1 //===-- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing dwarf debug info into asm files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "DwarfDebug.h" 15 #include "ByteStreamer.h" 16 #include "DIEHash.h" 17 #include "DebugLocEntry.h" 18 #include "DwarfCompileUnit.h" 19 #include "DwarfExpression.h" 20 #include "DwarfUnit.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/CodeGen/DIE.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineModuleInfo.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DebugInfo.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ValueHandle.h" 34 #include "llvm/MC/MCAsmInfo.h" 35 #include "llvm/MC/MCDwarf.h" 36 #include "llvm/MC/MCSection.h" 37 #include "llvm/MC/MCStreamer.h" 38 #include "llvm/MC/MCSymbol.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/Dwarf.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/FormattedStream.h" 44 #include "llvm/Support/LEB128.h" 45 #include "llvm/Support/MD5.h" 46 #include "llvm/Support/Path.h" 47 #include "llvm/Support/Timer.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Target/TargetFrameLowering.h" 50 #include "llvm/Target/TargetLoweringObjectFile.h" 51 #include "llvm/Target/TargetMachine.h" 52 #include "llvm/Target/TargetOptions.h" 53 #include "llvm/Target/TargetRegisterInfo.h" 54 #include "llvm/Target/TargetSubtargetInfo.h" 55 56 using namespace llvm; 57 58 #define DEBUG_TYPE "dwarfdebug" 59 60 static cl::opt<bool> 61 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, 62 cl::desc("Disable debug info printing")); 63 64 static cl::opt<bool> 65 GenerateGnuPubSections("generate-gnu-dwarf-pub-sections", cl::Hidden, 66 cl::desc("Generate GNU-style pubnames and pubtypes"), 67 cl::init(false)); 68 69 static cl::opt<bool> GenerateARangeSection("generate-arange-section", 70 cl::Hidden, 71 cl::desc("Generate dwarf aranges"), 72 cl::init(false)); 73 74 namespace { 75 enum DefaultOnOff { Default, Enable, Disable }; 76 } 77 78 static cl::opt<DefaultOnOff> UnknownLocations( 79 "use-unknown-locations", cl::Hidden, 80 cl::desc("Make an absence of debug location information explicit."), 81 cl::values(clEnumVal(Default, "At top of block or after label"), 82 clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")), 83 cl::init(Default)); 84 85 static cl::opt<DefaultOnOff> 86 DwarfAccelTables("dwarf-accel-tables", cl::Hidden, 87 cl::desc("Output prototype dwarf accelerator tables."), 88 cl::values(clEnumVal(Default, "Default for platform"), 89 clEnumVal(Enable, "Enabled"), 90 clEnumVal(Disable, "Disabled")), 91 cl::init(Default)); 92 93 static cl::opt<DefaultOnOff> 94 DwarfPubSections("generate-dwarf-pub-sections", cl::Hidden, 95 cl::desc("Generate DWARF pubnames and pubtypes sections"), 96 cl::values(clEnumVal(Default, "Default for platform"), 97 clEnumVal(Enable, "Enabled"), 98 clEnumVal(Disable, "Disabled")), 99 cl::init(Default)); 100 101 enum LinkageNameOption { 102 DefaultLinkageNames, 103 AllLinkageNames, 104 AbstractLinkageNames 105 }; 106 static cl::opt<LinkageNameOption> 107 DwarfLinkageNames("dwarf-linkage-names", cl::Hidden, 108 cl::desc("Which DWARF linkage-name attributes to emit."), 109 cl::values(clEnumValN(DefaultLinkageNames, "Default", 110 "Default for platform"), 111 clEnumValN(AllLinkageNames, "All", "All"), 112 clEnumValN(AbstractLinkageNames, "Abstract", 113 "Abstract subprograms")), 114 cl::init(DefaultLinkageNames)); 115 116 static const char *const DWARFGroupName = "dwarf"; 117 static const char *const DWARFGroupDescription = "DWARF Emission"; 118 static const char *const DbgTimerName = "writer"; 119 static const char *const DbgTimerDescription = "DWARF Debug Writer"; 120 121 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) { 122 BS.EmitInt8( 123 Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op) 124 : dwarf::OperationEncodingString(Op)); 125 } 126 127 void DebugLocDwarfExpression::emitSigned(int64_t Value) { 128 BS.EmitSLEB128(Value, Twine(Value)); 129 } 130 131 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) { 132 BS.EmitULEB128(Value, Twine(Value)); 133 } 134 135 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI, 136 unsigned MachineReg) { 137 // This information is not available while emitting .debug_loc entries. 138 return false; 139 } 140 141 //===----------------------------------------------------------------------===// 142 143 bool DbgVariable::isBlockByrefVariable() const { 144 assert(Var && "Invalid complex DbgVariable!"); 145 return Var->getType().resolve()->isBlockByrefStruct(); 146 } 147 148 const DIType *DbgVariable::getType() const { 149 DIType *Ty = Var->getType().resolve(); 150 // FIXME: isBlockByrefVariable should be reformulated in terms of complex 151 // addresses instead. 152 if (Ty->isBlockByrefStruct()) { 153 /* Byref variables, in Blocks, are declared by the programmer as 154 "SomeType VarName;", but the compiler creates a 155 __Block_byref_x_VarName struct, and gives the variable VarName 156 either the struct, or a pointer to the struct, as its type. This 157 is necessary for various behind-the-scenes things the compiler 158 needs to do with by-reference variables in blocks. 159 160 However, as far as the original *programmer* is concerned, the 161 variable should still have type 'SomeType', as originally declared. 162 163 The following function dives into the __Block_byref_x_VarName 164 struct to find the original type of the variable. This will be 165 passed back to the code generating the type for the Debug 166 Information Entry for the variable 'VarName'. 'VarName' will then 167 have the original type 'SomeType' in its debug information. 168 169 The original type 'SomeType' will be the type of the field named 170 'VarName' inside the __Block_byref_x_VarName struct. 171 172 NOTE: In order for this to not completely fail on the debugger 173 side, the Debug Information Entry for the variable VarName needs to 174 have a DW_AT_location that tells the debugger how to unwind through 175 the pointers and __Block_byref_x_VarName struct to find the actual 176 value of the variable. The function addBlockByrefType does this. */ 177 DIType *subType = Ty; 178 uint16_t tag = Ty->getTag(); 179 180 if (tag == dwarf::DW_TAG_pointer_type) 181 subType = resolve(cast<DIDerivedType>(Ty)->getBaseType()); 182 183 auto Elements = cast<DICompositeType>(subType)->getElements(); 184 for (unsigned i = 0, N = Elements.size(); i < N; ++i) { 185 auto *DT = cast<DIDerivedType>(Elements[i]); 186 if (getName() == DT->getName()) 187 return resolve(DT->getBaseType()); 188 } 189 } 190 return Ty; 191 } 192 193 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const { 194 if (FrameIndexExprs.size() == 1) 195 return FrameIndexExprs; 196 197 assert(all_of(FrameIndexExprs, 198 [](const FrameIndexExpr &A) { return A.Expr->isFragment(); }) && 199 "multiple FI expressions without DW_OP_LLVM_fragment"); 200 std::sort(FrameIndexExprs.begin(), FrameIndexExprs.end(), 201 [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool { 202 return A.Expr->getFragmentInfo()->OffsetInBits < 203 B.Expr->getFragmentInfo()->OffsetInBits; 204 }); 205 return FrameIndexExprs; 206 } 207 208 static const DwarfAccelTable::Atom TypeAtoms[] = { 209 DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset, dwarf::DW_FORM_data4), 210 DwarfAccelTable::Atom(dwarf::DW_ATOM_die_tag, dwarf::DW_FORM_data2), 211 DwarfAccelTable::Atom(dwarf::DW_ATOM_type_flags, dwarf::DW_FORM_data1)}; 212 213 DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M) 214 : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()), 215 InfoHolder(A, "info_string", DIEValueAllocator), 216 SkeletonHolder(A, "skel_string", DIEValueAllocator), 217 IsDarwin(A->TM.getTargetTriple().isOSDarwin()), 218 AccelNames(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset, 219 dwarf::DW_FORM_data4)), 220 AccelObjC(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset, 221 dwarf::DW_FORM_data4)), 222 AccelNamespace(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset, 223 dwarf::DW_FORM_data4)), 224 AccelTypes(TypeAtoms), DebuggerTuning(DebuggerKind::Default) { 225 226 CurFn = nullptr; 227 const Triple &TT = Asm->TM.getTargetTriple(); 228 229 // Make sure we know our "debugger tuning." The target option takes 230 // precedence; fall back to triple-based defaults. 231 if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default) 232 DebuggerTuning = Asm->TM.Options.DebuggerTuning; 233 else if (IsDarwin) 234 DebuggerTuning = DebuggerKind::LLDB; 235 else if (TT.isPS4CPU()) 236 DebuggerTuning = DebuggerKind::SCE; 237 else 238 DebuggerTuning = DebuggerKind::GDB; 239 240 // Turn on accelerator tables for LLDB by default. 241 if (DwarfAccelTables == Default) 242 HasDwarfAccelTables = tuneForLLDB(); 243 else 244 HasDwarfAccelTables = DwarfAccelTables == Enable; 245 246 HasAppleExtensionAttributes = tuneForLLDB(); 247 248 // Handle split DWARF. 249 HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty(); 250 251 // Pubnames/pubtypes on by default for GDB. 252 if (DwarfPubSections == Default) 253 HasDwarfPubSections = tuneForGDB(); 254 else 255 HasDwarfPubSections = DwarfPubSections == Enable; 256 257 // SCE defaults to linkage names only for abstract subprograms. 258 if (DwarfLinkageNames == DefaultLinkageNames) 259 UseAllLinkageNames = !tuneForSCE(); 260 else 261 UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames; 262 263 unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion; 264 unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber 265 : MMI->getModule()->getDwarfVersion(); 266 // Use dwarf 4 by default if nothing is requested. 267 DwarfVersion = DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION; 268 269 // Work around a GDB bug. GDB doesn't support the standard opcode; 270 // SCE doesn't support GNU's; LLDB prefers the standard opcode, which 271 // is defined as of DWARF 3. 272 // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented 273 // https://sourceware.org/bugzilla/show_bug.cgi?id=11616 274 UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3; 275 276 // GDB does not fully support the DWARF 4 representation for bitfields. 277 UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB(); 278 279 Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion); 280 } 281 282 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h. 283 DwarfDebug::~DwarfDebug() { } 284 285 static bool isObjCClass(StringRef Name) { 286 return Name.startswith("+") || Name.startswith("-"); 287 } 288 289 static bool hasObjCCategory(StringRef Name) { 290 if (!isObjCClass(Name)) 291 return false; 292 293 return Name.find(") ") != StringRef::npos; 294 } 295 296 static void getObjCClassCategory(StringRef In, StringRef &Class, 297 StringRef &Category) { 298 if (!hasObjCCategory(In)) { 299 Class = In.slice(In.find('[') + 1, In.find(' ')); 300 Category = ""; 301 return; 302 } 303 304 Class = In.slice(In.find('[') + 1, In.find('(')); 305 Category = In.slice(In.find('[') + 1, In.find(' ')); 306 } 307 308 static StringRef getObjCMethodName(StringRef In) { 309 return In.slice(In.find(' ') + 1, In.find(']')); 310 } 311 312 // Add the various names to the Dwarf accelerator table names. 313 // TODO: Determine whether or not we should add names for programs 314 // that do not have a DW_AT_name or DW_AT_linkage_name field - this 315 // is only slightly different than the lookup of non-standard ObjC names. 316 void DwarfDebug::addSubprogramNames(const DISubprogram *SP, DIE &Die) { 317 if (!SP->isDefinition()) 318 return; 319 addAccelName(SP->getName(), Die); 320 321 // If the linkage name is different than the name, go ahead and output 322 // that as well into the name table. 323 if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName()) 324 addAccelName(SP->getLinkageName(), Die); 325 326 // If this is an Objective-C selector name add it to the ObjC accelerator 327 // too. 328 if (isObjCClass(SP->getName())) { 329 StringRef Class, Category; 330 getObjCClassCategory(SP->getName(), Class, Category); 331 addAccelObjC(Class, Die); 332 if (Category != "") 333 addAccelObjC(Category, Die); 334 // Also add the base method name to the name table. 335 addAccelName(getObjCMethodName(SP->getName()), Die); 336 } 337 } 338 339 /// Check whether we should create a DIE for the given Scope, return true 340 /// if we don't create a DIE (the corresponding DIE is null). 341 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) { 342 if (Scope->isAbstractScope()) 343 return false; 344 345 // We don't create a DIE if there is no Range. 346 const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges(); 347 if (Ranges.empty()) 348 return true; 349 350 if (Ranges.size() > 1) 351 return false; 352 353 // We don't create a DIE if we have a single Range and the end label 354 // is null. 355 return !getLabelAfterInsn(Ranges.front().second); 356 } 357 358 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) { 359 F(CU); 360 if (auto *SkelCU = CU.getSkeleton()) 361 if (CU.getCUNode()->getSplitDebugInlining()) 362 F(*SkelCU); 363 } 364 365 void DwarfDebug::constructAbstractSubprogramScopeDIE(LexicalScope *Scope) { 366 assert(Scope && Scope->getScopeNode()); 367 assert(Scope->isAbstractScope()); 368 assert(!Scope->getInlinedAt()); 369 370 auto *SP = cast<DISubprogram>(Scope->getScopeNode()); 371 372 ProcessedSPNodes.insert(SP); 373 374 // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram 375 // was inlined from another compile unit. 376 auto &CU = *CUMap.lookup(SP->getUnit()); 377 forBothCUs(CU, [&](DwarfCompileUnit &CU) { 378 CU.constructAbstractSubprogramScopeDIE(Scope); 379 }); 380 } 381 382 void DwarfDebug::addGnuPubAttributes(DwarfUnit &U, DIE &D) const { 383 if (!GenerateGnuPubSections) 384 return; 385 386 U.addFlag(D, dwarf::DW_AT_GNU_pubnames); 387 } 388 389 // Create new DwarfCompileUnit for the given metadata node with tag 390 // DW_TAG_compile_unit. 391 DwarfCompileUnit & 392 DwarfDebug::constructDwarfCompileUnit(const DICompileUnit *DIUnit) { 393 StringRef FN = DIUnit->getFilename(); 394 CompilationDir = DIUnit->getDirectory(); 395 396 auto OwnedUnit = make_unique<DwarfCompileUnit>( 397 InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder); 398 DwarfCompileUnit &NewCU = *OwnedUnit; 399 DIE &Die = NewCU.getUnitDie(); 400 InfoHolder.addUnit(std::move(OwnedUnit)); 401 if (useSplitDwarf()) { 402 NewCU.setSkeleton(constructSkeletonCU(NewCU)); 403 NewCU.addString(Die, dwarf::DW_AT_GNU_dwo_name, 404 Asm->TM.Options.MCOptions.SplitDwarfFile); 405 } 406 407 // LTO with assembly output shares a single line table amongst multiple CUs. 408 // To avoid the compilation directory being ambiguous, let the line table 409 // explicitly describe the directory of all files, never relying on the 410 // compilation directory. 411 if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU) 412 Asm->OutStreamer->getContext().setMCLineTableCompilationDir( 413 NewCU.getUniqueID(), CompilationDir); 414 415 StringRef Producer = DIUnit->getProducer(); 416 StringRef Flags = DIUnit->getFlags(); 417 if (!Flags.empty()) { 418 std::string ProducerWithFlags = Producer.str() + " " + Flags.str(); 419 NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags); 420 } else 421 NewCU.addString(Die, dwarf::DW_AT_producer, Producer); 422 423 NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 424 DIUnit->getSourceLanguage()); 425 NewCU.addString(Die, dwarf::DW_AT_name, FN); 426 427 if (!useSplitDwarf()) { 428 NewCU.initStmtList(); 429 430 // If we're using split dwarf the compilation dir is going to be in the 431 // skeleton CU and so we don't need to duplicate it here. 432 if (!CompilationDir.empty()) 433 NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 434 435 addGnuPubAttributes(NewCU, Die); 436 } 437 438 if (useAppleExtensionAttributes()) { 439 if (DIUnit->isOptimized()) 440 NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized); 441 442 StringRef Flags = DIUnit->getFlags(); 443 if (!Flags.empty()) 444 NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags); 445 446 if (unsigned RVer = DIUnit->getRuntimeVersion()) 447 NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers, 448 dwarf::DW_FORM_data1, RVer); 449 } 450 451 if (useSplitDwarf()) 452 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection()); 453 else 454 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 455 456 if (DIUnit->getDWOId()) { 457 // This CU is either a clang module DWO or a skeleton CU. 458 NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, 459 DIUnit->getDWOId()); 460 if (!DIUnit->getSplitDebugFilename().empty()) 461 // This is a prefabricated skeleton CU. 462 NewCU.addString(Die, dwarf::DW_AT_GNU_dwo_name, 463 DIUnit->getSplitDebugFilename()); 464 } 465 466 CUMap.insert({DIUnit, &NewCU}); 467 CUDieMap.insert({&Die, &NewCU}); 468 return NewCU; 469 } 470 471 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU, 472 const DIImportedEntity *N) { 473 if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope())) 474 D->addChild(TheCU.constructImportedEntityDIE(N)); 475 } 476 477 /// Sort and unique GVEs by comparing their fragment offset. 478 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> & 479 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) { 480 std::sort(GVEs.begin(), GVEs.end(), 481 [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) { 482 if (A.Expr != B.Expr && A.Expr && B.Expr) { 483 auto FragmentA = A.Expr->getFragmentInfo(); 484 auto FragmentB = B.Expr->getFragmentInfo(); 485 if (FragmentA && FragmentB) 486 return FragmentA->OffsetInBits < FragmentB->OffsetInBits; 487 } 488 return false; 489 }); 490 GVEs.erase(std::unique(GVEs.begin(), GVEs.end(), 491 [](DwarfCompileUnit::GlobalExpr A, 492 DwarfCompileUnit::GlobalExpr B) { 493 return A.Expr == B.Expr; 494 }), 495 GVEs.end()); 496 return GVEs; 497 } 498 499 // Emit all Dwarf sections that should come prior to the content. Create 500 // global DIEs and emit initial debug info sections. This is invoked by 501 // the target AsmPrinter. 502 void DwarfDebug::beginModule() { 503 NamedRegionTimer T(DbgTimerName, DbgTimerDescription, DWARFGroupName, 504 DWARFGroupDescription, TimePassesIsEnabled); 505 if (DisableDebugInfoPrinting) 506 return; 507 508 const Module *M = MMI->getModule(); 509 510 unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(), 511 M->debug_compile_units_end()); 512 // Tell MMI whether we have debug info. 513 MMI->setDebugInfoAvailability(NumDebugCUs > 0); 514 SingleCU = NumDebugCUs == 1; 515 DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>> 516 GVMap; 517 for (const GlobalVariable &Global : M->globals()) { 518 SmallVector<DIGlobalVariableExpression *, 1> GVs; 519 Global.getDebugInfo(GVs); 520 for (auto *GVE : GVs) 521 GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()}); 522 } 523 524 for (DICompileUnit *CUNode : M->debug_compile_units()) { 525 DwarfCompileUnit &CU = constructDwarfCompileUnit(CUNode); 526 for (auto *IE : CUNode->getImportedEntities()) 527 CU.addImportedEntity(IE); 528 529 // Global Variables. 530 for (auto *GVE : CUNode->getGlobalVariables()) 531 GVMap[GVE->getVariable()].push_back({nullptr, GVE->getExpression()}); 532 DenseSet<DIGlobalVariable *> Processed; 533 for (auto *GVE : CUNode->getGlobalVariables()) { 534 DIGlobalVariable *GV = GVE->getVariable(); 535 if (Processed.insert(GV).second) 536 CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV])); 537 } 538 539 for (auto *Ty : CUNode->getEnumTypes()) { 540 // The enum types array by design contains pointers to 541 // MDNodes rather than DIRefs. Unique them here. 542 CU.getOrCreateTypeDIE(cast<DIType>(Ty)); 543 } 544 for (auto *Ty : CUNode->getRetainedTypes()) { 545 // The retained types array by design contains pointers to 546 // MDNodes rather than DIRefs. Unique them here. 547 if (DIType *RT = dyn_cast<DIType>(Ty)) 548 // There is no point in force-emitting a forward declaration. 549 CU.getOrCreateTypeDIE(RT); 550 } 551 // Emit imported_modules last so that the relevant context is already 552 // available. 553 for (auto *IE : CUNode->getImportedEntities()) 554 constructAndAddImportedEntityDIE(CU, IE); 555 } 556 } 557 558 void DwarfDebug::finishVariableDefinitions() { 559 for (const auto &Var : ConcreteVariables) { 560 DIE *VariableDie = Var->getDIE(); 561 assert(VariableDie); 562 // FIXME: Consider the time-space tradeoff of just storing the unit pointer 563 // in the ConcreteVariables list, rather than looking it up again here. 564 // DIE::getUnit isn't simple - it walks parent pointers, etc. 565 DwarfCompileUnit *Unit = CUDieMap.lookup(VariableDie->getUnitDie()); 566 assert(Unit); 567 DbgVariable *AbsVar = getExistingAbstractVariable( 568 InlinedVariable(Var->getVariable(), Var->getInlinedAt())); 569 if (AbsVar && AbsVar->getDIE()) { 570 Unit->addDIEEntry(*VariableDie, dwarf::DW_AT_abstract_origin, 571 *AbsVar->getDIE()); 572 } else 573 Unit->applyVariableAttributes(*Var, *VariableDie); 574 } 575 } 576 577 void DwarfDebug::finishSubprogramDefinitions() { 578 for (const DISubprogram *SP : ProcessedSPNodes) 579 if (SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug) 580 forBothCUs(*CUMap.lookup(SP->getUnit()), [&](DwarfCompileUnit &CU) { 581 CU.finishSubprogramDefinition(SP); 582 }); 583 } 584 585 void DwarfDebug::finalizeModuleInfo() { 586 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); 587 588 finishSubprogramDefinitions(); 589 590 finishVariableDefinitions(); 591 592 // Handle anything that needs to be done on a per-unit basis after 593 // all other generation. 594 for (const auto &P : CUMap) { 595 auto &TheCU = *P.second; 596 // Emit DW_AT_containing_type attribute to connect types with their 597 // vtable holding type. 598 TheCU.constructContainingTypeDIEs(); 599 600 // Add CU specific attributes if we need to add any. 601 // If we're splitting the dwarf out now that we've got the entire 602 // CU then add the dwo id to it. 603 auto *SkCU = TheCU.getSkeleton(); 604 if (useSplitDwarf()) { 605 // Emit a unique identifier for this CU. 606 uint64_t ID = DIEHash(Asm).computeCUSignature(TheCU.getUnitDie()); 607 TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 608 dwarf::DW_FORM_data8, ID); 609 SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 610 dwarf::DW_FORM_data8, ID); 611 612 // We don't keep track of which addresses are used in which CU so this 613 // is a bit pessimistic under LTO. 614 if (!AddrPool.isEmpty()) { 615 const MCSymbol *Sym = TLOF.getDwarfAddrSection()->getBeginSymbol(); 616 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_addr_base, 617 Sym, Sym); 618 } 619 if (!SkCU->getRangeLists().empty()) { 620 const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol(); 621 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base, 622 Sym, Sym); 623 } 624 } 625 626 // If we have code split among multiple sections or non-contiguous 627 // ranges of code then emit a DW_AT_ranges attribute on the unit that will 628 // remain in the .o file, otherwise add a DW_AT_low_pc. 629 // FIXME: We should use ranges allow reordering of code ala 630 // .subsections_via_symbols in mach-o. This would mean turning on 631 // ranges for all subprogram DIEs for mach-o. 632 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 633 if (unsigned NumRanges = TheCU.getRanges().size()) { 634 if (NumRanges > 1) 635 // A DW_AT_low_pc attribute may also be specified in combination with 636 // DW_AT_ranges to specify the default base address for use in 637 // location lists (see Section 2.6.2) and range lists (see Section 638 // 2.17.3). 639 U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0); 640 else 641 U.setBaseAddress(TheCU.getRanges().front().getStart()); 642 U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges()); 643 } 644 645 auto *CUNode = cast<DICompileUnit>(P.first); 646 // If compile Unit has macros, emit "DW_AT_macro_info" attribute. 647 if (CUNode->getMacros()) 648 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info, 649 U.getMacroLabelBegin(), 650 TLOF.getDwarfMacinfoSection()->getBeginSymbol()); 651 } 652 653 // Compute DIE offsets and sizes. 654 InfoHolder.computeSizeAndOffsets(); 655 if (useSplitDwarf()) 656 SkeletonHolder.computeSizeAndOffsets(); 657 } 658 659 // Emit all Dwarf sections that should come after the content. 660 void DwarfDebug::endModule() { 661 assert(CurFn == nullptr); 662 assert(CurMI == nullptr); 663 664 // If we aren't actually generating debug info (check beginModule - 665 // conditionalized on !DisableDebugInfoPrinting and the presence of the 666 // llvm.dbg.cu metadata node) 667 if (!MMI->hasDebugInfo()) 668 return; 669 670 // Finalize the debug info for the module. 671 finalizeModuleInfo(); 672 673 emitDebugStr(); 674 675 if (useSplitDwarf()) 676 emitDebugLocDWO(); 677 else 678 // Emit info into a debug loc section. 679 emitDebugLoc(); 680 681 // Corresponding abbreviations into a abbrev section. 682 emitAbbreviations(); 683 684 // Emit all the DIEs into a debug info section. 685 emitDebugInfo(); 686 687 // Emit info into a debug aranges section. 688 if (GenerateARangeSection) 689 emitDebugARanges(); 690 691 // Emit info into a debug ranges section. 692 emitDebugRanges(); 693 694 // Emit info into a debug macinfo section. 695 emitDebugMacinfo(); 696 697 if (useSplitDwarf()) { 698 emitDebugStrDWO(); 699 emitDebugInfoDWO(); 700 emitDebugAbbrevDWO(); 701 emitDebugLineDWO(); 702 // Emit DWO addresses. 703 AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection()); 704 } 705 706 // Emit info into the dwarf accelerator table sections. 707 if (useDwarfAccelTables()) { 708 emitAccelNames(); 709 emitAccelObjC(); 710 emitAccelNamespaces(); 711 emitAccelTypes(); 712 } 713 714 // Emit the pubnames and pubtypes sections if requested. 715 if (HasDwarfPubSections) { 716 emitDebugPubNames(GenerateGnuPubSections); 717 emitDebugPubTypes(GenerateGnuPubSections); 718 } 719 720 // clean up. 721 AbstractVariables.clear(); 722 } 723 724 // Find abstract variable, if any, associated with Var. 725 DbgVariable * 726 DwarfDebug::getExistingAbstractVariable(InlinedVariable IV, 727 const DILocalVariable *&Cleansed) { 728 // More then one inlined variable corresponds to one abstract variable. 729 Cleansed = IV.first; 730 auto I = AbstractVariables.find(Cleansed); 731 if (I != AbstractVariables.end()) 732 return I->second.get(); 733 return nullptr; 734 } 735 736 DbgVariable *DwarfDebug::getExistingAbstractVariable(InlinedVariable IV) { 737 const DILocalVariable *Cleansed; 738 return getExistingAbstractVariable(IV, Cleansed); 739 } 740 741 void DwarfDebug::createAbstractVariable(const DILocalVariable *Var, 742 LexicalScope *Scope) { 743 assert(Scope && Scope->isAbstractScope()); 744 auto AbsDbgVariable = make_unique<DbgVariable>(Var, /* IA */ nullptr); 745 InfoHolder.addScopeVariable(Scope, AbsDbgVariable.get()); 746 AbstractVariables[Var] = std::move(AbsDbgVariable); 747 } 748 749 void DwarfDebug::ensureAbstractVariableIsCreated(InlinedVariable IV, 750 const MDNode *ScopeNode) { 751 const DILocalVariable *Cleansed = nullptr; 752 if (getExistingAbstractVariable(IV, Cleansed)) 753 return; 754 755 createAbstractVariable(Cleansed, LScopes.getOrCreateAbstractScope( 756 cast<DILocalScope>(ScopeNode))); 757 } 758 759 void DwarfDebug::ensureAbstractVariableIsCreatedIfScoped( 760 InlinedVariable IV, const MDNode *ScopeNode) { 761 const DILocalVariable *Cleansed = nullptr; 762 if (getExistingAbstractVariable(IV, Cleansed)) 763 return; 764 765 if (LexicalScope *Scope = 766 LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode))) 767 createAbstractVariable(Cleansed, Scope); 768 } 769 770 // Collect variable information from side table maintained by MF. 771 void DwarfDebug::collectVariableInfoFromMFTable( 772 DenseSet<InlinedVariable> &Processed) { 773 for (const auto &VI : Asm->MF->getVariableDbgInfo()) { 774 if (!VI.Var) 775 continue; 776 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 777 "Expected inlined-at fields to agree"); 778 779 InlinedVariable Var(VI.Var, VI.Loc->getInlinedAt()); 780 Processed.insert(Var); 781 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 782 783 // If variable scope is not found then skip this variable. 784 if (!Scope) 785 continue; 786 787 ensureAbstractVariableIsCreatedIfScoped(Var, Scope->getScopeNode()); 788 auto RegVar = make_unique<DbgVariable>(Var.first, Var.second); 789 RegVar->initializeMMI(VI.Expr, VI.Slot); 790 if (InfoHolder.addScopeVariable(Scope, RegVar.get())) 791 ConcreteVariables.push_back(std::move(RegVar)); 792 } 793 } 794 795 // Get .debug_loc entry for the instruction range starting at MI. 796 static DebugLocEntry::Value getDebugLocValue(const MachineInstr *MI) { 797 const DIExpression *Expr = MI->getDebugExpression(); 798 799 assert(MI->getNumOperands() == 4); 800 if (MI->getOperand(0).isReg()) { 801 MachineLocation MLoc; 802 // If the second operand is an immediate, this is a 803 // register-indirect address. 804 if (!MI->getOperand(1).isImm()) 805 MLoc.set(MI->getOperand(0).getReg()); 806 else 807 MLoc.set(MI->getOperand(0).getReg(), MI->getOperand(1).getImm()); 808 return DebugLocEntry::Value(Expr, MLoc); 809 } 810 if (MI->getOperand(0).isImm()) 811 return DebugLocEntry::Value(Expr, MI->getOperand(0).getImm()); 812 if (MI->getOperand(0).isFPImm()) 813 return DebugLocEntry::Value(Expr, MI->getOperand(0).getFPImm()); 814 if (MI->getOperand(0).isCImm()) 815 return DebugLocEntry::Value(Expr, MI->getOperand(0).getCImm()); 816 817 llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!"); 818 } 819 820 /// \brief If this and Next are describing different fragments of the same 821 /// variable, merge them by appending Next's values to the current 822 /// list of values. 823 /// Return true if the merge was successful. 824 bool DebugLocEntry::MergeValues(const DebugLocEntry &Next) { 825 if (Begin == Next.Begin) { 826 auto *FirstExpr = cast<DIExpression>(Values[0].Expression); 827 auto *FirstNextExpr = cast<DIExpression>(Next.Values[0].Expression); 828 if (!FirstExpr->isFragment() || !FirstNextExpr->isFragment()) 829 return false; 830 831 // We can only merge entries if none of the fragments overlap any others. 832 // In doing so, we can take advantage of the fact that both lists are 833 // sorted. 834 for (unsigned i = 0, j = 0; i < Values.size(); ++i) { 835 for (; j < Next.Values.size(); ++j) { 836 int res = DebugHandlerBase::fragmentCmp( 837 cast<DIExpression>(Values[i].Expression), 838 cast<DIExpression>(Next.Values[j].Expression)); 839 if (res == 0) // The two expressions overlap, we can't merge. 840 return false; 841 // Values[i] is entirely before Next.Values[j], 842 // so go back to the next entry of Values. 843 else if (res == -1) 844 break; 845 // Next.Values[j] is entirely before Values[i], so go on to the 846 // next entry of Next.Values. 847 } 848 } 849 850 addValues(Next.Values); 851 End = Next.End; 852 return true; 853 } 854 return false; 855 } 856 857 /// Build the location list for all DBG_VALUEs in the function that 858 /// describe the same variable. If the ranges of several independent 859 /// fragments of the same variable overlap partially, split them up and 860 /// combine the ranges. The resulting DebugLocEntries are will have 861 /// strict monotonically increasing begin addresses and will never 862 /// overlap. 863 // 864 // Input: 865 // 866 // Ranges History [var, loc, fragment ofs size] 867 // 0 | [x, (reg0, fragment 0, 32)] 868 // 1 | | [x, (reg1, fragment 32, 32)] <- IsFragmentOfPrevEntry 869 // 2 | | ... 870 // 3 | [clobber reg0] 871 // 4 [x, (mem, fragment 0, 64)] <- overlapping with both previous fragments of 872 // x. 873 // 874 // Output: 875 // 876 // [0-1] [x, (reg0, fragment 0, 32)] 877 // [1-3] [x, (reg0, fragment 0, 32), (reg1, fragment 32, 32)] 878 // [3-4] [x, (reg1, fragment 32, 32)] 879 // [4- ] [x, (mem, fragment 0, 64)] 880 void 881 DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc, 882 const DbgValueHistoryMap::InstrRanges &Ranges) { 883 SmallVector<DebugLocEntry::Value, 4> OpenRanges; 884 885 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 886 const MachineInstr *Begin = I->first; 887 const MachineInstr *End = I->second; 888 assert(Begin->isDebugValue() && "Invalid History entry"); 889 890 // Check if a variable is inaccessible in this range. 891 if (Begin->getNumOperands() > 1 && 892 Begin->getOperand(0).isReg() && !Begin->getOperand(0).getReg()) { 893 OpenRanges.clear(); 894 continue; 895 } 896 897 // If this fragment overlaps with any open ranges, truncate them. 898 const DIExpression *DIExpr = Begin->getDebugExpression(); 899 auto Last = remove_if(OpenRanges, [&](DebugLocEntry::Value R) { 900 return fragmentsOverlap(DIExpr, R.getExpression()); 901 }); 902 OpenRanges.erase(Last, OpenRanges.end()); 903 904 const MCSymbol *StartLabel = getLabelBeforeInsn(Begin); 905 assert(StartLabel && "Forgot label before DBG_VALUE starting a range!"); 906 907 const MCSymbol *EndLabel; 908 if (End != nullptr) 909 EndLabel = getLabelAfterInsn(End); 910 else if (std::next(I) == Ranges.end()) 911 EndLabel = Asm->getFunctionEnd(); 912 else 913 EndLabel = getLabelBeforeInsn(std::next(I)->first); 914 assert(EndLabel && "Forgot label after instruction ending a range!"); 915 916 DEBUG(dbgs() << "DotDebugLoc: " << *Begin << "\n"); 917 918 auto Value = getDebugLocValue(Begin); 919 DebugLocEntry Loc(StartLabel, EndLabel, Value); 920 bool couldMerge = false; 921 922 // If this is a fragment, it may belong to the current DebugLocEntry. 923 if (DIExpr->isFragment()) { 924 // Add this value to the list of open ranges. 925 OpenRanges.push_back(Value); 926 927 // Attempt to add the fragment to the last entry. 928 if (!DebugLoc.empty()) 929 if (DebugLoc.back().MergeValues(Loc)) 930 couldMerge = true; 931 } 932 933 if (!couldMerge) { 934 // Need to add a new DebugLocEntry. Add all values from still 935 // valid non-overlapping fragments. 936 if (OpenRanges.size()) 937 Loc.addValues(OpenRanges); 938 939 DebugLoc.push_back(std::move(Loc)); 940 } 941 942 // Attempt to coalesce the ranges of two otherwise identical 943 // DebugLocEntries. 944 auto CurEntry = DebugLoc.rbegin(); 945 DEBUG({ 946 dbgs() << CurEntry->getValues().size() << " Values:\n"; 947 for (auto &Value : CurEntry->getValues()) 948 Value.dump(); 949 dbgs() << "-----\n"; 950 }); 951 952 auto PrevEntry = std::next(CurEntry); 953 if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry)) 954 DebugLoc.pop_back(); 955 } 956 } 957 958 DbgVariable *DwarfDebug::createConcreteVariable(LexicalScope &Scope, 959 InlinedVariable IV) { 960 ensureAbstractVariableIsCreatedIfScoped(IV, Scope.getScopeNode()); 961 ConcreteVariables.push_back(make_unique<DbgVariable>(IV.first, IV.second)); 962 InfoHolder.addScopeVariable(&Scope, ConcreteVariables.back().get()); 963 return ConcreteVariables.back().get(); 964 } 965 966 // Determine whether this DBG_VALUE is valid at the beginning of the function. 967 static bool validAtEntry(const MachineInstr *MInsn) { 968 auto MBB = MInsn->getParent(); 969 // Is it in the entry basic block? 970 if (!MBB->pred_empty()) 971 return false; 972 for (MachineBasicBlock::const_reverse_iterator I(MInsn); I != MBB->rend(); ++I) 973 if (!(I->isDebugValue() || I->getFlag(MachineInstr::FrameSetup))) 974 return false; 975 return true; 976 } 977 978 // Find variables for each lexical scope. 979 void DwarfDebug::collectVariableInfo(DwarfCompileUnit &TheCU, 980 const DISubprogram *SP, 981 DenseSet<InlinedVariable> &Processed) { 982 // Grab the variable info that was squirreled away in the MMI side-table. 983 collectVariableInfoFromMFTable(Processed); 984 985 for (const auto &I : DbgValues) { 986 InlinedVariable IV = I.first; 987 if (Processed.count(IV)) 988 continue; 989 990 // Instruction ranges, specifying where IV is accessible. 991 const auto &Ranges = I.second; 992 if (Ranges.empty()) 993 continue; 994 995 LexicalScope *Scope = nullptr; 996 if (const DILocation *IA = IV.second) 997 Scope = LScopes.findInlinedScope(IV.first->getScope(), IA); 998 else 999 Scope = LScopes.findLexicalScope(IV.first->getScope()); 1000 // If variable scope is not found then skip this variable. 1001 if (!Scope) 1002 continue; 1003 1004 Processed.insert(IV); 1005 DbgVariable *RegVar = createConcreteVariable(*Scope, IV); 1006 1007 const MachineInstr *MInsn = Ranges.front().first; 1008 assert(MInsn->isDebugValue() && "History must begin with debug value"); 1009 1010 // Check if there is a single DBG_VALUE, valid throughout the function. 1011 // A single constant is also considered valid for the entire function. 1012 if (Ranges.size() == 1 && 1013 (MInsn->getOperand(0).isImm() || 1014 (validAtEntry(MInsn) && Ranges.front().second == nullptr))) { 1015 RegVar->initializeDbgValue(MInsn); 1016 continue; 1017 } 1018 1019 // Handle multiple DBG_VALUE instructions describing one variable. 1020 DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn); 1021 1022 // Build the location list for this variable. 1023 SmallVector<DebugLocEntry, 8> Entries; 1024 buildLocationList(Entries, Ranges); 1025 1026 // If the variable has a DIBasicType, extract it. Basic types cannot have 1027 // unique identifiers, so don't bother resolving the type with the 1028 // identifier map. 1029 const DIBasicType *BT = dyn_cast<DIBasicType>( 1030 static_cast<const Metadata *>(IV.first->getType())); 1031 1032 // Finalize the entry by lowering it into a DWARF bytestream. 1033 for (auto &Entry : Entries) 1034 Entry.finalize(*Asm, List, BT); 1035 } 1036 1037 // Collect info for variables that were optimized out. 1038 for (const DILocalVariable *DV : SP->getVariables()) { 1039 if (Processed.insert(InlinedVariable(DV, nullptr)).second) 1040 if (LexicalScope *Scope = LScopes.findLexicalScope(DV->getScope())) 1041 createConcreteVariable(*Scope, InlinedVariable(DV, nullptr)); 1042 } 1043 } 1044 1045 // Process beginning of an instruction. 1046 void DwarfDebug::beginInstruction(const MachineInstr *MI) { 1047 DebugHandlerBase::beginInstruction(MI); 1048 assert(CurMI); 1049 1050 // Check if source location changes, but ignore DBG_VALUE and CFI locations. 1051 if (MI->isDebugValue() || MI->isCFIInstruction()) 1052 return; 1053 const DebugLoc &DL = MI->getDebugLoc(); 1054 // When we emit a line-0 record, we don't update PrevInstLoc; so look at 1055 // the last line number actually emitted, to see if it was line 0. 1056 unsigned LastAsmLine = 1057 Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine(); 1058 1059 if (DL == PrevInstLoc) { 1060 // If we have an ongoing unspecified location, nothing to do here. 1061 if (!DL) 1062 return; 1063 // We have an explicit location, same as the previous location. 1064 // But we might be coming back to it after a line 0 record. 1065 if (LastAsmLine == 0 && DL.getLine() != 0) { 1066 // Reinstate the source location but not marked as a statement. 1067 const MDNode *Scope = DL.getScope(); 1068 recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0); 1069 } 1070 return; 1071 } 1072 1073 if (!DL) { 1074 // We have an unspecified location, which might want to be line 0. 1075 // If we have already emitted a line-0 record, don't repeat it. 1076 if (LastAsmLine == 0) 1077 return; 1078 // If user said Don't Do That, don't do that. 1079 if (UnknownLocations == Disable) 1080 return; 1081 // See if we have a reason to emit a line-0 record now. 1082 // Reasons to emit a line-0 record include: 1083 // - User asked for it (UnknownLocations). 1084 // - Instruction has a label, so it's referenced from somewhere else, 1085 // possibly debug information; we want it to have a source location. 1086 // - Instruction is at the top of a block; we don't want to inherit the 1087 // location from the physically previous (maybe unrelated) block. 1088 if (UnknownLocations == Enable || PrevLabel || 1089 (PrevInstBB && PrevInstBB != MI->getParent())) { 1090 // Preserve the file and column numbers, if we can, to save space in 1091 // the encoded line table. 1092 // Do not update PrevInstLoc, it remembers the last non-0 line. 1093 const MDNode *Scope = nullptr; 1094 unsigned Column = 0; 1095 if (PrevInstLoc) { 1096 Scope = PrevInstLoc.getScope(); 1097 Column = PrevInstLoc.getCol(); 1098 } 1099 recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0); 1100 } 1101 return; 1102 } 1103 1104 // We have an explicit location, different from the previous location. 1105 // Don't repeat a line-0 record, but otherwise emit the new location. 1106 // (The new location might be an explicit line 0, which we do emit.) 1107 if (PrevInstLoc && DL.getLine() == 0 && LastAsmLine == 0) 1108 return; 1109 unsigned Flags = 0; 1110 if (DL == PrologEndLoc) { 1111 Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT; 1112 PrologEndLoc = DebugLoc(); 1113 } 1114 // If the line changed, we call that a new statement; unless we went to 1115 // line 0 and came back, in which case it is not a new statement. 1116 unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine; 1117 if (DL.getLine() && DL.getLine() != OldLine) 1118 Flags |= DWARF2_FLAG_IS_STMT; 1119 1120 const MDNode *Scope = DL.getScope(); 1121 recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags); 1122 1123 // If we're not at line 0, remember this location. 1124 if (DL.getLine()) 1125 PrevInstLoc = DL; 1126 } 1127 1128 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) { 1129 // First known non-DBG_VALUE and non-frame setup location marks 1130 // the beginning of the function body. 1131 for (const auto &MBB : *MF) 1132 for (const auto &MI : MBB) 1133 if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) && 1134 MI.getDebugLoc()) 1135 return MI.getDebugLoc(); 1136 return DebugLoc(); 1137 } 1138 1139 // Gather pre-function debug information. Assumes being called immediately 1140 // after the function entry point has been emitted. 1141 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) { 1142 CurFn = MF; 1143 1144 if (LScopes.empty()) 1145 return; 1146 1147 // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function 1148 // belongs to so that we add to the correct per-cu line table in the 1149 // non-asm case. 1150 LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); 1151 // FnScope->getScopeNode() and DI->second should represent the same function, 1152 // though they may not be the same MDNode due to inline functions merged in 1153 // LTO where the debug info metadata still differs (either due to distinct 1154 // written differences - two versions of a linkonce_odr function 1155 // written/copied into two separate files, or some sub-optimal metadata that 1156 // isn't structurally identical (see: file path/name info from clang, which 1157 // includes the directory of the cpp file being built, even when the file name 1158 // is absolute (such as an <> lookup header))) 1159 auto *SP = cast<DISubprogram>(FnScope->getScopeNode()); 1160 DwarfCompileUnit *TheCU = CUMap.lookup(SP->getUnit()); 1161 if (!TheCU) { 1162 assert(SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug && 1163 "DICompileUnit missing from llvm.dbg.cu?"); 1164 return; 1165 } 1166 if (Asm->OutStreamer->hasRawTextSupport()) 1167 // Use a single line table if we are generating assembly. 1168 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 1169 else 1170 Asm->OutStreamer->getContext().setDwarfCompileUnitID(TheCU->getUniqueID()); 1171 1172 // Record beginning of function. 1173 PrologEndLoc = findPrologueEndLoc(MF); 1174 if (DILocation *L = PrologEndLoc) { 1175 // We'd like to list the prologue as "not statements" but GDB behaves 1176 // poorly if we do that. Revisit this with caution/GDB (7.5+) testing. 1177 auto *SP = L->getInlinedAtScope()->getSubprogram(); 1178 recordSourceLine(SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT); 1179 } 1180 } 1181 1182 void DwarfDebug::skippedNonDebugFunction() { 1183 // If we don't have a subprogram for this function then there will be a hole 1184 // in the range information. Keep note of this by setting the previously used 1185 // section to nullptr. 1186 PrevCU = nullptr; 1187 CurFn = nullptr; 1188 } 1189 1190 // Gather and emit post-function debug information. 1191 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) { 1192 const DISubprogram *SP = MF->getFunction()->getSubprogram(); 1193 1194 assert(CurFn == MF && 1195 "endFunction should be called with the same function as beginFunction"); 1196 1197 // Set DwarfDwarfCompileUnitID in MCContext to default value. 1198 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 1199 1200 LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); 1201 assert(!FnScope || SP == FnScope->getScopeNode()); 1202 DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit()); 1203 1204 DenseSet<InlinedVariable> ProcessedVars; 1205 collectVariableInfo(TheCU, SP, ProcessedVars); 1206 1207 // Add the range of this function to the list of ranges for the CU. 1208 TheCU.addRange(RangeSpan(Asm->getFunctionBegin(), Asm->getFunctionEnd())); 1209 1210 // Under -gmlt, skip building the subprogram if there are no inlined 1211 // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram 1212 // is still needed as we need its source location. 1213 if (!TheCU.getCUNode()->getDebugInfoForProfiling() && 1214 TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly && 1215 LScopes.getAbstractScopesList().empty() && !IsDarwin) { 1216 assert(InfoHolder.getScopeVariables().empty()); 1217 PrevLabel = nullptr; 1218 CurFn = nullptr; 1219 return; 1220 } 1221 1222 #ifndef NDEBUG 1223 size_t NumAbstractScopes = LScopes.getAbstractScopesList().size(); 1224 #endif 1225 // Construct abstract scopes. 1226 for (LexicalScope *AScope : LScopes.getAbstractScopesList()) { 1227 auto *SP = cast<DISubprogram>(AScope->getScopeNode()); 1228 // Collect info for variables that were optimized out. 1229 for (const DILocalVariable *DV : SP->getVariables()) { 1230 if (!ProcessedVars.insert(InlinedVariable(DV, nullptr)).second) 1231 continue; 1232 ensureAbstractVariableIsCreated(InlinedVariable(DV, nullptr), 1233 DV->getScope()); 1234 assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes 1235 && "ensureAbstractVariableIsCreated inserted abstract scopes"); 1236 } 1237 constructAbstractSubprogramScopeDIE(AScope); 1238 } 1239 1240 ProcessedSPNodes.insert(SP); 1241 TheCU.constructSubprogramScopeDIE(SP, FnScope); 1242 if (auto *SkelCU = TheCU.getSkeleton()) 1243 if (!LScopes.getAbstractScopesList().empty() && 1244 TheCU.getCUNode()->getSplitDebugInlining()) 1245 SkelCU->constructSubprogramScopeDIE(SP, FnScope); 1246 1247 // Clear debug info 1248 // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the 1249 // DbgVariables except those that are also in AbstractVariables (since they 1250 // can be used cross-function) 1251 InfoHolder.getScopeVariables().clear(); 1252 PrevLabel = nullptr; 1253 CurFn = nullptr; 1254 } 1255 1256 // Register a source line with debug info. Returns the unique label that was 1257 // emitted and which provides correspondence to the source line list. 1258 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S, 1259 unsigned Flags) { 1260 StringRef Fn; 1261 StringRef Dir; 1262 unsigned Src = 1; 1263 unsigned Discriminator = 0; 1264 if (auto *Scope = cast_or_null<DIScope>(S)) { 1265 Fn = Scope->getFilename(); 1266 Dir = Scope->getDirectory(); 1267 if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope)) 1268 if (getDwarfVersion() >= 4) 1269 Discriminator = LBF->getDiscriminator(); 1270 1271 unsigned CUID = Asm->OutStreamer->getContext().getDwarfCompileUnitID(); 1272 Src = static_cast<DwarfCompileUnit &>(*InfoHolder.getUnits()[CUID]) 1273 .getOrCreateSourceID(Fn, Dir); 1274 } 1275 Asm->OutStreamer->EmitDwarfLocDirective(Src, Line, Col, Flags, 0, 1276 Discriminator, Fn); 1277 } 1278 1279 //===----------------------------------------------------------------------===// 1280 // Emit Methods 1281 //===----------------------------------------------------------------------===// 1282 1283 // Emit the debug info section. 1284 void DwarfDebug::emitDebugInfo() { 1285 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1286 Holder.emitUnits(/* UseOffsets */ false); 1287 } 1288 1289 // Emit the abbreviation section. 1290 void DwarfDebug::emitAbbreviations() { 1291 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1292 1293 Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection()); 1294 } 1295 1296 void DwarfDebug::emitAccel(DwarfAccelTable &Accel, MCSection *Section, 1297 StringRef TableName) { 1298 Accel.FinalizeTable(Asm, TableName); 1299 Asm->OutStreamer->SwitchSection(Section); 1300 1301 // Emit the full data. 1302 Accel.emit(Asm, Section->getBeginSymbol(), this); 1303 } 1304 1305 // Emit visible names into a hashed accelerator table section. 1306 void DwarfDebug::emitAccelNames() { 1307 emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(), 1308 "Names"); 1309 } 1310 1311 // Emit objective C classes and categories into a hashed accelerator table 1312 // section. 1313 void DwarfDebug::emitAccelObjC() { 1314 emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(), 1315 "ObjC"); 1316 } 1317 1318 // Emit namespace dies into a hashed accelerator table. 1319 void DwarfDebug::emitAccelNamespaces() { 1320 emitAccel(AccelNamespace, 1321 Asm->getObjFileLowering().getDwarfAccelNamespaceSection(), 1322 "namespac"); 1323 } 1324 1325 // Emit type dies into a hashed accelerator table. 1326 void DwarfDebug::emitAccelTypes() { 1327 emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(), 1328 "types"); 1329 } 1330 1331 // Public name handling. 1332 // The format for the various pubnames: 1333 // 1334 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU 1335 // for the DIE that is named. 1336 // 1337 // gnu pubnames - offset/index value/name tuples where the offset is the offset 1338 // into the CU and the index value is computed according to the type of value 1339 // for the DIE that is named. 1340 // 1341 // For type units the offset is the offset of the skeleton DIE. For split dwarf 1342 // it's the offset within the debug_info/debug_types dwo section, however, the 1343 // reference in the pubname header doesn't change. 1344 1345 /// computeIndexValue - Compute the gdb index value for the DIE and CU. 1346 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU, 1347 const DIE *Die) { 1348 // Entities that ended up only in a Type Unit reference the CU instead (since 1349 // the pub entry has offsets within the CU there's no real offset that can be 1350 // provided anyway). As it happens all such entities (namespaces and types, 1351 // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out 1352 // not to be true it would be necessary to persist this information from the 1353 // point at which the entry is added to the index data structure - since by 1354 // the time the index is built from that, the original type/namespace DIE in a 1355 // type unit has already been destroyed so it can't be queried for properties 1356 // like tag, etc. 1357 if (Die->getTag() == dwarf::DW_TAG_compile_unit) 1358 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, 1359 dwarf::GIEL_EXTERNAL); 1360 dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC; 1361 1362 // We could have a specification DIE that has our most of our knowledge, 1363 // look for that now. 1364 if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) { 1365 DIE &SpecDIE = SpecVal.getDIEEntry().getEntry(); 1366 if (SpecDIE.findAttribute(dwarf::DW_AT_external)) 1367 Linkage = dwarf::GIEL_EXTERNAL; 1368 } else if (Die->findAttribute(dwarf::DW_AT_external)) 1369 Linkage = dwarf::GIEL_EXTERNAL; 1370 1371 switch (Die->getTag()) { 1372 case dwarf::DW_TAG_class_type: 1373 case dwarf::DW_TAG_structure_type: 1374 case dwarf::DW_TAG_union_type: 1375 case dwarf::DW_TAG_enumeration_type: 1376 return dwarf::PubIndexEntryDescriptor( 1377 dwarf::GIEK_TYPE, CU->getLanguage() != dwarf::DW_LANG_C_plus_plus 1378 ? dwarf::GIEL_STATIC 1379 : dwarf::GIEL_EXTERNAL); 1380 case dwarf::DW_TAG_typedef: 1381 case dwarf::DW_TAG_base_type: 1382 case dwarf::DW_TAG_subrange_type: 1383 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC); 1384 case dwarf::DW_TAG_namespace: 1385 return dwarf::GIEK_TYPE; 1386 case dwarf::DW_TAG_subprogram: 1387 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage); 1388 case dwarf::DW_TAG_variable: 1389 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage); 1390 case dwarf::DW_TAG_enumerator: 1391 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, 1392 dwarf::GIEL_STATIC); 1393 default: 1394 return dwarf::GIEK_NONE; 1395 } 1396 } 1397 1398 /// emitDebugPubNames - Emit visible names into a debug pubnames section. 1399 /// 1400 void DwarfDebug::emitDebugPubNames(bool GnuStyle) { 1401 MCSection *PSec = GnuStyle 1402 ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection() 1403 : Asm->getObjFileLowering().getDwarfPubNamesSection(); 1404 1405 emitDebugPubSection(GnuStyle, PSec, "Names", 1406 &DwarfCompileUnit::getGlobalNames); 1407 } 1408 1409 void DwarfDebug::emitDebugPubSection( 1410 bool GnuStyle, MCSection *PSec, StringRef Name, 1411 const StringMap<const DIE *> &(DwarfCompileUnit::*Accessor)() const) { 1412 for (const auto &NU : CUMap) { 1413 DwarfCompileUnit *TheU = NU.second; 1414 1415 const auto &Globals = (TheU->*Accessor)(); 1416 1417 if (Globals.empty()) 1418 continue; 1419 1420 if (auto *Skeleton = TheU->getSkeleton()) 1421 TheU = Skeleton; 1422 1423 // Start the dwarf pubnames section. 1424 Asm->OutStreamer->SwitchSection(PSec); 1425 1426 // Emit the header. 1427 Asm->OutStreamer->AddComment("Length of Public " + Name + " Info"); 1428 MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin"); 1429 MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end"); 1430 Asm->EmitLabelDifference(EndLabel, BeginLabel, 4); 1431 1432 Asm->OutStreamer->EmitLabel(BeginLabel); 1433 1434 Asm->OutStreamer->AddComment("DWARF Version"); 1435 Asm->EmitInt16(dwarf::DW_PUBNAMES_VERSION); 1436 1437 Asm->OutStreamer->AddComment("Offset of Compilation Unit Info"); 1438 Asm->emitDwarfSymbolReference(TheU->getLabelBegin()); 1439 1440 Asm->OutStreamer->AddComment("Compilation Unit Length"); 1441 Asm->EmitInt32(TheU->getLength()); 1442 1443 // Emit the pubnames for this compilation unit. 1444 for (const auto &GI : Globals) { 1445 const char *Name = GI.getKeyData(); 1446 const DIE *Entity = GI.second; 1447 1448 Asm->OutStreamer->AddComment("DIE offset"); 1449 Asm->EmitInt32(Entity->getOffset()); 1450 1451 if (GnuStyle) { 1452 dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity); 1453 Asm->OutStreamer->AddComment( 1454 Twine("Kind: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + ", " + 1455 dwarf::GDBIndexEntryLinkageString(Desc.Linkage)); 1456 Asm->EmitInt8(Desc.toBits()); 1457 } 1458 1459 Asm->OutStreamer->AddComment("External Name"); 1460 Asm->OutStreamer->EmitBytes(StringRef(Name, GI.getKeyLength() + 1)); 1461 } 1462 1463 Asm->OutStreamer->AddComment("End Mark"); 1464 Asm->EmitInt32(0); 1465 Asm->OutStreamer->EmitLabel(EndLabel); 1466 } 1467 } 1468 1469 void DwarfDebug::emitDebugPubTypes(bool GnuStyle) { 1470 MCSection *PSec = GnuStyle 1471 ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection() 1472 : Asm->getObjFileLowering().getDwarfPubTypesSection(); 1473 1474 emitDebugPubSection(GnuStyle, PSec, "Types", 1475 &DwarfCompileUnit::getGlobalTypes); 1476 } 1477 1478 /// Emit null-terminated strings into a debug str section. 1479 void DwarfDebug::emitDebugStr() { 1480 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1481 Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection()); 1482 } 1483 1484 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer, 1485 const DebugLocStream::Entry &Entry) { 1486 auto &&Comments = DebugLocs.getComments(Entry); 1487 auto Comment = Comments.begin(); 1488 auto End = Comments.end(); 1489 for (uint8_t Byte : DebugLocs.getBytes(Entry)) 1490 Streamer.EmitInt8(Byte, Comment != End ? *(Comment++) : ""); 1491 } 1492 1493 static void emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT, 1494 ByteStreamer &Streamer, 1495 const DebugLocEntry::Value &Value, 1496 DwarfExpression &DwarfExpr) { 1497 auto *DIExpr = Value.getExpression(); 1498 DIExpressionCursor ExprCursor(DIExpr); 1499 DwarfExpr.addFragmentOffset(DIExpr); 1500 // Regular entry. 1501 if (Value.isInt()) { 1502 if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed || 1503 BT->getEncoding() == dwarf::DW_ATE_signed_char)) 1504 DwarfExpr.addSignedConstant(Value.getInt()); 1505 else 1506 DwarfExpr.addUnsignedConstant(Value.getInt()); 1507 } else if (Value.isLocation()) { 1508 MachineLocation Location = Value.getLoc(); 1509 if (Location.isIndirect()) 1510 DwarfExpr.setMemoryLocationKind(); 1511 SmallVector<uint64_t, 8> Ops; 1512 if (Location.isIndirect() && Location.getOffset()) { 1513 Ops.push_back(dwarf::DW_OP_plus); 1514 Ops.push_back(Location.getOffset()); 1515 } 1516 Ops.append(DIExpr->elements_begin(), DIExpr->elements_end()); 1517 DIExpressionCursor Cursor(Ops); 1518 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); 1519 if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg())) 1520 return; 1521 return DwarfExpr.addExpression(std::move(Cursor)); 1522 } else if (Value.isConstantFP()) { 1523 APInt RawBytes = Value.getConstantFP()->getValueAPF().bitcastToAPInt(); 1524 DwarfExpr.addUnsignedConstant(RawBytes); 1525 } 1526 DwarfExpr.addExpression(std::move(ExprCursor)); 1527 } 1528 1529 void DebugLocEntry::finalize(const AsmPrinter &AP, 1530 DebugLocStream::ListBuilder &List, 1531 const DIBasicType *BT) { 1532 DebugLocStream::EntryBuilder Entry(List, Begin, End); 1533 BufferByteStreamer Streamer = Entry.getStreamer(); 1534 DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer); 1535 const DebugLocEntry::Value &Value = Values[0]; 1536 if (Value.isFragment()) { 1537 // Emit all fragments that belong to the same variable and range. 1538 assert(all_of(Values, [](DebugLocEntry::Value P) { 1539 return P.isFragment(); 1540 }) && "all values are expected to be fragments"); 1541 assert(std::is_sorted(Values.begin(), Values.end()) && 1542 "fragments are expected to be sorted"); 1543 1544 for (auto Fragment : Values) 1545 emitDebugLocValue(AP, BT, Streamer, Fragment, DwarfExpr); 1546 1547 } else { 1548 assert(Values.size() == 1 && "only fragments may have >1 value"); 1549 emitDebugLocValue(AP, BT, Streamer, Value, DwarfExpr); 1550 } 1551 DwarfExpr.finalize(); 1552 } 1553 1554 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry) { 1555 // Emit the size. 1556 Asm->OutStreamer->AddComment("Loc expr size"); 1557 Asm->EmitInt16(DebugLocs.getBytes(Entry).size()); 1558 1559 // Emit the entry. 1560 APByteStreamer Streamer(*Asm); 1561 emitDebugLocEntry(Streamer, Entry); 1562 } 1563 1564 // Emit locations into the debug loc section. 1565 void DwarfDebug::emitDebugLoc() { 1566 // Start the dwarf loc section. 1567 Asm->OutStreamer->SwitchSection( 1568 Asm->getObjFileLowering().getDwarfLocSection()); 1569 unsigned char Size = Asm->MAI->getCodePointerSize(); 1570 for (const auto &List : DebugLocs.getLists()) { 1571 Asm->OutStreamer->EmitLabel(List.Label); 1572 const DwarfCompileUnit *CU = List.CU; 1573 for (const auto &Entry : DebugLocs.getEntries(List)) { 1574 // Set up the range. This range is relative to the entry point of the 1575 // compile unit. This is a hard coded 0 for low_pc when we're emitting 1576 // ranges, or the DW_AT_low_pc on the compile unit otherwise. 1577 if (auto *Base = CU->getBaseAddress()) { 1578 Asm->EmitLabelDifference(Entry.BeginSym, Base, Size); 1579 Asm->EmitLabelDifference(Entry.EndSym, Base, Size); 1580 } else { 1581 Asm->OutStreamer->EmitSymbolValue(Entry.BeginSym, Size); 1582 Asm->OutStreamer->EmitSymbolValue(Entry.EndSym, Size); 1583 } 1584 1585 emitDebugLocEntryLocation(Entry); 1586 } 1587 Asm->OutStreamer->EmitIntValue(0, Size); 1588 Asm->OutStreamer->EmitIntValue(0, Size); 1589 } 1590 } 1591 1592 void DwarfDebug::emitDebugLocDWO() { 1593 Asm->OutStreamer->SwitchSection( 1594 Asm->getObjFileLowering().getDwarfLocDWOSection()); 1595 for (const auto &List : DebugLocs.getLists()) { 1596 Asm->OutStreamer->EmitLabel(List.Label); 1597 for (const auto &Entry : DebugLocs.getEntries(List)) { 1598 // Just always use start_length for now - at least that's one address 1599 // rather than two. We could get fancier and try to, say, reuse an 1600 // address we know we've emitted elsewhere (the start of the function? 1601 // The start of the CU or CU subrange that encloses this range?) 1602 Asm->EmitInt8(dwarf::DW_LLE_startx_length); 1603 unsigned idx = AddrPool.getIndex(Entry.BeginSym); 1604 Asm->EmitULEB128(idx); 1605 Asm->EmitLabelDifference(Entry.EndSym, Entry.BeginSym, 4); 1606 1607 emitDebugLocEntryLocation(Entry); 1608 } 1609 Asm->EmitInt8(dwarf::DW_LLE_end_of_list); 1610 } 1611 } 1612 1613 struct ArangeSpan { 1614 const MCSymbol *Start, *End; 1615 }; 1616 1617 // Emit a debug aranges section, containing a CU lookup for any 1618 // address we can tie back to a CU. 1619 void DwarfDebug::emitDebugARanges() { 1620 // Provides a unique id per text section. 1621 MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap; 1622 1623 // Filter labels by section. 1624 for (const SymbolCU &SCU : ArangeLabels) { 1625 if (SCU.Sym->isInSection()) { 1626 // Make a note of this symbol and it's section. 1627 MCSection *Section = &SCU.Sym->getSection(); 1628 if (!Section->getKind().isMetadata()) 1629 SectionMap[Section].push_back(SCU); 1630 } else { 1631 // Some symbols (e.g. common/bss on mach-o) can have no section but still 1632 // appear in the output. This sucks as we rely on sections to build 1633 // arange spans. We can do it without, but it's icky. 1634 SectionMap[nullptr].push_back(SCU); 1635 } 1636 } 1637 1638 DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans; 1639 1640 for (auto &I : SectionMap) { 1641 MCSection *Section = I.first; 1642 SmallVector<SymbolCU, 8> &List = I.second; 1643 if (List.size() < 1) 1644 continue; 1645 1646 // If we have no section (e.g. common), just write out 1647 // individual spans for each symbol. 1648 if (!Section) { 1649 for (const SymbolCU &Cur : List) { 1650 ArangeSpan Span; 1651 Span.Start = Cur.Sym; 1652 Span.End = nullptr; 1653 assert(Cur.CU); 1654 Spans[Cur.CU].push_back(Span); 1655 } 1656 continue; 1657 } 1658 1659 // Sort the symbols by offset within the section. 1660 std::sort( 1661 List.begin(), List.end(), [&](const SymbolCU &A, const SymbolCU &B) { 1662 unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0; 1663 unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0; 1664 1665 // Symbols with no order assigned should be placed at the end. 1666 // (e.g. section end labels) 1667 if (IA == 0) 1668 return false; 1669 if (IB == 0) 1670 return true; 1671 return IA < IB; 1672 }); 1673 1674 // Insert a final terminator. 1675 List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section))); 1676 1677 // Build spans between each label. 1678 const MCSymbol *StartSym = List[0].Sym; 1679 for (size_t n = 1, e = List.size(); n < e; n++) { 1680 const SymbolCU &Prev = List[n - 1]; 1681 const SymbolCU &Cur = List[n]; 1682 1683 // Try and build the longest span we can within the same CU. 1684 if (Cur.CU != Prev.CU) { 1685 ArangeSpan Span; 1686 Span.Start = StartSym; 1687 Span.End = Cur.Sym; 1688 assert(Prev.CU); 1689 Spans[Prev.CU].push_back(Span); 1690 StartSym = Cur.Sym; 1691 } 1692 } 1693 } 1694 1695 // Start the dwarf aranges section. 1696 Asm->OutStreamer->SwitchSection( 1697 Asm->getObjFileLowering().getDwarfARangesSection()); 1698 1699 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 1700 1701 // Build a list of CUs used. 1702 std::vector<DwarfCompileUnit *> CUs; 1703 for (const auto &it : Spans) { 1704 DwarfCompileUnit *CU = it.first; 1705 CUs.push_back(CU); 1706 } 1707 1708 // Sort the CU list (again, to ensure consistent output order). 1709 std::sort(CUs.begin(), CUs.end(), 1710 [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) { 1711 return A->getUniqueID() < B->getUniqueID(); 1712 }); 1713 1714 // Emit an arange table for each CU we used. 1715 for (DwarfCompileUnit *CU : CUs) { 1716 std::vector<ArangeSpan> &List = Spans[CU]; 1717 1718 // Describe the skeleton CU's offset and length, not the dwo file's. 1719 if (auto *Skel = CU->getSkeleton()) 1720 CU = Skel; 1721 1722 // Emit size of content not including length itself. 1723 unsigned ContentSize = 1724 sizeof(int16_t) + // DWARF ARange version number 1725 sizeof(int32_t) + // Offset of CU in the .debug_info section 1726 sizeof(int8_t) + // Pointer Size (in bytes) 1727 sizeof(int8_t); // Segment Size (in bytes) 1728 1729 unsigned TupleSize = PtrSize * 2; 1730 1731 // 7.20 in the Dwarf specs requires the table to be aligned to a tuple. 1732 unsigned Padding = 1733 OffsetToAlignment(sizeof(int32_t) + ContentSize, TupleSize); 1734 1735 ContentSize += Padding; 1736 ContentSize += (List.size() + 1) * TupleSize; 1737 1738 // For each compile unit, write the list of spans it covers. 1739 Asm->OutStreamer->AddComment("Length of ARange Set"); 1740 Asm->EmitInt32(ContentSize); 1741 Asm->OutStreamer->AddComment("DWARF Arange version number"); 1742 Asm->EmitInt16(dwarf::DW_ARANGES_VERSION); 1743 Asm->OutStreamer->AddComment("Offset Into Debug Info Section"); 1744 Asm->emitDwarfSymbolReference(CU->getLabelBegin()); 1745 Asm->OutStreamer->AddComment("Address Size (in bytes)"); 1746 Asm->EmitInt8(PtrSize); 1747 Asm->OutStreamer->AddComment("Segment Size (in bytes)"); 1748 Asm->EmitInt8(0); 1749 1750 Asm->OutStreamer->emitFill(Padding, 0xff); 1751 1752 for (const ArangeSpan &Span : List) { 1753 Asm->EmitLabelReference(Span.Start, PtrSize); 1754 1755 // Calculate the size as being from the span start to it's end. 1756 if (Span.End) { 1757 Asm->EmitLabelDifference(Span.End, Span.Start, PtrSize); 1758 } else { 1759 // For symbols without an end marker (e.g. common), we 1760 // write a single arange entry containing just that one symbol. 1761 uint64_t Size = SymSize[Span.Start]; 1762 if (Size == 0) 1763 Size = 1; 1764 1765 Asm->OutStreamer->EmitIntValue(Size, PtrSize); 1766 } 1767 } 1768 1769 Asm->OutStreamer->AddComment("ARange terminator"); 1770 Asm->OutStreamer->EmitIntValue(0, PtrSize); 1771 Asm->OutStreamer->EmitIntValue(0, PtrSize); 1772 } 1773 } 1774 1775 /// Emit address ranges into a debug ranges section. 1776 void DwarfDebug::emitDebugRanges() { 1777 // Start the dwarf ranges section. 1778 Asm->OutStreamer->SwitchSection( 1779 Asm->getObjFileLowering().getDwarfRangesSection()); 1780 1781 // Size for our labels. 1782 unsigned char Size = Asm->MAI->getCodePointerSize(); 1783 1784 // Grab the specific ranges for the compile units in the module. 1785 for (const auto &I : CUMap) { 1786 DwarfCompileUnit *TheCU = I.second; 1787 1788 if (auto *Skel = TheCU->getSkeleton()) 1789 TheCU = Skel; 1790 1791 // Iterate over the misc ranges for the compile units in the module. 1792 for (const RangeSpanList &List : TheCU->getRangeLists()) { 1793 // Emit our symbol so we can find the beginning of the range. 1794 Asm->OutStreamer->EmitLabel(List.getSym()); 1795 1796 for (const RangeSpan &Range : List.getRanges()) { 1797 const MCSymbol *Begin = Range.getStart(); 1798 const MCSymbol *End = Range.getEnd(); 1799 assert(Begin && "Range without a begin symbol?"); 1800 assert(End && "Range without an end symbol?"); 1801 if (auto *Base = TheCU->getBaseAddress()) { 1802 Asm->EmitLabelDifference(Begin, Base, Size); 1803 Asm->EmitLabelDifference(End, Base, Size); 1804 } else { 1805 Asm->OutStreamer->EmitSymbolValue(Begin, Size); 1806 Asm->OutStreamer->EmitSymbolValue(End, Size); 1807 } 1808 } 1809 1810 // And terminate the list with two 0 values. 1811 Asm->OutStreamer->EmitIntValue(0, Size); 1812 Asm->OutStreamer->EmitIntValue(0, Size); 1813 } 1814 } 1815 } 1816 1817 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) { 1818 for (auto *MN : Nodes) { 1819 if (auto *M = dyn_cast<DIMacro>(MN)) 1820 emitMacro(*M); 1821 else if (auto *F = dyn_cast<DIMacroFile>(MN)) 1822 emitMacroFile(*F, U); 1823 else 1824 llvm_unreachable("Unexpected DI type!"); 1825 } 1826 } 1827 1828 void DwarfDebug::emitMacro(DIMacro &M) { 1829 Asm->EmitULEB128(M.getMacinfoType()); 1830 Asm->EmitULEB128(M.getLine()); 1831 StringRef Name = M.getName(); 1832 StringRef Value = M.getValue(); 1833 Asm->OutStreamer->EmitBytes(Name); 1834 if (!Value.empty()) { 1835 // There should be one space between macro name and macro value. 1836 Asm->EmitInt8(' '); 1837 Asm->OutStreamer->EmitBytes(Value); 1838 } 1839 Asm->EmitInt8('\0'); 1840 } 1841 1842 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) { 1843 assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file); 1844 Asm->EmitULEB128(dwarf::DW_MACINFO_start_file); 1845 Asm->EmitULEB128(F.getLine()); 1846 DIFile *File = F.getFile(); 1847 unsigned FID = 1848 U.getOrCreateSourceID(File->getFilename(), File->getDirectory()); 1849 Asm->EmitULEB128(FID); 1850 handleMacroNodes(F.getElements(), U); 1851 Asm->EmitULEB128(dwarf::DW_MACINFO_end_file); 1852 } 1853 1854 /// Emit macros into a debug macinfo section. 1855 void DwarfDebug::emitDebugMacinfo() { 1856 // Start the dwarf macinfo section. 1857 Asm->OutStreamer->SwitchSection( 1858 Asm->getObjFileLowering().getDwarfMacinfoSection()); 1859 1860 for (const auto &P : CUMap) { 1861 auto &TheCU = *P.second; 1862 auto *SkCU = TheCU.getSkeleton(); 1863 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 1864 auto *CUNode = cast<DICompileUnit>(P.first); 1865 Asm->OutStreamer->EmitLabel(U.getMacroLabelBegin()); 1866 handleMacroNodes(CUNode->getMacros(), U); 1867 } 1868 Asm->OutStreamer->AddComment("End Of Macro List Mark"); 1869 Asm->EmitInt8(0); 1870 } 1871 1872 // DWARF5 Experimental Separate Dwarf emitters. 1873 1874 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die, 1875 std::unique_ptr<DwarfCompileUnit> NewU) { 1876 NewU->addString(Die, dwarf::DW_AT_GNU_dwo_name, 1877 Asm->TM.Options.MCOptions.SplitDwarfFile); 1878 1879 if (!CompilationDir.empty()) 1880 NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 1881 1882 addGnuPubAttributes(*NewU, Die); 1883 1884 SkeletonHolder.addUnit(std::move(NewU)); 1885 } 1886 1887 // This DIE has the following attributes: DW_AT_comp_dir, DW_AT_stmt_list, 1888 // DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges, DW_AT_dwo_name, DW_AT_dwo_id, 1889 // DW_AT_addr_base, DW_AT_ranges_base. 1890 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) { 1891 1892 auto OwnedUnit = make_unique<DwarfCompileUnit>( 1893 CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder); 1894 DwarfCompileUnit &NewCU = *OwnedUnit; 1895 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 1896 1897 NewCU.initStmtList(); 1898 1899 initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit)); 1900 1901 return NewCU; 1902 } 1903 1904 // Emit the .debug_info.dwo section for separated dwarf. This contains the 1905 // compile units that would normally be in debug_info. 1906 void DwarfDebug::emitDebugInfoDWO() { 1907 assert(useSplitDwarf() && "No split dwarf debug info?"); 1908 // Don't emit relocations into the dwo file. 1909 InfoHolder.emitUnits(/* UseOffsets */ true); 1910 } 1911 1912 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the 1913 // abbreviations for the .debug_info.dwo section. 1914 void DwarfDebug::emitDebugAbbrevDWO() { 1915 assert(useSplitDwarf() && "No split dwarf?"); 1916 InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection()); 1917 } 1918 1919 void DwarfDebug::emitDebugLineDWO() { 1920 assert(useSplitDwarf() && "No split dwarf?"); 1921 Asm->OutStreamer->SwitchSection( 1922 Asm->getObjFileLowering().getDwarfLineDWOSection()); 1923 SplitTypeUnitFileTable.Emit(*Asm->OutStreamer, MCDwarfLineTableParams()); 1924 } 1925 1926 // Emit the .debug_str.dwo section for separated dwarf. This contains the 1927 // string section and is identical in format to traditional .debug_str 1928 // sections. 1929 void DwarfDebug::emitDebugStrDWO() { 1930 assert(useSplitDwarf() && "No split dwarf?"); 1931 MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection(); 1932 InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(), 1933 OffSec); 1934 } 1935 1936 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) { 1937 if (!useSplitDwarf()) 1938 return nullptr; 1939 if (SingleCU) 1940 SplitTypeUnitFileTable.setCompilationDir(CU.getCUNode()->getDirectory()); 1941 return &SplitTypeUnitFileTable; 1942 } 1943 1944 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) { 1945 MD5 Hash; 1946 Hash.update(Identifier); 1947 // ... take the least significant 8 bytes and return those. Our MD5 1948 // implementation always returns its results in little endian, so we actually 1949 // need the "high" word. 1950 MD5::MD5Result Result; 1951 Hash.final(Result); 1952 return Result.high(); 1953 } 1954 1955 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU, 1956 StringRef Identifier, DIE &RefDie, 1957 const DICompositeType *CTy) { 1958 // Fast path if we're building some type units and one has already used the 1959 // address pool we know we're going to throw away all this work anyway, so 1960 // don't bother building dependent types. 1961 if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed()) 1962 return; 1963 1964 auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0)); 1965 if (!Ins.second) { 1966 CU.addDIETypeSignature(RefDie, Ins.first->second); 1967 return; 1968 } 1969 1970 bool TopLevelType = TypeUnitsUnderConstruction.empty(); 1971 AddrPool.resetUsedFlag(); 1972 1973 auto OwnedUnit = make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder, 1974 getDwoLineTable(CU)); 1975 DwarfTypeUnit &NewTU = *OwnedUnit; 1976 DIE &UnitDie = NewTU.getUnitDie(); 1977 TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy); 1978 1979 NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 1980 CU.getLanguage()); 1981 1982 uint64_t Signature = makeTypeSignature(Identifier); 1983 NewTU.setTypeSignature(Signature); 1984 Ins.first->second = Signature; 1985 1986 if (useSplitDwarf()) 1987 NewTU.setSection(Asm->getObjFileLowering().getDwarfTypesDWOSection()); 1988 else { 1989 CU.applyStmtList(UnitDie); 1990 NewTU.setSection(Asm->getObjFileLowering().getDwarfTypesSection(Signature)); 1991 } 1992 1993 NewTU.setType(NewTU.createTypeDIE(CTy)); 1994 1995 if (TopLevelType) { 1996 auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction); 1997 TypeUnitsUnderConstruction.clear(); 1998 1999 // Types referencing entries in the address table cannot be placed in type 2000 // units. 2001 if (AddrPool.hasBeenUsed()) { 2002 2003 // Remove all the types built while building this type. 2004 // This is pessimistic as some of these types might not be dependent on 2005 // the type that used an address. 2006 for (const auto &TU : TypeUnitsToAdd) 2007 TypeSignatures.erase(TU.second); 2008 2009 // Construct this type in the CU directly. 2010 // This is inefficient because all the dependent types will be rebuilt 2011 // from scratch, including building them in type units, discovering that 2012 // they depend on addresses, throwing them out and rebuilding them. 2013 CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy)); 2014 return; 2015 } 2016 2017 // If the type wasn't dependent on fission addresses, finish adding the type 2018 // and all its dependent types. 2019 for (auto &TU : TypeUnitsToAdd) { 2020 InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get()); 2021 InfoHolder.emitUnit(TU.first.get(), useSplitDwarf()); 2022 } 2023 } 2024 CU.addDIETypeSignature(RefDie, Signature); 2025 } 2026 2027 // Accelerator table mutators - add each name along with its companion 2028 // DIE to the proper table while ensuring that the name that we're going 2029 // to reference is in the string table. We do this since the names we 2030 // add may not only be identical to the names in the DIE. 2031 void DwarfDebug::addAccelName(StringRef Name, const DIE &Die) { 2032 if (!useDwarfAccelTables()) 2033 return; 2034 AccelNames.AddName(InfoHolder.getStringPool().getEntry(*Asm, Name), &Die); 2035 } 2036 2037 void DwarfDebug::addAccelObjC(StringRef Name, const DIE &Die) { 2038 if (!useDwarfAccelTables()) 2039 return; 2040 AccelObjC.AddName(InfoHolder.getStringPool().getEntry(*Asm, Name), &Die); 2041 } 2042 2043 void DwarfDebug::addAccelNamespace(StringRef Name, const DIE &Die) { 2044 if (!useDwarfAccelTables()) 2045 return; 2046 AccelNamespace.AddName(InfoHolder.getStringPool().getEntry(*Asm, Name), &Die); 2047 } 2048 2049 void DwarfDebug::addAccelType(StringRef Name, const DIE &Die, char Flags) { 2050 if (!useDwarfAccelTables()) 2051 return; 2052 AccelTypes.AddName(InfoHolder.getStringPool().getEntry(*Asm, Name), &Die); 2053 } 2054 2055 uint16_t DwarfDebug::getDwarfVersion() const { 2056 return Asm->OutStreamer->getContext().getDwarfVersion(); 2057 } 2058