1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing dwarf debug info into asm files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "DwarfDebug.h" 14 #include "ByteStreamer.h" 15 #include "DIEHash.h" 16 #include "DwarfCompileUnit.h" 17 #include "DwarfExpression.h" 18 #include "DwarfUnit.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/CodeGen/AsmPrinter.h" 24 #include "llvm/CodeGen/DIE.h" 25 #include "llvm/CodeGen/LexicalScopes.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineModuleInfo.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/TargetInstrInfo.h" 31 #include "llvm/CodeGen/TargetLowering.h" 32 #include "llvm/CodeGen/TargetRegisterInfo.h" 33 #include "llvm/CodeGen/TargetSubtargetInfo.h" 34 #include "llvm/DebugInfo/DWARF/DWARFExpression.h" 35 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/MC/MCAsmInfo.h" 41 #include "llvm/MC/MCContext.h" 42 #include "llvm/MC/MCSection.h" 43 #include "llvm/MC/MCStreamer.h" 44 #include "llvm/MC/MCSymbol.h" 45 #include "llvm/MC/MCTargetOptions.h" 46 #include "llvm/MC/MachineLocation.h" 47 #include "llvm/MC/SectionKind.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/MD5.h" 54 #include "llvm/Support/MathExtras.h" 55 #include "llvm/Support/Timer.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include "llvm/Target/TargetLoweringObjectFile.h" 58 #include "llvm/Target/TargetMachine.h" 59 #include <algorithm> 60 #include <cstddef> 61 #include <iterator> 62 #include <string> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "dwarfdebug" 67 68 STATISTIC(NumCSParams, "Number of dbg call site params created"); 69 70 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier( 71 "use-dwarf-ranges-base-address-specifier", cl::Hidden, 72 cl::desc("Use base address specifiers in debug_ranges"), cl::init(false)); 73 74 static cl::opt<bool> GenerateARangeSection("generate-arange-section", 75 cl::Hidden, 76 cl::desc("Generate dwarf aranges"), 77 cl::init(false)); 78 79 static cl::opt<bool> 80 GenerateDwarfTypeUnits("generate-type-units", cl::Hidden, 81 cl::desc("Generate DWARF4 type units."), 82 cl::init(false)); 83 84 static cl::opt<bool> SplitDwarfCrossCuReferences( 85 "split-dwarf-cross-cu-references", cl::Hidden, 86 cl::desc("Enable cross-cu references in DWO files"), cl::init(false)); 87 88 enum DefaultOnOff { Default, Enable, Disable }; 89 90 static cl::opt<DefaultOnOff> UnknownLocations( 91 "use-unknown-locations", cl::Hidden, 92 cl::desc("Make an absence of debug location information explicit."), 93 cl::values(clEnumVal(Default, "At top of block or after label"), 94 clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")), 95 cl::init(Default)); 96 97 static cl::opt<AccelTableKind> AccelTables( 98 "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."), 99 cl::values(clEnumValN(AccelTableKind::Default, "Default", 100 "Default for platform"), 101 clEnumValN(AccelTableKind::None, "Disable", "Disabled."), 102 clEnumValN(AccelTableKind::Apple, "Apple", "Apple"), 103 clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")), 104 cl::init(AccelTableKind::Default)); 105 106 static cl::opt<DefaultOnOff> 107 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden, 108 cl::desc("Use inlined strings rather than string section."), 109 cl::values(clEnumVal(Default, "Default for platform"), 110 clEnumVal(Enable, "Enabled"), 111 clEnumVal(Disable, "Disabled")), 112 cl::init(Default)); 113 114 static cl::opt<bool> 115 NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden, 116 cl::desc("Disable emission .debug_ranges section."), 117 cl::init(false)); 118 119 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences( 120 "dwarf-sections-as-references", cl::Hidden, 121 cl::desc("Use sections+offset as references rather than labels."), 122 cl::values(clEnumVal(Default, "Default for platform"), 123 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 124 cl::init(Default)); 125 126 static cl::opt<bool> 127 UseGNUDebugMacro("use-gnu-debug-macro", cl::Hidden, 128 cl::desc("Emit the GNU .debug_macro format with DWARF <5"), 129 cl::init(false)); 130 131 static cl::opt<DefaultOnOff> DwarfOpConvert( 132 "dwarf-op-convert", cl::Hidden, 133 cl::desc("Enable use of the DWARFv5 DW_OP_convert operator"), 134 cl::values(clEnumVal(Default, "Default for platform"), 135 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 136 cl::init(Default)); 137 138 enum LinkageNameOption { 139 DefaultLinkageNames, 140 AllLinkageNames, 141 AbstractLinkageNames 142 }; 143 144 static cl::opt<LinkageNameOption> 145 DwarfLinkageNames("dwarf-linkage-names", cl::Hidden, 146 cl::desc("Which DWARF linkage-name attributes to emit."), 147 cl::values(clEnumValN(DefaultLinkageNames, "Default", 148 "Default for platform"), 149 clEnumValN(AllLinkageNames, "All", "All"), 150 clEnumValN(AbstractLinkageNames, "Abstract", 151 "Abstract subprograms")), 152 cl::init(DefaultLinkageNames)); 153 154 static cl::opt<DwarfDebug::MinimizeAddrInV5> MinimizeAddrInV5Option( 155 "minimize-addr-in-v5", cl::Hidden, 156 cl::desc("Always use DW_AT_ranges in DWARFv5 whenever it could allow more " 157 "address pool entry sharing to reduce relocations/object size"), 158 cl::values(clEnumValN(DwarfDebug::MinimizeAddrInV5::Default, "Default", 159 "Default address minimization strategy"), 160 clEnumValN(DwarfDebug::MinimizeAddrInV5::Ranges, "Ranges", 161 "Use rnglists for contiguous ranges if that allows " 162 "using a pre-existing base address"), 163 clEnumValN(DwarfDebug::MinimizeAddrInV5::Expressions, 164 "Expressions", 165 "Use exprloc addrx+offset expressions for any " 166 "address with a prior base address"), 167 clEnumValN(DwarfDebug::MinimizeAddrInV5::Form, "Form", 168 "Use addrx+offset extension form for any address " 169 "with a prior base address"), 170 clEnumValN(DwarfDebug::MinimizeAddrInV5::Disabled, "Disabled", 171 "Stuff")), 172 cl::init(DwarfDebug::MinimizeAddrInV5::Default)); 173 174 static constexpr unsigned ULEB128PadSize = 4; 175 176 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) { 177 getActiveStreamer().emitInt8( 178 Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op) 179 : dwarf::OperationEncodingString(Op)); 180 } 181 182 void DebugLocDwarfExpression::emitSigned(int64_t Value) { 183 getActiveStreamer().emitSLEB128(Value, Twine(Value)); 184 } 185 186 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) { 187 getActiveStreamer().emitULEB128(Value, Twine(Value)); 188 } 189 190 void DebugLocDwarfExpression::emitData1(uint8_t Value) { 191 getActiveStreamer().emitInt8(Value, Twine(Value)); 192 } 193 194 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) { 195 assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit"); 196 getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize); 197 } 198 199 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI, 200 llvm::Register MachineReg) { 201 // This information is not available while emitting .debug_loc entries. 202 return false; 203 } 204 205 void DebugLocDwarfExpression::enableTemporaryBuffer() { 206 assert(!IsBuffering && "Already buffering?"); 207 if (!TmpBuf) 208 TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments); 209 IsBuffering = true; 210 } 211 212 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; } 213 214 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() { 215 return TmpBuf ? TmpBuf->Bytes.size() : 0; 216 } 217 218 void DebugLocDwarfExpression::commitTemporaryBuffer() { 219 if (!TmpBuf) 220 return; 221 for (auto Byte : enumerate(TmpBuf->Bytes)) { 222 const char *Comment = (Byte.index() < TmpBuf->Comments.size()) 223 ? TmpBuf->Comments[Byte.index()].c_str() 224 : ""; 225 OutBS.emitInt8(Byte.value(), Comment); 226 } 227 TmpBuf->Bytes.clear(); 228 TmpBuf->Comments.clear(); 229 } 230 231 const DIType *DbgVariable::getType() const { 232 return getVariable()->getType(); 233 } 234 235 /// Get .debug_loc entry for the instruction range starting at MI. 236 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) { 237 const DIExpression *Expr = MI->getDebugExpression(); 238 assert(MI->getNumOperands() == 4); 239 if (MI->getDebugOperand(0).isReg()) { 240 const auto &RegOp = MI->getDebugOperand(0); 241 const auto &Op1 = MI->getDebugOffset(); 242 // If the second operand is an immediate, this is a 243 // register-indirect address. 244 assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset"); 245 MachineLocation MLoc(RegOp.getReg(), Op1.isImm()); 246 return DbgValueLoc(Expr, MLoc); 247 } 248 if (MI->getDebugOperand(0).isTargetIndex()) { 249 const auto &Op = MI->getDebugOperand(0); 250 return DbgValueLoc(Expr, 251 TargetIndexLocation(Op.getIndex(), Op.getOffset())); 252 } 253 if (MI->getDebugOperand(0).isImm()) 254 return DbgValueLoc(Expr, MI->getDebugOperand(0).getImm()); 255 if (MI->getDebugOperand(0).isFPImm()) 256 return DbgValueLoc(Expr, MI->getDebugOperand(0).getFPImm()); 257 if (MI->getDebugOperand(0).isCImm()) 258 return DbgValueLoc(Expr, MI->getDebugOperand(0).getCImm()); 259 260 llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!"); 261 } 262 263 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) { 264 assert(FrameIndexExprs.empty() && "Already initialized?"); 265 assert(!ValueLoc.get() && "Already initialized?"); 266 267 assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable"); 268 assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() && 269 "Wrong inlined-at"); 270 271 ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue)); 272 if (auto *E = DbgValue->getDebugExpression()) 273 if (E->getNumElements()) 274 FrameIndexExprs.push_back({0, E}); 275 } 276 277 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const { 278 if (FrameIndexExprs.size() == 1) 279 return FrameIndexExprs; 280 281 assert(llvm::all_of(FrameIndexExprs, 282 [](const FrameIndexExpr &A) { 283 return A.Expr->isFragment(); 284 }) && 285 "multiple FI expressions without DW_OP_LLVM_fragment"); 286 llvm::sort(FrameIndexExprs, 287 [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool { 288 return A.Expr->getFragmentInfo()->OffsetInBits < 289 B.Expr->getFragmentInfo()->OffsetInBits; 290 }); 291 292 return FrameIndexExprs; 293 } 294 295 void DbgVariable::addMMIEntry(const DbgVariable &V) { 296 assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry"); 297 assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry"); 298 assert(V.getVariable() == getVariable() && "conflicting variable"); 299 assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location"); 300 301 assert(!FrameIndexExprs.empty() && "Expected an MMI entry"); 302 assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry"); 303 304 // FIXME: This logic should not be necessary anymore, as we now have proper 305 // deduplication. However, without it, we currently run into the assertion 306 // below, which means that we are likely dealing with broken input, i.e. two 307 // non-fragment entries for the same variable at different frame indices. 308 if (FrameIndexExprs.size()) { 309 auto *Expr = FrameIndexExprs.back().Expr; 310 if (!Expr || !Expr->isFragment()) 311 return; 312 } 313 314 for (const auto &FIE : V.FrameIndexExprs) 315 // Ignore duplicate entries. 316 if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) { 317 return FIE.FI == Other.FI && FIE.Expr == Other.Expr; 318 })) 319 FrameIndexExprs.push_back(FIE); 320 321 assert((FrameIndexExprs.size() == 1 || 322 llvm::all_of(FrameIndexExprs, 323 [](FrameIndexExpr &FIE) { 324 return FIE.Expr && FIE.Expr->isFragment(); 325 })) && 326 "conflicting locations for variable"); 327 } 328 329 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion, 330 bool GenerateTypeUnits, 331 DebuggerKind Tuning, 332 const Triple &TT) { 333 // Honor an explicit request. 334 if (AccelTables != AccelTableKind::Default) 335 return AccelTables; 336 337 // Accelerator tables with type units are currently not supported. 338 if (GenerateTypeUnits) 339 return AccelTableKind::None; 340 341 // Accelerator tables get emitted if targetting DWARF v5 or LLDB. DWARF v5 342 // always implies debug_names. For lower standard versions we use apple 343 // accelerator tables on apple platforms and debug_names elsewhere. 344 if (DwarfVersion >= 5) 345 return AccelTableKind::Dwarf; 346 if (Tuning == DebuggerKind::LLDB) 347 return TT.isOSBinFormatMachO() ? AccelTableKind::Apple 348 : AccelTableKind::Dwarf; 349 return AccelTableKind::None; 350 } 351 352 DwarfDebug::DwarfDebug(AsmPrinter *A) 353 : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()), 354 InfoHolder(A, "info_string", DIEValueAllocator), 355 SkeletonHolder(A, "skel_string", DIEValueAllocator), 356 IsDarwin(A->TM.getTargetTriple().isOSDarwin()) { 357 const Triple &TT = Asm->TM.getTargetTriple(); 358 359 // Make sure we know our "debugger tuning". The target option takes 360 // precedence; fall back to triple-based defaults. 361 if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default) 362 DebuggerTuning = Asm->TM.Options.DebuggerTuning; 363 else if (IsDarwin) 364 DebuggerTuning = DebuggerKind::LLDB; 365 else if (TT.isPS4CPU()) 366 DebuggerTuning = DebuggerKind::SCE; 367 else 368 DebuggerTuning = DebuggerKind::GDB; 369 370 if (DwarfInlinedStrings == Default) 371 UseInlineStrings = TT.isNVPTX(); 372 else 373 UseInlineStrings = DwarfInlinedStrings == Enable; 374 375 UseLocSection = !TT.isNVPTX(); 376 377 HasAppleExtensionAttributes = tuneForLLDB(); 378 379 // Handle split DWARF. 380 HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty(); 381 382 // SCE defaults to linkage names only for abstract subprograms. 383 if (DwarfLinkageNames == DefaultLinkageNames) 384 UseAllLinkageNames = !tuneForSCE(); 385 else 386 UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames; 387 388 unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion; 389 unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber 390 : MMI->getModule()->getDwarfVersion(); 391 // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2. 392 DwarfVersion = 393 TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION); 394 395 bool Dwarf64 = DwarfVersion >= 3 && // DWARF64 was introduced in DWARFv3. 396 TT.isArch64Bit(); // DWARF64 requires 64-bit relocations. 397 398 // Support DWARF64 399 // 1: For ELF when requested. 400 // 2: For XCOFF64: the AIX assembler will fill in debug section lengths 401 // according to the DWARF64 format for 64-bit assembly, so we must use 402 // DWARF64 in the compiler too for 64-bit mode. 403 Dwarf64 &= 404 ((Asm->TM.Options.MCOptions.Dwarf64 || MMI->getModule()->isDwarf64()) && 405 TT.isOSBinFormatELF()) || 406 TT.isOSBinFormatXCOFF(); 407 408 if (!Dwarf64 && TT.isArch64Bit() && TT.isOSBinFormatXCOFF()) 409 report_fatal_error("XCOFF requires DWARF64 for 64-bit mode!"); 410 411 UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX(); 412 413 // Use sections as references. Force for NVPTX. 414 if (DwarfSectionsAsReferences == Default) 415 UseSectionsAsReferences = TT.isNVPTX(); 416 else 417 UseSectionsAsReferences = DwarfSectionsAsReferences == Enable; 418 419 // Don't generate type units for unsupported object file formats. 420 GenerateTypeUnits = (A->TM.getTargetTriple().isOSBinFormatELF() || 421 A->TM.getTargetTriple().isOSBinFormatWasm()) && 422 GenerateDwarfTypeUnits; 423 424 TheAccelTableKind = computeAccelTableKind( 425 DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple()); 426 427 // Work around a GDB bug. GDB doesn't support the standard opcode; 428 // SCE doesn't support GNU's; LLDB prefers the standard opcode, which 429 // is defined as of DWARF 3. 430 // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented 431 // https://sourceware.org/bugzilla/show_bug.cgi?id=11616 432 UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3; 433 434 // GDB does not fully support the DWARF 4 representation for bitfields. 435 UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB(); 436 437 // The DWARF v5 string offsets table has - possibly shared - contributions 438 // from each compile and type unit each preceded by a header. The string 439 // offsets table used by the pre-DWARF v5 split-DWARF implementation uses 440 // a monolithic string offsets table without any header. 441 UseSegmentedStringOffsetsTable = DwarfVersion >= 5; 442 443 // Emit call-site-param debug info for GDB and LLDB, if the target supports 444 // the debug entry values feature. It can also be enabled explicitly. 445 EmitDebugEntryValues = Asm->TM.Options.ShouldEmitDebugEntryValues(); 446 447 // It is unclear if the GCC .debug_macro extension is well-specified 448 // for split DWARF. For now, do not allow LLVM to emit it. 449 UseDebugMacroSection = 450 DwarfVersion >= 5 || (UseGNUDebugMacro && !useSplitDwarf()); 451 if (DwarfOpConvert == Default) 452 EnableOpConvert = !((tuneForGDB() && useSplitDwarf()) || (tuneForLLDB() && !TT.isOSBinFormatMachO())); 453 else 454 EnableOpConvert = (DwarfOpConvert == Enable); 455 456 // Split DWARF would benefit object size significantly by trading reductions 457 // in address pool usage for slightly increased range list encodings. 458 if (DwarfVersion >= 5) { 459 MinimizeAddr = MinimizeAddrInV5Option; 460 // FIXME: In the future, enable this by default for Split DWARF where the 461 // tradeoff is more pronounced due to being able to offload the range 462 // lists to the dwo file and shrink object files/reduce relocations there. 463 if (MinimizeAddr == MinimizeAddrInV5::Default) 464 MinimizeAddr = MinimizeAddrInV5::Disabled; 465 } 466 467 Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion); 468 Asm->OutStreamer->getContext().setDwarfFormat(Dwarf64 ? dwarf::DWARF64 469 : dwarf::DWARF32); 470 } 471 472 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h. 473 DwarfDebug::~DwarfDebug() = default; 474 475 static bool isObjCClass(StringRef Name) { 476 return Name.startswith("+") || Name.startswith("-"); 477 } 478 479 static bool hasObjCCategory(StringRef Name) { 480 if (!isObjCClass(Name)) 481 return false; 482 483 return Name.find(") ") != StringRef::npos; 484 } 485 486 static void getObjCClassCategory(StringRef In, StringRef &Class, 487 StringRef &Category) { 488 if (!hasObjCCategory(In)) { 489 Class = In.slice(In.find('[') + 1, In.find(' ')); 490 Category = ""; 491 return; 492 } 493 494 Class = In.slice(In.find('[') + 1, In.find('(')); 495 Category = In.slice(In.find('[') + 1, In.find(' ')); 496 } 497 498 static StringRef getObjCMethodName(StringRef In) { 499 return In.slice(In.find(' ') + 1, In.find(']')); 500 } 501 502 // Add the various names to the Dwarf accelerator table names. 503 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU, 504 const DISubprogram *SP, DIE &Die) { 505 if (getAccelTableKind() != AccelTableKind::Apple && 506 CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None) 507 return; 508 509 if (!SP->isDefinition()) 510 return; 511 512 if (SP->getName() != "") 513 addAccelName(CU, SP->getName(), Die); 514 515 // If the linkage name is different than the name, go ahead and output that as 516 // well into the name table. Only do that if we are going to actually emit 517 // that name. 518 if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() && 519 (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP))) 520 addAccelName(CU, SP->getLinkageName(), Die); 521 522 // If this is an Objective-C selector name add it to the ObjC accelerator 523 // too. 524 if (isObjCClass(SP->getName())) { 525 StringRef Class, Category; 526 getObjCClassCategory(SP->getName(), Class, Category); 527 addAccelObjC(CU, Class, Die); 528 if (Category != "") 529 addAccelObjC(CU, Category, Die); 530 // Also add the base method name to the name table. 531 addAccelName(CU, getObjCMethodName(SP->getName()), Die); 532 } 533 } 534 535 /// Check whether we should create a DIE for the given Scope, return true 536 /// if we don't create a DIE (the corresponding DIE is null). 537 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) { 538 if (Scope->isAbstractScope()) 539 return false; 540 541 // We don't create a DIE if there is no Range. 542 const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges(); 543 if (Ranges.empty()) 544 return true; 545 546 if (Ranges.size() > 1) 547 return false; 548 549 // We don't create a DIE if we have a single Range and the end label 550 // is null. 551 return !getLabelAfterInsn(Ranges.front().second); 552 } 553 554 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) { 555 F(CU); 556 if (auto *SkelCU = CU.getSkeleton()) 557 if (CU.getCUNode()->getSplitDebugInlining()) 558 F(*SkelCU); 559 } 560 561 bool DwarfDebug::shareAcrossDWOCUs() const { 562 return SplitDwarfCrossCuReferences; 563 } 564 565 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU, 566 LexicalScope *Scope) { 567 assert(Scope && Scope->getScopeNode()); 568 assert(Scope->isAbstractScope()); 569 assert(!Scope->getInlinedAt()); 570 571 auto *SP = cast<DISubprogram>(Scope->getScopeNode()); 572 573 // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram 574 // was inlined from another compile unit. 575 if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining()) 576 // Avoid building the original CU if it won't be used 577 SrcCU.constructAbstractSubprogramScopeDIE(Scope); 578 else { 579 auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 580 if (auto *SkelCU = CU.getSkeleton()) { 581 (shareAcrossDWOCUs() ? CU : SrcCU) 582 .constructAbstractSubprogramScopeDIE(Scope); 583 if (CU.getCUNode()->getSplitDebugInlining()) 584 SkelCU->constructAbstractSubprogramScopeDIE(Scope); 585 } else 586 CU.constructAbstractSubprogramScopeDIE(Scope); 587 } 588 } 589 590 DIE &DwarfDebug::constructSubprogramDefinitionDIE(const DISubprogram *SP) { 591 DICompileUnit *Unit = SP->getUnit(); 592 assert(SP->isDefinition() && "Subprogram not a definition"); 593 assert(Unit && "Subprogram definition without parent unit"); 594 auto &CU = getOrCreateDwarfCompileUnit(Unit); 595 return *CU.getOrCreateSubprogramDIE(SP); 596 } 597 598 /// Represents a parameter whose call site value can be described by applying a 599 /// debug expression to a register in the forwarded register worklist. 600 struct FwdRegParamInfo { 601 /// The described parameter register. 602 unsigned ParamReg; 603 604 /// Debug expression that has been built up when walking through the 605 /// instruction chain that produces the parameter's value. 606 const DIExpression *Expr; 607 }; 608 609 /// Register worklist for finding call site values. 610 using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>; 611 612 /// Append the expression \p Addition to \p Original and return the result. 613 static const DIExpression *combineDIExpressions(const DIExpression *Original, 614 const DIExpression *Addition) { 615 std::vector<uint64_t> Elts = Addition->getElements().vec(); 616 // Avoid multiple DW_OP_stack_values. 617 if (Original->isImplicit() && Addition->isImplicit()) 618 erase_value(Elts, dwarf::DW_OP_stack_value); 619 const DIExpression *CombinedExpr = 620 (Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original; 621 return CombinedExpr; 622 } 623 624 /// Emit call site parameter entries that are described by the given value and 625 /// debug expression. 626 template <typename ValT> 627 static void finishCallSiteParams(ValT Val, const DIExpression *Expr, 628 ArrayRef<FwdRegParamInfo> DescribedParams, 629 ParamSet &Params) { 630 for (auto Param : DescribedParams) { 631 bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0; 632 633 // TODO: Entry value operations can currently not be combined with any 634 // other expressions, so we can't emit call site entries in those cases. 635 if (ShouldCombineExpressions && Expr->isEntryValue()) 636 continue; 637 638 // If a parameter's call site value is produced by a chain of 639 // instructions we may have already created an expression for the 640 // parameter when walking through the instructions. Append that to the 641 // base expression. 642 const DIExpression *CombinedExpr = 643 ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr) 644 : Expr; 645 assert((!CombinedExpr || CombinedExpr->isValid()) && 646 "Combined debug expression is invalid"); 647 648 DbgValueLoc DbgLocVal(CombinedExpr, Val); 649 DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal); 650 Params.push_back(CSParm); 651 ++NumCSParams; 652 } 653 } 654 655 /// Add \p Reg to the worklist, if it's not already present, and mark that the 656 /// given parameter registers' values can (potentially) be described using 657 /// that register and an debug expression. 658 static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg, 659 const DIExpression *Expr, 660 ArrayRef<FwdRegParamInfo> ParamsToAdd) { 661 auto I = Worklist.insert({Reg, {}}); 662 auto &ParamsForFwdReg = I.first->second; 663 for (auto Param : ParamsToAdd) { 664 assert(none_of(ParamsForFwdReg, 665 [Param](const FwdRegParamInfo &D) { 666 return D.ParamReg == Param.ParamReg; 667 }) && 668 "Same parameter described twice by forwarding reg"); 669 670 // If a parameter's call site value is produced by a chain of 671 // instructions we may have already created an expression for the 672 // parameter when walking through the instructions. Append that to the 673 // new expression. 674 const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr); 675 ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr}); 676 } 677 } 678 679 /// Interpret values loaded into registers by \p CurMI. 680 static void interpretValues(const MachineInstr *CurMI, 681 FwdRegWorklist &ForwardedRegWorklist, 682 ParamSet &Params) { 683 684 const MachineFunction *MF = CurMI->getMF(); 685 const DIExpression *EmptyExpr = 686 DIExpression::get(MF->getFunction().getContext(), {}); 687 const auto &TRI = *MF->getSubtarget().getRegisterInfo(); 688 const auto &TII = *MF->getSubtarget().getInstrInfo(); 689 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 690 691 // If an instruction defines more than one item in the worklist, we may run 692 // into situations where a worklist register's value is (potentially) 693 // described by the previous value of another register that is also defined 694 // by that instruction. 695 // 696 // This can for example occur in cases like this: 697 // 698 // $r1 = mov 123 699 // $r0, $r1 = mvrr $r1, 456 700 // call @foo, $r0, $r1 701 // 702 // When describing $r1's value for the mvrr instruction, we need to make sure 703 // that we don't finalize an entry value for $r0, as that is dependent on the 704 // previous value of $r1 (123 rather than 456). 705 // 706 // In order to not have to distinguish between those cases when finalizing 707 // entry values, we simply postpone adding new parameter registers to the 708 // worklist, by first keeping them in this temporary container until the 709 // instruction has been handled. 710 FwdRegWorklist TmpWorklistItems; 711 712 // If the MI is an instruction defining one or more parameters' forwarding 713 // registers, add those defines. 714 auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI, 715 SmallSetVector<unsigned, 4> &Defs) { 716 if (MI.isDebugInstr()) 717 return; 718 719 for (const MachineOperand &MO : MI.operands()) { 720 if (MO.isReg() && MO.isDef() && 721 Register::isPhysicalRegister(MO.getReg())) { 722 for (auto FwdReg : ForwardedRegWorklist) 723 if (TRI.regsOverlap(FwdReg.first, MO.getReg())) 724 Defs.insert(FwdReg.first); 725 } 726 } 727 }; 728 729 // Set of worklist registers that are defined by this instruction. 730 SmallSetVector<unsigned, 4> FwdRegDefs; 731 732 getForwardingRegsDefinedByMI(*CurMI, FwdRegDefs); 733 if (FwdRegDefs.empty()) 734 return; 735 736 for (auto ParamFwdReg : FwdRegDefs) { 737 if (auto ParamValue = TII.describeLoadedValue(*CurMI, ParamFwdReg)) { 738 if (ParamValue->first.isImm()) { 739 int64_t Val = ParamValue->first.getImm(); 740 finishCallSiteParams(Val, ParamValue->second, 741 ForwardedRegWorklist[ParamFwdReg], Params); 742 } else if (ParamValue->first.isReg()) { 743 Register RegLoc = ParamValue->first.getReg(); 744 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 745 Register FP = TRI.getFrameRegister(*MF); 746 bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP); 747 if (TRI.isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) { 748 MachineLocation MLoc(RegLoc, /*Indirect=*/IsSPorFP); 749 finishCallSiteParams(MLoc, ParamValue->second, 750 ForwardedRegWorklist[ParamFwdReg], Params); 751 } else { 752 // ParamFwdReg was described by the non-callee saved register 753 // RegLoc. Mark that the call site values for the parameters are 754 // dependent on that register instead of ParamFwdReg. Since RegLoc 755 // may be a register that will be handled in this iteration, we 756 // postpone adding the items to the worklist, and instead keep them 757 // in a temporary container. 758 addToFwdRegWorklist(TmpWorklistItems, RegLoc, ParamValue->second, 759 ForwardedRegWorklist[ParamFwdReg]); 760 } 761 } 762 } 763 } 764 765 // Remove all registers that this instruction defines from the worklist. 766 for (auto ParamFwdReg : FwdRegDefs) 767 ForwardedRegWorklist.erase(ParamFwdReg); 768 769 // Now that we are done handling this instruction, add items from the 770 // temporary worklist to the real one. 771 for (auto New : TmpWorklistItems) 772 addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, New.second); 773 TmpWorklistItems.clear(); 774 } 775 776 static bool interpretNextInstr(const MachineInstr *CurMI, 777 FwdRegWorklist &ForwardedRegWorklist, 778 ParamSet &Params) { 779 // Skip bundle headers. 780 if (CurMI->isBundle()) 781 return true; 782 783 // If the next instruction is a call we can not interpret parameter's 784 // forwarding registers or we finished the interpretation of all 785 // parameters. 786 if (CurMI->isCall()) 787 return false; 788 789 if (ForwardedRegWorklist.empty()) 790 return false; 791 792 // Avoid NOP description. 793 if (CurMI->getNumOperands() == 0) 794 return true; 795 796 interpretValues(CurMI, ForwardedRegWorklist, Params); 797 798 return true; 799 } 800 801 /// Try to interpret values loaded into registers that forward parameters 802 /// for \p CallMI. Store parameters with interpreted value into \p Params. 803 static void collectCallSiteParameters(const MachineInstr *CallMI, 804 ParamSet &Params) { 805 const MachineFunction *MF = CallMI->getMF(); 806 auto CalleesMap = MF->getCallSitesInfo(); 807 auto CallFwdRegsInfo = CalleesMap.find(CallMI); 808 809 // There is no information for the call instruction. 810 if (CallFwdRegsInfo == CalleesMap.end()) 811 return; 812 813 const MachineBasicBlock *MBB = CallMI->getParent(); 814 815 // Skip the call instruction. 816 auto I = std::next(CallMI->getReverseIterator()); 817 818 FwdRegWorklist ForwardedRegWorklist; 819 820 const DIExpression *EmptyExpr = 821 DIExpression::get(MF->getFunction().getContext(), {}); 822 823 // Add all the forwarding registers into the ForwardedRegWorklist. 824 for (auto ArgReg : CallFwdRegsInfo->second) { 825 bool InsertedReg = 826 ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}}) 827 .second; 828 assert(InsertedReg && "Single register used to forward two arguments?"); 829 (void)InsertedReg; 830 } 831 832 // Do not emit CSInfo for undef forwarding registers. 833 for (auto &MO : CallMI->uses()) 834 if (MO.isReg() && MO.isUndef()) 835 ForwardedRegWorklist.erase(MO.getReg()); 836 837 // We erase, from the ForwardedRegWorklist, those forwarding registers for 838 // which we successfully describe a loaded value (by using 839 // the describeLoadedValue()). For those remaining arguments in the working 840 // list, for which we do not describe a loaded value by 841 // the describeLoadedValue(), we try to generate an entry value expression 842 // for their call site value description, if the call is within the entry MBB. 843 // TODO: Handle situations when call site parameter value can be described 844 // as the entry value within basic blocks other than the first one. 845 bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin(); 846 847 // Search for a loading value in forwarding registers inside call delay slot. 848 if (CallMI->hasDelaySlot()) { 849 auto Suc = std::next(CallMI->getIterator()); 850 // Only one-instruction delay slot is supported. 851 auto BundleEnd = llvm::getBundleEnd(CallMI->getIterator()); 852 (void)BundleEnd; 853 assert(std::next(Suc) == BundleEnd && 854 "More than one instruction in call delay slot"); 855 // Try to interpret value loaded by instruction. 856 if (!interpretNextInstr(&*Suc, ForwardedRegWorklist, Params)) 857 return; 858 } 859 860 // Search for a loading value in forwarding registers. 861 for (; I != MBB->rend(); ++I) { 862 // Try to interpret values loaded by instruction. 863 if (!interpretNextInstr(&*I, ForwardedRegWorklist, Params)) 864 return; 865 } 866 867 // Emit the call site parameter's value as an entry value. 868 if (ShouldTryEmitEntryVals) { 869 // Create an expression where the register's entry value is used. 870 DIExpression *EntryExpr = DIExpression::get( 871 MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1}); 872 for (auto RegEntry : ForwardedRegWorklist) { 873 MachineLocation MLoc(RegEntry.first); 874 finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params); 875 } 876 } 877 } 878 879 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP, 880 DwarfCompileUnit &CU, DIE &ScopeDIE, 881 const MachineFunction &MF) { 882 // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if 883 // the subprogram is required to have one. 884 if (!SP.areAllCallsDescribed() || !SP.isDefinition()) 885 return; 886 887 // Use DW_AT_call_all_calls to express that call site entries are present 888 // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls 889 // because one of its requirements is not met: call site entries for 890 // optimized-out calls are elided. 891 CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls)); 892 893 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 894 assert(TII && "TargetInstrInfo not found: cannot label tail calls"); 895 896 // Delay slot support check. 897 auto delaySlotSupported = [&](const MachineInstr &MI) { 898 if (!MI.isBundledWithSucc()) 899 return false; 900 auto Suc = std::next(MI.getIterator()); 901 auto CallInstrBundle = getBundleStart(MI.getIterator()); 902 (void)CallInstrBundle; 903 auto DelaySlotBundle = getBundleStart(Suc); 904 (void)DelaySlotBundle; 905 // Ensure that label after call is following delay slot instruction. 906 // Ex. CALL_INSTRUCTION { 907 // DELAY_SLOT_INSTRUCTION } 908 // LABEL_AFTER_CALL 909 assert(getLabelAfterInsn(&*CallInstrBundle) == 910 getLabelAfterInsn(&*DelaySlotBundle) && 911 "Call and its successor instruction don't have same label after."); 912 return true; 913 }; 914 915 // Emit call site entries for each call or tail call in the function. 916 for (const MachineBasicBlock &MBB : MF) { 917 for (const MachineInstr &MI : MBB.instrs()) { 918 // Bundles with call in them will pass the isCall() test below but do not 919 // have callee operand information so skip them here. Iterator will 920 // eventually reach the call MI. 921 if (MI.isBundle()) 922 continue; 923 924 // Skip instructions which aren't calls. Both calls and tail-calling jump 925 // instructions (e.g TAILJMPd64) are classified correctly here. 926 if (!MI.isCandidateForCallSiteEntry()) 927 continue; 928 929 // Skip instructions marked as frame setup, as they are not interesting to 930 // the user. 931 if (MI.getFlag(MachineInstr::FrameSetup)) 932 continue; 933 934 // Check if delay slot support is enabled. 935 if (MI.hasDelaySlot() && !delaySlotSupported(*&MI)) 936 return; 937 938 // If this is a direct call, find the callee's subprogram. 939 // In the case of an indirect call find the register that holds 940 // the callee. 941 const MachineOperand &CalleeOp = MI.getOperand(0); 942 if (!CalleeOp.isGlobal() && !CalleeOp.isReg()) 943 continue; 944 945 unsigned CallReg = 0; 946 DIE *CalleeDIE = nullptr; 947 const Function *CalleeDecl = nullptr; 948 if (CalleeOp.isReg()) { 949 CallReg = CalleeOp.getReg(); 950 if (!CallReg) 951 continue; 952 } else { 953 CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal()); 954 if (!CalleeDecl || !CalleeDecl->getSubprogram()) 955 continue; 956 const DISubprogram *CalleeSP = CalleeDecl->getSubprogram(); 957 958 if (CalleeSP->isDefinition()) { 959 // Ensure that a subprogram DIE for the callee is available in the 960 // appropriate CU. 961 CalleeDIE = &constructSubprogramDefinitionDIE(CalleeSP); 962 } else { 963 // Create the declaration DIE if it is missing. This is required to 964 // support compilation of old bitcode with an incomplete list of 965 // retained metadata. 966 CalleeDIE = CU.getOrCreateSubprogramDIE(CalleeSP); 967 } 968 assert(CalleeDIE && "Must have a DIE for the callee"); 969 } 970 971 // TODO: Omit call site entries for runtime calls (objc_msgSend, etc). 972 973 bool IsTail = TII->isTailCall(MI); 974 975 // If MI is in a bundle, the label was created after the bundle since 976 // EmitFunctionBody iterates over top-level MIs. Get that top-level MI 977 // to search for that label below. 978 const MachineInstr *TopLevelCallMI = 979 MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI; 980 981 // For non-tail calls, the return PC is needed to disambiguate paths in 982 // the call graph which could lead to some target function. For tail 983 // calls, no return PC information is needed, unless tuning for GDB in 984 // DWARF4 mode in which case we fake a return PC for compatibility. 985 const MCSymbol *PCAddr = 986 (!IsTail || CU.useGNUAnalogForDwarf5Feature()) 987 ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI)) 988 : nullptr; 989 990 // For tail calls, it's necessary to record the address of the branch 991 // instruction so that the debugger can show where the tail call occurred. 992 const MCSymbol *CallAddr = 993 IsTail ? getLabelBeforeInsn(TopLevelCallMI) : nullptr; 994 995 assert((IsTail || PCAddr) && "Non-tail call without return PC"); 996 997 LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> " 998 << (CalleeDecl ? CalleeDecl->getName() 999 : StringRef(MF.getSubtarget() 1000 .getRegisterInfo() 1001 ->getName(CallReg))) 1002 << (IsTail ? " [IsTail]" : "") << "\n"); 1003 1004 DIE &CallSiteDIE = CU.constructCallSiteEntryDIE( 1005 ScopeDIE, CalleeDIE, IsTail, PCAddr, CallAddr, CallReg); 1006 1007 // Optionally emit call-site-param debug info. 1008 if (emitDebugEntryValues()) { 1009 ParamSet Params; 1010 // Try to interpret values of call site parameters. 1011 collectCallSiteParameters(&MI, Params); 1012 CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params); 1013 } 1014 } 1015 } 1016 } 1017 1018 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const { 1019 if (!U.hasDwarfPubSections()) 1020 return; 1021 1022 U.addFlag(D, dwarf::DW_AT_GNU_pubnames); 1023 } 1024 1025 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit, 1026 DwarfCompileUnit &NewCU) { 1027 DIE &Die = NewCU.getUnitDie(); 1028 StringRef FN = DIUnit->getFilename(); 1029 1030 StringRef Producer = DIUnit->getProducer(); 1031 StringRef Flags = DIUnit->getFlags(); 1032 if (!Flags.empty() && !useAppleExtensionAttributes()) { 1033 std::string ProducerWithFlags = Producer.str() + " " + Flags.str(); 1034 NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags); 1035 } else 1036 NewCU.addString(Die, dwarf::DW_AT_producer, Producer); 1037 1038 NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 1039 DIUnit->getSourceLanguage()); 1040 NewCU.addString(Die, dwarf::DW_AT_name, FN); 1041 StringRef SysRoot = DIUnit->getSysRoot(); 1042 if (!SysRoot.empty()) 1043 NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot); 1044 StringRef SDK = DIUnit->getSDK(); 1045 if (!SDK.empty()) 1046 NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK); 1047 1048 // Add DW_str_offsets_base to the unit DIE, except for split units. 1049 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 1050 NewCU.addStringOffsetsStart(); 1051 1052 if (!useSplitDwarf()) { 1053 NewCU.initStmtList(); 1054 1055 // If we're using split dwarf the compilation dir is going to be in the 1056 // skeleton CU and so we don't need to duplicate it here. 1057 if (!CompilationDir.empty()) 1058 NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 1059 addGnuPubAttributes(NewCU, Die); 1060 } 1061 1062 if (useAppleExtensionAttributes()) { 1063 if (DIUnit->isOptimized()) 1064 NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized); 1065 1066 StringRef Flags = DIUnit->getFlags(); 1067 if (!Flags.empty()) 1068 NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags); 1069 1070 if (unsigned RVer = DIUnit->getRuntimeVersion()) 1071 NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers, 1072 dwarf::DW_FORM_data1, RVer); 1073 } 1074 1075 if (DIUnit->getDWOId()) { 1076 // This CU is either a clang module DWO or a skeleton CU. 1077 NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, 1078 DIUnit->getDWOId()); 1079 if (!DIUnit->getSplitDebugFilename().empty()) { 1080 // This is a prefabricated skeleton CU. 1081 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1082 ? dwarf::DW_AT_dwo_name 1083 : dwarf::DW_AT_GNU_dwo_name; 1084 NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename()); 1085 } 1086 } 1087 } 1088 // Create new DwarfCompileUnit for the given metadata node with tag 1089 // DW_TAG_compile_unit. 1090 DwarfCompileUnit & 1091 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) { 1092 if (auto *CU = CUMap.lookup(DIUnit)) 1093 return *CU; 1094 1095 CompilationDir = DIUnit->getDirectory(); 1096 1097 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 1098 InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder); 1099 DwarfCompileUnit &NewCU = *OwnedUnit; 1100 InfoHolder.addUnit(std::move(OwnedUnit)); 1101 1102 for (auto *IE : DIUnit->getImportedEntities()) 1103 NewCU.addImportedEntity(IE); 1104 1105 // LTO with assembly output shares a single line table amongst multiple CUs. 1106 // To avoid the compilation directory being ambiguous, let the line table 1107 // explicitly describe the directory of all files, never relying on the 1108 // compilation directory. 1109 if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU) 1110 Asm->OutStreamer->emitDwarfFile0Directive( 1111 CompilationDir, DIUnit->getFilename(), getMD5AsBytes(DIUnit->getFile()), 1112 DIUnit->getSource(), NewCU.getUniqueID()); 1113 1114 if (useSplitDwarf()) { 1115 NewCU.setSkeleton(constructSkeletonCU(NewCU)); 1116 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection()); 1117 } else { 1118 finishUnitAttributes(DIUnit, NewCU); 1119 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 1120 } 1121 1122 CUMap.insert({DIUnit, &NewCU}); 1123 CUDieMap.insert({&NewCU.getUnitDie(), &NewCU}); 1124 return NewCU; 1125 } 1126 1127 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU, 1128 const DIImportedEntity *N) { 1129 if (isa<DILocalScope>(N->getScope())) 1130 return; 1131 if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope())) 1132 D->addChild(TheCU.constructImportedEntityDIE(N)); 1133 } 1134 1135 /// Sort and unique GVEs by comparing their fragment offset. 1136 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> & 1137 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) { 1138 llvm::sort( 1139 GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) { 1140 // Sort order: first null exprs, then exprs without fragment 1141 // info, then sort by fragment offset in bits. 1142 // FIXME: Come up with a more comprehensive comparator so 1143 // the sorting isn't non-deterministic, and so the following 1144 // std::unique call works correctly. 1145 if (!A.Expr || !B.Expr) 1146 return !!B.Expr; 1147 auto FragmentA = A.Expr->getFragmentInfo(); 1148 auto FragmentB = B.Expr->getFragmentInfo(); 1149 if (!FragmentA || !FragmentB) 1150 return !!FragmentB; 1151 return FragmentA->OffsetInBits < FragmentB->OffsetInBits; 1152 }); 1153 GVEs.erase(std::unique(GVEs.begin(), GVEs.end(), 1154 [](DwarfCompileUnit::GlobalExpr A, 1155 DwarfCompileUnit::GlobalExpr B) { 1156 return A.Expr == B.Expr; 1157 }), 1158 GVEs.end()); 1159 return GVEs; 1160 } 1161 1162 // Emit all Dwarf sections that should come prior to the content. Create 1163 // global DIEs and emit initial debug info sections. This is invoked by 1164 // the target AsmPrinter. 1165 void DwarfDebug::beginModule(Module *M) { 1166 DebugHandlerBase::beginModule(M); 1167 1168 if (!Asm || !MMI->hasDebugInfo()) 1169 return; 1170 1171 unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(), 1172 M->debug_compile_units_end()); 1173 assert(NumDebugCUs > 0 && "Asm unexpectedly initialized"); 1174 assert(MMI->hasDebugInfo() && 1175 "DebugInfoAvailabilty unexpectedly not initialized"); 1176 SingleCU = NumDebugCUs == 1; 1177 DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>> 1178 GVMap; 1179 for (const GlobalVariable &Global : M->globals()) { 1180 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1181 Global.getDebugInfo(GVs); 1182 for (auto *GVE : GVs) 1183 GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()}); 1184 } 1185 1186 // Create the symbol that designates the start of the unit's contribution 1187 // to the string offsets table. In a split DWARF scenario, only the skeleton 1188 // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol). 1189 if (useSegmentedStringOffsetsTable()) 1190 (useSplitDwarf() ? SkeletonHolder : InfoHolder) 1191 .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base")); 1192 1193 1194 // Create the symbols that designates the start of the DWARF v5 range list 1195 // and locations list tables. They are located past the table headers. 1196 if (getDwarfVersion() >= 5) { 1197 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1198 Holder.setRnglistsTableBaseSym( 1199 Asm->createTempSymbol("rnglists_table_base")); 1200 1201 if (useSplitDwarf()) 1202 InfoHolder.setRnglistsTableBaseSym( 1203 Asm->createTempSymbol("rnglists_dwo_table_base")); 1204 } 1205 1206 // Create the symbol that points to the first entry following the debug 1207 // address table (.debug_addr) header. 1208 AddrPool.setLabel(Asm->createTempSymbol("addr_table_base")); 1209 DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base")); 1210 1211 for (DICompileUnit *CUNode : M->debug_compile_units()) { 1212 // FIXME: Move local imported entities into a list attached to the 1213 // subprogram, then this search won't be needed and a 1214 // getImportedEntities().empty() test should go below with the rest. 1215 bool HasNonLocalImportedEntities = llvm::any_of( 1216 CUNode->getImportedEntities(), [](const DIImportedEntity *IE) { 1217 return !isa<DILocalScope>(IE->getScope()); 1218 }); 1219 1220 if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() && 1221 CUNode->getRetainedTypes().empty() && 1222 CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty()) 1223 continue; 1224 1225 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode); 1226 1227 // Global Variables. 1228 for (auto *GVE : CUNode->getGlobalVariables()) { 1229 // Don't bother adding DIGlobalVariableExpressions listed in the CU if we 1230 // already know about the variable and it isn't adding a constant 1231 // expression. 1232 auto &GVMapEntry = GVMap[GVE->getVariable()]; 1233 auto *Expr = GVE->getExpression(); 1234 if (!GVMapEntry.size() || (Expr && Expr->isConstant())) 1235 GVMapEntry.push_back({nullptr, Expr}); 1236 } 1237 DenseSet<DIGlobalVariable *> Processed; 1238 for (auto *GVE : CUNode->getGlobalVariables()) { 1239 DIGlobalVariable *GV = GVE->getVariable(); 1240 if (Processed.insert(GV).second) 1241 CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV])); 1242 } 1243 1244 for (auto *Ty : CUNode->getEnumTypes()) { 1245 // The enum types array by design contains pointers to 1246 // MDNodes rather than DIRefs. Unique them here. 1247 CU.getOrCreateTypeDIE(cast<DIType>(Ty)); 1248 } 1249 for (auto *Ty : CUNode->getRetainedTypes()) { 1250 // The retained types array by design contains pointers to 1251 // MDNodes rather than DIRefs. Unique them here. 1252 if (DIType *RT = dyn_cast<DIType>(Ty)) 1253 // There is no point in force-emitting a forward declaration. 1254 CU.getOrCreateTypeDIE(RT); 1255 } 1256 // Emit imported_modules last so that the relevant context is already 1257 // available. 1258 for (auto *IE : CUNode->getImportedEntities()) 1259 constructAndAddImportedEntityDIE(CU, IE); 1260 } 1261 } 1262 1263 void DwarfDebug::finishEntityDefinitions() { 1264 for (const auto &Entity : ConcreteEntities) { 1265 DIE *Die = Entity->getDIE(); 1266 assert(Die); 1267 // FIXME: Consider the time-space tradeoff of just storing the unit pointer 1268 // in the ConcreteEntities list, rather than looking it up again here. 1269 // DIE::getUnit isn't simple - it walks parent pointers, etc. 1270 DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie()); 1271 assert(Unit); 1272 Unit->finishEntityDefinition(Entity.get()); 1273 } 1274 } 1275 1276 void DwarfDebug::finishSubprogramDefinitions() { 1277 for (const DISubprogram *SP : ProcessedSPNodes) { 1278 assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug); 1279 forBothCUs( 1280 getOrCreateDwarfCompileUnit(SP->getUnit()), 1281 [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); }); 1282 } 1283 } 1284 1285 void DwarfDebug::finalizeModuleInfo() { 1286 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); 1287 1288 finishSubprogramDefinitions(); 1289 1290 finishEntityDefinitions(); 1291 1292 // Include the DWO file name in the hash if there's more than one CU. 1293 // This handles ThinLTO's situation where imported CUs may very easily be 1294 // duplicate with the same CU partially imported into another ThinLTO unit. 1295 StringRef DWOName; 1296 if (CUMap.size() > 1) 1297 DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile; 1298 1299 // Handle anything that needs to be done on a per-unit basis after 1300 // all other generation. 1301 for (const auto &P : CUMap) { 1302 auto &TheCU = *P.second; 1303 if (TheCU.getCUNode()->isDebugDirectivesOnly()) 1304 continue; 1305 // Emit DW_AT_containing_type attribute to connect types with their 1306 // vtable holding type. 1307 TheCU.constructContainingTypeDIEs(); 1308 1309 // Add CU specific attributes if we need to add any. 1310 // If we're splitting the dwarf out now that we've got the entire 1311 // CU then add the dwo id to it. 1312 auto *SkCU = TheCU.getSkeleton(); 1313 1314 bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty(); 1315 1316 if (HasSplitUnit) { 1317 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1318 ? dwarf::DW_AT_dwo_name 1319 : dwarf::DW_AT_GNU_dwo_name; 1320 finishUnitAttributes(TheCU.getCUNode(), TheCU); 1321 TheCU.addString(TheCU.getUnitDie(), attrDWOName, 1322 Asm->TM.Options.MCOptions.SplitDwarfFile); 1323 SkCU->addString(SkCU->getUnitDie(), attrDWOName, 1324 Asm->TM.Options.MCOptions.SplitDwarfFile); 1325 // Emit a unique identifier for this CU. 1326 uint64_t ID = 1327 DIEHash(Asm, &TheCU).computeCUSignature(DWOName, TheCU.getUnitDie()); 1328 if (getDwarfVersion() >= 5) { 1329 TheCU.setDWOId(ID); 1330 SkCU->setDWOId(ID); 1331 } else { 1332 TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1333 dwarf::DW_FORM_data8, ID); 1334 SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1335 dwarf::DW_FORM_data8, ID); 1336 } 1337 1338 if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) { 1339 const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol(); 1340 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base, 1341 Sym, Sym); 1342 } 1343 } else if (SkCU) { 1344 finishUnitAttributes(SkCU->getCUNode(), *SkCU); 1345 } 1346 1347 // If we have code split among multiple sections or non-contiguous 1348 // ranges of code then emit a DW_AT_ranges attribute on the unit that will 1349 // remain in the .o file, otherwise add a DW_AT_low_pc. 1350 // FIXME: We should use ranges allow reordering of code ala 1351 // .subsections_via_symbols in mach-o. This would mean turning on 1352 // ranges for all subprogram DIEs for mach-o. 1353 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 1354 1355 if (unsigned NumRanges = TheCU.getRanges().size()) { 1356 if (NumRanges > 1 && useRangesSection()) 1357 // A DW_AT_low_pc attribute may also be specified in combination with 1358 // DW_AT_ranges to specify the default base address for use in 1359 // location lists (see Section 2.6.2) and range lists (see Section 1360 // 2.17.3). 1361 U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0); 1362 else 1363 U.setBaseAddress(TheCU.getRanges().front().Begin); 1364 U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges()); 1365 } 1366 1367 // We don't keep track of which addresses are used in which CU so this 1368 // is a bit pessimistic under LTO. 1369 if ((HasSplitUnit || getDwarfVersion() >= 5) && !AddrPool.isEmpty()) 1370 U.addAddrTableBase(); 1371 1372 if (getDwarfVersion() >= 5) { 1373 if (U.hasRangeLists()) 1374 U.addRnglistsBase(); 1375 1376 if (!DebugLocs.getLists().empty()) { 1377 if (!useSplitDwarf()) 1378 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base, 1379 DebugLocs.getSym(), 1380 TLOF.getDwarfLoclistsSection()->getBeginSymbol()); 1381 } 1382 } 1383 1384 auto *CUNode = cast<DICompileUnit>(P.first); 1385 // If compile Unit has macros, emit "DW_AT_macro_info/DW_AT_macros" 1386 // attribute. 1387 if (CUNode->getMacros()) { 1388 if (UseDebugMacroSection) { 1389 if (useSplitDwarf()) 1390 TheCU.addSectionDelta( 1391 TheCU.getUnitDie(), dwarf::DW_AT_macros, U.getMacroLabelBegin(), 1392 TLOF.getDwarfMacroDWOSection()->getBeginSymbol()); 1393 else { 1394 dwarf::Attribute MacrosAttr = getDwarfVersion() >= 5 1395 ? dwarf::DW_AT_macros 1396 : dwarf::DW_AT_GNU_macros; 1397 U.addSectionLabel(U.getUnitDie(), MacrosAttr, U.getMacroLabelBegin(), 1398 TLOF.getDwarfMacroSection()->getBeginSymbol()); 1399 } 1400 } else { 1401 if (useSplitDwarf()) 1402 TheCU.addSectionDelta( 1403 TheCU.getUnitDie(), dwarf::DW_AT_macro_info, 1404 U.getMacroLabelBegin(), 1405 TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol()); 1406 else 1407 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info, 1408 U.getMacroLabelBegin(), 1409 TLOF.getDwarfMacinfoSection()->getBeginSymbol()); 1410 } 1411 } 1412 } 1413 1414 // Emit all frontend-produced Skeleton CUs, i.e., Clang modules. 1415 for (auto *CUNode : MMI->getModule()->debug_compile_units()) 1416 if (CUNode->getDWOId()) 1417 getOrCreateDwarfCompileUnit(CUNode); 1418 1419 // Compute DIE offsets and sizes. 1420 InfoHolder.computeSizeAndOffsets(); 1421 if (useSplitDwarf()) 1422 SkeletonHolder.computeSizeAndOffsets(); 1423 } 1424 1425 // Emit all Dwarf sections that should come after the content. 1426 void DwarfDebug::endModule() { 1427 assert(CurFn == nullptr); 1428 assert(CurMI == nullptr); 1429 1430 for (const auto &P : CUMap) { 1431 auto &CU = *P.second; 1432 CU.createBaseTypeDIEs(); 1433 } 1434 1435 // If we aren't actually generating debug info (check beginModule - 1436 // conditionalized on the presence of the llvm.dbg.cu metadata node) 1437 if (!Asm || !MMI->hasDebugInfo()) 1438 return; 1439 1440 // Finalize the debug info for the module. 1441 finalizeModuleInfo(); 1442 1443 if (useSplitDwarf()) 1444 // Emit debug_loc.dwo/debug_loclists.dwo section. 1445 emitDebugLocDWO(); 1446 else 1447 // Emit debug_loc/debug_loclists section. 1448 emitDebugLoc(); 1449 1450 // Corresponding abbreviations into a abbrev section. 1451 emitAbbreviations(); 1452 1453 // Emit all the DIEs into a debug info section. 1454 emitDebugInfo(); 1455 1456 // Emit info into a debug aranges section. 1457 if (GenerateARangeSection) 1458 emitDebugARanges(); 1459 1460 // Emit info into a debug ranges section. 1461 emitDebugRanges(); 1462 1463 if (useSplitDwarf()) 1464 // Emit info into a debug macinfo.dwo section. 1465 emitDebugMacinfoDWO(); 1466 else 1467 // Emit info into a debug macinfo/macro section. 1468 emitDebugMacinfo(); 1469 1470 emitDebugStr(); 1471 1472 if (useSplitDwarf()) { 1473 emitDebugStrDWO(); 1474 emitDebugInfoDWO(); 1475 emitDebugAbbrevDWO(); 1476 emitDebugLineDWO(); 1477 emitDebugRangesDWO(); 1478 } 1479 1480 emitDebugAddr(); 1481 1482 // Emit info into the dwarf accelerator table sections. 1483 switch (getAccelTableKind()) { 1484 case AccelTableKind::Apple: 1485 emitAccelNames(); 1486 emitAccelObjC(); 1487 emitAccelNamespaces(); 1488 emitAccelTypes(); 1489 break; 1490 case AccelTableKind::Dwarf: 1491 emitAccelDebugNames(); 1492 break; 1493 case AccelTableKind::None: 1494 break; 1495 case AccelTableKind::Default: 1496 llvm_unreachable("Default should have already been resolved."); 1497 } 1498 1499 // Emit the pubnames and pubtypes sections if requested. 1500 emitDebugPubSections(); 1501 1502 // clean up. 1503 // FIXME: AbstractVariables.clear(); 1504 } 1505 1506 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU, 1507 const DINode *Node, 1508 const MDNode *ScopeNode) { 1509 if (CU.getExistingAbstractEntity(Node)) 1510 return; 1511 1512 CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope( 1513 cast<DILocalScope>(ScopeNode))); 1514 } 1515 1516 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU, 1517 const DINode *Node, const MDNode *ScopeNode) { 1518 if (CU.getExistingAbstractEntity(Node)) 1519 return; 1520 1521 if (LexicalScope *Scope = 1522 LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode))) 1523 CU.createAbstractEntity(Node, Scope); 1524 } 1525 1526 // Collect variable information from side table maintained by MF. 1527 void DwarfDebug::collectVariableInfoFromMFTable( 1528 DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) { 1529 SmallDenseMap<InlinedEntity, DbgVariable *> MFVars; 1530 LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n"); 1531 for (const auto &VI : Asm->MF->getVariableDbgInfo()) { 1532 if (!VI.Var) 1533 continue; 1534 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1535 "Expected inlined-at fields to agree"); 1536 1537 InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt()); 1538 Processed.insert(Var); 1539 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1540 1541 // If variable scope is not found then skip this variable. 1542 if (!Scope) { 1543 LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName() 1544 << ", no variable scope found\n"); 1545 continue; 1546 } 1547 1548 ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode()); 1549 auto RegVar = std::make_unique<DbgVariable>( 1550 cast<DILocalVariable>(Var.first), Var.second); 1551 RegVar->initializeMMI(VI.Expr, VI.Slot); 1552 LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName() 1553 << "\n"); 1554 if (DbgVariable *DbgVar = MFVars.lookup(Var)) 1555 DbgVar->addMMIEntry(*RegVar); 1556 else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) { 1557 MFVars.insert({Var, RegVar.get()}); 1558 ConcreteEntities.push_back(std::move(RegVar)); 1559 } 1560 } 1561 } 1562 1563 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its 1564 /// enclosing lexical scope. The check ensures there are no other instructions 1565 /// in the same lexical scope preceding the DBG_VALUE and that its range is 1566 /// either open or otherwise rolls off the end of the scope. 1567 static bool validThroughout(LexicalScopes &LScopes, 1568 const MachineInstr *DbgValue, 1569 const MachineInstr *RangeEnd, 1570 const InstructionOrdering &Ordering) { 1571 assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location"); 1572 auto MBB = DbgValue->getParent(); 1573 auto DL = DbgValue->getDebugLoc(); 1574 auto *LScope = LScopes.findLexicalScope(DL); 1575 // Scope doesn't exist; this is a dead DBG_VALUE. 1576 if (!LScope) 1577 return false; 1578 auto &LSRange = LScope->getRanges(); 1579 if (LSRange.size() == 0) 1580 return false; 1581 1582 const MachineInstr *LScopeBegin = LSRange.front().first; 1583 // If the scope starts before the DBG_VALUE then we may have a negative 1584 // result. Otherwise the location is live coming into the scope and we 1585 // can skip the following checks. 1586 if (!Ordering.isBefore(DbgValue, LScopeBegin)) { 1587 // Exit if the lexical scope begins outside of the current block. 1588 if (LScopeBegin->getParent() != MBB) 1589 return false; 1590 1591 MachineBasicBlock::const_reverse_iterator Pred(DbgValue); 1592 for (++Pred; Pred != MBB->rend(); ++Pred) { 1593 if (Pred->getFlag(MachineInstr::FrameSetup)) 1594 break; 1595 auto PredDL = Pred->getDebugLoc(); 1596 if (!PredDL || Pred->isMetaInstruction()) 1597 continue; 1598 // Check whether the instruction preceding the DBG_VALUE is in the same 1599 // (sub)scope as the DBG_VALUE. 1600 if (DL->getScope() == PredDL->getScope()) 1601 return false; 1602 auto *PredScope = LScopes.findLexicalScope(PredDL); 1603 if (!PredScope || LScope->dominates(PredScope)) 1604 return false; 1605 } 1606 } 1607 1608 // If the range of the DBG_VALUE is open-ended, report success. 1609 if (!RangeEnd) 1610 return true; 1611 1612 // Single, constant DBG_VALUEs in the prologue are promoted to be live 1613 // throughout the function. This is a hack, presumably for DWARF v2 and not 1614 // necessarily correct. It would be much better to use a dbg.declare instead 1615 // if we know the constant is live throughout the scope. 1616 if (DbgValue->getDebugOperand(0).isImm() && MBB->pred_empty()) 1617 return true; 1618 1619 // Test if the location terminates before the end of the scope. 1620 const MachineInstr *LScopeEnd = LSRange.back().second; 1621 if (Ordering.isBefore(RangeEnd, LScopeEnd)) 1622 return false; 1623 1624 // There's a single location which starts at the scope start, and ends at or 1625 // after the scope end. 1626 return true; 1627 } 1628 1629 /// Build the location list for all DBG_VALUEs in the function that 1630 /// describe the same variable. The resulting DebugLocEntries will have 1631 /// strict monotonically increasing begin addresses and will never 1632 /// overlap. If the resulting list has only one entry that is valid 1633 /// throughout variable's scope return true. 1634 // 1635 // See the definition of DbgValueHistoryMap::Entry for an explanation of the 1636 // different kinds of history map entries. One thing to be aware of is that if 1637 // a debug value is ended by another entry (rather than being valid until the 1638 // end of the function), that entry's instruction may or may not be included in 1639 // the range, depending on if the entry is a clobbering entry (it has an 1640 // instruction that clobbers one or more preceding locations), or if it is an 1641 // (overlapping) debug value entry. This distinction can be seen in the example 1642 // below. The first debug value is ended by the clobbering entry 2, and the 1643 // second and third debug values are ended by the overlapping debug value entry 1644 // 4. 1645 // 1646 // Input: 1647 // 1648 // History map entries [type, end index, mi] 1649 // 1650 // 0 | [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)] 1651 // 1 | | [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)] 1652 // 2 | | [Clobber, $reg0 = [...], -, -] 1653 // 3 | | [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)] 1654 // 4 [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)] 1655 // 1656 // Output [start, end) [Value...]: 1657 // 1658 // [0-1) [(reg0, fragment 0, 32)] 1659 // [1-3) [(reg0, fragment 0, 32), (reg1, fragment 32, 32)] 1660 // [3-4) [(reg1, fragment 32, 32), (123, fragment 64, 32)] 1661 // [4-) [(@g, fragment 0, 96)] 1662 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc, 1663 const DbgValueHistoryMap::Entries &Entries) { 1664 using OpenRange = 1665 std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>; 1666 SmallVector<OpenRange, 4> OpenRanges; 1667 bool isSafeForSingleLocation = true; 1668 const MachineInstr *StartDebugMI = nullptr; 1669 const MachineInstr *EndMI = nullptr; 1670 1671 for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) { 1672 const MachineInstr *Instr = EI->getInstr(); 1673 1674 // Remove all values that are no longer live. 1675 size_t Index = std::distance(EB, EI); 1676 erase_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; }); 1677 1678 // If we are dealing with a clobbering entry, this iteration will result in 1679 // a location list entry starting after the clobbering instruction. 1680 const MCSymbol *StartLabel = 1681 EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr); 1682 assert(StartLabel && 1683 "Forgot label before/after instruction starting a range!"); 1684 1685 const MCSymbol *EndLabel; 1686 if (std::next(EI) == Entries.end()) { 1687 const MachineBasicBlock &EndMBB = Asm->MF->back(); 1688 EndLabel = Asm->MBBSectionRanges[EndMBB.getSectionIDNum()].EndLabel; 1689 if (EI->isClobber()) 1690 EndMI = EI->getInstr(); 1691 } 1692 else if (std::next(EI)->isClobber()) 1693 EndLabel = getLabelAfterInsn(std::next(EI)->getInstr()); 1694 else 1695 EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr()); 1696 assert(EndLabel && "Forgot label after instruction ending a range!"); 1697 1698 if (EI->isDbgValue()) 1699 LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n"); 1700 1701 // If this history map entry has a debug value, add that to the list of 1702 // open ranges and check if its location is valid for a single value 1703 // location. 1704 if (EI->isDbgValue()) { 1705 // Do not add undef debug values, as they are redundant information in 1706 // the location list entries. An undef debug results in an empty location 1707 // description. If there are any non-undef fragments then padding pieces 1708 // with empty location descriptions will automatically be inserted, and if 1709 // all fragments are undef then the whole location list entry is 1710 // redundant. 1711 if (!Instr->isUndefDebugValue()) { 1712 auto Value = getDebugLocValue(Instr); 1713 OpenRanges.emplace_back(EI->getEndIndex(), Value); 1714 1715 // TODO: Add support for single value fragment locations. 1716 if (Instr->getDebugExpression()->isFragment()) 1717 isSafeForSingleLocation = false; 1718 1719 if (!StartDebugMI) 1720 StartDebugMI = Instr; 1721 } else { 1722 isSafeForSingleLocation = false; 1723 } 1724 } 1725 1726 // Location list entries with empty location descriptions are redundant 1727 // information in DWARF, so do not emit those. 1728 if (OpenRanges.empty()) 1729 continue; 1730 1731 // Omit entries with empty ranges as they do not have any effect in DWARF. 1732 if (StartLabel == EndLabel) { 1733 LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n"); 1734 continue; 1735 } 1736 1737 SmallVector<DbgValueLoc, 4> Values; 1738 for (auto &R : OpenRanges) 1739 Values.push_back(R.second); 1740 DebugLoc.emplace_back(StartLabel, EndLabel, Values); 1741 1742 // Attempt to coalesce the ranges of two otherwise identical 1743 // DebugLocEntries. 1744 auto CurEntry = DebugLoc.rbegin(); 1745 LLVM_DEBUG({ 1746 dbgs() << CurEntry->getValues().size() << " Values:\n"; 1747 for (auto &Value : CurEntry->getValues()) 1748 Value.dump(); 1749 dbgs() << "-----\n"; 1750 }); 1751 1752 auto PrevEntry = std::next(CurEntry); 1753 if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry)) 1754 DebugLoc.pop_back(); 1755 } 1756 1757 return DebugLoc.size() == 1 && isSafeForSingleLocation && 1758 validThroughout(LScopes, StartDebugMI, EndMI, getInstOrdering()); 1759 } 1760 1761 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU, 1762 LexicalScope &Scope, 1763 const DINode *Node, 1764 const DILocation *Location, 1765 const MCSymbol *Sym) { 1766 ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode()); 1767 if (isa<const DILocalVariable>(Node)) { 1768 ConcreteEntities.push_back( 1769 std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node), 1770 Location)); 1771 InfoHolder.addScopeVariable(&Scope, 1772 cast<DbgVariable>(ConcreteEntities.back().get())); 1773 } else if (isa<const DILabel>(Node)) { 1774 ConcreteEntities.push_back( 1775 std::make_unique<DbgLabel>(cast<const DILabel>(Node), 1776 Location, Sym)); 1777 InfoHolder.addScopeLabel(&Scope, 1778 cast<DbgLabel>(ConcreteEntities.back().get())); 1779 } 1780 return ConcreteEntities.back().get(); 1781 } 1782 1783 // Find variables for each lexical scope. 1784 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU, 1785 const DISubprogram *SP, 1786 DenseSet<InlinedEntity> &Processed) { 1787 // Grab the variable info that was squirreled away in the MMI side-table. 1788 collectVariableInfoFromMFTable(TheCU, Processed); 1789 1790 for (const auto &I : DbgValues) { 1791 InlinedEntity IV = I.first; 1792 if (Processed.count(IV)) 1793 continue; 1794 1795 // Instruction ranges, specifying where IV is accessible. 1796 const auto &HistoryMapEntries = I.second; 1797 1798 // Try to find any non-empty variable location. Do not create a concrete 1799 // entity if there are no locations. 1800 if (!DbgValues.hasNonEmptyLocation(HistoryMapEntries)) 1801 continue; 1802 1803 LexicalScope *Scope = nullptr; 1804 const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first); 1805 if (const DILocation *IA = IV.second) 1806 Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA); 1807 else 1808 Scope = LScopes.findLexicalScope(LocalVar->getScope()); 1809 // If variable scope is not found then skip this variable. 1810 if (!Scope) 1811 continue; 1812 1813 Processed.insert(IV); 1814 DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU, 1815 *Scope, LocalVar, IV.second)); 1816 1817 const MachineInstr *MInsn = HistoryMapEntries.front().getInstr(); 1818 assert(MInsn->isDebugValue() && "History must begin with debug value"); 1819 1820 // Check if there is a single DBG_VALUE, valid throughout the var's scope. 1821 // If the history map contains a single debug value, there may be an 1822 // additional entry which clobbers the debug value. 1823 size_t HistSize = HistoryMapEntries.size(); 1824 bool SingleValueWithClobber = 1825 HistSize == 2 && HistoryMapEntries[1].isClobber(); 1826 if (HistSize == 1 || SingleValueWithClobber) { 1827 const auto *End = 1828 SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr; 1829 if (validThroughout(LScopes, MInsn, End, getInstOrdering())) { 1830 RegVar->initializeDbgValue(MInsn); 1831 continue; 1832 } 1833 } 1834 1835 // Do not emit location lists if .debug_loc secton is disabled. 1836 if (!useLocSection()) 1837 continue; 1838 1839 // Handle multiple DBG_VALUE instructions describing one variable. 1840 DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn); 1841 1842 // Build the location list for this variable. 1843 SmallVector<DebugLocEntry, 8> Entries; 1844 bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries); 1845 1846 // Check whether buildLocationList managed to merge all locations to one 1847 // that is valid throughout the variable's scope. If so, produce single 1848 // value location. 1849 if (isValidSingleLocation) { 1850 RegVar->initializeDbgValue(Entries[0].getValues()[0]); 1851 continue; 1852 } 1853 1854 // If the variable has a DIBasicType, extract it. Basic types cannot have 1855 // unique identifiers, so don't bother resolving the type with the 1856 // identifier map. 1857 const DIBasicType *BT = dyn_cast<DIBasicType>( 1858 static_cast<const Metadata *>(LocalVar->getType())); 1859 1860 // Finalize the entry by lowering it into a DWARF bytestream. 1861 for (auto &Entry : Entries) 1862 Entry.finalize(*Asm, List, BT, TheCU); 1863 } 1864 1865 // For each InlinedEntity collected from DBG_LABEL instructions, convert to 1866 // DWARF-related DbgLabel. 1867 for (const auto &I : DbgLabels) { 1868 InlinedEntity IL = I.first; 1869 const MachineInstr *MI = I.second; 1870 if (MI == nullptr) 1871 continue; 1872 1873 LexicalScope *Scope = nullptr; 1874 const DILabel *Label = cast<DILabel>(IL.first); 1875 // The scope could have an extra lexical block file. 1876 const DILocalScope *LocalScope = 1877 Label->getScope()->getNonLexicalBlockFileScope(); 1878 // Get inlined DILocation if it is inlined label. 1879 if (const DILocation *IA = IL.second) 1880 Scope = LScopes.findInlinedScope(LocalScope, IA); 1881 else 1882 Scope = LScopes.findLexicalScope(LocalScope); 1883 // If label scope is not found then skip this label. 1884 if (!Scope) 1885 continue; 1886 1887 Processed.insert(IL); 1888 /// At this point, the temporary label is created. 1889 /// Save the temporary label to DbgLabel entity to get the 1890 /// actually address when generating Dwarf DIE. 1891 MCSymbol *Sym = getLabelBeforeInsn(MI); 1892 createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym); 1893 } 1894 1895 // Collect info for variables/labels that were optimized out. 1896 for (const DINode *DN : SP->getRetainedNodes()) { 1897 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 1898 continue; 1899 LexicalScope *Scope = nullptr; 1900 if (auto *DV = dyn_cast<DILocalVariable>(DN)) { 1901 Scope = LScopes.findLexicalScope(DV->getScope()); 1902 } else if (auto *DL = dyn_cast<DILabel>(DN)) { 1903 Scope = LScopes.findLexicalScope(DL->getScope()); 1904 } 1905 1906 if (Scope) 1907 createConcreteEntity(TheCU, *Scope, DN, nullptr); 1908 } 1909 } 1910 1911 // Process beginning of an instruction. 1912 void DwarfDebug::beginInstruction(const MachineInstr *MI) { 1913 const MachineFunction &MF = *MI->getMF(); 1914 const auto *SP = MF.getFunction().getSubprogram(); 1915 bool NoDebug = 1916 !SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug; 1917 1918 // Delay slot support check. 1919 auto delaySlotSupported = [](const MachineInstr &MI) { 1920 if (!MI.isBundledWithSucc()) 1921 return false; 1922 auto Suc = std::next(MI.getIterator()); 1923 (void)Suc; 1924 // Ensure that delay slot instruction is successor of the call instruction. 1925 // Ex. CALL_INSTRUCTION { 1926 // DELAY_SLOT_INSTRUCTION } 1927 assert(Suc->isBundledWithPred() && 1928 "Call bundle instructions are out of order"); 1929 return true; 1930 }; 1931 1932 // When describing calls, we need a label for the call instruction. 1933 if (!NoDebug && SP->areAllCallsDescribed() && 1934 MI->isCandidateForCallSiteEntry(MachineInstr::AnyInBundle) && 1935 (!MI->hasDelaySlot() || delaySlotSupported(*MI))) { 1936 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1937 bool IsTail = TII->isTailCall(*MI); 1938 // For tail calls, we need the address of the branch instruction for 1939 // DW_AT_call_pc. 1940 if (IsTail) 1941 requestLabelBeforeInsn(MI); 1942 // For non-tail calls, we need the return address for the call for 1943 // DW_AT_call_return_pc. Under GDB tuning, this information is needed for 1944 // tail calls as well. 1945 requestLabelAfterInsn(MI); 1946 } 1947 1948 DebugHandlerBase::beginInstruction(MI); 1949 if (!CurMI) 1950 return; 1951 1952 if (NoDebug) 1953 return; 1954 1955 // Check if source location changes, but ignore DBG_VALUE and CFI locations. 1956 // If the instruction is part of the function frame setup code, do not emit 1957 // any line record, as there is no correspondence with any user code. 1958 if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup)) 1959 return; 1960 const DebugLoc &DL = MI->getDebugLoc(); 1961 // When we emit a line-0 record, we don't update PrevInstLoc; so look at 1962 // the last line number actually emitted, to see if it was line 0. 1963 unsigned LastAsmLine = 1964 Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine(); 1965 1966 if (DL == PrevInstLoc) { 1967 // If we have an ongoing unspecified location, nothing to do here. 1968 if (!DL) 1969 return; 1970 // We have an explicit location, same as the previous location. 1971 // But we might be coming back to it after a line 0 record. 1972 if (LastAsmLine == 0 && DL.getLine() != 0) { 1973 // Reinstate the source location but not marked as a statement. 1974 const MDNode *Scope = DL.getScope(); 1975 recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0); 1976 } 1977 return; 1978 } 1979 1980 if (!DL) { 1981 // We have an unspecified location, which might want to be line 0. 1982 // If we have already emitted a line-0 record, don't repeat it. 1983 if (LastAsmLine == 0) 1984 return; 1985 // If user said Don't Do That, don't do that. 1986 if (UnknownLocations == Disable) 1987 return; 1988 // See if we have a reason to emit a line-0 record now. 1989 // Reasons to emit a line-0 record include: 1990 // - User asked for it (UnknownLocations). 1991 // - Instruction has a label, so it's referenced from somewhere else, 1992 // possibly debug information; we want it to have a source location. 1993 // - Instruction is at the top of a block; we don't want to inherit the 1994 // location from the physically previous (maybe unrelated) block. 1995 if (UnknownLocations == Enable || PrevLabel || 1996 (PrevInstBB && PrevInstBB != MI->getParent())) { 1997 // Preserve the file and column numbers, if we can, to save space in 1998 // the encoded line table. 1999 // Do not update PrevInstLoc, it remembers the last non-0 line. 2000 const MDNode *Scope = nullptr; 2001 unsigned Column = 0; 2002 if (PrevInstLoc) { 2003 Scope = PrevInstLoc.getScope(); 2004 Column = PrevInstLoc.getCol(); 2005 } 2006 recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0); 2007 } 2008 return; 2009 } 2010 2011 // We have an explicit location, different from the previous location. 2012 // Don't repeat a line-0 record, but otherwise emit the new location. 2013 // (The new location might be an explicit line 0, which we do emit.) 2014 if (DL.getLine() == 0 && LastAsmLine == 0) 2015 return; 2016 unsigned Flags = 0; 2017 if (DL == PrologEndLoc) { 2018 Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT; 2019 PrologEndLoc = DebugLoc(); 2020 } 2021 // If the line changed, we call that a new statement; unless we went to 2022 // line 0 and came back, in which case it is not a new statement. 2023 unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine; 2024 if (DL.getLine() && DL.getLine() != OldLine) 2025 Flags |= DWARF2_FLAG_IS_STMT; 2026 2027 const MDNode *Scope = DL.getScope(); 2028 recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags); 2029 2030 // If we're not at line 0, remember this location. 2031 if (DL.getLine()) 2032 PrevInstLoc = DL; 2033 } 2034 2035 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) { 2036 // First known non-DBG_VALUE and non-frame setup location marks 2037 // the beginning of the function body. 2038 for (const auto &MBB : *MF) 2039 for (const auto &MI : MBB) 2040 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 2041 MI.getDebugLoc()) 2042 return MI.getDebugLoc(); 2043 return DebugLoc(); 2044 } 2045 2046 /// Register a source line with debug info. Returns the unique label that was 2047 /// emitted and which provides correspondence to the source line list. 2048 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col, 2049 const MDNode *S, unsigned Flags, unsigned CUID, 2050 uint16_t DwarfVersion, 2051 ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) { 2052 StringRef Fn; 2053 unsigned FileNo = 1; 2054 unsigned Discriminator = 0; 2055 if (auto *Scope = cast_or_null<DIScope>(S)) { 2056 Fn = Scope->getFilename(); 2057 if (Line != 0 && DwarfVersion >= 4) 2058 if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope)) 2059 Discriminator = LBF->getDiscriminator(); 2060 2061 FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID]) 2062 .getOrCreateSourceID(Scope->getFile()); 2063 } 2064 Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0, 2065 Discriminator, Fn); 2066 } 2067 2068 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF, 2069 unsigned CUID) { 2070 // Get beginning of function. 2071 if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) { 2072 // Ensure the compile unit is created if the function is called before 2073 // beginFunction(). 2074 (void)getOrCreateDwarfCompileUnit( 2075 MF.getFunction().getSubprogram()->getUnit()); 2076 // We'd like to list the prologue as "not statements" but GDB behaves 2077 // poorly if we do that. Revisit this with caution/GDB (7.5+) testing. 2078 const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram(); 2079 ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT, 2080 CUID, getDwarfVersion(), getUnits()); 2081 return PrologEndLoc; 2082 } 2083 return DebugLoc(); 2084 } 2085 2086 // Gather pre-function debug information. Assumes being called immediately 2087 // after the function entry point has been emitted. 2088 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) { 2089 CurFn = MF; 2090 2091 auto *SP = MF->getFunction().getSubprogram(); 2092 assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode()); 2093 if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) 2094 return; 2095 2096 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 2097 2098 // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function 2099 // belongs to so that we add to the correct per-cu line table in the 2100 // non-asm case. 2101 if (Asm->OutStreamer->hasRawTextSupport()) 2102 // Use a single line table if we are generating assembly. 2103 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 2104 else 2105 Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID()); 2106 2107 // Record beginning of function. 2108 PrologEndLoc = emitInitialLocDirective( 2109 *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID()); 2110 } 2111 2112 void DwarfDebug::skippedNonDebugFunction() { 2113 // If we don't have a subprogram for this function then there will be a hole 2114 // in the range information. Keep note of this by setting the previously used 2115 // section to nullptr. 2116 PrevCU = nullptr; 2117 CurFn = nullptr; 2118 } 2119 2120 // Gather and emit post-function debug information. 2121 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) { 2122 const DISubprogram *SP = MF->getFunction().getSubprogram(); 2123 2124 assert(CurFn == MF && 2125 "endFunction should be called with the same function as beginFunction"); 2126 2127 // Set DwarfDwarfCompileUnitID in MCContext to default value. 2128 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 2129 2130 LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); 2131 assert(!FnScope || SP == FnScope->getScopeNode()); 2132 DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit()); 2133 if (TheCU.getCUNode()->isDebugDirectivesOnly()) { 2134 PrevLabel = nullptr; 2135 CurFn = nullptr; 2136 return; 2137 } 2138 2139 DenseSet<InlinedEntity> Processed; 2140 collectEntityInfo(TheCU, SP, Processed); 2141 2142 // Add the range of this function to the list of ranges for the CU. 2143 // With basic block sections, add ranges for all basic block sections. 2144 for (const auto &R : Asm->MBBSectionRanges) 2145 TheCU.addRange({R.second.BeginLabel, R.second.EndLabel}); 2146 2147 // Under -gmlt, skip building the subprogram if there are no inlined 2148 // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram 2149 // is still needed as we need its source location. 2150 if (!TheCU.getCUNode()->getDebugInfoForProfiling() && 2151 TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly && 2152 LScopes.getAbstractScopesList().empty() && !IsDarwin) { 2153 assert(InfoHolder.getScopeVariables().empty()); 2154 PrevLabel = nullptr; 2155 CurFn = nullptr; 2156 return; 2157 } 2158 2159 #ifndef NDEBUG 2160 size_t NumAbstractScopes = LScopes.getAbstractScopesList().size(); 2161 #endif 2162 // Construct abstract scopes. 2163 for (LexicalScope *AScope : LScopes.getAbstractScopesList()) { 2164 auto *SP = cast<DISubprogram>(AScope->getScopeNode()); 2165 for (const DINode *DN : SP->getRetainedNodes()) { 2166 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 2167 continue; 2168 2169 const MDNode *Scope = nullptr; 2170 if (auto *DV = dyn_cast<DILocalVariable>(DN)) 2171 Scope = DV->getScope(); 2172 else if (auto *DL = dyn_cast<DILabel>(DN)) 2173 Scope = DL->getScope(); 2174 else 2175 llvm_unreachable("Unexpected DI type!"); 2176 2177 // Collect info for variables/labels that were optimized out. 2178 ensureAbstractEntityIsCreated(TheCU, DN, Scope); 2179 assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes 2180 && "ensureAbstractEntityIsCreated inserted abstract scopes"); 2181 } 2182 constructAbstractSubprogramScopeDIE(TheCU, AScope); 2183 } 2184 2185 ProcessedSPNodes.insert(SP); 2186 DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope); 2187 if (auto *SkelCU = TheCU.getSkeleton()) 2188 if (!LScopes.getAbstractScopesList().empty() && 2189 TheCU.getCUNode()->getSplitDebugInlining()) 2190 SkelCU->constructSubprogramScopeDIE(SP, FnScope); 2191 2192 // Construct call site entries. 2193 constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF); 2194 2195 // Clear debug info 2196 // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the 2197 // DbgVariables except those that are also in AbstractVariables (since they 2198 // can be used cross-function) 2199 InfoHolder.getScopeVariables().clear(); 2200 InfoHolder.getScopeLabels().clear(); 2201 PrevLabel = nullptr; 2202 CurFn = nullptr; 2203 } 2204 2205 // Register a source line with debug info. Returns the unique label that was 2206 // emitted and which provides correspondence to the source line list. 2207 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S, 2208 unsigned Flags) { 2209 ::recordSourceLine(*Asm, Line, Col, S, Flags, 2210 Asm->OutStreamer->getContext().getDwarfCompileUnitID(), 2211 getDwarfVersion(), getUnits()); 2212 } 2213 2214 //===----------------------------------------------------------------------===// 2215 // Emit Methods 2216 //===----------------------------------------------------------------------===// 2217 2218 // Emit the debug info section. 2219 void DwarfDebug::emitDebugInfo() { 2220 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2221 Holder.emitUnits(/* UseOffsets */ false); 2222 } 2223 2224 // Emit the abbreviation section. 2225 void DwarfDebug::emitAbbreviations() { 2226 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2227 2228 Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection()); 2229 } 2230 2231 void DwarfDebug::emitStringOffsetsTableHeader() { 2232 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2233 Holder.getStringPool().emitStringOffsetsTableHeader( 2234 *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(), 2235 Holder.getStringOffsetsStartSym()); 2236 } 2237 2238 template <typename AccelTableT> 2239 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section, 2240 StringRef TableName) { 2241 Asm->OutStreamer->SwitchSection(Section); 2242 2243 // Emit the full data. 2244 emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol()); 2245 } 2246 2247 void DwarfDebug::emitAccelDebugNames() { 2248 // Don't emit anything if we have no compilation units to index. 2249 if (getUnits().empty()) 2250 return; 2251 2252 emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits()); 2253 } 2254 2255 // Emit visible names into a hashed accelerator table section. 2256 void DwarfDebug::emitAccelNames() { 2257 emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(), 2258 "Names"); 2259 } 2260 2261 // Emit objective C classes and categories into a hashed accelerator table 2262 // section. 2263 void DwarfDebug::emitAccelObjC() { 2264 emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(), 2265 "ObjC"); 2266 } 2267 2268 // Emit namespace dies into a hashed accelerator table. 2269 void DwarfDebug::emitAccelNamespaces() { 2270 emitAccel(AccelNamespace, 2271 Asm->getObjFileLowering().getDwarfAccelNamespaceSection(), 2272 "namespac"); 2273 } 2274 2275 // Emit type dies into a hashed accelerator table. 2276 void DwarfDebug::emitAccelTypes() { 2277 emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(), 2278 "types"); 2279 } 2280 2281 // Public name handling. 2282 // The format for the various pubnames: 2283 // 2284 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU 2285 // for the DIE that is named. 2286 // 2287 // gnu pubnames - offset/index value/name tuples where the offset is the offset 2288 // into the CU and the index value is computed according to the type of value 2289 // for the DIE that is named. 2290 // 2291 // For type units the offset is the offset of the skeleton DIE. For split dwarf 2292 // it's the offset within the debug_info/debug_types dwo section, however, the 2293 // reference in the pubname header doesn't change. 2294 2295 /// computeIndexValue - Compute the gdb index value for the DIE and CU. 2296 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU, 2297 const DIE *Die) { 2298 // Entities that ended up only in a Type Unit reference the CU instead (since 2299 // the pub entry has offsets within the CU there's no real offset that can be 2300 // provided anyway). As it happens all such entities (namespaces and types, 2301 // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out 2302 // not to be true it would be necessary to persist this information from the 2303 // point at which the entry is added to the index data structure - since by 2304 // the time the index is built from that, the original type/namespace DIE in a 2305 // type unit has already been destroyed so it can't be queried for properties 2306 // like tag, etc. 2307 if (Die->getTag() == dwarf::DW_TAG_compile_unit) 2308 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, 2309 dwarf::GIEL_EXTERNAL); 2310 dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC; 2311 2312 // We could have a specification DIE that has our most of our knowledge, 2313 // look for that now. 2314 if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) { 2315 DIE &SpecDIE = SpecVal.getDIEEntry().getEntry(); 2316 if (SpecDIE.findAttribute(dwarf::DW_AT_external)) 2317 Linkage = dwarf::GIEL_EXTERNAL; 2318 } else if (Die->findAttribute(dwarf::DW_AT_external)) 2319 Linkage = dwarf::GIEL_EXTERNAL; 2320 2321 switch (Die->getTag()) { 2322 case dwarf::DW_TAG_class_type: 2323 case dwarf::DW_TAG_structure_type: 2324 case dwarf::DW_TAG_union_type: 2325 case dwarf::DW_TAG_enumeration_type: 2326 return dwarf::PubIndexEntryDescriptor( 2327 dwarf::GIEK_TYPE, 2328 dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage()) 2329 ? dwarf::GIEL_EXTERNAL 2330 : dwarf::GIEL_STATIC); 2331 case dwarf::DW_TAG_typedef: 2332 case dwarf::DW_TAG_base_type: 2333 case dwarf::DW_TAG_subrange_type: 2334 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC); 2335 case dwarf::DW_TAG_namespace: 2336 return dwarf::GIEK_TYPE; 2337 case dwarf::DW_TAG_subprogram: 2338 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage); 2339 case dwarf::DW_TAG_variable: 2340 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage); 2341 case dwarf::DW_TAG_enumerator: 2342 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, 2343 dwarf::GIEL_STATIC); 2344 default: 2345 return dwarf::GIEK_NONE; 2346 } 2347 } 2348 2349 /// emitDebugPubSections - Emit visible names and types into debug pubnames and 2350 /// pubtypes sections. 2351 void DwarfDebug::emitDebugPubSections() { 2352 for (const auto &NU : CUMap) { 2353 DwarfCompileUnit *TheU = NU.second; 2354 if (!TheU->hasDwarfPubSections()) 2355 continue; 2356 2357 bool GnuStyle = TheU->getCUNode()->getNameTableKind() == 2358 DICompileUnit::DebugNameTableKind::GNU; 2359 2360 Asm->OutStreamer->SwitchSection( 2361 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection() 2362 : Asm->getObjFileLowering().getDwarfPubNamesSection()); 2363 emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames()); 2364 2365 Asm->OutStreamer->SwitchSection( 2366 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection() 2367 : Asm->getObjFileLowering().getDwarfPubTypesSection()); 2368 emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes()); 2369 } 2370 } 2371 2372 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) { 2373 if (useSectionsAsReferences()) 2374 Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(), 2375 CU.getDebugSectionOffset()); 2376 else 2377 Asm->emitDwarfSymbolReference(CU.getLabelBegin()); 2378 } 2379 2380 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name, 2381 DwarfCompileUnit *TheU, 2382 const StringMap<const DIE *> &Globals) { 2383 if (auto *Skeleton = TheU->getSkeleton()) 2384 TheU = Skeleton; 2385 2386 // Emit the header. 2387 MCSymbol *EndLabel = Asm->emitDwarfUnitLength( 2388 "pub" + Name, "Length of Public " + Name + " Info"); 2389 2390 Asm->OutStreamer->AddComment("DWARF Version"); 2391 Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION); 2392 2393 Asm->OutStreamer->AddComment("Offset of Compilation Unit Info"); 2394 emitSectionReference(*TheU); 2395 2396 Asm->OutStreamer->AddComment("Compilation Unit Length"); 2397 Asm->emitDwarfLengthOrOffset(TheU->getLength()); 2398 2399 // Emit the pubnames for this compilation unit. 2400 for (const auto &GI : Globals) { 2401 const char *Name = GI.getKeyData(); 2402 const DIE *Entity = GI.second; 2403 2404 Asm->OutStreamer->AddComment("DIE offset"); 2405 Asm->emitDwarfLengthOrOffset(Entity->getOffset()); 2406 2407 if (GnuStyle) { 2408 dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity); 2409 Asm->OutStreamer->AddComment( 2410 Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + 2411 ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage)); 2412 Asm->emitInt8(Desc.toBits()); 2413 } 2414 2415 Asm->OutStreamer->AddComment("External Name"); 2416 Asm->OutStreamer->emitBytes(StringRef(Name, GI.getKeyLength() + 1)); 2417 } 2418 2419 Asm->OutStreamer->AddComment("End Mark"); 2420 Asm->emitDwarfLengthOrOffset(0); 2421 Asm->OutStreamer->emitLabel(EndLabel); 2422 } 2423 2424 /// Emit null-terminated strings into a debug str section. 2425 void DwarfDebug::emitDebugStr() { 2426 MCSection *StringOffsetsSection = nullptr; 2427 if (useSegmentedStringOffsetsTable()) { 2428 emitStringOffsetsTableHeader(); 2429 StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection(); 2430 } 2431 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2432 Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(), 2433 StringOffsetsSection, /* UseRelativeOffsets = */ true); 2434 } 2435 2436 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer, 2437 const DebugLocStream::Entry &Entry, 2438 const DwarfCompileUnit *CU) { 2439 auto &&Comments = DebugLocs.getComments(Entry); 2440 auto Comment = Comments.begin(); 2441 auto End = Comments.end(); 2442 2443 // The expressions are inserted into a byte stream rather early (see 2444 // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that 2445 // need to reference a base_type DIE the offset of that DIE is not yet known. 2446 // To deal with this we instead insert a placeholder early and then extract 2447 // it here and replace it with the real reference. 2448 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2449 DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(), 2450 DebugLocs.getBytes(Entry).size()), 2451 Asm->getDataLayout().isLittleEndian(), PtrSize); 2452 DWARFExpression Expr(Data, PtrSize, Asm->OutContext.getDwarfFormat()); 2453 2454 using Encoding = DWARFExpression::Operation::Encoding; 2455 uint64_t Offset = 0; 2456 for (auto &Op : Expr) { 2457 assert(Op.getCode() != dwarf::DW_OP_const_type && 2458 "3 operand ops not yet supported"); 2459 Streamer.emitInt8(Op.getCode(), Comment != End ? *(Comment++) : ""); 2460 Offset++; 2461 for (unsigned I = 0; I < 2; ++I) { 2462 if (Op.getDescription().Op[I] == Encoding::SizeNA) 2463 continue; 2464 if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) { 2465 uint64_t Offset = 2466 CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset(); 2467 assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit"); 2468 Streamer.emitULEB128(Offset, "", ULEB128PadSize); 2469 // Make sure comments stay aligned. 2470 for (unsigned J = 0; J < ULEB128PadSize; ++J) 2471 if (Comment != End) 2472 Comment++; 2473 } else { 2474 for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J) 2475 Streamer.emitInt8(Data.getData()[J], Comment != End ? *(Comment++) : ""); 2476 } 2477 Offset = Op.getOperandEndOffset(I); 2478 } 2479 assert(Offset == Op.getEndOffset()); 2480 } 2481 } 2482 2483 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT, 2484 const DbgValueLoc &Value, 2485 DwarfExpression &DwarfExpr) { 2486 auto *DIExpr = Value.getExpression(); 2487 DIExpressionCursor ExprCursor(DIExpr); 2488 DwarfExpr.addFragmentOffset(DIExpr); 2489 // Regular entry. 2490 if (Value.isInt()) { 2491 if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed || 2492 BT->getEncoding() == dwarf::DW_ATE_signed_char)) 2493 DwarfExpr.addSignedConstant(Value.getInt()); 2494 else 2495 DwarfExpr.addUnsignedConstant(Value.getInt()); 2496 } else if (Value.isLocation()) { 2497 MachineLocation Location = Value.getLoc(); 2498 DwarfExpr.setLocation(Location, DIExpr); 2499 DIExpressionCursor Cursor(DIExpr); 2500 2501 if (DIExpr->isEntryValue()) 2502 DwarfExpr.beginEntryValueExpression(Cursor); 2503 2504 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); 2505 if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg())) 2506 return; 2507 return DwarfExpr.addExpression(std::move(Cursor)); 2508 } else if (Value.isTargetIndexLocation()) { 2509 TargetIndexLocation Loc = Value.getTargetIndexLocation(); 2510 // TODO TargetIndexLocation is a target-independent. Currently only the WebAssembly-specific 2511 // encoding is supported. 2512 assert(AP.TM.getTargetTriple().isWasm()); 2513 DwarfExpr.addWasmLocation(Loc.Index, static_cast<uint64_t>(Loc.Offset)); 2514 DwarfExpr.addExpression(std::move(ExprCursor)); 2515 return; 2516 } else if (Value.isConstantFP()) { 2517 if (AP.getDwarfVersion() >= 4 && !AP.getDwarfDebug()->tuneForSCE() && 2518 !ExprCursor) { 2519 DwarfExpr.addConstantFP(Value.getConstantFP()->getValueAPF(), AP); 2520 return; 2521 } 2522 if (Value.getConstantFP()->getValueAPF().bitcastToAPInt().getBitWidth() <= 2523 64 /*bits*/) 2524 DwarfExpr.addUnsignedConstant( 2525 Value.getConstantFP()->getValueAPF().bitcastToAPInt()); 2526 else 2527 LLVM_DEBUG( 2528 dbgs() 2529 << "Skipped DwarfExpression creation for ConstantFP of size" 2530 << Value.getConstantFP()->getValueAPF().bitcastToAPInt().getBitWidth() 2531 << " bits\n"); 2532 } 2533 DwarfExpr.addExpression(std::move(ExprCursor)); 2534 } 2535 2536 void DebugLocEntry::finalize(const AsmPrinter &AP, 2537 DebugLocStream::ListBuilder &List, 2538 const DIBasicType *BT, 2539 DwarfCompileUnit &TheCU) { 2540 assert(!Values.empty() && 2541 "location list entries without values are redundant"); 2542 assert(Begin != End && "unexpected location list entry with empty range"); 2543 DebugLocStream::EntryBuilder Entry(List, Begin, End); 2544 BufferByteStreamer Streamer = Entry.getStreamer(); 2545 DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU); 2546 const DbgValueLoc &Value = Values[0]; 2547 if (Value.isFragment()) { 2548 // Emit all fragments that belong to the same variable and range. 2549 assert(llvm::all_of(Values, [](DbgValueLoc P) { 2550 return P.isFragment(); 2551 }) && "all values are expected to be fragments"); 2552 assert(llvm::is_sorted(Values) && "fragments are expected to be sorted"); 2553 2554 for (const auto &Fragment : Values) 2555 DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr); 2556 2557 } else { 2558 assert(Values.size() == 1 && "only fragments may have >1 value"); 2559 DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr); 2560 } 2561 DwarfExpr.finalize(); 2562 if (DwarfExpr.TagOffset) 2563 List.setTagOffset(*DwarfExpr.TagOffset); 2564 } 2565 2566 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry, 2567 const DwarfCompileUnit *CU) { 2568 // Emit the size. 2569 Asm->OutStreamer->AddComment("Loc expr size"); 2570 if (getDwarfVersion() >= 5) 2571 Asm->emitULEB128(DebugLocs.getBytes(Entry).size()); 2572 else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max()) 2573 Asm->emitInt16(DebugLocs.getBytes(Entry).size()); 2574 else { 2575 // The entry is too big to fit into 16 bit, drop it as there is nothing we 2576 // can do. 2577 Asm->emitInt16(0); 2578 return; 2579 } 2580 // Emit the entry. 2581 APByteStreamer Streamer(*Asm); 2582 emitDebugLocEntry(Streamer, Entry, CU); 2583 } 2584 2585 // Emit the header of a DWARF 5 range list table list table. Returns the symbol 2586 // that designates the end of the table for the caller to emit when the table is 2587 // complete. 2588 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm, 2589 const DwarfFile &Holder) { 2590 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2591 2592 Asm->OutStreamer->AddComment("Offset entry count"); 2593 Asm->emitInt32(Holder.getRangeLists().size()); 2594 Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym()); 2595 2596 for (const RangeSpanList &List : Holder.getRangeLists()) 2597 Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(), 2598 Asm->getDwarfOffsetByteSize()); 2599 2600 return TableEnd; 2601 } 2602 2603 // Emit the header of a DWARF 5 locations list table. Returns the symbol that 2604 // designates the end of the table for the caller to emit when the table is 2605 // complete. 2606 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm, 2607 const DwarfDebug &DD) { 2608 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2609 2610 const auto &DebugLocs = DD.getDebugLocs(); 2611 2612 Asm->OutStreamer->AddComment("Offset entry count"); 2613 Asm->emitInt32(DebugLocs.getLists().size()); 2614 Asm->OutStreamer->emitLabel(DebugLocs.getSym()); 2615 2616 for (const auto &List : DebugLocs.getLists()) 2617 Asm->emitLabelDifference(List.Label, DebugLocs.getSym(), 2618 Asm->getDwarfOffsetByteSize()); 2619 2620 return TableEnd; 2621 } 2622 2623 template <typename Ranges, typename PayloadEmitter> 2624 static void emitRangeList( 2625 DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R, 2626 const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair, 2627 unsigned StartxLength, unsigned EndOfList, 2628 StringRef (*StringifyEnum)(unsigned), 2629 bool ShouldUseBaseAddress, 2630 PayloadEmitter EmitPayload) { 2631 2632 auto Size = Asm->MAI->getCodePointerSize(); 2633 bool UseDwarf5 = DD.getDwarfVersion() >= 5; 2634 2635 // Emit our symbol so we can find the beginning of the range. 2636 Asm->OutStreamer->emitLabel(Sym); 2637 2638 // Gather all the ranges that apply to the same section so they can share 2639 // a base address entry. 2640 MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges; 2641 2642 for (const auto &Range : R) 2643 SectionRanges[&Range.Begin->getSection()].push_back(&Range); 2644 2645 const MCSymbol *CUBase = CU.getBaseAddress(); 2646 bool BaseIsSet = false; 2647 for (const auto &P : SectionRanges) { 2648 auto *Base = CUBase; 2649 if (!Base && ShouldUseBaseAddress) { 2650 const MCSymbol *Begin = P.second.front()->Begin; 2651 const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection()); 2652 if (!UseDwarf5) { 2653 Base = NewBase; 2654 BaseIsSet = true; 2655 Asm->OutStreamer->emitIntValue(-1, Size); 2656 Asm->OutStreamer->AddComment(" base address"); 2657 Asm->OutStreamer->emitSymbolValue(Base, Size); 2658 } else if (NewBase != Begin || P.second.size() > 1) { 2659 // Only use a base address if 2660 // * the existing pool address doesn't match (NewBase != Begin) 2661 // * or, there's more than one entry to share the base address 2662 Base = NewBase; 2663 BaseIsSet = true; 2664 Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx)); 2665 Asm->emitInt8(BaseAddressx); 2666 Asm->OutStreamer->AddComment(" base address index"); 2667 Asm->emitULEB128(DD.getAddressPool().getIndex(Base)); 2668 } 2669 } else if (BaseIsSet && !UseDwarf5) { 2670 BaseIsSet = false; 2671 assert(!Base); 2672 Asm->OutStreamer->emitIntValue(-1, Size); 2673 Asm->OutStreamer->emitIntValue(0, Size); 2674 } 2675 2676 for (const auto *RS : P.second) { 2677 const MCSymbol *Begin = RS->Begin; 2678 const MCSymbol *End = RS->End; 2679 assert(Begin && "Range without a begin symbol?"); 2680 assert(End && "Range without an end symbol?"); 2681 if (Base) { 2682 if (UseDwarf5) { 2683 // Emit offset_pair when we have a base. 2684 Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair)); 2685 Asm->emitInt8(OffsetPair); 2686 Asm->OutStreamer->AddComment(" starting offset"); 2687 Asm->emitLabelDifferenceAsULEB128(Begin, Base); 2688 Asm->OutStreamer->AddComment(" ending offset"); 2689 Asm->emitLabelDifferenceAsULEB128(End, Base); 2690 } else { 2691 Asm->emitLabelDifference(Begin, Base, Size); 2692 Asm->emitLabelDifference(End, Base, Size); 2693 } 2694 } else if (UseDwarf5) { 2695 Asm->OutStreamer->AddComment(StringifyEnum(StartxLength)); 2696 Asm->emitInt8(StartxLength); 2697 Asm->OutStreamer->AddComment(" start index"); 2698 Asm->emitULEB128(DD.getAddressPool().getIndex(Begin)); 2699 Asm->OutStreamer->AddComment(" length"); 2700 Asm->emitLabelDifferenceAsULEB128(End, Begin); 2701 } else { 2702 Asm->OutStreamer->emitSymbolValue(Begin, Size); 2703 Asm->OutStreamer->emitSymbolValue(End, Size); 2704 } 2705 EmitPayload(*RS); 2706 } 2707 } 2708 2709 if (UseDwarf5) { 2710 Asm->OutStreamer->AddComment(StringifyEnum(EndOfList)); 2711 Asm->emitInt8(EndOfList); 2712 } else { 2713 // Terminate the list with two 0 values. 2714 Asm->OutStreamer->emitIntValue(0, Size); 2715 Asm->OutStreamer->emitIntValue(0, Size); 2716 } 2717 } 2718 2719 // Handles emission of both debug_loclist / debug_loclist.dwo 2720 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) { 2721 emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List), 2722 *List.CU, dwarf::DW_LLE_base_addressx, 2723 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length, 2724 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString, 2725 /* ShouldUseBaseAddress */ true, 2726 [&](const DebugLocStream::Entry &E) { 2727 DD.emitDebugLocEntryLocation(E, List.CU); 2728 }); 2729 } 2730 2731 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) { 2732 if (DebugLocs.getLists().empty()) 2733 return; 2734 2735 Asm->OutStreamer->SwitchSection(Sec); 2736 2737 MCSymbol *TableEnd = nullptr; 2738 if (getDwarfVersion() >= 5) 2739 TableEnd = emitLoclistsTableHeader(Asm, *this); 2740 2741 for (const auto &List : DebugLocs.getLists()) 2742 emitLocList(*this, Asm, List); 2743 2744 if (TableEnd) 2745 Asm->OutStreamer->emitLabel(TableEnd); 2746 } 2747 2748 // Emit locations into the .debug_loc/.debug_loclists section. 2749 void DwarfDebug::emitDebugLoc() { 2750 emitDebugLocImpl( 2751 getDwarfVersion() >= 5 2752 ? Asm->getObjFileLowering().getDwarfLoclistsSection() 2753 : Asm->getObjFileLowering().getDwarfLocSection()); 2754 } 2755 2756 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section. 2757 void DwarfDebug::emitDebugLocDWO() { 2758 if (getDwarfVersion() >= 5) { 2759 emitDebugLocImpl( 2760 Asm->getObjFileLowering().getDwarfLoclistsDWOSection()); 2761 2762 return; 2763 } 2764 2765 for (const auto &List : DebugLocs.getLists()) { 2766 Asm->OutStreamer->SwitchSection( 2767 Asm->getObjFileLowering().getDwarfLocDWOSection()); 2768 Asm->OutStreamer->emitLabel(List.Label); 2769 2770 for (const auto &Entry : DebugLocs.getEntries(List)) { 2771 // GDB only supports startx_length in pre-standard split-DWARF. 2772 // (in v5 standard loclists, it currently* /only/ supports base_address + 2773 // offset_pair, so the implementations can't really share much since they 2774 // need to use different representations) 2775 // * as of October 2018, at least 2776 // 2777 // In v5 (see emitLocList), this uses SectionLabels to reuse existing 2778 // addresses in the address pool to minimize object size/relocations. 2779 Asm->emitInt8(dwarf::DW_LLE_startx_length); 2780 unsigned idx = AddrPool.getIndex(Entry.Begin); 2781 Asm->emitULEB128(idx); 2782 // Also the pre-standard encoding is slightly different, emitting this as 2783 // an address-length entry here, but its a ULEB128 in DWARFv5 loclists. 2784 Asm->emitLabelDifference(Entry.End, Entry.Begin, 4); 2785 emitDebugLocEntryLocation(Entry, List.CU); 2786 } 2787 Asm->emitInt8(dwarf::DW_LLE_end_of_list); 2788 } 2789 } 2790 2791 struct ArangeSpan { 2792 const MCSymbol *Start, *End; 2793 }; 2794 2795 // Emit a debug aranges section, containing a CU lookup for any 2796 // address we can tie back to a CU. 2797 void DwarfDebug::emitDebugARanges() { 2798 // Provides a unique id per text section. 2799 MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap; 2800 2801 // Filter labels by section. 2802 for (const SymbolCU &SCU : ArangeLabels) { 2803 if (SCU.Sym->isInSection()) { 2804 // Make a note of this symbol and it's section. 2805 MCSection *Section = &SCU.Sym->getSection(); 2806 if (!Section->getKind().isMetadata()) 2807 SectionMap[Section].push_back(SCU); 2808 } else { 2809 // Some symbols (e.g. common/bss on mach-o) can have no section but still 2810 // appear in the output. This sucks as we rely on sections to build 2811 // arange spans. We can do it without, but it's icky. 2812 SectionMap[nullptr].push_back(SCU); 2813 } 2814 } 2815 2816 DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans; 2817 2818 for (auto &I : SectionMap) { 2819 MCSection *Section = I.first; 2820 SmallVector<SymbolCU, 8> &List = I.second; 2821 if (List.size() < 1) 2822 continue; 2823 2824 // If we have no section (e.g. common), just write out 2825 // individual spans for each symbol. 2826 if (!Section) { 2827 for (const SymbolCU &Cur : List) { 2828 ArangeSpan Span; 2829 Span.Start = Cur.Sym; 2830 Span.End = nullptr; 2831 assert(Cur.CU); 2832 Spans[Cur.CU].push_back(Span); 2833 } 2834 continue; 2835 } 2836 2837 // Sort the symbols by offset within the section. 2838 llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) { 2839 unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0; 2840 unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0; 2841 2842 // Symbols with no order assigned should be placed at the end. 2843 // (e.g. section end labels) 2844 if (IA == 0) 2845 return false; 2846 if (IB == 0) 2847 return true; 2848 return IA < IB; 2849 }); 2850 2851 // Insert a final terminator. 2852 List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section))); 2853 2854 // Build spans between each label. 2855 const MCSymbol *StartSym = List[0].Sym; 2856 for (size_t n = 1, e = List.size(); n < e; n++) { 2857 const SymbolCU &Prev = List[n - 1]; 2858 const SymbolCU &Cur = List[n]; 2859 2860 // Try and build the longest span we can within the same CU. 2861 if (Cur.CU != Prev.CU) { 2862 ArangeSpan Span; 2863 Span.Start = StartSym; 2864 Span.End = Cur.Sym; 2865 assert(Prev.CU); 2866 Spans[Prev.CU].push_back(Span); 2867 StartSym = Cur.Sym; 2868 } 2869 } 2870 } 2871 2872 // Start the dwarf aranges section. 2873 Asm->OutStreamer->SwitchSection( 2874 Asm->getObjFileLowering().getDwarfARangesSection()); 2875 2876 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2877 2878 // Build a list of CUs used. 2879 std::vector<DwarfCompileUnit *> CUs; 2880 for (const auto &it : Spans) { 2881 DwarfCompileUnit *CU = it.first; 2882 CUs.push_back(CU); 2883 } 2884 2885 // Sort the CU list (again, to ensure consistent output order). 2886 llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) { 2887 return A->getUniqueID() < B->getUniqueID(); 2888 }); 2889 2890 // Emit an arange table for each CU we used. 2891 for (DwarfCompileUnit *CU : CUs) { 2892 std::vector<ArangeSpan> &List = Spans[CU]; 2893 2894 // Describe the skeleton CU's offset and length, not the dwo file's. 2895 if (auto *Skel = CU->getSkeleton()) 2896 CU = Skel; 2897 2898 // Emit size of content not including length itself. 2899 unsigned ContentSize = 2900 sizeof(int16_t) + // DWARF ARange version number 2901 Asm->getDwarfOffsetByteSize() + // Offset of CU in the .debug_info 2902 // section 2903 sizeof(int8_t) + // Pointer Size (in bytes) 2904 sizeof(int8_t); // Segment Size (in bytes) 2905 2906 unsigned TupleSize = PtrSize * 2; 2907 2908 // 7.20 in the Dwarf specs requires the table to be aligned to a tuple. 2909 unsigned Padding = offsetToAlignment( 2910 Asm->getUnitLengthFieldByteSize() + ContentSize, Align(TupleSize)); 2911 2912 ContentSize += Padding; 2913 ContentSize += (List.size() + 1) * TupleSize; 2914 2915 // For each compile unit, write the list of spans it covers. 2916 Asm->emitDwarfUnitLength(ContentSize, "Length of ARange Set"); 2917 Asm->OutStreamer->AddComment("DWARF Arange version number"); 2918 Asm->emitInt16(dwarf::DW_ARANGES_VERSION); 2919 Asm->OutStreamer->AddComment("Offset Into Debug Info Section"); 2920 emitSectionReference(*CU); 2921 Asm->OutStreamer->AddComment("Address Size (in bytes)"); 2922 Asm->emitInt8(PtrSize); 2923 Asm->OutStreamer->AddComment("Segment Size (in bytes)"); 2924 Asm->emitInt8(0); 2925 2926 Asm->OutStreamer->emitFill(Padding, 0xff); 2927 2928 for (const ArangeSpan &Span : List) { 2929 Asm->emitLabelReference(Span.Start, PtrSize); 2930 2931 // Calculate the size as being from the span start to it's end. 2932 if (Span.End) { 2933 Asm->emitLabelDifference(Span.End, Span.Start, PtrSize); 2934 } else { 2935 // For symbols without an end marker (e.g. common), we 2936 // write a single arange entry containing just that one symbol. 2937 uint64_t Size = SymSize[Span.Start]; 2938 if (Size == 0) 2939 Size = 1; 2940 2941 Asm->OutStreamer->emitIntValue(Size, PtrSize); 2942 } 2943 } 2944 2945 Asm->OutStreamer->AddComment("ARange terminator"); 2946 Asm->OutStreamer->emitIntValue(0, PtrSize); 2947 Asm->OutStreamer->emitIntValue(0, PtrSize); 2948 } 2949 } 2950 2951 /// Emit a single range list. We handle both DWARF v5 and earlier. 2952 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm, 2953 const RangeSpanList &List) { 2954 emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU, 2955 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair, 2956 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list, 2957 llvm::dwarf::RangeListEncodingString, 2958 List.CU->getCUNode()->getRangesBaseAddress() || 2959 DD.getDwarfVersion() >= 5, 2960 [](auto) {}); 2961 } 2962 2963 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) { 2964 if (Holder.getRangeLists().empty()) 2965 return; 2966 2967 assert(useRangesSection()); 2968 assert(!CUMap.empty()); 2969 assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) { 2970 return !Pair.second->getCUNode()->isDebugDirectivesOnly(); 2971 })); 2972 2973 Asm->OutStreamer->SwitchSection(Section); 2974 2975 MCSymbol *TableEnd = nullptr; 2976 if (getDwarfVersion() >= 5) 2977 TableEnd = emitRnglistsTableHeader(Asm, Holder); 2978 2979 for (const RangeSpanList &List : Holder.getRangeLists()) 2980 emitRangeList(*this, Asm, List); 2981 2982 if (TableEnd) 2983 Asm->OutStreamer->emitLabel(TableEnd); 2984 } 2985 2986 /// Emit address ranges into the .debug_ranges section or into the DWARF v5 2987 /// .debug_rnglists section. 2988 void DwarfDebug::emitDebugRanges() { 2989 const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2990 2991 emitDebugRangesImpl(Holder, 2992 getDwarfVersion() >= 5 2993 ? Asm->getObjFileLowering().getDwarfRnglistsSection() 2994 : Asm->getObjFileLowering().getDwarfRangesSection()); 2995 } 2996 2997 void DwarfDebug::emitDebugRangesDWO() { 2998 emitDebugRangesImpl(InfoHolder, 2999 Asm->getObjFileLowering().getDwarfRnglistsDWOSection()); 3000 } 3001 3002 /// Emit the header of a DWARF 5 macro section, or the GNU extension for 3003 /// DWARF 4. 3004 static void emitMacroHeader(AsmPrinter *Asm, const DwarfDebug &DD, 3005 const DwarfCompileUnit &CU, uint16_t DwarfVersion) { 3006 enum HeaderFlagMask { 3007 #define HANDLE_MACRO_FLAG(ID, NAME) MACRO_FLAG_##NAME = ID, 3008 #include "llvm/BinaryFormat/Dwarf.def" 3009 }; 3010 Asm->OutStreamer->AddComment("Macro information version"); 3011 Asm->emitInt16(DwarfVersion >= 5 ? DwarfVersion : 4); 3012 // We emit the line offset flag unconditionally here, since line offset should 3013 // be mostly present. 3014 if (Asm->isDwarf64()) { 3015 Asm->OutStreamer->AddComment("Flags: 64 bit, debug_line_offset present"); 3016 Asm->emitInt8(MACRO_FLAG_OFFSET_SIZE | MACRO_FLAG_DEBUG_LINE_OFFSET); 3017 } else { 3018 Asm->OutStreamer->AddComment("Flags: 32 bit, debug_line_offset present"); 3019 Asm->emitInt8(MACRO_FLAG_DEBUG_LINE_OFFSET); 3020 } 3021 Asm->OutStreamer->AddComment("debug_line_offset"); 3022 if (DD.useSplitDwarf()) 3023 Asm->emitDwarfLengthOrOffset(0); 3024 else 3025 Asm->emitDwarfSymbolReference(CU.getLineTableStartSym()); 3026 } 3027 3028 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) { 3029 for (auto *MN : Nodes) { 3030 if (auto *M = dyn_cast<DIMacro>(MN)) 3031 emitMacro(*M); 3032 else if (auto *F = dyn_cast<DIMacroFile>(MN)) 3033 emitMacroFile(*F, U); 3034 else 3035 llvm_unreachable("Unexpected DI type!"); 3036 } 3037 } 3038 3039 void DwarfDebug::emitMacro(DIMacro &M) { 3040 StringRef Name = M.getName(); 3041 StringRef Value = M.getValue(); 3042 3043 // There should be one space between the macro name and the macro value in 3044 // define entries. In undef entries, only the macro name is emitted. 3045 std::string Str = Value.empty() ? Name.str() : (Name + " " + Value).str(); 3046 3047 if (UseDebugMacroSection) { 3048 if (getDwarfVersion() >= 5) { 3049 unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define 3050 ? dwarf::DW_MACRO_define_strx 3051 : dwarf::DW_MACRO_undef_strx; 3052 Asm->OutStreamer->AddComment(dwarf::MacroString(Type)); 3053 Asm->emitULEB128(Type); 3054 Asm->OutStreamer->AddComment("Line Number"); 3055 Asm->emitULEB128(M.getLine()); 3056 Asm->OutStreamer->AddComment("Macro String"); 3057 Asm->emitULEB128( 3058 InfoHolder.getStringPool().getIndexedEntry(*Asm, Str).getIndex()); 3059 } else { 3060 unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define 3061 ? dwarf::DW_MACRO_GNU_define_indirect 3062 : dwarf::DW_MACRO_GNU_undef_indirect; 3063 Asm->OutStreamer->AddComment(dwarf::GnuMacroString(Type)); 3064 Asm->emitULEB128(Type); 3065 Asm->OutStreamer->AddComment("Line Number"); 3066 Asm->emitULEB128(M.getLine()); 3067 Asm->OutStreamer->AddComment("Macro String"); 3068 Asm->emitDwarfSymbolReference( 3069 InfoHolder.getStringPool().getEntry(*Asm, Str).getSymbol()); 3070 } 3071 } else { 3072 Asm->OutStreamer->AddComment(dwarf::MacinfoString(M.getMacinfoType())); 3073 Asm->emitULEB128(M.getMacinfoType()); 3074 Asm->OutStreamer->AddComment("Line Number"); 3075 Asm->emitULEB128(M.getLine()); 3076 Asm->OutStreamer->AddComment("Macro String"); 3077 Asm->OutStreamer->emitBytes(Str); 3078 Asm->emitInt8('\0'); 3079 } 3080 } 3081 3082 void DwarfDebug::emitMacroFileImpl( 3083 DIMacroFile &MF, DwarfCompileUnit &U, unsigned StartFile, unsigned EndFile, 3084 StringRef (*MacroFormToString)(unsigned Form)) { 3085 3086 Asm->OutStreamer->AddComment(MacroFormToString(StartFile)); 3087 Asm->emitULEB128(StartFile); 3088 Asm->OutStreamer->AddComment("Line Number"); 3089 Asm->emitULEB128(MF.getLine()); 3090 Asm->OutStreamer->AddComment("File Number"); 3091 DIFile &F = *MF.getFile(); 3092 if (useSplitDwarf()) 3093 Asm->emitULEB128(getDwoLineTable(U)->getFile( 3094 F.getDirectory(), F.getFilename(), getMD5AsBytes(&F), 3095 Asm->OutContext.getDwarfVersion(), F.getSource())); 3096 else 3097 Asm->emitULEB128(U.getOrCreateSourceID(&F)); 3098 handleMacroNodes(MF.getElements(), U); 3099 Asm->OutStreamer->AddComment(MacroFormToString(EndFile)); 3100 Asm->emitULEB128(EndFile); 3101 } 3102 3103 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) { 3104 // DWARFv5 macro and DWARFv4 macinfo share some common encodings, 3105 // so for readibility/uniformity, We are explicitly emitting those. 3106 assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file); 3107 if (UseDebugMacroSection) 3108 emitMacroFileImpl( 3109 F, U, dwarf::DW_MACRO_start_file, dwarf::DW_MACRO_end_file, 3110 (getDwarfVersion() >= 5) ? dwarf::MacroString : dwarf::GnuMacroString); 3111 else 3112 emitMacroFileImpl(F, U, dwarf::DW_MACINFO_start_file, 3113 dwarf::DW_MACINFO_end_file, dwarf::MacinfoString); 3114 } 3115 3116 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) { 3117 for (const auto &P : CUMap) { 3118 auto &TheCU = *P.second; 3119 auto *SkCU = TheCU.getSkeleton(); 3120 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 3121 auto *CUNode = cast<DICompileUnit>(P.first); 3122 DIMacroNodeArray Macros = CUNode->getMacros(); 3123 if (Macros.empty()) 3124 continue; 3125 Asm->OutStreamer->SwitchSection(Section); 3126 Asm->OutStreamer->emitLabel(U.getMacroLabelBegin()); 3127 if (UseDebugMacroSection) 3128 emitMacroHeader(Asm, *this, U, getDwarfVersion()); 3129 handleMacroNodes(Macros, U); 3130 Asm->OutStreamer->AddComment("End Of Macro List Mark"); 3131 Asm->emitInt8(0); 3132 } 3133 } 3134 3135 /// Emit macros into a debug macinfo/macro section. 3136 void DwarfDebug::emitDebugMacinfo() { 3137 auto &ObjLower = Asm->getObjFileLowering(); 3138 emitDebugMacinfoImpl(UseDebugMacroSection 3139 ? ObjLower.getDwarfMacroSection() 3140 : ObjLower.getDwarfMacinfoSection()); 3141 } 3142 3143 void DwarfDebug::emitDebugMacinfoDWO() { 3144 auto &ObjLower = Asm->getObjFileLowering(); 3145 emitDebugMacinfoImpl(UseDebugMacroSection 3146 ? ObjLower.getDwarfMacroDWOSection() 3147 : ObjLower.getDwarfMacinfoDWOSection()); 3148 } 3149 3150 // DWARF5 Experimental Separate Dwarf emitters. 3151 3152 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die, 3153 std::unique_ptr<DwarfCompileUnit> NewU) { 3154 3155 if (!CompilationDir.empty()) 3156 NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 3157 addGnuPubAttributes(*NewU, Die); 3158 3159 SkeletonHolder.addUnit(std::move(NewU)); 3160 } 3161 3162 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) { 3163 3164 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 3165 CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder, 3166 UnitKind::Skeleton); 3167 DwarfCompileUnit &NewCU = *OwnedUnit; 3168 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 3169 3170 NewCU.initStmtList(); 3171 3172 if (useSegmentedStringOffsetsTable()) 3173 NewCU.addStringOffsetsStart(); 3174 3175 initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit)); 3176 3177 return NewCU; 3178 } 3179 3180 // Emit the .debug_info.dwo section for separated dwarf. This contains the 3181 // compile units that would normally be in debug_info. 3182 void DwarfDebug::emitDebugInfoDWO() { 3183 assert(useSplitDwarf() && "No split dwarf debug info?"); 3184 // Don't emit relocations into the dwo file. 3185 InfoHolder.emitUnits(/* UseOffsets */ true); 3186 } 3187 3188 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the 3189 // abbreviations for the .debug_info.dwo section. 3190 void DwarfDebug::emitDebugAbbrevDWO() { 3191 assert(useSplitDwarf() && "No split dwarf?"); 3192 InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection()); 3193 } 3194 3195 void DwarfDebug::emitDebugLineDWO() { 3196 assert(useSplitDwarf() && "No split dwarf?"); 3197 SplitTypeUnitFileTable.Emit( 3198 *Asm->OutStreamer, MCDwarfLineTableParams(), 3199 Asm->getObjFileLowering().getDwarfLineDWOSection()); 3200 } 3201 3202 void DwarfDebug::emitStringOffsetsTableHeaderDWO() { 3203 assert(useSplitDwarf() && "No split dwarf?"); 3204 InfoHolder.getStringPool().emitStringOffsetsTableHeader( 3205 *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(), 3206 InfoHolder.getStringOffsetsStartSym()); 3207 } 3208 3209 // Emit the .debug_str.dwo section for separated dwarf. This contains the 3210 // string section and is identical in format to traditional .debug_str 3211 // sections. 3212 void DwarfDebug::emitDebugStrDWO() { 3213 if (useSegmentedStringOffsetsTable()) 3214 emitStringOffsetsTableHeaderDWO(); 3215 assert(useSplitDwarf() && "No split dwarf?"); 3216 MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection(); 3217 InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(), 3218 OffSec, /* UseRelativeOffsets = */ false); 3219 } 3220 3221 // Emit address pool. 3222 void DwarfDebug::emitDebugAddr() { 3223 AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection()); 3224 } 3225 3226 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) { 3227 if (!useSplitDwarf()) 3228 return nullptr; 3229 const DICompileUnit *DIUnit = CU.getCUNode(); 3230 SplitTypeUnitFileTable.maybeSetRootFile( 3231 DIUnit->getDirectory(), DIUnit->getFilename(), 3232 getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource()); 3233 return &SplitTypeUnitFileTable; 3234 } 3235 3236 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) { 3237 MD5 Hash; 3238 Hash.update(Identifier); 3239 // ... take the least significant 8 bytes and return those. Our MD5 3240 // implementation always returns its results in little endian, so we actually 3241 // need the "high" word. 3242 MD5::MD5Result Result; 3243 Hash.final(Result); 3244 return Result.high(); 3245 } 3246 3247 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU, 3248 StringRef Identifier, DIE &RefDie, 3249 const DICompositeType *CTy) { 3250 // Fast path if we're building some type units and one has already used the 3251 // address pool we know we're going to throw away all this work anyway, so 3252 // don't bother building dependent types. 3253 if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed()) 3254 return; 3255 3256 auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0)); 3257 if (!Ins.second) { 3258 CU.addDIETypeSignature(RefDie, Ins.first->second); 3259 return; 3260 } 3261 3262 bool TopLevelType = TypeUnitsUnderConstruction.empty(); 3263 AddrPool.resetUsedFlag(); 3264 3265 auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder, 3266 getDwoLineTable(CU)); 3267 DwarfTypeUnit &NewTU = *OwnedUnit; 3268 DIE &UnitDie = NewTU.getUnitDie(); 3269 TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy); 3270 3271 NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 3272 CU.getLanguage()); 3273 3274 uint64_t Signature = makeTypeSignature(Identifier); 3275 NewTU.setTypeSignature(Signature); 3276 Ins.first->second = Signature; 3277 3278 if (useSplitDwarf()) { 3279 MCSection *Section = 3280 getDwarfVersion() <= 4 3281 ? Asm->getObjFileLowering().getDwarfTypesDWOSection() 3282 : Asm->getObjFileLowering().getDwarfInfoDWOSection(); 3283 NewTU.setSection(Section); 3284 } else { 3285 MCSection *Section = 3286 getDwarfVersion() <= 4 3287 ? Asm->getObjFileLowering().getDwarfTypesSection(Signature) 3288 : Asm->getObjFileLowering().getDwarfInfoSection(Signature); 3289 NewTU.setSection(Section); 3290 // Non-split type units reuse the compile unit's line table. 3291 CU.applyStmtList(UnitDie); 3292 } 3293 3294 // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type 3295 // units. 3296 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 3297 NewTU.addStringOffsetsStart(); 3298 3299 NewTU.setType(NewTU.createTypeDIE(CTy)); 3300 3301 if (TopLevelType) { 3302 auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction); 3303 TypeUnitsUnderConstruction.clear(); 3304 3305 // Types referencing entries in the address table cannot be placed in type 3306 // units. 3307 if (AddrPool.hasBeenUsed()) { 3308 3309 // Remove all the types built while building this type. 3310 // This is pessimistic as some of these types might not be dependent on 3311 // the type that used an address. 3312 for (const auto &TU : TypeUnitsToAdd) 3313 TypeSignatures.erase(TU.second); 3314 3315 // Construct this type in the CU directly. 3316 // This is inefficient because all the dependent types will be rebuilt 3317 // from scratch, including building them in type units, discovering that 3318 // they depend on addresses, throwing them out and rebuilding them. 3319 CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy)); 3320 return; 3321 } 3322 3323 // If the type wasn't dependent on fission addresses, finish adding the type 3324 // and all its dependent types. 3325 for (auto &TU : TypeUnitsToAdd) { 3326 InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get()); 3327 InfoHolder.emitUnit(TU.first.get(), useSplitDwarf()); 3328 } 3329 } 3330 CU.addDIETypeSignature(RefDie, Signature); 3331 } 3332 3333 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD) 3334 : DD(DD), 3335 TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)), AddrPoolUsed(DD->AddrPool.hasBeenUsed()) { 3336 DD->TypeUnitsUnderConstruction.clear(); 3337 DD->AddrPool.resetUsedFlag(); 3338 } 3339 3340 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() { 3341 DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction); 3342 DD->AddrPool.resetUsedFlag(AddrPoolUsed); 3343 } 3344 3345 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() { 3346 return NonTypeUnitContext(this); 3347 } 3348 3349 // Add the Name along with its companion DIE to the appropriate accelerator 3350 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for 3351 // AccelTableKind::Apple, we use the table we got as an argument). If 3352 // accelerator tables are disabled, this function does nothing. 3353 template <typename DataT> 3354 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU, 3355 AccelTable<DataT> &AppleAccel, StringRef Name, 3356 const DIE &Die) { 3357 if (getAccelTableKind() == AccelTableKind::None) 3358 return; 3359 3360 if (getAccelTableKind() != AccelTableKind::Apple && 3361 CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default) 3362 return; 3363 3364 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 3365 DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name); 3366 3367 switch (getAccelTableKind()) { 3368 case AccelTableKind::Apple: 3369 AppleAccel.addName(Ref, Die); 3370 break; 3371 case AccelTableKind::Dwarf: 3372 AccelDebugNames.addName(Ref, Die); 3373 break; 3374 case AccelTableKind::Default: 3375 llvm_unreachable("Default should have already been resolved."); 3376 case AccelTableKind::None: 3377 llvm_unreachable("None handled above"); 3378 } 3379 } 3380 3381 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name, 3382 const DIE &Die) { 3383 addAccelNameImpl(CU, AccelNames, Name, Die); 3384 } 3385 3386 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name, 3387 const DIE &Die) { 3388 // ObjC names go only into the Apple accelerator tables. 3389 if (getAccelTableKind() == AccelTableKind::Apple) 3390 addAccelNameImpl(CU, AccelObjC, Name, Die); 3391 } 3392 3393 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name, 3394 const DIE &Die) { 3395 addAccelNameImpl(CU, AccelNamespace, Name, Die); 3396 } 3397 3398 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name, 3399 const DIE &Die, char Flags) { 3400 addAccelNameImpl(CU, AccelTypes, Name, Die); 3401 } 3402 3403 uint16_t DwarfDebug::getDwarfVersion() const { 3404 return Asm->OutStreamer->getContext().getDwarfVersion(); 3405 } 3406 3407 dwarf::Form DwarfDebug::getDwarfSectionOffsetForm() const { 3408 if (Asm->getDwarfVersion() >= 4) 3409 return dwarf::Form::DW_FORM_sec_offset; 3410 assert((!Asm->isDwarf64() || (Asm->getDwarfVersion() == 3)) && 3411 "DWARF64 is not defined prior DWARFv3"); 3412 return Asm->isDwarf64() ? dwarf::Form::DW_FORM_data8 3413 : dwarf::Form::DW_FORM_data4; 3414 } 3415 3416 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) { 3417 auto I = SectionLabels.find(S); 3418 if (I == SectionLabels.end()) 3419 return nullptr; 3420 return I->second; 3421 } 3422 void DwarfDebug::insertSectionLabel(const MCSymbol *S) { 3423 if (SectionLabels.insert(std::make_pair(&S->getSection(), S)).second) 3424 if (useSplitDwarf() || getDwarfVersion() >= 5) 3425 AddrPool.getIndex(S); 3426 } 3427 3428 Optional<MD5::MD5Result> DwarfDebug::getMD5AsBytes(const DIFile *File) const { 3429 assert(File); 3430 if (getDwarfVersion() < 5) 3431 return None; 3432 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = File->getChecksum(); 3433 if (!Checksum || Checksum->Kind != DIFile::CSK_MD5) 3434 return None; 3435 3436 // Convert the string checksum to an MD5Result for the streamer. 3437 // The verifier validates the checksum so we assume it's okay. 3438 // An MD5 checksum is 16 bytes. 3439 std::string ChecksumString = fromHex(Checksum->Value); 3440 MD5::MD5Result CKMem; 3441 std::copy(ChecksumString.begin(), ChecksumString.end(), CKMem.Bytes.data()); 3442 return CKMem; 3443 } 3444