1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing dwarf debug info into asm files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "DwarfDebug.h"
14 #include "ByteStreamer.h"
15 #include "DIEHash.h"
16 #include "DebugLocEntry.h"
17 #include "DebugLocStream.h"
18 #include "DwarfCompileUnit.h"
19 #include "DwarfExpression.h"
20 #include "DwarfFile.h"
21 #include "DwarfUnit.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/DenseSet.h"
25 #include "llvm/ADT/MapVector.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/BinaryFormat/Dwarf.h"
33 #include "llvm/CodeGen/AccelTable.h"
34 #include "llvm/CodeGen/AsmPrinter.h"
35 #include "llvm/CodeGen/DIE.h"
36 #include "llvm/CodeGen/LexicalScopes.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineInstr.h"
40 #include "llvm/CodeGen/MachineModuleInfo.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/TargetInstrInfo.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/DebugInfo/DWARF/DWARFExpression.h"
47 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GlobalVariable.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/MC/MCAsmInfo.h"
55 #include "llvm/MC/MCContext.h"
56 #include "llvm/MC/MCDwarf.h"
57 #include "llvm/MC/MCSection.h"
58 #include "llvm/MC/MCStreamer.h"
59 #include "llvm/MC/MCSymbol.h"
60 #include "llvm/MC/MCTargetOptions.h"
61 #include "llvm/MC/MachineLocation.h"
62 #include "llvm/MC/SectionKind.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/MD5.h"
69 #include "llvm/Support/MathExtras.h"
70 #include "llvm/Support/Timer.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include "llvm/Target/TargetLoweringObjectFile.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include "llvm/Target/TargetOptions.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstddef>
78 #include <cstdint>
79 #include <iterator>
80 #include <string>
81 #include <utility>
82 #include <vector>
83 
84 using namespace llvm;
85 
86 #define DEBUG_TYPE "dwarfdebug"
87 
88 STATISTIC(NumCSParams, "Number of dbg call site params created");
89 
90 static cl::opt<bool>
91 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden,
92                          cl::desc("Disable debug info printing"));
93 
94 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier(
95     "use-dwarf-ranges-base-address-specifier", cl::Hidden,
96     cl::desc("Use base address specifiers in debug_ranges"), cl::init(false));
97 
98 static cl::opt<bool> EmitDwarfDebugEntryValues(
99     "emit-debug-entry-values", cl::Hidden,
100     cl::desc("Emit the debug entry values"), cl::init(false));
101 
102 static cl::opt<bool> GenerateARangeSection("generate-arange-section",
103                                            cl::Hidden,
104                                            cl::desc("Generate dwarf aranges"),
105                                            cl::init(false));
106 
107 static cl::opt<bool>
108     GenerateDwarfTypeUnits("generate-type-units", cl::Hidden,
109                            cl::desc("Generate DWARF4 type units."),
110                            cl::init(false));
111 
112 static cl::opt<bool> SplitDwarfCrossCuReferences(
113     "split-dwarf-cross-cu-references", cl::Hidden,
114     cl::desc("Enable cross-cu references in DWO files"), cl::init(false));
115 
116 enum DefaultOnOff { Default, Enable, Disable };
117 
118 static cl::opt<DefaultOnOff> UnknownLocations(
119     "use-unknown-locations", cl::Hidden,
120     cl::desc("Make an absence of debug location information explicit."),
121     cl::values(clEnumVal(Default, "At top of block or after label"),
122                clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")),
123     cl::init(Default));
124 
125 static cl::opt<AccelTableKind> AccelTables(
126     "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."),
127     cl::values(clEnumValN(AccelTableKind::Default, "Default",
128                           "Default for platform"),
129                clEnumValN(AccelTableKind::None, "Disable", "Disabled."),
130                clEnumValN(AccelTableKind::Apple, "Apple", "Apple"),
131                clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")),
132     cl::init(AccelTableKind::Default));
133 
134 static cl::opt<DefaultOnOff>
135 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden,
136                  cl::desc("Use inlined strings rather than string section."),
137                  cl::values(clEnumVal(Default, "Default for platform"),
138                             clEnumVal(Enable, "Enabled"),
139                             clEnumVal(Disable, "Disabled")),
140                  cl::init(Default));
141 
142 static cl::opt<bool>
143     NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden,
144                          cl::desc("Disable emission .debug_ranges section."),
145                          cl::init(false));
146 
147 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences(
148     "dwarf-sections-as-references", cl::Hidden,
149     cl::desc("Use sections+offset as references rather than labels."),
150     cl::values(clEnumVal(Default, "Default for platform"),
151                clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
152     cl::init(Default));
153 
154 enum LinkageNameOption {
155   DefaultLinkageNames,
156   AllLinkageNames,
157   AbstractLinkageNames
158 };
159 
160 static cl::opt<LinkageNameOption>
161     DwarfLinkageNames("dwarf-linkage-names", cl::Hidden,
162                       cl::desc("Which DWARF linkage-name attributes to emit."),
163                       cl::values(clEnumValN(DefaultLinkageNames, "Default",
164                                             "Default for platform"),
165                                  clEnumValN(AllLinkageNames, "All", "All"),
166                                  clEnumValN(AbstractLinkageNames, "Abstract",
167                                             "Abstract subprograms")),
168                       cl::init(DefaultLinkageNames));
169 
170 static const char *const DWARFGroupName = "dwarf";
171 static const char *const DWARFGroupDescription = "DWARF Emission";
172 static const char *const DbgTimerName = "writer";
173 static const char *const DbgTimerDescription = "DWARF Debug Writer";
174 static constexpr unsigned ULEB128PadSize = 4;
175 
176 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) {
177   getActiveStreamer().EmitInt8(
178       Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op)
179                   : dwarf::OperationEncodingString(Op));
180 }
181 
182 void DebugLocDwarfExpression::emitSigned(int64_t Value) {
183   getActiveStreamer().emitSLEB128(Value, Twine(Value));
184 }
185 
186 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) {
187   getActiveStreamer().emitULEB128(Value, Twine(Value));
188 }
189 
190 void DebugLocDwarfExpression::emitData1(uint8_t Value) {
191   getActiveStreamer().EmitInt8(Value, Twine(Value));
192 }
193 
194 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) {
195   assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit");
196   getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize);
197 }
198 
199 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI,
200                                               unsigned MachineReg) {
201   // This information is not available while emitting .debug_loc entries.
202   return false;
203 }
204 
205 void DebugLocDwarfExpression::enableTemporaryBuffer() {
206   assert(!IsBuffering && "Already buffering?");
207   if (!TmpBuf)
208     TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments);
209   IsBuffering = true;
210 }
211 
212 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; }
213 
214 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() {
215   return TmpBuf ? TmpBuf->Bytes.size() : 0;
216 }
217 
218 void DebugLocDwarfExpression::commitTemporaryBuffer() {
219   if (!TmpBuf)
220     return;
221   for (auto Byte : enumerate(TmpBuf->Bytes)) {
222     const char *Comment = (Byte.index() < TmpBuf->Comments.size())
223                               ? TmpBuf->Comments[Byte.index()].c_str()
224                               : "";
225     OutBS.EmitInt8(Byte.value(), Comment);
226   }
227   TmpBuf->Bytes.clear();
228   TmpBuf->Comments.clear();
229 }
230 
231 const DIType *DbgVariable::getType() const {
232   return getVariable()->getType();
233 }
234 
235 /// Get .debug_loc entry for the instruction range starting at MI.
236 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) {
237   const DIExpression *Expr = MI->getDebugExpression();
238   assert(MI->getNumOperands() == 4);
239   if (MI->getOperand(0).isReg()) {
240     auto RegOp = MI->getOperand(0);
241     auto Op1 = MI->getOperand(1);
242     // If the second operand is an immediate, this is a
243     // register-indirect address.
244     assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset");
245     MachineLocation MLoc(RegOp.getReg(), Op1.isImm());
246     return DbgValueLoc(Expr, MLoc);
247   }
248   if (MI->getOperand(0).isTargetIndex()) {
249     auto Op = MI->getOperand(0);
250     return DbgValueLoc(Expr,
251                        TargetIndexLocation(Op.getIndex(), Op.getOffset()));
252   }
253   if (MI->getOperand(0).isImm())
254     return DbgValueLoc(Expr, MI->getOperand(0).getImm());
255   if (MI->getOperand(0).isFPImm())
256     return DbgValueLoc(Expr, MI->getOperand(0).getFPImm());
257   if (MI->getOperand(0).isCImm())
258     return DbgValueLoc(Expr, MI->getOperand(0).getCImm());
259 
260   llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!");
261 }
262 
263 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) {
264   assert(FrameIndexExprs.empty() && "Already initialized?");
265   assert(!ValueLoc.get() && "Already initialized?");
266 
267   assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable");
268   assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() &&
269          "Wrong inlined-at");
270 
271   ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue));
272   if (auto *E = DbgValue->getDebugExpression())
273     if (E->getNumElements())
274       FrameIndexExprs.push_back({0, E});
275 }
276 
277 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const {
278   if (FrameIndexExprs.size() == 1)
279     return FrameIndexExprs;
280 
281   assert(llvm::all_of(FrameIndexExprs,
282                       [](const FrameIndexExpr &A) {
283                         return A.Expr->isFragment();
284                       }) &&
285          "multiple FI expressions without DW_OP_LLVM_fragment");
286   llvm::sort(FrameIndexExprs,
287              [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool {
288                return A.Expr->getFragmentInfo()->OffsetInBits <
289                       B.Expr->getFragmentInfo()->OffsetInBits;
290              });
291 
292   return FrameIndexExprs;
293 }
294 
295 void DbgVariable::addMMIEntry(const DbgVariable &V) {
296   assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry");
297   assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry");
298   assert(V.getVariable() == getVariable() && "conflicting variable");
299   assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location");
300 
301   assert(!FrameIndexExprs.empty() && "Expected an MMI entry");
302   assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry");
303 
304   // FIXME: This logic should not be necessary anymore, as we now have proper
305   // deduplication. However, without it, we currently run into the assertion
306   // below, which means that we are likely dealing with broken input, i.e. two
307   // non-fragment entries for the same variable at different frame indices.
308   if (FrameIndexExprs.size()) {
309     auto *Expr = FrameIndexExprs.back().Expr;
310     if (!Expr || !Expr->isFragment())
311       return;
312   }
313 
314   for (const auto &FIE : V.FrameIndexExprs)
315     // Ignore duplicate entries.
316     if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) {
317           return FIE.FI == Other.FI && FIE.Expr == Other.Expr;
318         }))
319       FrameIndexExprs.push_back(FIE);
320 
321   assert((FrameIndexExprs.size() == 1 ||
322           llvm::all_of(FrameIndexExprs,
323                        [](FrameIndexExpr &FIE) {
324                          return FIE.Expr && FIE.Expr->isFragment();
325                        })) &&
326          "conflicting locations for variable");
327 }
328 
329 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion,
330                                             bool GenerateTypeUnits,
331                                             DebuggerKind Tuning,
332                                             const Triple &TT) {
333   // Honor an explicit request.
334   if (AccelTables != AccelTableKind::Default)
335     return AccelTables;
336 
337   // Accelerator tables with type units are currently not supported.
338   if (GenerateTypeUnits)
339     return AccelTableKind::None;
340 
341   // Accelerator tables get emitted if targetting DWARF v5 or LLDB.  DWARF v5
342   // always implies debug_names. For lower standard versions we use apple
343   // accelerator tables on apple platforms and debug_names elsewhere.
344   if (DwarfVersion >= 5)
345     return AccelTableKind::Dwarf;
346   if (Tuning == DebuggerKind::LLDB)
347     return TT.isOSBinFormatMachO() ? AccelTableKind::Apple
348                                    : AccelTableKind::Dwarf;
349   return AccelTableKind::None;
350 }
351 
352 DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M)
353     : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()),
354       InfoHolder(A, "info_string", DIEValueAllocator),
355       SkeletonHolder(A, "skel_string", DIEValueAllocator),
356       IsDarwin(A->TM.getTargetTriple().isOSDarwin()) {
357   const Triple &TT = Asm->TM.getTargetTriple();
358 
359   // Make sure we know our "debugger tuning".  The target option takes
360   // precedence; fall back to triple-based defaults.
361   if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default)
362     DebuggerTuning = Asm->TM.Options.DebuggerTuning;
363   else if (IsDarwin)
364     DebuggerTuning = DebuggerKind::LLDB;
365   else if (TT.isPS4CPU())
366     DebuggerTuning = DebuggerKind::SCE;
367   else
368     DebuggerTuning = DebuggerKind::GDB;
369 
370   if (DwarfInlinedStrings == Default)
371     UseInlineStrings = TT.isNVPTX();
372   else
373     UseInlineStrings = DwarfInlinedStrings == Enable;
374 
375   UseLocSection = !TT.isNVPTX();
376 
377   HasAppleExtensionAttributes = tuneForLLDB();
378 
379   // Handle split DWARF.
380   HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty();
381 
382   // SCE defaults to linkage names only for abstract subprograms.
383   if (DwarfLinkageNames == DefaultLinkageNames)
384     UseAllLinkageNames = !tuneForSCE();
385   else
386     UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames;
387 
388   unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion;
389   unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber
390                                     : MMI->getModule()->getDwarfVersion();
391   // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2.
392   DwarfVersion =
393       TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION);
394 
395   UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX();
396 
397   // Use sections as references. Force for NVPTX.
398   if (DwarfSectionsAsReferences == Default)
399     UseSectionsAsReferences = TT.isNVPTX();
400   else
401     UseSectionsAsReferences = DwarfSectionsAsReferences == Enable;
402 
403   // Don't generate type units for unsupported object file formats.
404   GenerateTypeUnits =
405       A->TM.getTargetTriple().isOSBinFormatELF() && GenerateDwarfTypeUnits;
406 
407   TheAccelTableKind = computeAccelTableKind(
408       DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple());
409 
410   // Work around a GDB bug. GDB doesn't support the standard opcode;
411   // SCE doesn't support GNU's; LLDB prefers the standard opcode, which
412   // is defined as of DWARF 3.
413   // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented
414   // https://sourceware.org/bugzilla/show_bug.cgi?id=11616
415   UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3;
416 
417   // GDB does not fully support the DWARF 4 representation for bitfields.
418   UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB();
419 
420   // The DWARF v5 string offsets table has - possibly shared - contributions
421   // from each compile and type unit each preceded by a header. The string
422   // offsets table used by the pre-DWARF v5 split-DWARF implementation uses
423   // a monolithic string offsets table without any header.
424   UseSegmentedStringOffsetsTable = DwarfVersion >= 5;
425 
426   // Emit call-site-param debug info for GDB and LLDB, if the target supports
427   // the debug entry values feature. It can also be enabled explicitly.
428   EmitDebugEntryValues = (Asm->TM.Options.ShouldEmitDebugEntryValues() &&
429                           (tuneForGDB() || tuneForLLDB())) ||
430                          EmitDwarfDebugEntryValues;
431 
432   Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion);
433 }
434 
435 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h.
436 DwarfDebug::~DwarfDebug() = default;
437 
438 static bool isObjCClass(StringRef Name) {
439   return Name.startswith("+") || Name.startswith("-");
440 }
441 
442 static bool hasObjCCategory(StringRef Name) {
443   if (!isObjCClass(Name))
444     return false;
445 
446   return Name.find(") ") != StringRef::npos;
447 }
448 
449 static void getObjCClassCategory(StringRef In, StringRef &Class,
450                                  StringRef &Category) {
451   if (!hasObjCCategory(In)) {
452     Class = In.slice(In.find('[') + 1, In.find(' '));
453     Category = "";
454     return;
455   }
456 
457   Class = In.slice(In.find('[') + 1, In.find('('));
458   Category = In.slice(In.find('[') + 1, In.find(' '));
459 }
460 
461 static StringRef getObjCMethodName(StringRef In) {
462   return In.slice(In.find(' ') + 1, In.find(']'));
463 }
464 
465 // Add the various names to the Dwarf accelerator table names.
466 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU,
467                                     const DISubprogram *SP, DIE &Die) {
468   if (getAccelTableKind() != AccelTableKind::Apple &&
469       CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None)
470     return;
471 
472   if (!SP->isDefinition())
473     return;
474 
475   if (SP->getName() != "")
476     addAccelName(CU, SP->getName(), Die);
477 
478   // If the linkage name is different than the name, go ahead and output that as
479   // well into the name table. Only do that if we are going to actually emit
480   // that name.
481   if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() &&
482       (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP)))
483     addAccelName(CU, SP->getLinkageName(), Die);
484 
485   // If this is an Objective-C selector name add it to the ObjC accelerator
486   // too.
487   if (isObjCClass(SP->getName())) {
488     StringRef Class, Category;
489     getObjCClassCategory(SP->getName(), Class, Category);
490     addAccelObjC(CU, Class, Die);
491     if (Category != "")
492       addAccelObjC(CU, Category, Die);
493     // Also add the base method name to the name table.
494     addAccelName(CU, getObjCMethodName(SP->getName()), Die);
495   }
496 }
497 
498 /// Check whether we should create a DIE for the given Scope, return true
499 /// if we don't create a DIE (the corresponding DIE is null).
500 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) {
501   if (Scope->isAbstractScope())
502     return false;
503 
504   // We don't create a DIE if there is no Range.
505   const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges();
506   if (Ranges.empty())
507     return true;
508 
509   if (Ranges.size() > 1)
510     return false;
511 
512   // We don't create a DIE if we have a single Range and the end label
513   // is null.
514   return !getLabelAfterInsn(Ranges.front().second);
515 }
516 
517 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) {
518   F(CU);
519   if (auto *SkelCU = CU.getSkeleton())
520     if (CU.getCUNode()->getSplitDebugInlining())
521       F(*SkelCU);
522 }
523 
524 bool DwarfDebug::shareAcrossDWOCUs() const {
525   return SplitDwarfCrossCuReferences;
526 }
527 
528 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU,
529                                                      LexicalScope *Scope) {
530   assert(Scope && Scope->getScopeNode());
531   assert(Scope->isAbstractScope());
532   assert(!Scope->getInlinedAt());
533 
534   auto *SP = cast<DISubprogram>(Scope->getScopeNode());
535 
536   // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
537   // was inlined from another compile unit.
538   if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining())
539     // Avoid building the original CU if it won't be used
540     SrcCU.constructAbstractSubprogramScopeDIE(Scope);
541   else {
542     auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
543     if (auto *SkelCU = CU.getSkeleton()) {
544       (shareAcrossDWOCUs() ? CU : SrcCU)
545           .constructAbstractSubprogramScopeDIE(Scope);
546       if (CU.getCUNode()->getSplitDebugInlining())
547         SkelCU->constructAbstractSubprogramScopeDIE(Scope);
548     } else
549       CU.constructAbstractSubprogramScopeDIE(Scope);
550   }
551 }
552 
553 DIE &DwarfDebug::constructSubprogramDefinitionDIE(const DISubprogram *SP) {
554   DICompileUnit *Unit = SP->getUnit();
555   assert(SP->isDefinition() && "Subprogram not a definition");
556   assert(Unit && "Subprogram definition without parent unit");
557   auto &CU = getOrCreateDwarfCompileUnit(Unit);
558   return *CU.getOrCreateSubprogramDIE(SP);
559 }
560 
561 /// Represents a parameter whose call site value can be described by applying a
562 /// debug expression to a register in the forwarded register worklist.
563 struct FwdRegParamInfo {
564   /// The described parameter register.
565   unsigned ParamReg;
566 
567   /// Debug expression that has been built up when walking through the
568   /// instruction chain that produces the parameter's value.
569   const DIExpression *Expr;
570 };
571 
572 /// Register worklist for finding call site values.
573 using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>;
574 
575 /// Append the expression \p Addition to \p Original and return the result.
576 static const DIExpression *combineDIExpressions(const DIExpression *Original,
577                                                 const DIExpression *Addition) {
578   std::vector<uint64_t> Elts = Addition->getElements().vec();
579   // Avoid multiple DW_OP_stack_values.
580   if (Original->isImplicit() && Addition->isImplicit())
581     erase_if(Elts, [](uint64_t Op) { return Op == dwarf::DW_OP_stack_value; });
582   const DIExpression *CombinedExpr =
583       (Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original;
584   return CombinedExpr;
585 }
586 
587 /// Emit call site parameter entries that are described by the given value and
588 /// debug expression.
589 template <typename ValT>
590 static void finishCallSiteParams(ValT Val, const DIExpression *Expr,
591                                  ArrayRef<FwdRegParamInfo> DescribedParams,
592                                  ParamSet &Params) {
593   for (auto Param : DescribedParams) {
594     bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0;
595 
596     // TODO: Entry value operations can currently not be combined with any
597     // other expressions, so we can't emit call site entries in those cases.
598     if (ShouldCombineExpressions && Expr->isEntryValue())
599       continue;
600 
601     // If a parameter's call site value is produced by a chain of
602     // instructions we may have already created an expression for the
603     // parameter when walking through the instructions. Append that to the
604     // base expression.
605     const DIExpression *CombinedExpr =
606         ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr)
607                                  : Expr;
608     assert((!CombinedExpr || CombinedExpr->isValid()) &&
609            "Combined debug expression is invalid");
610 
611     DbgValueLoc DbgLocVal(CombinedExpr, Val);
612     DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal);
613     Params.push_back(CSParm);
614     ++NumCSParams;
615   }
616 }
617 
618 /// Add \p Reg to the worklist, if it's not already present, and mark that the
619 /// given parameter registers' values can (potentially) be described using
620 /// that register and an debug expression.
621 static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg,
622                                 const DIExpression *Expr,
623                                 ArrayRef<FwdRegParamInfo> ParamsToAdd) {
624   auto I = Worklist.insert({Reg, {}});
625   auto &ParamsForFwdReg = I.first->second;
626   for (auto Param : ParamsToAdd) {
627     assert(none_of(ParamsForFwdReg,
628                    [Param](const FwdRegParamInfo &D) {
629                      return D.ParamReg == Param.ParamReg;
630                    }) &&
631            "Same parameter described twice by forwarding reg");
632 
633     // If a parameter's call site value is produced by a chain of
634     // instructions we may have already created an expression for the
635     // parameter when walking through the instructions. Append that to the
636     // new expression.
637     const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr);
638     ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr});
639   }
640 }
641 
642 /// Interpret values loaded into registers by \p CurMI.
643 static void interpretValues(const MachineInstr *CurMI,
644                             FwdRegWorklist &ForwardedRegWorklist,
645                             ParamSet &Params) {
646 
647   const MachineFunction *MF = CurMI->getMF();
648   const DIExpression *EmptyExpr =
649       DIExpression::get(MF->getFunction().getContext(), {});
650   const auto &TRI = *MF->getSubtarget().getRegisterInfo();
651   const auto &TII = *MF->getSubtarget().getInstrInfo();
652   const auto &TLI = *MF->getSubtarget().getTargetLowering();
653 
654   // If an instruction defines more than one item in the worklist, we may run
655   // into situations where a worklist register's value is (potentially)
656   // described by the previous value of another register that is also defined
657   // by that instruction.
658   //
659   // This can for example occur in cases like this:
660   //
661   //   $r1 = mov 123
662   //   $r0, $r1 = mvrr $r1, 456
663   //   call @foo, $r0, $r1
664   //
665   // When describing $r1's value for the mvrr instruction, we need to make sure
666   // that we don't finalize an entry value for $r0, as that is dependent on the
667   // previous value of $r1 (123 rather than 456).
668   //
669   // In order to not have to distinguish between those cases when finalizing
670   // entry values, we simply postpone adding new parameter registers to the
671   // worklist, by first keeping them in this temporary container until the
672   // instruction has been handled.
673   FwdRegWorklist TmpWorklistItems;
674 
675   // If the MI is an instruction defining one or more parameters' forwarding
676   // registers, add those defines.
677   auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI,
678                                           SmallSetVector<unsigned, 4> &Defs) {
679     if (MI.isDebugInstr())
680       return;
681 
682     for (const MachineOperand &MO : MI.operands()) {
683       if (MO.isReg() && MO.isDef() &&
684           Register::isPhysicalRegister(MO.getReg())) {
685         for (auto FwdReg : ForwardedRegWorklist)
686           if (TRI.regsOverlap(FwdReg.first, MO.getReg()))
687             Defs.insert(FwdReg.first);
688       }
689     }
690   };
691 
692   // Set of worklist registers that are defined by this instruction.
693   SmallSetVector<unsigned, 4> FwdRegDefs;
694 
695   getForwardingRegsDefinedByMI(*CurMI, FwdRegDefs);
696   if (FwdRegDefs.empty())
697     return;
698 
699   for (auto ParamFwdReg : FwdRegDefs) {
700     if (auto ParamValue = TII.describeLoadedValue(*CurMI, ParamFwdReg)) {
701       if (ParamValue->first.isImm()) {
702         int64_t Val = ParamValue->first.getImm();
703         finishCallSiteParams(Val, ParamValue->second,
704                              ForwardedRegWorklist[ParamFwdReg], Params);
705       } else if (ParamValue->first.isReg()) {
706         Register RegLoc = ParamValue->first.getReg();
707         unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
708         Register FP = TRI.getFrameRegister(*MF);
709         bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP);
710         if (TRI.isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) {
711           MachineLocation MLoc(RegLoc, /*IsIndirect=*/IsSPorFP);
712           finishCallSiteParams(MLoc, ParamValue->second,
713                                ForwardedRegWorklist[ParamFwdReg], Params);
714         } else {
715           // ParamFwdReg was described by the non-callee saved register
716           // RegLoc. Mark that the call site values for the parameters are
717           // dependent on that register instead of ParamFwdReg. Since RegLoc
718           // may be a register that will be handled in this iteration, we
719           // postpone adding the items to the worklist, and instead keep them
720           // in a temporary container.
721           addToFwdRegWorklist(TmpWorklistItems, RegLoc, ParamValue->second,
722                               ForwardedRegWorklist[ParamFwdReg]);
723         }
724       }
725     }
726   }
727 
728   // Remove all registers that this instruction defines from the worklist.
729   for (auto ParamFwdReg : FwdRegDefs)
730     ForwardedRegWorklist.erase(ParamFwdReg);
731 
732   // Now that we are done handling this instruction, add items from the
733   // temporary worklist to the real one.
734   for (auto New : TmpWorklistItems)
735     addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, New.second);
736   TmpWorklistItems.clear();
737 }
738 
739 static bool interpretNextInstr(const MachineInstr *CurMI,
740                                FwdRegWorklist &ForwardedRegWorklist,
741                                ParamSet &Params) {
742   // Skip bundle headers.
743   if (CurMI->isBundle())
744     return true;
745 
746   // If the next instruction is a call we can not interpret parameter's
747   // forwarding registers or we finished the interpretation of all
748   // parameters.
749   if (CurMI->isCall())
750     return false;
751 
752   if (ForwardedRegWorklist.empty())
753     return false;
754 
755   interpretValues(CurMI, ForwardedRegWorklist, Params);
756 
757   return true;
758 }
759 
760 /// Try to interpret values loaded into registers that forward parameters
761 /// for \p CallMI. Store parameters with interpreted value into \p Params.
762 static void collectCallSiteParameters(const MachineInstr *CallMI,
763                                       ParamSet &Params) {
764   const MachineFunction *MF = CallMI->getMF();
765   auto CalleesMap = MF->getCallSitesInfo();
766   auto CallFwdRegsInfo = CalleesMap.find(CallMI);
767 
768   // There is no information for the call instruction.
769   if (CallFwdRegsInfo == CalleesMap.end())
770     return;
771 
772   const MachineBasicBlock *MBB = CallMI->getParent();
773 
774   // Skip the call instruction.
775   auto I = std::next(CallMI->getReverseIterator());
776 
777   FwdRegWorklist ForwardedRegWorklist;
778 
779   const DIExpression *EmptyExpr =
780       DIExpression::get(MF->getFunction().getContext(), {});
781 
782   // Add all the forwarding registers into the ForwardedRegWorklist.
783   for (auto ArgReg : CallFwdRegsInfo->second) {
784     bool InsertedReg =
785         ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}})
786             .second;
787     assert(InsertedReg && "Single register used to forward two arguments?");
788     (void)InsertedReg;
789   }
790 
791   // We erase, from the ForwardedRegWorklist, those forwarding registers for
792   // which we successfully describe a loaded value (by using
793   // the describeLoadedValue()). For those remaining arguments in the working
794   // list, for which we do not describe a loaded value by
795   // the describeLoadedValue(), we try to generate an entry value expression
796   // for their call site value description, if the call is within the entry MBB.
797   // TODO: Handle situations when call site parameter value can be described
798   // as the entry value within basic blocks other than the first one.
799   bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin();
800 
801   // Search for a loading value in forwarding registers.
802   for (; I != MBB->rend(); ++I) {
803     // Try to interpret values loaded by instruction.
804     if (!interpretNextInstr(&*I, ForwardedRegWorklist, Params))
805       return;
806   }
807 
808   // Emit the call site parameter's value as an entry value.
809   if (ShouldTryEmitEntryVals) {
810     // Create an expression where the register's entry value is used.
811     DIExpression *EntryExpr = DIExpression::get(
812         MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1});
813     for (auto RegEntry : ForwardedRegWorklist) {
814       MachineLocation MLoc(RegEntry.first);
815       finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params);
816     }
817   }
818 }
819 
820 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP,
821                                             DwarfCompileUnit &CU, DIE &ScopeDIE,
822                                             const MachineFunction &MF) {
823   // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if
824   // the subprogram is required to have one.
825   if (!SP.areAllCallsDescribed() || !SP.isDefinition())
826     return;
827 
828   // Use DW_AT_call_all_calls to express that call site entries are present
829   // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls
830   // because one of its requirements is not met: call site entries for
831   // optimized-out calls are elided.
832   CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls));
833 
834   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
835   assert(TII && "TargetInstrInfo not found: cannot label tail calls");
836 
837   // Emit call site entries for each call or tail call in the function.
838   for (const MachineBasicBlock &MBB : MF) {
839     for (const MachineInstr &MI : MBB.instrs()) {
840       // Bundles with call in them will pass the isCall() test below but do not
841       // have callee operand information so skip them here. Iterator will
842       // eventually reach the call MI.
843       if (MI.isBundle())
844         continue;
845 
846       // Skip instructions which aren't calls. Both calls and tail-calling jump
847       // instructions (e.g TAILJMPd64) are classified correctly here.
848       if (!MI.isCandidateForCallSiteEntry())
849         continue;
850 
851       // Skip instructions marked as frame setup, as they are not interesting to
852       // the user.
853       if (MI.getFlag(MachineInstr::FrameSetup))
854         continue;
855 
856       // TODO: Add support for targets with delay slots (see: beginInstruction).
857       if (MI.hasDelaySlot())
858         return;
859 
860       // If this is a direct call, find the callee's subprogram.
861       // In the case of an indirect call find the register that holds
862       // the callee.
863       const MachineOperand &CalleeOp = MI.getOperand(0);
864       if (!CalleeOp.isGlobal() && !CalleeOp.isReg())
865         continue;
866 
867       unsigned CallReg = 0;
868       DIE *CalleeDIE = nullptr;
869       const Function *CalleeDecl = nullptr;
870       if (CalleeOp.isReg()) {
871         CallReg = CalleeOp.getReg();
872         if (!CallReg)
873           continue;
874       } else {
875         CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal());
876         if (!CalleeDecl || !CalleeDecl->getSubprogram())
877           continue;
878         const DISubprogram *CalleeSP = CalleeDecl->getSubprogram();
879 
880         if (CalleeSP->isDefinition()) {
881           // Ensure that a subprogram DIE for the callee is available in the
882           // appropriate CU.
883           CalleeDIE = &constructSubprogramDefinitionDIE(CalleeSP);
884         } else {
885           // Create the declaration DIE if it is missing. This is required to
886           // support compilation of old bitcode with an incomplete list of
887           // retained metadata.
888           CalleeDIE = CU.getOrCreateSubprogramDIE(CalleeSP);
889         }
890         assert(CalleeDIE && "Must have a DIE for the callee");
891       }
892 
893       // TODO: Omit call site entries for runtime calls (objc_msgSend, etc).
894 
895       bool IsTail = TII->isTailCall(MI);
896 
897       // If MI is in a bundle, the label was created after the bundle since
898       // EmitFunctionBody iterates over top-level MIs. Get that top-level MI
899       // to search for that label below.
900       const MachineInstr *TopLevelCallMI =
901           MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI;
902 
903       // For non-tail calls, the return PC is needed to disambiguate paths in
904       // the call graph which could lead to some target function. For tail
905       // calls, no return PC information is needed, unless tuning for GDB in
906       // DWARF4 mode in which case we fake a return PC for compatibility.
907       const MCSymbol *PCAddr =
908           (!IsTail || CU.useGNUAnalogForDwarf5Feature())
909               ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI))
910               : nullptr;
911 
912       // For tail calls, it's necessary to record the address of the branch
913       // instruction so that the debugger can show where the tail call occurred.
914       const MCSymbol *CallAddr =
915           IsTail ? getLabelBeforeInsn(TopLevelCallMI) : nullptr;
916 
917       assert((IsTail || PCAddr) && "Non-tail call without return PC");
918 
919       LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> "
920                         << (CalleeDecl ? CalleeDecl->getName()
921                                        : StringRef(MF.getSubtarget()
922                                                        .getRegisterInfo()
923                                                        ->getName(CallReg)))
924                         << (IsTail ? " [IsTail]" : "") << "\n");
925 
926       DIE &CallSiteDIE = CU.constructCallSiteEntryDIE(
927           ScopeDIE, CalleeDIE, IsTail, PCAddr, CallAddr, CallReg);
928 
929       // Optionally emit call-site-param debug info.
930       if (emitDebugEntryValues()) {
931         ParamSet Params;
932         // Try to interpret values of call site parameters.
933         collectCallSiteParameters(&MI, Params);
934         CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params);
935       }
936     }
937   }
938 }
939 
940 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const {
941   if (!U.hasDwarfPubSections())
942     return;
943 
944   U.addFlag(D, dwarf::DW_AT_GNU_pubnames);
945 }
946 
947 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit,
948                                       DwarfCompileUnit &NewCU) {
949   DIE &Die = NewCU.getUnitDie();
950   StringRef FN = DIUnit->getFilename();
951 
952   StringRef Producer = DIUnit->getProducer();
953   StringRef Flags = DIUnit->getFlags();
954   if (!Flags.empty() && !useAppleExtensionAttributes()) {
955     std::string ProducerWithFlags = Producer.str() + " " + Flags.str();
956     NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags);
957   } else
958     NewCU.addString(Die, dwarf::DW_AT_producer, Producer);
959 
960   NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
961                 DIUnit->getSourceLanguage());
962   NewCU.addString(Die, dwarf::DW_AT_name, FN);
963   StringRef SysRoot = DIUnit->getSysRoot();
964   if (!SysRoot.empty())
965     NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot);
966   StringRef SDK = DIUnit->getSDK();
967   if (!SDK.empty())
968     NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK);
969 
970   // Add DW_str_offsets_base to the unit DIE, except for split units.
971   if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
972     NewCU.addStringOffsetsStart();
973 
974   if (!useSplitDwarf()) {
975     NewCU.initStmtList();
976 
977     // If we're using split dwarf the compilation dir is going to be in the
978     // skeleton CU and so we don't need to duplicate it here.
979     if (!CompilationDir.empty())
980       NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
981     addGnuPubAttributes(NewCU, Die);
982   }
983 
984   if (useAppleExtensionAttributes()) {
985     if (DIUnit->isOptimized())
986       NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized);
987 
988     StringRef Flags = DIUnit->getFlags();
989     if (!Flags.empty())
990       NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags);
991 
992     if (unsigned RVer = DIUnit->getRuntimeVersion())
993       NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers,
994                     dwarf::DW_FORM_data1, RVer);
995   }
996 
997   if (DIUnit->getDWOId()) {
998     // This CU is either a clang module DWO or a skeleton CU.
999     NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8,
1000                   DIUnit->getDWOId());
1001     if (!DIUnit->getSplitDebugFilename().empty()) {
1002       // This is a prefabricated skeleton CU.
1003       dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
1004                                          ? dwarf::DW_AT_dwo_name
1005                                          : dwarf::DW_AT_GNU_dwo_name;
1006       NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename());
1007     }
1008   }
1009 }
1010 // Create new DwarfCompileUnit for the given metadata node with tag
1011 // DW_TAG_compile_unit.
1012 DwarfCompileUnit &
1013 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) {
1014   if (auto *CU = CUMap.lookup(DIUnit))
1015     return *CU;
1016 
1017   CompilationDir = DIUnit->getDirectory();
1018 
1019   auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
1020       InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder);
1021   DwarfCompileUnit &NewCU = *OwnedUnit;
1022   InfoHolder.addUnit(std::move(OwnedUnit));
1023 
1024   for (auto *IE : DIUnit->getImportedEntities())
1025     NewCU.addImportedEntity(IE);
1026 
1027   // LTO with assembly output shares a single line table amongst multiple CUs.
1028   // To avoid the compilation directory being ambiguous, let the line table
1029   // explicitly describe the directory of all files, never relying on the
1030   // compilation directory.
1031   if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU)
1032     Asm->OutStreamer->emitDwarfFile0Directive(
1033         CompilationDir, DIUnit->getFilename(),
1034         NewCU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource(),
1035         NewCU.getUniqueID());
1036 
1037   if (useSplitDwarf()) {
1038     NewCU.setSkeleton(constructSkeletonCU(NewCU));
1039     NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection());
1040   } else {
1041     finishUnitAttributes(DIUnit, NewCU);
1042     NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
1043   }
1044 
1045   CUMap.insert({DIUnit, &NewCU});
1046   CUDieMap.insert({&NewCU.getUnitDie(), &NewCU});
1047   return NewCU;
1048 }
1049 
1050 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU,
1051                                                   const DIImportedEntity *N) {
1052   if (isa<DILocalScope>(N->getScope()))
1053     return;
1054   if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope()))
1055     D->addChild(TheCU.constructImportedEntityDIE(N));
1056 }
1057 
1058 /// Sort and unique GVEs by comparing their fragment offset.
1059 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &
1060 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) {
1061   llvm::sort(
1062       GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) {
1063         // Sort order: first null exprs, then exprs without fragment
1064         // info, then sort by fragment offset in bits.
1065         // FIXME: Come up with a more comprehensive comparator so
1066         // the sorting isn't non-deterministic, and so the following
1067         // std::unique call works correctly.
1068         if (!A.Expr || !B.Expr)
1069           return !!B.Expr;
1070         auto FragmentA = A.Expr->getFragmentInfo();
1071         auto FragmentB = B.Expr->getFragmentInfo();
1072         if (!FragmentA || !FragmentB)
1073           return !!FragmentB;
1074         return FragmentA->OffsetInBits < FragmentB->OffsetInBits;
1075       });
1076   GVEs.erase(std::unique(GVEs.begin(), GVEs.end(),
1077                          [](DwarfCompileUnit::GlobalExpr A,
1078                             DwarfCompileUnit::GlobalExpr B) {
1079                            return A.Expr == B.Expr;
1080                          }),
1081              GVEs.end());
1082   return GVEs;
1083 }
1084 
1085 // Emit all Dwarf sections that should come prior to the content. Create
1086 // global DIEs and emit initial debug info sections. This is invoked by
1087 // the target AsmPrinter.
1088 void DwarfDebug::beginModule() {
1089   NamedRegionTimer T(DbgTimerName, DbgTimerDescription, DWARFGroupName,
1090                      DWARFGroupDescription, TimePassesIsEnabled);
1091   if (DisableDebugInfoPrinting) {
1092     MMI->setDebugInfoAvailability(false);
1093     return;
1094   }
1095 
1096   const Module *M = MMI->getModule();
1097 
1098   unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(),
1099                                        M->debug_compile_units_end());
1100   // Tell MMI whether we have debug info.
1101   assert(MMI->hasDebugInfo() == (NumDebugCUs > 0) &&
1102          "DebugInfoAvailabilty initialized unexpectedly");
1103   SingleCU = NumDebugCUs == 1;
1104   DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>>
1105       GVMap;
1106   for (const GlobalVariable &Global : M->globals()) {
1107     SmallVector<DIGlobalVariableExpression *, 1> GVs;
1108     Global.getDebugInfo(GVs);
1109     for (auto *GVE : GVs)
1110       GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()});
1111   }
1112 
1113   // Create the symbol that designates the start of the unit's contribution
1114   // to the string offsets table. In a split DWARF scenario, only the skeleton
1115   // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol).
1116   if (useSegmentedStringOffsetsTable())
1117     (useSplitDwarf() ? SkeletonHolder : InfoHolder)
1118         .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base"));
1119 
1120 
1121   // Create the symbols that designates the start of the DWARF v5 range list
1122   // and locations list tables. They are located past the table headers.
1123   if (getDwarfVersion() >= 5) {
1124     DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1125     Holder.setRnglistsTableBaseSym(
1126         Asm->createTempSymbol("rnglists_table_base"));
1127 
1128     if (useSplitDwarf())
1129       InfoHolder.setRnglistsTableBaseSym(
1130           Asm->createTempSymbol("rnglists_dwo_table_base"));
1131   }
1132 
1133   // Create the symbol that points to the first entry following the debug
1134   // address table (.debug_addr) header.
1135   AddrPool.setLabel(Asm->createTempSymbol("addr_table_base"));
1136   DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base"));
1137 
1138   for (DICompileUnit *CUNode : M->debug_compile_units()) {
1139     // FIXME: Move local imported entities into a list attached to the
1140     // subprogram, then this search won't be needed and a
1141     // getImportedEntities().empty() test should go below with the rest.
1142     bool HasNonLocalImportedEntities = llvm::any_of(
1143         CUNode->getImportedEntities(), [](const DIImportedEntity *IE) {
1144           return !isa<DILocalScope>(IE->getScope());
1145         });
1146 
1147     if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() &&
1148         CUNode->getRetainedTypes().empty() &&
1149         CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty())
1150       continue;
1151 
1152     DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode);
1153 
1154     // Global Variables.
1155     for (auto *GVE : CUNode->getGlobalVariables()) {
1156       // Don't bother adding DIGlobalVariableExpressions listed in the CU if we
1157       // already know about the variable and it isn't adding a constant
1158       // expression.
1159       auto &GVMapEntry = GVMap[GVE->getVariable()];
1160       auto *Expr = GVE->getExpression();
1161       if (!GVMapEntry.size() || (Expr && Expr->isConstant()))
1162         GVMapEntry.push_back({nullptr, Expr});
1163     }
1164     DenseSet<DIGlobalVariable *> Processed;
1165     for (auto *GVE : CUNode->getGlobalVariables()) {
1166       DIGlobalVariable *GV = GVE->getVariable();
1167       if (Processed.insert(GV).second)
1168         CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV]));
1169     }
1170 
1171     for (auto *Ty : CUNode->getEnumTypes()) {
1172       // The enum types array by design contains pointers to
1173       // MDNodes rather than DIRefs. Unique them here.
1174       CU.getOrCreateTypeDIE(cast<DIType>(Ty));
1175     }
1176     for (auto *Ty : CUNode->getRetainedTypes()) {
1177       // The retained types array by design contains pointers to
1178       // MDNodes rather than DIRefs. Unique them here.
1179       if (DIType *RT = dyn_cast<DIType>(Ty))
1180           // There is no point in force-emitting a forward declaration.
1181           CU.getOrCreateTypeDIE(RT);
1182     }
1183     // Emit imported_modules last so that the relevant context is already
1184     // available.
1185     for (auto *IE : CUNode->getImportedEntities())
1186       constructAndAddImportedEntityDIE(CU, IE);
1187   }
1188 }
1189 
1190 void DwarfDebug::finishEntityDefinitions() {
1191   for (const auto &Entity : ConcreteEntities) {
1192     DIE *Die = Entity->getDIE();
1193     assert(Die);
1194     // FIXME: Consider the time-space tradeoff of just storing the unit pointer
1195     // in the ConcreteEntities list, rather than looking it up again here.
1196     // DIE::getUnit isn't simple - it walks parent pointers, etc.
1197     DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie());
1198     assert(Unit);
1199     Unit->finishEntityDefinition(Entity.get());
1200   }
1201 }
1202 
1203 void DwarfDebug::finishSubprogramDefinitions() {
1204   for (const DISubprogram *SP : ProcessedSPNodes) {
1205     assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug);
1206     forBothCUs(
1207         getOrCreateDwarfCompileUnit(SP->getUnit()),
1208         [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); });
1209   }
1210 }
1211 
1212 void DwarfDebug::finalizeModuleInfo() {
1213   const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
1214 
1215   finishSubprogramDefinitions();
1216 
1217   finishEntityDefinitions();
1218 
1219   // Include the DWO file name in the hash if there's more than one CU.
1220   // This handles ThinLTO's situation where imported CUs may very easily be
1221   // duplicate with the same CU partially imported into another ThinLTO unit.
1222   StringRef DWOName;
1223   if (CUMap.size() > 1)
1224     DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile;
1225 
1226   // Handle anything that needs to be done on a per-unit basis after
1227   // all other generation.
1228   for (const auto &P : CUMap) {
1229     auto &TheCU = *P.second;
1230     if (TheCU.getCUNode()->isDebugDirectivesOnly())
1231       continue;
1232     // Emit DW_AT_containing_type attribute to connect types with their
1233     // vtable holding type.
1234     TheCU.constructContainingTypeDIEs();
1235 
1236     // Add CU specific attributes if we need to add any.
1237     // If we're splitting the dwarf out now that we've got the entire
1238     // CU then add the dwo id to it.
1239     auto *SkCU = TheCU.getSkeleton();
1240 
1241     bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty();
1242 
1243     if (HasSplitUnit) {
1244       dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
1245                                          ? dwarf::DW_AT_dwo_name
1246                                          : dwarf::DW_AT_GNU_dwo_name;
1247       finishUnitAttributes(TheCU.getCUNode(), TheCU);
1248       TheCU.addString(TheCU.getUnitDie(), attrDWOName,
1249                       Asm->TM.Options.MCOptions.SplitDwarfFile);
1250       SkCU->addString(SkCU->getUnitDie(), attrDWOName,
1251                       Asm->TM.Options.MCOptions.SplitDwarfFile);
1252       // Emit a unique identifier for this CU.
1253       uint64_t ID =
1254           DIEHash(Asm).computeCUSignature(DWOName, TheCU.getUnitDie());
1255       if (getDwarfVersion() >= 5) {
1256         TheCU.setDWOId(ID);
1257         SkCU->setDWOId(ID);
1258       } else {
1259         TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1260                       dwarf::DW_FORM_data8, ID);
1261         SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1262                       dwarf::DW_FORM_data8, ID);
1263       }
1264 
1265       if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) {
1266         const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol();
1267         SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base,
1268                               Sym, Sym);
1269       }
1270     } else if (SkCU) {
1271       finishUnitAttributes(SkCU->getCUNode(), *SkCU);
1272     }
1273 
1274     // If we have code split among multiple sections or non-contiguous
1275     // ranges of code then emit a DW_AT_ranges attribute on the unit that will
1276     // remain in the .o file, otherwise add a DW_AT_low_pc.
1277     // FIXME: We should use ranges allow reordering of code ala
1278     // .subsections_via_symbols in mach-o. This would mean turning on
1279     // ranges for all subprogram DIEs for mach-o.
1280     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
1281 
1282     if (unsigned NumRanges = TheCU.getRanges().size()) {
1283       if (NumRanges > 1 && useRangesSection())
1284         // A DW_AT_low_pc attribute may also be specified in combination with
1285         // DW_AT_ranges to specify the default base address for use in
1286         // location lists (see Section 2.6.2) and range lists (see Section
1287         // 2.17.3).
1288         U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0);
1289       else
1290         U.setBaseAddress(TheCU.getRanges().front().Begin);
1291       U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges());
1292     }
1293 
1294     // We don't keep track of which addresses are used in which CU so this
1295     // is a bit pessimistic under LTO.
1296     if ((HasSplitUnit || getDwarfVersion() >= 5) && !AddrPool.isEmpty())
1297       U.addAddrTableBase();
1298 
1299     if (getDwarfVersion() >= 5) {
1300       if (U.hasRangeLists())
1301         U.addRnglistsBase();
1302 
1303       if (!DebugLocs.getLists().empty()) {
1304         if (!useSplitDwarf())
1305           U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base,
1306                             DebugLocs.getSym(),
1307                             TLOF.getDwarfLoclistsSection()->getBeginSymbol());
1308       }
1309     }
1310 
1311     auto *CUNode = cast<DICompileUnit>(P.first);
1312     // If compile Unit has macros, emit "DW_AT_macro_info/DW_AT_macros"
1313     // attribute.
1314     if (CUNode->getMacros()) {
1315       if (getDwarfVersion() >= 5) {
1316         if (useSplitDwarf())
1317           TheCU.addSectionDelta(
1318               TheCU.getUnitDie(), dwarf::DW_AT_macros, U.getMacroLabelBegin(),
1319               TLOF.getDwarfMacroDWOSection()->getBeginSymbol());
1320         else
1321           U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macros,
1322                             U.getMacroLabelBegin(),
1323                             TLOF.getDwarfMacroSection()->getBeginSymbol());
1324       } else {
1325         if (useSplitDwarf())
1326           TheCU.addSectionDelta(
1327               TheCU.getUnitDie(), dwarf::DW_AT_macro_info,
1328               U.getMacroLabelBegin(),
1329               TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol());
1330         else
1331           U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info,
1332                             U.getMacroLabelBegin(),
1333                             TLOF.getDwarfMacinfoSection()->getBeginSymbol());
1334       }
1335     }
1336     }
1337 
1338   // Emit all frontend-produced Skeleton CUs, i.e., Clang modules.
1339   for (auto *CUNode : MMI->getModule()->debug_compile_units())
1340     if (CUNode->getDWOId())
1341       getOrCreateDwarfCompileUnit(CUNode);
1342 
1343   // Compute DIE offsets and sizes.
1344   InfoHolder.computeSizeAndOffsets();
1345   if (useSplitDwarf())
1346     SkeletonHolder.computeSizeAndOffsets();
1347 }
1348 
1349 // Emit all Dwarf sections that should come after the content.
1350 void DwarfDebug::endModule() {
1351   assert(CurFn == nullptr);
1352   assert(CurMI == nullptr);
1353 
1354   for (const auto &P : CUMap) {
1355     auto &CU = *P.second;
1356     CU.createBaseTypeDIEs();
1357   }
1358 
1359   // If we aren't actually generating debug info (check beginModule -
1360   // conditionalized on !DisableDebugInfoPrinting and the presence of the
1361   // llvm.dbg.cu metadata node)
1362   if (!MMI->hasDebugInfo())
1363     return;
1364 
1365   // Finalize the debug info for the module.
1366   finalizeModuleInfo();
1367 
1368   if (useSplitDwarf())
1369     // Emit debug_loc.dwo/debug_loclists.dwo section.
1370     emitDebugLocDWO();
1371   else
1372     // Emit debug_loc/debug_loclists section.
1373     emitDebugLoc();
1374 
1375   // Corresponding abbreviations into a abbrev section.
1376   emitAbbreviations();
1377 
1378   // Emit all the DIEs into a debug info section.
1379   emitDebugInfo();
1380 
1381   // Emit info into a debug aranges section.
1382   if (GenerateARangeSection)
1383     emitDebugARanges();
1384 
1385   // Emit info into a debug ranges section.
1386   emitDebugRanges();
1387 
1388   if (useSplitDwarf())
1389   // Emit info into a debug macinfo.dwo section.
1390     emitDebugMacinfoDWO();
1391   else
1392     // Emit info into a debug macinfo/macro section.
1393     emitDebugMacinfo();
1394 
1395   emitDebugStr();
1396 
1397   if (useSplitDwarf()) {
1398     emitDebugStrDWO();
1399     emitDebugInfoDWO();
1400     emitDebugAbbrevDWO();
1401     emitDebugLineDWO();
1402     emitDebugRangesDWO();
1403   }
1404 
1405   emitDebugAddr();
1406 
1407   // Emit info into the dwarf accelerator table sections.
1408   switch (getAccelTableKind()) {
1409   case AccelTableKind::Apple:
1410     emitAccelNames();
1411     emitAccelObjC();
1412     emitAccelNamespaces();
1413     emitAccelTypes();
1414     break;
1415   case AccelTableKind::Dwarf:
1416     emitAccelDebugNames();
1417     break;
1418   case AccelTableKind::None:
1419     break;
1420   case AccelTableKind::Default:
1421     llvm_unreachable("Default should have already been resolved.");
1422   }
1423 
1424   // Emit the pubnames and pubtypes sections if requested.
1425   emitDebugPubSections();
1426 
1427   // clean up.
1428   // FIXME: AbstractVariables.clear();
1429 }
1430 
1431 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU,
1432                                                const DINode *Node,
1433                                                const MDNode *ScopeNode) {
1434   if (CU.getExistingAbstractEntity(Node))
1435     return;
1436 
1437   CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope(
1438                                        cast<DILocalScope>(ScopeNode)));
1439 }
1440 
1441 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU,
1442     const DINode *Node, const MDNode *ScopeNode) {
1443   if (CU.getExistingAbstractEntity(Node))
1444     return;
1445 
1446   if (LexicalScope *Scope =
1447           LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode)))
1448     CU.createAbstractEntity(Node, Scope);
1449 }
1450 
1451 // Collect variable information from side table maintained by MF.
1452 void DwarfDebug::collectVariableInfoFromMFTable(
1453     DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) {
1454   SmallDenseMap<InlinedEntity, DbgVariable *> MFVars;
1455   LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n");
1456   for (const auto &VI : Asm->MF->getVariableDbgInfo()) {
1457     if (!VI.Var)
1458       continue;
1459     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1460            "Expected inlined-at fields to agree");
1461 
1462     InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt());
1463     Processed.insert(Var);
1464     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1465 
1466     // If variable scope is not found then skip this variable.
1467     if (!Scope) {
1468       LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName()
1469                         << ", no variable scope found\n");
1470       continue;
1471     }
1472 
1473     ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode());
1474     auto RegVar = std::make_unique<DbgVariable>(
1475                     cast<DILocalVariable>(Var.first), Var.second);
1476     RegVar->initializeMMI(VI.Expr, VI.Slot);
1477     LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName()
1478                       << "\n");
1479     if (DbgVariable *DbgVar = MFVars.lookup(Var))
1480       DbgVar->addMMIEntry(*RegVar);
1481     else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) {
1482       MFVars.insert({Var, RegVar.get()});
1483       ConcreteEntities.push_back(std::move(RegVar));
1484     }
1485   }
1486 }
1487 
1488 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its
1489 /// enclosing lexical scope. The check ensures there are no other instructions
1490 /// in the same lexical scope preceding the DBG_VALUE and that its range is
1491 /// either open or otherwise rolls off the end of the scope.
1492 static bool validThroughout(LexicalScopes &LScopes,
1493                             const MachineInstr *DbgValue,
1494                             const MachineInstr *RangeEnd) {
1495   assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location");
1496   auto MBB = DbgValue->getParent();
1497   auto DL = DbgValue->getDebugLoc();
1498   auto *LScope = LScopes.findLexicalScope(DL);
1499   // Scope doesn't exist; this is a dead DBG_VALUE.
1500   if (!LScope)
1501     return false;
1502   auto &LSRange = LScope->getRanges();
1503   if (LSRange.size() == 0)
1504     return false;
1505 
1506 
1507   // Determine if the DBG_VALUE is valid at the beginning of its lexical block.
1508   const MachineInstr *LScopeBegin = LSRange.front().first;
1509   // Early exit if the lexical scope begins outside of the current block.
1510   if (LScopeBegin->getParent() != MBB)
1511     return false;
1512 
1513   // If there are instructions belonging to our scope in another block, and
1514   // we're not a constant (see DWARF2 comment below), then we can't be
1515   // validThroughout.
1516   const MachineInstr *LScopeEnd = LSRange.back().second;
1517   if (RangeEnd && LScopeEnd->getParent() != MBB)
1518     return false;
1519 
1520   MachineBasicBlock::const_reverse_iterator Pred(DbgValue);
1521   for (++Pred; Pred != MBB->rend(); ++Pred) {
1522     if (Pred->getFlag(MachineInstr::FrameSetup))
1523       break;
1524     auto PredDL = Pred->getDebugLoc();
1525     if (!PredDL || Pred->isMetaInstruction())
1526       continue;
1527     // Check whether the instruction preceding the DBG_VALUE is in the same
1528     // (sub)scope as the DBG_VALUE.
1529     if (DL->getScope() == PredDL->getScope())
1530       return false;
1531     auto *PredScope = LScopes.findLexicalScope(PredDL);
1532     if (!PredScope || LScope->dominates(PredScope))
1533       return false;
1534   }
1535 
1536   // If the range of the DBG_VALUE is open-ended, report success.
1537   if (!RangeEnd)
1538     return true;
1539 
1540   // Single, constant DBG_VALUEs in the prologue are promoted to be live
1541   // throughout the function. This is a hack, presumably for DWARF v2 and not
1542   // necessarily correct. It would be much better to use a dbg.declare instead
1543   // if we know the constant is live throughout the scope.
1544   if (DbgValue->getOperand(0).isImm() && MBB->pred_empty())
1545     return true;
1546 
1547   // Now check for situations where an "open-ended" DBG_VALUE isn't enough to
1548   // determine eligibility for a single location, e.g. nested scopes, inlined
1549   // functions.
1550   // FIXME: For now we just handle a simple (but common) case where the scope
1551   // is contained in MBB. We could be smarter here.
1552   //
1553   // At this point we know that our scope ends in MBB. So, if RangeEnd exists
1554   // outside of the block we can ignore it; the location is just leaking outside
1555   // its scope.
1556   assert(LScopeEnd->getParent() == MBB && "Scope ends outside MBB");
1557   if (RangeEnd->getParent() != DbgValue->getParent())
1558     return true;
1559 
1560   // The location range and variable's enclosing scope are both contained within
1561   // MBB, test if location terminates before end of scope.
1562   for (auto I = RangeEnd->getIterator(); I != MBB->end(); ++I)
1563     if (&*I == LScopeEnd)
1564       return false;
1565 
1566   // There's a single location which starts at the scope start, and ends at or
1567   // after the scope end.
1568   return true;
1569 }
1570 
1571 /// Build the location list for all DBG_VALUEs in the function that
1572 /// describe the same variable. The resulting DebugLocEntries will have
1573 /// strict monotonically increasing begin addresses and will never
1574 /// overlap. If the resulting list has only one entry that is valid
1575 /// throughout variable's scope return true.
1576 //
1577 // See the definition of DbgValueHistoryMap::Entry for an explanation of the
1578 // different kinds of history map entries. One thing to be aware of is that if
1579 // a debug value is ended by another entry (rather than being valid until the
1580 // end of the function), that entry's instruction may or may not be included in
1581 // the range, depending on if the entry is a clobbering entry (it has an
1582 // instruction that clobbers one or more preceding locations), or if it is an
1583 // (overlapping) debug value entry. This distinction can be seen in the example
1584 // below. The first debug value is ended by the clobbering entry 2, and the
1585 // second and third debug values are ended by the overlapping debug value entry
1586 // 4.
1587 //
1588 // Input:
1589 //
1590 //   History map entries [type, end index, mi]
1591 //
1592 // 0 |      [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)]
1593 // 1 | |    [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)]
1594 // 2 | |    [Clobber, $reg0 = [...], -, -]
1595 // 3   | |  [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)]
1596 // 4        [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)]
1597 //
1598 // Output [start, end) [Value...]:
1599 //
1600 // [0-1)    [(reg0, fragment 0, 32)]
1601 // [1-3)    [(reg0, fragment 0, 32), (reg1, fragment 32, 32)]
1602 // [3-4)    [(reg1, fragment 32, 32), (123, fragment 64, 32)]
1603 // [4-)     [(@g, fragment 0, 96)]
1604 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc,
1605                                    const DbgValueHistoryMap::Entries &Entries) {
1606   using OpenRange =
1607       std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>;
1608   SmallVector<OpenRange, 4> OpenRanges;
1609   bool isSafeForSingleLocation = true;
1610   const MachineInstr *StartDebugMI = nullptr;
1611   const MachineInstr *EndMI = nullptr;
1612 
1613   for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) {
1614     const MachineInstr *Instr = EI->getInstr();
1615 
1616     // Remove all values that are no longer live.
1617     size_t Index = std::distance(EB, EI);
1618     auto Last =
1619         remove_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; });
1620     OpenRanges.erase(Last, OpenRanges.end());
1621 
1622     // If we are dealing with a clobbering entry, this iteration will result in
1623     // a location list entry starting after the clobbering instruction.
1624     const MCSymbol *StartLabel =
1625         EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr);
1626     assert(StartLabel &&
1627            "Forgot label before/after instruction starting a range!");
1628 
1629     const MCSymbol *EndLabel;
1630     if (std::next(EI) == Entries.end()) {
1631       EndLabel = Asm->getFunctionEnd();
1632       if (EI->isClobber())
1633         EndMI = EI->getInstr();
1634     }
1635     else if (std::next(EI)->isClobber())
1636       EndLabel = getLabelAfterInsn(std::next(EI)->getInstr());
1637     else
1638       EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr());
1639     assert(EndLabel && "Forgot label after instruction ending a range!");
1640 
1641     if (EI->isDbgValue())
1642       LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n");
1643 
1644     // If this history map entry has a debug value, add that to the list of
1645     // open ranges and check if its location is valid for a single value
1646     // location.
1647     if (EI->isDbgValue()) {
1648       // Do not add undef debug values, as they are redundant information in
1649       // the location list entries. An undef debug results in an empty location
1650       // description. If there are any non-undef fragments then padding pieces
1651       // with empty location descriptions will automatically be inserted, and if
1652       // all fragments are undef then the whole location list entry is
1653       // redundant.
1654       if (!Instr->isUndefDebugValue()) {
1655         auto Value = getDebugLocValue(Instr);
1656         OpenRanges.emplace_back(EI->getEndIndex(), Value);
1657 
1658         // TODO: Add support for single value fragment locations.
1659         if (Instr->getDebugExpression()->isFragment())
1660           isSafeForSingleLocation = false;
1661 
1662         if (!StartDebugMI)
1663           StartDebugMI = Instr;
1664       } else {
1665         isSafeForSingleLocation = false;
1666       }
1667     }
1668 
1669     // Location list entries with empty location descriptions are redundant
1670     // information in DWARF, so do not emit those.
1671     if (OpenRanges.empty())
1672       continue;
1673 
1674     // Omit entries with empty ranges as they do not have any effect in DWARF.
1675     if (StartLabel == EndLabel) {
1676       LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n");
1677       continue;
1678     }
1679 
1680     SmallVector<DbgValueLoc, 4> Values;
1681     for (auto &R : OpenRanges)
1682       Values.push_back(R.second);
1683     DebugLoc.emplace_back(StartLabel, EndLabel, Values);
1684 
1685     // Attempt to coalesce the ranges of two otherwise identical
1686     // DebugLocEntries.
1687     auto CurEntry = DebugLoc.rbegin();
1688     LLVM_DEBUG({
1689       dbgs() << CurEntry->getValues().size() << " Values:\n";
1690       for (auto &Value : CurEntry->getValues())
1691         Value.dump();
1692       dbgs() << "-----\n";
1693     });
1694 
1695     auto PrevEntry = std::next(CurEntry);
1696     if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry))
1697       DebugLoc.pop_back();
1698   }
1699 
1700   return DebugLoc.size() == 1 && isSafeForSingleLocation &&
1701          validThroughout(LScopes, StartDebugMI, EndMI);
1702 }
1703 
1704 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU,
1705                                             LexicalScope &Scope,
1706                                             const DINode *Node,
1707                                             const DILocation *Location,
1708                                             const MCSymbol *Sym) {
1709   ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode());
1710   if (isa<const DILocalVariable>(Node)) {
1711     ConcreteEntities.push_back(
1712         std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node),
1713                                        Location));
1714     InfoHolder.addScopeVariable(&Scope,
1715         cast<DbgVariable>(ConcreteEntities.back().get()));
1716   } else if (isa<const DILabel>(Node)) {
1717     ConcreteEntities.push_back(
1718         std::make_unique<DbgLabel>(cast<const DILabel>(Node),
1719                                     Location, Sym));
1720     InfoHolder.addScopeLabel(&Scope,
1721         cast<DbgLabel>(ConcreteEntities.back().get()));
1722   }
1723   return ConcreteEntities.back().get();
1724 }
1725 
1726 // Find variables for each lexical scope.
1727 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU,
1728                                    const DISubprogram *SP,
1729                                    DenseSet<InlinedEntity> &Processed) {
1730   // Grab the variable info that was squirreled away in the MMI side-table.
1731   collectVariableInfoFromMFTable(TheCU, Processed);
1732 
1733   for (const auto &I : DbgValues) {
1734     InlinedEntity IV = I.first;
1735     if (Processed.count(IV))
1736       continue;
1737 
1738     // Instruction ranges, specifying where IV is accessible.
1739     const auto &HistoryMapEntries = I.second;
1740     if (HistoryMapEntries.empty())
1741       continue;
1742 
1743     LexicalScope *Scope = nullptr;
1744     const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first);
1745     if (const DILocation *IA = IV.second)
1746       Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA);
1747     else
1748       Scope = LScopes.findLexicalScope(LocalVar->getScope());
1749     // If variable scope is not found then skip this variable.
1750     if (!Scope)
1751       continue;
1752 
1753     Processed.insert(IV);
1754     DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU,
1755                                             *Scope, LocalVar, IV.second));
1756 
1757     const MachineInstr *MInsn = HistoryMapEntries.front().getInstr();
1758     assert(MInsn->isDebugValue() && "History must begin with debug value");
1759 
1760     // Check if there is a single DBG_VALUE, valid throughout the var's scope.
1761     // If the history map contains a single debug value, there may be an
1762     // additional entry which clobbers the debug value.
1763     size_t HistSize = HistoryMapEntries.size();
1764     bool SingleValueWithClobber =
1765         HistSize == 2 && HistoryMapEntries[1].isClobber();
1766     if (HistSize == 1 || SingleValueWithClobber) {
1767       const auto *End =
1768           SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr;
1769       if (validThroughout(LScopes, MInsn, End)) {
1770         RegVar->initializeDbgValue(MInsn);
1771         continue;
1772       }
1773     }
1774 
1775     // Do not emit location lists if .debug_loc secton is disabled.
1776     if (!useLocSection())
1777       continue;
1778 
1779     // Handle multiple DBG_VALUE instructions describing one variable.
1780     DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn);
1781 
1782     // Build the location list for this variable.
1783     SmallVector<DebugLocEntry, 8> Entries;
1784     bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries);
1785 
1786     // Check whether buildLocationList managed to merge all locations to one
1787     // that is valid throughout the variable's scope. If so, produce single
1788     // value location.
1789     if (isValidSingleLocation) {
1790       RegVar->initializeDbgValue(Entries[0].getValues()[0]);
1791       continue;
1792     }
1793 
1794     // If the variable has a DIBasicType, extract it.  Basic types cannot have
1795     // unique identifiers, so don't bother resolving the type with the
1796     // identifier map.
1797     const DIBasicType *BT = dyn_cast<DIBasicType>(
1798         static_cast<const Metadata *>(LocalVar->getType()));
1799 
1800     // Finalize the entry by lowering it into a DWARF bytestream.
1801     for (auto &Entry : Entries)
1802       Entry.finalize(*Asm, List, BT, TheCU);
1803   }
1804 
1805   // For each InlinedEntity collected from DBG_LABEL instructions, convert to
1806   // DWARF-related DbgLabel.
1807   for (const auto &I : DbgLabels) {
1808     InlinedEntity IL = I.first;
1809     const MachineInstr *MI = I.second;
1810     if (MI == nullptr)
1811       continue;
1812 
1813     LexicalScope *Scope = nullptr;
1814     const DILabel *Label = cast<DILabel>(IL.first);
1815     // The scope could have an extra lexical block file.
1816     const DILocalScope *LocalScope =
1817         Label->getScope()->getNonLexicalBlockFileScope();
1818     // Get inlined DILocation if it is inlined label.
1819     if (const DILocation *IA = IL.second)
1820       Scope = LScopes.findInlinedScope(LocalScope, IA);
1821     else
1822       Scope = LScopes.findLexicalScope(LocalScope);
1823     // If label scope is not found then skip this label.
1824     if (!Scope)
1825       continue;
1826 
1827     Processed.insert(IL);
1828     /// At this point, the temporary label is created.
1829     /// Save the temporary label to DbgLabel entity to get the
1830     /// actually address when generating Dwarf DIE.
1831     MCSymbol *Sym = getLabelBeforeInsn(MI);
1832     createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym);
1833   }
1834 
1835   // Collect info for variables/labels that were optimized out.
1836   for (const DINode *DN : SP->getRetainedNodes()) {
1837     if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
1838       continue;
1839     LexicalScope *Scope = nullptr;
1840     if (auto *DV = dyn_cast<DILocalVariable>(DN)) {
1841       Scope = LScopes.findLexicalScope(DV->getScope());
1842     } else if (auto *DL = dyn_cast<DILabel>(DN)) {
1843       Scope = LScopes.findLexicalScope(DL->getScope());
1844     }
1845 
1846     if (Scope)
1847       createConcreteEntity(TheCU, *Scope, DN, nullptr);
1848   }
1849 }
1850 
1851 // Process beginning of an instruction.
1852 void DwarfDebug::beginInstruction(const MachineInstr *MI) {
1853   const MachineFunction &MF = *MI->getMF();
1854   const auto *SP = MF.getFunction().getSubprogram();
1855   bool NoDebug =
1856       !SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug;
1857 
1858   // When describing calls, we need a label for the call instruction.
1859   // TODO: Add support for targets with delay slots.
1860   if (!NoDebug && SP->areAllCallsDescribed() &&
1861       MI->isCandidateForCallSiteEntry(MachineInstr::AnyInBundle) &&
1862       !MI->hasDelaySlot()) {
1863     const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1864     bool IsTail = TII->isTailCall(*MI);
1865     // For tail calls, we need the address of the branch instruction for
1866     // DW_AT_call_pc.
1867     if (IsTail)
1868       requestLabelBeforeInsn(MI);
1869     // For non-tail calls, we need the return address for the call for
1870     // DW_AT_call_return_pc. Under GDB tuning, this information is needed for
1871     // tail calls as well.
1872     requestLabelAfterInsn(MI);
1873   }
1874 
1875   DebugHandlerBase::beginInstruction(MI);
1876   assert(CurMI);
1877 
1878   if (NoDebug)
1879     return;
1880 
1881   // Check if source location changes, but ignore DBG_VALUE and CFI locations.
1882   // If the instruction is part of the function frame setup code, do not emit
1883   // any line record, as there is no correspondence with any user code.
1884   if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup))
1885     return;
1886   const DebugLoc &DL = MI->getDebugLoc();
1887   // When we emit a line-0 record, we don't update PrevInstLoc; so look at
1888   // the last line number actually emitted, to see if it was line 0.
1889   unsigned LastAsmLine =
1890       Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine();
1891 
1892   if (DL == PrevInstLoc) {
1893     // If we have an ongoing unspecified location, nothing to do here.
1894     if (!DL)
1895       return;
1896     // We have an explicit location, same as the previous location.
1897     // But we might be coming back to it after a line 0 record.
1898     if (LastAsmLine == 0 && DL.getLine() != 0) {
1899       // Reinstate the source location but not marked as a statement.
1900       const MDNode *Scope = DL.getScope();
1901       recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0);
1902     }
1903     return;
1904   }
1905 
1906   if (!DL) {
1907     // We have an unspecified location, which might want to be line 0.
1908     // If we have already emitted a line-0 record, don't repeat it.
1909     if (LastAsmLine == 0)
1910       return;
1911     // If user said Don't Do That, don't do that.
1912     if (UnknownLocations == Disable)
1913       return;
1914     // See if we have a reason to emit a line-0 record now.
1915     // Reasons to emit a line-0 record include:
1916     // - User asked for it (UnknownLocations).
1917     // - Instruction has a label, so it's referenced from somewhere else,
1918     //   possibly debug information; we want it to have a source location.
1919     // - Instruction is at the top of a block; we don't want to inherit the
1920     //   location from the physically previous (maybe unrelated) block.
1921     if (UnknownLocations == Enable || PrevLabel ||
1922         (PrevInstBB && PrevInstBB != MI->getParent())) {
1923       // Preserve the file and column numbers, if we can, to save space in
1924       // the encoded line table.
1925       // Do not update PrevInstLoc, it remembers the last non-0 line.
1926       const MDNode *Scope = nullptr;
1927       unsigned Column = 0;
1928       if (PrevInstLoc) {
1929         Scope = PrevInstLoc.getScope();
1930         Column = PrevInstLoc.getCol();
1931       }
1932       recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0);
1933     }
1934     return;
1935   }
1936 
1937   // We have an explicit location, different from the previous location.
1938   // Don't repeat a line-0 record, but otherwise emit the new location.
1939   // (The new location might be an explicit line 0, which we do emit.)
1940   if (DL.getLine() == 0 && LastAsmLine == 0)
1941     return;
1942   unsigned Flags = 0;
1943   if (DL == PrologEndLoc) {
1944     Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT;
1945     PrologEndLoc = DebugLoc();
1946   }
1947   // If the line changed, we call that a new statement; unless we went to
1948   // line 0 and came back, in which case it is not a new statement.
1949   unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine;
1950   if (DL.getLine() && DL.getLine() != OldLine)
1951     Flags |= DWARF2_FLAG_IS_STMT;
1952 
1953   const MDNode *Scope = DL.getScope();
1954   recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
1955 
1956   // If we're not at line 0, remember this location.
1957   if (DL.getLine())
1958     PrevInstLoc = DL;
1959 }
1960 
1961 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) {
1962   // First known non-DBG_VALUE and non-frame setup location marks
1963   // the beginning of the function body.
1964   for (const auto &MBB : *MF)
1965     for (const auto &MI : MBB)
1966       if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
1967           MI.getDebugLoc())
1968         return MI.getDebugLoc();
1969   return DebugLoc();
1970 }
1971 
1972 /// Register a source line with debug info. Returns the  unique label that was
1973 /// emitted and which provides correspondence to the source line list.
1974 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col,
1975                              const MDNode *S, unsigned Flags, unsigned CUID,
1976                              uint16_t DwarfVersion,
1977                              ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) {
1978   StringRef Fn;
1979   unsigned FileNo = 1;
1980   unsigned Discriminator = 0;
1981   if (auto *Scope = cast_or_null<DIScope>(S)) {
1982     Fn = Scope->getFilename();
1983     if (Line != 0 && DwarfVersion >= 4)
1984       if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope))
1985         Discriminator = LBF->getDiscriminator();
1986 
1987     FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID])
1988                  .getOrCreateSourceID(Scope->getFile());
1989   }
1990   Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0,
1991                                          Discriminator, Fn);
1992 }
1993 
1994 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF,
1995                                              unsigned CUID) {
1996   // Get beginning of function.
1997   if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) {
1998     // Ensure the compile unit is created if the function is called before
1999     // beginFunction().
2000     (void)getOrCreateDwarfCompileUnit(
2001         MF.getFunction().getSubprogram()->getUnit());
2002     // We'd like to list the prologue as "not statements" but GDB behaves
2003     // poorly if we do that. Revisit this with caution/GDB (7.5+) testing.
2004     const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram();
2005     ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT,
2006                        CUID, getDwarfVersion(), getUnits());
2007     return PrologEndLoc;
2008   }
2009   return DebugLoc();
2010 }
2011 
2012 // Gather pre-function debug information.  Assumes being called immediately
2013 // after the function entry point has been emitted.
2014 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) {
2015   CurFn = MF;
2016 
2017   auto *SP = MF->getFunction().getSubprogram();
2018   assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode());
2019   if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
2020     return;
2021 
2022   DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
2023 
2024   // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function
2025   // belongs to so that we add to the correct per-cu line table in the
2026   // non-asm case.
2027   if (Asm->OutStreamer->hasRawTextSupport())
2028     // Use a single line table if we are generating assembly.
2029     Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
2030   else
2031     Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID());
2032 
2033   // Record beginning of function.
2034   PrologEndLoc = emitInitialLocDirective(
2035       *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID());
2036 }
2037 
2038 void DwarfDebug::skippedNonDebugFunction() {
2039   // If we don't have a subprogram for this function then there will be a hole
2040   // in the range information. Keep note of this by setting the previously used
2041   // section to nullptr.
2042   PrevCU = nullptr;
2043   CurFn = nullptr;
2044 }
2045 
2046 // Gather and emit post-function debug information.
2047 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) {
2048   const DISubprogram *SP = MF->getFunction().getSubprogram();
2049 
2050   assert(CurFn == MF &&
2051       "endFunction should be called with the same function as beginFunction");
2052 
2053   // Set DwarfDwarfCompileUnitID in MCContext to default value.
2054   Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
2055 
2056   LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
2057   assert(!FnScope || SP == FnScope->getScopeNode());
2058   DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit());
2059   if (TheCU.getCUNode()->isDebugDirectivesOnly()) {
2060     PrevLabel = nullptr;
2061     CurFn = nullptr;
2062     return;
2063   }
2064 
2065   DenseSet<InlinedEntity> Processed;
2066   collectEntityInfo(TheCU, SP, Processed);
2067 
2068   // Add the range of this function to the list of ranges for the CU.
2069   TheCU.addRange({Asm->getFunctionBegin(), Asm->getFunctionEnd()});
2070 
2071   // Under -gmlt, skip building the subprogram if there are no inlined
2072   // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram
2073   // is still needed as we need its source location.
2074   if (!TheCU.getCUNode()->getDebugInfoForProfiling() &&
2075       TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly &&
2076       LScopes.getAbstractScopesList().empty() && !IsDarwin) {
2077     assert(InfoHolder.getScopeVariables().empty());
2078     PrevLabel = nullptr;
2079     CurFn = nullptr;
2080     return;
2081   }
2082 
2083 #ifndef NDEBUG
2084   size_t NumAbstractScopes = LScopes.getAbstractScopesList().size();
2085 #endif
2086   // Construct abstract scopes.
2087   for (LexicalScope *AScope : LScopes.getAbstractScopesList()) {
2088     auto *SP = cast<DISubprogram>(AScope->getScopeNode());
2089     for (const DINode *DN : SP->getRetainedNodes()) {
2090       if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
2091         continue;
2092 
2093       const MDNode *Scope = nullptr;
2094       if (auto *DV = dyn_cast<DILocalVariable>(DN))
2095         Scope = DV->getScope();
2096       else if (auto *DL = dyn_cast<DILabel>(DN))
2097         Scope = DL->getScope();
2098       else
2099         llvm_unreachable("Unexpected DI type!");
2100 
2101       // Collect info for variables/labels that were optimized out.
2102       ensureAbstractEntityIsCreated(TheCU, DN, Scope);
2103       assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes
2104              && "ensureAbstractEntityIsCreated inserted abstract scopes");
2105     }
2106     constructAbstractSubprogramScopeDIE(TheCU, AScope);
2107   }
2108 
2109   ProcessedSPNodes.insert(SP);
2110   DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope);
2111   if (auto *SkelCU = TheCU.getSkeleton())
2112     if (!LScopes.getAbstractScopesList().empty() &&
2113         TheCU.getCUNode()->getSplitDebugInlining())
2114       SkelCU->constructSubprogramScopeDIE(SP, FnScope);
2115 
2116   // Construct call site entries.
2117   constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF);
2118 
2119   // Clear debug info
2120   // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the
2121   // DbgVariables except those that are also in AbstractVariables (since they
2122   // can be used cross-function)
2123   InfoHolder.getScopeVariables().clear();
2124   InfoHolder.getScopeLabels().clear();
2125   PrevLabel = nullptr;
2126   CurFn = nullptr;
2127 }
2128 
2129 // Register a source line with debug info. Returns the  unique label that was
2130 // emitted and which provides correspondence to the source line list.
2131 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S,
2132                                   unsigned Flags) {
2133   ::recordSourceLine(*Asm, Line, Col, S, Flags,
2134                      Asm->OutStreamer->getContext().getDwarfCompileUnitID(),
2135                      getDwarfVersion(), getUnits());
2136 }
2137 
2138 //===----------------------------------------------------------------------===//
2139 // Emit Methods
2140 //===----------------------------------------------------------------------===//
2141 
2142 // Emit the debug info section.
2143 void DwarfDebug::emitDebugInfo() {
2144   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2145   Holder.emitUnits(/* UseOffsets */ false);
2146 }
2147 
2148 // Emit the abbreviation section.
2149 void DwarfDebug::emitAbbreviations() {
2150   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2151 
2152   Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection());
2153 }
2154 
2155 void DwarfDebug::emitStringOffsetsTableHeader() {
2156   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2157   Holder.getStringPool().emitStringOffsetsTableHeader(
2158       *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(),
2159       Holder.getStringOffsetsStartSym());
2160 }
2161 
2162 template <typename AccelTableT>
2163 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section,
2164                            StringRef TableName) {
2165   Asm->OutStreamer->SwitchSection(Section);
2166 
2167   // Emit the full data.
2168   emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol());
2169 }
2170 
2171 void DwarfDebug::emitAccelDebugNames() {
2172   // Don't emit anything if we have no compilation units to index.
2173   if (getUnits().empty())
2174     return;
2175 
2176   emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits());
2177 }
2178 
2179 // Emit visible names into a hashed accelerator table section.
2180 void DwarfDebug::emitAccelNames() {
2181   emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(),
2182             "Names");
2183 }
2184 
2185 // Emit objective C classes and categories into a hashed accelerator table
2186 // section.
2187 void DwarfDebug::emitAccelObjC() {
2188   emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(),
2189             "ObjC");
2190 }
2191 
2192 // Emit namespace dies into a hashed accelerator table.
2193 void DwarfDebug::emitAccelNamespaces() {
2194   emitAccel(AccelNamespace,
2195             Asm->getObjFileLowering().getDwarfAccelNamespaceSection(),
2196             "namespac");
2197 }
2198 
2199 // Emit type dies into a hashed accelerator table.
2200 void DwarfDebug::emitAccelTypes() {
2201   emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(),
2202             "types");
2203 }
2204 
2205 // Public name handling.
2206 // The format for the various pubnames:
2207 //
2208 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU
2209 // for the DIE that is named.
2210 //
2211 // gnu pubnames - offset/index value/name tuples where the offset is the offset
2212 // into the CU and the index value is computed according to the type of value
2213 // for the DIE that is named.
2214 //
2215 // For type units the offset is the offset of the skeleton DIE. For split dwarf
2216 // it's the offset within the debug_info/debug_types dwo section, however, the
2217 // reference in the pubname header doesn't change.
2218 
2219 /// computeIndexValue - Compute the gdb index value for the DIE and CU.
2220 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU,
2221                                                         const DIE *Die) {
2222   // Entities that ended up only in a Type Unit reference the CU instead (since
2223   // the pub entry has offsets within the CU there's no real offset that can be
2224   // provided anyway). As it happens all such entities (namespaces and types,
2225   // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out
2226   // not to be true it would be necessary to persist this information from the
2227   // point at which the entry is added to the index data structure - since by
2228   // the time the index is built from that, the original type/namespace DIE in a
2229   // type unit has already been destroyed so it can't be queried for properties
2230   // like tag, etc.
2231   if (Die->getTag() == dwarf::DW_TAG_compile_unit)
2232     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE,
2233                                           dwarf::GIEL_EXTERNAL);
2234   dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC;
2235 
2236   // We could have a specification DIE that has our most of our knowledge,
2237   // look for that now.
2238   if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) {
2239     DIE &SpecDIE = SpecVal.getDIEEntry().getEntry();
2240     if (SpecDIE.findAttribute(dwarf::DW_AT_external))
2241       Linkage = dwarf::GIEL_EXTERNAL;
2242   } else if (Die->findAttribute(dwarf::DW_AT_external))
2243     Linkage = dwarf::GIEL_EXTERNAL;
2244 
2245   switch (Die->getTag()) {
2246   case dwarf::DW_TAG_class_type:
2247   case dwarf::DW_TAG_structure_type:
2248   case dwarf::DW_TAG_union_type:
2249   case dwarf::DW_TAG_enumeration_type:
2250     return dwarf::PubIndexEntryDescriptor(
2251         dwarf::GIEK_TYPE,
2252         dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage())
2253             ? dwarf::GIEL_EXTERNAL
2254             : dwarf::GIEL_STATIC);
2255   case dwarf::DW_TAG_typedef:
2256   case dwarf::DW_TAG_base_type:
2257   case dwarf::DW_TAG_subrange_type:
2258     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC);
2259   case dwarf::DW_TAG_namespace:
2260     return dwarf::GIEK_TYPE;
2261   case dwarf::DW_TAG_subprogram:
2262     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage);
2263   case dwarf::DW_TAG_variable:
2264     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage);
2265   case dwarf::DW_TAG_enumerator:
2266     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE,
2267                                           dwarf::GIEL_STATIC);
2268   default:
2269     return dwarf::GIEK_NONE;
2270   }
2271 }
2272 
2273 /// emitDebugPubSections - Emit visible names and types into debug pubnames and
2274 /// pubtypes sections.
2275 void DwarfDebug::emitDebugPubSections() {
2276   for (const auto &NU : CUMap) {
2277     DwarfCompileUnit *TheU = NU.second;
2278     if (!TheU->hasDwarfPubSections())
2279       continue;
2280 
2281     bool GnuStyle = TheU->getCUNode()->getNameTableKind() ==
2282                     DICompileUnit::DebugNameTableKind::GNU;
2283 
2284     Asm->OutStreamer->SwitchSection(
2285         GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection()
2286                  : Asm->getObjFileLowering().getDwarfPubNamesSection());
2287     emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames());
2288 
2289     Asm->OutStreamer->SwitchSection(
2290         GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection()
2291                  : Asm->getObjFileLowering().getDwarfPubTypesSection());
2292     emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes());
2293   }
2294 }
2295 
2296 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) {
2297   if (useSectionsAsReferences())
2298     Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(),
2299                          CU.getDebugSectionOffset());
2300   else
2301     Asm->emitDwarfSymbolReference(CU.getLabelBegin());
2302 }
2303 
2304 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name,
2305                                      DwarfCompileUnit *TheU,
2306                                      const StringMap<const DIE *> &Globals) {
2307   if (auto *Skeleton = TheU->getSkeleton())
2308     TheU = Skeleton;
2309 
2310   // Emit the header.
2311   Asm->OutStreamer->AddComment("Length of Public " + Name + " Info");
2312   MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin");
2313   MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end");
2314   Asm->emitLabelDifference(EndLabel, BeginLabel, 4);
2315 
2316   Asm->OutStreamer->emitLabel(BeginLabel);
2317 
2318   Asm->OutStreamer->AddComment("DWARF Version");
2319   Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION);
2320 
2321   Asm->OutStreamer->AddComment("Offset of Compilation Unit Info");
2322   emitSectionReference(*TheU);
2323 
2324   Asm->OutStreamer->AddComment("Compilation Unit Length");
2325   Asm->emitInt32(TheU->getLength());
2326 
2327   // Emit the pubnames for this compilation unit.
2328   for (const auto &GI : Globals) {
2329     const char *Name = GI.getKeyData();
2330     const DIE *Entity = GI.second;
2331 
2332     Asm->OutStreamer->AddComment("DIE offset");
2333     Asm->emitInt32(Entity->getOffset());
2334 
2335     if (GnuStyle) {
2336       dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity);
2337       Asm->OutStreamer->AddComment(
2338           Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) +
2339           ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage));
2340       Asm->emitInt8(Desc.toBits());
2341     }
2342 
2343     Asm->OutStreamer->AddComment("External Name");
2344     Asm->OutStreamer->emitBytes(StringRef(Name, GI.getKeyLength() + 1));
2345   }
2346 
2347   Asm->OutStreamer->AddComment("End Mark");
2348   Asm->emitInt32(0);
2349   Asm->OutStreamer->emitLabel(EndLabel);
2350 }
2351 
2352 /// Emit null-terminated strings into a debug str section.
2353 void DwarfDebug::emitDebugStr() {
2354   MCSection *StringOffsetsSection = nullptr;
2355   if (useSegmentedStringOffsetsTable()) {
2356     emitStringOffsetsTableHeader();
2357     StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection();
2358   }
2359   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2360   Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(),
2361                      StringOffsetsSection, /* UseRelativeOffsets = */ true);
2362 }
2363 
2364 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer,
2365                                    const DebugLocStream::Entry &Entry,
2366                                    const DwarfCompileUnit *CU) {
2367   auto &&Comments = DebugLocs.getComments(Entry);
2368   auto Comment = Comments.begin();
2369   auto End = Comments.end();
2370 
2371   // The expressions are inserted into a byte stream rather early (see
2372   // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that
2373   // need to reference a base_type DIE the offset of that DIE is not yet known.
2374   // To deal with this we instead insert a placeholder early and then extract
2375   // it here and replace it with the real reference.
2376   unsigned PtrSize = Asm->MAI->getCodePointerSize();
2377   DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(),
2378                                     DebugLocs.getBytes(Entry).size()),
2379                           Asm->getDataLayout().isLittleEndian(), PtrSize);
2380   DWARFExpression Expr(Data, PtrSize, Asm->OutContext.getDwarfFormat());
2381 
2382   using Encoding = DWARFExpression::Operation::Encoding;
2383   uint64_t Offset = 0;
2384   for (auto &Op : Expr) {
2385     assert(Op.getCode() != dwarf::DW_OP_const_type &&
2386            "3 operand ops not yet supported");
2387     Streamer.EmitInt8(Op.getCode(), Comment != End ? *(Comment++) : "");
2388     Offset++;
2389     for (unsigned I = 0; I < 2; ++I) {
2390       if (Op.getDescription().Op[I] == Encoding::SizeNA)
2391         continue;
2392       if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) {
2393         uint64_t Offset =
2394             CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset();
2395         assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit");
2396         Streamer.emitULEB128(Offset, "", ULEB128PadSize);
2397         // Make sure comments stay aligned.
2398         for (unsigned J = 0; J < ULEB128PadSize; ++J)
2399           if (Comment != End)
2400             Comment++;
2401       } else {
2402         for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J)
2403           Streamer.EmitInt8(Data.getData()[J], Comment != End ? *(Comment++) : "");
2404       }
2405       Offset = Op.getOperandEndOffset(I);
2406     }
2407     assert(Offset == Op.getEndOffset());
2408   }
2409 }
2410 
2411 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT,
2412                                    const DbgValueLoc &Value,
2413                                    DwarfExpression &DwarfExpr) {
2414   auto *DIExpr = Value.getExpression();
2415   DIExpressionCursor ExprCursor(DIExpr);
2416   DwarfExpr.addFragmentOffset(DIExpr);
2417   // Regular entry.
2418   if (Value.isInt()) {
2419     if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed ||
2420                BT->getEncoding() == dwarf::DW_ATE_signed_char))
2421       DwarfExpr.addSignedConstant(Value.getInt());
2422     else
2423       DwarfExpr.addUnsignedConstant(Value.getInt());
2424   } else if (Value.isLocation()) {
2425     MachineLocation Location = Value.getLoc();
2426     DwarfExpr.setLocation(Location, DIExpr);
2427     DIExpressionCursor Cursor(DIExpr);
2428 
2429     if (DIExpr->isEntryValue())
2430       DwarfExpr.beginEntryValueExpression(Cursor);
2431 
2432     const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
2433     if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg()))
2434       return;
2435     return DwarfExpr.addExpression(std::move(Cursor));
2436   } else if (Value.isTargetIndexLocation()) {
2437     TargetIndexLocation Loc = Value.getTargetIndexLocation();
2438     // TODO TargetIndexLocation is a target-independent. Currently only the WebAssembly-specific
2439     // encoding is supported.
2440     DwarfExpr.addWasmLocation(Loc.Index, static_cast<uint64_t>(Loc.Offset));
2441   } else if (Value.isConstantFP()) {
2442     APInt RawBytes = Value.getConstantFP()->getValueAPF().bitcastToAPInt();
2443     DwarfExpr.addUnsignedConstant(RawBytes);
2444   }
2445   DwarfExpr.addExpression(std::move(ExprCursor));
2446 }
2447 
2448 void DebugLocEntry::finalize(const AsmPrinter &AP,
2449                              DebugLocStream::ListBuilder &List,
2450                              const DIBasicType *BT,
2451                              DwarfCompileUnit &TheCU) {
2452   assert(!Values.empty() &&
2453          "location list entries without values are redundant");
2454   assert(Begin != End && "unexpected location list entry with empty range");
2455   DebugLocStream::EntryBuilder Entry(List, Begin, End);
2456   BufferByteStreamer Streamer = Entry.getStreamer();
2457   DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU);
2458   const DbgValueLoc &Value = Values[0];
2459   if (Value.isFragment()) {
2460     // Emit all fragments that belong to the same variable and range.
2461     assert(llvm::all_of(Values, [](DbgValueLoc P) {
2462           return P.isFragment();
2463         }) && "all values are expected to be fragments");
2464     assert(llvm::is_sorted(Values) && "fragments are expected to be sorted");
2465 
2466     for (auto Fragment : Values)
2467       DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr);
2468 
2469   } else {
2470     assert(Values.size() == 1 && "only fragments may have >1 value");
2471     DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr);
2472   }
2473   DwarfExpr.finalize();
2474   if (DwarfExpr.TagOffset)
2475     List.setTagOffset(*DwarfExpr.TagOffset);
2476 }
2477 
2478 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry,
2479                                            const DwarfCompileUnit *CU) {
2480   // Emit the size.
2481   Asm->OutStreamer->AddComment("Loc expr size");
2482   if (getDwarfVersion() >= 5)
2483     Asm->emitULEB128(DebugLocs.getBytes(Entry).size());
2484   else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max())
2485     Asm->emitInt16(DebugLocs.getBytes(Entry).size());
2486   else {
2487     // The entry is too big to fit into 16 bit, drop it as there is nothing we
2488     // can do.
2489     Asm->emitInt16(0);
2490     return;
2491   }
2492   // Emit the entry.
2493   APByteStreamer Streamer(*Asm);
2494   emitDebugLocEntry(Streamer, Entry, CU);
2495 }
2496 
2497 // Emit the header of a DWARF 5 range list table list table. Returns the symbol
2498 // that designates the end of the table for the caller to emit when the table is
2499 // complete.
2500 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm,
2501                                          const DwarfFile &Holder) {
2502   MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer);
2503 
2504   Asm->OutStreamer->AddComment("Offset entry count");
2505   Asm->emitInt32(Holder.getRangeLists().size());
2506   Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym());
2507 
2508   for (const RangeSpanList &List : Holder.getRangeLists())
2509     Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(), 4);
2510 
2511   return TableEnd;
2512 }
2513 
2514 // Emit the header of a DWARF 5 locations list table. Returns the symbol that
2515 // designates the end of the table for the caller to emit when the table is
2516 // complete.
2517 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm,
2518                                          const DwarfDebug &DD) {
2519   MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer);
2520 
2521   const auto &DebugLocs = DD.getDebugLocs();
2522 
2523   Asm->OutStreamer->AddComment("Offset entry count");
2524   Asm->emitInt32(DebugLocs.getLists().size());
2525   Asm->OutStreamer->emitLabel(DebugLocs.getSym());
2526 
2527   for (const auto &List : DebugLocs.getLists())
2528     Asm->emitLabelDifference(List.Label, DebugLocs.getSym(), 4);
2529 
2530   return TableEnd;
2531 }
2532 
2533 template <typename Ranges, typename PayloadEmitter>
2534 static void emitRangeList(
2535     DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R,
2536     const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair,
2537     unsigned StartxLength, unsigned EndOfList,
2538     StringRef (*StringifyEnum)(unsigned),
2539     bool ShouldUseBaseAddress,
2540     PayloadEmitter EmitPayload) {
2541 
2542   auto Size = Asm->MAI->getCodePointerSize();
2543   bool UseDwarf5 = DD.getDwarfVersion() >= 5;
2544 
2545   // Emit our symbol so we can find the beginning of the range.
2546   Asm->OutStreamer->emitLabel(Sym);
2547 
2548   // Gather all the ranges that apply to the same section so they can share
2549   // a base address entry.
2550   MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges;
2551 
2552   for (const auto &Range : R)
2553     SectionRanges[&Range.Begin->getSection()].push_back(&Range);
2554 
2555   const MCSymbol *CUBase = CU.getBaseAddress();
2556   bool BaseIsSet = false;
2557   for (const auto &P : SectionRanges) {
2558     auto *Base = CUBase;
2559     if (!Base && ShouldUseBaseAddress) {
2560       const MCSymbol *Begin = P.second.front()->Begin;
2561       const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection());
2562       if (!UseDwarf5) {
2563         Base = NewBase;
2564         BaseIsSet = true;
2565         Asm->OutStreamer->emitIntValue(-1, Size);
2566         Asm->OutStreamer->AddComment("  base address");
2567         Asm->OutStreamer->emitSymbolValue(Base, Size);
2568       } else if (NewBase != Begin || P.second.size() > 1) {
2569         // Only use a base address if
2570         //  * the existing pool address doesn't match (NewBase != Begin)
2571         //  * or, there's more than one entry to share the base address
2572         Base = NewBase;
2573         BaseIsSet = true;
2574         Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx));
2575         Asm->emitInt8(BaseAddressx);
2576         Asm->OutStreamer->AddComment("  base address index");
2577         Asm->emitULEB128(DD.getAddressPool().getIndex(Base));
2578       }
2579     } else if (BaseIsSet && !UseDwarf5) {
2580       BaseIsSet = false;
2581       assert(!Base);
2582       Asm->OutStreamer->emitIntValue(-1, Size);
2583       Asm->OutStreamer->emitIntValue(0, Size);
2584     }
2585 
2586     for (const auto *RS : P.second) {
2587       const MCSymbol *Begin = RS->Begin;
2588       const MCSymbol *End = RS->End;
2589       assert(Begin && "Range without a begin symbol?");
2590       assert(End && "Range without an end symbol?");
2591       if (Base) {
2592         if (UseDwarf5) {
2593           // Emit offset_pair when we have a base.
2594           Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair));
2595           Asm->emitInt8(OffsetPair);
2596           Asm->OutStreamer->AddComment("  starting offset");
2597           Asm->emitLabelDifferenceAsULEB128(Begin, Base);
2598           Asm->OutStreamer->AddComment("  ending offset");
2599           Asm->emitLabelDifferenceAsULEB128(End, Base);
2600         } else {
2601           Asm->emitLabelDifference(Begin, Base, Size);
2602           Asm->emitLabelDifference(End, Base, Size);
2603         }
2604       } else if (UseDwarf5) {
2605         Asm->OutStreamer->AddComment(StringifyEnum(StartxLength));
2606         Asm->emitInt8(StartxLength);
2607         Asm->OutStreamer->AddComment("  start index");
2608         Asm->emitULEB128(DD.getAddressPool().getIndex(Begin));
2609         Asm->OutStreamer->AddComment("  length");
2610         Asm->emitLabelDifferenceAsULEB128(End, Begin);
2611       } else {
2612         Asm->OutStreamer->emitSymbolValue(Begin, Size);
2613         Asm->OutStreamer->emitSymbolValue(End, Size);
2614       }
2615       EmitPayload(*RS);
2616     }
2617   }
2618 
2619   if (UseDwarf5) {
2620     Asm->OutStreamer->AddComment(StringifyEnum(EndOfList));
2621     Asm->emitInt8(EndOfList);
2622   } else {
2623     // Terminate the list with two 0 values.
2624     Asm->OutStreamer->emitIntValue(0, Size);
2625     Asm->OutStreamer->emitIntValue(0, Size);
2626   }
2627 }
2628 
2629 // Handles emission of both debug_loclist / debug_loclist.dwo
2630 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) {
2631   emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List),
2632                 *List.CU, dwarf::DW_LLE_base_addressx,
2633                 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length,
2634                 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString,
2635                 /* ShouldUseBaseAddress */ true,
2636                 [&](const DebugLocStream::Entry &E) {
2637                   DD.emitDebugLocEntryLocation(E, List.CU);
2638                 });
2639 }
2640 
2641 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) {
2642   if (DebugLocs.getLists().empty())
2643     return;
2644 
2645   Asm->OutStreamer->SwitchSection(Sec);
2646 
2647   MCSymbol *TableEnd = nullptr;
2648   if (getDwarfVersion() >= 5)
2649     TableEnd = emitLoclistsTableHeader(Asm, *this);
2650 
2651   for (const auto &List : DebugLocs.getLists())
2652     emitLocList(*this, Asm, List);
2653 
2654   if (TableEnd)
2655     Asm->OutStreamer->emitLabel(TableEnd);
2656 }
2657 
2658 // Emit locations into the .debug_loc/.debug_loclists section.
2659 void DwarfDebug::emitDebugLoc() {
2660   emitDebugLocImpl(
2661       getDwarfVersion() >= 5
2662           ? Asm->getObjFileLowering().getDwarfLoclistsSection()
2663           : Asm->getObjFileLowering().getDwarfLocSection());
2664 }
2665 
2666 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section.
2667 void DwarfDebug::emitDebugLocDWO() {
2668   if (getDwarfVersion() >= 5) {
2669     emitDebugLocImpl(
2670         Asm->getObjFileLowering().getDwarfLoclistsDWOSection());
2671 
2672     return;
2673   }
2674 
2675   for (const auto &List : DebugLocs.getLists()) {
2676     Asm->OutStreamer->SwitchSection(
2677         Asm->getObjFileLowering().getDwarfLocDWOSection());
2678     Asm->OutStreamer->emitLabel(List.Label);
2679 
2680     for (const auto &Entry : DebugLocs.getEntries(List)) {
2681       // GDB only supports startx_length in pre-standard split-DWARF.
2682       // (in v5 standard loclists, it currently* /only/ supports base_address +
2683       // offset_pair, so the implementations can't really share much since they
2684       // need to use different representations)
2685       // * as of October 2018, at least
2686       //
2687       // In v5 (see emitLocList), this uses SectionLabels to reuse existing
2688       // addresses in the address pool to minimize object size/relocations.
2689       Asm->emitInt8(dwarf::DW_LLE_startx_length);
2690       unsigned idx = AddrPool.getIndex(Entry.Begin);
2691       Asm->emitULEB128(idx);
2692       // Also the pre-standard encoding is slightly different, emitting this as
2693       // an address-length entry here, but its a ULEB128 in DWARFv5 loclists.
2694       Asm->emitLabelDifference(Entry.End, Entry.Begin, 4);
2695       emitDebugLocEntryLocation(Entry, List.CU);
2696     }
2697     Asm->emitInt8(dwarf::DW_LLE_end_of_list);
2698   }
2699 }
2700 
2701 struct ArangeSpan {
2702   const MCSymbol *Start, *End;
2703 };
2704 
2705 // Emit a debug aranges section, containing a CU lookup for any
2706 // address we can tie back to a CU.
2707 void DwarfDebug::emitDebugARanges() {
2708   // Provides a unique id per text section.
2709   MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap;
2710 
2711   // Filter labels by section.
2712   for (const SymbolCU &SCU : ArangeLabels) {
2713     if (SCU.Sym->isInSection()) {
2714       // Make a note of this symbol and it's section.
2715       MCSection *Section = &SCU.Sym->getSection();
2716       if (!Section->getKind().isMetadata())
2717         SectionMap[Section].push_back(SCU);
2718     } else {
2719       // Some symbols (e.g. common/bss on mach-o) can have no section but still
2720       // appear in the output. This sucks as we rely on sections to build
2721       // arange spans. We can do it without, but it's icky.
2722       SectionMap[nullptr].push_back(SCU);
2723     }
2724   }
2725 
2726   DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans;
2727 
2728   for (auto &I : SectionMap) {
2729     MCSection *Section = I.first;
2730     SmallVector<SymbolCU, 8> &List = I.second;
2731     if (List.size() < 1)
2732       continue;
2733 
2734     // If we have no section (e.g. common), just write out
2735     // individual spans for each symbol.
2736     if (!Section) {
2737       for (const SymbolCU &Cur : List) {
2738         ArangeSpan Span;
2739         Span.Start = Cur.Sym;
2740         Span.End = nullptr;
2741         assert(Cur.CU);
2742         Spans[Cur.CU].push_back(Span);
2743       }
2744       continue;
2745     }
2746 
2747     // Sort the symbols by offset within the section.
2748     llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) {
2749       unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0;
2750       unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0;
2751 
2752       // Symbols with no order assigned should be placed at the end.
2753       // (e.g. section end labels)
2754       if (IA == 0)
2755         return false;
2756       if (IB == 0)
2757         return true;
2758       return IA < IB;
2759     });
2760 
2761     // Insert a final terminator.
2762     List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section)));
2763 
2764     // Build spans between each label.
2765     const MCSymbol *StartSym = List[0].Sym;
2766     for (size_t n = 1, e = List.size(); n < e; n++) {
2767       const SymbolCU &Prev = List[n - 1];
2768       const SymbolCU &Cur = List[n];
2769 
2770       // Try and build the longest span we can within the same CU.
2771       if (Cur.CU != Prev.CU) {
2772         ArangeSpan Span;
2773         Span.Start = StartSym;
2774         Span.End = Cur.Sym;
2775         assert(Prev.CU);
2776         Spans[Prev.CU].push_back(Span);
2777         StartSym = Cur.Sym;
2778       }
2779     }
2780   }
2781 
2782   // Start the dwarf aranges section.
2783   Asm->OutStreamer->SwitchSection(
2784       Asm->getObjFileLowering().getDwarfARangesSection());
2785 
2786   unsigned PtrSize = Asm->MAI->getCodePointerSize();
2787 
2788   // Build a list of CUs used.
2789   std::vector<DwarfCompileUnit *> CUs;
2790   for (const auto &it : Spans) {
2791     DwarfCompileUnit *CU = it.first;
2792     CUs.push_back(CU);
2793   }
2794 
2795   // Sort the CU list (again, to ensure consistent output order).
2796   llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) {
2797     return A->getUniqueID() < B->getUniqueID();
2798   });
2799 
2800   // Emit an arange table for each CU we used.
2801   for (DwarfCompileUnit *CU : CUs) {
2802     std::vector<ArangeSpan> &List = Spans[CU];
2803 
2804     // Describe the skeleton CU's offset and length, not the dwo file's.
2805     if (auto *Skel = CU->getSkeleton())
2806       CU = Skel;
2807 
2808     // Emit size of content not including length itself.
2809     unsigned ContentSize =
2810         sizeof(int16_t) + // DWARF ARange version number
2811         sizeof(int32_t) + // Offset of CU in the .debug_info section
2812         sizeof(int8_t) +  // Pointer Size (in bytes)
2813         sizeof(int8_t);   // Segment Size (in bytes)
2814 
2815     unsigned TupleSize = PtrSize * 2;
2816 
2817     // 7.20 in the Dwarf specs requires the table to be aligned to a tuple.
2818     unsigned Padding =
2819         offsetToAlignment(sizeof(int32_t) + ContentSize, Align(TupleSize));
2820 
2821     ContentSize += Padding;
2822     ContentSize += (List.size() + 1) * TupleSize;
2823 
2824     // For each compile unit, write the list of spans it covers.
2825     Asm->OutStreamer->AddComment("Length of ARange Set");
2826     Asm->emitInt32(ContentSize);
2827     Asm->OutStreamer->AddComment("DWARF Arange version number");
2828     Asm->emitInt16(dwarf::DW_ARANGES_VERSION);
2829     Asm->OutStreamer->AddComment("Offset Into Debug Info Section");
2830     emitSectionReference(*CU);
2831     Asm->OutStreamer->AddComment("Address Size (in bytes)");
2832     Asm->emitInt8(PtrSize);
2833     Asm->OutStreamer->AddComment("Segment Size (in bytes)");
2834     Asm->emitInt8(0);
2835 
2836     Asm->OutStreamer->emitFill(Padding, 0xff);
2837 
2838     for (const ArangeSpan &Span : List) {
2839       Asm->emitLabelReference(Span.Start, PtrSize);
2840 
2841       // Calculate the size as being from the span start to it's end.
2842       if (Span.End) {
2843         Asm->emitLabelDifference(Span.End, Span.Start, PtrSize);
2844       } else {
2845         // For symbols without an end marker (e.g. common), we
2846         // write a single arange entry containing just that one symbol.
2847         uint64_t Size = SymSize[Span.Start];
2848         if (Size == 0)
2849           Size = 1;
2850 
2851         Asm->OutStreamer->emitIntValue(Size, PtrSize);
2852       }
2853     }
2854 
2855     Asm->OutStreamer->AddComment("ARange terminator");
2856     Asm->OutStreamer->emitIntValue(0, PtrSize);
2857     Asm->OutStreamer->emitIntValue(0, PtrSize);
2858   }
2859 }
2860 
2861 /// Emit a single range list. We handle both DWARF v5 and earlier.
2862 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm,
2863                           const RangeSpanList &List) {
2864   emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU,
2865                 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair,
2866                 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list,
2867                 llvm::dwarf::RangeListEncodingString,
2868                 List.CU->getCUNode()->getRangesBaseAddress() ||
2869                     DD.getDwarfVersion() >= 5,
2870                 [](auto) {});
2871 }
2872 
2873 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) {
2874   if (Holder.getRangeLists().empty())
2875     return;
2876 
2877   assert(useRangesSection());
2878   assert(!CUMap.empty());
2879   assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) {
2880     return !Pair.second->getCUNode()->isDebugDirectivesOnly();
2881   }));
2882 
2883   Asm->OutStreamer->SwitchSection(Section);
2884 
2885   MCSymbol *TableEnd = nullptr;
2886   if (getDwarfVersion() >= 5)
2887     TableEnd = emitRnglistsTableHeader(Asm, Holder);
2888 
2889   for (const RangeSpanList &List : Holder.getRangeLists())
2890     emitRangeList(*this, Asm, List);
2891 
2892   if (TableEnd)
2893     Asm->OutStreamer->emitLabel(TableEnd);
2894 }
2895 
2896 /// Emit address ranges into the .debug_ranges section or into the DWARF v5
2897 /// .debug_rnglists section.
2898 void DwarfDebug::emitDebugRanges() {
2899   const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2900 
2901   emitDebugRangesImpl(Holder,
2902                       getDwarfVersion() >= 5
2903                           ? Asm->getObjFileLowering().getDwarfRnglistsSection()
2904                           : Asm->getObjFileLowering().getDwarfRangesSection());
2905 }
2906 
2907 void DwarfDebug::emitDebugRangesDWO() {
2908   emitDebugRangesImpl(InfoHolder,
2909                       Asm->getObjFileLowering().getDwarfRnglistsDWOSection());
2910 }
2911 
2912 /// Emit the header of a DWARF 5 macro section.
2913 static void emitMacroHeader(AsmPrinter *Asm, const DwarfDebug &DD,
2914                             const DwarfCompileUnit &CU) {
2915   enum HeaderFlagMask {
2916 #define HANDLE_MACRO_FLAG(ID, NAME) MACRO_FLAG_##NAME = ID,
2917 #include "llvm/BinaryFormat/Dwarf.def"
2918   };
2919   uint8_t Flags = 0;
2920   Asm->OutStreamer->AddComment("Macro information version");
2921   Asm->emitInt16(5);
2922   // We are setting Offset and line offset flags unconditionally here,
2923   // since we're only supporting DWARF32 and line offset should be mostly
2924   // present.
2925   // FIXME: Add support for DWARF64.
2926   Flags |= MACRO_FLAG_DEBUG_LINE_OFFSET;
2927   Asm->OutStreamer->AddComment("Flags: 32 bit, debug_line_offset present");
2928   Asm->emitInt8(Flags);
2929   Asm->OutStreamer->AddComment("debug_line_offset");
2930   Asm->OutStreamer->emitSymbolValue(CU.getLineTableStartSym(), /*Size=*/4);
2931 }
2932 
2933 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) {
2934   for (auto *MN : Nodes) {
2935     if (auto *M = dyn_cast<DIMacro>(MN))
2936       emitMacro(*M);
2937     else if (auto *F = dyn_cast<DIMacroFile>(MN))
2938       emitMacroFile(*F, U);
2939     else
2940       llvm_unreachable("Unexpected DI type!");
2941   }
2942 }
2943 
2944 void DwarfDebug::emitMacro(DIMacro &M) {
2945   StringRef Name = M.getName();
2946   StringRef Value = M.getValue();
2947   bool UseMacro = getDwarfVersion() >= 5;
2948 
2949   if (UseMacro) {
2950     unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define
2951                         ? dwarf::DW_MACRO_define_strx
2952                         : dwarf::DW_MACRO_undef_strx;
2953     Asm->OutStreamer->AddComment(dwarf::MacroString(Type));
2954     Asm->emitULEB128(Type);
2955     Asm->OutStreamer->AddComment("Line Number");
2956     Asm->emitULEB128(M.getLine());
2957     Asm->OutStreamer->AddComment("Macro String");
2958     if (!Value.empty())
2959       Asm->emitULEB128(this->InfoHolder.getStringPool()
2960                            .getIndexedEntry(*Asm, (Name + " " + Value).str())
2961                            .getIndex());
2962     else
2963       // DW_MACRO_undef_strx doesn't have a value, so just emit the macro
2964       // string.
2965       Asm->emitULEB128(this->InfoHolder.getStringPool()
2966                            .getIndexedEntry(*Asm, (Name).str())
2967                            .getIndex());
2968   } else {
2969     Asm->OutStreamer->AddComment(dwarf::MacinfoString(M.getMacinfoType()));
2970     Asm->emitULEB128(M.getMacinfoType());
2971     Asm->OutStreamer->AddComment("Line Number");
2972     Asm->emitULEB128(M.getLine());
2973     Asm->OutStreamer->AddComment("Macro String");
2974     Asm->OutStreamer->emitBytes(Name);
2975     if (!Value.empty()) {
2976       // There should be one space between macro name and macro value.
2977       Asm->emitInt8(' ');
2978       Asm->OutStreamer->AddComment("Macro Value=");
2979       Asm->OutStreamer->emitBytes(Value);
2980     }
2981     Asm->emitInt8('\0');
2982   }
2983 }
2984 
2985 void DwarfDebug::emitMacroFileImpl(
2986     DIMacroFile &F, DwarfCompileUnit &U, unsigned StartFile, unsigned EndFile,
2987     StringRef (*MacroFormToString)(unsigned Form)) {
2988 
2989   Asm->OutStreamer->AddComment(MacroFormToString(StartFile));
2990   Asm->emitULEB128(StartFile);
2991   Asm->OutStreamer->AddComment("Line Number");
2992   Asm->emitULEB128(F.getLine());
2993   Asm->OutStreamer->AddComment("File Number");
2994   Asm->emitULEB128(U.getOrCreateSourceID(F.getFile()));
2995   handleMacroNodes(F.getElements(), U);
2996   Asm->OutStreamer->AddComment(MacroFormToString(EndFile));
2997   Asm->emitULEB128(EndFile);
2998 }
2999 
3000 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) {
3001   // DWARFv5 macro and DWARFv4 macinfo share some common encodings,
3002   // so for readibility/uniformity, We are explicitly emitting those.
3003   assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file);
3004   bool UseMacro = getDwarfVersion() >= 5;
3005   if (UseMacro)
3006     emitMacroFileImpl(F, U, dwarf::DW_MACRO_start_file,
3007                       dwarf::DW_MACRO_end_file, dwarf::MacroString);
3008   else
3009     emitMacroFileImpl(F, U, dwarf::DW_MACINFO_start_file,
3010                       dwarf::DW_MACINFO_end_file, dwarf::MacinfoString);
3011 }
3012 
3013 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) {
3014   for (const auto &P : CUMap) {
3015     auto &TheCU = *P.second;
3016     auto *SkCU = TheCU.getSkeleton();
3017     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
3018     auto *CUNode = cast<DICompileUnit>(P.first);
3019     DIMacroNodeArray Macros = CUNode->getMacros();
3020     if (Macros.empty())
3021       continue;
3022     Asm->OutStreamer->SwitchSection(Section);
3023     Asm->OutStreamer->emitLabel(U.getMacroLabelBegin());
3024     if (getDwarfVersion() >= 5)
3025       emitMacroHeader(Asm, *this, U);
3026     handleMacroNodes(Macros, U);
3027     Asm->OutStreamer->AddComment("End Of Macro List Mark");
3028     Asm->emitInt8(0);
3029   }
3030 }
3031 
3032 /// Emit macros into a debug macinfo/macro section.
3033 void DwarfDebug::emitDebugMacinfo() {
3034   auto &ObjLower = Asm->getObjFileLowering();
3035   emitDebugMacinfoImpl(getDwarfVersion() >= 5
3036                            ? ObjLower.getDwarfMacroSection()
3037                            : ObjLower.getDwarfMacinfoSection());
3038 }
3039 
3040 void DwarfDebug::emitDebugMacinfoDWO() {
3041   auto &ObjLower = Asm->getObjFileLowering();
3042   emitDebugMacinfoImpl(getDwarfVersion() >= 5
3043                            ? ObjLower.getDwarfMacroDWOSection()
3044                            : ObjLower.getDwarfMacinfoDWOSection());
3045 }
3046 
3047 // DWARF5 Experimental Separate Dwarf emitters.
3048 
3049 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die,
3050                                   std::unique_ptr<DwarfCompileUnit> NewU) {
3051 
3052   if (!CompilationDir.empty())
3053     NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
3054   addGnuPubAttributes(*NewU, Die);
3055 
3056   SkeletonHolder.addUnit(std::move(NewU));
3057 }
3058 
3059 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) {
3060 
3061   auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
3062       CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder,
3063       UnitKind::Skeleton);
3064   DwarfCompileUnit &NewCU = *OwnedUnit;
3065   NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
3066 
3067   NewCU.initStmtList();
3068 
3069   if (useSegmentedStringOffsetsTable())
3070     NewCU.addStringOffsetsStart();
3071 
3072   initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit));
3073 
3074   return NewCU;
3075 }
3076 
3077 // Emit the .debug_info.dwo section for separated dwarf. This contains the
3078 // compile units that would normally be in debug_info.
3079 void DwarfDebug::emitDebugInfoDWO() {
3080   assert(useSplitDwarf() && "No split dwarf debug info?");
3081   // Don't emit relocations into the dwo file.
3082   InfoHolder.emitUnits(/* UseOffsets */ true);
3083 }
3084 
3085 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the
3086 // abbreviations for the .debug_info.dwo section.
3087 void DwarfDebug::emitDebugAbbrevDWO() {
3088   assert(useSplitDwarf() && "No split dwarf?");
3089   InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection());
3090 }
3091 
3092 void DwarfDebug::emitDebugLineDWO() {
3093   assert(useSplitDwarf() && "No split dwarf?");
3094   SplitTypeUnitFileTable.Emit(
3095       *Asm->OutStreamer, MCDwarfLineTableParams(),
3096       Asm->getObjFileLowering().getDwarfLineDWOSection());
3097 }
3098 
3099 void DwarfDebug::emitStringOffsetsTableHeaderDWO() {
3100   assert(useSplitDwarf() && "No split dwarf?");
3101   InfoHolder.getStringPool().emitStringOffsetsTableHeader(
3102       *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(),
3103       InfoHolder.getStringOffsetsStartSym());
3104 }
3105 
3106 // Emit the .debug_str.dwo section for separated dwarf. This contains the
3107 // string section and is identical in format to traditional .debug_str
3108 // sections.
3109 void DwarfDebug::emitDebugStrDWO() {
3110   if (useSegmentedStringOffsetsTable())
3111     emitStringOffsetsTableHeaderDWO();
3112   assert(useSplitDwarf() && "No split dwarf?");
3113   MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection();
3114   InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(),
3115                          OffSec, /* UseRelativeOffsets = */ false);
3116 }
3117 
3118 // Emit address pool.
3119 void DwarfDebug::emitDebugAddr() {
3120   AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection());
3121 }
3122 
3123 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) {
3124   if (!useSplitDwarf())
3125     return nullptr;
3126   const DICompileUnit *DIUnit = CU.getCUNode();
3127   SplitTypeUnitFileTable.maybeSetRootFile(
3128       DIUnit->getDirectory(), DIUnit->getFilename(),
3129       CU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource());
3130   return &SplitTypeUnitFileTable;
3131 }
3132 
3133 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) {
3134   MD5 Hash;
3135   Hash.update(Identifier);
3136   // ... take the least significant 8 bytes and return those. Our MD5
3137   // implementation always returns its results in little endian, so we actually
3138   // need the "high" word.
3139   MD5::MD5Result Result;
3140   Hash.final(Result);
3141   return Result.high();
3142 }
3143 
3144 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
3145                                       StringRef Identifier, DIE &RefDie,
3146                                       const DICompositeType *CTy) {
3147   // Fast path if we're building some type units and one has already used the
3148   // address pool we know we're going to throw away all this work anyway, so
3149   // don't bother building dependent types.
3150   if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed())
3151     return;
3152 
3153   auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0));
3154   if (!Ins.second) {
3155     CU.addDIETypeSignature(RefDie, Ins.first->second);
3156     return;
3157   }
3158 
3159   bool TopLevelType = TypeUnitsUnderConstruction.empty();
3160   AddrPool.resetUsedFlag();
3161 
3162   auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder,
3163                                                     getDwoLineTable(CU));
3164   DwarfTypeUnit &NewTU = *OwnedUnit;
3165   DIE &UnitDie = NewTU.getUnitDie();
3166   TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy);
3167 
3168   NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
3169                 CU.getLanguage());
3170 
3171   uint64_t Signature = makeTypeSignature(Identifier);
3172   NewTU.setTypeSignature(Signature);
3173   Ins.first->second = Signature;
3174 
3175   if (useSplitDwarf()) {
3176     MCSection *Section =
3177         getDwarfVersion() <= 4
3178             ? Asm->getObjFileLowering().getDwarfTypesDWOSection()
3179             : Asm->getObjFileLowering().getDwarfInfoDWOSection();
3180     NewTU.setSection(Section);
3181   } else {
3182     MCSection *Section =
3183         getDwarfVersion() <= 4
3184             ? Asm->getObjFileLowering().getDwarfTypesSection(Signature)
3185             : Asm->getObjFileLowering().getDwarfInfoSection(Signature);
3186     NewTU.setSection(Section);
3187     // Non-split type units reuse the compile unit's line table.
3188     CU.applyStmtList(UnitDie);
3189   }
3190 
3191   // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type
3192   // units.
3193   if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
3194     NewTU.addStringOffsetsStart();
3195 
3196   NewTU.setType(NewTU.createTypeDIE(CTy));
3197 
3198   if (TopLevelType) {
3199     auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction);
3200     TypeUnitsUnderConstruction.clear();
3201 
3202     // Types referencing entries in the address table cannot be placed in type
3203     // units.
3204     if (AddrPool.hasBeenUsed()) {
3205 
3206       // Remove all the types built while building this type.
3207       // This is pessimistic as some of these types might not be dependent on
3208       // the type that used an address.
3209       for (const auto &TU : TypeUnitsToAdd)
3210         TypeSignatures.erase(TU.second);
3211 
3212       // Construct this type in the CU directly.
3213       // This is inefficient because all the dependent types will be rebuilt
3214       // from scratch, including building them in type units, discovering that
3215       // they depend on addresses, throwing them out and rebuilding them.
3216       CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy));
3217       return;
3218     }
3219 
3220     // If the type wasn't dependent on fission addresses, finish adding the type
3221     // and all its dependent types.
3222     for (auto &TU : TypeUnitsToAdd) {
3223       InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get());
3224       InfoHolder.emitUnit(TU.first.get(), useSplitDwarf());
3225     }
3226   }
3227   CU.addDIETypeSignature(RefDie, Signature);
3228 }
3229 
3230 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD)
3231     : DD(DD),
3232       TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)) {
3233   DD->TypeUnitsUnderConstruction.clear();
3234   assert(TypeUnitsUnderConstruction.empty() || !DD->AddrPool.hasBeenUsed());
3235 }
3236 
3237 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() {
3238   DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction);
3239   DD->AddrPool.resetUsedFlag();
3240 }
3241 
3242 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() {
3243   return NonTypeUnitContext(this);
3244 }
3245 
3246 // Add the Name along with its companion DIE to the appropriate accelerator
3247 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for
3248 // AccelTableKind::Apple, we use the table we got as an argument). If
3249 // accelerator tables are disabled, this function does nothing.
3250 template <typename DataT>
3251 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU,
3252                                   AccelTable<DataT> &AppleAccel, StringRef Name,
3253                                   const DIE &Die) {
3254   if (getAccelTableKind() == AccelTableKind::None)
3255     return;
3256 
3257   if (getAccelTableKind() != AccelTableKind::Apple &&
3258       CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default)
3259     return;
3260 
3261   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
3262   DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name);
3263 
3264   switch (getAccelTableKind()) {
3265   case AccelTableKind::Apple:
3266     AppleAccel.addName(Ref, Die);
3267     break;
3268   case AccelTableKind::Dwarf:
3269     AccelDebugNames.addName(Ref, Die);
3270     break;
3271   case AccelTableKind::Default:
3272     llvm_unreachable("Default should have already been resolved.");
3273   case AccelTableKind::None:
3274     llvm_unreachable("None handled above");
3275   }
3276 }
3277 
3278 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name,
3279                               const DIE &Die) {
3280   addAccelNameImpl(CU, AccelNames, Name, Die);
3281 }
3282 
3283 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name,
3284                               const DIE &Die) {
3285   // ObjC names go only into the Apple accelerator tables.
3286   if (getAccelTableKind() == AccelTableKind::Apple)
3287     addAccelNameImpl(CU, AccelObjC, Name, Die);
3288 }
3289 
3290 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name,
3291                                    const DIE &Die) {
3292   addAccelNameImpl(CU, AccelNamespace, Name, Die);
3293 }
3294 
3295 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name,
3296                               const DIE &Die, char Flags) {
3297   addAccelNameImpl(CU, AccelTypes, Name, Die);
3298 }
3299 
3300 uint16_t DwarfDebug::getDwarfVersion() const {
3301   return Asm->OutStreamer->getContext().getDwarfVersion();
3302 }
3303 
3304 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) {
3305   return SectionLabels.find(S)->second;
3306 }
3307 void DwarfDebug::insertSectionLabel(const MCSymbol *S) {
3308   if (SectionLabels.insert(std::make_pair(&S->getSection(), S)).second)
3309     if (useSplitDwarf() || getDwarfVersion() >= 5)
3310       AddrPool.getIndex(S);
3311 }
3312