum DefaultOnOff { Default, Enable, Disable }; 113 114 static cl::opt<DefaultOnOff> UnknownLocations( 115 "use-unknown-locations", cl::Hidden, 116 cl::desc("Make an absence of debug location information explicit."), 117 cl::values(clEnumVal(Default, "At top of block or after label"), 118 clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")), 119 cl::init(Default)); 120 121 static cl::opt<AccelTableKind> AccelTables( 122 "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."), 123 cl::values(clEnumValN(AccelTableKind::Default, "Default", 124 "Default for platform"), 125 clEnumValN(AccelTableKind::None, "Disable", "Disabled."), 126 clEnumValN(AccelTableKind::Apple, "Apple", "Apple"), 127 clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")), 128 cl::init(AccelTableKind::Default)); 129 130 static cl::opt<DefaultOnOff> 131 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden, 132 cl::desc("Use inlined strings rather than string section."), 133 cl::values(clEnumVal(Default, "Default for platform"), 134 clEnumVal(Enable, "Enabled"), 135 clEnumVal(Disable, "Disabled")), 136 cl::init(Default)); 137 138 static cl::opt<bool> 139 NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden, 140 cl::desc("Disable emission .debug_ranges section."), 141 cl::init(false)); 142 143 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences( 144 "dwarf-sections-as-references", cl::Hidden, 145 cl::desc("Use sections+offset as references rather than labels."), 146 cl::values(clEnumVal(Default, "Default for platform"), 147 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 148 cl::init(Default)); 149 150 enum LinkageNameOption { 151 DefaultLinkageNames, 152 AllLinkageNames, 153 AbstractLinkageNames 154 }; 155 156 static cl::opt<LinkageNameOption> 157 DwarfLinkageNames("dwarf-linkage-names", cl::Hidden, 158 cl::desc("Which DWARF linkage-name attributes to emit."), 159 cl::values(clEnumValN(DefaultLinkageNames, "Default", 160 "Default for platform"), 161 clEnumValN(AllLinkageNames, "All", "All"), 162 clEnumValN(AbstractLinkageNames, "Abstract", 163 "Abstract subprograms")), 164 cl::init(DefaultLinkageNames)); 165 166 static cl::opt<unsigned> LocationAnalysisSizeLimit( 167 "singlevarlocation-input-bb-limit", 168 cl::desc("Maximum block size to analyze for single-location variables"), 169 cl::init(30000), cl::Hidden); 170 171 static const char *const DWARFGroupName = "dwarf"; 172 static const char *const DWARFGroupDescription = "DWARF Emission"; 173 static const char *const DbgTimerName = "writer"; 174 static const char *const DbgTimerDescription = "DWARF Debug Writer"; 175 static constexpr unsigned ULEB128PadSize = 4; 176 177 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) { 178 getActiveStreamer().EmitInt8( 179 Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op) 180 : dwarf::OperationEncodingString(Op)); 181 } 182 183 void DebugLocDwarfExpression::emitSigned(int64_t Value) { 184 getActiveStreamer().emitSLEB128(Value, Twine(Value)); 185 } 186 187 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) { 188 getActiveStreamer().emitULEB128(Value, Twine(Value)); 189 } 190 191 void DebugLocDwarfExpression::emitData1(uint8_t Value) { 192 getActiveStreamer().EmitInt8(Value, Twine(Value)); 193 } 194 195 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) { 196 assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit"); 197 getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize); 198 } 199 200 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI, 201 unsigned MachineReg) { 202 // This information is not available while emitting .debug_loc entries. 203 return false; 204 } 205 206 void DebugLocDwarfExpression::enableTemporaryBuffer() { 207 assert(!IsBuffering && "Already buffering?"); 208 if (!TmpBuf) 209 TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments); 210 IsBuffering = true; 211 } 212 213 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; } 214 215 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() { 216 return TmpBuf ? TmpBuf->Bytes.size() : 0; 217 } 218 219 void DebugLocDwarfExpression::commitTemporaryBuffer() { 220 if (!TmpBuf) 221 return; 222 for (auto Byte : enumerate(TmpBuf->Bytes)) { 223 const char *Comment = (Byte.index() < TmpBuf->Comments.size()) 224 ? TmpBuf->Comments[Byte.index()].c_str() 225 : ""; 226 OutBS.EmitInt8(Byte.value(), Comment); 227 } 228 TmpBuf->Bytes.clear(); 229 TmpBuf->Comments.clear(); 230 } 231 232 const DIType *DbgVariable::getType() const { 233 return getVariable()->getType(); 234 } 235 236 /// Get .debug_loc entry for the instruction range starting at MI. 237 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) { 238 const DIExpression *Expr = MI->getDebugExpression(); 239 assert(MI->getNumOperands() == 4); 240 if (MI->getDebugOperand(0).isReg()) { 241 auto RegOp = MI->getDebugOperand(0); 242 auto Op1 = MI->getDebugOffset(); 243 // If the second operand is an immediate, this is a 244 // register-indirect address. 245 assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset"); 246 MachineLocation MLoc(RegOp.getReg(), Op1.isImm()); 247 return DbgValueLoc(Expr, MLoc); 248 } 249 if (MI->getDebugOperand(0).isTargetIndex()) { 250 auto Op = MI->getDebugOperand(0); 251 return DbgValueLoc(Expr, 252 TargetIndexLocation(Op.getIndex(), Op.getOffset())); 253 } 254 if (MI->getDebugOperand(0).isImm()) 255 return DbgValueLoc(Expr, MI->getDebugOperand(0).getImm()); 256 if (MI->getDebugOperand(0).isFPImm()) 257 return DbgValueLoc(Expr, MI->getDebugOperand(0).getFPImm()); 258 if (MI->getDebugOperand(0).isCImm()) 259 return DbgValueLoc(Expr, MI->getDebugOperand(0).getCImm()); 260 261 llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!"); 262 } 263 264 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) { 265 assert(FrameIndexExprs.empty() && "Already initialized?"); 266 assert(!ValueLoc.get() && "Already initialized?"); 267 268 assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable"); 269 assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() && 270 "Wrong inlined-at"); 271 272 ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue)); 273 if (auto *E = DbgValue->getDebugExpression()) 274 if (E->getNumElements()) 275 FrameIndexExprs.push_back({0, E}); 276 } 277 278 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const { 279 if (FrameIndexExprs.size() == 1) 280 return FrameIndexExprs; 281 282 assert(llvm::all_of(FrameIndexExprs, 283 [](const FrameIndexExpr &A) { 284 return A.Expr->isFragment(); 285 }) && 286 "multiple FI expressions without DW_OP_LLVM_fragment"); 287 llvm::sort(FrameIndexExprs, 288 [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool { 289 return A.Expr->getFragmentInfo()->OffsetInBits < 290 B.Expr->getFragmentInfo()->OffsetInBits; 291 }); 292 293 return FrameIndexExprs; 294 } 295 296 void DbgVariable::addMMIEntry(const DbgVariable &V) { 297 assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry"); 298 assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry"); 299 assert(V.getVariable() == getVariable() && "conflicting variable"); 300 assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location"); 301 302 assert(!FrameIndexExprs.empty() && "Expected an MMI entry"); 303 assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry"); 304 305 // FIXME: This logic should not be necessary anymore, as we now have proper 306 // deduplication. However, without it, we currently run into the assertion 307 // below, which means that we are likely dealing with broken input, i.e. two 308 // non-fragment entries for the same variable at different frame indices. 309 if (FrameIndexExprs.size()) { 310 auto *Expr = FrameIndexExprs.back().Expr; 311 if (!Expr || !Expr->isFragment()) 312 return; 313 } 314 315 for (const auto &FIE : V.FrameIndexExprs) 316 // Ignore duplicate entries. 317 if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) { 318 return FIE.FI == Other.FI && FIE.Expr == Other.Expr; 319 })) 320 FrameIndexExprs.push_back(FIE); 321 322 assert((FrameIndexExprs.size() == 1 || 323 llvm::all_of(FrameIndexExprs, 324 [](FrameIndexExpr &FIE) { 325 return FIE.Expr && FIE.Expr->isFragment(); 326 })) && 327 "conflicting locations for variable"); 328 } 329 330 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion, 331 bool GenerateTypeUnits, 332 DebuggerKind Tuning, 333 const Triple &TT) { 334 // Honor an explicit request. 335 if (AccelTables != AccelTableKind::Default) 336 return AccelTables; 337 338 // Accelerator tables with type units are currently not supported. 339 if (GenerateTypeUnits) 340 return AccelTableKind::None; 341 342 // Accelerator tables get emitted if targetting DWARF v5 or LLDB. DWARF v5 343 // always implies debug_names. For lower standard versions we use apple 344 // accelerator tables on apple platforms and debug_names elsewhere. 345 if (DwarfVersion >= 5) 346 return AccelTableKind::Dwarf; 347 if (Tuning == DebuggerKind::LLDB) 348 return TT.isOSBinFormatMachO() ? AccelTableKind::Apple 349 : AccelTableKind::Dwarf; 350 return AccelTableKind::None; 351 } 352 353 DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M) 354 : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()), 355 InfoHolder(A, "info_string", DIEValueAllocator), 356 SkeletonHolder(A, "skel_string", DIEValueAllocator), 357 IsDarwin(A->TM.getTargetTriple().isOSDarwin()) { 358 const Triple &TT = Asm->TM.getTargetTriple(); 359 360 // Make sure we know our "debugger tuning". The target option takes 361 // precedence; fall back to triple-based defaults. 362 if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default) 363 DebuggerTuning = Asm->TM.Options.DebuggerTuning; 364 else if (IsDarwin) 365 DebuggerTuning = DebuggerKind::LLDB; 366 else if (TT.isPS4CPU()) 367 DebuggerTuning = DebuggerKind::SCE; 368 else 369 DebuggerTuning = DebuggerKind::GDB; 370 371 if (DwarfInlinedStrings == Default) 372 UseInlineStrings = TT.isNVPTX(); 373 else 374 UseInlineStrings = DwarfInlinedStrings == Enable; 375 376 UseLocSection = !TT.isNVPTX(); 377 378 HasAppleExtensionAttributes = tuneForLLDB(); 379 380 // Handle split DWARF. 381 HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty(); 382 383 // SCE defaults to linkage names only for abstract subprograms. 384 if (DwarfLinkageNames == DefaultLinkageNames) 385 UseAllLinkageNames = !tuneForSCE(); 386 else 387 UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames; 388 389 unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion; 390 unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber 391 : MMI->getModule()->getDwarfVersion(); 392 // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2. 393 DwarfVersion = 394 TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION); 395 396 UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX(); 397 398 // Use sections as references. Force for NVPTX. 399 if (DwarfSectionsAsReferences == Default) 400 UseSectionsAsReferences = TT.isNVPTX(); 401 else 402 UseSectionsAsReferences = DwarfSectionsAsReferences == Enable; 403 404 // Don't generate type units for unsupported object file formats. 405 GenerateTypeUnits = 406 A->TM.getTargetTriple().isOSBinFormatELF() && GenerateDwarfTypeUnits; 407 408 TheAccelTableKind = computeAccelTableKind( 409 DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple()); 410 411 // Work around a GDB bug. GDB doesn't support the standard opcode; 412 // SCE doesn't support GNU's; LLDB prefers the standard opcode, which 413 // is defined as of DWARF 3. 414 // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented 415 // https://sourceware.org/bugzilla/show_bug.cgi?id=11616 416 UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3; 417 418 // GDB does not fully support the DWARF 4 representation for bitfields. 419 UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB(); 420 421 // The DWARF v5 string offsets table has - possibly shared - contributions 422 // from each compile and type unit each preceded by a header. The string 423 // offsets table used by the pre-DWARF v5 split-DWARF implementation uses 424 // a monolithic string offsets table without any header. 425 UseSegmentedStringOffsetsTable = DwarfVersion >= 5; 426 427 // Emit call-site-param debug info for GDB and LLDB, if the target supports 428 // the debug entry values feature. It can also be enabled explicitly. 429 EmitDebugEntryValues = Asm->TM.Options.ShouldEmitDebugEntryValues(); 430 431 Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion); 432 } 433 434 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h. 435 DwarfDebug::~DwarfDebug() = default; 436 437 static bool isObjCClass(StringRef Name) { 438 return Name.startswith("+") || Name.startswith("-"); 439 } 440 441 static bool hasObjCCategory(StringRef Name) { 442 if (!isObjCClass(Name)) 443 return false; 444 445 return Name.find(") ") != StringRef::npos; 446 } 447 448 static void getObjCClassCategory(StringRef In, StringRef &Class, 449 StringRef &Category) { 450 if (!hasObjCCategory(In)) { 451 Class = In.slice(In.find('[') + 1, In.find(' ')); 452 Category = ""; 453 return; 454 } 455 456 Class = In.slice(In.find('[') + 1, In.find('(')); 457 Category = In.slice(In.find('[') + 1, In.find(' ')); 458 } 459 460 static StringRef getObjCMethodName(StringRef In) { 461 return In.slice(In.find(' ') + 1, In.find(']')); 462 } 463 464 // Add the various names to the Dwarf accelerator table names. 465 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU, 466 const DISubprogram *SP, DIE &Die) { 467 if (getAccelTableKind() != AccelTableKind::Apple && 468 CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None) 469 return; 470 471 if (!SP->isDefinition()) 472 return; 473 474 if (SP->getName() != "") 475 addAccelName(CU, SP->getName(), Die); 476 477 // If the linkage name is different than the name, go ahead and output that as 478 // well into the name table. Only do that if we are going to actually emit 479 // that name. 480 if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() && 481 (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP))) 482 addAccelName(CU, SP->getLinkageName(), Die); 483 484 // If this is an Objective-C selector name add it to the ObjC accelerator 485 // too. 486 if (isObjCClass(SP->getName())) { 487 StringRef Class, Category; 488 getObjCClassCategory(SP->getName(), Class, Category); 489 addAccelObjC(CU, Class, Die); 490 if (Category != "") 491 addAccelObjC(CU, Category, Die); 492 // Also add the base method name to the name table. 493 addAccelName(CU, getObjCMethodName(SP->getName()), Die); 494 } 495 } 496 497 /// Check whether we should create a DIE for the given Scope, return true 498 /// if we don't create a DIE (the corresponding DIE is null). 499 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) { 500 if (Scope->isAbstractScope()) 501 return false; 502 503 // We don't create a DIE if there is no Range. 504 const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges(); 505 if (Ranges.empty()) 506 return true; 507 508 if (Ranges.size() > 1) 509 return false; 510 511 // We don't create a DIE if we have a single Range and the end label 512 // is null. 513 return !getLabelAfterInsn(Ranges.front().second); 514 } 515 516 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) { 517 F(CU); 518 if (auto *SkelCU = CU.getSkeleton()) 519 if (CU.getCUNode()->getSplitDebugInlining()) 520 F(*SkelCU); 521 } 522 523 bool DwarfDebug::shareAcrossDWOCUs() const { 524 return SplitDwarfCrossCuReferences; 525 } 526 527 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU, 528 LexicalScope *Scope) { 529 assert(Scope && Scope->getScopeNode()); 530 assert(Scope->isAbstractScope()); 531 assert(!Scope->getInlinedAt()); 532 533 auto *SP = cast<DISubprogram>(Scope->getScopeNode()); 534 535 // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram 536 // was inlined from another compile unit. 537 if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining()) 538 // Avoid building the original CU if it won't be used 539 SrcCU.constructAbstractSubprogramScopeDIE(Scope); 540 else { 541 auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 542 if (auto *SkelCU = CU.getSkeleton()) { 543 (shareAcrossDWOCUs() ? CU : SrcCU) 544 .constructAbstractSubprogramScopeDIE(Scope); 545 if (CU.getCUNode()->getSplitDebugInlining()) 546 SkelCU->constructAbstractSubprogramScopeDIE(Scope); 547 } else 548 CU.constructAbstractSubprogramScopeDIE(Scope); 549 } 550 } 551 552 DIE &DwarfDebug::constructSubprogramDefinitionDIE(const DISubprogram *SP) { 553 DICompileUnit *Unit = SP->getUnit(); 554 assert(SP->isDefinition() && "Subprogram not a definition"); 555 assert(Unit && "Subprogram definition without parent unit"); 556 auto &CU = getOrCreateDwarfCompileUnit(Unit); 557 return *CU.getOrCreateSubprogramDIE(SP); 558 } 559 560 /// Represents a parameter whose call site value can be described by applying a 561 /// debug expression to a register in the forwarded register worklist. 562 struct FwdRegParamInfo { 563 /// The described parameter register. 564 unsigned ParamReg; 565 566 /// Debug expression that has been built up when walking through the 567 /// instruction chain that produces the parameter's value. 568 const DIExpression *Expr; 569 }; 570 571 /// Register worklist for finding call site values. 572 using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>; 573 574 /// Append the expression \p Addition to \p Original and return the result. 575 static const DIExpression *combineDIExpressions(const DIExpression *Original, 576 const DIExpression *Addition) { 577 std::vector<uint64_t> Elts = Addition->getElements().vec(); 578 // Avoid multiple DW_OP_stack_values. 579 if (Original->isImplicit() && Addition->isImplicit()) 580 erase_if(Elts, [](uint64_t Op) { return Op == dwarf::DW_OP_stack_value; }); 581 const DIExpression *CombinedExpr = 582 (Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original; 583 return CombinedExpr; 584 } 585 586 /// Emit call site parameter entries that are described by the given value and 587 /// debug expression. 588 template <typename ValT> 589 static void finishCallSiteParams(ValT Val, const DIExpression *Expr, 590 ArrayRef<FwdRegParamInfo> DescribedParams, 591 ParamSet &Params) { 592 for (auto Param : DescribedParams) { 593 bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0; 594 595 // TODO: Entry value operations can currently not be combined with any 596 // other expressions, so we can't emit call site entries in those cases. 597 if (ShouldCombineExpressions && Expr->isEntryValue()) 598 continue; 599 600 // If a parameter's call site value is produced by a chain of 601 // instructions we may have already created an expression for the 602 // parameter when walking through the instructions. Append that to the 603 // base expression. 604 const DIExpression *CombinedExpr = 605 ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr) 606 : Expr; 607 assert((!CombinedExpr || CombinedExpr->isValid()) && 608 "Combined debug expression is invalid"); 609 610 DbgValueLoc DbgLocVal(CombinedExpr, Val); 611 DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal); 612 Params.push_back(CSParm); 613 ++NumCSParams; 614 } 615 } 616 617 /// Add \p Reg to the worklist, if it's not already present, and mark that the 618 /// given parameter registers' values can (potentially) be described using 619 /// that register and an debug expression. 620 static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg, 621 const DIExpression *Expr, 622 ArrayRef<FwdRegParamInfo> ParamsToAdd) { 623 auto I = Worklist.insert({Reg, {}}); 624 auto &ParamsForFwdReg = I.first->second; 625 for (auto Param : ParamsToAdd) { 626 assert(none_of(ParamsForFwdReg, 627 [Param](const FwdRegParamInfo &D) { 628 return D.ParamReg == Param.ParamReg; 629 }) && 630 "Same parameter described twice by forwarding reg"); 631 632 // If a parameter's call site value is produced by a chain of 633 // instructions we may have already created an expression for the 634 // parameter when walking through the instructions. Append that to the 635 // new expression. 636 const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr); 637 ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr}); 638 } 639 } 640 641 /// Interpret values loaded into registers by \p CurMI. 642 static void interpretValues(const MachineInstr *CurMI, 643 FwdRegWorklist &ForwardedRegWorklist, 644 ParamSet &Params) { 645 646 const MachineFunction *MF = CurMI->getMF(); 647 const DIExpression *EmptyExpr = 648 DIExpression::get(MF->getFunction().getContext(), {}); 649 const auto &TRI = *MF->getSubtarget().getRegisterInfo(); 650 const auto &TII = *MF->getSubtarget().getInstrInfo(); 651 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 652 653 // If an instruction defines more than one item in the worklist, we may run 654 // into situations where a worklist register's value is (potentially) 655 // described by the previous value of another register that is also defined 656 // by that instruction. 657 // 658 // This can for example occur in cases like this: 659 // 660 // $r1 = mov 123 661 // $r0, $r1 = mvrr $r1, 456 662 // call @foo, $r0, $r1 663 // 664 // When describing $r1's value for the mvrr instruction, we need to make sure 665 // that we don't finalize an entry value for $r0, as that is dependent on the 666 // previous value of $r1 (123 rather than 456). 667 // 668 // In order to not have to distinguish between those cases when finalizing 669 // entry values, we simply postpone adding new parameter registers to the 670 // worklist, by first keeping them in this temporary container until the 671 // instruction has been handled. 672 FwdRegWorklist TmpWorklistItems; 673 674 // If the MI is an instruction defining one or more parameters' forwarding 675 // registers, add those defines. 676 auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI, 677 SmallSetVector<unsigned, 4> &Defs) { 678 if (MI.isDebugInstr()) 679 return; 680 681 for (const MachineOperand &MO : MI.operands()) { 682 if (MO.isReg() && MO.isDef() && 683 Register::isPhysicalRegister(MO.getReg())) { 684 for (auto FwdReg : ForwardedRegWorklist) 685 if (TRI.regsOverlap(FwdReg.first, MO.getReg())) 686 Defs.insert(FwdReg.first); 687 } 688 } 689 }; 690 691 // Set of worklist registers that are defined by this instruction. 692 SmallSetVector<unsigned, 4> FwdRegDefs; 693 694 getForwardingRegsDefinedByMI(*CurMI, FwdRegDefs); 695 if (FwdRegDefs.empty()) 696 return; 697 698 for (auto ParamFwdReg : FwdRegDefs) { 699 if (auto ParamValue = TII.describeLoadedValue(*CurMI, ParamFwdReg)) { 700 if (ParamValue->first.isImm()) { 701 int64_t Val = ParamValue->first.getImm(); 702 finishCallSiteParams(Val, ParamValue->second, 703 ForwardedRegWorklist[ParamFwdReg], Params); 704 } else if (ParamValue->first.isReg()) { 705 Register RegLoc = ParamValue->first.getReg(); 706 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 707 Register FP = TRI.getFrameRegister(*MF); 708 bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP); 709 if (TRI.isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) { 710 MachineLocation MLoc(RegLoc, /*IsIndirect=*/IsSPorFP); 711 finishCallSiteParams(MLoc, ParamValue->second, 712 ForwardedRegWorklist[ParamFwdReg], Params); 713 } else { 714 // ParamFwdReg was described by the non-callee saved register 715 // RegLoc. Mark that the call site values for the parameters are 716 // dependent on that register instead of ParamFwdReg. Since RegLoc 717 // may be a register that will be handled in this iteration, we 718 // postpone adding the items to the worklist, and instead keep them 719 // in a temporary container. 720 addToFwdRegWorklist(TmpWorklistItems, RegLoc, ParamValue->second, 721 ForwardedRegWorklist[ParamFwdReg]); 722 } 723 } 724 } 725 } 726 727 // Remove all registers that this instruction defines from the worklist. 728 for (auto ParamFwdReg : FwdRegDefs) 729 ForwardedRegWorklist.erase(ParamFwdReg); 730 731 // Now that we are done handling this instruction, add items from the 732 // temporary worklist to the real one. 733 for (auto New : TmpWorklistItems) 734 addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, New.second); 735 TmpWorklistItems.clear(); 736 } 737 738 static bool interpretNextInstr(const MachineInstr *CurMI, 739 FwdRegWorklist &ForwardedRegWorklist, 740 ParamSet &Params) { 741 // Skip bundle headers. 742 if (CurMI->isBundle()) 743 return true; 744 745 // If the next instruction is a call we can not interpret parameter's 746 // forwarding registers or we finished the interpretation of all 747 // parameters. 748 if (CurMI->isCall()) 749 return false; 750 751 if (ForwardedRegWorklist.empty()) 752 return false; 753 754 // Avoid NOP description. 755 if (CurMI->getNumOperands() == 0) 756 return true; 757 758 interpretValues(CurMI, ForwardedRegWorklist, Params); 759 760 return true; 761 } 762 763 /// Try to interpret values loaded into registers that forward parameters 764 /// for \p CallMI. Store parameters with interpreted value into \p Params. 765 static void collectCallSiteParameters(const MachineInstr *CallMI, 766 ParamSet &Params) { 767 const MachineFunction *MF = CallMI->getMF(); 768 auto CalleesMap = MF->getCallSitesInfo(); 769 auto CallFwdRegsInfo = CalleesMap.find(CallMI); 770 771 // There is no information for the call instruction. 772 if (CallFwdRegsInfo == CalleesMap.end()) 773 return; 774 775 const MachineBasicBlock *MBB = CallMI->getParent(); 776 777 // Skip the call instruction. 778 auto I = std::next(CallMI->getReverseIterator()); 779 780 FwdRegWorklist ForwardedRegWorklist; 781 782 const DIExpression *EmptyExpr = 783 DIExpression::get(MF->getFunction().getContext(), {}); 784 785 // Add all the forwarding registers into the ForwardedRegWorklist. 786 for (auto ArgReg : CallFwdRegsInfo->second) { 787 bool InsertedReg = 788 ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}}) 789 .second; 790 assert(InsertedReg && "Single register used to forward two arguments?"); 791 (void)InsertedReg; 792 } 793 794 // We erase, from the ForwardedRegWorklist, those forwarding registers for 795 // which we successfully describe a loaded value (by using 796 // the describeLoadedValue()). For those remaining arguments in the working 797 // list, for which we do not describe a loaded value by 798 // the describeLoadedValue(), we try to generate an entry value expression 799 // for their call site value description, if the call is within the entry MBB. 800 // TODO: Handle situations when call site parameter value can be described 801 // as the entry value within basic blocks other than the first one. 802 bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin(); 803 804 // Search for a loading value in forwarding registers inside call delay slot. 805 if (CallMI->hasDelaySlot()) { 806 auto Suc = std::next(CallMI->getIterator()); 807 // Only one-instruction delay slot is supported. 808 auto BundleEnd = llvm::getBundleEnd(CallMI->getIterator()); 809 (void)BundleEnd; 810 assert(std::next(Suc) == BundleEnd && 811 "More than one instruction in call delay slot"); 812 // Try to interpret value loaded by instruction. 813 if (!interpretNextInstr(&*Suc, ForwardedRegWorklist, Params)) 814 return; 815 } 816 817 // Search for a loading value in forwarding registers. 818 for (; I != MBB->rend(); ++I) { 819 // Try to interpret values loaded by instruction. 820 if (!interpretNextInstr(&*I, ForwardedRegWorklist, Params)) 821 return; 822 } 823 824 // Emit the call site parameter's value as an entry value. 825 if (ShouldTryEmitEntryVals) { 826 // Create an expression where the register's entry value is used. 827 DIExpression *EntryExpr = DIExpression::get( 828 MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1}); 829 for (auto RegEntry : ForwardedRegWorklist) { 830 MachineLocation MLoc(RegEntry.first); 831 finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params); 832 } 833 } 834 } 835 836 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP, 837 DwarfCompileUnit &CU, DIE &ScopeDIE, 838 const MachineFunction &MF) { 839 // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if 840 // the subprogram is required to have one. 841 if (!SP.areAllCallsDescribed() || !SP.isDefinition()) 842 return; 843 844 // Use DW_AT_call_all_calls to express that call site entries are present 845 // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls 846 // because one of its requirements is not met: call site entries for 847 // optimized-out calls are elided. 848 CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls)); 849 850 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 851 assert(TII && "TargetInstrInfo not found: cannot label tail calls"); 852 853 // Delay slot support check. 854 auto delaySlotSupported = [&](const MachineInstr &MI) { 855 if (!MI.isBundledWithSucc()) 856 return false; 857 auto Suc = std::next(MI.getIterator()); 858 auto CallInstrBundle = getBundleStart(MI.getIterator()); 859 (void)CallInstrBundle; 860 auto DelaySlotBundle = getBundleStart(Suc); 861 (void)DelaySlotBundle; 862 // Ensure that label after call is following delay slot instruction. 863 // Ex. CALL_INSTRUCTION { 864 // DELAY_SLOT_INSTRUCTION } 865 // LABEL_AFTER_CALL 866 assert(getLabelAfterInsn(&*CallInstrBundle) == 867 getLabelAfterInsn(&*DelaySlotBundle) && 868 "Call and its successor instruction don't have same label after."); 869 return true; 870 }; 871 872 // Emit call site entries for each call or tail call in the function. 873 for (const MachineBasicBlock &MBB : MF) { 874 for (const MachineInstr &MI : MBB.instrs()) { 875 // Bundles with call in them will pass the isCall() test below but do not 876 // have callee operand information so skip them here. Iterator will 877 // eventually reach the call MI. 878 if (MI.isBundle()) 879 continue; 880 881 // Skip instructions which aren't calls. Both calls and tail-calling jump 882 // instructions (e.g TAILJMPd64) are classified correctly here. 883 if (!MI.isCandidateForCallSiteEntry()) 884 continue; 885 886 // Skip instructions marked as frame setup, as they are not interesting to 887 // the user. 888 if (MI.getFlag(MachineInstr::FrameSetup)) 889 continue; 890 891 // Check if delay slot support is enabled. 892 if (MI.hasDelaySlot() && !delaySlotSupported(*&MI)) 893 return; 894 895 // If this is a direct call, find the callee's subprogram. 896 // In the case of an indirect call find the register that holds 897 // the callee. 898 const MachineOperand &CalleeOp = MI.getOperand(0); 899 if (!CalleeOp.isGlobal() && !CalleeOp.isReg()) 900 continue; 901 902 unsigned CallReg = 0; 903 DIE *CalleeDIE = nullptr; 904 const Function *CalleeDecl = nullptr; 905 if (CalleeOp.isReg()) { 906 CallReg = CalleeOp.getReg(); 907 if (!CallReg) 908 continue; 909 } else { 910 CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal()); 911 if (!CalleeDecl || !CalleeDecl->getSubprogram()) 912 continue; 913 const DISubprogram *CalleeSP = CalleeDecl->getSubprogram(); 914 915 if (CalleeSP->isDefinition()) { 916 // Ensure that a subprogram DIE for the callee is available in the 917 // appropriate CU. 918 CalleeDIE = &constructSubprogramDefinitionDIE(CalleeSP); 919 } else { 920 // Create the declaration DIE if it is missing. This is required to 921 // support compilation of old bitcode with an incomplete list of 922 // retained metadata. 923 CalleeDIE = CU.getOrCreateSubprogramDIE(CalleeSP); 924 } 925 assert(CalleeDIE && "Must have a DIE for the callee"); 926 } 927 928 // TODO: Omit call site entries for runtime calls (objc_msgSend, etc). 929 930 bool IsTail = TII->isTailCall(MI); 931 932 // If MI is in a bundle, the label was created after the bundle since 933 // EmitFunctionBody iterates over top-level MIs. Get that top-level MI 934 // to search for that label below. 935 const MachineInstr *TopLevelCallMI = 936 MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI; 937 938 // For non-tail calls, the return PC is needed to disambiguate paths in 939 // the call graph which could lead to some target function. For tail 940 // calls, no return PC information is needed, unless tuning for GDB in 941 // DWARF4 mode in which case we fake a return PC for compatibility. 942 const MCSymbol *PCAddr = 943 (!IsTail || CU.useGNUAnalogForDwarf5Feature()) 944 ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI)) 945 : nullptr; 946 947 // For tail calls, it's necessary to record the address of the branch 948 // instruction so that the debugger can show where the tail call occurred. 949 const MCSymbol *CallAddr = 950 IsTail ? getLabelBeforeInsn(TopLevelCallMI) : nullptr; 951 952 assert((IsTail || PCAddr) && "Non-tail call without return PC"); 953 954 LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> " 955 << (CalleeDecl ? CalleeDecl->getName() 956 : StringRef(MF.getSubtarget() 957 .getRegisterInfo() 958 ->getName(CallReg))) 959 << (IsTail ? " [IsTail]" : "") << "\n"); 960 961 DIE &CallSiteDIE = CU.constructCallSiteEntryDIE( 962 ScopeDIE, CalleeDIE, IsTail, PCAddr, CallAddr, CallReg); 963 964 // Optionally emit call-site-param debug info. 965 if (emitDebugEntryValues()) { 966 ParamSet Params; 967 // Try to interpret values of call site parameters. 968 collectCallSiteParameters(&MI, Params); 969 CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params); 970 } 971 } 972 } 973 } 974 975 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const { 976 if (!U.hasDwarfPubSections()) 977 return; 978 979 U.addFlag(D, dwarf::DW_AT_GNU_pubnames); 980 } 981 982 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit, 983 DwarfCompileUnit &NewCU) { 984 DIE &Die = NewCU.getUnitDie(); 985 StringRef FN = DIUnit->getFilename(); 986 987 StringRef Producer = DIUnit->getProducer(); 988 StringRef Flags = DIUnit->getFlags(); 989 if (!Flags.empty() && !useAppleExtensionAttributes()) { 990 std::string ProducerWithFlags = Producer.str() + " " + Flags.str(); 991 NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags); 992 } else 993 NewCU.addString(Die, dwarf::DW_AT_producer, Producer); 994 995 NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 996 DIUnit->getSourceLanguage()); 997 NewCU.addString(Die, dwarf::DW_AT_name, FN); 998 StringRef SysRoot = DIUnit->getSysRoot(); 999 if (!SysRoot.empty()) 1000 NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot); 1001 StringRef SDK = DIUnit->getSDK(); 1002 if (!SDK.empty()) 1003 NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK); 1004 1005 // Add DW_str_offsets_base to the unit DIE, except for split units. 1006 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 1007 NewCU.addStringOffsetsStart(); 1008 1009 if (!useSplitDwarf()) { 1010 NewCU.initStmtList(); 1011 1012 // If we're using split dwarf the compilation dir is going to be in the 1013 // skeleton CU and so we don't need to duplicate it here. 1014 if (!CompilationDir.empty()) 1015 NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 1016 addGnuPubAttributes(NewCU, Die); 1017 } 1018 1019 if (useAppleExtensionAttributes()) { 1020 if (DIUnit->isOptimized()) 1021 NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized); 1022 1023 StringRef Flags = DIUnit->getFlags(); 1024 if (!Flags.empty()) 1025 NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags); 1026 1027 if (unsigned RVer = DIUnit->getRuntimeVersion()) 1028 NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers, 1029 dwarf::DW_FORM_data1, RVer); 1030 } 1031 1032 if (DIUnit->getDWOId()) { 1033 // This CU is either a clang module DWO or a skeleton CU. 1034 NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, 1035 DIUnit->getDWOId()); 1036 if (!DIUnit->getSplitDebugFilename().empty()) { 1037 // This is a prefabricated skeleton CU. 1038 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1039 ? dwarf::DW_AT_dwo_name 1040 : dwarf::DW_AT_GNU_dwo_name; 1041 NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename()); 1042 } 1043 } 1044 } 1045 // Create new DwarfCompileUnit for the given metadata node with tag 1046 // DW_TAG_compile_unit. 1047 DwarfCompileUnit & 1048 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) { 1049 if (auto *CU = CUMap.lookup(DIUnit)) 1050 return *CU; 1051 1052 CompilationDir = DIUnit->getDirectory(); 1053 1054 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 1055 InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder); 1056 DwarfCompileUnit &NewCU = *OwnedUnit; 1057 InfoHolder.addUnit(std::move(OwnedUnit)); 1058 1059 for (auto *IE : DIUnit->getImportedEntities()) 1060 NewCU.addImportedEntity(IE); 1061 1062 // LTO with assembly output shares a single line table amongst multiple CUs. 1063 // To avoid the compilation directory being ambiguous, let the line table 1064 // explicitly describe the directory of all files, never relying on the 1065 // compilation directory. 1066 if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU) 1067 Asm->OutStreamer->emitDwarfFile0Directive( 1068 CompilationDir, DIUnit->getFilename(), getMD5AsBytes(DIUnit->getFile()), 1069 DIUnit->getSource(), NewCU.getUniqueID()); 1070 1071 if (useSplitDwarf()) { 1072 NewCU.setSkeleton(constructSkeletonCU(NewCU)); 1073 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection()); 1074 } else { 1075 finishUnitAttributes(DIUnit, NewCU); 1076 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 1077 } 1078 1079 CUMap.insert({DIUnit, &NewCU}); 1080 CUDieMap.insert({&NewCU.getUnitDie(), &NewCU}); 1081 return NewCU; 1082 } 1083 1084 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU, 1085 const DIImportedEntity *N) { 1086 if (isa<DILocalScope>(N->getScope())) 1087 return; 1088 if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope())) 1089 D->addChild(TheCU.constructImportedEntityDIE(N)); 1090 } 1091 1092 /// Sort and unique GVEs by comparing their fragment offset. 1093 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> & 1094 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) { 1095 llvm::sort( 1096 GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) { 1097 // Sort order: first null exprs, then exprs without fragment 1098 // info, then sort by fragment offset in bits. 1099 // FIXME: Come up with a more comprehensive comparator so 1100 // the sorting isn't non-deterministic, and so the following 1101 // std::unique call works correctly. 1102 if (!A.Expr || !B.Expr) 1103 return !!B.Expr; 1104 auto FragmentA = A.Expr->getFragmentInfo(); 1105 auto FragmentB = B.Expr->getFragmentInfo(); 1106 if (!FragmentA || !FragmentB) 1107 return !!FragmentB; 1108 return FragmentA->OffsetInBits < FragmentB->OffsetInBits; 1109 }); 1110 GVEs.erase(std::unique(GVEs.begin(), GVEs.end(), 1111 [](DwarfCompileUnit::GlobalExpr A, 1112 DwarfCompileUnit::GlobalExpr B) { 1113 return A.Expr == B.Expr; 1114 }), 1115 GVEs.end()); 1116 return GVEs; 1117 } 1118 1119 // Emit all Dwarf sections that should come prior to the content. Create 1120 // global DIEs and emit initial debug info sections. This is invoked by 1121 // the target AsmPrinter. 1122 void DwarfDebug::beginModule() { 1123 NamedRegionTimer T(DbgTimerName, DbgTimerDescription, DWARFGroupName, 1124 DWARFGroupDescription, TimePassesIsEnabled); 1125 if (DisableDebugInfoPrinting) { 1126 MMI->setDebugInfoAvailability(false); 1127 return; 1128 } 1129 1130 const Module *M = MMI->getModule(); 1131 1132 unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(), 1133 M->debug_compile_units_end()); 1134 // Tell MMI whether we have debug info. 1135 assert(MMI->hasDebugInfo() == (NumDebugCUs > 0) && 1136 "DebugInfoAvailabilty initialized unexpectedly"); 1137 SingleCU = NumDebugCUs == 1; 1138 DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>> 1139 GVMap; 1140 for (const GlobalVariable &Global : M->globals()) { 1141 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1142 Global.getDebugInfo(GVs); 1143 for (auto *GVE : GVs) 1144 GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()}); 1145 } 1146 1147 // Create the symbol that designates the start of the unit's contribution 1148 // to the string offsets table. In a split DWARF scenario, only the skeleton 1149 // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol). 1150 if (useSegmentedStringOffsetsTable()) 1151 (useSplitDwarf() ? SkeletonHolder : InfoHolder) 1152 .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base")); 1153 1154 1155 // Create the symbols that designates the start of the DWARF v5 range list 1156 // and locations list tables. They are located past the table headers. 1157 if (getDwarfVersion() >= 5) { 1158 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1159 Holder.setRnglistsTableBaseSym( 1160 Asm->createTempSymbol("rnglists_table_base")); 1161 1162 if (useSplitDwarf()) 1163 InfoHolder.setRnglistsTableBaseSym( 1164 Asm->createTempSymbol("rnglists_dwo_table_base")); 1165 } 1166 1167 // Create the symbol that points to the first entry following the debug 1168 // address table (.debug_addr) header. 1169 AddrPool.setLabel(Asm->createTempSymbol("addr_table_base")); 1170 DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base")); 1171 1172 for (DICompileUnit *CUNode : M->debug_compile_units()) { 1173 // FIXME: Move local imported entities into a list attached to the 1174 // subprogram, then this search won't be needed and a 1175 // getImportedEntities().empty() test should go below with the rest. 1176 bool HasNonLocalImportedEntities = llvm::any_of( 1177 CUNode->getImportedEntities(), [](const DIImportedEntity *IE) { 1178 return !isa<DILocalScope>(IE->getScope()); 1179 }); 1180 1181 if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() && 1182 CUNode->getRetainedTypes().empty() && 1183 CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty()) 1184 continue; 1185 1186 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode); 1187 1188 // Global Variables. 1189 for (auto *GVE : CUNode->getGlobalVariables()) { 1190 // Don't bother adding DIGlobalVariableExpressions listed in the CU if we 1191 // already know about the variable and it isn't adding a constant 1192 // expression. 1193 auto &GVMapEntry = GVMap[GVE->getVariable()]; 1194 auto *Expr = GVE->getExpression(); 1195 if (!GVMapEntry.size() || (Expr && Expr->isConstant())) 1196 GVMapEntry.push_back({nullptr, Expr}); 1197 } 1198 DenseSet<DIGlobalVariable *> Processed; 1199 for (auto *GVE : CUNode->getGlobalVariables()) { 1200 DIGlobalVariable *GV = GVE->getVariable(); 1201 if (Processed.insert(GV).second) 1202 CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV])); 1203 } 1204 1205 for (auto *Ty : CUNode->getEnumTypes()) { 1206 // The enum types array by design contains pointers to 1207 // MDNodes rather than DIRefs. Unique them here. 1208 CU.getOrCreateTypeDIE(cast<DIType>(Ty)); 1209 } 1210 for (auto *Ty : CUNode->getRetainedTypes()) { 1211 // The retained types array by design contains pointers to 1212 // MDNodes rather than DIRefs. Unique them here. 1213 if (DIType *RT = dyn_cast<DIType>(Ty)) 1214 // There is no point in force-emitting a forward declaration. 1215 CU.getOrCreateTypeDIE(RT); 1216 } 1217 // Emit imported_modules last so that the relevant context is already 1218 // available. 1219 for (auto *IE : CUNode->getImportedEntities()) 1220 constructAndAddImportedEntityDIE(CU, IE); 1221 } 1222 } 1223 1224 void DwarfDebug::finishEntityDefinitions() { 1225 for (const auto &Entity : ConcreteEntities) { 1226 DIE *Die = Entity->getDIE(); 1227 assert(Die); 1228 // FIXME: Consider the time-space tradeoff of just storing the unit pointer 1229 // in the ConcreteEntities list, rather than looking it up again here. 1230 // DIE::getUnit isn't simple - it walks parent pointers, etc. 1231 DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie()); 1232 assert(Unit); 1233 Unit->finishEntityDefinition(Entity.get()); 1234 } 1235 } 1236 1237 void DwarfDebug::finishSubprogramDefinitions() { 1238 for (const DISubprogram *SP : ProcessedSPNodes) { 1239 assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug); 1240 forBothCUs( 1241 getOrCreateDwarfCompileUnit(SP->getUnit()), 1242 [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); }); 1243 } 1244 } 1245 1246 void DwarfDebug::finalizeModuleInfo() { 1247 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); 1248 1249 finishSubprogramDefinitions(); 1250 1251 finishEntityDefinitions(); 1252 1253 // Include the DWO file name in the hash if there's more than one CU. 1254 // This handles ThinLTO's situation where imported CUs may very easily be 1255 // duplicate with the same CU partially imported into another ThinLTO unit. 1256 StringRef DWOName; 1257 if (CUMap.size() > 1) 1258 DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile; 1259 1260 // Handle anything that needs to be done on a per-unit basis after 1261 // all other generation. 1262 for (const auto &P : CUMap) { 1263 auto &TheCU = *P.second; 1264 if (TheCU.getCUNode()->isDebugDirectivesOnly()) 1265 continue; 1266 // Emit DW_AT_containing_type attribute to connect types with their 1267 // vtable holding type. 1268 TheCU.constructContainingTypeDIEs(); 1269 1270 // Add CU specific attributes if we need to add any. 1271 // If we're splitting the dwarf out now that we've got the entire 1272 // CU then add the dwo id to it. 1273 auto *SkCU = TheCU.getSkeleton(); 1274 1275 bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty(); 1276 1277 if (HasSplitUnit) { 1278 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1279 ? dwarf::DW_AT_dwo_name 1280 : dwarf::DW_AT_GNU_dwo_name; 1281 finishUnitAttributes(TheCU.getCUNode(), TheCU); 1282 TheCU.addString(TheCU.getUnitDie(), attrDWOName, 1283 Asm->TM.Options.MCOptions.SplitDwarfFile); 1284 SkCU->addString(SkCU->getUnitDie(), attrDWOName, 1285 Asm->TM.Options.MCOptions.SplitDwarfFile); 1286 // Emit a unique identifier for this CU. 1287 uint64_t ID = 1288 DIEHash(Asm).computeCUSignature(DWOName, TheCU.getUnitDie()); 1289 if (getDwarfVersion() >= 5) { 1290 TheCU.setDWOId(ID); 1291 SkCU->setDWOId(ID); 1292 } else { 1293 TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1294 dwarf::DW_FORM_data8, ID); 1295 SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1296 dwarf::DW_FORM_data8, ID); 1297 } 1298 1299 if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) { 1300 const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol(); 1301 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base, 1302 Sym, Sym); 1303 } 1304 } else if (SkCU) { 1305 finishUnitAttributes(SkCU->getCUNode(), *SkCU); 1306 } 1307 1308 // If we have code split among multiple sections or non-contiguous 1309 // ranges of code then emit a DW_AT_ranges attribute on the unit that will 1310 // remain in the .o file, otherwise add a DW_AT_low_pc. 1311 // FIXME: We should use ranges allow reordering of code ala 1312 // .subsections_via_symbols in mach-o. This would mean turning on 1313 // ranges for all subprogram DIEs for mach-o. 1314 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 1315 1316 if (unsigned NumRanges = TheCU.getRanges().size()) { 1317 if (NumRanges > 1 && useRangesSection()) 1318 // A DW_AT_low_pc attribute may also be specified in combination with 1319 // DW_AT_ranges to specify the default base address for use in 1320 // location lists (see Section 2.6.2) and range lists (see Section 1321 // 2.17.3). 1322 U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0); 1323 else 1324 U.setBaseAddress(TheCU.getRanges().front().Begin); 1325 U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges()); 1326 } 1327 1328 // We don't keep track of which addresses are used in which CU so this 1329 // is a bit pessimistic under LTO. 1330 if ((HasSplitUnit || getDwarfVersion() >= 5) && !AddrPool.isEmpty()) 1331 U.addAddrTableBase(); 1332 1333 if (getDwarfVersion() >= 5) { 1334 if (U.hasRangeLists()) 1335 U.addRnglistsBase(); 1336 1337 if (!DebugLocs.getLists().empty()) { 1338 if (!useSplitDwarf()) 1339 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base, 1340 DebugLocs.getSym(), 1341 TLOF.getDwarfLoclistsSection()->getBeginSymbol()); 1342 } 1343 } 1344 1345 auto *CUNode = cast<DICompileUnit>(P.first); 1346 // If compile Unit has macros, emit "DW_AT_macro_info/DW_AT_macros" 1347 // attribute. 1348 if (CUNode->getMacros()) { 1349 if (getDwarfVersion() >= 5) { 1350 if (useSplitDwarf()) 1351 TheCU.addSectionDelta( 1352 TheCU.getUnitDie(), dwarf::DW_AT_macros, U.getMacroLabelBegin(), 1353 TLOF.getDwarfMacroDWOSection()->getBeginSymbol()); 1354 else 1355 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macros, 1356 U.getMacroLabelBegin(), 1357 TLOF.getDwarfMacroSection()->getBeginSymbol()); 1358 } else { 1359 if (useSplitDwarf()) 1360 TheCU.addSectionDelta( 1361 TheCU.getUnitDie(), dwarf::DW_AT_macro_info, 1362 U.getMacroLabelBegin(), 1363 TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol()); 1364 else 1365 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info, 1366 U.getMacroLabelBegin(), 1367 TLOF.getDwarfMacinfoSection()->getBeginSymbol()); 1368 } 1369 } 1370 } 1371 1372 // Emit all frontend-produced Skeleton CUs, i.e., Clang modules. 1373 for (auto *CUNode : MMI->getModule()->debug_compile_units()) 1374 if (CUNode->getDWOId()) 1375 getOrCreateDwarfCompileUnit(CUNode); 1376 1377 // Compute DIE offsets and sizes. 1378 InfoHolder.computeSizeAndOffsets(); 1379 if (useSplitDwarf()) 1380 SkeletonHolder.computeSizeAndOffsets(); 1381 } 1382 1383 // Emit all Dwarf sections that should come after the content. 1384 void DwarfDebug::endModule() { 1385 assert(CurFn == nullptr); 1386 assert(CurMI == nullptr); 1387 1388 for (const auto &P : CUMap) { 1389 auto &CU = *P.second; 1390 CU.createBaseTypeDIEs(); 1391 } 1392 1393 // If we aren't actually generating debug info (check beginModule - 1394 // conditionalized on !DisableDebugInfoPrinting and the presence of the 1395 // llvm.dbg.cu metadata node) 1396 if (!MMI->hasDebugInfo()) 1397 return; 1398 1399 // Finalize the debug info for the module. 1400 finalizeModuleInfo(); 1401 1402 if (useSplitDwarf()) 1403 // Emit debug_loc.dwo/debug_loclists.dwo section. 1404 emitDebugLocDWO(); 1405 else 1406 // Emit debug_loc/debug_loclists section. 1407 emitDebugLoc(); 1408 1409 // Corresponding abbreviations into a abbrev section. 1410 emitAbbreviations(); 1411 1412 // Emit all the DIEs into a debug info section. 1413 emitDebugInfo(); 1414 1415 // Emit info into a debug aranges section. 1416 if (GenerateARangeSection) 1417 emitDebugARanges(); 1418 1419 // Emit info into a debug ranges section. 1420 emitDebugRanges(); 1421 1422 if (useSplitDwarf()) 1423 // Emit info into a debug macinfo.dwo section. 1424 emitDebugMacinfoDWO(); 1425 else 1426 // Emit info into a debug macinfo/macro section. 1427 emitDebugMacinfo(); 1428 1429 emitDebugStr(); 1430 1431 if (useSplitDwarf()) { 1432 emitDebugStrDWO(); 1433 emitDebugInfoDWO(); 1434 emitDebugAbbrevDWO(); 1435 emitDebugLineDWO(); 1436 emitDebugRangesDWO(); 1437 } 1438 1439 emitDebugAddr(); 1440 1441 // Emit info into the dwarf accelerator table sections. 1442 switch (getAccelTableKind()) { 1443 case AccelTableKind::Apple: 1444 emitAccelNames(); 1445 emitAccelObjC(); 1446 emitAccelNamespaces(); 1447 emitAccelTypes(); 1448 break; 1449 case AccelTableKind::Dwarf: 1450 emitAccelDebugNames(); 1451 break; 1452 case AccelTableKind::None: 1453 break; 1454 case AccelTableKind::Default: 1455 llvm_unreachable("Default should have already been resolved."); 1456 } 1457 1458 // Emit the pubnames and pubtypes sections if requested. 1459 emitDebugPubSections(); 1460 1461 // clean up. 1462 // FIXME: AbstractVariables.clear(); 1463 } 1464 1465 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU, 1466 const DINode *Node, 1467 const MDNode *ScopeNode) { 1468 if (CU.getExistingAbstractEntity(Node)) 1469 return; 1470 1471 CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope( 1472 cast<DILocalScope>(ScopeNode))); 1473 } 1474 1475 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU, 1476 const DINode *Node, const MDNode *ScopeNode) { 1477 if (CU.getExistingAbstractEntity(Node)) 1478 return; 1479 1480 if (LexicalScope *Scope = 1481 LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode))) 1482 CU.createAbstractEntity(Node, Scope); 1483 } 1484 1485 // Collect variable information from side table maintained by MF. 1486 void DwarfDebug::collectVariableInfoFromMFTable( 1487 DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) { 1488 SmallDenseMap<InlinedEntity, DbgVariable *> MFVars; 1489 LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n"); 1490 for (const auto &VI : Asm->MF->getVariableDbgInfo()) { 1491 if (!VI.Var) 1492 continue; 1493 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1494 "Expected inlined-at fields to agree"); 1495 1496 InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt()); 1497 Processed.insert(Var); 1498 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1499 1500 // If variable scope is not found then skip this variable. 1501 if (!Scope) { 1502 LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName() 1503 << ", no variable scope found\n"); 1504 continue; 1505 } 1506 1507 ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode()); 1508 auto RegVar = std::make_unique<DbgVariable>( 1509 cast<DILocalVariable>(Var.first), Var.second); 1510 RegVar->initializeMMI(VI.Expr, VI.Slot); 1511 LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName() 1512 << "\n"); 1513 if (DbgVariable *DbgVar = MFVars.lookup(Var)) 1514 DbgVar->addMMIEntry(*RegVar); 1515 else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) { 1516 MFVars.insert({Var, RegVar.get()}); 1517 ConcreteEntities.push_back(std::move(RegVar)); 1518 } 1519 } 1520 } 1521 1522 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its 1523 /// enclosing lexical scope. The check ensures there are no other instructions 1524 /// in the same lexical scope preceding the DBG_VALUE and that its range is 1525 /// either open or otherwise rolls off the end of the scope. 1526 static bool validThroughout(LexicalScopes &LScopes, 1527 const MachineInstr *DbgValue, 1528 const MachineInstr *RangeEnd) { 1529 assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location"); 1530 auto MBB = DbgValue->getParent(); 1531 auto DL = DbgValue->getDebugLoc(); 1532 auto *LScope = LScopes.findLexicalScope(DL); 1533 // Scope doesn't exist; this is a dead DBG_VALUE. 1534 if (!LScope) 1535 return false; 1536 auto &LSRange = LScope->getRanges(); 1537 if (LSRange.size() == 0) 1538 return false; 1539 1540 1541 // Determine if the DBG_VALUE is valid at the beginning of its lexical block. 1542 const MachineInstr *LScopeBegin = LSRange.front().first; 1543 // Early exit if the lexical scope begins outside of the current block. 1544 if (LScopeBegin->getParent() != MBB) 1545 return false; 1546 1547 // If there are instructions belonging to our scope in another block, and 1548 // we're not a constant (see DWARF2 comment below), then we can't be 1549 // validThroughout. 1550 const MachineInstr *LScopeEnd = LSRange.back().second; 1551 if (RangeEnd && LScopeEnd->getParent() != MBB) 1552 return false; 1553 1554 MachineBasicBlock::const_reverse_iterator Pred(DbgValue); 1555 for (++Pred; Pred != MBB->rend(); ++Pred) { 1556 if (Pred->getFlag(MachineInstr::FrameSetup)) 1557 break; 1558 auto PredDL = Pred->getDebugLoc(); 1559 if (!PredDL || Pred->isMetaInstruction()) 1560 continue; 1561 // Check whether the instruction preceding the DBG_VALUE is in the same 1562 // (sub)scope as the DBG_VALUE. 1563 if (DL->getScope() == PredDL->getScope()) 1564 return false; 1565 auto *PredScope = LScopes.findLexicalScope(PredDL); 1566 if (!PredScope || LScope->dominates(PredScope)) 1567 return false; 1568 } 1569 1570 // If the range of the DBG_VALUE is open-ended, report success. 1571 if (!RangeEnd) 1572 return true; 1573 1574 // Single, constant DBG_VALUEs in the prologue are promoted to be live 1575 // throughout the function. This is a hack, presumably for DWARF v2 and not 1576 // necessarily correct. It would be much better to use a dbg.declare instead 1577 // if we know the constant is live throughout the scope. 1578 if (DbgValue->getDebugOperand(0).isImm() && MBB->pred_empty()) 1579 return true; 1580 1581 // Now check for situations where an "open-ended" DBG_VALUE isn't enough to 1582 // determine eligibility for a single location, e.g. nested scopes, inlined 1583 // functions. 1584 // FIXME: For now we just handle a simple (but common) case where the scope 1585 // is contained in MBB. We could be smarter here. 1586 // 1587 // At this point we know that our scope ends in MBB. So, if RangeEnd exists 1588 // outside of the block we can ignore it; the location is just leaking outside 1589 // its scope. 1590 assert(LScopeEnd->getParent() == MBB && "Scope ends outside MBB"); 1591 if (RangeEnd->getParent() != DbgValue->getParent()) 1592 return true; 1593 1594 // The location range and variable's enclosing scope are both contained within 1595 // MBB, test if location terminates before end of scope. 1596 for (auto I = RangeEnd->getIterator(); I != MBB->end(); ++I) 1597 if (&*I == LScopeEnd) 1598 return false; 1599 1600 // There's a single location which starts at the scope start, and ends at or 1601 // after the scope end. 1602 return true; 1603 } 1604 1605 /// Build the location list for all DBG_VALUEs in the function that 1606 /// describe the same variable. The resulting DebugLocEntries will have 1607 /// strict monotonically increasing begin addresses and will never 1608 /// overlap. If the resulting list has only one entry that is valid 1609 /// throughout variable's scope return true. 1610 // 1611 // See the definition of DbgValueHistoryMap::Entry for an explanation of the 1612 // different kinds of history map entries. One thing to be aware of is that if 1613 // a debug value is ended by another entry (rather than being valid until the 1614 // end of the function), that entry's instruction may or may not be included in 1615 // the range, depending on if the entry is a clobbering entry (it has an 1616 // instruction that clobbers one or more preceding locations), or if it is an 1617 // (overlapping) debug value entry. This distinction can be seen in the example 1618 // below. The first debug value is ended by the clobbering entry 2, and the 1619 // second and third debug values are ended by the overlapping debug value entry 1620 // 4. 1621 // 1622 // Input: 1623 // 1624 // History map entries [type, end index, mi] 1625 // 1626 // 0 | [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)] 1627 // 1 | | [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)] 1628 // 2 | | [Clobber, $reg0 = [...], -, -] 1629 // 3 | | [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)] 1630 // 4 [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)] 1631 // 1632 // Output [start, end) [Value...]: 1633 // 1634 // [0-1) [(reg0, fragment 0, 32)] 1635 // [1-3) [(reg0, fragment 0, 32), (reg1, fragment 32, 32)] 1636 // [3-4) [(reg1, fragment 32, 32), (123, fragment 64, 32)] 1637 // [4-) [(@g, fragment 0, 96)] 1638 bool DwarfDebug::buildLocationList( 1639 SmallVectorImpl<DebugLocEntry> &DebugLoc, 1640 const DbgValueHistoryMap::Entries &Entries, 1641 DenseSet<const MachineBasicBlock *> &VeryLargeBlocks) { 1642 using OpenRange = 1643 std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>; 1644 SmallVector<OpenRange, 4> OpenRanges; 1645 bool isSafeForSingleLocation = true; 1646 const MachineInstr *StartDebugMI = nullptr; 1647 const MachineInstr *EndMI = nullptr; 1648 1649 for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) { 1650 const MachineInstr *Instr = EI->getInstr(); 1651 1652 // Remove all values that are no longer live. 1653 size_t Index = std::distance(EB, EI); 1654 auto Last = 1655 remove_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; }); 1656 OpenRanges.erase(Last, OpenRanges.end()); 1657 1658 // If we are dealing with a clobbering entry, this iteration will result in 1659 // a location list entry starting after the clobbering instruction. 1660 const MCSymbol *StartLabel = 1661 EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr); 1662 assert(StartLabel && 1663 "Forgot label before/after instruction starting a range!"); 1664 1665 const MCSymbol *EndLabel; 1666 if (std::next(EI) == Entries.end()) { 1667 const MachineBasicBlock &EndMBB = Asm->MF->back(); 1668 EndLabel = Asm->MBBSectionRanges[EndMBB.getSectionIDNum()].EndLabel; 1669 if (EI->isClobber()) 1670 EndMI = EI->getInstr(); 1671 } 1672 else if (std::next(EI)->isClobber()) 1673 EndLabel = getLabelAfterInsn(std::next(EI)->getInstr()); 1674 else 1675 EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr()); 1676 assert(EndLabel && "Forgot label after instruction ending a range!"); 1677 1678 if (EI->isDbgValue()) 1679 LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n"); 1680 1681 // If this history map entry has a debug value, add that to the list of 1682 // open ranges and check if its location is valid for a single value 1683 // location. 1684 if (EI->isDbgValue()) { 1685 // Do not add undef debug values, as they are redundant information in 1686 // the location list entries. An undef debug results in an empty location 1687 // description. If there are any non-undef fragments then padding pieces 1688 // with empty location descriptions will automatically be inserted, and if 1689 // all fragments are undef then the whole location list entry is 1690 // redundant. 1691 if (!Instr->isUndefDebugValue()) { 1692 auto Value = getDebugLocValue(Instr); 1693 OpenRanges.emplace_back(EI->getEndIndex(), Value); 1694 1695 // TODO: Add support for single value fragment locations. 1696 if (Instr->getDebugExpression()->isFragment()) 1697 isSafeForSingleLocation = false; 1698 1699 if (!StartDebugMI) 1700 StartDebugMI = Instr; 1701 } else { 1702 isSafeForSingleLocation = false; 1703 } 1704 } 1705 1706 // Location list entries with empty location descriptions are redundant 1707 // information in DWARF, so do not emit those. 1708 if (OpenRanges.empty()) 1709 continue; 1710 1711 // Omit entries with empty ranges as they do not have any effect in DWARF. 1712 if (StartLabel == EndLabel) { 1713 LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n"); 1714 continue; 1715 } 1716 1717 SmallVector<DbgValueLoc, 4> Values; 1718 for (auto &R : OpenRanges) 1719 Values.push_back(R.second); 1720 DebugLoc.emplace_back(StartLabel, EndLabel, Values); 1721 1722 // Attempt to coalesce the ranges of two otherwise identical 1723 // DebugLocEntries. 1724 auto CurEntry = DebugLoc.rbegin(); 1725 LLVM_DEBUG({ 1726 dbgs() << CurEntry->getValues().size() << " Values:\n"; 1727 for (auto &Value : CurEntry->getValues()) 1728 Value.dump(); 1729 dbgs() << "-----\n"; 1730 }); 1731 1732 auto PrevEntry = std::next(CurEntry); 1733 if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry)) 1734 DebugLoc.pop_back(); 1735 } 1736 1737 // If there's a single entry, safe for a single location, and not part of 1738 // an over-sized basic block, then ask validThroughout whether this 1739 // location can be represented as a single variable location. 1740 if (DebugLoc.size() != 1 || !isSafeForSingleLocation) 1741 return false; 1742 if (VeryLargeBlocks.count(StartDebugMI->getParent())) 1743 return false; 1744 return validThroughout(LScopes, StartDebugMI, EndMI); 1745 } 1746 1747 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU, 1748 LexicalScope &Scope, 1749 const DINode *Node, 1750 const DILocation *Location, 1751 const MCSymbol *Sym) { 1752 ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode()); 1753 if (isa<const DILocalVariable>(Node)) { 1754 ConcreteEntities.push_back( 1755 std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node), 1756 Location)); 1757 InfoHolder.addScopeVariable(&Scope, 1758 cast<DbgVariable>(ConcreteEntities.back().get())); 1759 } else if (isa<const DILabel>(Node)) { 1760 ConcreteEntities.push_back( 1761 std::make_unique<DbgLabel>(cast<const DILabel>(Node), 1762 Location, Sym)); 1763 InfoHolder.addScopeLabel(&Scope, 1764 cast<DbgLabel>(ConcreteEntities.back().get())); 1765 } 1766 return ConcreteEntities.back().get(); 1767 } 1768 1769 // Find variables for each lexical scope. 1770 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU, 1771 const DISubprogram *SP, 1772 DenseSet<InlinedEntity> &Processed) { 1773 // Grab the variable info that was squirreled away in the MMI side-table. 1774 collectVariableInfoFromMFTable(TheCU, Processed); 1775 1776 // Identify blocks that are unreasonably sized, so that we can later 1777 // skip lexical scope analysis over them. 1778 DenseSet<const MachineBasicBlock *> VeryLargeBlocks; 1779 for (const auto &MBB : *CurFn) 1780 if (MBB.size() > LocationAnalysisSizeLimit) 1781 VeryLargeBlocks.insert(&MBB); 1782 1783 for (const auto &I : DbgValues) { 1784 InlinedEntity IV = I.first; 1785 if (Processed.count(IV)) 1786 continue; 1787 1788 // Instruction ranges, specifying where IV is accessible. 1789 const auto &HistoryMapEntries = I.second; 1790 if (HistoryMapEntries.empty()) 1791 continue; 1792 1793 LexicalScope *Scope = nullptr; 1794 const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first); 1795 if (const DILocation *IA = IV.second) 1796 Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA); 1797 else 1798 Scope = LScopes.findLexicalScope(LocalVar->getScope()); 1799 // If variable scope is not found then skip this variable. 1800 if (!Scope) 1801 continue; 1802 1803 Processed.insert(IV); 1804 DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU, 1805 *Scope, LocalVar, IV.second)); 1806 1807 const MachineInstr *MInsn = HistoryMapEntries.front().getInstr(); 1808 assert(MInsn->isDebugValue() && "History must begin with debug value"); 1809 1810 // Check if there is a single DBG_VALUE, valid throughout the var's scope. 1811 // If the history map contains a single debug value, there may be an 1812 // additional entry which clobbers the debug value. 1813 size_t HistSize = HistoryMapEntries.size(); 1814 bool SingleValueWithClobber = 1815 HistSize == 2 && HistoryMapEntries[1].isClobber(); 1816 if (HistSize == 1 || SingleValueWithClobber) { 1817 const auto *End = 1818 SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr; 1819 if (VeryLargeBlocks.count(MInsn->getParent()) == 0 && 1820 validThroughout(LScopes, MInsn, End)) { 1821 RegVar->initializeDbgValue(MInsn); 1822 continue; 1823 } 1824 } 1825 1826 // Do not emit location lists if .debug_loc secton is disabled. 1827 if (!useLocSection()) 1828 continue; 1829 1830 // Handle multiple DBG_VALUE instructions describing one variable. 1831 DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn); 1832 1833 // Build the location list for this variable. 1834 SmallVector<DebugLocEntry, 8> Entries; 1835 bool isValidSingleLocation = 1836 buildLocationList(Entries, HistoryMapEntries, VeryLargeBlocks); 1837 1838 // Check whether buildLocationList managed to merge all locations to one 1839 // that is valid throughout the variable's scope. If so, produce single 1840 // value location. 1841 if (isValidSingleLocation) { 1842 RegVar->initializeDbgValue(Entries[0].getValues()[0]); 1843 continue; 1844 } 1845 1846 // If the variable has a DIBasicType, extract it. Basic types cannot have 1847 // unique identifiers, so don't bother resolving the type with the 1848 // identifier map. 1849 const DIBasicType *BT = dyn_cast<DIBasicType>( 1850 static_cast<const Metadata *>(LocalVar->getType())); 1851 1852 // Finalize the entry by lowering it into a DWARF bytestream. 1853 for (auto &Entry : Entries) 1854 Entry.finalize(*Asm, List, BT, TheCU); 1855 } 1856 1857 // For each InlinedEntity collected from DBG_LABEL instructions, convert to 1858 // DWARF-related DbgLabel. 1859 for (const auto &I : DbgLabels) { 1860 InlinedEntity IL = I.first; 1861 const MachineInstr *MI = I.second; 1862 if (MI == nullptr) 1863 continue; 1864 1865 LexicalScope *Scope = nullptr; 1866 const DILabel *Label = cast<DILabel>(IL.first); 1867 // The scope could have an extra lexical block file. 1868 const DILocalScope *LocalScope = 1869 Label->getScope()->getNonLexicalBlockFileScope(); 1870 // Get inlined DILocation if it is inlined label. 1871 if (const DILocation *IA = IL.second) 1872 Scope = LScopes.findInlinedScope(LocalScope, IA); 1873 else 1874 Scope = LScopes.findLexicalScope(LocalScope); 1875 // If label scope is not found then skip this label. 1876 if (!Scope) 1877 continue; 1878 1879 Processed.insert(IL); 1880 /// At this point, the temporary label is created. 1881 /// Save the temporary label to DbgLabel entity to get the 1882 /// actually address when generating Dwarf DIE. 1883 MCSymbol *Sym = getLabelBeforeInsn(MI); 1884 createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym); 1885 } 1886 1887 // Collect info for variables/labels that were optimized out. 1888 for (const DINode *DN : SP->getRetainedNodes()) { 1889 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 1890 continue; 1891 LexicalScope *Scope = nullptr; 1892 if (auto *DV = dyn_cast<DILocalVariable>(DN)) { 1893 Scope = LScopes.findLexicalScope(DV->getScope()); 1894 } else if (auto *DL = dyn_cast<DILabel>(DN)) { 1895 Scope = LScopes.findLexicalScope(DL->getScope()); 1896 } 1897 1898 if (Scope) 1899 createConcreteEntity(TheCU, *Scope, DN, nullptr); 1900 } 1901 } 1902 1903 // Process beginning of an instruction. 1904 void DwarfDebug::beginInstruction(const MachineInstr *MI) { 1905 const MachineFunction &MF = *MI->getMF(); 1906 const auto *SP = MF.getFunction().getSubprogram(); 1907 bool NoDebug = 1908 !SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug; 1909 1910 // Delay slot support check. 1911 auto delaySlotSupported = [](const MachineInstr &MI) { 1912 if (!MI.isBundledWithSucc()) 1913 return false; 1914 auto Suc = std::next(MI.getIterator()); 1915 (void)Suc; 1916 // Ensure that delay slot instruction is successor of the call instruction. 1917 // Ex. CALL_INSTRUCTION { 1918 // DELAY_SLOT_INSTRUCTION } 1919 assert(Suc->isBundledWithPred() && 1920 "Call bundle instructions are out of order"); 1921 return true; 1922 }; 1923 1924 // When describing calls, we need a label for the call instruction. 1925 if (!NoDebug && SP->areAllCallsDescribed() && 1926 MI->isCandidateForCallSiteEntry(MachineInstr::AnyInBundle) && 1927 (!MI->hasDelaySlot() || delaySlotSupported(*MI))) { 1928 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1929 bool IsTail = TII->isTailCall(*MI); 1930 // For tail calls, we need the address of the branch instruction for 1931 // DW_AT_call_pc. 1932 if (IsTail) 1933 requestLabelBeforeInsn(MI); 1934 // For non-tail calls, we need the return address for the call for 1935 // DW_AT_call_return_pc. Under GDB tuning, this information is needed for 1936 // tail calls as well. 1937 requestLabelAfterInsn(MI); 1938 } 1939 1940 DebugHandlerBase::beginInstruction(MI); 1941 assert(CurMI); 1942 1943 if (NoDebug) 1944 return; 1945 1946 // Check if source location changes, but ignore DBG_VALUE and CFI locations. 1947 // If the instruction is part of the function frame setup code, do not emit 1948 // any line record, as there is no correspondence with any user code. 1949 if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup)) 1950 return; 1951 const DebugLoc &DL = MI->getDebugLoc(); 1952 // When we emit a line-0 record, we don't update PrevInstLoc; so look at 1953 // the last line number actually emitted, to see if it was line 0. 1954 unsigned LastAsmLine = 1955 Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine(); 1956 1957 if (DL == PrevInstLoc) { 1958 // If we have an ongoing unspecified location, nothing to do here. 1959 if (!DL) 1960 return; 1961 // We have an explicit location, same as the previous location. 1962 // But we might be coming back to it after a line 0 record. 1963 if (LastAsmLine == 0 && DL.getLine() != 0) { 1964 // Reinstate the source location but not marked as a statement. 1965 const MDNode *Scope = DL.getScope(); 1966 recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0); 1967 } 1968 return; 1969 } 1970 1971 if (!DL) { 1972 // We have an unspecified location, which might want to be line 0. 1973 // If we have already emitted a line-0 record, don't repeat it. 1974 if (LastAsmLine == 0) 1975 return; 1976 // If user said Don't Do That, don't do that. 1977 if (UnknownLocations == Disable) 1978 return; 1979 // See if we have a reason to emit a line-0 record now. 1980 // Reasons to emit a line-0 record include: 1981 // - User asked for it (UnknownLocations). 1982 // - Instruction has a label, so it's referenced from somewhere else, 1983 // possibly debug information; we want it to have a source location. 1984 // - Instruction is at the top of a block; we don't want to inherit the 1985 // location from the physically previous (maybe unrelated) block. 1986 if (UnknownLocations == Enable || PrevLabel || 1987 (PrevInstBB && PrevInstBB != MI->getParent())) { 1988 // Preserve the file and column numbers, if we can, to save space in 1989 // the encoded line table. 1990 // Do not update PrevInstLoc, it remembers the last non-0 line. 1991 const MDNode *Scope = nullptr; 1992 unsigned Column = 0; 1993 if (PrevInstLoc) { 1994 Scope = PrevInstLoc.getScope(); 1995 Column = PrevInstLoc.getCol(); 1996 } 1997 recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0); 1998 } 1999 return; 2000 } 2001 2002 // We have an explicit location, different from the previous location. 2003 // Don't repeat a line-0 record, but otherwise emit the new location. 2004 // (The new location might be an explicit line 0, which we do emit.) 2005 if (DL.getLine() == 0 && LastAsmLine == 0) 2006 return; 2007 unsigned Flags = 0; 2008 if (DL == PrologEndLoc) { 2009 Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT; 2010 PrologEndLoc = DebugLoc(); 2011 } 2012 // If the line changed, we call that a new statement; unless we went to 2013 // line 0 and came back, in which case it is not a new statement. 2014 unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine; 2015 if (DL.getLine() && DL.getLine() != OldLine) 2016 Flags |= DWARF2_FLAG_IS_STMT; 2017 2018 const MDNode *Scope = DL.getScope(); 2019 recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags); 2020 2021 // If we're not at line 0, remember this location. 2022 if (DL.getLine()) 2023 PrevInstLoc = DL; 2024 } 2025 2026 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) { 2027 // First known non-DBG_VALUE and non-frame setup location marks 2028 // the beginning of the function body. 2029 for (const auto &MBB : *MF) 2030 for (const auto &MI : MBB) 2031 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 2032 MI.getDebugLoc()) 2033 return MI.getDebugLoc(); 2034 return DebugLoc(); 2035 } 2036 2037 /// Register a source line with debug info. Returns the unique label that was 2038 /// emitted and which provides correspondence to the source line list. 2039 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col, 2040 const MDNode *S, unsigned Flags, unsigned CUID, 2041 uint16_t DwarfVersion, 2042 ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) { 2043 StringRef Fn; 2044 unsigned FileNo = 1; 2045 unsigned Discriminator = 0; 2046 if (auto *Scope = cast_or_null<DIScope>(S)) { 2047 Fn = Scope->getFilename(); 2048 if (Line != 0 && DwarfVersion >= 4) 2049 if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope)) 2050 Discriminator = LBF->getDiscriminator(); 2051 2052 FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID]) 2053 .getOrCreateSourceID(Scope->getFile()); 2054 } 2055 Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0, 2056 Discriminator, Fn); 2057 } 2058 2059 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF, 2060 unsigned CUID) { 2061 // Get beginning of function. 2062 if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) { 2063 // Ensure the compile unit is created if the function is called before 2064 // beginFunction(). 2065 (void)getOrCreateDwarfCompileUnit( 2066 MF.getFunction().getSubprogram()->getUnit()); 2067 // We'd like to list the prologue as "not statements" but GDB behaves 2068 // poorly if we do that. Revisit this with caution/GDB (7.5+) testing. 2069 const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram(); 2070 ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT, 2071 CUID, getDwarfVersion(), getUnits()); 2072 return PrologEndLoc; 2073 } 2074 return DebugLoc(); 2075 } 2076 2077 // Gather pre-function debug information. Assumes being called immediately 2078 // after the function entry point has been emitted. 2079 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) { 2080 CurFn = MF; 2081 2082 auto *SP = MF->getFunction().getSubprogram(); 2083 assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode()); 2084 if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) 2085 return; 2086 2087 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 2088 2089 // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function 2090 // belongs to so that we add to the correct per-cu line table in the 2091 // non-asm case. 2092 if (Asm->OutStreamer->hasRawTextSupport()) 2093 // Use a single line table if we are generating assembly. 2094 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 2095 else 2096 Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID()); 2097 2098 // Record beginning of function. 2099 PrologEndLoc = emitInitialLocDirective( 2100 *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID()); 2101 } 2102 2103 void DwarfDebug::skippedNonDebugFunction() { 2104 // If we don't have a subprogram for this function then there will be a hole 2105 // in the range information. Keep note of this by setting the previously used 2106 // section to nullptr. 2107 PrevCU = nullptr; 2108 CurFn = nullptr; 2109 } 2110 2111 // Gather and emit post-function debug information. 2112 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) { 2113 const DISubprogram *SP = MF->getFunction().getSubprogram(); 2114 2115 assert(CurFn == MF && 2116 "endFunction should be called with the same function as beginFunction"); 2117 2118 // Set DwarfDwarfCompileUnitID in MCContext to default value. 2119 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 2120 2121 LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); 2122 assert(!FnScope || SP == FnScope->getScopeNode()); 2123 DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit()); 2124 if (TheCU.getCUNode()->isDebugDirectivesOnly()) { 2125 PrevLabel = nullptr; 2126 CurFn = nullptr; 2127 return; 2128 } 2129 2130 DenseSet<InlinedEntity> Processed; 2131 collectEntityInfo(TheCU, SP, Processed); 2132 2133 // Add the range of this function to the list of ranges for the CU. 2134 // With basic block sections, add ranges for all basic block sections. 2135 for (const auto &R : Asm->MBBSectionRanges) 2136 TheCU.addRange({R.second.BeginLabel, R.second.EndLabel}); 2137 2138 // Under -gmlt, skip building the subprogram if there are no inlined 2139 // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram 2140 // is still needed as we need its source location. 2141 if (!TheCU.getCUNode()->getDebugInfoForProfiling() && 2142 TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly && 2143 LScopes.getAbstractScopesList().empty() && !IsDarwin) { 2144 assert(InfoHolder.getScopeVariables().empty()); 2145 PrevLabel = nullptr; 2146 CurFn = nullptr; 2147 return; 2148 } 2149 2150 #ifndef NDEBUG 2151 size_t NumAbstractScopes = LScopes.getAbstractScopesList().size(); 2152 #endif 2153 // Construct abstract scopes. 2154 for (LexicalScope *AScope : LScopes.getAbstractScopesList()) { 2155 auto *SP = cast<DISubprogram>(AScope->getScopeNode()); 2156 for (const DINode *DN : SP->getRetainedNodes()) { 2157 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 2158 continue; 2159 2160 const MDNode *Scope = nullptr; 2161 if (auto *DV = dyn_cast<DILocalVariable>(DN)) 2162 Scope = DV->getScope(); 2163 else if (auto *DL = dyn_cast<DILabel>(DN)) 2164 Scope = DL->getScope(); 2165 else 2166 llvm_unreachable("Unexpected DI type!"); 2167 2168 // Collect info for variables/labels that were optimized out. 2169 ensureAbstractEntityIsCreated(TheCU, DN, Scope); 2170 assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes 2171 && "ensureAbstractEntityIsCreated inserted abstract scopes"); 2172 } 2173 constructAbstractSubprogramScopeDIE(TheCU, AScope); 2174 } 2175 2176 ProcessedSPNodes.insert(SP); 2177 DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope); 2178 if (auto *SkelCU = TheCU.getSkeleton()) 2179 if (!LScopes.getAbstractScopesList().empty() && 2180 TheCU.getCUNode()->getSplitDebugInlining()) 2181 SkelCU->constructSubprogramScopeDIE(SP, FnScope); 2182 2183 // Construct call site entries. 2184 constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF); 2185 2186 // Clear debug info 2187 // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the 2188 // DbgVariables except those that are also in AbstractVariables (since they 2189 // can be used cross-function) 2190 InfoHolder.getScopeVariables().clear(); 2191 InfoHolder.getScopeLabels().clear(); 2192 PrevLabel = nullptr; 2193 CurFn = nullptr; 2194 } 2195 2196 // Register a source line with debug info. Returns the unique label that was 2197 // emitted and which provides correspondence to the source line list. 2198 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S, 2199 unsigned Flags) { 2200 ::recordSourceLine(*Asm, Line, Col, S, Flags, 2201 Asm->OutStreamer->getContext().getDwarfCompileUnitID(), 2202 getDwarfVersion(), getUnits()); 2203 } 2204 2205 //===----------------------------------------------------------------------===// 2206 // Emit Methods 2207 //===----------------------------------------------------------------------===// 2208 2209 // Emit the debug info section. 2210 void DwarfDebug::emitDebugInfo() { 2211 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2212 Holder.emitUnits(/* UseOffsets */ false); 2213 } 2214 2215 // Emit the abbreviation section. 2216 void DwarfDebug::emitAbbreviations() { 2217 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2218 2219 Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection()); 2220 } 2221 2222 void DwarfDebug::emitStringOffsetsTableHeader() { 2223 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2224 Holder.getStringPool().emitStringOffsetsTableHeader( 2225 *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(), 2226 Holder.getStringOffsetsStartSym()); 2227 } 2228 2229 template <typename AccelTableT> 2230 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section, 2231 StringRef TableName) { 2232 Asm->OutStreamer->SwitchSection(Section); 2233 2234 // Emit the full data. 2235 emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol()); 2236 } 2237 2238 void DwarfDebug::emitAccelDebugNames() { 2239 // Don't emit anything if we have no compilation units to index. 2240 if (getUnits().empty()) 2241 return; 2242 2243 emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits()); 2244 } 2245 2246 // Emit visible names into a hashed accelerator table section. 2247 void DwarfDebug::emitAccelNames() { 2248 emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(), 2249 "Names"); 2250 } 2251 2252 // Emit objective C classes and categories into a hashed accelerator table 2253 // section. 2254 void DwarfDebug::emitAccelObjC() { 2255 emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(), 2256 "ObjC"); 2257 } 2258 2259 // Emit namespace dies into a hashed accelerator table. 2260 void DwarfDebug::emitAccelNamespaces() { 2261 emitAccel(AccelNamespace, 2262 Asm->getObjFileLowering().getDwarfAccelNamespaceSection(), 2263 "namespac"); 2264 } 2265 2266 // Emit type dies into a hashed accelerator table. 2267 void DwarfDebug::emitAccelTypes() { 2268 emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(), 2269 "types"); 2270 } 2271 2272 // Public name handling. 2273 // The format for the various pubnames: 2274 // 2275 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU 2276 // for the DIE that is named. 2277 // 2278 // gnu pubnames - offset/index value/name tuples where the offset is the offset 2279 // into the CU and the index value is computed according to the type of value 2280 // for the DIE that is named. 2281 // 2282 // For type units the offset is the offset of the skeleton DIE. For split dwarf 2283 // it's the offset within the debug_info/debug_types dwo section, however, the 2284 // reference in the pubname header doesn't change. 2285 2286 /// computeIndexValue - Compute the gdb index value for the DIE and CU. 2287 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU, 2288 const DIE *Die) { 2289 // Entities that ended up only in a Type Unit reference the CU instead (since 2290 // the pub entry has offsets within the CU there's no real offset that can be 2291 // provided anyway). As it happens all such entities (namespaces and types, 2292 // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out 2293 // not to be true it would be necessary to persist this information from the 2294 // point at which the entry is added to the index data structure - since by 2295 // the time the index is built from that, the original type/namespace DIE in a 2296 // type unit has already been destroyed so it can't be queried for properties 2297 // like tag, etc. 2298 if (Die->getTag() == dwarf::DW_TAG_compile_unit) 2299 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, 2300 dwarf::GIEL_EXTERNAL); 2301 dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC; 2302 2303 // We could have a specification DIE that has our most of our knowledge, 2304 // look for that now. 2305 if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) { 2306 DIE &SpecDIE = SpecVal.getDIEEntry().getEntry(); 2307 if (SpecDIE.findAttribute(dwarf::DW_AT_external)) 2308 Linkage = dwarf::GIEL_EXTERNAL; 2309 } else if (Die->findAttribute(dwarf::DW_AT_external)) 2310 Linkage = dwarf::GIEL_EXTERNAL; 2311 2312 switch (Die->getTag()) { 2313 case dwarf::DW_TAG_class_type: 2314 case dwarf::DW_TAG_structure_type: 2315 case dwarf::DW_TAG_union_type: 2316 case dwarf::DW_TAG_enumeration_type: 2317 return dwarf::PubIndexEntryDescriptor( 2318 dwarf::GIEK_TYPE, 2319 dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage()) 2320 ? dwarf::GIEL_EXTERNAL 2321 : dwarf::GIEL_STATIC); 2322 case dwarf::DW_TAG_typedef: 2323 case dwarf::DW_TAG_base_type: 2324 case dwarf::DW_TAG_subrange_type: 2325 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC); 2326 case dwarf::DW_TAG_namespace: 2327 return dwarf::GIEK_TYPE; 2328 case dwarf::DW_TAG_subprogram: 2329 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage); 2330 case dwarf::DW_TAG_variable: 2331 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage); 2332 case dwarf::DW_TAG_enumerator: 2333 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, 2334 dwarf::GIEL_STATIC); 2335 default: 2336 return dwarf::GIEK_NONE; 2337 } 2338 } 2339 2340 /// emitDebugPubSections - Emit visible names and types into debug pubnames and 2341 /// pubtypes sections. 2342 void DwarfDebug::emitDebugPubSections() { 2343 for (const auto &NU : CUMap) { 2344 DwarfCompileUnit *TheU = NU.second; 2345 if (!TheU->hasDwarfPubSections()) 2346 continue; 2347 2348 bool GnuStyle = TheU->getCUNode()->getNameTableKind() == 2349 DICompileUnit::DebugNameTableKind::GNU; 2350 2351 Asm->OutStreamer->SwitchSection( 2352 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection() 2353 : Asm->getObjFileLowering().getDwarfPubNamesSection()); 2354 emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames()); 2355 2356 Asm->OutStreamer->SwitchSection( 2357 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection() 2358 : Asm->getObjFileLowering().getDwarfPubTypesSection()); 2359 emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes()); 2360 } 2361 } 2362 2363 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) { 2364 if (useSectionsAsReferences()) 2365 Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(), 2366 CU.getDebugSectionOffset()); 2367 else 2368 Asm->emitDwarfSymbolReference(CU.getLabelBegin()); 2369 } 2370 2371 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name, 2372 DwarfCompileUnit *TheU, 2373 const StringMap<const DIE *> &Globals) { 2374 if (auto *Skeleton = TheU->getSkeleton()) 2375 TheU = Skeleton; 2376 2377 // Emit the header. 2378 Asm->OutStreamer->AddComment("Length of Public " + Name + " Info"); 2379 MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin"); 2380 MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end"); 2381 Asm->emitLabelDifference(EndLabel, BeginLabel, 4); 2382 2383 Asm->OutStreamer->emitLabel(BeginLabel); 2384 2385 Asm->OutStreamer->AddComment("DWARF Version"); 2386 Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION); 2387 2388 Asm->OutStreamer->AddComment("Offset of Compilation Unit Info"); 2389 emitSectionReference(*TheU); 2390 2391 Asm->OutStreamer->AddComment("Compilation Unit Length"); 2392 Asm->emitInt32(TheU->getLength()); 2393 2394 // Emit the pubnames for this compilation unit. 2395 for (const auto &GI : Globals) { 2396 const char *Name = GI.getKeyData(); 2397 const DIE *Entity = GI.second; 2398 2399 Asm->OutStreamer->AddComment("DIE offset"); 2400 Asm->emitInt32(Entity->getOffset()); 2401 2402 if (GnuStyle) { 2403 dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity); 2404 Asm->OutStreamer->AddComment( 2405 Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + 2406 ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage)); 2407 Asm->emitInt8(Desc.toBits()); 2408 } 2409 2410 Asm->OutStreamer->AddComment("External Name"); 2411 Asm->OutStreamer->emitBytes(StringRef(Name, GI.getKeyLength() + 1)); 2412 } 2413 2414 Asm->OutStreamer->AddComment("End Mark"); 2415 Asm->emitInt32(0); 2416 Asm->OutStreamer->emitLabel(EndLabel); 2417 } 2418 2419 /// Emit null-terminated strings into a debug str section. 2420 void DwarfDebug::emitDebugStr() { 2421 MCSection *StringOffsetsSection = nullptr; 2422 if (useSegmentedStringOffsetsTable()) { 2423 emitStringOffsetsTableHeader(); 2424 StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection(); 2425 } 2426 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2427 Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(), 2428 StringOffsetsSection, /* UseRelativeOffsets = */ true); 2429 } 2430 2431 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer, 2432 const DebugLocStream::Entry &Entry, 2433 const DwarfCompileUnit *CU) { 2434 auto &&Comments = DebugLocs.getComments(Entry); 2435 auto Comment = Comments.begin(); 2436 auto End = Comments.end(); 2437 2438 // The expressions are inserted into a byte stream rather early (see 2439 // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that 2440 // need to reference a base_type DIE the offset of that DIE is not yet known. 2441 // To deal with this we instead insert a placeholder early and then extract 2442 // it here and replace it with the real reference. 2443 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2444 DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(), 2445 DebugLocs.getBytes(Entry).size()), 2446 Asm->getDataLayout().isLittleEndian(), PtrSize); 2447 DWARFExpression Expr(Data, PtrSize, Asm->OutContext.getDwarfFormat()); 2448 2449 using Encoding = DWARFExpression::Operation::Encoding; 2450 uint64_t Offset = 0; 2451 for (auto &Op : Expr) { 2452 assert(Op.getCode() != dwarf::DW_OP_const_type && 2453 "3 operand ops not yet supported"); 2454 Streamer.EmitInt8(Op.getCode(), Comment != End ? *(Comment++) : ""); 2455 Offset++; 2456 for (unsigned I = 0; I < 2; ++I) { 2457 if (Op.getDescription().Op[I] == Encoding::SizeNA) 2458 continue; 2459 if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) { 2460 uint64_t Offset = 2461 CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset(); 2462 assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit"); 2463 Streamer.emitULEB128(Offset, "", ULEB128PadSize); 2464 // Make sure comments stay aligned. 2465 for (unsigned J = 0; J < ULEB128PadSize; ++J) 2466 if (Comment != End) 2467 Comment++; 2468 } else { 2469 for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J) 2470 Streamer.EmitInt8(Data.getData()[J], Comment != End ? *(Comment++) : ""); 2471 } 2472 Offset = Op.getOperandEndOffset(I); 2473 } 2474 assert(Offset == Op.getEndOffset()); 2475 } 2476 } 2477 2478 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT, 2479 const DbgValueLoc &Value, 2480 DwarfExpression &DwarfExpr) { 2481 auto *DIExpr = Value.getExpression(); 2482 DIExpressionCursor ExprCursor(DIExpr); 2483 DwarfExpr.addFragmentOffset(DIExpr); 2484 // Regular entry. 2485 if (Value.isInt()) { 2486 if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed || 2487 BT->getEncoding() == dwarf::DW_ATE_signed_char)) 2488 DwarfExpr.addSignedConstant(Value.getInt()); 2489 else 2490 DwarfExpr.addUnsignedConstant(Value.getInt()); 2491 } else if (Value.isLocation()) { 2492 MachineLocation Location = Value.getLoc(); 2493 DwarfExpr.setLocation(Location, DIExpr); 2494 DIExpressionCursor Cursor(DIExpr); 2495 2496 if (DIExpr->isEntryValue()) 2497 DwarfExpr.beginEntryValueExpression(Cursor); 2498 2499 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); 2500 if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg())) 2501 return; 2502 return DwarfExpr.addExpression(std::move(Cursor)); 2503 } else if (Value.isTargetIndexLocation()) { 2504 TargetIndexLocation Loc = Value.getTargetIndexLocation(); 2505 // TODO TargetIndexLocation is a target-independent. Currently only the WebAssembly-specific 2506 // encoding is supported. 2507 DwarfExpr.addWasmLocation(Loc.Index, static_cast<uint64_t>(Loc.Offset)); 2508 DwarfExpr.addExpression(std::move(ExprCursor)); 2509 return; 2510 } else if (Value.isConstantFP()) { 2511 APInt RawBytes = Value.getConstantFP()->getValueAPF().bitcastToAPInt(); 2512 DwarfExpr.addUnsignedConstant(RawBytes); 2513 } 2514 DwarfExpr.addExpression(std::move(ExprCursor)); 2515 } 2516 2517 void DebugLocEntry::finalize(const AsmPrinter &AP, 2518 DebugLocStream::ListBuilder &List, 2519 const DIBasicType *BT, 2520 DwarfCompileUnit &TheCU) { 2521 assert(!Values.empty() && 2522 "location list entries without values are redundant"); 2523 assert(Begin != End && "unexpected location list entry with empty range"); 2524 DebugLocStream::EntryBuilder Entry(List, Begin, End); 2525 BufferByteStreamer Streamer = Entry.getStreamer(); 2526 DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU); 2527 const DbgValueLoc &Value = Values[0]; 2528 if (Value.isFragment()) { 2529 // Emit all fragments that belong to the same variable and range. 2530 assert(llvm::all_of(Values, [](DbgValueLoc P) { 2531 return P.isFragment(); 2532 }) && "all values are expected to be fragments"); 2533 assert(llvm::is_sorted(Values) && "fragments are expected to be sorted"); 2534 2535 for (auto Fragment : Values) 2536 DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr); 2537 2538 } else { 2539 assert(Values.size() == 1 && "only fragments may have >1 value"); 2540 DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr); 2541 } 2542 DwarfExpr.finalize(); 2543 if (DwarfExpr.TagOffset) 2544 List.setTagOffset(*DwarfExpr.TagOffset); 2545 } 2546 2547 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry, 2548 const DwarfCompileUnit *CU) { 2549 // Emit the size. 2550 Asm->OutStreamer->AddComment("Loc expr size"); 2551 if (getDwarfVersion() >= 5) 2552 Asm->emitULEB128(DebugLocs.getBytes(Entry).size()); 2553 else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max()) 2554 Asm->emitInt16(DebugLocs.getBytes(Entry).size()); 2555 else { 2556 // The entry is too big to fit into 16 bit, drop it as there is nothing we 2557 // can do. 2558 Asm->emitInt16(0); 2559 return; 2560 } 2561 // Emit the entry. 2562 APByteStreamer Streamer(*Asm); 2563 emitDebugLocEntry(Streamer, Entry, CU); 2564 } 2565 2566 // Emit the header of a DWARF 5 range list table list table. Returns the symbol 2567 // that designates the end of the table for the caller to emit when the table is 2568 // complete. 2569 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm, 2570 const DwarfFile &Holder) { 2571 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2572 2573 Asm->OutStreamer->AddComment("Offset entry count"); 2574 Asm->emitInt32(Holder.getRangeLists().size()); 2575 Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym()); 2576 2577 for (const RangeSpanList &List : Holder.getRangeLists()) 2578 Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(), 4); 2579 2580 return TableEnd; 2581 } 2582 2583 // Emit the header of a DWARF 5 locations list table. Returns the symbol that 2584 // designates the end of the table for the caller to emit when the table is 2585 // complete. 2586 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm, 2587 const DwarfDebug &DD) { 2588 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2589 2590 const auto &DebugLocs = DD.getDebugLocs(); 2591 2592 Asm->OutStreamer->AddComment("Offset entry count"); 2593 Asm->emitInt32(DebugLocs.getLists().size()); 2594 Asm->OutStreamer->emitLabel(DebugLocs.getSym()); 2595 2596 for (const auto &List : DebugLocs.getLists()) 2597 Asm->emitLabelDifference(List.Label, DebugLocs.getSym(), 4); 2598 2599 return TableEnd; 2600 } 2601 2602 template <typename Ranges, typename PayloadEmitter> 2603 static void emitRangeList( 2604 DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R, 2605 const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair, 2606 unsigned StartxLength, unsigned EndOfList, 2607 StringRef (*StringifyEnum)(unsigned), 2608 bool ShouldUseBaseAddress, 2609 PayloadEmitter EmitPayload) { 2610 2611 auto Size = Asm->MAI->getCodePointerSize(); 2612 bool UseDwarf5 = DD.getDwarfVersion() >= 5; 2613 2614 // Emit our symbol so we can find the beginning of the range. 2615 Asm->OutStreamer->emitLabel(Sym); 2616 2617 // Gather all the ranges that apply to the same section so they can share 2618 // a base address entry. 2619 MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges; 2620 2621 for (const auto &Range : R) 2622 SectionRanges[&Range.Begin->getSection()].push_back(&Range); 2623 2624 const MCSymbol *CUBase = CU.getBaseAddress(); 2625 bool BaseIsSet = false; 2626 for (const auto &P : SectionRanges) { 2627 auto *Base = CUBase; 2628 if (!Base && ShouldUseBaseAddress) { 2629 const MCSymbol *Begin = P.second.front()->Begin; 2630 const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection()); 2631 if (!UseDwarf5) { 2632 Base = NewBase; 2633 BaseIsSet = true; 2634 Asm->OutStreamer->emitIntValue(-1, Size); 2635 Asm->OutStreamer->AddComment(" base address"); 2636 Asm->OutStreamer->emitSymbolValue(Base, Size); 2637 } else if (NewBase != Begin || P.second.size() > 1) { 2638 // Only use a base address if 2639 // * the existing pool address doesn't match (NewBase != Begin) 2640 // * or, there's more than one entry to share the base address 2641 Base = NewBase; 2642 BaseIsSet = true; 2643 Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx)); 2644 Asm->emitInt8(BaseAddressx); 2645 Asm->OutStreamer->AddComment(" base address index"); 2646 Asm->emitULEB128(DD.getAddressPool().getIndex(Base)); 2647 } 2648 } else if (BaseIsSet && !UseDwarf5) { 2649 BaseIsSet = false; 2650 assert(!Base); 2651 Asm->OutStreamer->emitIntValue(-1, Size); 2652 Asm->OutStreamer->emitIntValue(0, Size); 2653 } 2654 2655 for (const auto *RS : P.second) { 2656 const MCSymbol *Begin = RS->Begin; 2657 const MCSymbol *End = RS->End; 2658 assert(Begin && "Range without a begin symbol?"); 2659 assert(End && "Range without an end symbol?"); 2660 if (Base) { 2661 if (UseDwarf5) { 2662 // Emit offset_pair when we have a base. 2663 Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair)); 2664 Asm->emitInt8(OffsetPair); 2665 Asm->OutStreamer->AddComment(" starting offset"); 2666 Asm->emitLabelDifferenceAsULEB128(Begin, Base); 2667 Asm->OutStreamer->AddComment(" ending offset"); 2668 Asm->emitLabelDifferenceAsULEB128(End, Base); 2669 } else { 2670 Asm->emitLabelDifference(Begin, Base, Size); 2671 Asm->emitLabelDifference(End, Base, Size); 2672 } 2673 } else if (UseDwarf5) { 2674 Asm->OutStreamer->AddComment(StringifyEnum(StartxLength)); 2675 Asm->emitInt8(StartxLength); 2676 Asm->OutStreamer->AddComment(" start index"); 2677 Asm->emitULEB128(DD.getAddressPool().getIndex(Begin)); 2678 Asm->OutStreamer->AddComment(" length"); 2679 Asm->emitLabelDifferenceAsULEB128(End, Begin); 2680 } else { 2681 Asm->OutStreamer->emitSymbolValue(Begin, Size); 2682 Asm->OutStreamer->emitSymbolValue(End, Size); 2683 } 2684 EmitPayload(*RS); 2685 } 2686 } 2687 2688 if (UseDwarf5) { 2689 Asm->OutStreamer->AddComment(StringifyEnum(EndOfList)); 2690 Asm->emitInt8(EndOfList); 2691 } else { 2692 // Terminate the list with two 0 values. 2693 Asm->OutStreamer->emitIntValue(0, Size); 2694 Asm->OutStreamer->emitIntValue(0, Size); 2695 } 2696 } 2697 2698 // Handles emission of both debug_loclist / debug_loclist.dwo 2699 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) { 2700 emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List), 2701 *List.CU, dwarf::DW_LLE_base_addressx, 2702 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length, 2703 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString, 2704 /* ShouldUseBaseAddress */ true, 2705 [&](const DebugLocStream::Entry &E) { 2706 DD.emitDebugLocEntryLocation(E, List.CU); 2707 }); 2708 } 2709 2710 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) { 2711 if (DebugLocs.getLists().empty()) 2712 return; 2713 2714 Asm->OutStreamer->SwitchSection(Sec); 2715 2716 MCSymbol *TableEnd = nullptr; 2717 if (getDwarfVersion() >= 5) 2718 TableEnd = emitLoclistsTableHeader(Asm, *this); 2719 2720 for (const auto &List : DebugLocs.getLists()) 2721 emitLocList(*this, Asm, List); 2722 2723 if (TableEnd) 2724 Asm->OutStreamer->emitLabel(TableEnd); 2725 } 2726 2727 // Emit locations into the .debug_loc/.debug_loclists section. 2728 void DwarfDebug::emitDebugLoc() { 2729 emitDebugLocImpl( 2730 getDwarfVersion() >= 5 2731 ? Asm->getObjFileLowering().getDwarfLoclistsSection() 2732 : Asm->getObjFileLowering().getDwarfLocSection()); 2733 } 2734 2735 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section. 2736 void DwarfDebug::emitDebugLocDWO() { 2737 if (getDwarfVersion() >= 5) { 2738 emitDebugLocImpl( 2739 Asm->getObjFileLowering().getDwarfLoclistsDWOSection()); 2740 2741 return; 2742 } 2743 2744 for (const auto &List : DebugLocs.getLists()) { 2745 Asm->OutStreamer->SwitchSection( 2746 Asm->getObjFileLowering().getDwarfLocDWOSection()); 2747 Asm->OutStreamer->emitLabel(List.Label); 2748 2749 for (const auto &Entry : DebugLocs.getEntries(List)) { 2750 // GDB only supports startx_length in pre-standard split-DWARF. 2751 // (in v5 standard loclists, it currently* /only/ supports base_address + 2752 // offset_pair, so the implementations can't really share much since they 2753 // need to use different representations) 2754 // * as of October 2018, at least 2755 // 2756 // In v5 (see emitLocList), this uses SectionLabels to reuse existing 2757 // addresses in the address pool to minimize object size/relocations. 2758 Asm->emitInt8(dwarf::DW_LLE_startx_length); 2759 unsigned idx = AddrPool.getIndex(Entry.Begin); 2760 Asm->emitULEB128(idx); 2761 // Also the pre-standard encoding is slightly different, emitting this as 2762 // an address-length entry here, but its a ULEB128 in DWARFv5 loclists. 2763 Asm->emitLabelDifference(Entry.End, Entry.Begin, 4); 2764 emitDebugLocEntryLocation(Entry, List.CU); 2765 } 2766 Asm->emitInt8(dwarf::DW_LLE_end_of_list); 2767 } 2768 } 2769 2770 struct ArangeSpan { 2771 const MCSymbol *Start, *End; 2772 }; 2773 2774 // Emit a debug aranges section, containing a CU lookup for any 2775 // address we can tie back to a CU. 2776 void DwarfDebug::emitDebugARanges() { 2777 // Provides a unique id per text section. 2778 MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap; 2779 2780 // Filter labels by section. 2781 for (const SymbolCU &SCU : ArangeLabels) { 2782 if (SCU.Sym->isInSection()) { 2783 // Make a note of this symbol and it's section. 2784 MCSection *Section = &SCU.Sym->getSection(); 2785 if (!Section->getKind().isMetadata()) 2786 SectionMap[Section].push_back(SCU); 2787 } else { 2788 // Some symbols (e.g. common/bss on mach-o) can have no section but still 2789 // appear in the output. This sucks as we rely on sections to build 2790 // arange spans. We can do it without, but it's icky. 2791 SectionMap[nullptr].push_back(SCU); 2792 } 2793 } 2794 2795 DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans; 2796 2797 for (auto &I : SectionMap) { 2798 MCSection *Section = I.first; 2799 SmallVector<SymbolCU, 8> &List = I.second; 2800 if (List.size() < 1) 2801 continue; 2802 2803 // If we have no section (e.g. common), just write out 2804 // individual spans for each symbol. 2805 if (!Section) { 2806 for (const SymbolCU &Cur : List) { 2807 ArangeSpan Span; 2808 Span.Start = Cur.Sym; 2809 Span.End = nullptr; 2810 assert(Cur.CU); 2811 Spans[Cur.CU].push_back(Span); 2812 } 2813 continue; 2814 } 2815 2816 // Sort the symbols by offset within the section. 2817 llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) { 2818 unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0; 2819 unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0; 2820 2821 // Symbols with no order assigned should be placed at the end. 2822 // (e.g. section end labels) 2823 if (IA == 0) 2824 return false; 2825 if (IB == 0) 2826 return true; 2827 return IA < IB; 2828 }); 2829 2830 // Insert a final terminator. 2831 List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section))); 2832 2833 // Build spans between each label. 2834 const MCSymbol *StartSym = List[0].Sym; 2835 for (size_t n = 1, e = List.size(); n < e; n++) { 2836 const SymbolCU &Prev = List[n - 1]; 2837 const SymbolCU &Cur = List[n]; 2838 2839 // Try and build the longest span we can within the same CU. 2840 if (Cur.CU != Prev.CU) { 2841 ArangeSpan Span; 2842 Span.Start = StartSym; 2843 Span.End = Cur.Sym; 2844 assert(Prev.CU); 2845 Spans[Prev.CU].push_back(Span); 2846 StartSym = Cur.Sym; 2847 } 2848 } 2849 } 2850 2851 // Start the dwarf aranges section. 2852 Asm->OutStreamer->SwitchSection( 2853 Asm->getObjFileLowering().getDwarfARangesSection()); 2854 2855 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2856 2857 // Build a list of CUs used. 2858 std::vector<DwarfCompileUnit *> CUs; 2859 for (const auto &it : Spans) { 2860 DwarfCompileUnit *CU = it.first; 2861 CUs.push_back(CU); 2862 } 2863 2864 // Sort the CU list (again, to ensure consistent output order). 2865 llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) { 2866 return A->getUniqueID() < B->getUniqueID(); 2867 }); 2868 2869 // Emit an arange table for each CU we used. 2870 for (DwarfCompileUnit *CU : CUs) { 2871 std::vector<ArangeSpan> &List = Spans[CU]; 2872 2873 // Describe the skeleton CU's offset and length, not the dwo file's. 2874 if (auto *Skel = CU->getSkeleton()) 2875 CU = Skel; 2876 2877 // Emit size of content not including length itself. 2878 unsigned ContentSize = 2879 sizeof(int16_t) + // DWARF ARange version number 2880 sizeof(int32_t) + // Offset of CU in the .debug_info section 2881 sizeof(int8_t) + // Pointer Size (in bytes) 2882 sizeof(int8_t); // Segment Size (in bytes) 2883 2884 unsigned TupleSize = PtrSize * 2; 2885 2886 // 7.20 in the Dwarf specs requires the table to be aligned to a tuple. 2887 unsigned Padding = 2888 offsetToAlignment(sizeof(int32_t) + ContentSize, Align(TupleSize)); 2889 2890 ContentSize += Padding; 2891 ContentSize += (List.size() + 1) * TupleSize; 2892 2893 // For each compile unit, write the list of spans it covers. 2894 Asm->OutStreamer->AddComment("Length of ARange Set"); 2895 Asm->emitInt32(ContentSize); 2896 Asm->OutStreamer->AddComment("DWARF Arange version number"); 2897 Asm->emitInt16(dwarf::DW_ARANGES_VERSION); 2898 Asm->OutStreamer->AddComment("Offset Into Debug Info Section"); 2899 emitSectionReference(*CU); 2900 Asm->OutStreamer->AddComment("Address Size (in bytes)"); 2901 Asm->emitInt8(PtrSize); 2902 Asm->OutStreamer->AddComment("Segment Size (in bytes)"); 2903 Asm->emitInt8(0); 2904 2905 Asm->OutStreamer->emitFill(Padding, 0xff); 2906 2907 for (const ArangeSpan &Span : List) { 2908 Asm->emitLabelReference(Span.Start, PtrSize); 2909 2910 // Calculate the size as being from the span start to it's end. 2911 if (Span.End) { 2912 Asm->emitLabelDifference(Span.End, Span.Start, PtrSize); 2913 } else { 2914 // For symbols without an end marker (e.g. common), we 2915 // write a single arange entry containing just that one symbol. 2916 uint64_t Size = SymSize[Span.Start]; 2917 if (Size == 0) 2918 Size = 1; 2919 2920 Asm->OutStreamer->emitIntValue(Size, PtrSize); 2921 } 2922 } 2923 2924 Asm->OutStreamer->AddComment("ARange terminator"); 2925 Asm->OutStreamer->emitIntValue(0, PtrSize); 2926 Asm->OutStreamer->emitIntValue(0, PtrSize); 2927 } 2928 } 2929 2930 /// Emit a single range list. We handle both DWARF v5 and earlier. 2931 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm, 2932 const RangeSpanList &List) { 2933 emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU, 2934 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair, 2935 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list, 2936 llvm::dwarf::RangeListEncodingString, 2937 List.CU->getCUNode()->getRangesBaseAddress() || 2938 DD.getDwarfVersion() >= 5, 2939 [](auto) {}); 2940 } 2941 2942 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) { 2943 if (Holder.getRangeLists().empty()) 2944 return; 2945 2946 assert(useRangesSection()); 2947 assert(!CUMap.empty()); 2948 assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) { 2949 return !Pair.second->getCUNode()->isDebugDirectivesOnly(); 2950 })); 2951 2952 Asm->OutStreamer->SwitchSection(Section); 2953 2954 MCSymbol *TableEnd = nullptr; 2955 if (getDwarfVersion() >= 5) 2956 TableEnd = emitRnglistsTableHeader(Asm, Holder); 2957 2958 for (const RangeSpanList &List : Holder.getRangeLists()) 2959 emitRangeList(*this, Asm, List); 2960 2961 if (TableEnd) 2962 Asm->OutStreamer->emitLabel(TableEnd); 2963 } 2964 2965 /// Emit address ranges into the .debug_ranges section or into the DWARF v5 2966 /// .debug_rnglists section. 2967 void DwarfDebug::emitDebugRanges() { 2968 const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2969 2970 emitDebugRangesImpl(Holder, 2971 getDwarfVersion() >= 5 2972 ? Asm->getObjFileLowering().getDwarfRnglistsSection() 2973 : Asm->getObjFileLowering().getDwarfRangesSection()); 2974 } 2975 2976 void DwarfDebug::emitDebugRangesDWO() { 2977 emitDebugRangesImpl(InfoHolder, 2978 Asm->getObjFileLowering().getDwarfRnglistsDWOSection()); 2979 } 2980 2981 /// Emit the header of a DWARF 5 macro section. 2982 static void emitMacroHeader(AsmPrinter *Asm, const DwarfDebug &DD, 2983 const DwarfCompileUnit &CU) { 2984 enum HeaderFlagMask { 2985 #define HANDLE_MACRO_FLAG(ID, NAME) MACRO_FLAG_##NAME = ID, 2986 #include "llvm/BinaryFormat/Dwarf.def" 2987 }; 2988 uint8_t Flags = 0; 2989 Asm->OutStreamer->AddComment("Macro information version"); 2990 Asm->emitInt16(5); 2991 // We are setting Offset and line offset flags unconditionally here, 2992 // since we're only supporting DWARF32 and line offset should be mostly 2993 // present. 2994 // FIXME: Add support for DWARF64. 2995 Flags |= MACRO_FLAG_DEBUG_LINE_OFFSET; 2996 Asm->OutStreamer->AddComment("Flags: 32 bit, debug_line_offset present"); 2997 Asm->emitInt8(Flags); 2998 Asm->OutStreamer->AddComment("debug_line_offset"); 2999 if (DD.useSplitDwarf()) 3000 Asm->OutStreamer->emitIntValue(0, /*Size=*/4); 3001 else 3002 Asm->OutStreamer->emitSymbolValue(CU.getLineTableStartSym(), /*Size=*/4); 3003 } 3004 3005 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) { 3006 for (auto *MN : Nodes) { 3007 if (auto *M = dyn_cast<DIMacro>(MN)) 3008 emitMacro(*M); 3009 else if (auto *F = dyn_cast<DIMacroFile>(MN)) 3010 emitMacroFile(*F, U); 3011 else 3012 llvm_unreachable("Unexpected DI type!"); 3013 } 3014 } 3015 3016 void DwarfDebug::emitMacro(DIMacro &M) { 3017 StringRef Name = M.getName(); 3018 StringRef Value = M.getValue(); 3019 bool UseMacro = getDwarfVersion() >= 5; 3020 3021 if (UseMacro) { 3022 unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define 3023 ? dwarf::DW_MACRO_define_strx 3024 : dwarf::DW_MACRO_undef_strx; 3025 Asm->OutStreamer->AddComment(dwarf::MacroString(Type)); 3026 Asm->emitULEB128(Type); 3027 Asm->OutStreamer->AddComment("Line Number"); 3028 Asm->emitULEB128(M.getLine()); 3029 Asm->OutStreamer->AddComment("Macro String"); 3030 if (!Value.empty()) 3031 Asm->emitULEB128(this->InfoHolder.getStringPool() 3032 .getIndexedEntry(*Asm, (Name + " " + Value).str()) 3033 .getIndex()); 3034 else 3035 // DW_MACRO_undef_strx doesn't have a value, so just emit the macro 3036 // string. 3037 Asm->emitULEB128(this->InfoHolder.getStringPool() 3038 .getIndexedEntry(*Asm, (Name).str()) 3039 .getIndex()); 3040 } else { 3041 Asm->OutStreamer->AddComment(dwarf::MacinfoString(M.getMacinfoType())); 3042 Asm->emitULEB128(M.getMacinfoType()); 3043 Asm->OutStreamer->AddComment("Line Number"); 3044 Asm->emitULEB128(M.getLine()); 3045 Asm->OutStreamer->AddComment("Macro String"); 3046 Asm->OutStreamer->emitBytes(Name); 3047 if (!Value.empty()) { 3048 // There should be one space between macro name and macro value. 3049 Asm->emitInt8(' '); 3050 Asm->OutStreamer->AddComment("Macro Value="); 3051 Asm->OutStreamer->emitBytes(Value); 3052 } 3053 Asm->emitInt8('\0'); 3054 } 3055 } 3056 3057 void DwarfDebug::emitMacroFileImpl( 3058 DIMacroFile &MF, DwarfCompileUnit &U, unsigned StartFile, unsigned EndFile, 3059 StringRef (*MacroFormToString)(unsigned Form)) { 3060 3061 Asm->OutStreamer->AddComment(MacroFormToString(StartFile)); 3062 Asm->emitULEB128(StartFile); 3063 Asm->OutStreamer->AddComment("Line Number"); 3064 Asm->emitULEB128(MF.getLine()); 3065 Asm->OutStreamer->AddComment("File Number"); 3066 DIFile &F = *MF.getFile(); 3067 if (useSplitDwarf()) 3068 Asm->emitULEB128(getDwoLineTable(U)->getFile( 3069 F.getDirectory(), F.getFilename(), getMD5AsBytes(&F), 3070 Asm->OutContext.getDwarfVersion(), F.getSource())); 3071 else 3072 Asm->emitULEB128(U.getOrCreateSourceID(&F)); 3073 handleMacroNodes(MF.getElements(), U); 3074 Asm->OutStreamer->AddComment(MacroFormToString(EndFile)); 3075 Asm->emitULEB128(EndFile); 3076 } 3077 3078 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) { 3079 // DWARFv5 macro and DWARFv4 macinfo share some common encodings, 3080 // so for readibility/uniformity, We are explicitly emitting those. 3081 assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file); 3082 bool UseMacro = getDwarfVersion() >= 5; 3083 if (UseMacro) 3084 emitMacroFileImpl(F, U, dwarf::DW_MACRO_start_file, 3085 dwarf::DW_MACRO_end_file, dwarf::MacroString); 3086 else 3087 emitMacroFileImpl(F, U, dwarf::DW_MACINFO_start_file, 3088 dwarf::DW_MACINFO_end_file, dwarf::MacinfoString); 3089 } 3090 3091 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) { 3092 for (const auto &P : CUMap) { 3093 auto &TheCU = *P.second; 3094 auto *SkCU = TheCU.getSkeleton(); 3095 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 3096 auto *CUNode = cast<DICompileUnit>(P.first); 3097 DIMacroNodeArray Macros = CUNode->getMacros(); 3098 if (Macros.empty()) 3099 continue; 3100 Asm->OutStreamer->SwitchSection(Section); 3101 Asm->OutStreamer->emitLabel(U.getMacroLabelBegin()); 3102 if (getDwarfVersion() >= 5) 3103 emitMacroHeader(Asm, *this, U); 3104 handleMacroNodes(Macros, U); 3105 Asm->OutStreamer->AddComment("End Of Macro List Mark"); 3106 Asm->emitInt8(0); 3107 } 3108 } 3109 3110 /// Emit macros into a debug macinfo/macro section. 3111 void DwarfDebug::emitDebugMacinfo() { 3112 auto &ObjLower = Asm->getObjFileLowering(); 3113 emitDebugMacinfoImpl(getDwarfVersion() >= 5 3114 ? ObjLower.getDwarfMacroSection() 3115 : ObjLower.getDwarfMacinfoSection()); 3116 } 3117 3118 void DwarfDebug::emitDebugMacinfoDWO() { 3119 auto &ObjLower = Asm->getObjFileLowering(); 3120 emitDebugMacinfoImpl(getDwarfVersion() >= 5 3121 ? ObjLower.getDwarfMacroDWOSection() 3122 : ObjLower.getDwarfMacinfoDWOSection()); 3123 } 3124 3125 // DWARF5 Experimental Separate Dwarf emitters. 3126 3127 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die, 3128 std::unique_ptr<DwarfCompileUnit> NewU) { 3129 3130 if (!CompilationDir.empty()) 3131 NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 3132 addGnuPubAttributes(*NewU, Die); 3133 3134 SkeletonHolder.addUnit(std::move(NewU)); 3135 } 3136 3137 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) { 3138 3139 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 3140 CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder, 3141 UnitKind::Skeleton); 3142 DwarfCompileUnit &NewCU = *OwnedUnit; 3143 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 3144 3145 NewCU.initStmtList(); 3146 3147 if (useSegmentedStringOffsetsTable()) 3148 NewCU.addStringOffsetsStart(); 3149 3150 initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit)); 3151 3152 return NewCU; 3153 } 3154 3155 // Emit the .debug_info.dwo section for separated dwarf. This contains the 3156 // compile units that would normally be in debug_info. 3157 void DwarfDebug::emitDebugInfoDWO() { 3158 assert(useSplitDwarf() && "No split dwarf debug info?"); 3159 // Don't emit relocations into the dwo file. 3160 InfoHolder.emitUnits(/* UseOffsets */ true); 3161 } 3162 3163 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the 3164 // abbreviations for the .debug_info.dwo section. 3165 void DwarfDebug::emitDebugAbbrevDWO() { 3166 assert(useSplitDwarf() && "No split dwarf?"); 3167 InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection()); 3168 } 3169 3170 void DwarfDebug::emitDebugLineDWO() { 3171 assert(useSplitDwarf() && "No split dwarf?"); 3172 SplitTypeUnitFileTable.Emit( 3173 *Asm->OutStreamer, MCDwarfLineTableParams(), 3174 Asm->getObjFileLowering().getDwarfLineDWOSection()); 3175 } 3176 3177 void DwarfDebug::emitStringOffsetsTableHeaderDWO() { 3178 assert(useSplitDwarf() && "No split dwarf?"); 3179 InfoHolder.getStringPool().emitStringOffsetsTableHeader( 3180 *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(), 3181 InfoHolder.getStringOffsetsStartSym()); 3182 } 3183 3184 // Emit the .debug_str.dwo section for separated dwarf. This contains the 3185 // string section and is identical in format to traditional .debug_str 3186 // sections. 3187 void DwarfDebug::emitDebugStrDWO() { 3188 if (useSegmentedStringOffsetsTable()) 3189 emitStringOffsetsTableHeaderDWO(); 3190 assert(useSplitDwarf() && "No split dwarf?"); 3191 MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection(); 3192 InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(), 3193 OffSec, /* UseRelativeOffsets = */ false); 3194 } 3195 3196 // Emit address pool. 3197 void DwarfDebug::emitDebugAddr() { 3198 AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection()); 3199 } 3200 3201 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) { 3202 if (!useSplitDwarf()) 3203 return nullptr; 3204 const DICompileUnit *DIUnit = CU.getCUNode(); 3205 SplitTypeUnitFileTable.maybeSetRootFile( 3206 DIUnit->getDirectory(), DIUnit->getFilename(), 3207 getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource()); 3208 return &SplitTypeUnitFileTable; 3209 } 3210 3211 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) { 3212 MD5 Hash; 3213 Hash.update(Identifier); 3214 // ... take the least significant 8 bytes and return those. Our MD5 3215 // implementation always returns its results in little endian, so we actually 3216 // need the "high" word. 3217 MD5::MD5Result Result; 3218 Hash.final(Result); 3219 return Result.high(); 3220 } 3221 3222 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU, 3223 StringRef Identifier, DIE &RefDie, 3224 const DICompositeType *CTy) { 3225 // Fast path if we're building some type units and one has already used the 3226 // address pool we know we're going to throw away all this work anyway, so 3227 // don't bother building dependent types. 3228 if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed()) 3229 return; 3230 3231 auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0)); 3232 if (!Ins.second) { 3233 CU.addDIETypeSignature(RefDie, Ins.first->second); 3234 return; 3235 } 3236 3237 bool TopLevelType = TypeUnitsUnderConstruction.empty(); 3238 AddrPool.resetUsedFlag(); 3239 3240 auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder, 3241 getDwoLineTable(CU)); 3242 DwarfTypeUnit &NewTU = *OwnedUnit; 3243 DIE &UnitDie = NewTU.getUnitDie(); 3244 TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy); 3245 3246 NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 3247 CU.getLanguage()); 3248 3249 uint64_t Signature = makeTypeSignature(Identifier); 3250 NewTU.setTypeSignature(Signature); 3251 Ins.first->second = Signature; 3252 3253 if (useSplitDwarf()) { 3254 MCSection *Section = 3255 getDwarfVersion() <= 4 3256 ? Asm->getObjFileLowering().getDwarfTypesDWOSection() 3257 : Asm->getObjFileLowering().getDwarfInfoDWOSection(); 3258 NewTU.setSection(Section); 3259 } else { 3260 MCSection *Section = 3261 getDwarfVersion() <= 4 3262 ? Asm->getObjFileLowering().getDwarfTypesSection(Signature) 3263 : Asm->getObjFileLowering().getDwarfInfoSection(Signature); 3264 NewTU.setSection(Section); 3265 // Non-split type units reuse the compile unit's line table. 3266 CU.applyStmtList(UnitDie); 3267 } 3268 3269 // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type 3270 // units. 3271 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 3272 NewTU.addStringOffsetsStart(); 3273 3274 NewTU.setType(NewTU.createTypeDIE(CTy)); 3275 3276 if (TopLevelType) { 3277 auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction); 3278 TypeUnitsUnderConstruction.clear(); 3279 3280 // Types referencing entries in the address table cannot be placed in type 3281 // units. 3282 if (AddrPool.hasBeenUsed()) { 3283 3284 // Remove all the types built while building this type. 3285 // This is pessimistic as some of these types might not be dependent on 3286 // the type that used an address. 3287 for (const auto &TU : TypeUnitsToAdd) 3288 TypeSignatures.erase(TU.second); 3289 3290 // Construct this type in the CU directly. 3291 // This is inefficient because all the dependent types will be rebuilt 3292 // from scratch, including building them in type units, discovering that 3293 // they depend on addresses, throwing them out and rebuilding them. 3294 CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy)); 3295 return; 3296 } 3297 3298 // If the type wasn't dependent on fission addresses, finish adding the type 3299 // and all its dependent types. 3300 for (auto &TU : TypeUnitsToAdd) { 3301 InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get()); 3302 InfoHolder.emitUnit(TU.first.get(), useSplitDwarf()); 3303 } 3304 } 3305 CU.addDIETypeSignature(RefDie, Signature); 3306 } 3307 3308 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD) 3309 : DD(DD), 3310 TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)) { 3311 DD->TypeUnitsUnderConstruction.clear(); 3312 assert(TypeUnitsUnderConstruction.empty() || !DD->AddrPool.hasBeenUsed()); 3313 } 3314 3315 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() { 3316 DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction); 3317 DD->AddrPool.resetUsedFlag(); 3318 } 3319 3320 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() { 3321 return NonTypeUnitContext(this); 3322 } 3323 3324 // Add the Name along with its companion DIE to the appropriate accelerator 3325 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for 3326 // AccelTableKind::Apple, we use the table we got as an argument). If 3327 // accelerator tables are disabled, this function does nothing. 3328 template <typename DataT> 3329 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU, 3330 AccelTable<DataT> &AppleAccel, StringRef Name, 3331 const DIE &Die) { 3332 if (getAccelTableKind() == AccelTableKind::None) 3333 return; 3334 3335 if (getAccelTableKind() != AccelTableKind::Apple && 3336 CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default) 3337 return; 3338 3339 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 3340 DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name); 3341 3342 switch (getAccelTableKind()) { 3343 case AccelTableKind::Apple: 3344 AppleAccel.addName(Ref, Die); 3345 break; 3346 case AccelTableKind::Dwarf: 3347 AccelDebugNames.addName(Ref, Die); 3348 break; 3349 case AccelTableKind::Default: 3350 llvm_unreachable("Default should have already been resolved."); 3351 case AccelTableKind::None: 3352 llvm_unreachable("None handled above"); 3353 } 3354 } 3355 3356 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name, 3357 const DIE &Die) { 3358 addAccelNameImpl(CU, AccelNames, Name, Die); 3359 } 3360 3361 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name, 3362 const DIE &Die) { 3363 // ObjC names go only into the Apple accelerator tables. 3364 if (getAccelTableKind() == AccelTableKind::Apple) 3365 addAccelNameImpl(CU, AccelObjC, Name, Die); 3366 } 3367 3368 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name, 3369 const DIE &Die) { 3370 addAccelNameImpl(CU, AccelNamespace, Name, Die); 3371 } 3372 3373 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name, 3374 const DIE &Die, char Flags) { 3375 addAccelNameImpl(CU, AccelTypes, Name, Die); 3376 } 3377 3378 uint16_t DwarfDebug::getDwarfVersion() const { 3379 return Asm->OutStreamer->getContext().getDwarfVersion(); 3380 } 3381 3382 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) { 3383 return SectionLabels.find(S)->second; 3384 } 3385 void DwarfDebug::insertSectionLabel(const MCSymbol *S) { 3386 if (SectionLabels.insert(std::make_pair(&S->getSection(), S)).second) 3387 if (useSplitDwarf() || getDwarfVersion() >= 5) 3388 AddrPool.getIndex(S); 3389 } 3390 3391 Optional<MD5::MD5Result> DwarfDebug::getMD5AsBytes(const DIFile *File) const { 3392 assert(File); 3393 if (getDwarfVersion() < 5) 3394 return None; 3395 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = File->getChecksum(); 3396 if (!Checksum || Checksum->Kind != DIFile::CSK_MD5) 3397 return None; 3398 3399 // Convert the string checksum to an MD5Result for the streamer. 3400 // The verifier validates the checksum so we assume it's okay. 3401 // An MD5 checksum is 16 bytes. 3402 std::string ChecksumString = fromHex(Checksum->Value); 3403 MD5::MD5Result CKMem; 3404 std::copy(ChecksumString.begin(), ChecksumString.end(), CKMem.Bytes.data()); 3405 return CKMem; 3406 } 3407