1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing dwarf debug info into asm files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "DwarfDebug.h"
14 #include "ByteStreamer.h"
15 #include "DIEHash.h"
16 #include "DwarfCompileUnit.h"
17 #include "DwarfExpression.h"
18 #include "DwarfUnit.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/CodeGen/AsmPrinter.h"
24 #include "llvm/CodeGen/DIE.h"
25 #include "llvm/CodeGen/LexicalScopes.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/TargetInstrInfo.h"
31 #include "llvm/CodeGen/TargetLowering.h"
32 #include "llvm/CodeGen/TargetRegisterInfo.h"
33 #include "llvm/CodeGen/TargetSubtargetInfo.h"
34 #include "llvm/DebugInfo/DWARF/DWARFExpression.h"
35 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/MC/MCAsmInfo.h"
41 #include "llvm/MC/MCContext.h"
42 #include "llvm/MC/MCSection.h"
43 #include "llvm/MC/MCStreamer.h"
44 #include "llvm/MC/MCSymbol.h"
45 #include "llvm/MC/MCTargetOptions.h"
46 #include "llvm/MC/MachineLocation.h"
47 #include "llvm/MC/SectionKind.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/MD5.h"
54 #include "llvm/Support/MathExtras.h"
55 #include "llvm/Support/Timer.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Target/TargetLoweringObjectFile.h"
58 #include "llvm/Target/TargetMachine.h"
59 #include <algorithm>
60 #include <cstddef>
61 #include <iterator>
62 #include <string>
63 
64 using namespace llvm;
65 
66 #define DEBUG_TYPE "dwarfdebug"
67 
68 STATISTIC(NumCSParams, "Number of dbg call site params created");
69 
70 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier(
71     "use-dwarf-ranges-base-address-specifier", cl::Hidden,
72     cl::desc("Use base address specifiers in debug_ranges"), cl::init(false));
73 
74 static cl::opt<bool> GenerateARangeSection("generate-arange-section",
75                                            cl::Hidden,
76                                            cl::desc("Generate dwarf aranges"),
77                                            cl::init(false));
78 
79 static cl::opt<bool>
80     GenerateDwarfTypeUnits("generate-type-units", cl::Hidden,
81                            cl::desc("Generate DWARF4 type units."),
82                            cl::init(false));
83 
84 static cl::opt<bool> SplitDwarfCrossCuReferences(
85     "split-dwarf-cross-cu-references", cl::Hidden,
86     cl::desc("Enable cross-cu references in DWO files"), cl::init(false));
87 
88 enum DefaultOnOff { Default, Enable, Disable };
89 
90 static cl::opt<DefaultOnOff> UnknownLocations(
91     "use-unknown-locations", cl::Hidden,
92     cl::desc("Make an absence of debug location information explicit."),
93     cl::values(clEnumVal(Default, "At top of block or after label"),
94                clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")),
95     cl::init(Default));
96 
97 static cl::opt<AccelTableKind> AccelTables(
98     "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."),
99     cl::values(clEnumValN(AccelTableKind::Default, "Default",
100                           "Default for platform"),
101                clEnumValN(AccelTableKind::None, "Disable", "Disabled."),
102                clEnumValN(AccelTableKind::Apple, "Apple", "Apple"),
103                clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")),
104     cl::init(AccelTableKind::Default));
105 
106 static cl::opt<DefaultOnOff>
107 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden,
108                  cl::desc("Use inlined strings rather than string section."),
109                  cl::values(clEnumVal(Default, "Default for platform"),
110                             clEnumVal(Enable, "Enabled"),
111                             clEnumVal(Disable, "Disabled")),
112                  cl::init(Default));
113 
114 static cl::opt<bool>
115     NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden,
116                          cl::desc("Disable emission .debug_ranges section."),
117                          cl::init(false));
118 
119 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences(
120     "dwarf-sections-as-references", cl::Hidden,
121     cl::desc("Use sections+offset as references rather than labels."),
122     cl::values(clEnumVal(Default, "Default for platform"),
123                clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
124     cl::init(Default));
125 
126 static cl::opt<bool>
127     UseGNUDebugMacro("use-gnu-debug-macro", cl::Hidden,
128                      cl::desc("Emit the GNU .debug_macro format with DWARF <5"),
129                      cl::init(false));
130 
131 static cl::opt<DefaultOnOff> DwarfOpConvert(
132     "dwarf-op-convert", cl::Hidden,
133     cl::desc("Enable use of the DWARFv5 DW_OP_convert operator"),
134     cl::values(clEnumVal(Default, "Default for platform"),
135                clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
136     cl::init(Default));
137 
138 enum LinkageNameOption {
139   DefaultLinkageNames,
140   AllLinkageNames,
141   AbstractLinkageNames
142 };
143 
144 static cl::opt<LinkageNameOption>
145     DwarfLinkageNames("dwarf-linkage-names", cl::Hidden,
146                       cl::desc("Which DWARF linkage-name attributes to emit."),
147                       cl::values(clEnumValN(DefaultLinkageNames, "Default",
148                                             "Default for platform"),
149                                  clEnumValN(AllLinkageNames, "All", "All"),
150                                  clEnumValN(AbstractLinkageNames, "Abstract",
151                                             "Abstract subprograms")),
152                       cl::init(DefaultLinkageNames));
153 
154 static cl::opt<DwarfDebug::MinimizeAddrInV5> MinimizeAddrInV5Option(
155     "minimize-addr-in-v5", cl::Hidden,
156     cl::desc("Always use DW_AT_ranges in DWARFv5 whenever it could allow more "
157              "address pool entry sharing to reduce relocations/object size"),
158     cl::values(clEnumValN(DwarfDebug::MinimizeAddrInV5::Default, "Default",
159                           "Default address minimization strategy"),
160                clEnumValN(DwarfDebug::MinimizeAddrInV5::Ranges, "Ranges",
161                           "Use rnglists for contiguous ranges if that allows "
162                           "using a pre-existing base address"),
163                clEnumValN(DwarfDebug::MinimizeAddrInV5::Expressions,
164                           "Expressions",
165                           "Use exprloc addrx+offset expressions for any "
166                           "address with a prior base address"),
167                clEnumValN(DwarfDebug::MinimizeAddrInV5::Form, "Form",
168                           "Use addrx+offset extension form for any address "
169                           "with a prior base address"),
170                clEnumValN(DwarfDebug::MinimizeAddrInV5::Disabled, "Disabled",
171                           "Stuff")),
172     cl::init(DwarfDebug::MinimizeAddrInV5::Default));
173 
174 static constexpr unsigned ULEB128PadSize = 4;
175 
176 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) {
177   getActiveStreamer().emitInt8(
178       Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op)
179                   : dwarf::OperationEncodingString(Op));
180 }
181 
182 void DebugLocDwarfExpression::emitSigned(int64_t Value) {
183   getActiveStreamer().emitSLEB128(Value, Twine(Value));
184 }
185 
186 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) {
187   getActiveStreamer().emitULEB128(Value, Twine(Value));
188 }
189 
190 void DebugLocDwarfExpression::emitData1(uint8_t Value) {
191   getActiveStreamer().emitInt8(Value, Twine(Value));
192 }
193 
194 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) {
195   assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit");
196   getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize);
197 }
198 
199 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI,
200                                               llvm::Register MachineReg) {
201   // This information is not available while emitting .debug_loc entries.
202   return false;
203 }
204 
205 void DebugLocDwarfExpression::enableTemporaryBuffer() {
206   assert(!IsBuffering && "Already buffering?");
207   if (!TmpBuf)
208     TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments);
209   IsBuffering = true;
210 }
211 
212 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; }
213 
214 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() {
215   return TmpBuf ? TmpBuf->Bytes.size() : 0;
216 }
217 
218 void DebugLocDwarfExpression::commitTemporaryBuffer() {
219   if (!TmpBuf)
220     return;
221   for (auto Byte : enumerate(TmpBuf->Bytes)) {
222     const char *Comment = (Byte.index() < TmpBuf->Comments.size())
223                               ? TmpBuf->Comments[Byte.index()].c_str()
224                               : "";
225     OutBS.emitInt8(Byte.value(), Comment);
226   }
227   TmpBuf->Bytes.clear();
228   TmpBuf->Comments.clear();
229 }
230 
231 const DIType *DbgVariable::getType() const {
232   return getVariable()->getType();
233 }
234 
235 /// Get .debug_loc entry for the instruction range starting at MI.
236 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) {
237   const DIExpression *Expr = MI->getDebugExpression();
238   const bool IsVariadic = MI->isDebugValueList();
239   assert(MI->getNumOperands() >= 3);
240   SmallVector<DbgValueLocEntry, 4> DbgValueLocEntries;
241   for (const MachineOperand &Op : MI->debug_operands()) {
242     if (Op.isReg()) {
243       MachineLocation MLoc(Op.getReg(),
244                            MI->isNonListDebugValue() && MI->isDebugOffsetImm());
245       DbgValueLocEntries.push_back(DbgValueLocEntry(MLoc));
246     } else if (Op.isTargetIndex()) {
247       DbgValueLocEntries.push_back(
248           DbgValueLocEntry(TargetIndexLocation(Op.getIndex(), Op.getOffset())));
249     } else if (Op.isImm())
250       DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getImm()));
251     else if (Op.isFPImm())
252       DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getFPImm()));
253     else if (Op.isCImm())
254       DbgValueLocEntries.push_back(DbgValueLocEntry(Op.getCImm()));
255     else
256       llvm_unreachable("Unexpected debug operand in DBG_VALUE* instruction!");
257   }
258   return DbgValueLoc(Expr, DbgValueLocEntries, IsVariadic);
259 }
260 
261 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) {
262   assert(FrameIndexExprs.empty() && "Already initialized?");
263   assert(!ValueLoc.get() && "Already initialized?");
264 
265   assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable");
266   assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() &&
267          "Wrong inlined-at");
268 
269   ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue));
270   if (auto *E = DbgValue->getDebugExpression())
271     if (E->getNumElements())
272       FrameIndexExprs.push_back({0, E});
273 }
274 
275 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const {
276   if (FrameIndexExprs.size() == 1)
277     return FrameIndexExprs;
278 
279   assert(llvm::all_of(FrameIndexExprs,
280                       [](const FrameIndexExpr &A) {
281                         return A.Expr->isFragment();
282                       }) &&
283          "multiple FI expressions without DW_OP_LLVM_fragment");
284   llvm::sort(FrameIndexExprs,
285              [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool {
286                return A.Expr->getFragmentInfo()->OffsetInBits <
287                       B.Expr->getFragmentInfo()->OffsetInBits;
288              });
289 
290   return FrameIndexExprs;
291 }
292 
293 void DbgVariable::addMMIEntry(const DbgVariable &V) {
294   assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry");
295   assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry");
296   assert(V.getVariable() == getVariable() && "conflicting variable");
297   assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location");
298 
299   assert(!FrameIndexExprs.empty() && "Expected an MMI entry");
300   assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry");
301 
302   // FIXME: This logic should not be necessary anymore, as we now have proper
303   // deduplication. However, without it, we currently run into the assertion
304   // below, which means that we are likely dealing with broken input, i.e. two
305   // non-fragment entries for the same variable at different frame indices.
306   if (FrameIndexExprs.size()) {
307     auto *Expr = FrameIndexExprs.back().Expr;
308     if (!Expr || !Expr->isFragment())
309       return;
310   }
311 
312   for (const auto &FIE : V.FrameIndexExprs)
313     // Ignore duplicate entries.
314     if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) {
315           return FIE.FI == Other.FI && FIE.Expr == Other.Expr;
316         }))
317       FrameIndexExprs.push_back(FIE);
318 
319   assert((FrameIndexExprs.size() == 1 ||
320           llvm::all_of(FrameIndexExprs,
321                        [](FrameIndexExpr &FIE) {
322                          return FIE.Expr && FIE.Expr->isFragment();
323                        })) &&
324          "conflicting locations for variable");
325 }
326 
327 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion,
328                                             bool GenerateTypeUnits,
329                                             DebuggerKind Tuning,
330                                             const Triple &TT) {
331   // Honor an explicit request.
332   if (AccelTables != AccelTableKind::Default)
333     return AccelTables;
334 
335   // Accelerator tables with type units are currently not supported.
336   if (GenerateTypeUnits)
337     return AccelTableKind::None;
338 
339   // Accelerator tables get emitted if targetting DWARF v5 or LLDB.  DWARF v5
340   // always implies debug_names. For lower standard versions we use apple
341   // accelerator tables on apple platforms and debug_names elsewhere.
342   if (DwarfVersion >= 5)
343     return AccelTableKind::Dwarf;
344   if (Tuning == DebuggerKind::LLDB)
345     return TT.isOSBinFormatMachO() ? AccelTableKind::Apple
346                                    : AccelTableKind::Dwarf;
347   return AccelTableKind::None;
348 }
349 
350 DwarfDebug::DwarfDebug(AsmPrinter *A)
351     : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()),
352       InfoHolder(A, "info_string", DIEValueAllocator),
353       SkeletonHolder(A, "skel_string", DIEValueAllocator),
354       IsDarwin(A->TM.getTargetTriple().isOSDarwin()) {
355   const Triple &TT = Asm->TM.getTargetTriple();
356 
357   // Make sure we know our "debugger tuning".  The target option takes
358   // precedence; fall back to triple-based defaults.
359   if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default)
360     DebuggerTuning = Asm->TM.Options.DebuggerTuning;
361   else if (IsDarwin)
362     DebuggerTuning = DebuggerKind::LLDB;
363   else if (TT.isPS4CPU())
364     DebuggerTuning = DebuggerKind::SCE;
365   else if (TT.isOSAIX())
366     DebuggerTuning = DebuggerKind::DBX;
367   else
368     DebuggerTuning = DebuggerKind::GDB;
369 
370   if (DwarfInlinedStrings == Default)
371     UseInlineStrings = TT.isNVPTX() || tuneForDBX();
372   else
373     UseInlineStrings = DwarfInlinedStrings == Enable;
374 
375   UseLocSection = !TT.isNVPTX();
376 
377   HasAppleExtensionAttributes = tuneForLLDB();
378 
379   // Handle split DWARF.
380   HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty();
381 
382   // SCE defaults to linkage names only for abstract subprograms.
383   if (DwarfLinkageNames == DefaultLinkageNames)
384     UseAllLinkageNames = !tuneForSCE();
385   else
386     UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames;
387 
388   unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion;
389   unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber
390                                     : MMI->getModule()->getDwarfVersion();
391   // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2.
392   DwarfVersion =
393       TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION);
394 
395   bool Dwarf64 = DwarfVersion >= 3 && // DWARF64 was introduced in DWARFv3.
396                  TT.isArch64Bit();    // DWARF64 requires 64-bit relocations.
397 
398   // Support DWARF64
399   // 1: For ELF when requested.
400   // 2: For XCOFF64: the AIX assembler will fill in debug section lengths
401   //    according to the DWARF64 format for 64-bit assembly, so we must use
402   //    DWARF64 in the compiler too for 64-bit mode.
403   Dwarf64 &=
404       ((Asm->TM.Options.MCOptions.Dwarf64 || MMI->getModule()->isDwarf64()) &&
405        TT.isOSBinFormatELF()) ||
406       TT.isOSBinFormatXCOFF();
407 
408   if (!Dwarf64 && TT.isArch64Bit() && TT.isOSBinFormatXCOFF())
409     report_fatal_error("XCOFF requires DWARF64 for 64-bit mode!");
410 
411   UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX();
412 
413   // Use sections as references. Force for NVPTX.
414   if (DwarfSectionsAsReferences == Default)
415     UseSectionsAsReferences = TT.isNVPTX();
416   else
417     UseSectionsAsReferences = DwarfSectionsAsReferences == Enable;
418 
419   // Don't generate type units for unsupported object file formats.
420   GenerateTypeUnits = (A->TM.getTargetTriple().isOSBinFormatELF() ||
421                        A->TM.getTargetTriple().isOSBinFormatWasm()) &&
422                       GenerateDwarfTypeUnits;
423 
424   TheAccelTableKind = computeAccelTableKind(
425       DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple());
426 
427   // Work around a GDB bug. GDB doesn't support the standard opcode;
428   // SCE doesn't support GNU's; LLDB prefers the standard opcode, which
429   // is defined as of DWARF 3.
430   // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented
431   // https://sourceware.org/bugzilla/show_bug.cgi?id=11616
432   UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3;
433 
434   // GDB does not fully support the DWARF 4 representation for bitfields.
435   UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB();
436 
437   // The DWARF v5 string offsets table has - possibly shared - contributions
438   // from each compile and type unit each preceded by a header. The string
439   // offsets table used by the pre-DWARF v5 split-DWARF implementation uses
440   // a monolithic string offsets table without any header.
441   UseSegmentedStringOffsetsTable = DwarfVersion >= 5;
442 
443   // Emit call-site-param debug info for GDB and LLDB, if the target supports
444   // the debug entry values feature. It can also be enabled explicitly.
445   EmitDebugEntryValues = Asm->TM.Options.ShouldEmitDebugEntryValues();
446 
447   // It is unclear if the GCC .debug_macro extension is well-specified
448   // for split DWARF. For now, do not allow LLVM to emit it.
449   UseDebugMacroSection =
450       DwarfVersion >= 5 || (UseGNUDebugMacro && !useSplitDwarf());
451   if (DwarfOpConvert == Default)
452     EnableOpConvert = !((tuneForGDB() && useSplitDwarf()) || (tuneForLLDB() && !TT.isOSBinFormatMachO()));
453   else
454     EnableOpConvert = (DwarfOpConvert == Enable);
455 
456   // Split DWARF would benefit object size significantly by trading reductions
457   // in address pool usage for slightly increased range list encodings.
458   if (DwarfVersion >= 5) {
459     MinimizeAddr = MinimizeAddrInV5Option;
460     // FIXME: In the future, enable this by default for Split DWARF where the
461     // tradeoff is more pronounced due to being able to offload the range
462     // lists to the dwo file and shrink object files/reduce relocations there.
463     if (MinimizeAddr == MinimizeAddrInV5::Default)
464       MinimizeAddr = MinimizeAddrInV5::Disabled;
465   }
466 
467   Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion);
468   Asm->OutStreamer->getContext().setDwarfFormat(Dwarf64 ? dwarf::DWARF64
469                                                         : dwarf::DWARF32);
470 }
471 
472 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h.
473 DwarfDebug::~DwarfDebug() = default;
474 
475 static bool isObjCClass(StringRef Name) {
476   return Name.startswith("+") || Name.startswith("-");
477 }
478 
479 static bool hasObjCCategory(StringRef Name) {
480   if (!isObjCClass(Name))
481     return false;
482 
483   return Name.contains(") ");
484 }
485 
486 static void getObjCClassCategory(StringRef In, StringRef &Class,
487                                  StringRef &Category) {
488   if (!hasObjCCategory(In)) {
489     Class = In.slice(In.find('[') + 1, In.find(' '));
490     Category = "";
491     return;
492   }
493 
494   Class = In.slice(In.find('[') + 1, In.find('('));
495   Category = In.slice(In.find('[') + 1, In.find(' '));
496 }
497 
498 static StringRef getObjCMethodName(StringRef In) {
499   return In.slice(In.find(' ') + 1, In.find(']'));
500 }
501 
502 // Add the various names to the Dwarf accelerator table names.
503 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU,
504                                     const DISubprogram *SP, DIE &Die) {
505   if (getAccelTableKind() != AccelTableKind::Apple &&
506       CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None)
507     return;
508 
509   if (!SP->isDefinition())
510     return;
511 
512   if (SP->getName() != "")
513     addAccelName(CU, SP->getName(), Die);
514 
515   // If the linkage name is different than the name, go ahead and output that as
516   // well into the name table. Only do that if we are going to actually emit
517   // that name.
518   if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() &&
519       (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP)))
520     addAccelName(CU, SP->getLinkageName(), Die);
521 
522   // If this is an Objective-C selector name add it to the ObjC accelerator
523   // too.
524   if (isObjCClass(SP->getName())) {
525     StringRef Class, Category;
526     getObjCClassCategory(SP->getName(), Class, Category);
527     addAccelObjC(CU, Class, Die);
528     if (Category != "")
529       addAccelObjC(CU, Category, Die);
530     // Also add the base method name to the name table.
531     addAccelName(CU, getObjCMethodName(SP->getName()), Die);
532   }
533 }
534 
535 /// Check whether we should create a DIE for the given Scope, return true
536 /// if we don't create a DIE (the corresponding DIE is null).
537 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) {
538   if (Scope->isAbstractScope())
539     return false;
540 
541   // We don't create a DIE if there is no Range.
542   const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges();
543   if (Ranges.empty())
544     return true;
545 
546   if (Ranges.size() > 1)
547     return false;
548 
549   // We don't create a DIE if we have a single Range and the end label
550   // is null.
551   return !getLabelAfterInsn(Ranges.front().second);
552 }
553 
554 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) {
555   F(CU);
556   if (auto *SkelCU = CU.getSkeleton())
557     if (CU.getCUNode()->getSplitDebugInlining())
558       F(*SkelCU);
559 }
560 
561 bool DwarfDebug::shareAcrossDWOCUs() const {
562   return SplitDwarfCrossCuReferences;
563 }
564 
565 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU,
566                                                      LexicalScope *Scope) {
567   assert(Scope && Scope->getScopeNode());
568   assert(Scope->isAbstractScope());
569   assert(!Scope->getInlinedAt());
570 
571   auto *SP = cast<DISubprogram>(Scope->getScopeNode());
572 
573   // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
574   // was inlined from another compile unit.
575   if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining())
576     // Avoid building the original CU if it won't be used
577     SrcCU.constructAbstractSubprogramScopeDIE(Scope);
578   else {
579     auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
580     if (auto *SkelCU = CU.getSkeleton()) {
581       (shareAcrossDWOCUs() ? CU : SrcCU)
582           .constructAbstractSubprogramScopeDIE(Scope);
583       if (CU.getCUNode()->getSplitDebugInlining())
584         SkelCU->constructAbstractSubprogramScopeDIE(Scope);
585     } else
586       CU.constructAbstractSubprogramScopeDIE(Scope);
587   }
588 }
589 
590 /// Represents a parameter whose call site value can be described by applying a
591 /// debug expression to a register in the forwarded register worklist.
592 struct FwdRegParamInfo {
593   /// The described parameter register.
594   unsigned ParamReg;
595 
596   /// Debug expression that has been built up when walking through the
597   /// instruction chain that produces the parameter's value.
598   const DIExpression *Expr;
599 };
600 
601 /// Register worklist for finding call site values.
602 using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>;
603 
604 /// Append the expression \p Addition to \p Original and return the result.
605 static const DIExpression *combineDIExpressions(const DIExpression *Original,
606                                                 const DIExpression *Addition) {
607   std::vector<uint64_t> Elts = Addition->getElements().vec();
608   // Avoid multiple DW_OP_stack_values.
609   if (Original->isImplicit() && Addition->isImplicit())
610     erase_value(Elts, dwarf::DW_OP_stack_value);
611   const DIExpression *CombinedExpr =
612       (Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original;
613   return CombinedExpr;
614 }
615 
616 /// Emit call site parameter entries that are described by the given value and
617 /// debug expression.
618 template <typename ValT>
619 static void finishCallSiteParams(ValT Val, const DIExpression *Expr,
620                                  ArrayRef<FwdRegParamInfo> DescribedParams,
621                                  ParamSet &Params) {
622   for (auto Param : DescribedParams) {
623     bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0;
624 
625     // TODO: Entry value operations can currently not be combined with any
626     // other expressions, so we can't emit call site entries in those cases.
627     if (ShouldCombineExpressions && Expr->isEntryValue())
628       continue;
629 
630     // If a parameter's call site value is produced by a chain of
631     // instructions we may have already created an expression for the
632     // parameter when walking through the instructions. Append that to the
633     // base expression.
634     const DIExpression *CombinedExpr =
635         ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr)
636                                  : Expr;
637     assert((!CombinedExpr || CombinedExpr->isValid()) &&
638            "Combined debug expression is invalid");
639 
640     DbgValueLoc DbgLocVal(CombinedExpr, DbgValueLocEntry(Val));
641     DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal);
642     Params.push_back(CSParm);
643     ++NumCSParams;
644   }
645 }
646 
647 /// Add \p Reg to the worklist, if it's not already present, and mark that the
648 /// given parameter registers' values can (potentially) be described using
649 /// that register and an debug expression.
650 static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg,
651                                 const DIExpression *Expr,
652                                 ArrayRef<FwdRegParamInfo> ParamsToAdd) {
653   auto I = Worklist.insert({Reg, {}});
654   auto &ParamsForFwdReg = I.first->second;
655   for (auto Param : ParamsToAdd) {
656     assert(none_of(ParamsForFwdReg,
657                    [Param](const FwdRegParamInfo &D) {
658                      return D.ParamReg == Param.ParamReg;
659                    }) &&
660            "Same parameter described twice by forwarding reg");
661 
662     // If a parameter's call site value is produced by a chain of
663     // instructions we may have already created an expression for the
664     // parameter when walking through the instructions. Append that to the
665     // new expression.
666     const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr);
667     ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr});
668   }
669 }
670 
671 /// Interpret values loaded into registers by \p CurMI.
672 static void interpretValues(const MachineInstr *CurMI,
673                             FwdRegWorklist &ForwardedRegWorklist,
674                             ParamSet &Params) {
675 
676   const MachineFunction *MF = CurMI->getMF();
677   const DIExpression *EmptyExpr =
678       DIExpression::get(MF->getFunction().getContext(), {});
679   const auto &TRI = *MF->getSubtarget().getRegisterInfo();
680   const auto &TII = *MF->getSubtarget().getInstrInfo();
681   const auto &TLI = *MF->getSubtarget().getTargetLowering();
682 
683   // If an instruction defines more than one item in the worklist, we may run
684   // into situations where a worklist register's value is (potentially)
685   // described by the previous value of another register that is also defined
686   // by that instruction.
687   //
688   // This can for example occur in cases like this:
689   //
690   //   $r1 = mov 123
691   //   $r0, $r1 = mvrr $r1, 456
692   //   call @foo, $r0, $r1
693   //
694   // When describing $r1's value for the mvrr instruction, we need to make sure
695   // that we don't finalize an entry value for $r0, as that is dependent on the
696   // previous value of $r1 (123 rather than 456).
697   //
698   // In order to not have to distinguish between those cases when finalizing
699   // entry values, we simply postpone adding new parameter registers to the
700   // worklist, by first keeping them in this temporary container until the
701   // instruction has been handled.
702   FwdRegWorklist TmpWorklistItems;
703 
704   // If the MI is an instruction defining one or more parameters' forwarding
705   // registers, add those defines.
706   auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI,
707                                           SmallSetVector<unsigned, 4> &Defs) {
708     if (MI.isDebugInstr())
709       return;
710 
711     for (const MachineOperand &MO : MI.operands()) {
712       if (MO.isReg() && MO.isDef() &&
713           Register::isPhysicalRegister(MO.getReg())) {
714         for (auto &FwdReg : ForwardedRegWorklist)
715           if (TRI.regsOverlap(FwdReg.first, MO.getReg()))
716             Defs.insert(FwdReg.first);
717       }
718     }
719   };
720 
721   // Set of worklist registers that are defined by this instruction.
722   SmallSetVector<unsigned, 4> FwdRegDefs;
723 
724   getForwardingRegsDefinedByMI(*CurMI, FwdRegDefs);
725   if (FwdRegDefs.empty())
726     return;
727 
728   for (auto ParamFwdReg : FwdRegDefs) {
729     if (auto ParamValue = TII.describeLoadedValue(*CurMI, ParamFwdReg)) {
730       if (ParamValue->first.isImm()) {
731         int64_t Val = ParamValue->first.getImm();
732         finishCallSiteParams(Val, ParamValue->second,
733                              ForwardedRegWorklist[ParamFwdReg], Params);
734       } else if (ParamValue->first.isReg()) {
735         Register RegLoc = ParamValue->first.getReg();
736         Register SP = TLI.getStackPointerRegisterToSaveRestore();
737         Register FP = TRI.getFrameRegister(*MF);
738         bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP);
739         if (TRI.isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) {
740           MachineLocation MLoc(RegLoc, /*Indirect=*/IsSPorFP);
741           finishCallSiteParams(MLoc, ParamValue->second,
742                                ForwardedRegWorklist[ParamFwdReg], Params);
743         } else {
744           // ParamFwdReg was described by the non-callee saved register
745           // RegLoc. Mark that the call site values for the parameters are
746           // dependent on that register instead of ParamFwdReg. Since RegLoc
747           // may be a register that will be handled in this iteration, we
748           // postpone adding the items to the worklist, and instead keep them
749           // in a temporary container.
750           addToFwdRegWorklist(TmpWorklistItems, RegLoc, ParamValue->second,
751                               ForwardedRegWorklist[ParamFwdReg]);
752         }
753       }
754     }
755   }
756 
757   // Remove all registers that this instruction defines from the worklist.
758   for (auto ParamFwdReg : FwdRegDefs)
759     ForwardedRegWorklist.erase(ParamFwdReg);
760 
761   // Now that we are done handling this instruction, add items from the
762   // temporary worklist to the real one.
763   for (auto &New : TmpWorklistItems)
764     addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, New.second);
765   TmpWorklistItems.clear();
766 }
767 
768 static bool interpretNextInstr(const MachineInstr *CurMI,
769                                FwdRegWorklist &ForwardedRegWorklist,
770                                ParamSet &Params) {
771   // Skip bundle headers.
772   if (CurMI->isBundle())
773     return true;
774 
775   // If the next instruction is a call we can not interpret parameter's
776   // forwarding registers or we finished the interpretation of all
777   // parameters.
778   if (CurMI->isCall())
779     return false;
780 
781   if (ForwardedRegWorklist.empty())
782     return false;
783 
784   // Avoid NOP description.
785   if (CurMI->getNumOperands() == 0)
786     return true;
787 
788   interpretValues(CurMI, ForwardedRegWorklist, Params);
789 
790   return true;
791 }
792 
793 /// Try to interpret values loaded into registers that forward parameters
794 /// for \p CallMI. Store parameters with interpreted value into \p Params.
795 static void collectCallSiteParameters(const MachineInstr *CallMI,
796                                       ParamSet &Params) {
797   const MachineFunction *MF = CallMI->getMF();
798   const auto &CalleesMap = MF->getCallSitesInfo();
799   auto CallFwdRegsInfo = CalleesMap.find(CallMI);
800 
801   // There is no information for the call instruction.
802   if (CallFwdRegsInfo == CalleesMap.end())
803     return;
804 
805   const MachineBasicBlock *MBB = CallMI->getParent();
806 
807   // Skip the call instruction.
808   auto I = std::next(CallMI->getReverseIterator());
809 
810   FwdRegWorklist ForwardedRegWorklist;
811 
812   const DIExpression *EmptyExpr =
813       DIExpression::get(MF->getFunction().getContext(), {});
814 
815   // Add all the forwarding registers into the ForwardedRegWorklist.
816   for (const auto &ArgReg : CallFwdRegsInfo->second) {
817     bool InsertedReg =
818         ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}})
819             .second;
820     assert(InsertedReg && "Single register used to forward two arguments?");
821     (void)InsertedReg;
822   }
823 
824   // Do not emit CSInfo for undef forwarding registers.
825   for (auto &MO : CallMI->uses())
826     if (MO.isReg() && MO.isUndef())
827       ForwardedRegWorklist.erase(MO.getReg());
828 
829   // We erase, from the ForwardedRegWorklist, those forwarding registers for
830   // which we successfully describe a loaded value (by using
831   // the describeLoadedValue()). For those remaining arguments in the working
832   // list, for which we do not describe a loaded value by
833   // the describeLoadedValue(), we try to generate an entry value expression
834   // for their call site value description, if the call is within the entry MBB.
835   // TODO: Handle situations when call site parameter value can be described
836   // as the entry value within basic blocks other than the first one.
837   bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin();
838 
839   // Search for a loading value in forwarding registers inside call delay slot.
840   if (CallMI->hasDelaySlot()) {
841     auto Suc = std::next(CallMI->getIterator());
842     // Only one-instruction delay slot is supported.
843     auto BundleEnd = llvm::getBundleEnd(CallMI->getIterator());
844     (void)BundleEnd;
845     assert(std::next(Suc) == BundleEnd &&
846            "More than one instruction in call delay slot");
847     // Try to interpret value loaded by instruction.
848     if (!interpretNextInstr(&*Suc, ForwardedRegWorklist, Params))
849       return;
850   }
851 
852   // Search for a loading value in forwarding registers.
853   for (; I != MBB->rend(); ++I) {
854     // Try to interpret values loaded by instruction.
855     if (!interpretNextInstr(&*I, ForwardedRegWorklist, Params))
856       return;
857   }
858 
859   // Emit the call site parameter's value as an entry value.
860   if (ShouldTryEmitEntryVals) {
861     // Create an expression where the register's entry value is used.
862     DIExpression *EntryExpr = DIExpression::get(
863         MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1});
864     for (auto &RegEntry : ForwardedRegWorklist) {
865       MachineLocation MLoc(RegEntry.first);
866       finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params);
867     }
868   }
869 }
870 
871 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP,
872                                             DwarfCompileUnit &CU, DIE &ScopeDIE,
873                                             const MachineFunction &MF) {
874   // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if
875   // the subprogram is required to have one.
876   if (!SP.areAllCallsDescribed() || !SP.isDefinition())
877     return;
878 
879   // Use DW_AT_call_all_calls to express that call site entries are present
880   // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls
881   // because one of its requirements is not met: call site entries for
882   // optimized-out calls are elided.
883   CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls));
884 
885   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
886   assert(TII && "TargetInstrInfo not found: cannot label tail calls");
887 
888   // Delay slot support check.
889   auto delaySlotSupported = [&](const MachineInstr &MI) {
890     if (!MI.isBundledWithSucc())
891       return false;
892     auto Suc = std::next(MI.getIterator());
893     auto CallInstrBundle = getBundleStart(MI.getIterator());
894     (void)CallInstrBundle;
895     auto DelaySlotBundle = getBundleStart(Suc);
896     (void)DelaySlotBundle;
897     // Ensure that label after call is following delay slot instruction.
898     // Ex. CALL_INSTRUCTION {
899     //       DELAY_SLOT_INSTRUCTION }
900     //      LABEL_AFTER_CALL
901     assert(getLabelAfterInsn(&*CallInstrBundle) ==
902                getLabelAfterInsn(&*DelaySlotBundle) &&
903            "Call and its successor instruction don't have same label after.");
904     return true;
905   };
906 
907   // Emit call site entries for each call or tail call in the function.
908   for (const MachineBasicBlock &MBB : MF) {
909     for (const MachineInstr &MI : MBB.instrs()) {
910       // Bundles with call in them will pass the isCall() test below but do not
911       // have callee operand information so skip them here. Iterator will
912       // eventually reach the call MI.
913       if (MI.isBundle())
914         continue;
915 
916       // Skip instructions which aren't calls. Both calls and tail-calling jump
917       // instructions (e.g TAILJMPd64) are classified correctly here.
918       if (!MI.isCandidateForCallSiteEntry())
919         continue;
920 
921       // Skip instructions marked as frame setup, as they are not interesting to
922       // the user.
923       if (MI.getFlag(MachineInstr::FrameSetup))
924         continue;
925 
926       // Check if delay slot support is enabled.
927       if (MI.hasDelaySlot() && !delaySlotSupported(*&MI))
928         return;
929 
930       // If this is a direct call, find the callee's subprogram.
931       // In the case of an indirect call find the register that holds
932       // the callee.
933       const MachineOperand &CalleeOp = TII->getCalleeOperand(MI);
934       if (!CalleeOp.isGlobal() &&
935           (!CalleeOp.isReg() ||
936            !Register::isPhysicalRegister(CalleeOp.getReg())))
937         continue;
938 
939       unsigned CallReg = 0;
940       const DISubprogram *CalleeSP = nullptr;
941       const Function *CalleeDecl = nullptr;
942       if (CalleeOp.isReg()) {
943         CallReg = CalleeOp.getReg();
944         if (!CallReg)
945           continue;
946       } else {
947         CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal());
948         if (!CalleeDecl || !CalleeDecl->getSubprogram())
949           continue;
950         CalleeSP = CalleeDecl->getSubprogram();
951       }
952 
953       // TODO: Omit call site entries for runtime calls (objc_msgSend, etc).
954 
955       bool IsTail = TII->isTailCall(MI);
956 
957       // If MI is in a bundle, the label was created after the bundle since
958       // EmitFunctionBody iterates over top-level MIs. Get that top-level MI
959       // to search for that label below.
960       const MachineInstr *TopLevelCallMI =
961           MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI;
962 
963       // For non-tail calls, the return PC is needed to disambiguate paths in
964       // the call graph which could lead to some target function. For tail
965       // calls, no return PC information is needed, unless tuning for GDB in
966       // DWARF4 mode in which case we fake a return PC for compatibility.
967       const MCSymbol *PCAddr =
968           (!IsTail || CU.useGNUAnalogForDwarf5Feature())
969               ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI))
970               : nullptr;
971 
972       // For tail calls, it's necessary to record the address of the branch
973       // instruction so that the debugger can show where the tail call occurred.
974       const MCSymbol *CallAddr =
975           IsTail ? getLabelBeforeInsn(TopLevelCallMI) : nullptr;
976 
977       assert((IsTail || PCAddr) && "Non-tail call without return PC");
978 
979       LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> "
980                         << (CalleeDecl ? CalleeDecl->getName()
981                                        : StringRef(MF.getSubtarget()
982                                                        .getRegisterInfo()
983                                                        ->getName(CallReg)))
984                         << (IsTail ? " [IsTail]" : "") << "\n");
985 
986       DIE &CallSiteDIE = CU.constructCallSiteEntryDIE(
987           ScopeDIE, CalleeSP, IsTail, PCAddr, CallAddr, CallReg);
988 
989       // Optionally emit call-site-param debug info.
990       if (emitDebugEntryValues()) {
991         ParamSet Params;
992         // Try to interpret values of call site parameters.
993         collectCallSiteParameters(&MI, Params);
994         CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params);
995       }
996     }
997   }
998 }
999 
1000 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const {
1001   if (!U.hasDwarfPubSections())
1002     return;
1003 
1004   U.addFlag(D, dwarf::DW_AT_GNU_pubnames);
1005 }
1006 
1007 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit,
1008                                       DwarfCompileUnit &NewCU) {
1009   DIE &Die = NewCU.getUnitDie();
1010   StringRef FN = DIUnit->getFilename();
1011 
1012   StringRef Producer = DIUnit->getProducer();
1013   StringRef Flags = DIUnit->getFlags();
1014   if (!Flags.empty() && !useAppleExtensionAttributes()) {
1015     std::string ProducerWithFlags = Producer.str() + " " + Flags.str();
1016     NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags);
1017   } else
1018     NewCU.addString(Die, dwarf::DW_AT_producer, Producer);
1019 
1020   NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
1021                 DIUnit->getSourceLanguage());
1022   NewCU.addString(Die, dwarf::DW_AT_name, FN);
1023   StringRef SysRoot = DIUnit->getSysRoot();
1024   if (!SysRoot.empty())
1025     NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot);
1026   StringRef SDK = DIUnit->getSDK();
1027   if (!SDK.empty())
1028     NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK);
1029 
1030   // Add DW_str_offsets_base to the unit DIE, except for split units.
1031   if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
1032     NewCU.addStringOffsetsStart();
1033 
1034   if (!useSplitDwarf()) {
1035     NewCU.initStmtList();
1036 
1037     // If we're using split dwarf the compilation dir is going to be in the
1038     // skeleton CU and so we don't need to duplicate it here.
1039     if (!CompilationDir.empty())
1040       NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
1041     addGnuPubAttributes(NewCU, Die);
1042   }
1043 
1044   if (useAppleExtensionAttributes()) {
1045     if (DIUnit->isOptimized())
1046       NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized);
1047 
1048     StringRef Flags = DIUnit->getFlags();
1049     if (!Flags.empty())
1050       NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags);
1051 
1052     if (unsigned RVer = DIUnit->getRuntimeVersion())
1053       NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers,
1054                     dwarf::DW_FORM_data1, RVer);
1055   }
1056 
1057   if (DIUnit->getDWOId()) {
1058     // This CU is either a clang module DWO or a skeleton CU.
1059     NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8,
1060                   DIUnit->getDWOId());
1061     if (!DIUnit->getSplitDebugFilename().empty()) {
1062       // This is a prefabricated skeleton CU.
1063       dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
1064                                          ? dwarf::DW_AT_dwo_name
1065                                          : dwarf::DW_AT_GNU_dwo_name;
1066       NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename());
1067     }
1068   }
1069 }
1070 // Create new DwarfCompileUnit for the given metadata node with tag
1071 // DW_TAG_compile_unit.
1072 DwarfCompileUnit &
1073 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) {
1074   if (auto *CU = CUMap.lookup(DIUnit))
1075     return *CU;
1076 
1077   CompilationDir = DIUnit->getDirectory();
1078 
1079   auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
1080       InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder);
1081   DwarfCompileUnit &NewCU = *OwnedUnit;
1082   InfoHolder.addUnit(std::move(OwnedUnit));
1083 
1084   for (auto *IE : DIUnit->getImportedEntities())
1085     NewCU.addImportedEntity(IE);
1086 
1087   // LTO with assembly output shares a single line table amongst multiple CUs.
1088   // To avoid the compilation directory being ambiguous, let the line table
1089   // explicitly describe the directory of all files, never relying on the
1090   // compilation directory.
1091   if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU)
1092     Asm->OutStreamer->emitDwarfFile0Directive(
1093         CompilationDir, DIUnit->getFilename(), getMD5AsBytes(DIUnit->getFile()),
1094         DIUnit->getSource(), NewCU.getUniqueID());
1095 
1096   if (useSplitDwarf()) {
1097     NewCU.setSkeleton(constructSkeletonCU(NewCU));
1098     NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection());
1099   } else {
1100     finishUnitAttributes(DIUnit, NewCU);
1101     NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
1102   }
1103 
1104   CUMap.insert({DIUnit, &NewCU});
1105   CUDieMap.insert({&NewCU.getUnitDie(), &NewCU});
1106   return NewCU;
1107 }
1108 
1109 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU,
1110                                                   const DIImportedEntity *N) {
1111   if (isa<DILocalScope>(N->getScope()))
1112     return;
1113   if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope()))
1114     D->addChild(TheCU.constructImportedEntityDIE(N));
1115 }
1116 
1117 /// Sort and unique GVEs by comparing their fragment offset.
1118 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &
1119 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) {
1120   llvm::sort(
1121       GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) {
1122         // Sort order: first null exprs, then exprs without fragment
1123         // info, then sort by fragment offset in bits.
1124         // FIXME: Come up with a more comprehensive comparator so
1125         // the sorting isn't non-deterministic, and so the following
1126         // std::unique call works correctly.
1127         if (!A.Expr || !B.Expr)
1128           return !!B.Expr;
1129         auto FragmentA = A.Expr->getFragmentInfo();
1130         auto FragmentB = B.Expr->getFragmentInfo();
1131         if (!FragmentA || !FragmentB)
1132           return !!FragmentB;
1133         return FragmentA->OffsetInBits < FragmentB->OffsetInBits;
1134       });
1135   GVEs.erase(std::unique(GVEs.begin(), GVEs.end(),
1136                          [](DwarfCompileUnit::GlobalExpr A,
1137                             DwarfCompileUnit::GlobalExpr B) {
1138                            return A.Expr == B.Expr;
1139                          }),
1140              GVEs.end());
1141   return GVEs;
1142 }
1143 
1144 // Emit all Dwarf sections that should come prior to the content. Create
1145 // global DIEs and emit initial debug info sections. This is invoked by
1146 // the target AsmPrinter.
1147 void DwarfDebug::beginModule(Module *M) {
1148   DebugHandlerBase::beginModule(M);
1149 
1150   if (!Asm || !MMI->hasDebugInfo())
1151     return;
1152 
1153   unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(),
1154                                        M->debug_compile_units_end());
1155   assert(NumDebugCUs > 0 && "Asm unexpectedly initialized");
1156   assert(MMI->hasDebugInfo() &&
1157          "DebugInfoAvailabilty unexpectedly not initialized");
1158   SingleCU = NumDebugCUs == 1;
1159   DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>>
1160       GVMap;
1161   for (const GlobalVariable &Global : M->globals()) {
1162     SmallVector<DIGlobalVariableExpression *, 1> GVs;
1163     Global.getDebugInfo(GVs);
1164     for (auto *GVE : GVs)
1165       GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()});
1166   }
1167 
1168   // Create the symbol that designates the start of the unit's contribution
1169   // to the string offsets table. In a split DWARF scenario, only the skeleton
1170   // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol).
1171   if (useSegmentedStringOffsetsTable())
1172     (useSplitDwarf() ? SkeletonHolder : InfoHolder)
1173         .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base"));
1174 
1175 
1176   // Create the symbols that designates the start of the DWARF v5 range list
1177   // and locations list tables. They are located past the table headers.
1178   if (getDwarfVersion() >= 5) {
1179     DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1180     Holder.setRnglistsTableBaseSym(
1181         Asm->createTempSymbol("rnglists_table_base"));
1182 
1183     if (useSplitDwarf())
1184       InfoHolder.setRnglistsTableBaseSym(
1185           Asm->createTempSymbol("rnglists_dwo_table_base"));
1186   }
1187 
1188   // Create the symbol that points to the first entry following the debug
1189   // address table (.debug_addr) header.
1190   AddrPool.setLabel(Asm->createTempSymbol("addr_table_base"));
1191   DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base"));
1192 
1193   for (DICompileUnit *CUNode : M->debug_compile_units()) {
1194     // FIXME: Move local imported entities into a list attached to the
1195     // subprogram, then this search won't be needed and a
1196     // getImportedEntities().empty() test should go below with the rest.
1197     bool HasNonLocalImportedEntities = llvm::any_of(
1198         CUNode->getImportedEntities(), [](const DIImportedEntity *IE) {
1199           return !isa<DILocalScope>(IE->getScope());
1200         });
1201 
1202     if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() &&
1203         CUNode->getRetainedTypes().empty() &&
1204         CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty())
1205       continue;
1206 
1207     DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode);
1208 
1209     // Global Variables.
1210     for (auto *GVE : CUNode->getGlobalVariables()) {
1211       // Don't bother adding DIGlobalVariableExpressions listed in the CU if we
1212       // already know about the variable and it isn't adding a constant
1213       // expression.
1214       auto &GVMapEntry = GVMap[GVE->getVariable()];
1215       auto *Expr = GVE->getExpression();
1216       if (!GVMapEntry.size() || (Expr && Expr->isConstant()))
1217         GVMapEntry.push_back({nullptr, Expr});
1218     }
1219 
1220     DenseSet<DIGlobalVariable *> Processed;
1221     for (auto *GVE : CUNode->getGlobalVariables()) {
1222       DIGlobalVariable *GV = GVE->getVariable();
1223       if (Processed.insert(GV).second)
1224         CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV]));
1225     }
1226 
1227     for (auto *Ty : CUNode->getEnumTypes()) {
1228       // The enum types array by design contains pointers to
1229       // MDNodes rather than DIRefs. Unique them here.
1230       CU.getOrCreateTypeDIE(cast<DIType>(Ty));
1231     }
1232     for (auto *Ty : CUNode->getRetainedTypes()) {
1233       // The retained types array by design contains pointers to
1234       // MDNodes rather than DIRefs. Unique them here.
1235       if (DIType *RT = dyn_cast<DIType>(Ty))
1236           // There is no point in force-emitting a forward declaration.
1237           CU.getOrCreateTypeDIE(RT);
1238     }
1239     // Emit imported_modules last so that the relevant context is already
1240     // available.
1241     for (auto *IE : CUNode->getImportedEntities())
1242       constructAndAddImportedEntityDIE(CU, IE);
1243   }
1244 }
1245 
1246 void DwarfDebug::finishEntityDefinitions() {
1247   for (const auto &Entity : ConcreteEntities) {
1248     DIE *Die = Entity->getDIE();
1249     assert(Die);
1250     // FIXME: Consider the time-space tradeoff of just storing the unit pointer
1251     // in the ConcreteEntities list, rather than looking it up again here.
1252     // DIE::getUnit isn't simple - it walks parent pointers, etc.
1253     DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie());
1254     assert(Unit);
1255     Unit->finishEntityDefinition(Entity.get());
1256   }
1257 }
1258 
1259 void DwarfDebug::finishSubprogramDefinitions() {
1260   for (const DISubprogram *SP : ProcessedSPNodes) {
1261     assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug);
1262     forBothCUs(
1263         getOrCreateDwarfCompileUnit(SP->getUnit()),
1264         [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); });
1265   }
1266 }
1267 
1268 void DwarfDebug::finalizeModuleInfo() {
1269   const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
1270 
1271   finishSubprogramDefinitions();
1272 
1273   finishEntityDefinitions();
1274 
1275   // Include the DWO file name in the hash if there's more than one CU.
1276   // This handles ThinLTO's situation where imported CUs may very easily be
1277   // duplicate with the same CU partially imported into another ThinLTO unit.
1278   StringRef DWOName;
1279   if (CUMap.size() > 1)
1280     DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile;
1281 
1282   // Handle anything that needs to be done on a per-unit basis after
1283   // all other generation.
1284   for (const auto &P : CUMap) {
1285     auto &TheCU = *P.second;
1286     if (TheCU.getCUNode()->isDebugDirectivesOnly())
1287       continue;
1288     // Emit DW_AT_containing_type attribute to connect types with their
1289     // vtable holding type.
1290     TheCU.constructContainingTypeDIEs();
1291 
1292     // Add CU specific attributes if we need to add any.
1293     // If we're splitting the dwarf out now that we've got the entire
1294     // CU then add the dwo id to it.
1295     auto *SkCU = TheCU.getSkeleton();
1296 
1297     bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty();
1298 
1299     if (HasSplitUnit) {
1300       dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
1301                                          ? dwarf::DW_AT_dwo_name
1302                                          : dwarf::DW_AT_GNU_dwo_name;
1303       finishUnitAttributes(TheCU.getCUNode(), TheCU);
1304       TheCU.addString(TheCU.getUnitDie(), attrDWOName,
1305                       Asm->TM.Options.MCOptions.SplitDwarfFile);
1306       SkCU->addString(SkCU->getUnitDie(), attrDWOName,
1307                       Asm->TM.Options.MCOptions.SplitDwarfFile);
1308       // Emit a unique identifier for this CU.
1309       uint64_t ID =
1310           DIEHash(Asm, &TheCU).computeCUSignature(DWOName, TheCU.getUnitDie());
1311       if (getDwarfVersion() >= 5) {
1312         TheCU.setDWOId(ID);
1313         SkCU->setDWOId(ID);
1314       } else {
1315         TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1316                       dwarf::DW_FORM_data8, ID);
1317         SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1318                       dwarf::DW_FORM_data8, ID);
1319       }
1320 
1321       if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) {
1322         const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol();
1323         SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base,
1324                               Sym, Sym);
1325       }
1326     } else if (SkCU) {
1327       finishUnitAttributes(SkCU->getCUNode(), *SkCU);
1328     }
1329 
1330     // If we have code split among multiple sections or non-contiguous
1331     // ranges of code then emit a DW_AT_ranges attribute on the unit that will
1332     // remain in the .o file, otherwise add a DW_AT_low_pc.
1333     // FIXME: We should use ranges allow reordering of code ala
1334     // .subsections_via_symbols in mach-o. This would mean turning on
1335     // ranges for all subprogram DIEs for mach-o.
1336     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
1337 
1338     if (unsigned NumRanges = TheCU.getRanges().size()) {
1339       if (NumRanges > 1 && useRangesSection())
1340         // A DW_AT_low_pc attribute may also be specified in combination with
1341         // DW_AT_ranges to specify the default base address for use in
1342         // location lists (see Section 2.6.2) and range lists (see Section
1343         // 2.17.3).
1344         U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0);
1345       else
1346         U.setBaseAddress(TheCU.getRanges().front().Begin);
1347       U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges());
1348     }
1349 
1350     // We don't keep track of which addresses are used in which CU so this
1351     // is a bit pessimistic under LTO.
1352     if ((HasSplitUnit || getDwarfVersion() >= 5) && !AddrPool.isEmpty())
1353       U.addAddrTableBase();
1354 
1355     if (getDwarfVersion() >= 5) {
1356       if (U.hasRangeLists())
1357         U.addRnglistsBase();
1358 
1359       if (!DebugLocs.getLists().empty()) {
1360         if (!useSplitDwarf())
1361           U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base,
1362                             DebugLocs.getSym(),
1363                             TLOF.getDwarfLoclistsSection()->getBeginSymbol());
1364       }
1365     }
1366 
1367     auto *CUNode = cast<DICompileUnit>(P.first);
1368     // If compile Unit has macros, emit "DW_AT_macro_info/DW_AT_macros"
1369     // attribute.
1370     if (CUNode->getMacros()) {
1371       if (UseDebugMacroSection) {
1372         if (useSplitDwarf())
1373           TheCU.addSectionDelta(
1374               TheCU.getUnitDie(), dwarf::DW_AT_macros, U.getMacroLabelBegin(),
1375               TLOF.getDwarfMacroDWOSection()->getBeginSymbol());
1376         else {
1377           dwarf::Attribute MacrosAttr = getDwarfVersion() >= 5
1378                                             ? dwarf::DW_AT_macros
1379                                             : dwarf::DW_AT_GNU_macros;
1380           U.addSectionLabel(U.getUnitDie(), MacrosAttr, U.getMacroLabelBegin(),
1381                             TLOF.getDwarfMacroSection()->getBeginSymbol());
1382         }
1383       } else {
1384         if (useSplitDwarf())
1385           TheCU.addSectionDelta(
1386               TheCU.getUnitDie(), dwarf::DW_AT_macro_info,
1387               U.getMacroLabelBegin(),
1388               TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol());
1389         else
1390           U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info,
1391                             U.getMacroLabelBegin(),
1392                             TLOF.getDwarfMacinfoSection()->getBeginSymbol());
1393       }
1394     }
1395     }
1396 
1397   // Emit all frontend-produced Skeleton CUs, i.e., Clang modules.
1398   for (auto *CUNode : MMI->getModule()->debug_compile_units())
1399     if (CUNode->getDWOId())
1400       getOrCreateDwarfCompileUnit(CUNode);
1401 
1402   // Compute DIE offsets and sizes.
1403   InfoHolder.computeSizeAndOffsets();
1404   if (useSplitDwarf())
1405     SkeletonHolder.computeSizeAndOffsets();
1406 }
1407 
1408 // Emit all Dwarf sections that should come after the content.
1409 void DwarfDebug::endModule() {
1410   assert(CurFn == nullptr);
1411   assert(CurMI == nullptr);
1412 
1413   for (const auto &P : CUMap) {
1414     auto &CU = *P.second;
1415     CU.createBaseTypeDIEs();
1416   }
1417 
1418   // If we aren't actually generating debug info (check beginModule -
1419   // conditionalized on the presence of the llvm.dbg.cu metadata node)
1420   if (!Asm || !MMI->hasDebugInfo())
1421     return;
1422 
1423   // Finalize the debug info for the module.
1424   finalizeModuleInfo();
1425 
1426   if (useSplitDwarf())
1427     // Emit debug_loc.dwo/debug_loclists.dwo section.
1428     emitDebugLocDWO();
1429   else
1430     // Emit debug_loc/debug_loclists section.
1431     emitDebugLoc();
1432 
1433   // Corresponding abbreviations into a abbrev section.
1434   emitAbbreviations();
1435 
1436   // Emit all the DIEs into a debug info section.
1437   emitDebugInfo();
1438 
1439   // Emit info into a debug aranges section.
1440   if (GenerateARangeSection)
1441     emitDebugARanges();
1442 
1443   // Emit info into a debug ranges section.
1444   emitDebugRanges();
1445 
1446   if (useSplitDwarf())
1447   // Emit info into a debug macinfo.dwo section.
1448     emitDebugMacinfoDWO();
1449   else
1450     // Emit info into a debug macinfo/macro section.
1451     emitDebugMacinfo();
1452 
1453   emitDebugStr();
1454 
1455   if (useSplitDwarf()) {
1456     emitDebugStrDWO();
1457     emitDebugInfoDWO();
1458     emitDebugAbbrevDWO();
1459     emitDebugLineDWO();
1460     emitDebugRangesDWO();
1461   }
1462 
1463   emitDebugAddr();
1464 
1465   // Emit info into the dwarf accelerator table sections.
1466   switch (getAccelTableKind()) {
1467   case AccelTableKind::Apple:
1468     emitAccelNames();
1469     emitAccelObjC();
1470     emitAccelNamespaces();
1471     emitAccelTypes();
1472     break;
1473   case AccelTableKind::Dwarf:
1474     emitAccelDebugNames();
1475     break;
1476   case AccelTableKind::None:
1477     break;
1478   case AccelTableKind::Default:
1479     llvm_unreachable("Default should have already been resolved.");
1480   }
1481 
1482   // Emit the pubnames and pubtypes sections if requested.
1483   emitDebugPubSections();
1484 
1485   // clean up.
1486   // FIXME: AbstractVariables.clear();
1487 }
1488 
1489 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU,
1490                                                const DINode *Node,
1491                                                const MDNode *ScopeNode) {
1492   if (CU.getExistingAbstractEntity(Node))
1493     return;
1494 
1495   CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope(
1496                                        cast<DILocalScope>(ScopeNode)));
1497 }
1498 
1499 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU,
1500     const DINode *Node, const MDNode *ScopeNode) {
1501   if (CU.getExistingAbstractEntity(Node))
1502     return;
1503 
1504   if (LexicalScope *Scope =
1505           LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode)))
1506     CU.createAbstractEntity(Node, Scope);
1507 }
1508 
1509 // Collect variable information from side table maintained by MF.
1510 void DwarfDebug::collectVariableInfoFromMFTable(
1511     DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) {
1512   SmallDenseMap<InlinedEntity, DbgVariable *> MFVars;
1513   LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n");
1514   for (const auto &VI : Asm->MF->getVariableDbgInfo()) {
1515     if (!VI.Var)
1516       continue;
1517     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1518            "Expected inlined-at fields to agree");
1519 
1520     InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt());
1521     Processed.insert(Var);
1522     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1523 
1524     // If variable scope is not found then skip this variable.
1525     if (!Scope) {
1526       LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName()
1527                         << ", no variable scope found\n");
1528       continue;
1529     }
1530 
1531     ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode());
1532     auto RegVar = std::make_unique<DbgVariable>(
1533                     cast<DILocalVariable>(Var.first), Var.second);
1534     RegVar->initializeMMI(VI.Expr, VI.Slot);
1535     LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName()
1536                       << "\n");
1537 
1538     if (DbgVariable *DbgVar = MFVars.lookup(Var))
1539       DbgVar->addMMIEntry(*RegVar);
1540     else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) {
1541       MFVars.insert({Var, RegVar.get()});
1542       ConcreteEntities.push_back(std::move(RegVar));
1543     }
1544   }
1545 }
1546 
1547 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its
1548 /// enclosing lexical scope. The check ensures there are no other instructions
1549 /// in the same lexical scope preceding the DBG_VALUE and that its range is
1550 /// either open or otherwise rolls off the end of the scope.
1551 static bool validThroughout(LexicalScopes &LScopes,
1552                             const MachineInstr *DbgValue,
1553                             const MachineInstr *RangeEnd,
1554                             const InstructionOrdering &Ordering) {
1555   assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location");
1556   auto MBB = DbgValue->getParent();
1557   auto DL = DbgValue->getDebugLoc();
1558   auto *LScope = LScopes.findLexicalScope(DL);
1559   // Scope doesn't exist; this is a dead DBG_VALUE.
1560   if (!LScope)
1561     return false;
1562   auto &LSRange = LScope->getRanges();
1563   if (LSRange.size() == 0)
1564     return false;
1565 
1566   const MachineInstr *LScopeBegin = LSRange.front().first;
1567   // If the scope starts before the DBG_VALUE then we may have a negative
1568   // result. Otherwise the location is live coming into the scope and we
1569   // can skip the following checks.
1570   if (!Ordering.isBefore(DbgValue, LScopeBegin)) {
1571     // Exit if the lexical scope begins outside of the current block.
1572     if (LScopeBegin->getParent() != MBB)
1573       return false;
1574 
1575     MachineBasicBlock::const_reverse_iterator Pred(DbgValue);
1576     for (++Pred; Pred != MBB->rend(); ++Pred) {
1577       if (Pred->getFlag(MachineInstr::FrameSetup))
1578         break;
1579       auto PredDL = Pred->getDebugLoc();
1580       if (!PredDL || Pred->isMetaInstruction())
1581         continue;
1582       // Check whether the instruction preceding the DBG_VALUE is in the same
1583       // (sub)scope as the DBG_VALUE.
1584       if (DL->getScope() == PredDL->getScope())
1585         return false;
1586       auto *PredScope = LScopes.findLexicalScope(PredDL);
1587       if (!PredScope || LScope->dominates(PredScope))
1588         return false;
1589     }
1590   }
1591 
1592   // If the range of the DBG_VALUE is open-ended, report success.
1593   if (!RangeEnd)
1594     return true;
1595 
1596   // Single, constant DBG_VALUEs in the prologue are promoted to be live
1597   // throughout the function. This is a hack, presumably for DWARF v2 and not
1598   // necessarily correct. It would be much better to use a dbg.declare instead
1599   // if we know the constant is live throughout the scope.
1600   if (MBB->pred_empty() &&
1601       all_of(DbgValue->debug_operands(),
1602              [](const MachineOperand &Op) { return Op.isImm(); }))
1603     return true;
1604 
1605   // Test if the location terminates before the end of the scope.
1606   const MachineInstr *LScopeEnd = LSRange.back().second;
1607   if (Ordering.isBefore(RangeEnd, LScopeEnd))
1608     return false;
1609 
1610   // There's a single location which starts at the scope start, and ends at or
1611   // after the scope end.
1612   return true;
1613 }
1614 
1615 /// Build the location list for all DBG_VALUEs in the function that
1616 /// describe the same variable. The resulting DebugLocEntries will have
1617 /// strict monotonically increasing begin addresses and will never
1618 /// overlap. If the resulting list has only one entry that is valid
1619 /// throughout variable's scope return true.
1620 //
1621 // See the definition of DbgValueHistoryMap::Entry for an explanation of the
1622 // different kinds of history map entries. One thing to be aware of is that if
1623 // a debug value is ended by another entry (rather than being valid until the
1624 // end of the function), that entry's instruction may or may not be included in
1625 // the range, depending on if the entry is a clobbering entry (it has an
1626 // instruction that clobbers one or more preceding locations), or if it is an
1627 // (overlapping) debug value entry. This distinction can be seen in the example
1628 // below. The first debug value is ended by the clobbering entry 2, and the
1629 // second and third debug values are ended by the overlapping debug value entry
1630 // 4.
1631 //
1632 // Input:
1633 //
1634 //   History map entries [type, end index, mi]
1635 //
1636 // 0 |      [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)]
1637 // 1 | |    [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)]
1638 // 2 | |    [Clobber, $reg0 = [...], -, -]
1639 // 3   | |  [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)]
1640 // 4        [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)]
1641 //
1642 // Output [start, end) [Value...]:
1643 //
1644 // [0-1)    [(reg0, fragment 0, 32)]
1645 // [1-3)    [(reg0, fragment 0, 32), (reg1, fragment 32, 32)]
1646 // [3-4)    [(reg1, fragment 32, 32), (123, fragment 64, 32)]
1647 // [4-)     [(@g, fragment 0, 96)]
1648 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc,
1649                                    const DbgValueHistoryMap::Entries &Entries) {
1650   using OpenRange =
1651       std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>;
1652   SmallVector<OpenRange, 4> OpenRanges;
1653   bool isSafeForSingleLocation = true;
1654   const MachineInstr *StartDebugMI = nullptr;
1655   const MachineInstr *EndMI = nullptr;
1656 
1657   for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) {
1658     const MachineInstr *Instr = EI->getInstr();
1659 
1660     // Remove all values that are no longer live.
1661     size_t Index = std::distance(EB, EI);
1662     erase_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; });
1663 
1664     // If we are dealing with a clobbering entry, this iteration will result in
1665     // a location list entry starting after the clobbering instruction.
1666     const MCSymbol *StartLabel =
1667         EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr);
1668     assert(StartLabel &&
1669            "Forgot label before/after instruction starting a range!");
1670 
1671     const MCSymbol *EndLabel;
1672     if (std::next(EI) == Entries.end()) {
1673       const MachineBasicBlock &EndMBB = Asm->MF->back();
1674       EndLabel = Asm->MBBSectionRanges[EndMBB.getSectionIDNum()].EndLabel;
1675       if (EI->isClobber())
1676         EndMI = EI->getInstr();
1677     }
1678     else if (std::next(EI)->isClobber())
1679       EndLabel = getLabelAfterInsn(std::next(EI)->getInstr());
1680     else
1681       EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr());
1682     assert(EndLabel && "Forgot label after instruction ending a range!");
1683 
1684     if (EI->isDbgValue())
1685       LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n");
1686 
1687     // If this history map entry has a debug value, add that to the list of
1688     // open ranges and check if its location is valid for a single value
1689     // location.
1690     if (EI->isDbgValue()) {
1691       // Do not add undef debug values, as they are redundant information in
1692       // the location list entries. An undef debug results in an empty location
1693       // description. If there are any non-undef fragments then padding pieces
1694       // with empty location descriptions will automatically be inserted, and if
1695       // all fragments are undef then the whole location list entry is
1696       // redundant.
1697       if (!Instr->isUndefDebugValue()) {
1698         auto Value = getDebugLocValue(Instr);
1699         OpenRanges.emplace_back(EI->getEndIndex(), Value);
1700 
1701         // TODO: Add support for single value fragment locations.
1702         if (Instr->getDebugExpression()->isFragment())
1703           isSafeForSingleLocation = false;
1704 
1705         if (!StartDebugMI)
1706           StartDebugMI = Instr;
1707       } else {
1708         isSafeForSingleLocation = false;
1709       }
1710     }
1711 
1712     // Location list entries with empty location descriptions are redundant
1713     // information in DWARF, so do not emit those.
1714     if (OpenRanges.empty())
1715       continue;
1716 
1717     // Omit entries with empty ranges as they do not have any effect in DWARF.
1718     if (StartLabel == EndLabel) {
1719       LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n");
1720       continue;
1721     }
1722 
1723     SmallVector<DbgValueLoc, 4> Values;
1724     for (auto &R : OpenRanges)
1725       Values.push_back(R.second);
1726 
1727     // With Basic block sections, it is posssible that the StartLabel and the
1728     // Instr are not in the same section.  This happens when the StartLabel is
1729     // the function begin label and the dbg value appears in a basic block
1730     // that is not the entry.  In this case, the range needs to be split to
1731     // span each individual section in the range from StartLabel to EndLabel.
1732     if (Asm->MF->hasBBSections() && StartLabel == Asm->getFunctionBegin() &&
1733         !Instr->getParent()->sameSection(&Asm->MF->front())) {
1734       const MCSymbol *BeginSectionLabel = StartLabel;
1735 
1736       for (const MachineBasicBlock &MBB : *Asm->MF) {
1737         if (MBB.isBeginSection() && &MBB != &Asm->MF->front())
1738           BeginSectionLabel = MBB.getSymbol();
1739 
1740         if (MBB.sameSection(Instr->getParent())) {
1741           DebugLoc.emplace_back(BeginSectionLabel, EndLabel, Values);
1742           break;
1743         }
1744         if (MBB.isEndSection())
1745           DebugLoc.emplace_back(BeginSectionLabel, MBB.getEndSymbol(), Values);
1746       }
1747     } else {
1748       DebugLoc.emplace_back(StartLabel, EndLabel, Values);
1749     }
1750 
1751     // Attempt to coalesce the ranges of two otherwise identical
1752     // DebugLocEntries.
1753     auto CurEntry = DebugLoc.rbegin();
1754     LLVM_DEBUG({
1755       dbgs() << CurEntry->getValues().size() << " Values:\n";
1756       for (auto &Value : CurEntry->getValues())
1757         Value.dump();
1758       dbgs() << "-----\n";
1759     });
1760 
1761     auto PrevEntry = std::next(CurEntry);
1762     if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry))
1763       DebugLoc.pop_back();
1764   }
1765 
1766   if (!isSafeForSingleLocation ||
1767       !validThroughout(LScopes, StartDebugMI, EndMI, getInstOrdering()))
1768     return false;
1769 
1770   if (DebugLoc.size() == 1)
1771     return true;
1772 
1773   if (!Asm->MF->hasBBSections())
1774     return false;
1775 
1776   // Check here to see if loclist can be merged into a single range. If not,
1777   // we must keep the split loclists per section.  This does exactly what
1778   // MergeRanges does without sections.  We don't actually merge the ranges
1779   // as the split ranges must be kept intact if this cannot be collapsed
1780   // into a single range.
1781   const MachineBasicBlock *RangeMBB = nullptr;
1782   if (DebugLoc[0].getBeginSym() == Asm->getFunctionBegin())
1783     RangeMBB = &Asm->MF->front();
1784   else
1785     RangeMBB = Entries.begin()->getInstr()->getParent();
1786   auto *CurEntry = DebugLoc.begin();
1787   auto *NextEntry = std::next(CurEntry);
1788   while (NextEntry != DebugLoc.end()) {
1789     // Get the last machine basic block of this section.
1790     while (!RangeMBB->isEndSection())
1791       RangeMBB = RangeMBB->getNextNode();
1792     if (!RangeMBB->getNextNode())
1793       return false;
1794     // CurEntry should end the current section and NextEntry should start
1795     // the next section and the Values must match for these two ranges to be
1796     // merged.
1797     if (CurEntry->getEndSym() != RangeMBB->getEndSymbol() ||
1798         NextEntry->getBeginSym() != RangeMBB->getNextNode()->getSymbol() ||
1799         CurEntry->getValues() != NextEntry->getValues())
1800       return false;
1801     RangeMBB = RangeMBB->getNextNode();
1802     CurEntry = NextEntry;
1803     NextEntry = std::next(CurEntry);
1804   }
1805   return true;
1806 }
1807 
1808 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU,
1809                                             LexicalScope &Scope,
1810                                             const DINode *Node,
1811                                             const DILocation *Location,
1812                                             const MCSymbol *Sym) {
1813   ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode());
1814   if (isa<const DILocalVariable>(Node)) {
1815     ConcreteEntities.push_back(
1816         std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node),
1817                                        Location));
1818     InfoHolder.addScopeVariable(&Scope,
1819         cast<DbgVariable>(ConcreteEntities.back().get()));
1820   } else if (isa<const DILabel>(Node)) {
1821     ConcreteEntities.push_back(
1822         std::make_unique<DbgLabel>(cast<const DILabel>(Node),
1823                                     Location, Sym));
1824     InfoHolder.addScopeLabel(&Scope,
1825         cast<DbgLabel>(ConcreteEntities.back().get()));
1826   }
1827   return ConcreteEntities.back().get();
1828 }
1829 
1830 // Find variables for each lexical scope.
1831 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU,
1832                                    const DISubprogram *SP,
1833                                    DenseSet<InlinedEntity> &Processed) {
1834   // Grab the variable info that was squirreled away in the MMI side-table.
1835   collectVariableInfoFromMFTable(TheCU, Processed);
1836 
1837   for (const auto &I : DbgValues) {
1838     InlinedEntity IV = I.first;
1839     if (Processed.count(IV))
1840       continue;
1841 
1842     // Instruction ranges, specifying where IV is accessible.
1843     const auto &HistoryMapEntries = I.second;
1844 
1845     // Try to find any non-empty variable location. Do not create a concrete
1846     // entity if there are no locations.
1847     if (!DbgValues.hasNonEmptyLocation(HistoryMapEntries))
1848       continue;
1849 
1850     LexicalScope *Scope = nullptr;
1851     const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first);
1852     if (const DILocation *IA = IV.second)
1853       Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA);
1854     else
1855       Scope = LScopes.findLexicalScope(LocalVar->getScope());
1856     // If variable scope is not found then skip this variable.
1857     if (!Scope)
1858       continue;
1859 
1860     Processed.insert(IV);
1861     DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU,
1862                                             *Scope, LocalVar, IV.second));
1863 
1864     const MachineInstr *MInsn = HistoryMapEntries.front().getInstr();
1865     assert(MInsn->isDebugValue() && "History must begin with debug value");
1866 
1867     // Check if there is a single DBG_VALUE, valid throughout the var's scope.
1868     // If the history map contains a single debug value, there may be an
1869     // additional entry which clobbers the debug value.
1870     size_t HistSize = HistoryMapEntries.size();
1871     bool SingleValueWithClobber =
1872         HistSize == 2 && HistoryMapEntries[1].isClobber();
1873     if (HistSize == 1 || SingleValueWithClobber) {
1874       const auto *End =
1875           SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr;
1876       if (validThroughout(LScopes, MInsn, End, getInstOrdering())) {
1877         RegVar->initializeDbgValue(MInsn);
1878         continue;
1879       }
1880     }
1881 
1882     // Do not emit location lists if .debug_loc secton is disabled.
1883     if (!useLocSection())
1884       continue;
1885 
1886     // Handle multiple DBG_VALUE instructions describing one variable.
1887     DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn);
1888 
1889     // Build the location list for this variable.
1890     SmallVector<DebugLocEntry, 8> Entries;
1891     bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries);
1892 
1893     // Check whether buildLocationList managed to merge all locations to one
1894     // that is valid throughout the variable's scope. If so, produce single
1895     // value location.
1896     if (isValidSingleLocation) {
1897       RegVar->initializeDbgValue(Entries[0].getValues()[0]);
1898       continue;
1899     }
1900 
1901     // If the variable has a DIBasicType, extract it.  Basic types cannot have
1902     // unique identifiers, so don't bother resolving the type with the
1903     // identifier map.
1904     const DIBasicType *BT = dyn_cast<DIBasicType>(
1905         static_cast<const Metadata *>(LocalVar->getType()));
1906 
1907     // Finalize the entry by lowering it into a DWARF bytestream.
1908     for (auto &Entry : Entries)
1909       Entry.finalize(*Asm, List, BT, TheCU);
1910   }
1911 
1912   // For each InlinedEntity collected from DBG_LABEL instructions, convert to
1913   // DWARF-related DbgLabel.
1914   for (const auto &I : DbgLabels) {
1915     InlinedEntity IL = I.first;
1916     const MachineInstr *MI = I.second;
1917     if (MI == nullptr)
1918       continue;
1919 
1920     LexicalScope *Scope = nullptr;
1921     const DILabel *Label = cast<DILabel>(IL.first);
1922     // The scope could have an extra lexical block file.
1923     const DILocalScope *LocalScope =
1924         Label->getScope()->getNonLexicalBlockFileScope();
1925     // Get inlined DILocation if it is inlined label.
1926     if (const DILocation *IA = IL.second)
1927       Scope = LScopes.findInlinedScope(LocalScope, IA);
1928     else
1929       Scope = LScopes.findLexicalScope(LocalScope);
1930     // If label scope is not found then skip this label.
1931     if (!Scope)
1932       continue;
1933 
1934     Processed.insert(IL);
1935     /// At this point, the temporary label is created.
1936     /// Save the temporary label to DbgLabel entity to get the
1937     /// actually address when generating Dwarf DIE.
1938     MCSymbol *Sym = getLabelBeforeInsn(MI);
1939     createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym);
1940   }
1941 
1942   // Collect info for variables/labels that were optimized out.
1943   for (const DINode *DN : SP->getRetainedNodes()) {
1944     if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
1945       continue;
1946     LexicalScope *Scope = nullptr;
1947     if (auto *DV = dyn_cast<DILocalVariable>(DN)) {
1948       Scope = LScopes.findLexicalScope(DV->getScope());
1949     } else if (auto *DL = dyn_cast<DILabel>(DN)) {
1950       Scope = LScopes.findLexicalScope(DL->getScope());
1951     }
1952 
1953     if (Scope)
1954       createConcreteEntity(TheCU, *Scope, DN, nullptr);
1955   }
1956 }
1957 
1958 // Process beginning of an instruction.
1959 void DwarfDebug::beginInstruction(const MachineInstr *MI) {
1960   const MachineFunction &MF = *MI->getMF();
1961   const auto *SP = MF.getFunction().getSubprogram();
1962   bool NoDebug =
1963       !SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug;
1964 
1965   // Delay slot support check.
1966   auto delaySlotSupported = [](const MachineInstr &MI) {
1967     if (!MI.isBundledWithSucc())
1968       return false;
1969     auto Suc = std::next(MI.getIterator());
1970     (void)Suc;
1971     // Ensure that delay slot instruction is successor of the call instruction.
1972     // Ex. CALL_INSTRUCTION {
1973     //        DELAY_SLOT_INSTRUCTION }
1974     assert(Suc->isBundledWithPred() &&
1975            "Call bundle instructions are out of order");
1976     return true;
1977   };
1978 
1979   // When describing calls, we need a label for the call instruction.
1980   if (!NoDebug && SP->areAllCallsDescribed() &&
1981       MI->isCandidateForCallSiteEntry(MachineInstr::AnyInBundle) &&
1982       (!MI->hasDelaySlot() || delaySlotSupported(*MI))) {
1983     const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1984     bool IsTail = TII->isTailCall(*MI);
1985     // For tail calls, we need the address of the branch instruction for
1986     // DW_AT_call_pc.
1987     if (IsTail)
1988       requestLabelBeforeInsn(MI);
1989     // For non-tail calls, we need the return address for the call for
1990     // DW_AT_call_return_pc. Under GDB tuning, this information is needed for
1991     // tail calls as well.
1992     requestLabelAfterInsn(MI);
1993   }
1994 
1995   DebugHandlerBase::beginInstruction(MI);
1996   if (!CurMI)
1997     return;
1998 
1999   if (NoDebug)
2000     return;
2001 
2002   // Check if source location changes, but ignore DBG_VALUE and CFI locations.
2003   // If the instruction is part of the function frame setup code, do not emit
2004   // any line record, as there is no correspondence with any user code.
2005   if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup))
2006     return;
2007   const DebugLoc &DL = MI->getDebugLoc();
2008   // When we emit a line-0 record, we don't update PrevInstLoc; so look at
2009   // the last line number actually emitted, to see if it was line 0.
2010   unsigned LastAsmLine =
2011       Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine();
2012 
2013   if (DL == PrevInstLoc) {
2014     // If we have an ongoing unspecified location, nothing to do here.
2015     if (!DL)
2016       return;
2017     // We have an explicit location, same as the previous location.
2018     // But we might be coming back to it after a line 0 record.
2019     if (LastAsmLine == 0 && DL.getLine() != 0) {
2020       // Reinstate the source location but not marked as a statement.
2021       const MDNode *Scope = DL.getScope();
2022       recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0);
2023     }
2024     return;
2025   }
2026 
2027   if (!DL) {
2028     // We have an unspecified location, which might want to be line 0.
2029     // If we have already emitted a line-0 record, don't repeat it.
2030     if (LastAsmLine == 0)
2031       return;
2032     // If user said Don't Do That, don't do that.
2033     if (UnknownLocations == Disable)
2034       return;
2035     // See if we have a reason to emit a line-0 record now.
2036     // Reasons to emit a line-0 record include:
2037     // - User asked for it (UnknownLocations).
2038     // - Instruction has a label, so it's referenced from somewhere else,
2039     //   possibly debug information; we want it to have a source location.
2040     // - Instruction is at the top of a block; we don't want to inherit the
2041     //   location from the physically previous (maybe unrelated) block.
2042     if (UnknownLocations == Enable || PrevLabel ||
2043         (PrevInstBB && PrevInstBB != MI->getParent())) {
2044       // Preserve the file and column numbers, if we can, to save space in
2045       // the encoded line table.
2046       // Do not update PrevInstLoc, it remembers the last non-0 line.
2047       const MDNode *Scope = nullptr;
2048       unsigned Column = 0;
2049       if (PrevInstLoc) {
2050         Scope = PrevInstLoc.getScope();
2051         Column = PrevInstLoc.getCol();
2052       }
2053       recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0);
2054     }
2055     return;
2056   }
2057 
2058   // We have an explicit location, different from the previous location.
2059   // Don't repeat a line-0 record, but otherwise emit the new location.
2060   // (The new location might be an explicit line 0, which we do emit.)
2061   if (DL.getLine() == 0 && LastAsmLine == 0)
2062     return;
2063   unsigned Flags = 0;
2064   if (DL == PrologEndLoc) {
2065     Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT;
2066     PrologEndLoc = DebugLoc();
2067   }
2068   // If the line changed, we call that a new statement; unless we went to
2069   // line 0 and came back, in which case it is not a new statement.
2070   unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine;
2071   if (DL.getLine() && DL.getLine() != OldLine)
2072     Flags |= DWARF2_FLAG_IS_STMT;
2073 
2074   const MDNode *Scope = DL.getScope();
2075   recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
2076 
2077   // If we're not at line 0, remember this location.
2078   if (DL.getLine())
2079     PrevInstLoc = DL;
2080 }
2081 
2082 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) {
2083   // First known non-DBG_VALUE and non-frame setup location marks
2084   // the beginning of the function body.
2085   DebugLoc LineZeroLoc;
2086   for (const auto &MBB : *MF) {
2087     for (const auto &MI : MBB) {
2088       if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
2089           MI.getDebugLoc()) {
2090         // Scan forward to try to find a non-zero line number. The prologue_end
2091         // marks the first breakpoint in the function after the frame setup, and
2092         // a compiler-generated line 0 location is not a meaningful breakpoint.
2093         // If none is found, return the first location after the frame setup.
2094         if (MI.getDebugLoc().getLine())
2095           return MI.getDebugLoc();
2096         LineZeroLoc = MI.getDebugLoc();
2097       }
2098     }
2099   }
2100   return LineZeroLoc;
2101 }
2102 
2103 /// Register a source line with debug info. Returns the  unique label that was
2104 /// emitted and which provides correspondence to the source line list.
2105 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col,
2106                              const MDNode *S, unsigned Flags, unsigned CUID,
2107                              uint16_t DwarfVersion,
2108                              ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) {
2109   StringRef Fn;
2110   unsigned FileNo = 1;
2111   unsigned Discriminator = 0;
2112   if (auto *Scope = cast_or_null<DIScope>(S)) {
2113     Fn = Scope->getFilename();
2114     if (Line != 0 && DwarfVersion >= 4)
2115       if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope))
2116         Discriminator = LBF->getDiscriminator();
2117 
2118     FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID])
2119                  .getOrCreateSourceID(Scope->getFile());
2120   }
2121   Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0,
2122                                          Discriminator, Fn);
2123 }
2124 
2125 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF,
2126                                              unsigned CUID) {
2127   // Get beginning of function.
2128   if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) {
2129     // Ensure the compile unit is created if the function is called before
2130     // beginFunction().
2131     (void)getOrCreateDwarfCompileUnit(
2132         MF.getFunction().getSubprogram()->getUnit());
2133     // We'd like to list the prologue as "not statements" but GDB behaves
2134     // poorly if we do that. Revisit this with caution/GDB (7.5+) testing.
2135     const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram();
2136     ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT,
2137                        CUID, getDwarfVersion(), getUnits());
2138     return PrologEndLoc;
2139   }
2140   return DebugLoc();
2141 }
2142 
2143 // Gather pre-function debug information.  Assumes being called immediately
2144 // after the function entry point has been emitted.
2145 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) {
2146   CurFn = MF;
2147 
2148   auto *SP = MF->getFunction().getSubprogram();
2149   assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode());
2150   if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
2151     return;
2152 
2153   DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
2154 
2155   Asm->OutStreamer->getContext().setDwarfCompileUnitID(
2156       getDwarfCompileUnitIDForLineTable(CU));
2157 
2158   // Record beginning of function.
2159   PrologEndLoc = emitInitialLocDirective(
2160       *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID());
2161 }
2162 
2163 unsigned
2164 DwarfDebug::getDwarfCompileUnitIDForLineTable(const DwarfCompileUnit &CU) {
2165   // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function
2166   // belongs to so that we add to the correct per-cu line table in the
2167   // non-asm case.
2168   if (Asm->OutStreamer->hasRawTextSupport())
2169     // Use a single line table if we are generating assembly.
2170     return 0;
2171   else
2172     return CU.getUniqueID();
2173 }
2174 
2175 void DwarfDebug::skippedNonDebugFunction() {
2176   // If we don't have a subprogram for this function then there will be a hole
2177   // in the range information. Keep note of this by setting the previously used
2178   // section to nullptr.
2179   PrevCU = nullptr;
2180   CurFn = nullptr;
2181 }
2182 
2183 // Gather and emit post-function debug information.
2184 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) {
2185   const DISubprogram *SP = MF->getFunction().getSubprogram();
2186 
2187   assert(CurFn == MF &&
2188       "endFunction should be called with the same function as beginFunction");
2189 
2190   // Set DwarfDwarfCompileUnitID in MCContext to default value.
2191   Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
2192 
2193   LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
2194   assert(!FnScope || SP == FnScope->getScopeNode());
2195   DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit());
2196   if (TheCU.getCUNode()->isDebugDirectivesOnly()) {
2197     PrevLabel = nullptr;
2198     CurFn = nullptr;
2199     return;
2200   }
2201 
2202   DenseSet<InlinedEntity> Processed;
2203   collectEntityInfo(TheCU, SP, Processed);
2204 
2205   // Add the range of this function to the list of ranges for the CU.
2206   // With basic block sections, add ranges for all basic block sections.
2207   for (const auto &R : Asm->MBBSectionRanges)
2208     TheCU.addRange({R.second.BeginLabel, R.second.EndLabel});
2209 
2210   // Under -gmlt, skip building the subprogram if there are no inlined
2211   // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram
2212   // is still needed as we need its source location.
2213   if (!TheCU.getCUNode()->getDebugInfoForProfiling() &&
2214       TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly &&
2215       LScopes.getAbstractScopesList().empty() && !IsDarwin) {
2216     assert(InfoHolder.getScopeVariables().empty());
2217     PrevLabel = nullptr;
2218     CurFn = nullptr;
2219     return;
2220   }
2221 
2222 #ifndef NDEBUG
2223   size_t NumAbstractScopes = LScopes.getAbstractScopesList().size();
2224 #endif
2225   // Construct abstract scopes.
2226   for (LexicalScope *AScope : LScopes.getAbstractScopesList()) {
2227     auto *SP = cast<DISubprogram>(AScope->getScopeNode());
2228     for (const DINode *DN : SP->getRetainedNodes()) {
2229       if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
2230         continue;
2231 
2232       const MDNode *Scope = nullptr;
2233       if (auto *DV = dyn_cast<DILocalVariable>(DN))
2234         Scope = DV->getScope();
2235       else if (auto *DL = dyn_cast<DILabel>(DN))
2236         Scope = DL->getScope();
2237       else
2238         llvm_unreachable("Unexpected DI type!");
2239 
2240       // Collect info for variables/labels that were optimized out.
2241       ensureAbstractEntityIsCreated(TheCU, DN, Scope);
2242       assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes
2243              && "ensureAbstractEntityIsCreated inserted abstract scopes");
2244     }
2245     constructAbstractSubprogramScopeDIE(TheCU, AScope);
2246   }
2247 
2248   ProcessedSPNodes.insert(SP);
2249   DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope);
2250   if (auto *SkelCU = TheCU.getSkeleton())
2251     if (!LScopes.getAbstractScopesList().empty() &&
2252         TheCU.getCUNode()->getSplitDebugInlining())
2253       SkelCU->constructSubprogramScopeDIE(SP, FnScope);
2254 
2255   // Construct call site entries.
2256   constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF);
2257 
2258   // Clear debug info
2259   // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the
2260   // DbgVariables except those that are also in AbstractVariables (since they
2261   // can be used cross-function)
2262   InfoHolder.getScopeVariables().clear();
2263   InfoHolder.getScopeLabels().clear();
2264   PrevLabel = nullptr;
2265   CurFn = nullptr;
2266 }
2267 
2268 // Register a source line with debug info. Returns the  unique label that was
2269 // emitted and which provides correspondence to the source line list.
2270 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S,
2271                                   unsigned Flags) {
2272   ::recordSourceLine(*Asm, Line, Col, S, Flags,
2273                      Asm->OutStreamer->getContext().getDwarfCompileUnitID(),
2274                      getDwarfVersion(), getUnits());
2275 }
2276 
2277 //===----------------------------------------------------------------------===//
2278 // Emit Methods
2279 //===----------------------------------------------------------------------===//
2280 
2281 // Emit the debug info section.
2282 void DwarfDebug::emitDebugInfo() {
2283   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2284   Holder.emitUnits(/* UseOffsets */ false);
2285 }
2286 
2287 // Emit the abbreviation section.
2288 void DwarfDebug::emitAbbreviations() {
2289   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2290 
2291   Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection());
2292 }
2293 
2294 void DwarfDebug::emitStringOffsetsTableHeader() {
2295   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2296   Holder.getStringPool().emitStringOffsetsTableHeader(
2297       *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(),
2298       Holder.getStringOffsetsStartSym());
2299 }
2300 
2301 template <typename AccelTableT>
2302 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section,
2303                            StringRef TableName) {
2304   Asm->OutStreamer->SwitchSection(Section);
2305 
2306   // Emit the full data.
2307   emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol());
2308 }
2309 
2310 void DwarfDebug::emitAccelDebugNames() {
2311   // Don't emit anything if we have no compilation units to index.
2312   if (getUnits().empty())
2313     return;
2314 
2315   emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits());
2316 }
2317 
2318 // Emit visible names into a hashed accelerator table section.
2319 void DwarfDebug::emitAccelNames() {
2320   emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(),
2321             "Names");
2322 }
2323 
2324 // Emit objective C classes and categories into a hashed accelerator table
2325 // section.
2326 void DwarfDebug::emitAccelObjC() {
2327   emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(),
2328             "ObjC");
2329 }
2330 
2331 // Emit namespace dies into a hashed accelerator table.
2332 void DwarfDebug::emitAccelNamespaces() {
2333   emitAccel(AccelNamespace,
2334             Asm->getObjFileLowering().getDwarfAccelNamespaceSection(),
2335             "namespac");
2336 }
2337 
2338 // Emit type dies into a hashed accelerator table.
2339 void DwarfDebug::emitAccelTypes() {
2340   emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(),
2341             "types");
2342 }
2343 
2344 // Public name handling.
2345 // The format for the various pubnames:
2346 //
2347 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU
2348 // for the DIE that is named.
2349 //
2350 // gnu pubnames - offset/index value/name tuples where the offset is the offset
2351 // into the CU and the index value is computed according to the type of value
2352 // for the DIE that is named.
2353 //
2354 // For type units the offset is the offset of the skeleton DIE. For split dwarf
2355 // it's the offset within the debug_info/debug_types dwo section, however, the
2356 // reference in the pubname header doesn't change.
2357 
2358 /// computeIndexValue - Compute the gdb index value for the DIE and CU.
2359 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU,
2360                                                         const DIE *Die) {
2361   // Entities that ended up only in a Type Unit reference the CU instead (since
2362   // the pub entry has offsets within the CU there's no real offset that can be
2363   // provided anyway). As it happens all such entities (namespaces and types,
2364   // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out
2365   // not to be true it would be necessary to persist this information from the
2366   // point at which the entry is added to the index data structure - since by
2367   // the time the index is built from that, the original type/namespace DIE in a
2368   // type unit has already been destroyed so it can't be queried for properties
2369   // like tag, etc.
2370   if (Die->getTag() == dwarf::DW_TAG_compile_unit)
2371     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE,
2372                                           dwarf::GIEL_EXTERNAL);
2373   dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC;
2374 
2375   // We could have a specification DIE that has our most of our knowledge,
2376   // look for that now.
2377   if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) {
2378     DIE &SpecDIE = SpecVal.getDIEEntry().getEntry();
2379     if (SpecDIE.findAttribute(dwarf::DW_AT_external))
2380       Linkage = dwarf::GIEL_EXTERNAL;
2381   } else if (Die->findAttribute(dwarf::DW_AT_external))
2382     Linkage = dwarf::GIEL_EXTERNAL;
2383 
2384   switch (Die->getTag()) {
2385   case dwarf::DW_TAG_class_type:
2386   case dwarf::DW_TAG_structure_type:
2387   case dwarf::DW_TAG_union_type:
2388   case dwarf::DW_TAG_enumeration_type:
2389     return dwarf::PubIndexEntryDescriptor(
2390         dwarf::GIEK_TYPE,
2391         dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage())
2392             ? dwarf::GIEL_EXTERNAL
2393             : dwarf::GIEL_STATIC);
2394   case dwarf::DW_TAG_typedef:
2395   case dwarf::DW_TAG_base_type:
2396   case dwarf::DW_TAG_subrange_type:
2397     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC);
2398   case dwarf::DW_TAG_namespace:
2399     return dwarf::GIEK_TYPE;
2400   case dwarf::DW_TAG_subprogram:
2401     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage);
2402   case dwarf::DW_TAG_variable:
2403     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage);
2404   case dwarf::DW_TAG_enumerator:
2405     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE,
2406                                           dwarf::GIEL_STATIC);
2407   default:
2408     return dwarf::GIEK_NONE;
2409   }
2410 }
2411 
2412 /// emitDebugPubSections - Emit visible names and types into debug pubnames and
2413 /// pubtypes sections.
2414 void DwarfDebug::emitDebugPubSections() {
2415   for (const auto &NU : CUMap) {
2416     DwarfCompileUnit *TheU = NU.second;
2417     if (!TheU->hasDwarfPubSections())
2418       continue;
2419 
2420     bool GnuStyle = TheU->getCUNode()->getNameTableKind() ==
2421                     DICompileUnit::DebugNameTableKind::GNU;
2422 
2423     Asm->OutStreamer->SwitchSection(
2424         GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection()
2425                  : Asm->getObjFileLowering().getDwarfPubNamesSection());
2426     emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames());
2427 
2428     Asm->OutStreamer->SwitchSection(
2429         GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection()
2430                  : Asm->getObjFileLowering().getDwarfPubTypesSection());
2431     emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes());
2432   }
2433 }
2434 
2435 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) {
2436   if (useSectionsAsReferences())
2437     Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(),
2438                          CU.getDebugSectionOffset());
2439   else
2440     Asm->emitDwarfSymbolReference(CU.getLabelBegin());
2441 }
2442 
2443 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name,
2444                                      DwarfCompileUnit *TheU,
2445                                      const StringMap<const DIE *> &Globals) {
2446   if (auto *Skeleton = TheU->getSkeleton())
2447     TheU = Skeleton;
2448 
2449   // Emit the header.
2450   MCSymbol *EndLabel = Asm->emitDwarfUnitLength(
2451       "pub" + Name, "Length of Public " + Name + " Info");
2452 
2453   Asm->OutStreamer->AddComment("DWARF Version");
2454   Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION);
2455 
2456   Asm->OutStreamer->AddComment("Offset of Compilation Unit Info");
2457   emitSectionReference(*TheU);
2458 
2459   Asm->OutStreamer->AddComment("Compilation Unit Length");
2460   Asm->emitDwarfLengthOrOffset(TheU->getLength());
2461 
2462   // Emit the pubnames for this compilation unit.
2463   for (const auto &GI : Globals) {
2464     const char *Name = GI.getKeyData();
2465     const DIE *Entity = GI.second;
2466 
2467     Asm->OutStreamer->AddComment("DIE offset");
2468     Asm->emitDwarfLengthOrOffset(Entity->getOffset());
2469 
2470     if (GnuStyle) {
2471       dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity);
2472       Asm->OutStreamer->AddComment(
2473           Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) +
2474           ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage));
2475       Asm->emitInt8(Desc.toBits());
2476     }
2477 
2478     Asm->OutStreamer->AddComment("External Name");
2479     Asm->OutStreamer->emitBytes(StringRef(Name, GI.getKeyLength() + 1));
2480   }
2481 
2482   Asm->OutStreamer->AddComment("End Mark");
2483   Asm->emitDwarfLengthOrOffset(0);
2484   Asm->OutStreamer->emitLabel(EndLabel);
2485 }
2486 
2487 /// Emit null-terminated strings into a debug str section.
2488 void DwarfDebug::emitDebugStr() {
2489   MCSection *StringOffsetsSection = nullptr;
2490   if (useSegmentedStringOffsetsTable()) {
2491     emitStringOffsetsTableHeader();
2492     StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection();
2493   }
2494   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2495   Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(),
2496                      StringOffsetsSection, /* UseRelativeOffsets = */ true);
2497 }
2498 
2499 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer,
2500                                    const DebugLocStream::Entry &Entry,
2501                                    const DwarfCompileUnit *CU) {
2502   auto &&Comments = DebugLocs.getComments(Entry);
2503   auto Comment = Comments.begin();
2504   auto End = Comments.end();
2505 
2506   // The expressions are inserted into a byte stream rather early (see
2507   // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that
2508   // need to reference a base_type DIE the offset of that DIE is not yet known.
2509   // To deal with this we instead insert a placeholder early and then extract
2510   // it here and replace it with the real reference.
2511   unsigned PtrSize = Asm->MAI->getCodePointerSize();
2512   DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(),
2513                                     DebugLocs.getBytes(Entry).size()),
2514                           Asm->getDataLayout().isLittleEndian(), PtrSize);
2515   DWARFExpression Expr(Data, PtrSize, Asm->OutContext.getDwarfFormat());
2516 
2517   using Encoding = DWARFExpression::Operation::Encoding;
2518   uint64_t Offset = 0;
2519   for (auto &Op : Expr) {
2520     assert(Op.getCode() != dwarf::DW_OP_const_type &&
2521            "3 operand ops not yet supported");
2522     Streamer.emitInt8(Op.getCode(), Comment != End ? *(Comment++) : "");
2523     Offset++;
2524     for (unsigned I = 0; I < 2; ++I) {
2525       if (Op.getDescription().Op[I] == Encoding::SizeNA)
2526         continue;
2527       if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) {
2528         uint64_t Offset =
2529             CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset();
2530         assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit");
2531         Streamer.emitULEB128(Offset, "", ULEB128PadSize);
2532         // Make sure comments stay aligned.
2533         for (unsigned J = 0; J < ULEB128PadSize; ++J)
2534           if (Comment != End)
2535             Comment++;
2536       } else {
2537         for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J)
2538           Streamer.emitInt8(Data.getData()[J], Comment != End ? *(Comment++) : "");
2539       }
2540       Offset = Op.getOperandEndOffset(I);
2541     }
2542     assert(Offset == Op.getEndOffset());
2543   }
2544 }
2545 
2546 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT,
2547                                    const DbgValueLoc &Value,
2548                                    DwarfExpression &DwarfExpr) {
2549   auto *DIExpr = Value.getExpression();
2550   DIExpressionCursor ExprCursor(DIExpr);
2551   DwarfExpr.addFragmentOffset(DIExpr);
2552 
2553   // If the DIExpr is is an Entry Value, we want to follow the same code path
2554   // regardless of whether the DBG_VALUE is variadic or not.
2555   if (DIExpr && DIExpr->isEntryValue()) {
2556     // Entry values can only be a single register with no additional DIExpr,
2557     // so just add it directly.
2558     assert(Value.getLocEntries().size() == 1);
2559     assert(Value.getLocEntries()[0].isLocation());
2560     MachineLocation Location = Value.getLocEntries()[0].getLoc();
2561     DwarfExpr.setLocation(Location, DIExpr);
2562 
2563     DwarfExpr.beginEntryValueExpression(ExprCursor);
2564 
2565     const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
2566     if (!DwarfExpr.addMachineRegExpression(TRI, ExprCursor, Location.getReg()))
2567       return;
2568     return DwarfExpr.addExpression(std::move(ExprCursor));
2569   }
2570 
2571   // Regular entry.
2572   auto EmitValueLocEntry = [&DwarfExpr, &BT,
2573                             &AP](const DbgValueLocEntry &Entry,
2574                                  DIExpressionCursor &Cursor) -> bool {
2575     if (Entry.isInt()) {
2576       if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed ||
2577                  BT->getEncoding() == dwarf::DW_ATE_signed_char))
2578         DwarfExpr.addSignedConstant(Entry.getInt());
2579       else
2580         DwarfExpr.addUnsignedConstant(Entry.getInt());
2581     } else if (Entry.isLocation()) {
2582       MachineLocation Location = Entry.getLoc();
2583       if (Location.isIndirect())
2584         DwarfExpr.setMemoryLocationKind();
2585 
2586       const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
2587       if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg()))
2588         return false;
2589     } else if (Entry.isTargetIndexLocation()) {
2590       TargetIndexLocation Loc = Entry.getTargetIndexLocation();
2591       // TODO TargetIndexLocation is a target-independent. Currently only the
2592       // WebAssembly-specific encoding is supported.
2593       assert(AP.TM.getTargetTriple().isWasm());
2594       DwarfExpr.addWasmLocation(Loc.Index, static_cast<uint64_t>(Loc.Offset));
2595     } else if (Entry.isConstantFP()) {
2596       if (AP.getDwarfVersion() >= 4 && !AP.getDwarfDebug()->tuneForSCE() &&
2597           !Cursor) {
2598         DwarfExpr.addConstantFP(Entry.getConstantFP()->getValueAPF(), AP);
2599       } else if (Entry.getConstantFP()
2600                      ->getValueAPF()
2601                      .bitcastToAPInt()
2602                      .getBitWidth() <= 64 /*bits*/) {
2603         DwarfExpr.addUnsignedConstant(
2604             Entry.getConstantFP()->getValueAPF().bitcastToAPInt());
2605       } else {
2606         LLVM_DEBUG(
2607             dbgs() << "Skipped DwarfExpression creation for ConstantFP of size"
2608                    << Entry.getConstantFP()
2609                           ->getValueAPF()
2610                           .bitcastToAPInt()
2611                           .getBitWidth()
2612                    << " bits\n");
2613         return false;
2614       }
2615     }
2616     return true;
2617   };
2618 
2619   if (!Value.isVariadic()) {
2620     if (!EmitValueLocEntry(Value.getLocEntries()[0], ExprCursor))
2621       return;
2622     DwarfExpr.addExpression(std::move(ExprCursor));
2623     return;
2624   }
2625 
2626   // If any of the location entries are registers with the value 0, then the
2627   // location is undefined.
2628   if (any_of(Value.getLocEntries(), [](const DbgValueLocEntry &Entry) {
2629         return Entry.isLocation() && !Entry.getLoc().getReg();
2630       }))
2631     return;
2632 
2633   DwarfExpr.addExpression(
2634       std::move(ExprCursor),
2635       [EmitValueLocEntry, &Value](unsigned Idx,
2636                                   DIExpressionCursor &Cursor) -> bool {
2637         return EmitValueLocEntry(Value.getLocEntries()[Idx], Cursor);
2638       });
2639 }
2640 
2641 void DebugLocEntry::finalize(const AsmPrinter &AP,
2642                              DebugLocStream::ListBuilder &List,
2643                              const DIBasicType *BT,
2644                              DwarfCompileUnit &TheCU) {
2645   assert(!Values.empty() &&
2646          "location list entries without values are redundant");
2647   assert(Begin != End && "unexpected location list entry with empty range");
2648   DebugLocStream::EntryBuilder Entry(List, Begin, End);
2649   BufferByteStreamer Streamer = Entry.getStreamer();
2650   DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU);
2651   const DbgValueLoc &Value = Values[0];
2652   if (Value.isFragment()) {
2653     // Emit all fragments that belong to the same variable and range.
2654     assert(llvm::all_of(Values, [](DbgValueLoc P) {
2655           return P.isFragment();
2656         }) && "all values are expected to be fragments");
2657     assert(llvm::is_sorted(Values) && "fragments are expected to be sorted");
2658 
2659     for (const auto &Fragment : Values)
2660       DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr);
2661 
2662   } else {
2663     assert(Values.size() == 1 && "only fragments may have >1 value");
2664     DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr);
2665   }
2666   DwarfExpr.finalize();
2667   if (DwarfExpr.TagOffset)
2668     List.setTagOffset(*DwarfExpr.TagOffset);
2669 }
2670 
2671 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry,
2672                                            const DwarfCompileUnit *CU) {
2673   // Emit the size.
2674   Asm->OutStreamer->AddComment("Loc expr size");
2675   if (getDwarfVersion() >= 5)
2676     Asm->emitULEB128(DebugLocs.getBytes(Entry).size());
2677   else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max())
2678     Asm->emitInt16(DebugLocs.getBytes(Entry).size());
2679   else {
2680     // The entry is too big to fit into 16 bit, drop it as there is nothing we
2681     // can do.
2682     Asm->emitInt16(0);
2683     return;
2684   }
2685   // Emit the entry.
2686   APByteStreamer Streamer(*Asm);
2687   emitDebugLocEntry(Streamer, Entry, CU);
2688 }
2689 
2690 // Emit the header of a DWARF 5 range list table list table. Returns the symbol
2691 // that designates the end of the table for the caller to emit when the table is
2692 // complete.
2693 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm,
2694                                          const DwarfFile &Holder) {
2695   MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer);
2696 
2697   Asm->OutStreamer->AddComment("Offset entry count");
2698   Asm->emitInt32(Holder.getRangeLists().size());
2699   Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym());
2700 
2701   for (const RangeSpanList &List : Holder.getRangeLists())
2702     Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(),
2703                              Asm->getDwarfOffsetByteSize());
2704 
2705   return TableEnd;
2706 }
2707 
2708 // Emit the header of a DWARF 5 locations list table. Returns the symbol that
2709 // designates the end of the table for the caller to emit when the table is
2710 // complete.
2711 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm,
2712                                          const DwarfDebug &DD) {
2713   MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer);
2714 
2715   const auto &DebugLocs = DD.getDebugLocs();
2716 
2717   Asm->OutStreamer->AddComment("Offset entry count");
2718   Asm->emitInt32(DebugLocs.getLists().size());
2719   Asm->OutStreamer->emitLabel(DebugLocs.getSym());
2720 
2721   for (const auto &List : DebugLocs.getLists())
2722     Asm->emitLabelDifference(List.Label, DebugLocs.getSym(),
2723                              Asm->getDwarfOffsetByteSize());
2724 
2725   return TableEnd;
2726 }
2727 
2728 template <typename Ranges, typename PayloadEmitter>
2729 static void emitRangeList(
2730     DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R,
2731     const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair,
2732     unsigned StartxLength, unsigned EndOfList,
2733     StringRef (*StringifyEnum)(unsigned),
2734     bool ShouldUseBaseAddress,
2735     PayloadEmitter EmitPayload) {
2736 
2737   auto Size = Asm->MAI->getCodePointerSize();
2738   bool UseDwarf5 = DD.getDwarfVersion() >= 5;
2739 
2740   // Emit our symbol so we can find the beginning of the range.
2741   Asm->OutStreamer->emitLabel(Sym);
2742 
2743   // Gather all the ranges that apply to the same section so they can share
2744   // a base address entry.
2745   MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges;
2746 
2747   for (const auto &Range : R)
2748     SectionRanges[&Range.Begin->getSection()].push_back(&Range);
2749 
2750   const MCSymbol *CUBase = CU.getBaseAddress();
2751   bool BaseIsSet = false;
2752   for (const auto &P : SectionRanges) {
2753     auto *Base = CUBase;
2754     if (!Base && ShouldUseBaseAddress) {
2755       const MCSymbol *Begin = P.second.front()->Begin;
2756       const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection());
2757       if (!UseDwarf5) {
2758         Base = NewBase;
2759         BaseIsSet = true;
2760         Asm->OutStreamer->emitIntValue(-1, Size);
2761         Asm->OutStreamer->AddComment("  base address");
2762         Asm->OutStreamer->emitSymbolValue(Base, Size);
2763       } else if (NewBase != Begin || P.second.size() > 1) {
2764         // Only use a base address if
2765         //  * the existing pool address doesn't match (NewBase != Begin)
2766         //  * or, there's more than one entry to share the base address
2767         Base = NewBase;
2768         BaseIsSet = true;
2769         Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx));
2770         Asm->emitInt8(BaseAddressx);
2771         Asm->OutStreamer->AddComment("  base address index");
2772         Asm->emitULEB128(DD.getAddressPool().getIndex(Base));
2773       }
2774     } else if (BaseIsSet && !UseDwarf5) {
2775       BaseIsSet = false;
2776       assert(!Base);
2777       Asm->OutStreamer->emitIntValue(-1, Size);
2778       Asm->OutStreamer->emitIntValue(0, Size);
2779     }
2780 
2781     for (const auto *RS : P.second) {
2782       const MCSymbol *Begin = RS->Begin;
2783       const MCSymbol *End = RS->End;
2784       assert(Begin && "Range without a begin symbol?");
2785       assert(End && "Range without an end symbol?");
2786       if (Base) {
2787         if (UseDwarf5) {
2788           // Emit offset_pair when we have a base.
2789           Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair));
2790           Asm->emitInt8(OffsetPair);
2791           Asm->OutStreamer->AddComment("  starting offset");
2792           Asm->emitLabelDifferenceAsULEB128(Begin, Base);
2793           Asm->OutStreamer->AddComment("  ending offset");
2794           Asm->emitLabelDifferenceAsULEB128(End, Base);
2795         } else {
2796           Asm->emitLabelDifference(Begin, Base, Size);
2797           Asm->emitLabelDifference(End, Base, Size);
2798         }
2799       } else if (UseDwarf5) {
2800         Asm->OutStreamer->AddComment(StringifyEnum(StartxLength));
2801         Asm->emitInt8(StartxLength);
2802         Asm->OutStreamer->AddComment("  start index");
2803         Asm->emitULEB128(DD.getAddressPool().getIndex(Begin));
2804         Asm->OutStreamer->AddComment("  length");
2805         Asm->emitLabelDifferenceAsULEB128(End, Begin);
2806       } else {
2807         Asm->OutStreamer->emitSymbolValue(Begin, Size);
2808         Asm->OutStreamer->emitSymbolValue(End, Size);
2809       }
2810       EmitPayload(*RS);
2811     }
2812   }
2813 
2814   if (UseDwarf5) {
2815     Asm->OutStreamer->AddComment(StringifyEnum(EndOfList));
2816     Asm->emitInt8(EndOfList);
2817   } else {
2818     // Terminate the list with two 0 values.
2819     Asm->OutStreamer->emitIntValue(0, Size);
2820     Asm->OutStreamer->emitIntValue(0, Size);
2821   }
2822 }
2823 
2824 // Handles emission of both debug_loclist / debug_loclist.dwo
2825 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) {
2826   emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List),
2827                 *List.CU, dwarf::DW_LLE_base_addressx,
2828                 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length,
2829                 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString,
2830                 /* ShouldUseBaseAddress */ true,
2831                 [&](const DebugLocStream::Entry &E) {
2832                   DD.emitDebugLocEntryLocation(E, List.CU);
2833                 });
2834 }
2835 
2836 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) {
2837   if (DebugLocs.getLists().empty())
2838     return;
2839 
2840   Asm->OutStreamer->SwitchSection(Sec);
2841 
2842   MCSymbol *TableEnd = nullptr;
2843   if (getDwarfVersion() >= 5)
2844     TableEnd = emitLoclistsTableHeader(Asm, *this);
2845 
2846   for (const auto &List : DebugLocs.getLists())
2847     emitLocList(*this, Asm, List);
2848 
2849   if (TableEnd)
2850     Asm->OutStreamer->emitLabel(TableEnd);
2851 }
2852 
2853 // Emit locations into the .debug_loc/.debug_loclists section.
2854 void DwarfDebug::emitDebugLoc() {
2855   emitDebugLocImpl(
2856       getDwarfVersion() >= 5
2857           ? Asm->getObjFileLowering().getDwarfLoclistsSection()
2858           : Asm->getObjFileLowering().getDwarfLocSection());
2859 }
2860 
2861 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section.
2862 void DwarfDebug::emitDebugLocDWO() {
2863   if (getDwarfVersion() >= 5) {
2864     emitDebugLocImpl(
2865         Asm->getObjFileLowering().getDwarfLoclistsDWOSection());
2866 
2867     return;
2868   }
2869 
2870   for (const auto &List : DebugLocs.getLists()) {
2871     Asm->OutStreamer->SwitchSection(
2872         Asm->getObjFileLowering().getDwarfLocDWOSection());
2873     Asm->OutStreamer->emitLabel(List.Label);
2874 
2875     for (const auto &Entry : DebugLocs.getEntries(List)) {
2876       // GDB only supports startx_length in pre-standard split-DWARF.
2877       // (in v5 standard loclists, it currently* /only/ supports base_address +
2878       // offset_pair, so the implementations can't really share much since they
2879       // need to use different representations)
2880       // * as of October 2018, at least
2881       //
2882       // In v5 (see emitLocList), this uses SectionLabels to reuse existing
2883       // addresses in the address pool to minimize object size/relocations.
2884       Asm->emitInt8(dwarf::DW_LLE_startx_length);
2885       unsigned idx = AddrPool.getIndex(Entry.Begin);
2886       Asm->emitULEB128(idx);
2887       // Also the pre-standard encoding is slightly different, emitting this as
2888       // an address-length entry here, but its a ULEB128 in DWARFv5 loclists.
2889       Asm->emitLabelDifference(Entry.End, Entry.Begin, 4);
2890       emitDebugLocEntryLocation(Entry, List.CU);
2891     }
2892     Asm->emitInt8(dwarf::DW_LLE_end_of_list);
2893   }
2894 }
2895 
2896 struct ArangeSpan {
2897   const MCSymbol *Start, *End;
2898 };
2899 
2900 // Emit a debug aranges section, containing a CU lookup for any
2901 // address we can tie back to a CU.
2902 void DwarfDebug::emitDebugARanges() {
2903   // Provides a unique id per text section.
2904   MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap;
2905 
2906   // Filter labels by section.
2907   for (const SymbolCU &SCU : ArangeLabels) {
2908     if (SCU.Sym->isInSection()) {
2909       // Make a note of this symbol and it's section.
2910       MCSection *Section = &SCU.Sym->getSection();
2911       if (!Section->getKind().isMetadata())
2912         SectionMap[Section].push_back(SCU);
2913     } else {
2914       // Some symbols (e.g. common/bss on mach-o) can have no section but still
2915       // appear in the output. This sucks as we rely on sections to build
2916       // arange spans. We can do it without, but it's icky.
2917       SectionMap[nullptr].push_back(SCU);
2918     }
2919   }
2920 
2921   DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans;
2922 
2923   for (auto &I : SectionMap) {
2924     MCSection *Section = I.first;
2925     SmallVector<SymbolCU, 8> &List = I.second;
2926     if (List.size() < 1)
2927       continue;
2928 
2929     // If we have no section (e.g. common), just write out
2930     // individual spans for each symbol.
2931     if (!Section) {
2932       for (const SymbolCU &Cur : List) {
2933         ArangeSpan Span;
2934         Span.Start = Cur.Sym;
2935         Span.End = nullptr;
2936         assert(Cur.CU);
2937         Spans[Cur.CU].push_back(Span);
2938       }
2939       continue;
2940     }
2941 
2942     // Sort the symbols by offset within the section.
2943     llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) {
2944       unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0;
2945       unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0;
2946 
2947       // Symbols with no order assigned should be placed at the end.
2948       // (e.g. section end labels)
2949       if (IA == 0)
2950         return false;
2951       if (IB == 0)
2952         return true;
2953       return IA < IB;
2954     });
2955 
2956     // Insert a final terminator.
2957     List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section)));
2958 
2959     // Build spans between each label.
2960     const MCSymbol *StartSym = List[0].Sym;
2961     for (size_t n = 1, e = List.size(); n < e; n++) {
2962       const SymbolCU &Prev = List[n - 1];
2963       const SymbolCU &Cur = List[n];
2964 
2965       // Try and build the longest span we can within the same CU.
2966       if (Cur.CU != Prev.CU) {
2967         ArangeSpan Span;
2968         Span.Start = StartSym;
2969         Span.End = Cur.Sym;
2970         assert(Prev.CU);
2971         Spans[Prev.CU].push_back(Span);
2972         StartSym = Cur.Sym;
2973       }
2974     }
2975   }
2976 
2977   // Start the dwarf aranges section.
2978   Asm->OutStreamer->SwitchSection(
2979       Asm->getObjFileLowering().getDwarfARangesSection());
2980 
2981   unsigned PtrSize = Asm->MAI->getCodePointerSize();
2982 
2983   // Build a list of CUs used.
2984   std::vector<DwarfCompileUnit *> CUs;
2985   for (const auto &it : Spans) {
2986     DwarfCompileUnit *CU = it.first;
2987     CUs.push_back(CU);
2988   }
2989 
2990   // Sort the CU list (again, to ensure consistent output order).
2991   llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) {
2992     return A->getUniqueID() < B->getUniqueID();
2993   });
2994 
2995   // Emit an arange table for each CU we used.
2996   for (DwarfCompileUnit *CU : CUs) {
2997     std::vector<ArangeSpan> &List = Spans[CU];
2998 
2999     // Describe the skeleton CU's offset and length, not the dwo file's.
3000     if (auto *Skel = CU->getSkeleton())
3001       CU = Skel;
3002 
3003     // Emit size of content not including length itself.
3004     unsigned ContentSize =
3005         sizeof(int16_t) +               // DWARF ARange version number
3006         Asm->getDwarfOffsetByteSize() + // Offset of CU in the .debug_info
3007                                         // section
3008         sizeof(int8_t) +                // Pointer Size (in bytes)
3009         sizeof(int8_t);                 // Segment Size (in bytes)
3010 
3011     unsigned TupleSize = PtrSize * 2;
3012 
3013     // 7.20 in the Dwarf specs requires the table to be aligned to a tuple.
3014     unsigned Padding = offsetToAlignment(
3015         Asm->getUnitLengthFieldByteSize() + ContentSize, Align(TupleSize));
3016 
3017     ContentSize += Padding;
3018     ContentSize += (List.size() + 1) * TupleSize;
3019 
3020     // For each compile unit, write the list of spans it covers.
3021     Asm->emitDwarfUnitLength(ContentSize, "Length of ARange Set");
3022     Asm->OutStreamer->AddComment("DWARF Arange version number");
3023     Asm->emitInt16(dwarf::DW_ARANGES_VERSION);
3024     Asm->OutStreamer->AddComment("Offset Into Debug Info Section");
3025     emitSectionReference(*CU);
3026     Asm->OutStreamer->AddComment("Address Size (in bytes)");
3027     Asm->emitInt8(PtrSize);
3028     Asm->OutStreamer->AddComment("Segment Size (in bytes)");
3029     Asm->emitInt8(0);
3030 
3031     Asm->OutStreamer->emitFill(Padding, 0xff);
3032 
3033     for (const ArangeSpan &Span : List) {
3034       Asm->emitLabelReference(Span.Start, PtrSize);
3035 
3036       // Calculate the size as being from the span start to it's end.
3037       if (Span.End) {
3038         Asm->emitLabelDifference(Span.End, Span.Start, PtrSize);
3039       } else {
3040         // For symbols without an end marker (e.g. common), we
3041         // write a single arange entry containing just that one symbol.
3042         uint64_t Size = SymSize[Span.Start];
3043         if (Size == 0)
3044           Size = 1;
3045 
3046         Asm->OutStreamer->emitIntValue(Size, PtrSize);
3047       }
3048     }
3049 
3050     Asm->OutStreamer->AddComment("ARange terminator");
3051     Asm->OutStreamer->emitIntValue(0, PtrSize);
3052     Asm->OutStreamer->emitIntValue(0, PtrSize);
3053   }
3054 }
3055 
3056 /// Emit a single range list. We handle both DWARF v5 and earlier.
3057 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm,
3058                           const RangeSpanList &List) {
3059   emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU,
3060                 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair,
3061                 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list,
3062                 llvm::dwarf::RangeListEncodingString,
3063                 List.CU->getCUNode()->getRangesBaseAddress() ||
3064                     DD.getDwarfVersion() >= 5,
3065                 [](auto) {});
3066 }
3067 
3068 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) {
3069   if (Holder.getRangeLists().empty())
3070     return;
3071 
3072   assert(useRangesSection());
3073   assert(!CUMap.empty());
3074   assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) {
3075     return !Pair.second->getCUNode()->isDebugDirectivesOnly();
3076   }));
3077 
3078   Asm->OutStreamer->SwitchSection(Section);
3079 
3080   MCSymbol *TableEnd = nullptr;
3081   if (getDwarfVersion() >= 5)
3082     TableEnd = emitRnglistsTableHeader(Asm, Holder);
3083 
3084   for (const RangeSpanList &List : Holder.getRangeLists())
3085     emitRangeList(*this, Asm, List);
3086 
3087   if (TableEnd)
3088     Asm->OutStreamer->emitLabel(TableEnd);
3089 }
3090 
3091 /// Emit address ranges into the .debug_ranges section or into the DWARF v5
3092 /// .debug_rnglists section.
3093 void DwarfDebug::emitDebugRanges() {
3094   const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
3095 
3096   emitDebugRangesImpl(Holder,
3097                       getDwarfVersion() >= 5
3098                           ? Asm->getObjFileLowering().getDwarfRnglistsSection()
3099                           : Asm->getObjFileLowering().getDwarfRangesSection());
3100 }
3101 
3102 void DwarfDebug::emitDebugRangesDWO() {
3103   emitDebugRangesImpl(InfoHolder,
3104                       Asm->getObjFileLowering().getDwarfRnglistsDWOSection());
3105 }
3106 
3107 /// Emit the header of a DWARF 5 macro section, or the GNU extension for
3108 /// DWARF 4.
3109 static void emitMacroHeader(AsmPrinter *Asm, const DwarfDebug &DD,
3110                             const DwarfCompileUnit &CU, uint16_t DwarfVersion) {
3111   enum HeaderFlagMask {
3112 #define HANDLE_MACRO_FLAG(ID, NAME) MACRO_FLAG_##NAME = ID,
3113 #include "llvm/BinaryFormat/Dwarf.def"
3114   };
3115   Asm->OutStreamer->AddComment("Macro information version");
3116   Asm->emitInt16(DwarfVersion >= 5 ? DwarfVersion : 4);
3117   // We emit the line offset flag unconditionally here, since line offset should
3118   // be mostly present.
3119   if (Asm->isDwarf64()) {
3120     Asm->OutStreamer->AddComment("Flags: 64 bit, debug_line_offset present");
3121     Asm->emitInt8(MACRO_FLAG_OFFSET_SIZE | MACRO_FLAG_DEBUG_LINE_OFFSET);
3122   } else {
3123     Asm->OutStreamer->AddComment("Flags: 32 bit, debug_line_offset present");
3124     Asm->emitInt8(MACRO_FLAG_DEBUG_LINE_OFFSET);
3125   }
3126   Asm->OutStreamer->AddComment("debug_line_offset");
3127   if (DD.useSplitDwarf())
3128     Asm->emitDwarfLengthOrOffset(0);
3129   else
3130     Asm->emitDwarfSymbolReference(CU.getLineTableStartSym());
3131 }
3132 
3133 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) {
3134   for (auto *MN : Nodes) {
3135     if (auto *M = dyn_cast<DIMacro>(MN))
3136       emitMacro(*M);
3137     else if (auto *F = dyn_cast<DIMacroFile>(MN))
3138       emitMacroFile(*F, U);
3139     else
3140       llvm_unreachable("Unexpected DI type!");
3141   }
3142 }
3143 
3144 void DwarfDebug::emitMacro(DIMacro &M) {
3145   StringRef Name = M.getName();
3146   StringRef Value = M.getValue();
3147 
3148   // There should be one space between the macro name and the macro value in
3149   // define entries. In undef entries, only the macro name is emitted.
3150   std::string Str = Value.empty() ? Name.str() : (Name + " " + Value).str();
3151 
3152   if (UseDebugMacroSection) {
3153     if (getDwarfVersion() >= 5) {
3154       unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define
3155                           ? dwarf::DW_MACRO_define_strx
3156                           : dwarf::DW_MACRO_undef_strx;
3157       Asm->OutStreamer->AddComment(dwarf::MacroString(Type));
3158       Asm->emitULEB128(Type);
3159       Asm->OutStreamer->AddComment("Line Number");
3160       Asm->emitULEB128(M.getLine());
3161       Asm->OutStreamer->AddComment("Macro String");
3162       Asm->emitULEB128(
3163           InfoHolder.getStringPool().getIndexedEntry(*Asm, Str).getIndex());
3164     } else {
3165       unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define
3166                           ? dwarf::DW_MACRO_GNU_define_indirect
3167                           : dwarf::DW_MACRO_GNU_undef_indirect;
3168       Asm->OutStreamer->AddComment(dwarf::GnuMacroString(Type));
3169       Asm->emitULEB128(Type);
3170       Asm->OutStreamer->AddComment("Line Number");
3171       Asm->emitULEB128(M.getLine());
3172       Asm->OutStreamer->AddComment("Macro String");
3173       Asm->emitDwarfSymbolReference(
3174           InfoHolder.getStringPool().getEntry(*Asm, Str).getSymbol());
3175     }
3176   } else {
3177     Asm->OutStreamer->AddComment(dwarf::MacinfoString(M.getMacinfoType()));
3178     Asm->emitULEB128(M.getMacinfoType());
3179     Asm->OutStreamer->AddComment("Line Number");
3180     Asm->emitULEB128(M.getLine());
3181     Asm->OutStreamer->AddComment("Macro String");
3182     Asm->OutStreamer->emitBytes(Str);
3183     Asm->emitInt8('\0');
3184   }
3185 }
3186 
3187 void DwarfDebug::emitMacroFileImpl(
3188     DIMacroFile &MF, DwarfCompileUnit &U, unsigned StartFile, unsigned EndFile,
3189     StringRef (*MacroFormToString)(unsigned Form)) {
3190 
3191   Asm->OutStreamer->AddComment(MacroFormToString(StartFile));
3192   Asm->emitULEB128(StartFile);
3193   Asm->OutStreamer->AddComment("Line Number");
3194   Asm->emitULEB128(MF.getLine());
3195   Asm->OutStreamer->AddComment("File Number");
3196   DIFile &F = *MF.getFile();
3197   if (useSplitDwarf())
3198     Asm->emitULEB128(getDwoLineTable(U)->getFile(
3199         F.getDirectory(), F.getFilename(), getMD5AsBytes(&F),
3200         Asm->OutContext.getDwarfVersion(), F.getSource()));
3201   else
3202     Asm->emitULEB128(U.getOrCreateSourceID(&F));
3203   handleMacroNodes(MF.getElements(), U);
3204   Asm->OutStreamer->AddComment(MacroFormToString(EndFile));
3205   Asm->emitULEB128(EndFile);
3206 }
3207 
3208 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) {
3209   // DWARFv5 macro and DWARFv4 macinfo share some common encodings,
3210   // so for readibility/uniformity, We are explicitly emitting those.
3211   assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file);
3212   if (UseDebugMacroSection)
3213     emitMacroFileImpl(
3214         F, U, dwarf::DW_MACRO_start_file, dwarf::DW_MACRO_end_file,
3215         (getDwarfVersion() >= 5) ? dwarf::MacroString : dwarf::GnuMacroString);
3216   else
3217     emitMacroFileImpl(F, U, dwarf::DW_MACINFO_start_file,
3218                       dwarf::DW_MACINFO_end_file, dwarf::MacinfoString);
3219 }
3220 
3221 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) {
3222   for (const auto &P : CUMap) {
3223     auto &TheCU = *P.second;
3224     auto *SkCU = TheCU.getSkeleton();
3225     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
3226     auto *CUNode = cast<DICompileUnit>(P.first);
3227     DIMacroNodeArray Macros = CUNode->getMacros();
3228     if (Macros.empty())
3229       continue;
3230     Asm->OutStreamer->SwitchSection(Section);
3231     Asm->OutStreamer->emitLabel(U.getMacroLabelBegin());
3232     if (UseDebugMacroSection)
3233       emitMacroHeader(Asm, *this, U, getDwarfVersion());
3234     handleMacroNodes(Macros, U);
3235     Asm->OutStreamer->AddComment("End Of Macro List Mark");
3236     Asm->emitInt8(0);
3237   }
3238 }
3239 
3240 /// Emit macros into a debug macinfo/macro section.
3241 void DwarfDebug::emitDebugMacinfo() {
3242   auto &ObjLower = Asm->getObjFileLowering();
3243   emitDebugMacinfoImpl(UseDebugMacroSection
3244                            ? ObjLower.getDwarfMacroSection()
3245                            : ObjLower.getDwarfMacinfoSection());
3246 }
3247 
3248 void DwarfDebug::emitDebugMacinfoDWO() {
3249   auto &ObjLower = Asm->getObjFileLowering();
3250   emitDebugMacinfoImpl(UseDebugMacroSection
3251                            ? ObjLower.getDwarfMacroDWOSection()
3252                            : ObjLower.getDwarfMacinfoDWOSection());
3253 }
3254 
3255 // DWARF5 Experimental Separate Dwarf emitters.
3256 
3257 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die,
3258                                   std::unique_ptr<DwarfCompileUnit> NewU) {
3259 
3260   if (!CompilationDir.empty())
3261     NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
3262   addGnuPubAttributes(*NewU, Die);
3263 
3264   SkeletonHolder.addUnit(std::move(NewU));
3265 }
3266 
3267 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) {
3268 
3269   auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
3270       CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder,
3271       UnitKind::Skeleton);
3272   DwarfCompileUnit &NewCU = *OwnedUnit;
3273   NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
3274 
3275   NewCU.initStmtList();
3276 
3277   if (useSegmentedStringOffsetsTable())
3278     NewCU.addStringOffsetsStart();
3279 
3280   initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit));
3281 
3282   return NewCU;
3283 }
3284 
3285 // Emit the .debug_info.dwo section for separated dwarf. This contains the
3286 // compile units that would normally be in debug_info.
3287 void DwarfDebug::emitDebugInfoDWO() {
3288   assert(useSplitDwarf() && "No split dwarf debug info?");
3289   // Don't emit relocations into the dwo file.
3290   InfoHolder.emitUnits(/* UseOffsets */ true);
3291 }
3292 
3293 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the
3294 // abbreviations for the .debug_info.dwo section.
3295 void DwarfDebug::emitDebugAbbrevDWO() {
3296   assert(useSplitDwarf() && "No split dwarf?");
3297   InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection());
3298 }
3299 
3300 void DwarfDebug::emitDebugLineDWO() {
3301   assert(useSplitDwarf() && "No split dwarf?");
3302   SplitTypeUnitFileTable.Emit(
3303       *Asm->OutStreamer, MCDwarfLineTableParams(),
3304       Asm->getObjFileLowering().getDwarfLineDWOSection());
3305 }
3306 
3307 void DwarfDebug::emitStringOffsetsTableHeaderDWO() {
3308   assert(useSplitDwarf() && "No split dwarf?");
3309   InfoHolder.getStringPool().emitStringOffsetsTableHeader(
3310       *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(),
3311       InfoHolder.getStringOffsetsStartSym());
3312 }
3313 
3314 // Emit the .debug_str.dwo section for separated dwarf. This contains the
3315 // string section and is identical in format to traditional .debug_str
3316 // sections.
3317 void DwarfDebug::emitDebugStrDWO() {
3318   if (useSegmentedStringOffsetsTable())
3319     emitStringOffsetsTableHeaderDWO();
3320   assert(useSplitDwarf() && "No split dwarf?");
3321   MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection();
3322   InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(),
3323                          OffSec, /* UseRelativeOffsets = */ false);
3324 }
3325 
3326 // Emit address pool.
3327 void DwarfDebug::emitDebugAddr() {
3328   AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection());
3329 }
3330 
3331 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) {
3332   if (!useSplitDwarf())
3333     return nullptr;
3334   const DICompileUnit *DIUnit = CU.getCUNode();
3335   SplitTypeUnitFileTable.maybeSetRootFile(
3336       DIUnit->getDirectory(), DIUnit->getFilename(),
3337       getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource());
3338   return &SplitTypeUnitFileTable;
3339 }
3340 
3341 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) {
3342   MD5 Hash;
3343   Hash.update(Identifier);
3344   // ... take the least significant 8 bytes and return those. Our MD5
3345   // implementation always returns its results in little endian, so we actually
3346   // need the "high" word.
3347   MD5::MD5Result Result;
3348   Hash.final(Result);
3349   return Result.high();
3350 }
3351 
3352 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
3353                                       StringRef Identifier, DIE &RefDie,
3354                                       const DICompositeType *CTy) {
3355   // Fast path if we're building some type units and one has already used the
3356   // address pool we know we're going to throw away all this work anyway, so
3357   // don't bother building dependent types.
3358   if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed())
3359     return;
3360 
3361   auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0));
3362   if (!Ins.second) {
3363     CU.addDIETypeSignature(RefDie, Ins.first->second);
3364     return;
3365   }
3366 
3367   bool TopLevelType = TypeUnitsUnderConstruction.empty();
3368   AddrPool.resetUsedFlag();
3369 
3370   auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder,
3371                                                     getDwoLineTable(CU));
3372   DwarfTypeUnit &NewTU = *OwnedUnit;
3373   DIE &UnitDie = NewTU.getUnitDie();
3374   TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy);
3375 
3376   NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
3377                 CU.getLanguage());
3378 
3379   uint64_t Signature = makeTypeSignature(Identifier);
3380   NewTU.setTypeSignature(Signature);
3381   Ins.first->second = Signature;
3382 
3383   if (useSplitDwarf()) {
3384     MCSection *Section =
3385         getDwarfVersion() <= 4
3386             ? Asm->getObjFileLowering().getDwarfTypesDWOSection()
3387             : Asm->getObjFileLowering().getDwarfInfoDWOSection();
3388     NewTU.setSection(Section);
3389   } else {
3390     MCSection *Section =
3391         getDwarfVersion() <= 4
3392             ? Asm->getObjFileLowering().getDwarfTypesSection(Signature)
3393             : Asm->getObjFileLowering().getDwarfInfoSection(Signature);
3394     NewTU.setSection(Section);
3395     // Non-split type units reuse the compile unit's line table.
3396     CU.applyStmtList(UnitDie);
3397   }
3398 
3399   // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type
3400   // units.
3401   if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
3402     NewTU.addStringOffsetsStart();
3403 
3404   NewTU.setType(NewTU.createTypeDIE(CTy));
3405 
3406   if (TopLevelType) {
3407     auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction);
3408     TypeUnitsUnderConstruction.clear();
3409 
3410     // Types referencing entries in the address table cannot be placed in type
3411     // units.
3412     if (AddrPool.hasBeenUsed()) {
3413 
3414       // Remove all the types built while building this type.
3415       // This is pessimistic as some of these types might not be dependent on
3416       // the type that used an address.
3417       for (const auto &TU : TypeUnitsToAdd)
3418         TypeSignatures.erase(TU.second);
3419 
3420       // Construct this type in the CU directly.
3421       // This is inefficient because all the dependent types will be rebuilt
3422       // from scratch, including building them in type units, discovering that
3423       // they depend on addresses, throwing them out and rebuilding them.
3424       CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy));
3425       return;
3426     }
3427 
3428     // If the type wasn't dependent on fission addresses, finish adding the type
3429     // and all its dependent types.
3430     for (auto &TU : TypeUnitsToAdd) {
3431       InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get());
3432       InfoHolder.emitUnit(TU.first.get(), useSplitDwarf());
3433     }
3434   }
3435   CU.addDIETypeSignature(RefDie, Signature);
3436 }
3437 
3438 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD)
3439     : DD(DD),
3440       TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)), AddrPoolUsed(DD->AddrPool.hasBeenUsed()) {
3441   DD->TypeUnitsUnderConstruction.clear();
3442   DD->AddrPool.resetUsedFlag();
3443 }
3444 
3445 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() {
3446   DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction);
3447   DD->AddrPool.resetUsedFlag(AddrPoolUsed);
3448 }
3449 
3450 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() {
3451   return NonTypeUnitContext(this);
3452 }
3453 
3454 // Add the Name along with its companion DIE to the appropriate accelerator
3455 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for
3456 // AccelTableKind::Apple, we use the table we got as an argument). If
3457 // accelerator tables are disabled, this function does nothing.
3458 template <typename DataT>
3459 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU,
3460                                   AccelTable<DataT> &AppleAccel, StringRef Name,
3461                                   const DIE &Die) {
3462   if (getAccelTableKind() == AccelTableKind::None)
3463     return;
3464 
3465   if (getAccelTableKind() != AccelTableKind::Apple &&
3466       CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default)
3467     return;
3468 
3469   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
3470   DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name);
3471 
3472   switch (getAccelTableKind()) {
3473   case AccelTableKind::Apple:
3474     AppleAccel.addName(Ref, Die);
3475     break;
3476   case AccelTableKind::Dwarf:
3477     AccelDebugNames.addName(Ref, Die);
3478     break;
3479   case AccelTableKind::Default:
3480     llvm_unreachable("Default should have already been resolved.");
3481   case AccelTableKind::None:
3482     llvm_unreachable("None handled above");
3483   }
3484 }
3485 
3486 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name,
3487                               const DIE &Die) {
3488   addAccelNameImpl(CU, AccelNames, Name, Die);
3489 }
3490 
3491 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name,
3492                               const DIE &Die) {
3493   // ObjC names go only into the Apple accelerator tables.
3494   if (getAccelTableKind() == AccelTableKind::Apple)
3495     addAccelNameImpl(CU, AccelObjC, Name, Die);
3496 }
3497 
3498 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name,
3499                                    const DIE &Die) {
3500   addAccelNameImpl(CU, AccelNamespace, Name, Die);
3501 }
3502 
3503 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name,
3504                               const DIE &Die, char Flags) {
3505   addAccelNameImpl(CU, AccelTypes, Name, Die);
3506 }
3507 
3508 uint16_t DwarfDebug::getDwarfVersion() const {
3509   return Asm->OutStreamer->getContext().getDwarfVersion();
3510 }
3511 
3512 dwarf::Form DwarfDebug::getDwarfSectionOffsetForm() const {
3513   if (Asm->getDwarfVersion() >= 4)
3514     return dwarf::Form::DW_FORM_sec_offset;
3515   assert((!Asm->isDwarf64() || (Asm->getDwarfVersion() == 3)) &&
3516          "DWARF64 is not defined prior DWARFv3");
3517   return Asm->isDwarf64() ? dwarf::Form::DW_FORM_data8
3518                           : dwarf::Form::DW_FORM_data4;
3519 }
3520 
3521 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) {
3522   auto I = SectionLabels.find(S);
3523   if (I == SectionLabels.end())
3524     return nullptr;
3525   return I->second;
3526 }
3527 void DwarfDebug::insertSectionLabel(const MCSymbol *S) {
3528   if (SectionLabels.insert(std::make_pair(&S->getSection(), S)).second)
3529     if (useSplitDwarf() || getDwarfVersion() >= 5)
3530       AddrPool.getIndex(S);
3531 }
3532 
3533 Optional<MD5::MD5Result> DwarfDebug::getMD5AsBytes(const DIFile *File) const {
3534   assert(File);
3535   if (getDwarfVersion() < 5)
3536     return None;
3537   Optional<DIFile::ChecksumInfo<StringRef>> Checksum = File->getChecksum();
3538   if (!Checksum || Checksum->Kind != DIFile::CSK_MD5)
3539     return None;
3540 
3541   // Convert the string checksum to an MD5Result for the streamer.
3542   // The verifier validates the checksum so we assume it's okay.
3543   // An MD5 checksum is 16 bytes.
3544   std::string ChecksumString = fromHex(Checksum->Value);
3545   MD5::MD5Result CKMem;
3546   std::copy(ChecksumString.begin(), ChecksumString.end(), CKMem.Bytes.data());
3547   return CKMem;
3548 }
3549