1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing dwarf debug info into asm files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "DwarfDebug.h" 14 #include "ByteStreamer.h" 15 #include "DIEHash.h" 16 #include "DebugLocEntry.h" 17 #include "DebugLocStream.h" 18 #include "DwarfCompileUnit.h" 19 #include "DwarfExpression.h" 20 #include "DwarfFile.h" 21 #include "DwarfUnit.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/DenseSet.h" 25 #include "llvm/ADT/MapVector.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/BinaryFormat/Dwarf.h" 33 #include "llvm/CodeGen/AccelTable.h" 34 #include "llvm/CodeGen/AsmPrinter.h" 35 #include "llvm/CodeGen/DIE.h" 36 #include "llvm/CodeGen/LexicalScopes.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineInstr.h" 40 #include "llvm/CodeGen/MachineModuleInfo.h" 41 #include "llvm/CodeGen/MachineOperand.h" 42 #include "llvm/CodeGen/TargetInstrInfo.h" 43 #include "llvm/CodeGen/TargetLowering.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/DebugInfo/DWARF/DWARFExpression.h" 47 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GlobalVariable.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/MC/MCAsmInfo.h" 55 #include "llvm/MC/MCContext.h" 56 #include "llvm/MC/MCDwarf.h" 57 #include "llvm/MC/MCSection.h" 58 #include "llvm/MC/MCStreamer.h" 59 #include "llvm/MC/MCSymbol.h" 60 #include "llvm/MC/MCTargetOptions.h" 61 #include "llvm/MC/MachineLocation.h" 62 #include "llvm/MC/SectionKind.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MD5.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/Timer.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Target/TargetLoweringObjectFile.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include "llvm/Target/TargetOptions.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <iterator> 80 #include <string> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 #define DEBUG_TYPE "dwarfdebug" 87 88 STATISTIC(NumCSParams, "Number of dbg call site params created"); 89 90 static cl::opt<bool> 91 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, 92 cl::desc("Disable debug info printing")); 93 94 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier( 95 "use-dwarf-ranges-base-address-specifier", cl::Hidden, 96 cl::desc("Use base address specifiers in debug_ranges"), cl::init(false)); 97 98 static cl::opt<bool> EmitDwarfDebugEntryValues( 99 "emit-debug-entry-values", cl::Hidden, 100 cl::desc("Emit the debug entry values"), cl::init(false)); 101 102 static cl::opt<bool> GenerateARangeSection("generate-arange-section", 103 cl::Hidden, 104 cl::desc("Generate dwarf aranges"), 105 cl::init(false)); 106 107 static cl::opt<bool> 108 GenerateDwarfTypeUnits("generate-type-units", cl::Hidden, 109 cl::desc("Generate DWARF4 type units."), 110 cl::init(false)); 111 112 static cl::opt<bool> SplitDwarfCrossCuReferences( 113 "split-dwarf-cross-cu-references", cl::Hidden, 114 cl::desc("Enable cross-cu references in DWO files"), cl::init(false)); 115 116 enum DefaultOnOff { Default, Enable, Disable }; 117 118 static cl::opt<DefaultOnOff> UnknownLocations( 119 "use-unknown-locations", cl::Hidden, 120 cl::desc("Make an absence of debug location information explicit."), 121 cl::values(clEnumVal(Default, "At top of block or after label"), 122 clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")), 123 cl::init(Default)); 124 125 static cl::opt<AccelTableKind> AccelTables( 126 "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."), 127 cl::values(clEnumValN(AccelTableKind::Default, "Default", 128 "Default for platform"), 129 clEnumValN(AccelTableKind::None, "Disable", "Disabled."), 130 clEnumValN(AccelTableKind::Apple, "Apple", "Apple"), 131 clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")), 132 cl::init(AccelTableKind::Default)); 133 134 static cl::opt<DefaultOnOff> 135 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden, 136 cl::desc("Use inlined strings rather than string section."), 137 cl::values(clEnumVal(Default, "Default for platform"), 138 clEnumVal(Enable, "Enabled"), 139 clEnumVal(Disable, "Disabled")), 140 cl::init(Default)); 141 142 static cl::opt<bool> 143 NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden, 144 cl::desc("Disable emission .debug_ranges section."), 145 cl::init(false)); 146 147 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences( 148 "dwarf-sections-as-references", cl::Hidden, 149 cl::desc("Use sections+offset as references rather than labels."), 150 cl::values(clEnumVal(Default, "Default for platform"), 151 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 152 cl::init(Default)); 153 154 enum LinkageNameOption { 155 DefaultLinkageNames, 156 AllLinkageNames, 157 AbstractLinkageNames 158 }; 159 160 static cl::opt<LinkageNameOption> 161 DwarfLinkageNames("dwarf-linkage-names", cl::Hidden, 162 cl::desc("Which DWARF linkage-name attributes to emit."), 163 cl::values(clEnumValN(DefaultLinkageNames, "Default", 164 "Default for platform"), 165 clEnumValN(AllLinkageNames, "All", "All"), 166 clEnumValN(AbstractLinkageNames, "Abstract", 167 "Abstract subprograms")), 168 cl::init(DefaultLinkageNames)); 169 170 static cl::opt<unsigned> LocationAnalysisSizeLimit( 171 "singlevarlocation-input-bb-limit", 172 cl::desc("Maximum block size to analyze for single-location variables"), 173 cl::init(30000), cl::Hidden); 174 175 static const char *const DWARFGroupName = "dwarf"; 176 static const char *const DWARFGroupDescription = "DWARF Emission"; 177 static const char *const DbgTimerName = "writer"; 178 static const char *const DbgTimerDescription = "DWARF Debug Writer"; 179 static constexpr unsigned ULEB128PadSize = 4; 180 181 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) { 182 getActiveStreamer().EmitInt8( 183 Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op) 184 : dwarf::OperationEncodingString(Op)); 185 } 186 187 void DebugLocDwarfExpression::emitSigned(int64_t Value) { 188 getActiveStreamer().emitSLEB128(Value, Twine(Value)); 189 } 190 191 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) { 192 getActiveStreamer().emitULEB128(Value, Twine(Value)); 193 } 194 195 void DebugLocDwarfExpression::emitData1(uint8_t Value) { 196 getActiveStreamer().EmitInt8(Value, Twine(Value)); 197 } 198 199 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) { 200 assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit"); 201 getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize); 202 } 203 204 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI, 205 unsigned MachineReg) { 206 // This information is not available while emitting .debug_loc entries. 207 return false; 208 } 209 210 void DebugLocDwarfExpression::enableTemporaryBuffer() { 211 assert(!IsBuffering && "Already buffering?"); 212 if (!TmpBuf) 213 TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments); 214 IsBuffering = true; 215 } 216 217 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; } 218 219 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() { 220 return TmpBuf ? TmpBuf->Bytes.size() : 0; 221 } 222 223 void DebugLocDwarfExpression::commitTemporaryBuffer() { 224 if (!TmpBuf) 225 return; 226 for (auto Byte : enumerate(TmpBuf->Bytes)) { 227 const char *Comment = (Byte.index() < TmpBuf->Comments.size()) 228 ? TmpBuf->Comments[Byte.index()].c_str() 229 : ""; 230 OutBS.EmitInt8(Byte.value(), Comment); 231 } 232 TmpBuf->Bytes.clear(); 233 TmpBuf->Comments.clear(); 234 } 235 236 const DIType *DbgVariable::getType() const { 237 return getVariable()->getType(); 238 } 239 240 /// Get .debug_loc entry for the instruction range starting at MI. 241 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) { 242 const DIExpression *Expr = MI->getDebugExpression(); 243 assert(MI->getNumOperands() == 4); 244 if (MI->getDebugOperand(0).isReg()) { 245 auto RegOp = MI->getDebugOperand(0); 246 auto Op1 = MI->getDebugOffset(); 247 // If the second operand is an immediate, this is a 248 // register-indirect address. 249 assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset"); 250 MachineLocation MLoc(RegOp.getReg(), Op1.isImm()); 251 return DbgValueLoc(Expr, MLoc); 252 } 253 if (MI->getDebugOperand(0).isTargetIndex()) { 254 auto Op = MI->getDebugOperand(0); 255 return DbgValueLoc(Expr, 256 TargetIndexLocation(Op.getIndex(), Op.getOffset())); 257 } 258 if (MI->getDebugOperand(0).isImm()) 259 return DbgValueLoc(Expr, MI->getDebugOperand(0).getImm()); 260 if (MI->getDebugOperand(0).isFPImm()) 261 return DbgValueLoc(Expr, MI->getDebugOperand(0).getFPImm()); 262 if (MI->getDebugOperand(0).isCImm()) 263 return DbgValueLoc(Expr, MI->getDebugOperand(0).getCImm()); 264 265 llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!"); 266 } 267 268 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) { 269 assert(FrameIndexExprs.empty() && "Already initialized?"); 270 assert(!ValueLoc.get() && "Already initialized?"); 271 272 assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable"); 273 assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() && 274 "Wrong inlined-at"); 275 276 ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue)); 277 if (auto *E = DbgValue->getDebugExpression()) 278 if (E->getNumElements()) 279 FrameIndexExprs.push_back({0, E}); 280 } 281 282 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const { 283 if (FrameIndexExprs.size() == 1) 284 return FrameIndexExprs; 285 286 assert(llvm::all_of(FrameIndexExprs, 287 [](const FrameIndexExpr &A) { 288 return A.Expr->isFragment(); 289 }) && 290 "multiple FI expressions without DW_OP_LLVM_fragment"); 291 llvm::sort(FrameIndexExprs, 292 [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool { 293 return A.Expr->getFragmentInfo()->OffsetInBits < 294 B.Expr->getFragmentInfo()->OffsetInBits; 295 }); 296 297 return FrameIndexExprs; 298 } 299 300 void DbgVariable::addMMIEntry(const DbgVariable &V) { 301 assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry"); 302 assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry"); 303 assert(V.getVariable() == getVariable() && "conflicting variable"); 304 assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location"); 305 306 assert(!FrameIndexExprs.empty() && "Expected an MMI entry"); 307 assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry"); 308 309 // FIXME: This logic should not be necessary anymore, as we now have proper 310 // deduplication. However, without it, we currently run into the assertion 311 // below, which means that we are likely dealing with broken input, i.e. two 312 // non-fragment entries for the same variable at different frame indices. 313 if (FrameIndexExprs.size()) { 314 auto *Expr = FrameIndexExprs.back().Expr; 315 if (!Expr || !Expr->isFragment()) 316 return; 317 } 318 319 for (const auto &FIE : V.FrameIndexExprs) 320 // Ignore duplicate entries. 321 if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) { 322 return FIE.FI == Other.FI && FIE.Expr == Other.Expr; 323 })) 324 FrameIndexExprs.push_back(FIE); 325 326 assert((FrameIndexExprs.size() == 1 || 327 llvm::all_of(FrameIndexExprs, 328 [](FrameIndexExpr &FIE) { 329 return FIE.Expr && FIE.Expr->isFragment(); 330 })) && 331 "conflicting locations for variable"); 332 } 333 334 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion, 335 bool GenerateTypeUnits, 336 DebuggerKind Tuning, 337 const Triple &TT) { 338 // Honor an explicit request. 339 if (AccelTables != AccelTableKind::Default) 340 return AccelTables; 341 342 // Accelerator tables with type units are currently not supported. 343 if (GenerateTypeUnits) 344 return AccelTableKind::None; 345 346 // Accelerator tables get emitted if targetting DWARF v5 or LLDB. DWARF v5 347 // always implies debug_names. For lower standard versions we use apple 348 // accelerator tables on apple platforms and debug_names elsewhere. 349 if (DwarfVersion >= 5) 350 return AccelTableKind::Dwarf; 351 if (Tuning == DebuggerKind::LLDB) 352 return TT.isOSBinFormatMachO() ? AccelTableKind::Apple 353 : AccelTableKind::Dwarf; 354 return AccelTableKind::None; 355 } 356 357 DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M) 358 : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()), 359 InfoHolder(A, "info_string", DIEValueAllocator), 360 SkeletonHolder(A, "skel_string", DIEValueAllocator), 361 IsDarwin(A->TM.getTargetTriple().isOSDarwin()) { 362 const Triple &TT = Asm->TM.getTargetTriple(); 363 364 // Make sure we know our "debugger tuning". The target option takes 365 // precedence; fall back to triple-based defaults. 366 if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default) 367 DebuggerTuning = Asm->TM.Options.DebuggerTuning; 368 else if (IsDarwin) 369 DebuggerTuning = DebuggerKind::LLDB; 370 else if (TT.isPS4CPU()) 371 DebuggerTuning = DebuggerKind::SCE; 372 else 373 DebuggerTuning = DebuggerKind::GDB; 374 375 if (DwarfInlinedStrings == Default) 376 UseInlineStrings = TT.isNVPTX(); 377 else 378 UseInlineStrings = DwarfInlinedStrings == Enable; 379 380 UseLocSection = !TT.isNVPTX(); 381 382 HasAppleExtensionAttributes = tuneForLLDB(); 383 384 // Handle split DWARF. 385 HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty(); 386 387 // SCE defaults to linkage names only for abstract subprograms. 388 if (DwarfLinkageNames == DefaultLinkageNames) 389 UseAllLinkageNames = !tuneForSCE(); 390 else 391 UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames; 392 393 unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion; 394 unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber 395 : MMI->getModule()->getDwarfVersion(); 396 // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2. 397 DwarfVersion = 398 TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION); 399 400 UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX(); 401 402 // Use sections as references. Force for NVPTX. 403 if (DwarfSectionsAsReferences == Default) 404 UseSectionsAsReferences = TT.isNVPTX(); 405 else 406 UseSectionsAsReferences = DwarfSectionsAsReferences == Enable; 407 408 // Don't generate type units for unsupported object file formats. 409 GenerateTypeUnits = 410 A->TM.getTargetTriple().isOSBinFormatELF() && GenerateDwarfTypeUnits; 411 412 TheAccelTableKind = computeAccelTableKind( 413 DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple()); 414 415 // Work around a GDB bug. GDB doesn't support the standard opcode; 416 // SCE doesn't support GNU's; LLDB prefers the standard opcode, which 417 // is defined as of DWARF 3. 418 // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented 419 // https://sourceware.org/bugzilla/show_bug.cgi?id=11616 420 UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3; 421 422 // GDB does not fully support the DWARF 4 representation for bitfields. 423 UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB(); 424 425 // The DWARF v5 string offsets table has - possibly shared - contributions 426 // from each compile and type unit each preceded by a header. The string 427 // offsets table used by the pre-DWARF v5 split-DWARF implementation uses 428 // a monolithic string offsets table without any header. 429 UseSegmentedStringOffsetsTable = DwarfVersion >= 5; 430 431 // Emit call-site-param debug info for GDB and LLDB, if the target supports 432 // the debug entry values feature. It can also be enabled explicitly. 433 EmitDebugEntryValues = (Asm->TM.Options.ShouldEmitDebugEntryValues() && 434 (tuneForGDB() || tuneForLLDB())) || 435 EmitDwarfDebugEntryValues; 436 437 Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion); 438 } 439 440 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h. 441 DwarfDebug::~DwarfDebug() = default; 442 443 static bool isObjCClass(StringRef Name) { 444 return Name.startswith("+") || Name.startswith("-"); 445 } 446 447 static bool hasObjCCategory(StringRef Name) { 448 if (!isObjCClass(Name)) 449 return false; 450 451 return Name.find(") ") != StringRef::npos; 452 } 453 454 static void getObjCClassCategory(StringRef In, StringRef &Class, 455 StringRef &Category) { 456 if (!hasObjCCategory(In)) { 457 Class = In.slice(In.find('[') + 1, In.find(' ')); 458 Category = ""; 459 return; 460 } 461 462 Class = In.slice(In.find('[') + 1, In.find('(')); 463 Category = In.slice(In.find('[') + 1, In.find(' ')); 464 } 465 466 static StringRef getObjCMethodName(StringRef In) { 467 return In.slice(In.find(' ') + 1, In.find(']')); 468 } 469 470 // Add the various names to the Dwarf accelerator table names. 471 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU, 472 const DISubprogram *SP, DIE &Die) { 473 if (getAccelTableKind() != AccelTableKind::Apple && 474 CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None) 475 return; 476 477 if (!SP->isDefinition()) 478 return; 479 480 if (SP->getName() != "") 481 addAccelName(CU, SP->getName(), Die); 482 483 // If the linkage name is different than the name, go ahead and output that as 484 // well into the name table. Only do that if we are going to actually emit 485 // that name. 486 if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() && 487 (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP))) 488 addAccelName(CU, SP->getLinkageName(), Die); 489 490 // If this is an Objective-C selector name add it to the ObjC accelerator 491 // too. 492 if (isObjCClass(SP->getName())) { 493 StringRef Class, Category; 494 getObjCClassCategory(SP->getName(), Class, Category); 495 addAccelObjC(CU, Class, Die); 496 if (Category != "") 497 addAccelObjC(CU, Category, Die); 498 // Also add the base method name to the name table. 499 addAccelName(CU, getObjCMethodName(SP->getName()), Die); 500 } 501 } 502 503 /// Check whether we should create a DIE for the given Scope, return true 504 /// if we don't create a DIE (the corresponding DIE is null). 505 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) { 506 if (Scope->isAbstractScope()) 507 return false; 508 509 // We don't create a DIE if there is no Range. 510 const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges(); 511 if (Ranges.empty()) 512 return true; 513 514 if (Ranges.size() > 1) 515 return false; 516 517 // We don't create a DIE if we have a single Range and the end label 518 // is null. 519 return !getLabelAfterInsn(Ranges.front().second); 520 } 521 522 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) { 523 F(CU); 524 if (auto *SkelCU = CU.getSkeleton()) 525 if (CU.getCUNode()->getSplitDebugInlining()) 526 F(*SkelCU); 527 } 528 529 bool DwarfDebug::shareAcrossDWOCUs() const { 530 return SplitDwarfCrossCuReferences; 531 } 532 533 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU, 534 LexicalScope *Scope) { 535 assert(Scope && Scope->getScopeNode()); 536 assert(Scope->isAbstractScope()); 537 assert(!Scope->getInlinedAt()); 538 539 auto *SP = cast<DISubprogram>(Scope->getScopeNode()); 540 541 // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram 542 // was inlined from another compile unit. 543 if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining()) 544 // Avoid building the original CU if it won't be used 545 SrcCU.constructAbstractSubprogramScopeDIE(Scope); 546 else { 547 auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 548 if (auto *SkelCU = CU.getSkeleton()) { 549 (shareAcrossDWOCUs() ? CU : SrcCU) 550 .constructAbstractSubprogramScopeDIE(Scope); 551 if (CU.getCUNode()->getSplitDebugInlining()) 552 SkelCU->constructAbstractSubprogramScopeDIE(Scope); 553 } else 554 CU.constructAbstractSubprogramScopeDIE(Scope); 555 } 556 } 557 558 DIE &DwarfDebug::constructSubprogramDefinitionDIE(const DISubprogram *SP) { 559 DICompileUnit *Unit = SP->getUnit(); 560 assert(SP->isDefinition() && "Subprogram not a definition"); 561 assert(Unit && "Subprogram definition without parent unit"); 562 auto &CU = getOrCreateDwarfCompileUnit(Unit); 563 return *CU.getOrCreateSubprogramDIE(SP); 564 } 565 566 /// Represents a parameter whose call site value can be described by applying a 567 /// debug expression to a register in the forwarded register worklist. 568 struct FwdRegParamInfo { 569 /// The described parameter register. 570 unsigned ParamReg; 571 572 /// Debug expression that has been built up when walking through the 573 /// instruction chain that produces the parameter's value. 574 const DIExpression *Expr; 575 }; 576 577 /// Register worklist for finding call site values. 578 using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>; 579 580 /// Append the expression \p Addition to \p Original and return the result. 581 static const DIExpression *combineDIExpressions(const DIExpression *Original, 582 const DIExpression *Addition) { 583 std::vector<uint64_t> Elts = Addition->getElements().vec(); 584 // Avoid multiple DW_OP_stack_values. 585 if (Original->isImplicit() && Addition->isImplicit()) 586 erase_if(Elts, [](uint64_t Op) { return Op == dwarf::DW_OP_stack_value; }); 587 const DIExpression *CombinedExpr = 588 (Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original; 589 return CombinedExpr; 590 } 591 592 /// Emit call site parameter entries that are described by the given value and 593 /// debug expression. 594 template <typename ValT> 595 static void finishCallSiteParams(ValT Val, const DIExpression *Expr, 596 ArrayRef<FwdRegParamInfo> DescribedParams, 597 ParamSet &Params) { 598 for (auto Param : DescribedParams) { 599 bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0; 600 601 // TODO: Entry value operations can currently not be combined with any 602 // other expressions, so we can't emit call site entries in those cases. 603 if (ShouldCombineExpressions && Expr->isEntryValue()) 604 continue; 605 606 // If a parameter's call site value is produced by a chain of 607 // instructions we may have already created an expression for the 608 // parameter when walking through the instructions. Append that to the 609 // base expression. 610 const DIExpression *CombinedExpr = 611 ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr) 612 : Expr; 613 assert((!CombinedExpr || CombinedExpr->isValid()) && 614 "Combined debug expression is invalid"); 615 616 DbgValueLoc DbgLocVal(CombinedExpr, Val); 617 DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal); 618 Params.push_back(CSParm); 619 ++NumCSParams; 620 } 621 } 622 623 /// Add \p Reg to the worklist, if it's not already present, and mark that the 624 /// given parameter registers' values can (potentially) be described using 625 /// that register and an debug expression. 626 static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg, 627 const DIExpression *Expr, 628 ArrayRef<FwdRegParamInfo> ParamsToAdd) { 629 auto I = Worklist.insert({Reg, {}}); 630 auto &ParamsForFwdReg = I.first->second; 631 for (auto Param : ParamsToAdd) { 632 assert(none_of(ParamsForFwdReg, 633 [Param](const FwdRegParamInfo &D) { 634 return D.ParamReg == Param.ParamReg; 635 }) && 636 "Same parameter described twice by forwarding reg"); 637 638 // If a parameter's call site value is produced by a chain of 639 // instructions we may have already created an expression for the 640 // parameter when walking through the instructions. Append that to the 641 // new expression. 642 const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr); 643 ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr}); 644 } 645 } 646 647 /// Interpret values loaded into registers by \p CurMI. 648 static void interpretValues(const MachineInstr *CurMI, 649 FwdRegWorklist &ForwardedRegWorklist, 650 ParamSet &Params) { 651 652 const MachineFunction *MF = CurMI->getMF(); 653 const DIExpression *EmptyExpr = 654 DIExpression::get(MF->getFunction().getContext(), {}); 655 const auto &TRI = *MF->getSubtarget().getRegisterInfo(); 656 const auto &TII = *MF->getSubtarget().getInstrInfo(); 657 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 658 659 // If an instruction defines more than one item in the worklist, we may run 660 // into situations where a worklist register's value is (potentially) 661 // described by the previous value of another register that is also defined 662 // by that instruction. 663 // 664 // This can for example occur in cases like this: 665 // 666 // $r1 = mov 123 667 // $r0, $r1 = mvrr $r1, 456 668 // call @foo, $r0, $r1 669 // 670 // When describing $r1's value for the mvrr instruction, we need to make sure 671 // that we don't finalize an entry value for $r0, as that is dependent on the 672 // previous value of $r1 (123 rather than 456). 673 // 674 // In order to not have to distinguish between those cases when finalizing 675 // entry values, we simply postpone adding new parameter registers to the 676 // worklist, by first keeping them in this temporary container until the 677 // instruction has been handled. 678 FwdRegWorklist TmpWorklistItems; 679 680 // If the MI is an instruction defining one or more parameters' forwarding 681 // registers, add those defines. 682 auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI, 683 SmallSetVector<unsigned, 4> &Defs) { 684 if (MI.isDebugInstr()) 685 return; 686 687 for (const MachineOperand &MO : MI.operands()) { 688 if (MO.isReg() && MO.isDef() && 689 Register::isPhysicalRegister(MO.getReg())) { 690 for (auto FwdReg : ForwardedRegWorklist) 691 if (TRI.regsOverlap(FwdReg.first, MO.getReg())) 692 Defs.insert(FwdReg.first); 693 } 694 } 695 }; 696 697 // Set of worklist registers that are defined by this instruction. 698 SmallSetVector<unsigned, 4> FwdRegDefs; 699 700 getForwardingRegsDefinedByMI(*CurMI, FwdRegDefs); 701 if (FwdRegDefs.empty()) 702 return; 703 704 for (auto ParamFwdReg : FwdRegDefs) { 705 if (auto ParamValue = TII.describeLoadedValue(*CurMI, ParamFwdReg)) { 706 if (ParamValue->first.isImm()) { 707 int64_t Val = ParamValue->first.getImm(); 708 finishCallSiteParams(Val, ParamValue->second, 709 ForwardedRegWorklist[ParamFwdReg], Params); 710 } else if (ParamValue->first.isReg()) { 711 Register RegLoc = ParamValue->first.getReg(); 712 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 713 Register FP = TRI.getFrameRegister(*MF); 714 bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP); 715 if (TRI.isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) { 716 MachineLocation MLoc(RegLoc, /*IsIndirect=*/IsSPorFP); 717 finishCallSiteParams(MLoc, ParamValue->second, 718 ForwardedRegWorklist[ParamFwdReg], Params); 719 } else { 720 // ParamFwdReg was described by the non-callee saved register 721 // RegLoc. Mark that the call site values for the parameters are 722 // dependent on that register instead of ParamFwdReg. Since RegLoc 723 // may be a register that will be handled in this iteration, we 724 // postpone adding the items to the worklist, and instead keep them 725 // in a temporary container. 726 addToFwdRegWorklist(TmpWorklistItems, RegLoc, ParamValue->second, 727 ForwardedRegWorklist[ParamFwdReg]); 728 } 729 } 730 } 731 } 732 733 // Remove all registers that this instruction defines from the worklist. 734 for (auto ParamFwdReg : FwdRegDefs) 735 ForwardedRegWorklist.erase(ParamFwdReg); 736 737 // Now that we are done handling this instruction, add items from the 738 // temporary worklist to the real one. 739 for (auto New : TmpWorklistItems) 740 addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, New.second); 741 TmpWorklistItems.clear(); 742 } 743 744 static bool interpretNextInstr(const MachineInstr *CurMI, 745 FwdRegWorklist &ForwardedRegWorklist, 746 ParamSet &Params) { 747 // Skip bundle headers. 748 if (CurMI->isBundle()) 749 return true; 750 751 // If the next instruction is a call we can not interpret parameter's 752 // forwarding registers or we finished the interpretation of all 753 // parameters. 754 if (CurMI->isCall()) 755 return false; 756 757 if (ForwardedRegWorklist.empty()) 758 return false; 759 760 // Avoid NOP description. 761 if (CurMI->getNumOperands() == 0) 762 return true; 763 764 interpretValues(CurMI, ForwardedRegWorklist, Params); 765 766 return true; 767 } 768 769 /// Try to interpret values loaded into registers that forward parameters 770 /// for \p CallMI. Store parameters with interpreted value into \p Params. 771 static void collectCallSiteParameters(const MachineInstr *CallMI, 772 ParamSet &Params) { 773 const MachineFunction *MF = CallMI->getMF(); 774 auto CalleesMap = MF->getCallSitesInfo(); 775 auto CallFwdRegsInfo = CalleesMap.find(CallMI); 776 777 // There is no information for the call instruction. 778 if (CallFwdRegsInfo == CalleesMap.end()) 779 return; 780 781 const MachineBasicBlock *MBB = CallMI->getParent(); 782 783 // Skip the call instruction. 784 auto I = std::next(CallMI->getReverseIterator()); 785 786 FwdRegWorklist ForwardedRegWorklist; 787 788 const DIExpression *EmptyExpr = 789 DIExpression::get(MF->getFunction().getContext(), {}); 790 791 // Add all the forwarding registers into the ForwardedRegWorklist. 792 for (auto ArgReg : CallFwdRegsInfo->second) { 793 bool InsertedReg = 794 ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}}) 795 .second; 796 assert(InsertedReg && "Single register used to forward two arguments?"); 797 (void)InsertedReg; 798 } 799 800 // We erase, from the ForwardedRegWorklist, those forwarding registers for 801 // which we successfully describe a loaded value (by using 802 // the describeLoadedValue()). For those remaining arguments in the working 803 // list, for which we do not describe a loaded value by 804 // the describeLoadedValue(), we try to generate an entry value expression 805 // for their call site value description, if the call is within the entry MBB. 806 // TODO: Handle situations when call site parameter value can be described 807 // as the entry value within basic blocks other than the first one. 808 bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin(); 809 810 // Search for a loading value in forwarding registers inside call delay slot. 811 if (CallMI->hasDelaySlot()) { 812 auto Suc = std::next(CallMI->getIterator()); 813 // Only one-instruction delay slot is supported. 814 auto BundleEnd = llvm::getBundleEnd(CallMI->getIterator()); 815 (void)BundleEnd; 816 assert(std::next(Suc) == BundleEnd && 817 "More than one instruction in call delay slot"); 818 // Try to interpret value loaded by instruction. 819 if (!interpretNextInstr(&*Suc, ForwardedRegWorklist, Params)) 820 return; 821 } 822 823 // Search for a loading value in forwarding registers. 824 for (; I != MBB->rend(); ++I) { 825 // Try to interpret values loaded by instruction. 826 if (!interpretNextInstr(&*I, ForwardedRegWorklist, Params)) 827 return; 828 } 829 830 // Emit the call site parameter's value as an entry value. 831 if (ShouldTryEmitEntryVals) { 832 // Create an expression where the register's entry value is used. 833 DIExpression *EntryExpr = DIExpression::get( 834 MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1}); 835 for (auto RegEntry : ForwardedRegWorklist) { 836 MachineLocation MLoc(RegEntry.first); 837 finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params); 838 } 839 } 840 } 841 842 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP, 843 DwarfCompileUnit &CU, DIE &ScopeDIE, 844 const MachineFunction &MF) { 845 // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if 846 // the subprogram is required to have one. 847 if (!SP.areAllCallsDescribed() || !SP.isDefinition()) 848 return; 849 850 // Use DW_AT_call_all_calls to express that call site entries are present 851 // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls 852 // because one of its requirements is not met: call site entries for 853 // optimized-out calls are elided. 854 CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls)); 855 856 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 857 assert(TII && "TargetInstrInfo not found: cannot label tail calls"); 858 859 // Delay slot support check. 860 auto delaySlotSupported = [&](const MachineInstr &MI) { 861 if (!MI.isBundledWithSucc()) 862 return false; 863 auto Suc = std::next(MI.getIterator()); 864 auto CallInstrBundle = getBundleStart(MI.getIterator()); 865 (void)CallInstrBundle; 866 auto DelaySlotBundle = getBundleStart(Suc); 867 (void)DelaySlotBundle; 868 // Ensure that label after call is following delay slot instruction. 869 // Ex. CALL_INSTRUCTION { 870 // DELAY_SLOT_INSTRUCTION } 871 // LABEL_AFTER_CALL 872 assert(getLabelAfterInsn(&*CallInstrBundle) == 873 getLabelAfterInsn(&*DelaySlotBundle) && 874 "Call and its successor instruction don't have same label after."); 875 return true; 876 }; 877 878 // Emit call site entries for each call or tail call in the function. 879 for (const MachineBasicBlock &MBB : MF) { 880 for (const MachineInstr &MI : MBB.instrs()) { 881 // Bundles with call in them will pass the isCall() test below but do not 882 // have callee operand information so skip them here. Iterator will 883 // eventually reach the call MI. 884 if (MI.isBundle()) 885 continue; 886 887 // Skip instructions which aren't calls. Both calls and tail-calling jump 888 // instructions (e.g TAILJMPd64) are classified correctly here. 889 if (!MI.isCandidateForCallSiteEntry()) 890 continue; 891 892 // Skip instructions marked as frame setup, as they are not interesting to 893 // the user. 894 if (MI.getFlag(MachineInstr::FrameSetup)) 895 continue; 896 897 // Check if delay slot support is enabled. 898 if (MI.hasDelaySlot() && !delaySlotSupported(*&MI)) 899 return; 900 901 // If this is a direct call, find the callee's subprogram. 902 // In the case of an indirect call find the register that holds 903 // the callee. 904 const MachineOperand &CalleeOp = MI.getOperand(0); 905 if (!CalleeOp.isGlobal() && !CalleeOp.isReg()) 906 continue; 907 908 unsigned CallReg = 0; 909 DIE *CalleeDIE = nullptr; 910 const Function *CalleeDecl = nullptr; 911 if (CalleeOp.isReg()) { 912 CallReg = CalleeOp.getReg(); 913 if (!CallReg) 914 continue; 915 } else { 916 CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal()); 917 if (!CalleeDecl || !CalleeDecl->getSubprogram()) 918 continue; 919 const DISubprogram *CalleeSP = CalleeDecl->getSubprogram(); 920 921 if (CalleeSP->isDefinition()) { 922 // Ensure that a subprogram DIE for the callee is available in the 923 // appropriate CU. 924 CalleeDIE = &constructSubprogramDefinitionDIE(CalleeSP); 925 } else { 926 // Create the declaration DIE if it is missing. This is required to 927 // support compilation of old bitcode with an incomplete list of 928 // retained metadata. 929 CalleeDIE = CU.getOrCreateSubprogramDIE(CalleeSP); 930 } 931 assert(CalleeDIE && "Must have a DIE for the callee"); 932 } 933 934 // TODO: Omit call site entries for runtime calls (objc_msgSend, etc). 935 936 bool IsTail = TII->isTailCall(MI); 937 938 // If MI is in a bundle, the label was created after the bundle since 939 // EmitFunctionBody iterates over top-level MIs. Get that top-level MI 940 // to search for that label below. 941 const MachineInstr *TopLevelCallMI = 942 MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI; 943 944 // For non-tail calls, the return PC is needed to disambiguate paths in 945 // the call graph which could lead to some target function. For tail 946 // calls, no return PC information is needed, unless tuning for GDB in 947 // DWARF4 mode in which case we fake a return PC for compatibility. 948 const MCSymbol *PCAddr = 949 (!IsTail || CU.useGNUAnalogForDwarf5Feature()) 950 ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI)) 951 : nullptr; 952 953 // For tail calls, it's necessary to record the address of the branch 954 // instruction so that the debugger can show where the tail call occurred. 955 const MCSymbol *CallAddr = 956 IsTail ? getLabelBeforeInsn(TopLevelCallMI) : nullptr; 957 958 assert((IsTail || PCAddr) && "Non-tail call without return PC"); 959 960 LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> " 961 << (CalleeDecl ? CalleeDecl->getName() 962 : StringRef(MF.getSubtarget() 963 .getRegisterInfo() 964 ->getName(CallReg))) 965 << (IsTail ? " [IsTail]" : "") << "\n"); 966 967 DIE &CallSiteDIE = CU.constructCallSiteEntryDIE( 968 ScopeDIE, CalleeDIE, IsTail, PCAddr, CallAddr, CallReg); 969 970 // Optionally emit call-site-param debug info. 971 if (emitDebugEntryValues()) { 972 ParamSet Params; 973 // Try to interpret values of call site parameters. 974 collectCallSiteParameters(&MI, Params); 975 CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params); 976 } 977 } 978 } 979 } 980 981 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const { 982 if (!U.hasDwarfPubSections()) 983 return; 984 985 U.addFlag(D, dwarf::DW_AT_GNU_pubnames); 986 } 987 988 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit, 989 DwarfCompileUnit &NewCU) { 990 DIE &Die = NewCU.getUnitDie(); 991 StringRef FN = DIUnit->getFilename(); 992 993 StringRef Producer = DIUnit->getProducer(); 994 StringRef Flags = DIUnit->getFlags(); 995 if (!Flags.empty() && !useAppleExtensionAttributes()) { 996 std::string ProducerWithFlags = Producer.str() + " " + Flags.str(); 997 NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags); 998 } else 999 NewCU.addString(Die, dwarf::DW_AT_producer, Producer); 1000 1001 NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 1002 DIUnit->getSourceLanguage()); 1003 NewCU.addString(Die, dwarf::DW_AT_name, FN); 1004 StringRef SysRoot = DIUnit->getSysRoot(); 1005 if (!SysRoot.empty()) 1006 NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot); 1007 StringRef SDK = DIUnit->getSDK(); 1008 if (!SDK.empty()) 1009 NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK); 1010 1011 // Add DW_str_offsets_base to the unit DIE, except for split units. 1012 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 1013 NewCU.addStringOffsetsStart(); 1014 1015 if (!useSplitDwarf()) { 1016 NewCU.initStmtList(); 1017 1018 // If we're using split dwarf the compilation dir is going to be in the 1019 // skeleton CU and so we don't need to duplicate it here. 1020 if (!CompilationDir.empty()) 1021 NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 1022 addGnuPubAttributes(NewCU, Die); 1023 } 1024 1025 if (useAppleExtensionAttributes()) { 1026 if (DIUnit->isOptimized()) 1027 NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized); 1028 1029 StringRef Flags = DIUnit->getFlags(); 1030 if (!Flags.empty()) 1031 NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags); 1032 1033 if (unsigned RVer = DIUnit->getRuntimeVersion()) 1034 NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers, 1035 dwarf::DW_FORM_data1, RVer); 1036 } 1037 1038 if (DIUnit->getDWOId()) { 1039 // This CU is either a clang module DWO or a skeleton CU. 1040 NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, 1041 DIUnit->getDWOId()); 1042 if (!DIUnit->getSplitDebugFilename().empty()) { 1043 // This is a prefabricated skeleton CU. 1044 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1045 ? dwarf::DW_AT_dwo_name 1046 : dwarf::DW_AT_GNU_dwo_name; 1047 NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename()); 1048 } 1049 } 1050 } 1051 // Create new DwarfCompileUnit for the given metadata node with tag 1052 // DW_TAG_compile_unit. 1053 DwarfCompileUnit & 1054 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) { 1055 if (auto *CU = CUMap.lookup(DIUnit)) 1056 return *CU; 1057 1058 CompilationDir = DIUnit->getDirectory(); 1059 1060 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 1061 InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder); 1062 DwarfCompileUnit &NewCU = *OwnedUnit; 1063 InfoHolder.addUnit(std::move(OwnedUnit)); 1064 1065 for (auto *IE : DIUnit->getImportedEntities()) 1066 NewCU.addImportedEntity(IE); 1067 1068 // LTO with assembly output shares a single line table amongst multiple CUs. 1069 // To avoid the compilation directory being ambiguous, let the line table 1070 // explicitly describe the directory of all files, never relying on the 1071 // compilation directory. 1072 if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU) 1073 Asm->OutStreamer->emitDwarfFile0Directive( 1074 CompilationDir, DIUnit->getFilename(), getMD5AsBytes(DIUnit->getFile()), 1075 DIUnit->getSource(), NewCU.getUniqueID()); 1076 1077 if (useSplitDwarf()) { 1078 NewCU.setSkeleton(constructSkeletonCU(NewCU)); 1079 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection()); 1080 } else { 1081 finishUnitAttributes(DIUnit, NewCU); 1082 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 1083 } 1084 1085 CUMap.insert({DIUnit, &NewCU}); 1086 CUDieMap.insert({&NewCU.getUnitDie(), &NewCU}); 1087 return NewCU; 1088 } 1089 1090 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU, 1091 const DIImportedEntity *N) { 1092 if (isa<DILocalScope>(N->getScope())) 1093 return; 1094 if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope())) 1095 D->addChild(TheCU.constructImportedEntityDIE(N)); 1096 } 1097 1098 /// Sort and unique GVEs by comparing their fragment offset. 1099 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> & 1100 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) { 1101 llvm::sort( 1102 GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) { 1103 // Sort order: first null exprs, then exprs without fragment 1104 // info, then sort by fragment offset in bits. 1105 // FIXME: Come up with a more comprehensive comparator so 1106 // the sorting isn't non-deterministic, and so the following 1107 // std::unique call works correctly. 1108 if (!A.Expr || !B.Expr) 1109 return !!B.Expr; 1110 auto FragmentA = A.Expr->getFragmentInfo(); 1111 auto FragmentB = B.Expr->getFragmentInfo(); 1112 if (!FragmentA || !FragmentB) 1113 return !!FragmentB; 1114 return FragmentA->OffsetInBits < FragmentB->OffsetInBits; 1115 }); 1116 GVEs.erase(std::unique(GVEs.begin(), GVEs.end(), 1117 [](DwarfCompileUnit::GlobalExpr A, 1118 DwarfCompileUnit::GlobalExpr B) { 1119 return A.Expr == B.Expr; 1120 }), 1121 GVEs.end()); 1122 return GVEs; 1123 } 1124 1125 // Emit all Dwarf sections that should come prior to the content. Create 1126 // global DIEs and emit initial debug info sections. This is invoked by 1127 // the target AsmPrinter. 1128 void DwarfDebug::beginModule() { 1129 NamedRegionTimer T(DbgTimerName, DbgTimerDescription, DWARFGroupName, 1130 DWARFGroupDescription, TimePassesIsEnabled); 1131 if (DisableDebugInfoPrinting) { 1132 MMI->setDebugInfoAvailability(false); 1133 return; 1134 } 1135 1136 const Module *M = MMI->getModule(); 1137 1138 unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(), 1139 M->debug_compile_units_end()); 1140 // Tell MMI whether we have debug info. 1141 assert(MMI->hasDebugInfo() == (NumDebugCUs > 0) && 1142 "DebugInfoAvailabilty initialized unexpectedly"); 1143 SingleCU = NumDebugCUs == 1; 1144 DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>> 1145 GVMap; 1146 for (const GlobalVariable &Global : M->globals()) { 1147 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1148 Global.getDebugInfo(GVs); 1149 for (auto *GVE : GVs) 1150 GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()}); 1151 } 1152 1153 // Create the symbol that designates the start of the unit's contribution 1154 // to the string offsets table. In a split DWARF scenario, only the skeleton 1155 // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol). 1156 if (useSegmentedStringOffsetsTable()) 1157 (useSplitDwarf() ? SkeletonHolder : InfoHolder) 1158 .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base")); 1159 1160 1161 // Create the symbols that designates the start of the DWARF v5 range list 1162 // and locations list tables. They are located past the table headers. 1163 if (getDwarfVersion() >= 5) { 1164 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1165 Holder.setRnglistsTableBaseSym( 1166 Asm->createTempSymbol("rnglists_table_base")); 1167 1168 if (useSplitDwarf()) 1169 InfoHolder.setRnglistsTableBaseSym( 1170 Asm->createTempSymbol("rnglists_dwo_table_base")); 1171 } 1172 1173 // Create the symbol that points to the first entry following the debug 1174 // address table (.debug_addr) header. 1175 AddrPool.setLabel(Asm->createTempSymbol("addr_table_base")); 1176 DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base")); 1177 1178 for (DICompileUnit *CUNode : M->debug_compile_units()) { 1179 // FIXME: Move local imported entities into a list attached to the 1180 // subprogram, then this search won't be needed and a 1181 // getImportedEntities().empty() test should go below with the rest. 1182 bool HasNonLocalImportedEntities = llvm::any_of( 1183 CUNode->getImportedEntities(), [](const DIImportedEntity *IE) { 1184 return !isa<DILocalScope>(IE->getScope()); 1185 }); 1186 1187 if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() && 1188 CUNode->getRetainedTypes().empty() && 1189 CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty()) 1190 continue; 1191 1192 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode); 1193 1194 // Global Variables. 1195 for (auto *GVE : CUNode->getGlobalVariables()) { 1196 // Don't bother adding DIGlobalVariableExpressions listed in the CU if we 1197 // already know about the variable and it isn't adding a constant 1198 // expression. 1199 auto &GVMapEntry = GVMap[GVE->getVariable()]; 1200 auto *Expr = GVE->getExpression(); 1201 if (!GVMapEntry.size() || (Expr && Expr->isConstant())) 1202 GVMapEntry.push_back({nullptr, Expr}); 1203 } 1204 DenseSet<DIGlobalVariable *> Processed; 1205 for (auto *GVE : CUNode->getGlobalVariables()) { 1206 DIGlobalVariable *GV = GVE->getVariable(); 1207 if (Processed.insert(GV).second) 1208 CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV])); 1209 } 1210 1211 for (auto *Ty : CUNode->getEnumTypes()) { 1212 // The enum types array by design contains pointers to 1213 // MDNodes rather than DIRefs. Unique them here. 1214 CU.getOrCreateTypeDIE(cast<DIType>(Ty)); 1215 } 1216 for (auto *Ty : CUNode->getRetainedTypes()) { 1217 // The retained types array by design contains pointers to 1218 // MDNodes rather than DIRefs. Unique them here. 1219 if (DIType *RT = dyn_cast<DIType>(Ty)) 1220 // There is no point in force-emitting a forward declaration. 1221 CU.getOrCreateTypeDIE(RT); 1222 } 1223 // Emit imported_modules last so that the relevant context is already 1224 // available. 1225 for (auto *IE : CUNode->getImportedEntities()) 1226 constructAndAddImportedEntityDIE(CU, IE); 1227 } 1228 } 1229 1230 void DwarfDebug::finishEntityDefinitions() { 1231 for (const auto &Entity : ConcreteEntities) { 1232 DIE *Die = Entity->getDIE(); 1233 assert(Die); 1234 // FIXME: Consider the time-space tradeoff of just storing the unit pointer 1235 // in the ConcreteEntities list, rather than looking it up again here. 1236 // DIE::getUnit isn't simple - it walks parent pointers, etc. 1237 DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie()); 1238 assert(Unit); 1239 Unit->finishEntityDefinition(Entity.get()); 1240 } 1241 } 1242 1243 void DwarfDebug::finishSubprogramDefinitions() { 1244 for (const DISubprogram *SP : ProcessedSPNodes) { 1245 assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug); 1246 forBothCUs( 1247 getOrCreateDwarfCompileUnit(SP->getUnit()), 1248 [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); }); 1249 } 1250 } 1251 1252 void DwarfDebug::finalizeModuleInfo() { 1253 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); 1254 1255 finishSubprogramDefinitions(); 1256 1257 finishEntityDefinitions(); 1258 1259 // Include the DWO file name in the hash if there's more than one CU. 1260 // This handles ThinLTO's situation where imported CUs may very easily be 1261 // duplicate with the same CU partially imported into another ThinLTO unit. 1262 StringRef DWOName; 1263 if (CUMap.size() > 1) 1264 DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile; 1265 1266 // Handle anything that needs to be done on a per-unit basis after 1267 // all other generation. 1268 for (const auto &P : CUMap) { 1269 auto &TheCU = *P.second; 1270 if (TheCU.getCUNode()->isDebugDirectivesOnly()) 1271 continue; 1272 // Emit DW_AT_containing_type attribute to connect types with their 1273 // vtable holding type. 1274 TheCU.constructContainingTypeDIEs(); 1275 1276 // Add CU specific attributes if we need to add any. 1277 // If we're splitting the dwarf out now that we've got the entire 1278 // CU then add the dwo id to it. 1279 auto *SkCU = TheCU.getSkeleton(); 1280 1281 bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty(); 1282 1283 if (HasSplitUnit) { 1284 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1285 ? dwarf::DW_AT_dwo_name 1286 : dwarf::DW_AT_GNU_dwo_name; 1287 finishUnitAttributes(TheCU.getCUNode(), TheCU); 1288 TheCU.addString(TheCU.getUnitDie(), attrDWOName, 1289 Asm->TM.Options.MCOptions.SplitDwarfFile); 1290 SkCU->addString(SkCU->getUnitDie(), attrDWOName, 1291 Asm->TM.Options.MCOptions.SplitDwarfFile); 1292 // Emit a unique identifier for this CU. 1293 uint64_t ID = 1294 DIEHash(Asm).computeCUSignature(DWOName, TheCU.getUnitDie()); 1295 if (getDwarfVersion() >= 5) { 1296 TheCU.setDWOId(ID); 1297 SkCU->setDWOId(ID); 1298 } else { 1299 TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1300 dwarf::DW_FORM_data8, ID); 1301 SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1302 dwarf::DW_FORM_data8, ID); 1303 } 1304 1305 if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) { 1306 const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol(); 1307 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base, 1308 Sym, Sym); 1309 } 1310 } else if (SkCU) { 1311 finishUnitAttributes(SkCU->getCUNode(), *SkCU); 1312 } 1313 1314 // If we have code split among multiple sections or non-contiguous 1315 // ranges of code then emit a DW_AT_ranges attribute on the unit that will 1316 // remain in the .o file, otherwise add a DW_AT_low_pc. 1317 // FIXME: We should use ranges allow reordering of code ala 1318 // .subsections_via_symbols in mach-o. This would mean turning on 1319 // ranges for all subprogram DIEs for mach-o. 1320 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 1321 1322 if (unsigned NumRanges = TheCU.getRanges().size()) { 1323 if (NumRanges > 1 && useRangesSection()) 1324 // A DW_AT_low_pc attribute may also be specified in combination with 1325 // DW_AT_ranges to specify the default base address for use in 1326 // location lists (see Section 2.6.2) and range lists (see Section 1327 // 2.17.3). 1328 U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0); 1329 else 1330 U.setBaseAddress(TheCU.getRanges().front().Begin); 1331 U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges()); 1332 } 1333 1334 // We don't keep track of which addresses are used in which CU so this 1335 // is a bit pessimistic under LTO. 1336 if ((HasSplitUnit || getDwarfVersion() >= 5) && !AddrPool.isEmpty()) 1337 U.addAddrTableBase(); 1338 1339 if (getDwarfVersion() >= 5) { 1340 if (U.hasRangeLists()) 1341 U.addRnglistsBase(); 1342 1343 if (!DebugLocs.getLists().empty()) { 1344 if (!useSplitDwarf()) 1345 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base, 1346 DebugLocs.getSym(), 1347 TLOF.getDwarfLoclistsSection()->getBeginSymbol()); 1348 } 1349 } 1350 1351 auto *CUNode = cast<DICompileUnit>(P.first); 1352 // If compile Unit has macros, emit "DW_AT_macro_info/DW_AT_macros" 1353 // attribute. 1354 if (CUNode->getMacros()) { 1355 if (getDwarfVersion() >= 5) { 1356 if (useSplitDwarf()) 1357 TheCU.addSectionDelta( 1358 TheCU.getUnitDie(), dwarf::DW_AT_macros, U.getMacroLabelBegin(), 1359 TLOF.getDwarfMacroDWOSection()->getBeginSymbol()); 1360 else 1361 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macros, 1362 U.getMacroLabelBegin(), 1363 TLOF.getDwarfMacroSection()->getBeginSymbol()); 1364 } else { 1365 if (useSplitDwarf()) 1366 TheCU.addSectionDelta( 1367 TheCU.getUnitDie(), dwarf::DW_AT_macro_info, 1368 U.getMacroLabelBegin(), 1369 TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol()); 1370 else 1371 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info, 1372 U.getMacroLabelBegin(), 1373 TLOF.getDwarfMacinfoSection()->getBeginSymbol()); 1374 } 1375 } 1376 } 1377 1378 // Emit all frontend-produced Skeleton CUs, i.e., Clang modules. 1379 for (auto *CUNode : MMI->getModule()->debug_compile_units()) 1380 if (CUNode->getDWOId()) 1381 getOrCreateDwarfCompileUnit(CUNode); 1382 1383 // Compute DIE offsets and sizes. 1384 InfoHolder.computeSizeAndOffsets(); 1385 if (useSplitDwarf()) 1386 SkeletonHolder.computeSizeAndOffsets(); 1387 } 1388 1389 // Emit all Dwarf sections that should come after the content. 1390 void DwarfDebug::endModule() { 1391 assert(CurFn == nullptr); 1392 assert(CurMI == nullptr); 1393 1394 for (const auto &P : CUMap) { 1395 auto &CU = *P.second; 1396 CU.createBaseTypeDIEs(); 1397 } 1398 1399 // If we aren't actually generating debug info (check beginModule - 1400 // conditionalized on !DisableDebugInfoPrinting and the presence of the 1401 // llvm.dbg.cu metadata node) 1402 if (!MMI->hasDebugInfo()) 1403 return; 1404 1405 // Finalize the debug info for the module. 1406 finalizeModuleInfo(); 1407 1408 if (useSplitDwarf()) 1409 // Emit debug_loc.dwo/debug_loclists.dwo section. 1410 emitDebugLocDWO(); 1411 else 1412 // Emit debug_loc/debug_loclists section. 1413 emitDebugLoc(); 1414 1415 // Corresponding abbreviations into a abbrev section. 1416 emitAbbreviations(); 1417 1418 // Emit all the DIEs into a debug info section. 1419 emitDebugInfo(); 1420 1421 // Emit info into a debug aranges section. 1422 if (GenerateARangeSection) 1423 emitDebugARanges(); 1424 1425 // Emit info into a debug ranges section. 1426 emitDebugRanges(); 1427 1428 if (useSplitDwarf()) 1429 // Emit info into a debug macinfo.dwo section. 1430 emitDebugMacinfoDWO(); 1431 else 1432 // Emit info into a debug macinfo/macro section. 1433 emitDebugMacinfo(); 1434 1435 emitDebugStr(); 1436 1437 if (useSplitDwarf()) { 1438 emitDebugStrDWO(); 1439 emitDebugInfoDWO(); 1440 emitDebugAbbrevDWO(); 1441 emitDebugLineDWO(); 1442 emitDebugRangesDWO(); 1443 } 1444 1445 emitDebugAddr(); 1446 1447 // Emit info into the dwarf accelerator table sections. 1448 switch (getAccelTableKind()) { 1449 case AccelTableKind::Apple: 1450 emitAccelNames(); 1451 emitAccelObjC(); 1452 emitAccelNamespaces(); 1453 emitAccelTypes(); 1454 break; 1455 case AccelTableKind::Dwarf: 1456 emitAccelDebugNames(); 1457 break; 1458 case AccelTableKind::None: 1459 break; 1460 case AccelTableKind::Default: 1461 llvm_unreachable("Default should have already been resolved."); 1462 } 1463 1464 // Emit the pubnames and pubtypes sections if requested. 1465 emitDebugPubSections(); 1466 1467 // clean up. 1468 // FIXME: AbstractVariables.clear(); 1469 } 1470 1471 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU, 1472 const DINode *Node, 1473 const MDNode *ScopeNode) { 1474 if (CU.getExistingAbstractEntity(Node)) 1475 return; 1476 1477 CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope( 1478 cast<DILocalScope>(ScopeNode))); 1479 } 1480 1481 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU, 1482 const DINode *Node, const MDNode *ScopeNode) { 1483 if (CU.getExistingAbstractEntity(Node)) 1484 return; 1485 1486 if (LexicalScope *Scope = 1487 LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode))) 1488 CU.createAbstractEntity(Node, Scope); 1489 } 1490 1491 // Collect variable information from side table maintained by MF. 1492 void DwarfDebug::collectVariableInfoFromMFTable( 1493 DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) { 1494 SmallDenseMap<InlinedEntity, DbgVariable *> MFVars; 1495 LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n"); 1496 for (const auto &VI : Asm->MF->getVariableDbgInfo()) { 1497 if (!VI.Var) 1498 continue; 1499 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1500 "Expected inlined-at fields to agree"); 1501 1502 InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt()); 1503 Processed.insert(Var); 1504 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1505 1506 // If variable scope is not found then skip this variable. 1507 if (!Scope) { 1508 LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName() 1509 << ", no variable scope found\n"); 1510 continue; 1511 } 1512 1513 ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode()); 1514 auto RegVar = std::make_unique<DbgVariable>( 1515 cast<DILocalVariable>(Var.first), Var.second); 1516 RegVar->initializeMMI(VI.Expr, VI.Slot); 1517 LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName() 1518 << "\n"); 1519 if (DbgVariable *DbgVar = MFVars.lookup(Var)) 1520 DbgVar->addMMIEntry(*RegVar); 1521 else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) { 1522 MFVars.insert({Var, RegVar.get()}); 1523 ConcreteEntities.push_back(std::move(RegVar)); 1524 } 1525 } 1526 } 1527 1528 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its 1529 /// enclosing lexical scope. The check ensures there are no other instructions 1530 /// in the same lexical scope preceding the DBG_VALUE and that its range is 1531 /// either open or otherwise rolls off the end of the scope. 1532 static bool validThroughout(LexicalScopes &LScopes, 1533 const MachineInstr *DbgValue, 1534 const MachineInstr *RangeEnd) { 1535 assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location"); 1536 auto MBB = DbgValue->getParent(); 1537 auto DL = DbgValue->getDebugLoc(); 1538 auto *LScope = LScopes.findLexicalScope(DL); 1539 // Scope doesn't exist; this is a dead DBG_VALUE. 1540 if (!LScope) 1541 return false; 1542 auto &LSRange = LScope->getRanges(); 1543 if (LSRange.size() == 0) 1544 return false; 1545 1546 1547 // Determine if the DBG_VALUE is valid at the beginning of its lexical block. 1548 const MachineInstr *LScopeBegin = LSRange.front().first; 1549 // Early exit if the lexical scope begins outside of the current block. 1550 if (LScopeBegin->getParent() != MBB) 1551 return false; 1552 1553 // If there are instructions belonging to our scope in another block, and 1554 // we're not a constant (see DWARF2 comment below), then we can't be 1555 // validThroughout. 1556 const MachineInstr *LScopeEnd = LSRange.back().second; 1557 if (RangeEnd && LScopeEnd->getParent() != MBB) 1558 return false; 1559 1560 MachineBasicBlock::const_reverse_iterator Pred(DbgValue); 1561 for (++Pred; Pred != MBB->rend(); ++Pred) { 1562 if (Pred->getFlag(MachineInstr::FrameSetup)) 1563 break; 1564 auto PredDL = Pred->getDebugLoc(); 1565 if (!PredDL || Pred->isMetaInstruction()) 1566 continue; 1567 // Check whether the instruction preceding the DBG_VALUE is in the same 1568 // (sub)scope as the DBG_VALUE. 1569 if (DL->getScope() == PredDL->getScope()) 1570 return false; 1571 auto *PredScope = LScopes.findLexicalScope(PredDL); 1572 if (!PredScope || LScope->dominates(PredScope)) 1573 return false; 1574 } 1575 1576 // If the range of the DBG_VALUE is open-ended, report success. 1577 if (!RangeEnd) 1578 return true; 1579 1580 // Single, constant DBG_VALUEs in the prologue are promoted to be live 1581 // throughout the function. This is a hack, presumably for DWARF v2 and not 1582 // necessarily correct. It would be much better to use a dbg.declare instead 1583 // if we know the constant is live throughout the scope. 1584 if (DbgValue->getDebugOperand(0).isImm() && MBB->pred_empty()) 1585 return true; 1586 1587 // Now check for situations where an "open-ended" DBG_VALUE isn't enough to 1588 // determine eligibility for a single location, e.g. nested scopes, inlined 1589 // functions. 1590 // FIXME: For now we just handle a simple (but common) case where the scope 1591 // is contained in MBB. We could be smarter here. 1592 // 1593 // At this point we know that our scope ends in MBB. So, if RangeEnd exists 1594 // outside of the block we can ignore it; the location is just leaking outside 1595 // its scope. 1596 assert(LScopeEnd->getParent() == MBB && "Scope ends outside MBB"); 1597 if (RangeEnd->getParent() != DbgValue->getParent()) 1598 return true; 1599 1600 // The location range and variable's enclosing scope are both contained within 1601 // MBB, test if location terminates before end of scope. 1602 for (auto I = RangeEnd->getIterator(); I != MBB->end(); ++I) 1603 if (&*I == LScopeEnd) 1604 return false; 1605 1606 // There's a single location which starts at the scope start, and ends at or 1607 // after the scope end. 1608 return true; 1609 } 1610 1611 /// Build the location list for all DBG_VALUEs in the function that 1612 /// describe the same variable. The resulting DebugLocEntries will have 1613 /// strict monotonically increasing begin addresses and will never 1614 /// overlap. If the resulting list has only one entry that is valid 1615 /// throughout variable's scope return true. 1616 // 1617 // See the definition of DbgValueHistoryMap::Entry for an explanation of the 1618 // different kinds of history map entries. One thing to be aware of is that if 1619 // a debug value is ended by another entry (rather than being valid until the 1620 // end of the function), that entry's instruction may or may not be included in 1621 // the range, depending on if the entry is a clobbering entry (it has an 1622 // instruction that clobbers one or more preceding locations), or if it is an 1623 // (overlapping) debug value entry. This distinction can be seen in the example 1624 // below. The first debug value is ended by the clobbering entry 2, and the 1625 // second and third debug values are ended by the overlapping debug value entry 1626 // 4. 1627 // 1628 // Input: 1629 // 1630 // History map entries [type, end index, mi] 1631 // 1632 // 0 | [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)] 1633 // 1 | | [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)] 1634 // 2 | | [Clobber, $reg0 = [...], -, -] 1635 // 3 | | [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)] 1636 // 4 [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)] 1637 // 1638 // Output [start, end) [Value...]: 1639 // 1640 // [0-1) [(reg0, fragment 0, 32)] 1641 // [1-3) [(reg0, fragment 0, 32), (reg1, fragment 32, 32)] 1642 // [3-4) [(reg1, fragment 32, 32), (123, fragment 64, 32)] 1643 // [4-) [(@g, fragment 0, 96)] 1644 bool DwarfDebug::buildLocationList( 1645 SmallVectorImpl<DebugLocEntry> &DebugLoc, 1646 const DbgValueHistoryMap::Entries &Entries, 1647 DenseSet<const MachineBasicBlock *> &VeryLargeBlocks) { 1648 using OpenRange = 1649 std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>; 1650 SmallVector<OpenRange, 4> OpenRanges; 1651 bool isSafeForSingleLocation = true; 1652 const MachineInstr *StartDebugMI = nullptr; 1653 const MachineInstr *EndMI = nullptr; 1654 1655 for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) { 1656 const MachineInstr *Instr = EI->getInstr(); 1657 1658 // Remove all values that are no longer live. 1659 size_t Index = std::distance(EB, EI); 1660 auto Last = 1661 remove_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; }); 1662 OpenRanges.erase(Last, OpenRanges.end()); 1663 1664 // If we are dealing with a clobbering entry, this iteration will result in 1665 // a location list entry starting after the clobbering instruction. 1666 const MCSymbol *StartLabel = 1667 EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr); 1668 assert(StartLabel && 1669 "Forgot label before/after instruction starting a range!"); 1670 1671 const MCSymbol *EndLabel; 1672 if (std::next(EI) == Entries.end()) { 1673 const MachineBasicBlock &EndMBB = Asm->MF->back(); 1674 EndLabel = Asm->MBBSectionRanges[EndMBB.getSectionIDNum()].EndLabel; 1675 if (EI->isClobber()) 1676 EndMI = EI->getInstr(); 1677 } 1678 else if (std::next(EI)->isClobber()) 1679 EndLabel = getLabelAfterInsn(std::next(EI)->getInstr()); 1680 else 1681 EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr()); 1682 assert(EndLabel && "Forgot label after instruction ending a range!"); 1683 1684 if (EI->isDbgValue()) 1685 LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n"); 1686 1687 // If this history map entry has a debug value, add that to the list of 1688 // open ranges and check if its location is valid for a single value 1689 // location. 1690 if (EI->isDbgValue()) { 1691 // Do not add undef debug values, as they are redundant information in 1692 // the location list entries. An undef debug results in an empty location 1693 // description. If there are any non-undef fragments then padding pieces 1694 // with empty location descriptions will automatically be inserted, and if 1695 // all fragments are undef then the whole location list entry is 1696 // redundant. 1697 if (!Instr->isUndefDebugValue()) { 1698 auto Value = getDebugLocValue(Instr); 1699 OpenRanges.emplace_back(EI->getEndIndex(), Value); 1700 1701 // TODO: Add support for single value fragment locations. 1702 if (Instr->getDebugExpression()->isFragment()) 1703 isSafeForSingleLocation = false; 1704 1705 if (!StartDebugMI) 1706 StartDebugMI = Instr; 1707 } else { 1708 isSafeForSingleLocation = false; 1709 } 1710 } 1711 1712 // Location list entries with empty location descriptions are redundant 1713 // information in DWARF, so do not emit those. 1714 if (OpenRanges.empty()) 1715 continue; 1716 1717 // Omit entries with empty ranges as they do not have any effect in DWARF. 1718 if (StartLabel == EndLabel) { 1719 LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n"); 1720 continue; 1721 } 1722 1723 SmallVector<DbgValueLoc, 4> Values; 1724 for (auto &R : OpenRanges) 1725 Values.push_back(R.second); 1726 DebugLoc.emplace_back(StartLabel, EndLabel, Values); 1727 1728 // Attempt to coalesce the ranges of two otherwise identical 1729 // DebugLocEntries. 1730 auto CurEntry = DebugLoc.rbegin(); 1731 LLVM_DEBUG({ 1732 dbgs() << CurEntry->getValues().size() << " Values:\n"; 1733 for (auto &Value : CurEntry->getValues()) 1734 Value.dump(); 1735 dbgs() << "-----\n"; 1736 }); 1737 1738 auto PrevEntry = std::next(CurEntry); 1739 if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry)) 1740 DebugLoc.pop_back(); 1741 } 1742 1743 // If there's a single entry, safe for a single location, and not part of 1744 // an over-sized basic block, then ask validThroughout whether this 1745 // location can be represented as a single variable location. 1746 if (DebugLoc.size() != 1 || !isSafeForSingleLocation) 1747 return false; 1748 if (VeryLargeBlocks.count(StartDebugMI->getParent())) 1749 return false; 1750 return validThroughout(LScopes, StartDebugMI, EndMI); 1751 } 1752 1753 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU, 1754 LexicalScope &Scope, 1755 const DINode *Node, 1756 const DILocation *Location, 1757 const MCSymbol *Sym) { 1758 ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode()); 1759 if (isa<const DILocalVariable>(Node)) { 1760 ConcreteEntities.push_back( 1761 std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node), 1762 Location)); 1763 InfoHolder.addScopeVariable(&Scope, 1764 cast<DbgVariable>(ConcreteEntities.back().get())); 1765 } else if (isa<const DILabel>(Node)) { 1766 ConcreteEntities.push_back( 1767 std::make_unique<DbgLabel>(cast<const DILabel>(Node), 1768 Location, Sym)); 1769 InfoHolder.addScopeLabel(&Scope, 1770 cast<DbgLabel>(ConcreteEntities.back().get())); 1771 } 1772 return ConcreteEntities.back().get(); 1773 } 1774 1775 // Find variables for each lexical scope. 1776 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU, 1777 const DISubprogram *SP, 1778 DenseSet<InlinedEntity> &Processed) { 1779 // Grab the variable info that was squirreled away in the MMI side-table. 1780 collectVariableInfoFromMFTable(TheCU, Processed); 1781 1782 // Identify blocks that are unreasonably sized, so that we can later 1783 // skip lexical scope analysis over them. 1784 DenseSet<const MachineBasicBlock *> VeryLargeBlocks; 1785 for (const auto &MBB : *CurFn) 1786 if (MBB.size() > LocationAnalysisSizeLimit) 1787 VeryLargeBlocks.insert(&MBB); 1788 1789 for (const auto &I : DbgValues) { 1790 InlinedEntity IV = I.first; 1791 if (Processed.count(IV)) 1792 continue; 1793 1794 // Instruction ranges, specifying where IV is accessible. 1795 const auto &HistoryMapEntries = I.second; 1796 if (HistoryMapEntries.empty()) 1797 continue; 1798 1799 LexicalScope *Scope = nullptr; 1800 const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first); 1801 if (const DILocation *IA = IV.second) 1802 Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA); 1803 else 1804 Scope = LScopes.findLexicalScope(LocalVar->getScope()); 1805 // If variable scope is not found then skip this variable. 1806 if (!Scope) 1807 continue; 1808 1809 Processed.insert(IV); 1810 DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU, 1811 *Scope, LocalVar, IV.second)); 1812 1813 const MachineInstr *MInsn = HistoryMapEntries.front().getInstr(); 1814 assert(MInsn->isDebugValue() && "History must begin with debug value"); 1815 1816 // Check if there is a single DBG_VALUE, valid throughout the var's scope. 1817 // If the history map contains a single debug value, there may be an 1818 // additional entry which clobbers the debug value. 1819 size_t HistSize = HistoryMapEntries.size(); 1820 bool SingleValueWithClobber = 1821 HistSize == 2 && HistoryMapEntries[1].isClobber(); 1822 if (HistSize == 1 || SingleValueWithClobber) { 1823 const auto *End = 1824 SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr; 1825 if (VeryLargeBlocks.count(MInsn->getParent()) == 0 && 1826 validThroughout(LScopes, MInsn, End)) { 1827 RegVar->initializeDbgValue(MInsn); 1828 continue; 1829 } 1830 } 1831 1832 // Do not emit location lists if .debug_loc secton is disabled. 1833 if (!useLocSection()) 1834 continue; 1835 1836 // Handle multiple DBG_VALUE instructions describing one variable. 1837 DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn); 1838 1839 // Build the location list for this variable. 1840 SmallVector<DebugLocEntry, 8> Entries; 1841 bool isValidSingleLocation = 1842 buildLocationList(Entries, HistoryMapEntries, VeryLargeBlocks); 1843 1844 // Check whether buildLocationList managed to merge all locations to one 1845 // that is valid throughout the variable's scope. If so, produce single 1846 // value location. 1847 if (isValidSingleLocation) { 1848 RegVar->initializeDbgValue(Entries[0].getValues()[0]); 1849 continue; 1850 } 1851 1852 // If the variable has a DIBasicType, extract it. Basic types cannot have 1853 // unique identifiers, so don't bother resolving the type with the 1854 // identifier map. 1855 const DIBasicType *BT = dyn_cast<DIBasicType>( 1856 static_cast<const Metadata *>(LocalVar->getType())); 1857 1858 // Finalize the entry by lowering it into a DWARF bytestream. 1859 for (auto &Entry : Entries) 1860 Entry.finalize(*Asm, List, BT, TheCU); 1861 } 1862 1863 // For each InlinedEntity collected from DBG_LABEL instructions, convert to 1864 // DWARF-related DbgLabel. 1865 for (const auto &I : DbgLabels) { 1866 InlinedEntity IL = I.first; 1867 const MachineInstr *MI = I.second; 1868 if (MI == nullptr) 1869 continue; 1870 1871 LexicalScope *Scope = nullptr; 1872 const DILabel *Label = cast<DILabel>(IL.first); 1873 // The scope could have an extra lexical block file. 1874 const DILocalScope *LocalScope = 1875 Label->getScope()->getNonLexicalBlockFileScope(); 1876 // Get inlined DILocation if it is inlined label. 1877 if (const DILocation *IA = IL.second) 1878 Scope = LScopes.findInlinedScope(LocalScope, IA); 1879 else 1880 Scope = LScopes.findLexicalScope(LocalScope); 1881 // If label scope is not found then skip this label. 1882 if (!Scope) 1883 continue; 1884 1885 Processed.insert(IL); 1886 /// At this point, the temporary label is created. 1887 /// Save the temporary label to DbgLabel entity to get the 1888 /// actually address when generating Dwarf DIE. 1889 MCSymbol *Sym = getLabelBeforeInsn(MI); 1890 createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym); 1891 } 1892 1893 // Collect info for variables/labels that were optimized out. 1894 for (const DINode *DN : SP->getRetainedNodes()) { 1895 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 1896 continue; 1897 LexicalScope *Scope = nullptr; 1898 if (auto *DV = dyn_cast<DILocalVariable>(DN)) { 1899 Scope = LScopes.findLexicalScope(DV->getScope()); 1900 } else if (auto *DL = dyn_cast<DILabel>(DN)) { 1901 Scope = LScopes.findLexicalScope(DL->getScope()); 1902 } 1903 1904 if (Scope) 1905 createConcreteEntity(TheCU, *Scope, DN, nullptr); 1906 } 1907 } 1908 1909 // Process beginning of an instruction. 1910 void DwarfDebug::beginInstruction(const MachineInstr *MI) { 1911 const MachineFunction &MF = *MI->getMF(); 1912 const auto *SP = MF.getFunction().getSubprogram(); 1913 bool NoDebug = 1914 !SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug; 1915 1916 // Delay slot support check. 1917 auto delaySlotSupported = [](const MachineInstr &MI) { 1918 if (!MI.isBundledWithSucc()) 1919 return false; 1920 auto Suc = std::next(MI.getIterator()); 1921 (void)Suc; 1922 // Ensure that delay slot instruction is successor of the call instruction. 1923 // Ex. CALL_INSTRUCTION { 1924 // DELAY_SLOT_INSTRUCTION } 1925 assert(Suc->isBundledWithPred() && 1926 "Call bundle instructions are out of order"); 1927 return true; 1928 }; 1929 1930 // When describing calls, we need a label for the call instruction. 1931 if (!NoDebug && SP->areAllCallsDescribed() && 1932 MI->isCandidateForCallSiteEntry(MachineInstr::AnyInBundle) && 1933 (!MI->hasDelaySlot() || delaySlotSupported(*MI))) { 1934 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1935 bool IsTail = TII->isTailCall(*MI); 1936 // For tail calls, we need the address of the branch instruction for 1937 // DW_AT_call_pc. 1938 if (IsTail) 1939 requestLabelBeforeInsn(MI); 1940 // For non-tail calls, we need the return address for the call for 1941 // DW_AT_call_return_pc. Under GDB tuning, this information is needed for 1942 // tail calls as well. 1943 requestLabelAfterInsn(MI); 1944 } 1945 1946 DebugHandlerBase::beginInstruction(MI); 1947 assert(CurMI); 1948 1949 if (NoDebug) 1950 return; 1951 1952 // Check if source location changes, but ignore DBG_VALUE and CFI locations. 1953 // If the instruction is part of the function frame setup code, do not emit 1954 // any line record, as there is no correspondence with any user code. 1955 if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup)) 1956 return; 1957 const DebugLoc &DL = MI->getDebugLoc(); 1958 // When we emit a line-0 record, we don't update PrevInstLoc; so look at 1959 // the last line number actually emitted, to see if it was line 0. 1960 unsigned LastAsmLine = 1961 Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine(); 1962 1963 if (DL == PrevInstLoc) { 1964 // If we have an ongoing unspecified location, nothing to do here. 1965 if (!DL) 1966 return; 1967 // We have an explicit location, same as the previous location. 1968 // But we might be coming back to it after a line 0 record. 1969 if (LastAsmLine == 0 && DL.getLine() != 0) { 1970 // Reinstate the source location but not marked as a statement. 1971 const MDNode *Scope = DL.getScope(); 1972 recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0); 1973 } 1974 return; 1975 } 1976 1977 if (!DL) { 1978 // We have an unspecified location, which might want to be line 0. 1979 // If we have already emitted a line-0 record, don't repeat it. 1980 if (LastAsmLine == 0) 1981 return; 1982 // If user said Don't Do That, don't do that. 1983 if (UnknownLocations == Disable) 1984 return; 1985 // See if we have a reason to emit a line-0 record now. 1986 // Reasons to emit a line-0 record include: 1987 // - User asked for it (UnknownLocations). 1988 // - Instruction has a label, so it's referenced from somewhere else, 1989 // possibly debug information; we want it to have a source location. 1990 // - Instruction is at the top of a block; we don't want to inherit the 1991 // location from the physically previous (maybe unrelated) block. 1992 if (UnknownLocations == Enable || PrevLabel || 1993 (PrevInstBB && PrevInstBB != MI->getParent())) { 1994 // Preserve the file and column numbers, if we can, to save space in 1995 // the encoded line table. 1996 // Do not update PrevInstLoc, it remembers the last non-0 line. 1997 const MDNode *Scope = nullptr; 1998 unsigned Column = 0; 1999 if (PrevInstLoc) { 2000 Scope = PrevInstLoc.getScope(); 2001 Column = PrevInstLoc.getCol(); 2002 } 2003 recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0); 2004 } 2005 return; 2006 } 2007 2008 // We have an explicit location, different from the previous location. 2009 // Don't repeat a line-0 record, but otherwise emit the new location. 2010 // (The new location might be an explicit line 0, which we do emit.) 2011 if (DL.getLine() == 0 && LastAsmLine == 0) 2012 return; 2013 unsigned Flags = 0; 2014 if (DL == PrologEndLoc) { 2015 Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT; 2016 PrologEndLoc = DebugLoc(); 2017 } 2018 // If the line changed, we call that a new statement; unless we went to 2019 // line 0 and came back, in which case it is not a new statement. 2020 unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine; 2021 if (DL.getLine() && DL.getLine() != OldLine) 2022 Flags |= DWARF2_FLAG_IS_STMT; 2023 2024 const MDNode *Scope = DL.getScope(); 2025 recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags); 2026 2027 // If we're not at line 0, remember this location. 2028 if (DL.getLine()) 2029 PrevInstLoc = DL; 2030 } 2031 2032 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) { 2033 // First known non-DBG_VALUE and non-frame setup location marks 2034 // the beginning of the function body. 2035 for (const auto &MBB : *MF) 2036 for (const auto &MI : MBB) 2037 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 2038 MI.getDebugLoc()) 2039 return MI.getDebugLoc(); 2040 return DebugLoc(); 2041 } 2042 2043 /// Register a source line with debug info. Returns the unique label that was 2044 /// emitted and which provides correspondence to the source line list. 2045 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col, 2046 const MDNode *S, unsigned Flags, unsigned CUID, 2047 uint16_t DwarfVersion, 2048 ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) { 2049 StringRef Fn; 2050 unsigned FileNo = 1; 2051 unsigned Discriminator = 0; 2052 if (auto *Scope = cast_or_null<DIScope>(S)) { 2053 Fn = Scope->getFilename(); 2054 if (Line != 0 && DwarfVersion >= 4) 2055 if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope)) 2056 Discriminator = LBF->getDiscriminator(); 2057 2058 FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID]) 2059 .getOrCreateSourceID(Scope->getFile()); 2060 } 2061 Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0, 2062 Discriminator, Fn); 2063 } 2064 2065 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF, 2066 unsigned CUID) { 2067 // Get beginning of function. 2068 if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) { 2069 // Ensure the compile unit is created if the function is called before 2070 // beginFunction(). 2071 (void)getOrCreateDwarfCompileUnit( 2072 MF.getFunction().getSubprogram()->getUnit()); 2073 // We'd like to list the prologue as "not statements" but GDB behaves 2074 // poorly if we do that. Revisit this with caution/GDB (7.5+) testing. 2075 const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram(); 2076 ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT, 2077 CUID, getDwarfVersion(), getUnits()); 2078 return PrologEndLoc; 2079 } 2080 return DebugLoc(); 2081 } 2082 2083 // Gather pre-function debug information. Assumes being called immediately 2084 // after the function entry point has been emitted. 2085 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) { 2086 CurFn = MF; 2087 2088 auto *SP = MF->getFunction().getSubprogram(); 2089 assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode()); 2090 if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) 2091 return; 2092 2093 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 2094 2095 // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function 2096 // belongs to so that we add to the correct per-cu line table in the 2097 // non-asm case. 2098 if (Asm->OutStreamer->hasRawTextSupport()) 2099 // Use a single line table if we are generating assembly. 2100 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 2101 else 2102 Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID()); 2103 2104 // Record beginning of function. 2105 PrologEndLoc = emitInitialLocDirective( 2106 *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID()); 2107 } 2108 2109 void DwarfDebug::skippedNonDebugFunction() { 2110 // If we don't have a subprogram for this function then there will be a hole 2111 // in the range information. Keep note of this by setting the previously used 2112 // section to nullptr. 2113 PrevCU = nullptr; 2114 CurFn = nullptr; 2115 } 2116 2117 // Gather and emit post-function debug information. 2118 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) { 2119 const DISubprogram *SP = MF->getFunction().getSubprogram(); 2120 2121 assert(CurFn == MF && 2122 "endFunction should be called with the same function as beginFunction"); 2123 2124 // Set DwarfDwarfCompileUnitID in MCContext to default value. 2125 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 2126 2127 LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); 2128 assert(!FnScope || SP == FnScope->getScopeNode()); 2129 DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit()); 2130 if (TheCU.getCUNode()->isDebugDirectivesOnly()) { 2131 PrevLabel = nullptr; 2132 CurFn = nullptr; 2133 return; 2134 } 2135 2136 DenseSet<InlinedEntity> Processed; 2137 collectEntityInfo(TheCU, SP, Processed); 2138 2139 // Add the range of this function to the list of ranges for the CU. 2140 // With basic block sections, add ranges for all basic block sections. 2141 for (const auto &R : Asm->MBBSectionRanges) 2142 TheCU.addRange({R.second.BeginLabel, R.second.EndLabel}); 2143 2144 // Under -gmlt, skip building the subprogram if there are no inlined 2145 // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram 2146 // is still needed as we need its source location. 2147 if (!TheCU.getCUNode()->getDebugInfoForProfiling() && 2148 TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly && 2149 LScopes.getAbstractScopesList().empty() && !IsDarwin) { 2150 assert(InfoHolder.getScopeVariables().empty()); 2151 PrevLabel = nullptr; 2152 CurFn = nullptr; 2153 return; 2154 } 2155 2156 #ifndef NDEBUG 2157 size_t NumAbstractScopes = LScopes.getAbstractScopesList().size(); 2158 #endif 2159 // Construct abstract scopes. 2160 for (LexicalScope *AScope : LScopes.getAbstractScopesList()) { 2161 auto *SP = cast<DISubprogram>(AScope->getScopeNode()); 2162 for (const DINode *DN : SP->getRetainedNodes()) { 2163 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 2164 continue; 2165 2166 const MDNode *Scope = nullptr; 2167 if (auto *DV = dyn_cast<DILocalVariable>(DN)) 2168 Scope = DV->getScope(); 2169 else if (auto *DL = dyn_cast<DILabel>(DN)) 2170 Scope = DL->getScope(); 2171 else 2172 llvm_unreachable("Unexpected DI type!"); 2173 2174 // Collect info for variables/labels that were optimized out. 2175 ensureAbstractEntityIsCreated(TheCU, DN, Scope); 2176 assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes 2177 && "ensureAbstractEntityIsCreated inserted abstract scopes"); 2178 } 2179 constructAbstractSubprogramScopeDIE(TheCU, AScope); 2180 } 2181 2182 ProcessedSPNodes.insert(SP); 2183 DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope); 2184 if (auto *SkelCU = TheCU.getSkeleton()) 2185 if (!LScopes.getAbstractScopesList().empty() && 2186 TheCU.getCUNode()->getSplitDebugInlining()) 2187 SkelCU->constructSubprogramScopeDIE(SP, FnScope); 2188 2189 // Construct call site entries. 2190 constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF); 2191 2192 // Clear debug info 2193 // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the 2194 // DbgVariables except those that are also in AbstractVariables (since they 2195 // can be used cross-function) 2196 InfoHolder.getScopeVariables().clear(); 2197 InfoHolder.getScopeLabels().clear(); 2198 PrevLabel = nullptr; 2199 CurFn = nullptr; 2200 } 2201 2202 // Register a source line with debug info. Returns the unique label that was 2203 // emitted and which provides correspondence to the source line list. 2204 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S, 2205 unsigned Flags) { 2206 ::recordSourceLine(*Asm, Line, Col, S, Flags, 2207 Asm->OutStreamer->getContext().getDwarfCompileUnitID(), 2208 getDwarfVersion(), getUnits()); 2209 } 2210 2211 //===----------------------------------------------------------------------===// 2212 // Emit Methods 2213 //===----------------------------------------------------------------------===// 2214 2215 // Emit the debug info section. 2216 void DwarfDebug::emitDebugInfo() { 2217 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2218 Holder.emitUnits(/* UseOffsets */ false); 2219 } 2220 2221 // Emit the abbreviation section. 2222 void DwarfDebug::emitAbbreviations() { 2223 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2224 2225 Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection()); 2226 } 2227 2228 void DwarfDebug::emitStringOffsetsTableHeader() { 2229 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2230 Holder.getStringPool().emitStringOffsetsTableHeader( 2231 *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(), 2232 Holder.getStringOffsetsStartSym()); 2233 } 2234 2235 template <typename AccelTableT> 2236 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section, 2237 StringRef TableName) { 2238 Asm->OutStreamer->SwitchSection(Section); 2239 2240 // Emit the full data. 2241 emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol()); 2242 } 2243 2244 void DwarfDebug::emitAccelDebugNames() { 2245 // Don't emit anything if we have no compilation units to index. 2246 if (getUnits().empty()) 2247 return; 2248 2249 emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits()); 2250 } 2251 2252 // Emit visible names into a hashed accelerator table section. 2253 void DwarfDebug::emitAccelNames() { 2254 emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(), 2255 "Names"); 2256 } 2257 2258 // Emit objective C classes and categories into a hashed accelerator table 2259 // section. 2260 void DwarfDebug::emitAccelObjC() { 2261 emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(), 2262 "ObjC"); 2263 } 2264 2265 // Emit namespace dies into a hashed accelerator table. 2266 void DwarfDebug::emitAccelNamespaces() { 2267 emitAccel(AccelNamespace, 2268 Asm->getObjFileLowering().getDwarfAccelNamespaceSection(), 2269 "namespac"); 2270 } 2271 2272 // Emit type dies into a hashed accelerator table. 2273 void DwarfDebug::emitAccelTypes() { 2274 emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(), 2275 "types"); 2276 } 2277 2278 // Public name handling. 2279 // The format for the various pubnames: 2280 // 2281 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU 2282 // for the DIE that is named. 2283 // 2284 // gnu pubnames - offset/index value/name tuples where the offset is the offset 2285 // into the CU and the index value is computed according to the type of value 2286 // for the DIE that is named. 2287 // 2288 // For type units the offset is the offset of the skeleton DIE. For split dwarf 2289 // it's the offset within the debug_info/debug_types dwo section, however, the 2290 // reference in the pubname header doesn't change. 2291 2292 /// computeIndexValue - Compute the gdb index value for the DIE and CU. 2293 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU, 2294 const DIE *Die) { 2295 // Entities that ended up only in a Type Unit reference the CU instead (since 2296 // the pub entry has offsets within the CU there's no real offset that can be 2297 // provided anyway). As it happens all such entities (namespaces and types, 2298 // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out 2299 // not to be true it would be necessary to persist this information from the 2300 // point at which the entry is added to the index data structure - since by 2301 // the time the index is built from that, the original type/namespace DIE in a 2302 // type unit has already been destroyed so it can't be queried for properties 2303 // like tag, etc. 2304 if (Die->getTag() == dwarf::DW_TAG_compile_unit) 2305 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, 2306 dwarf::GIEL_EXTERNAL); 2307 dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC; 2308 2309 // We could have a specification DIE that has our most of our knowledge, 2310 // look for that now. 2311 if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) { 2312 DIE &SpecDIE = SpecVal.getDIEEntry().getEntry(); 2313 if (SpecDIE.findAttribute(dwarf::DW_AT_external)) 2314 Linkage = dwarf::GIEL_EXTERNAL; 2315 } else if (Die->findAttribute(dwarf::DW_AT_external)) 2316 Linkage = dwarf::GIEL_EXTERNAL; 2317 2318 switch (Die->getTag()) { 2319 case dwarf::DW_TAG_class_type: 2320 case dwarf::DW_TAG_structure_type: 2321 case dwarf::DW_TAG_union_type: 2322 case dwarf::DW_TAG_enumeration_type: 2323 return dwarf::PubIndexEntryDescriptor( 2324 dwarf::GIEK_TYPE, 2325 dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage()) 2326 ? dwarf::GIEL_EXTERNAL 2327 : dwarf::GIEL_STATIC); 2328 case dwarf::DW_TAG_typedef: 2329 case dwarf::DW_TAG_base_type: 2330 case dwarf::DW_TAG_subrange_type: 2331 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC); 2332 case dwarf::DW_TAG_namespace: 2333 return dwarf::GIEK_TYPE; 2334 case dwarf::DW_TAG_subprogram: 2335 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage); 2336 case dwarf::DW_TAG_variable: 2337 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage); 2338 case dwarf::DW_TAG_enumerator: 2339 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, 2340 dwarf::GIEL_STATIC); 2341 default: 2342 return dwarf::GIEK_NONE; 2343 } 2344 } 2345 2346 /// emitDebugPubSections - Emit visible names and types into debug pubnames and 2347 /// pubtypes sections. 2348 void DwarfDebug::emitDebugPubSections() { 2349 for (const auto &NU : CUMap) { 2350 DwarfCompileUnit *TheU = NU.second; 2351 if (!TheU->hasDwarfPubSections()) 2352 continue; 2353 2354 bool GnuStyle = TheU->getCUNode()->getNameTableKind() == 2355 DICompileUnit::DebugNameTableKind::GNU; 2356 2357 Asm->OutStreamer->SwitchSection( 2358 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection() 2359 : Asm->getObjFileLowering().getDwarfPubNamesSection()); 2360 emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames()); 2361 2362 Asm->OutStreamer->SwitchSection( 2363 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection() 2364 : Asm->getObjFileLowering().getDwarfPubTypesSection()); 2365 emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes()); 2366 } 2367 } 2368 2369 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) { 2370 if (useSectionsAsReferences()) 2371 Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(), 2372 CU.getDebugSectionOffset()); 2373 else 2374 Asm->emitDwarfSymbolReference(CU.getLabelBegin()); 2375 } 2376 2377 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name, 2378 DwarfCompileUnit *TheU, 2379 const StringMap<const DIE *> &Globals) { 2380 if (auto *Skeleton = TheU->getSkeleton()) 2381 TheU = Skeleton; 2382 2383 // Emit the header. 2384 Asm->OutStreamer->AddComment("Length of Public " + Name + " Info"); 2385 MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin"); 2386 MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end"); 2387 Asm->emitLabelDifference(EndLabel, BeginLabel, 4); 2388 2389 Asm->OutStreamer->emitLabel(BeginLabel); 2390 2391 Asm->OutStreamer->AddComment("DWARF Version"); 2392 Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION); 2393 2394 Asm->OutStreamer->AddComment("Offset of Compilation Unit Info"); 2395 emitSectionReference(*TheU); 2396 2397 Asm->OutStreamer->AddComment("Compilation Unit Length"); 2398 Asm->emitInt32(TheU->getLength()); 2399 2400 // Emit the pubnames for this compilation unit. 2401 for (const auto &GI : Globals) { 2402 const char *Name = GI.getKeyData(); 2403 const DIE *Entity = GI.second; 2404 2405 Asm->OutStreamer->AddComment("DIE offset"); 2406 Asm->emitInt32(Entity->getOffset()); 2407 2408 if (GnuStyle) { 2409 dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity); 2410 Asm->OutStreamer->AddComment( 2411 Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + 2412 ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage)); 2413 Asm->emitInt8(Desc.toBits()); 2414 } 2415 2416 Asm->OutStreamer->AddComment("External Name"); 2417 Asm->OutStreamer->emitBytes(StringRef(Name, GI.getKeyLength() + 1)); 2418 } 2419 2420 Asm->OutStreamer->AddComment("End Mark"); 2421 Asm->emitInt32(0); 2422 Asm->OutStreamer->emitLabel(EndLabel); 2423 } 2424 2425 /// Emit null-terminated strings into a debug str section. 2426 void DwarfDebug::emitDebugStr() { 2427 MCSection *StringOffsetsSection = nullptr; 2428 if (useSegmentedStringOffsetsTable()) { 2429 emitStringOffsetsTableHeader(); 2430 StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection(); 2431 } 2432 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2433 Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(), 2434 StringOffsetsSection, /* UseRelativeOffsets = */ true); 2435 } 2436 2437 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer, 2438 const DebugLocStream::Entry &Entry, 2439 const DwarfCompileUnit *CU) { 2440 auto &&Comments = DebugLocs.getComments(Entry); 2441 auto Comment = Comments.begin(); 2442 auto End = Comments.end(); 2443 2444 // The expressions are inserted into a byte stream rather early (see 2445 // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that 2446 // need to reference a base_type DIE the offset of that DIE is not yet known. 2447 // To deal with this we instead insert a placeholder early and then extract 2448 // it here and replace it with the real reference. 2449 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2450 DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(), 2451 DebugLocs.getBytes(Entry).size()), 2452 Asm->getDataLayout().isLittleEndian(), PtrSize); 2453 DWARFExpression Expr(Data, PtrSize, Asm->OutContext.getDwarfFormat()); 2454 2455 using Encoding = DWARFExpression::Operation::Encoding; 2456 uint64_t Offset = 0; 2457 for (auto &Op : Expr) { 2458 assert(Op.getCode() != dwarf::DW_OP_const_type && 2459 "3 operand ops not yet supported"); 2460 Streamer.EmitInt8(Op.getCode(), Comment != End ? *(Comment++) : ""); 2461 Offset++; 2462 for (unsigned I = 0; I < 2; ++I) { 2463 if (Op.getDescription().Op[I] == Encoding::SizeNA) 2464 continue; 2465 if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) { 2466 uint64_t Offset = 2467 CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset(); 2468 assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit"); 2469 Streamer.emitULEB128(Offset, "", ULEB128PadSize); 2470 // Make sure comments stay aligned. 2471 for (unsigned J = 0; J < ULEB128PadSize; ++J) 2472 if (Comment != End) 2473 Comment++; 2474 } else { 2475 for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J) 2476 Streamer.EmitInt8(Data.getData()[J], Comment != End ? *(Comment++) : ""); 2477 } 2478 Offset = Op.getOperandEndOffset(I); 2479 } 2480 assert(Offset == Op.getEndOffset()); 2481 } 2482 } 2483 2484 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT, 2485 const DbgValueLoc &Value, 2486 DwarfExpression &DwarfExpr) { 2487 auto *DIExpr = Value.getExpression(); 2488 DIExpressionCursor ExprCursor(DIExpr); 2489 DwarfExpr.addFragmentOffset(DIExpr); 2490 // Regular entry. 2491 if (Value.isInt()) { 2492 if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed || 2493 BT->getEncoding() == dwarf::DW_ATE_signed_char)) 2494 DwarfExpr.addSignedConstant(Value.getInt()); 2495 else 2496 DwarfExpr.addUnsignedConstant(Value.getInt()); 2497 } else if (Value.isLocation()) { 2498 MachineLocation Location = Value.getLoc(); 2499 DwarfExpr.setLocation(Location, DIExpr); 2500 DIExpressionCursor Cursor(DIExpr); 2501 2502 if (DIExpr->isEntryValue()) 2503 DwarfExpr.beginEntryValueExpression(Cursor); 2504 2505 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); 2506 if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg())) 2507 return; 2508 return DwarfExpr.addExpression(std::move(Cursor)); 2509 } else if (Value.isTargetIndexLocation()) { 2510 TargetIndexLocation Loc = Value.getTargetIndexLocation(); 2511 // TODO TargetIndexLocation is a target-independent. Currently only the WebAssembly-specific 2512 // encoding is supported. 2513 DwarfExpr.addWasmLocation(Loc.Index, static_cast<uint64_t>(Loc.Offset)); 2514 } else if (Value.isConstantFP()) { 2515 APInt RawBytes = Value.getConstantFP()->getValueAPF().bitcastToAPInt(); 2516 DwarfExpr.addUnsignedConstant(RawBytes); 2517 } 2518 DwarfExpr.addExpression(std::move(ExprCursor)); 2519 } 2520 2521 void DebugLocEntry::finalize(const AsmPrinter &AP, 2522 DebugLocStream::ListBuilder &List, 2523 const DIBasicType *BT, 2524 DwarfCompileUnit &TheCU) { 2525 assert(!Values.empty() && 2526 "location list entries without values are redundant"); 2527 assert(Begin != End && "unexpected location list entry with empty range"); 2528 DebugLocStream::EntryBuilder Entry(List, Begin, End); 2529 BufferByteStreamer Streamer = Entry.getStreamer(); 2530 DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU); 2531 const DbgValueLoc &Value = Values[0]; 2532 if (Value.isFragment()) { 2533 // Emit all fragments that belong to the same variable and range. 2534 assert(llvm::all_of(Values, [](DbgValueLoc P) { 2535 return P.isFragment(); 2536 }) && "all values are expected to be fragments"); 2537 assert(llvm::is_sorted(Values) && "fragments are expected to be sorted"); 2538 2539 for (auto Fragment : Values) 2540 DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr); 2541 2542 } else { 2543 assert(Values.size() == 1 && "only fragments may have >1 value"); 2544 DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr); 2545 } 2546 DwarfExpr.finalize(); 2547 if (DwarfExpr.TagOffset) 2548 List.setTagOffset(*DwarfExpr.TagOffset); 2549 } 2550 2551 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry, 2552 const DwarfCompileUnit *CU) { 2553 // Emit the size. 2554 Asm->OutStreamer->AddComment("Loc expr size"); 2555 if (getDwarfVersion() >= 5) 2556 Asm->emitULEB128(DebugLocs.getBytes(Entry).size()); 2557 else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max()) 2558 Asm->emitInt16(DebugLocs.getBytes(Entry).size()); 2559 else { 2560 // The entry is too big to fit into 16 bit, drop it as there is nothing we 2561 // can do. 2562 Asm->emitInt16(0); 2563 return; 2564 } 2565 // Emit the entry. 2566 APByteStreamer Streamer(*Asm); 2567 emitDebugLocEntry(Streamer, Entry, CU); 2568 } 2569 2570 // Emit the header of a DWARF 5 range list table list table. Returns the symbol 2571 // that designates the end of the table for the caller to emit when the table is 2572 // complete. 2573 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm, 2574 const DwarfFile &Holder) { 2575 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2576 2577 Asm->OutStreamer->AddComment("Offset entry count"); 2578 Asm->emitInt32(Holder.getRangeLists().size()); 2579 Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym()); 2580 2581 for (const RangeSpanList &List : Holder.getRangeLists()) 2582 Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(), 4); 2583 2584 return TableEnd; 2585 } 2586 2587 // Emit the header of a DWARF 5 locations list table. Returns the symbol that 2588 // designates the end of the table for the caller to emit when the table is 2589 // complete. 2590 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm, 2591 const DwarfDebug &DD) { 2592 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2593 2594 const auto &DebugLocs = DD.getDebugLocs(); 2595 2596 Asm->OutStreamer->AddComment("Offset entry count"); 2597 Asm->emitInt32(DebugLocs.getLists().size()); 2598 Asm->OutStreamer->emitLabel(DebugLocs.getSym()); 2599 2600 for (const auto &List : DebugLocs.getLists()) 2601 Asm->emitLabelDifference(List.Label, DebugLocs.getSym(), 4); 2602 2603 return TableEnd; 2604 } 2605 2606 template <typename Ranges, typename PayloadEmitter> 2607 static void emitRangeList( 2608 DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R, 2609 const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair, 2610 unsigned StartxLength, unsigned EndOfList, 2611 StringRef (*StringifyEnum)(unsigned), 2612 bool ShouldUseBaseAddress, 2613 PayloadEmitter EmitPayload) { 2614 2615 auto Size = Asm->MAI->getCodePointerSize(); 2616 bool UseDwarf5 = DD.getDwarfVersion() >= 5; 2617 2618 // Emit our symbol so we can find the beginning of the range. 2619 Asm->OutStreamer->emitLabel(Sym); 2620 2621 // Gather all the ranges that apply to the same section so they can share 2622 // a base address entry. 2623 MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges; 2624 2625 for (const auto &Range : R) 2626 SectionRanges[&Range.Begin->getSection()].push_back(&Range); 2627 2628 const MCSymbol *CUBase = CU.getBaseAddress(); 2629 bool BaseIsSet = false; 2630 for (const auto &P : SectionRanges) { 2631 auto *Base = CUBase; 2632 if (!Base && ShouldUseBaseAddress) { 2633 const MCSymbol *Begin = P.second.front()->Begin; 2634 const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection()); 2635 if (!UseDwarf5) { 2636 Base = NewBase; 2637 BaseIsSet = true; 2638 Asm->OutStreamer->emitIntValue(-1, Size); 2639 Asm->OutStreamer->AddComment(" base address"); 2640 Asm->OutStreamer->emitSymbolValue(Base, Size); 2641 } else if (NewBase != Begin || P.second.size() > 1) { 2642 // Only use a base address if 2643 // * the existing pool address doesn't match (NewBase != Begin) 2644 // * or, there's more than one entry to share the base address 2645 Base = NewBase; 2646 BaseIsSet = true; 2647 Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx)); 2648 Asm->emitInt8(BaseAddressx); 2649 Asm->OutStreamer->AddComment(" base address index"); 2650 Asm->emitULEB128(DD.getAddressPool().getIndex(Base)); 2651 } 2652 } else if (BaseIsSet && !UseDwarf5) { 2653 BaseIsSet = false; 2654 assert(!Base); 2655 Asm->OutStreamer->emitIntValue(-1, Size); 2656 Asm->OutStreamer->emitIntValue(0, Size); 2657 } 2658 2659 for (const auto *RS : P.second) { 2660 const MCSymbol *Begin = RS->Begin; 2661 const MCSymbol *End = RS->End; 2662 assert(Begin && "Range without a begin symbol?"); 2663 assert(End && "Range without an end symbol?"); 2664 if (Base) { 2665 if (UseDwarf5) { 2666 // Emit offset_pair when we have a base. 2667 Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair)); 2668 Asm->emitInt8(OffsetPair); 2669 Asm->OutStreamer->AddComment(" starting offset"); 2670 Asm->emitLabelDifferenceAsULEB128(Begin, Base); 2671 Asm->OutStreamer->AddComment(" ending offset"); 2672 Asm->emitLabelDifferenceAsULEB128(End, Base); 2673 } else { 2674 Asm->emitLabelDifference(Begin, Base, Size); 2675 Asm->emitLabelDifference(End, Base, Size); 2676 } 2677 } else if (UseDwarf5) { 2678 Asm->OutStreamer->AddComment(StringifyEnum(StartxLength)); 2679 Asm->emitInt8(StartxLength); 2680 Asm->OutStreamer->AddComment(" start index"); 2681 Asm->emitULEB128(DD.getAddressPool().getIndex(Begin)); 2682 Asm->OutStreamer->AddComment(" length"); 2683 Asm->emitLabelDifferenceAsULEB128(End, Begin); 2684 } else { 2685 Asm->OutStreamer->emitSymbolValue(Begin, Size); 2686 Asm->OutStreamer->emitSymbolValue(End, Size); 2687 } 2688 EmitPayload(*RS); 2689 } 2690 } 2691 2692 if (UseDwarf5) { 2693 Asm->OutStreamer->AddComment(StringifyEnum(EndOfList)); 2694 Asm->emitInt8(EndOfList); 2695 } else { 2696 // Terminate the list with two 0 values. 2697 Asm->OutStreamer->emitIntValue(0, Size); 2698 Asm->OutStreamer->emitIntValue(0, Size); 2699 } 2700 } 2701 2702 // Handles emission of both debug_loclist / debug_loclist.dwo 2703 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) { 2704 emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List), 2705 *List.CU, dwarf::DW_LLE_base_addressx, 2706 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length, 2707 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString, 2708 /* ShouldUseBaseAddress */ true, 2709 [&](const DebugLocStream::Entry &E) { 2710 DD.emitDebugLocEntryLocation(E, List.CU); 2711 }); 2712 } 2713 2714 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) { 2715 if (DebugLocs.getLists().empty()) 2716 return; 2717 2718 Asm->OutStreamer->SwitchSection(Sec); 2719 2720 MCSymbol *TableEnd = nullptr; 2721 if (getDwarfVersion() >= 5) 2722 TableEnd = emitLoclistsTableHeader(Asm, *this); 2723 2724 for (const auto &List : DebugLocs.getLists()) 2725 emitLocList(*this, Asm, List); 2726 2727 if (TableEnd) 2728 Asm->OutStreamer->emitLabel(TableEnd); 2729 } 2730 2731 // Emit locations into the .debug_loc/.debug_loclists section. 2732 void DwarfDebug::emitDebugLoc() { 2733 emitDebugLocImpl( 2734 getDwarfVersion() >= 5 2735 ? Asm->getObjFileLowering().getDwarfLoclistsSection() 2736 : Asm->getObjFileLowering().getDwarfLocSection()); 2737 } 2738 2739 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section. 2740 void DwarfDebug::emitDebugLocDWO() { 2741 if (getDwarfVersion() >= 5) { 2742 emitDebugLocImpl( 2743 Asm->getObjFileLowering().getDwarfLoclistsDWOSection()); 2744 2745 return; 2746 } 2747 2748 for (const auto &List : DebugLocs.getLists()) { 2749 Asm->OutStreamer->SwitchSection( 2750 Asm->getObjFileLowering().getDwarfLocDWOSection()); 2751 Asm->OutStreamer->emitLabel(List.Label); 2752 2753 for (const auto &Entry : DebugLocs.getEntries(List)) { 2754 // GDB only supports startx_length in pre-standard split-DWARF. 2755 // (in v5 standard loclists, it currently* /only/ supports base_address + 2756 // offset_pair, so the implementations can't really share much since they 2757 // need to use different representations) 2758 // * as of October 2018, at least 2759 // 2760 // In v5 (see emitLocList), this uses SectionLabels to reuse existing 2761 // addresses in the address pool to minimize object size/relocations. 2762 Asm->emitInt8(dwarf::DW_LLE_startx_length); 2763 unsigned idx = AddrPool.getIndex(Entry.Begin); 2764 Asm->emitULEB128(idx); 2765 // Also the pre-standard encoding is slightly different, emitting this as 2766 // an address-length entry here, but its a ULEB128 in DWARFv5 loclists. 2767 Asm->emitLabelDifference(Entry.End, Entry.Begin, 4); 2768 emitDebugLocEntryLocation(Entry, List.CU); 2769 } 2770 Asm->emitInt8(dwarf::DW_LLE_end_of_list); 2771 } 2772 } 2773 2774 struct ArangeSpan { 2775 const MCSymbol *Start, *End; 2776 }; 2777 2778 // Emit a debug aranges section, containing a CU lookup for any 2779 // address we can tie back to a CU. 2780 void DwarfDebug::emitDebugARanges() { 2781 // Provides a unique id per text section. 2782 MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap; 2783 2784 // Filter labels by section. 2785 for (const SymbolCU &SCU : ArangeLabels) { 2786 if (SCU.Sym->isInSection()) { 2787 // Make a note of this symbol and it's section. 2788 MCSection *Section = &SCU.Sym->getSection(); 2789 if (!Section->getKind().isMetadata()) 2790 SectionMap[Section].push_back(SCU); 2791 } else { 2792 // Some symbols (e.g. common/bss on mach-o) can have no section but still 2793 // appear in the output. This sucks as we rely on sections to build 2794 // arange spans. We can do it without, but it's icky. 2795 SectionMap[nullptr].push_back(SCU); 2796 } 2797 } 2798 2799 DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans; 2800 2801 for (auto &I : SectionMap) { 2802 MCSection *Section = I.first; 2803 SmallVector<SymbolCU, 8> &List = I.second; 2804 if (List.size() < 1) 2805 continue; 2806 2807 // If we have no section (e.g. common), just write out 2808 // individual spans for each symbol. 2809 if (!Section) { 2810 for (const SymbolCU &Cur : List) { 2811 ArangeSpan Span; 2812 Span.Start = Cur.Sym; 2813 Span.End = nullptr; 2814 assert(Cur.CU); 2815 Spans[Cur.CU].push_back(Span); 2816 } 2817 continue; 2818 } 2819 2820 // Sort the symbols by offset within the section. 2821 llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) { 2822 unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0; 2823 unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0; 2824 2825 // Symbols with no order assigned should be placed at the end. 2826 // (e.g. section end labels) 2827 if (IA == 0) 2828 return false; 2829 if (IB == 0) 2830 return true; 2831 return IA < IB; 2832 }); 2833 2834 // Insert a final terminator. 2835 List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section))); 2836 2837 // Build spans between each label. 2838 const MCSymbol *StartSym = List[0].Sym; 2839 for (size_t n = 1, e = List.size(); n < e; n++) { 2840 const SymbolCU &Prev = List[n - 1]; 2841 const SymbolCU &Cur = List[n]; 2842 2843 // Try and build the longest span we can within the same CU. 2844 if (Cur.CU != Prev.CU) { 2845 ArangeSpan Span; 2846 Span.Start = StartSym; 2847 Span.End = Cur.Sym; 2848 assert(Prev.CU); 2849 Spans[Prev.CU].push_back(Span); 2850 StartSym = Cur.Sym; 2851 } 2852 } 2853 } 2854 2855 // Start the dwarf aranges section. 2856 Asm->OutStreamer->SwitchSection( 2857 Asm->getObjFileLowering().getDwarfARangesSection()); 2858 2859 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2860 2861 // Build a list of CUs used. 2862 std::vector<DwarfCompileUnit *> CUs; 2863 for (const auto &it : Spans) { 2864 DwarfCompileUnit *CU = it.first; 2865 CUs.push_back(CU); 2866 } 2867 2868 // Sort the CU list (again, to ensure consistent output order). 2869 llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) { 2870 return A->getUniqueID() < B->getUniqueID(); 2871 }); 2872 2873 // Emit an arange table for each CU we used. 2874 for (DwarfCompileUnit *CU : CUs) { 2875 std::vector<ArangeSpan> &List = Spans[CU]; 2876 2877 // Describe the skeleton CU's offset and length, not the dwo file's. 2878 if (auto *Skel = CU->getSkeleton()) 2879 CU = Skel; 2880 2881 // Emit size of content not including length itself. 2882 unsigned ContentSize = 2883 sizeof(int16_t) + // DWARF ARange version number 2884 sizeof(int32_t) + // Offset of CU in the .debug_info section 2885 sizeof(int8_t) + // Pointer Size (in bytes) 2886 sizeof(int8_t); // Segment Size (in bytes) 2887 2888 unsigned TupleSize = PtrSize * 2; 2889 2890 // 7.20 in the Dwarf specs requires the table to be aligned to a tuple. 2891 unsigned Padding = 2892 offsetToAlignment(sizeof(int32_t) + ContentSize, Align(TupleSize)); 2893 2894 ContentSize += Padding; 2895 ContentSize += (List.size() + 1) * TupleSize; 2896 2897 // For each compile unit, write the list of spans it covers. 2898 Asm->OutStreamer->AddComment("Length of ARange Set"); 2899 Asm->emitInt32(ContentSize); 2900 Asm->OutStreamer->AddComment("DWARF Arange version number"); 2901 Asm->emitInt16(dwarf::DW_ARANGES_VERSION); 2902 Asm->OutStreamer->AddComment("Offset Into Debug Info Section"); 2903 emitSectionReference(*CU); 2904 Asm->OutStreamer->AddComment("Address Size (in bytes)"); 2905 Asm->emitInt8(PtrSize); 2906 Asm->OutStreamer->AddComment("Segment Size (in bytes)"); 2907 Asm->emitInt8(0); 2908 2909 Asm->OutStreamer->emitFill(Padding, 0xff); 2910 2911 for (const ArangeSpan &Span : List) { 2912 Asm->emitLabelReference(Span.Start, PtrSize); 2913 2914 // Calculate the size as being from the span start to it's end. 2915 if (Span.End) { 2916 Asm->emitLabelDifference(Span.End, Span.Start, PtrSize); 2917 } else { 2918 // For symbols without an end marker (e.g. common), we 2919 // write a single arange entry containing just that one symbol. 2920 uint64_t Size = SymSize[Span.Start]; 2921 if (Size == 0) 2922 Size = 1; 2923 2924 Asm->OutStreamer->emitIntValue(Size, PtrSize); 2925 } 2926 } 2927 2928 Asm->OutStreamer->AddComment("ARange terminator"); 2929 Asm->OutStreamer->emitIntValue(0, PtrSize); 2930 Asm->OutStreamer->emitIntValue(0, PtrSize); 2931 } 2932 } 2933 2934 /// Emit a single range list. We handle both DWARF v5 and earlier. 2935 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm, 2936 const RangeSpanList &List) { 2937 emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU, 2938 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair, 2939 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list, 2940 llvm::dwarf::RangeListEncodingString, 2941 List.CU->getCUNode()->getRangesBaseAddress() || 2942 DD.getDwarfVersion() >= 5, 2943 [](auto) {}); 2944 } 2945 2946 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) { 2947 if (Holder.getRangeLists().empty()) 2948 return; 2949 2950 assert(useRangesSection()); 2951 assert(!CUMap.empty()); 2952 assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) { 2953 return !Pair.second->getCUNode()->isDebugDirectivesOnly(); 2954 })); 2955 2956 Asm->OutStreamer->SwitchSection(Section); 2957 2958 MCSymbol *TableEnd = nullptr; 2959 if (getDwarfVersion() >= 5) 2960 TableEnd = emitRnglistsTableHeader(Asm, Holder); 2961 2962 for (const RangeSpanList &List : Holder.getRangeLists()) 2963 emitRangeList(*this, Asm, List); 2964 2965 if (TableEnd) 2966 Asm->OutStreamer->emitLabel(TableEnd); 2967 } 2968 2969 /// Emit address ranges into the .debug_ranges section or into the DWARF v5 2970 /// .debug_rnglists section. 2971 void DwarfDebug::emitDebugRanges() { 2972 const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2973 2974 emitDebugRangesImpl(Holder, 2975 getDwarfVersion() >= 5 2976 ? Asm->getObjFileLowering().getDwarfRnglistsSection() 2977 : Asm->getObjFileLowering().getDwarfRangesSection()); 2978 } 2979 2980 void DwarfDebug::emitDebugRangesDWO() { 2981 emitDebugRangesImpl(InfoHolder, 2982 Asm->getObjFileLowering().getDwarfRnglistsDWOSection()); 2983 } 2984 2985 /// Emit the header of a DWARF 5 macro section. 2986 static void emitMacroHeader(AsmPrinter *Asm, const DwarfDebug &DD, 2987 const DwarfCompileUnit &CU) { 2988 enum HeaderFlagMask { 2989 #define HANDLE_MACRO_FLAG(ID, NAME) MACRO_FLAG_##NAME = ID, 2990 #include "llvm/BinaryFormat/Dwarf.def" 2991 }; 2992 uint8_t Flags = 0; 2993 Asm->OutStreamer->AddComment("Macro information version"); 2994 Asm->emitInt16(5); 2995 // We are setting Offset and line offset flags unconditionally here, 2996 // since we're only supporting DWARF32 and line offset should be mostly 2997 // present. 2998 // FIXME: Add support for DWARF64. 2999 Flags |= MACRO_FLAG_DEBUG_LINE_OFFSET; 3000 Asm->OutStreamer->AddComment("Flags: 32 bit, debug_line_offset present"); 3001 Asm->emitInt8(Flags); 3002 Asm->OutStreamer->AddComment("debug_line_offset"); 3003 Asm->OutStreamer->emitSymbolValue(CU.getLineTableStartSym(), /*Size=*/4); 3004 } 3005 3006 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) { 3007 for (auto *MN : Nodes) { 3008 if (auto *M = dyn_cast<DIMacro>(MN)) 3009 emitMacro(*M); 3010 else if (auto *F = dyn_cast<DIMacroFile>(MN)) 3011 emitMacroFile(*F, U); 3012 else 3013 llvm_unreachable("Unexpected DI type!"); 3014 } 3015 } 3016 3017 void DwarfDebug::emitMacro(DIMacro &M) { 3018 StringRef Name = M.getName(); 3019 StringRef Value = M.getValue(); 3020 bool UseMacro = getDwarfVersion() >= 5; 3021 3022 if (UseMacro) { 3023 unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define 3024 ? dwarf::DW_MACRO_define_strx 3025 : dwarf::DW_MACRO_undef_strx; 3026 Asm->OutStreamer->AddComment(dwarf::MacroString(Type)); 3027 Asm->emitULEB128(Type); 3028 Asm->OutStreamer->AddComment("Line Number"); 3029 Asm->emitULEB128(M.getLine()); 3030 Asm->OutStreamer->AddComment("Macro String"); 3031 if (!Value.empty()) 3032 Asm->emitULEB128(this->InfoHolder.getStringPool() 3033 .getIndexedEntry(*Asm, (Name + " " + Value).str()) 3034 .getIndex()); 3035 else 3036 // DW_MACRO_undef_strx doesn't have a value, so just emit the macro 3037 // string. 3038 Asm->emitULEB128(this->InfoHolder.getStringPool() 3039 .getIndexedEntry(*Asm, (Name).str()) 3040 .getIndex()); 3041 } else { 3042 Asm->OutStreamer->AddComment(dwarf::MacinfoString(M.getMacinfoType())); 3043 Asm->emitULEB128(M.getMacinfoType()); 3044 Asm->OutStreamer->AddComment("Line Number"); 3045 Asm->emitULEB128(M.getLine()); 3046 Asm->OutStreamer->AddComment("Macro String"); 3047 Asm->OutStreamer->emitBytes(Name); 3048 if (!Value.empty()) { 3049 // There should be one space between macro name and macro value. 3050 Asm->emitInt8(' '); 3051 Asm->OutStreamer->AddComment("Macro Value="); 3052 Asm->OutStreamer->emitBytes(Value); 3053 } 3054 Asm->emitInt8('\0'); 3055 } 3056 } 3057 3058 void DwarfDebug::emitMacroFileImpl( 3059 DIMacroFile &F, DwarfCompileUnit &U, unsigned StartFile, unsigned EndFile, 3060 StringRef (*MacroFormToString)(unsigned Form)) { 3061 3062 Asm->OutStreamer->AddComment(MacroFormToString(StartFile)); 3063 Asm->emitULEB128(StartFile); 3064 Asm->OutStreamer->AddComment("Line Number"); 3065 Asm->emitULEB128(F.getLine()); 3066 Asm->OutStreamer->AddComment("File Number"); 3067 Asm->emitULEB128(U.getOrCreateSourceID(F.getFile())); 3068 handleMacroNodes(F.getElements(), U); 3069 Asm->OutStreamer->AddComment(MacroFormToString(EndFile)); 3070 Asm->emitULEB128(EndFile); 3071 } 3072 3073 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) { 3074 // DWARFv5 macro and DWARFv4 macinfo share some common encodings, 3075 // so for readibility/uniformity, We are explicitly emitting those. 3076 assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file); 3077 bool UseMacro = getDwarfVersion() >= 5; 3078 if (UseMacro) 3079 emitMacroFileImpl(F, U, dwarf::DW_MACRO_start_file, 3080 dwarf::DW_MACRO_end_file, dwarf::MacroString); 3081 else 3082 emitMacroFileImpl(F, U, dwarf::DW_MACINFO_start_file, 3083 dwarf::DW_MACINFO_end_file, dwarf::MacinfoString); 3084 } 3085 3086 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) { 3087 for (const auto &P : CUMap) { 3088 auto &TheCU = *P.second; 3089 auto *SkCU = TheCU.getSkeleton(); 3090 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 3091 auto *CUNode = cast<DICompileUnit>(P.first); 3092 DIMacroNodeArray Macros = CUNode->getMacros(); 3093 if (Macros.empty()) 3094 continue; 3095 Asm->OutStreamer->SwitchSection(Section); 3096 Asm->OutStreamer->emitLabel(U.getMacroLabelBegin()); 3097 if (getDwarfVersion() >= 5) 3098 emitMacroHeader(Asm, *this, U); 3099 handleMacroNodes(Macros, U); 3100 Asm->OutStreamer->AddComment("End Of Macro List Mark"); 3101 Asm->emitInt8(0); 3102 } 3103 } 3104 3105 /// Emit macros into a debug macinfo/macro section. 3106 void DwarfDebug::emitDebugMacinfo() { 3107 auto &ObjLower = Asm->getObjFileLowering(); 3108 emitDebugMacinfoImpl(getDwarfVersion() >= 5 3109 ? ObjLower.getDwarfMacroSection() 3110 : ObjLower.getDwarfMacinfoSection()); 3111 } 3112 3113 void DwarfDebug::emitDebugMacinfoDWO() { 3114 auto &ObjLower = Asm->getObjFileLowering(); 3115 emitDebugMacinfoImpl(getDwarfVersion() >= 5 3116 ? ObjLower.getDwarfMacroDWOSection() 3117 : ObjLower.getDwarfMacinfoDWOSection()); 3118 } 3119 3120 // DWARF5 Experimental Separate Dwarf emitters. 3121 3122 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die, 3123 std::unique_ptr<DwarfCompileUnit> NewU) { 3124 3125 if (!CompilationDir.empty()) 3126 NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 3127 addGnuPubAttributes(*NewU, Die); 3128 3129 SkeletonHolder.addUnit(std::move(NewU)); 3130 } 3131 3132 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) { 3133 3134 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 3135 CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder, 3136 UnitKind::Skeleton); 3137 DwarfCompileUnit &NewCU = *OwnedUnit; 3138 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 3139 3140 NewCU.initStmtList(); 3141 3142 if (useSegmentedStringOffsetsTable()) 3143 NewCU.addStringOffsetsStart(); 3144 3145 initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit)); 3146 3147 return NewCU; 3148 } 3149 3150 // Emit the .debug_info.dwo section for separated dwarf. This contains the 3151 // compile units that would normally be in debug_info. 3152 void DwarfDebug::emitDebugInfoDWO() { 3153 assert(useSplitDwarf() && "No split dwarf debug info?"); 3154 // Don't emit relocations into the dwo file. 3155 InfoHolder.emitUnits(/* UseOffsets */ true); 3156 } 3157 3158 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the 3159 // abbreviations for the .debug_info.dwo section. 3160 void DwarfDebug::emitDebugAbbrevDWO() { 3161 assert(useSplitDwarf() && "No split dwarf?"); 3162 InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection()); 3163 } 3164 3165 void DwarfDebug::emitDebugLineDWO() { 3166 assert(useSplitDwarf() && "No split dwarf?"); 3167 SplitTypeUnitFileTable.Emit( 3168 *Asm->OutStreamer, MCDwarfLineTableParams(), 3169 Asm->getObjFileLowering().getDwarfLineDWOSection()); 3170 } 3171 3172 void DwarfDebug::emitStringOffsetsTableHeaderDWO() { 3173 assert(useSplitDwarf() && "No split dwarf?"); 3174 InfoHolder.getStringPool().emitStringOffsetsTableHeader( 3175 *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(), 3176 InfoHolder.getStringOffsetsStartSym()); 3177 } 3178 3179 // Emit the .debug_str.dwo section for separated dwarf. This contains the 3180 // string section and is identical in format to traditional .debug_str 3181 // sections. 3182 void DwarfDebug::emitDebugStrDWO() { 3183 if (useSegmentedStringOffsetsTable()) 3184 emitStringOffsetsTableHeaderDWO(); 3185 assert(useSplitDwarf() && "No split dwarf?"); 3186 MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection(); 3187 InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(), 3188 OffSec, /* UseRelativeOffsets = */ false); 3189 } 3190 3191 // Emit address pool. 3192 void DwarfDebug::emitDebugAddr() { 3193 AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection()); 3194 } 3195 3196 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) { 3197 if (!useSplitDwarf()) 3198 return nullptr; 3199 const DICompileUnit *DIUnit = CU.getCUNode(); 3200 SplitTypeUnitFileTable.maybeSetRootFile( 3201 DIUnit->getDirectory(), DIUnit->getFilename(), 3202 getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource()); 3203 return &SplitTypeUnitFileTable; 3204 } 3205 3206 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) { 3207 MD5 Hash; 3208 Hash.update(Identifier); 3209 // ... take the least significant 8 bytes and return those. Our MD5 3210 // implementation always returns its results in little endian, so we actually 3211 // need the "high" word. 3212 MD5::MD5Result Result; 3213 Hash.final(Result); 3214 return Result.high(); 3215 } 3216 3217 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU, 3218 StringRef Identifier, DIE &RefDie, 3219 const DICompositeType *CTy) { 3220 // Fast path if we're building some type units and one has already used the 3221 // address pool we know we're going to throw away all this work anyway, so 3222 // don't bother building dependent types. 3223 if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed()) 3224 return; 3225 3226 auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0)); 3227 if (!Ins.second) { 3228 CU.addDIETypeSignature(RefDie, Ins.first->second); 3229 return; 3230 } 3231 3232 bool TopLevelType = TypeUnitsUnderConstruction.empty(); 3233 AddrPool.resetUsedFlag(); 3234 3235 auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder, 3236 getDwoLineTable(CU)); 3237 DwarfTypeUnit &NewTU = *OwnedUnit; 3238 DIE &UnitDie = NewTU.getUnitDie(); 3239 TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy); 3240 3241 NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 3242 CU.getLanguage()); 3243 3244 uint64_t Signature = makeTypeSignature(Identifier); 3245 NewTU.setTypeSignature(Signature); 3246 Ins.first->second = Signature; 3247 3248 if (useSplitDwarf()) { 3249 MCSection *Section = 3250 getDwarfVersion() <= 4 3251 ? Asm->getObjFileLowering().getDwarfTypesDWOSection() 3252 : Asm->getObjFileLowering().getDwarfInfoDWOSection(); 3253 NewTU.setSection(Section); 3254 } else { 3255 MCSection *Section = 3256 getDwarfVersion() <= 4 3257 ? Asm->getObjFileLowering().getDwarfTypesSection(Signature) 3258 : Asm->getObjFileLowering().getDwarfInfoSection(Signature); 3259 NewTU.setSection(Section); 3260 // Non-split type units reuse the compile unit's line table. 3261 CU.applyStmtList(UnitDie); 3262 } 3263 3264 // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type 3265 // units. 3266 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 3267 NewTU.addStringOffsetsStart(); 3268 3269 NewTU.setType(NewTU.createTypeDIE(CTy)); 3270 3271 if (TopLevelType) { 3272 auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction); 3273 TypeUnitsUnderConstruction.clear(); 3274 3275 // Types referencing entries in the address table cannot be placed in type 3276 // units. 3277 if (AddrPool.hasBeenUsed()) { 3278 3279 // Remove all the types built while building this type. 3280 // This is pessimistic as some of these types might not be dependent on 3281 // the type that used an address. 3282 for (const auto &TU : TypeUnitsToAdd) 3283 TypeSignatures.erase(TU.second); 3284 3285 // Construct this type in the CU directly. 3286 // This is inefficient because all the dependent types will be rebuilt 3287 // from scratch, including building them in type units, discovering that 3288 // they depend on addresses, throwing them out and rebuilding them. 3289 CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy)); 3290 return; 3291 } 3292 3293 // If the type wasn't dependent on fission addresses, finish adding the type 3294 // and all its dependent types. 3295 for (auto &TU : TypeUnitsToAdd) { 3296 InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get()); 3297 InfoHolder.emitUnit(TU.first.get(), useSplitDwarf()); 3298 } 3299 } 3300 CU.addDIETypeSignature(RefDie, Signature); 3301 } 3302 3303 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD) 3304 : DD(DD), 3305 TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)) { 3306 DD->TypeUnitsUnderConstruction.clear(); 3307 assert(TypeUnitsUnderConstruction.empty() || !DD->AddrPool.hasBeenUsed()); 3308 } 3309 3310 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() { 3311 DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction); 3312 DD->AddrPool.resetUsedFlag(); 3313 } 3314 3315 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() { 3316 return NonTypeUnitContext(this); 3317 } 3318 3319 // Add the Name along with its companion DIE to the appropriate accelerator 3320 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for 3321 // AccelTableKind::Apple, we use the table we got as an argument). If 3322 // accelerator tables are disabled, this function does nothing. 3323 template <typename DataT> 3324 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU, 3325 AccelTable<DataT> &AppleAccel, StringRef Name, 3326 const DIE &Die) { 3327 if (getAccelTableKind() == AccelTableKind::None) 3328 return; 3329 3330 if (getAccelTableKind() != AccelTableKind::Apple && 3331 CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default) 3332 return; 3333 3334 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 3335 DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name); 3336 3337 switch (getAccelTableKind()) { 3338 case AccelTableKind::Apple: 3339 AppleAccel.addName(Ref, Die); 3340 break; 3341 case AccelTableKind::Dwarf: 3342 AccelDebugNames.addName(Ref, Die); 3343 break; 3344 case AccelTableKind::Default: 3345 llvm_unreachable("Default should have already been resolved."); 3346 case AccelTableKind::None: 3347 llvm_unreachable("None handled above"); 3348 } 3349 } 3350 3351 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name, 3352 const DIE &Die) { 3353 addAccelNameImpl(CU, AccelNames, Name, Die); 3354 } 3355 3356 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name, 3357 const DIE &Die) { 3358 // ObjC names go only into the Apple accelerator tables. 3359 if (getAccelTableKind() == AccelTableKind::Apple) 3360 addAccelNameImpl(CU, AccelObjC, Name, Die); 3361 } 3362 3363 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name, 3364 const DIE &Die) { 3365 addAccelNameImpl(CU, AccelNamespace, Name, Die); 3366 } 3367 3368 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name, 3369 const DIE &Die, char Flags) { 3370 addAccelNameImpl(CU, AccelTypes, Name, Die); 3371 } 3372 3373 uint16_t DwarfDebug::getDwarfVersion() const { 3374 return Asm->OutStreamer->getContext().getDwarfVersion(); 3375 } 3376 3377 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) { 3378 return SectionLabels.find(S)->second; 3379 } 3380 void DwarfDebug::insertSectionLabel(const MCSymbol *S) { 3381 if (SectionLabels.insert(std::make_pair(&S->getSection(), S)).second) 3382 if (useSplitDwarf() || getDwarfVersion() >= 5) 3383 AddrPool.getIndex(S); 3384 } 3385 3386 Optional<MD5::MD5Result> DwarfDebug::getMD5AsBytes(const DIFile *File) const { 3387 assert(File); 3388 if (getDwarfVersion() < 5) 3389 return None; 3390 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = File->getChecksum(); 3391 if (!Checksum || Checksum->Kind != DIFile::CSK_MD5) 3392 return None; 3393 3394 // Convert the string checksum to an MD5Result for the streamer. 3395 // The verifier validates the checksum so we assume it's okay. 3396 // An MD5 checksum is 16 bytes. 3397 std::string ChecksumString = fromHex(Checksum->Value); 3398 MD5::MD5Result CKMem; 3399 std::copy(ChecksumString.begin(), ChecksumString.end(), CKMem.Bytes.data()); 3400 return CKMem; 3401 } 3402