1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing dwarf debug info into asm files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "DwarfDebug.h" 14 #include "ByteStreamer.h" 15 #include "DIEHash.h" 16 #include "DwarfCompileUnit.h" 17 #include "DwarfExpression.h" 18 #include "DwarfUnit.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/CodeGen/AsmPrinter.h" 24 #include "llvm/CodeGen/DIE.h" 25 #include "llvm/CodeGen/LexicalScopes.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineModuleInfo.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/TargetInstrInfo.h" 31 #include "llvm/CodeGen/TargetLowering.h" 32 #include "llvm/CodeGen/TargetRegisterInfo.h" 33 #include "llvm/CodeGen/TargetSubtargetInfo.h" 34 #include "llvm/DebugInfo/DWARF/DWARFExpression.h" 35 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/MC/MCAsmInfo.h" 41 #include "llvm/MC/MCContext.h" 42 #include "llvm/MC/MCSection.h" 43 #include "llvm/MC/MCStreamer.h" 44 #include "llvm/MC/MCSymbol.h" 45 #include "llvm/MC/MCTargetOptions.h" 46 #include "llvm/MC/MachineLocation.h" 47 #include "llvm/MC/SectionKind.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/MD5.h" 54 #include "llvm/Support/MathExtras.h" 55 #include "llvm/Support/Timer.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include "llvm/Target/TargetLoweringObjectFile.h" 58 #include "llvm/Target/TargetMachine.h" 59 #include <algorithm> 60 #include <cstddef> 61 #include <iterator> 62 #include <string> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "dwarfdebug" 67 68 STATISTIC(NumCSParams, "Number of dbg call site params created"); 69 70 static cl::opt<bool> 71 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, 72 cl::desc("Disable debug info printing")); 73 74 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier( 75 "use-dwarf-ranges-base-address-specifier", cl::Hidden, 76 cl::desc("Use base address specifiers in debug_ranges"), cl::init(false)); 77 78 static cl::opt<bool> GenerateARangeSection("generate-arange-section", 79 cl::Hidden, 80 cl::desc("Generate dwarf aranges"), 81 cl::init(false)); 82 83 static cl::opt<bool> 84 GenerateDwarfTypeUnits("generate-type-units", cl::Hidden, 85 cl::desc("Generate DWARF4 type units."), 86 cl::init(false)); 87 88 static cl::opt<bool> SplitDwarfCrossCuReferences( 89 "split-dwarf-cross-cu-references", cl::Hidden, 90 cl::desc("Enable cross-cu references in DWO files"), cl::init(false)); 91 92 enum DefaultOnOff { Default, Enable, Disable }; 93 94 static cl::opt<DefaultOnOff> UnknownLocations( 95 "use-unknown-locations", cl::Hidden, 96 cl::desc("Make an absence of debug location information explicit."), 97 cl::values(clEnumVal(Default, "At top of block or after label"), 98 clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")), 99 cl::init(Default)); 100 101 static cl::opt<AccelTableKind> AccelTables( 102 "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."), 103 cl::values(clEnumValN(AccelTableKind::Default, "Default", 104 "Default for platform"), 105 clEnumValN(AccelTableKind::None, "Disable", "Disabled."), 106 clEnumValN(AccelTableKind::Apple, "Apple", "Apple"), 107 clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")), 108 cl::init(AccelTableKind::Default)); 109 110 static cl::opt<DefaultOnOff> 111 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden, 112 cl::desc("Use inlined strings rather than string section."), 113 cl::values(clEnumVal(Default, "Default for platform"), 114 clEnumVal(Enable, "Enabled"), 115 clEnumVal(Disable, "Disabled")), 116 cl::init(Default)); 117 118 static cl::opt<bool> 119 NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden, 120 cl::desc("Disable emission .debug_ranges section."), 121 cl::init(false)); 122 123 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences( 124 "dwarf-sections-as-references", cl::Hidden, 125 cl::desc("Use sections+offset as references rather than labels."), 126 cl::values(clEnumVal(Default, "Default for platform"), 127 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 128 cl::init(Default)); 129 130 static cl::opt<bool> 131 UseGNUDebugMacro("use-gnu-debug-macro", cl::Hidden, 132 cl::desc("Emit the GNU .debug_macro format with DWARF <5"), 133 cl::init(false)); 134 135 static cl::opt<DefaultOnOff> DwarfOpConvert( 136 "dwarf-op-convert", cl::Hidden, 137 cl::desc("Enable use of the DWARFv5 DW_OP_convert operator"), 138 cl::values(clEnumVal(Default, "Default for platform"), 139 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 140 cl::init(Default)); 141 142 enum LinkageNameOption { 143 DefaultLinkageNames, 144 AllLinkageNames, 145 AbstractLinkageNames 146 }; 147 148 static cl::opt<LinkageNameOption> 149 DwarfLinkageNames("dwarf-linkage-names", cl::Hidden, 150 cl::desc("Which DWARF linkage-name attributes to emit."), 151 cl::values(clEnumValN(DefaultLinkageNames, "Default", 152 "Default for platform"), 153 clEnumValN(AllLinkageNames, "All", "All"), 154 clEnumValN(AbstractLinkageNames, "Abstract", 155 "Abstract subprograms")), 156 cl::init(DefaultLinkageNames)); 157 158 static constexpr unsigned ULEB128PadSize = 4; 159 160 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) { 161 getActiveStreamer().emitInt8( 162 Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op) 163 : dwarf::OperationEncodingString(Op)); 164 } 165 166 void DebugLocDwarfExpression::emitSigned(int64_t Value) { 167 getActiveStreamer().emitSLEB128(Value, Twine(Value)); 168 } 169 170 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) { 171 getActiveStreamer().emitULEB128(Value, Twine(Value)); 172 } 173 174 void DebugLocDwarfExpression::emitData1(uint8_t Value) { 175 getActiveStreamer().emitInt8(Value, Twine(Value)); 176 } 177 178 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) { 179 assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit"); 180 getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize); 181 } 182 183 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI, 184 llvm::Register MachineReg) { 185 // This information is not available while emitting .debug_loc entries. 186 return false; 187 } 188 189 void DebugLocDwarfExpression::enableTemporaryBuffer() { 190 assert(!IsBuffering && "Already buffering?"); 191 if (!TmpBuf) 192 TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments); 193 IsBuffering = true; 194 } 195 196 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; } 197 198 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() { 199 return TmpBuf ? TmpBuf->Bytes.size() : 0; 200 } 201 202 void DebugLocDwarfExpression::commitTemporaryBuffer() { 203 if (!TmpBuf) 204 return; 205 for (auto Byte : enumerate(TmpBuf->Bytes)) { 206 const char *Comment = (Byte.index() < TmpBuf->Comments.size()) 207 ? TmpBuf->Comments[Byte.index()].c_str() 208 : ""; 209 OutBS.emitInt8(Byte.value(), Comment); 210 } 211 TmpBuf->Bytes.clear(); 212 TmpBuf->Comments.clear(); 213 } 214 215 const DIType *DbgVariable::getType() const { 216 return getVariable()->getType(); 217 } 218 219 /// Get .debug_loc entry for the instruction range starting at MI. 220 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) { 221 const DIExpression *Expr = MI->getDebugExpression(); 222 assert(MI->getNumOperands() == 4); 223 if (MI->getDebugOperand(0).isReg()) { 224 const auto &RegOp = MI->getDebugOperand(0); 225 const auto &Op1 = MI->getDebugOffset(); 226 // If the second operand is an immediate, this is a 227 // register-indirect address. 228 assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset"); 229 MachineLocation MLoc(RegOp.getReg(), Op1.isImm()); 230 return DbgValueLoc(Expr, MLoc); 231 } 232 if (MI->getDebugOperand(0).isTargetIndex()) { 233 const auto &Op = MI->getDebugOperand(0); 234 return DbgValueLoc(Expr, 235 TargetIndexLocation(Op.getIndex(), Op.getOffset())); 236 } 237 if (MI->getDebugOperand(0).isImm()) 238 return DbgValueLoc(Expr, MI->getDebugOperand(0).getImm()); 239 if (MI->getDebugOperand(0).isFPImm()) 240 return DbgValueLoc(Expr, MI->getDebugOperand(0).getFPImm()); 241 if (MI->getDebugOperand(0).isCImm()) 242 return DbgValueLoc(Expr, MI->getDebugOperand(0).getCImm()); 243 244 llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!"); 245 } 246 247 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) { 248 assert(FrameIndexExprs.empty() && "Already initialized?"); 249 assert(!ValueLoc.get() && "Already initialized?"); 250 251 assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable"); 252 assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() && 253 "Wrong inlined-at"); 254 255 ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue)); 256 if (auto *E = DbgValue->getDebugExpression()) 257 if (E->getNumElements()) 258 FrameIndexExprs.push_back({0, E}); 259 } 260 261 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const { 262 if (FrameIndexExprs.size() == 1) 263 return FrameIndexExprs; 264 265 assert(llvm::all_of(FrameIndexExprs, 266 [](const FrameIndexExpr &A) { 267 return A.Expr->isFragment(); 268 }) && 269 "multiple FI expressions without DW_OP_LLVM_fragment"); 270 llvm::sort(FrameIndexExprs, 271 [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool { 272 return A.Expr->getFragmentInfo()->OffsetInBits < 273 B.Expr->getFragmentInfo()->OffsetInBits; 274 }); 275 276 return FrameIndexExprs; 277 } 278 279 void DbgVariable::addMMIEntry(const DbgVariable &V) { 280 assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry"); 281 assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry"); 282 assert(V.getVariable() == getVariable() && "conflicting variable"); 283 assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location"); 284 285 assert(!FrameIndexExprs.empty() && "Expected an MMI entry"); 286 assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry"); 287 288 // FIXME: This logic should not be necessary anymore, as we now have proper 289 // deduplication. However, without it, we currently run into the assertion 290 // below, which means that we are likely dealing with broken input, i.e. two 291 // non-fragment entries for the same variable at different frame indices. 292 if (FrameIndexExprs.size()) { 293 auto *Expr = FrameIndexExprs.back().Expr; 294 if (!Expr || !Expr->isFragment()) 295 return; 296 } 297 298 for (const auto &FIE : V.FrameIndexExprs) 299 // Ignore duplicate entries. 300 if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) { 301 return FIE.FI == Other.FI && FIE.Expr == Other.Expr; 302 })) 303 FrameIndexExprs.push_back(FIE); 304 305 assert((FrameIndexExprs.size() == 1 || 306 llvm::all_of(FrameIndexExprs, 307 [](FrameIndexExpr &FIE) { 308 return FIE.Expr && FIE.Expr->isFragment(); 309 })) && 310 "conflicting locations for variable"); 311 } 312 313 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion, 314 bool GenerateTypeUnits, 315 DebuggerKind Tuning, 316 const Triple &TT) { 317 // Honor an explicit request. 318 if (AccelTables != AccelTableKind::Default) 319 return AccelTables; 320 321 // Accelerator tables with type units are currently not supported. 322 if (GenerateTypeUnits) 323 return AccelTableKind::None; 324 325 // Accelerator tables get emitted if targetting DWARF v5 or LLDB. DWARF v5 326 // always implies debug_names. For lower standard versions we use apple 327 // accelerator tables on apple platforms and debug_names elsewhere. 328 if (DwarfVersion >= 5) 329 return AccelTableKind::Dwarf; 330 if (Tuning == DebuggerKind::LLDB) 331 return TT.isOSBinFormatMachO() ? AccelTableKind::Apple 332 : AccelTableKind::Dwarf; 333 return AccelTableKind::None; 334 } 335 336 DwarfDebug::DwarfDebug(AsmPrinter *A) 337 : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()), 338 InfoHolder(A, "info_string", DIEValueAllocator), 339 SkeletonHolder(A, "skel_string", DIEValueAllocator), 340 IsDarwin(A->TM.getTargetTriple().isOSDarwin()) { 341 const Triple &TT = Asm->TM.getTargetTriple(); 342 343 // Make sure we know our "debugger tuning". The target option takes 344 // precedence; fall back to triple-based defaults. 345 if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default) 346 DebuggerTuning = Asm->TM.Options.DebuggerTuning; 347 else if (IsDarwin) 348 DebuggerTuning = DebuggerKind::LLDB; 349 else if (TT.isPS4CPU()) 350 DebuggerTuning = DebuggerKind::SCE; 351 else 352 DebuggerTuning = DebuggerKind::GDB; 353 354 if (DwarfInlinedStrings == Default) 355 UseInlineStrings = TT.isNVPTX(); 356 else 357 UseInlineStrings = DwarfInlinedStrings == Enable; 358 359 UseLocSection = !TT.isNVPTX(); 360 361 HasAppleExtensionAttributes = tuneForLLDB(); 362 363 // Handle split DWARF. 364 HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty(); 365 366 // SCE defaults to linkage names only for abstract subprograms. 367 if (DwarfLinkageNames == DefaultLinkageNames) 368 UseAllLinkageNames = !tuneForSCE(); 369 else 370 UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames; 371 372 unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion; 373 unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber 374 : MMI->getModule()->getDwarfVersion(); 375 // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2. 376 DwarfVersion = 377 TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION); 378 379 bool Dwarf64 = Asm->TM.Options.MCOptions.Dwarf64 && 380 DwarfVersion >= 3 && // DWARF64 was introduced in DWARFv3. 381 TT.isArch64Bit() && // DWARF64 requires 64-bit relocations. 382 TT.isOSBinFormatELF(); // Support only ELF for now. 383 384 UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX(); 385 386 // Use sections as references. Force for NVPTX. 387 if (DwarfSectionsAsReferences == Default) 388 UseSectionsAsReferences = TT.isNVPTX(); 389 else 390 UseSectionsAsReferences = DwarfSectionsAsReferences == Enable; 391 392 // Don't generate type units for unsupported object file formats. 393 GenerateTypeUnits = (A->TM.getTargetTriple().isOSBinFormatELF() || 394 A->TM.getTargetTriple().isOSBinFormatWasm()) && 395 GenerateDwarfTypeUnits; 396 397 TheAccelTableKind = computeAccelTableKind( 398 DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple()); 399 400 // Work around a GDB bug. GDB doesn't support the standard opcode; 401 // SCE doesn't support GNU's; LLDB prefers the standard opcode, which 402 // is defined as of DWARF 3. 403 // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented 404 // https://sourceware.org/bugzilla/show_bug.cgi?id=11616 405 UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3; 406 407 // GDB does not fully support the DWARF 4 representation for bitfields. 408 UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB(); 409 410 // The DWARF v5 string offsets table has - possibly shared - contributions 411 // from each compile and type unit each preceded by a header. The string 412 // offsets table used by the pre-DWARF v5 split-DWARF implementation uses 413 // a monolithic string offsets table without any header. 414 UseSegmentedStringOffsetsTable = DwarfVersion >= 5; 415 416 // Emit call-site-param debug info for GDB and LLDB, if the target supports 417 // the debug entry values feature. It can also be enabled explicitly. 418 EmitDebugEntryValues = Asm->TM.Options.ShouldEmitDebugEntryValues(); 419 420 // It is unclear if the GCC .debug_macro extension is well-specified 421 // for split DWARF. For now, do not allow LLVM to emit it. 422 UseDebugMacroSection = 423 DwarfVersion >= 5 || (UseGNUDebugMacro && !useSplitDwarf()); 424 if (DwarfOpConvert == Default) 425 EnableOpConvert = !((tuneForGDB() && useSplitDwarf()) || (tuneForLLDB() && !TT.isOSBinFormatMachO())); 426 else 427 EnableOpConvert = (DwarfOpConvert == Enable); 428 429 Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion); 430 Asm->OutStreamer->getContext().setDwarfFormat(Dwarf64 ? dwarf::DWARF64 431 : dwarf::DWARF32); 432 } 433 434 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h. 435 DwarfDebug::~DwarfDebug() = default; 436 437 static bool isObjCClass(StringRef Name) { 438 return Name.startswith("+") || Name.startswith("-"); 439 } 440 441 static bool hasObjCCategory(StringRef Name) { 442 if (!isObjCClass(Name)) 443 return false; 444 445 return Name.find(") ") != StringRef::npos; 446 } 447 448 static void getObjCClassCategory(StringRef In, StringRef &Class, 449 StringRef &Category) { 450 if (!hasObjCCategory(In)) { 451 Class = In.slice(In.find('[') + 1, In.find(' ')); 452 Category = ""; 453 return; 454 } 455 456 Class = In.slice(In.find('[') + 1, In.find('(')); 457 Category = In.slice(In.find('[') + 1, In.find(' ')); 458 } 459 460 static StringRef getObjCMethodName(StringRef In) { 461 return In.slice(In.find(' ') + 1, In.find(']')); 462 } 463 464 // Add the various names to the Dwarf accelerator table names. 465 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU, 466 const DISubprogram *SP, DIE &Die) { 467 if (getAccelTableKind() != AccelTableKind::Apple && 468 CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None) 469 return; 470 471 if (!SP->isDefinition()) 472 return; 473 474 if (SP->getName() != "") 475 addAccelName(CU, SP->getName(), Die); 476 477 // If the linkage name is different than the name, go ahead and output that as 478 // well into the name table. Only do that if we are going to actually emit 479 // that name. 480 if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() && 481 (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP))) 482 addAccelName(CU, SP->getLinkageName(), Die); 483 484 // If this is an Objective-C selector name add it to the ObjC accelerator 485 // too. 486 if (isObjCClass(SP->getName())) { 487 StringRef Class, Category; 488 getObjCClassCategory(SP->getName(), Class, Category); 489 addAccelObjC(CU, Class, Die); 490 if (Category != "") 491 addAccelObjC(CU, Category, Die); 492 // Also add the base method name to the name table. 493 addAccelName(CU, getObjCMethodName(SP->getName()), Die); 494 } 495 } 496 497 /// Check whether we should create a DIE for the given Scope, return true 498 /// if we don't create a DIE (the corresponding DIE is null). 499 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) { 500 if (Scope->isAbstractScope()) 501 return false; 502 503 // We don't create a DIE if there is no Range. 504 const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges(); 505 if (Ranges.empty()) 506 return true; 507 508 if (Ranges.size() > 1) 509 return false; 510 511 // We don't create a DIE if we have a single Range and the end label 512 // is null. 513 return !getLabelAfterInsn(Ranges.front().second); 514 } 515 516 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) { 517 F(CU); 518 if (auto *SkelCU = CU.getSkeleton()) 519 if (CU.getCUNode()->getSplitDebugInlining()) 520 F(*SkelCU); 521 } 522 523 bool DwarfDebug::shareAcrossDWOCUs() const { 524 return SplitDwarfCrossCuReferences; 525 } 526 527 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU, 528 LexicalScope *Scope) { 529 assert(Scope && Scope->getScopeNode()); 530 assert(Scope->isAbstractScope()); 531 assert(!Scope->getInlinedAt()); 532 533 auto *SP = cast<DISubprogram>(Scope->getScopeNode()); 534 535 // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram 536 // was inlined from another compile unit. 537 if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining()) 538 // Avoid building the original CU if it won't be used 539 SrcCU.constructAbstractSubprogramScopeDIE(Scope); 540 else { 541 auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 542 if (auto *SkelCU = CU.getSkeleton()) { 543 (shareAcrossDWOCUs() ? CU : SrcCU) 544 .constructAbstractSubprogramScopeDIE(Scope); 545 if (CU.getCUNode()->getSplitDebugInlining()) 546 SkelCU->constructAbstractSubprogramScopeDIE(Scope); 547 } else 548 CU.constructAbstractSubprogramScopeDIE(Scope); 549 } 550 } 551 552 DIE &DwarfDebug::constructSubprogramDefinitionDIE(const DISubprogram *SP) { 553 DICompileUnit *Unit = SP->getUnit(); 554 assert(SP->isDefinition() && "Subprogram not a definition"); 555 assert(Unit && "Subprogram definition without parent unit"); 556 auto &CU = getOrCreateDwarfCompileUnit(Unit); 557 return *CU.getOrCreateSubprogramDIE(SP); 558 } 559 560 /// Represents a parameter whose call site value can be described by applying a 561 /// debug expression to a register in the forwarded register worklist. 562 struct FwdRegParamInfo { 563 /// The described parameter register. 564 unsigned ParamReg; 565 566 /// Debug expression that has been built up when walking through the 567 /// instruction chain that produces the parameter's value. 568 const DIExpression *Expr; 569 }; 570 571 /// Register worklist for finding call site values. 572 using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>; 573 574 /// Append the expression \p Addition to \p Original and return the result. 575 static const DIExpression *combineDIExpressions(const DIExpression *Original, 576 const DIExpression *Addition) { 577 std::vector<uint64_t> Elts = Addition->getElements().vec(); 578 // Avoid multiple DW_OP_stack_values. 579 if (Original->isImplicit() && Addition->isImplicit()) 580 erase_if(Elts, [](uint64_t Op) { return Op == dwarf::DW_OP_stack_value; }); 581 const DIExpression *CombinedExpr = 582 (Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original; 583 return CombinedExpr; 584 } 585 586 /// Emit call site parameter entries that are described by the given value and 587 /// debug expression. 588 template <typename ValT> 589 static void finishCallSiteParams(ValT Val, const DIExpression *Expr, 590 ArrayRef<FwdRegParamInfo> DescribedParams, 591 ParamSet &Params) { 592 for (auto Param : DescribedParams) { 593 bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0; 594 595 // TODO: Entry value operations can currently not be combined with any 596 // other expressions, so we can't emit call site entries in those cases. 597 if (ShouldCombineExpressions && Expr->isEntryValue()) 598 continue; 599 600 // If a parameter's call site value is produced by a chain of 601 // instructions we may have already created an expression for the 602 // parameter when walking through the instructions. Append that to the 603 // base expression. 604 const DIExpression *CombinedExpr = 605 ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr) 606 : Expr; 607 assert((!CombinedExpr || CombinedExpr->isValid()) && 608 "Combined debug expression is invalid"); 609 610 DbgValueLoc DbgLocVal(CombinedExpr, Val); 611 DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal); 612 Params.push_back(CSParm); 613 ++NumCSParams; 614 } 615 } 616 617 /// Add \p Reg to the worklist, if it's not already present, and mark that the 618 /// given parameter registers' values can (potentially) be described using 619 /// that register and an debug expression. 620 static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg, 621 const DIExpression *Expr, 622 ArrayRef<FwdRegParamInfo> ParamsToAdd) { 623 auto I = Worklist.insert({Reg, {}}); 624 auto &ParamsForFwdReg = I.first->second; 625 for (auto Param : ParamsToAdd) { 626 assert(none_of(ParamsForFwdReg, 627 [Param](const FwdRegParamInfo &D) { 628 return D.ParamReg == Param.ParamReg; 629 }) && 630 "Same parameter described twice by forwarding reg"); 631 632 // If a parameter's call site value is produced by a chain of 633 // instructions we may have already created an expression for the 634 // parameter when walking through the instructions. Append that to the 635 // new expression. 636 const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr); 637 ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr}); 638 } 639 } 640 641 /// Interpret values loaded into registers by \p CurMI. 642 static void interpretValues(const MachineInstr *CurMI, 643 FwdRegWorklist &ForwardedRegWorklist, 644 ParamSet &Params) { 645 646 const MachineFunction *MF = CurMI->getMF(); 647 const DIExpression *EmptyExpr = 648 DIExpression::get(MF->getFunction().getContext(), {}); 649 const auto &TRI = *MF->getSubtarget().getRegisterInfo(); 650 const auto &TII = *MF->getSubtarget().getInstrInfo(); 651 const auto &TLI = *MF->getSubtarget().getTargetLowering(); 652 653 // If an instruction defines more than one item in the worklist, we may run 654 // into situations where a worklist register's value is (potentially) 655 // described by the previous value of another register that is also defined 656 // by that instruction. 657 // 658 // This can for example occur in cases like this: 659 // 660 // $r1 = mov 123 661 // $r0, $r1 = mvrr $r1, 456 662 // call @foo, $r0, $r1 663 // 664 // When describing $r1's value for the mvrr instruction, we need to make sure 665 // that we don't finalize an entry value for $r0, as that is dependent on the 666 // previous value of $r1 (123 rather than 456). 667 // 668 // In order to not have to distinguish between those cases when finalizing 669 // entry values, we simply postpone adding new parameter registers to the 670 // worklist, by first keeping them in this temporary container until the 671 // instruction has been handled. 672 FwdRegWorklist TmpWorklistItems; 673 674 // If the MI is an instruction defining one or more parameters' forwarding 675 // registers, add those defines. 676 auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI, 677 SmallSetVector<unsigned, 4> &Defs) { 678 if (MI.isDebugInstr()) 679 return; 680 681 for (const MachineOperand &MO : MI.operands()) { 682 if (MO.isReg() && MO.isDef() && 683 Register::isPhysicalRegister(MO.getReg())) { 684 for (auto FwdReg : ForwardedRegWorklist) 685 if (TRI.regsOverlap(FwdReg.first, MO.getReg())) 686 Defs.insert(FwdReg.first); 687 } 688 } 689 }; 690 691 // Set of worklist registers that are defined by this instruction. 692 SmallSetVector<unsigned, 4> FwdRegDefs; 693 694 getForwardingRegsDefinedByMI(*CurMI, FwdRegDefs); 695 if (FwdRegDefs.empty()) 696 return; 697 698 for (auto ParamFwdReg : FwdRegDefs) { 699 if (auto ParamValue = TII.describeLoadedValue(*CurMI, ParamFwdReg)) { 700 if (ParamValue->first.isImm()) { 701 int64_t Val = ParamValue->first.getImm(); 702 finishCallSiteParams(Val, ParamValue->second, 703 ForwardedRegWorklist[ParamFwdReg], Params); 704 } else if (ParamValue->first.isReg()) { 705 Register RegLoc = ParamValue->first.getReg(); 706 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 707 Register FP = TRI.getFrameRegister(*MF); 708 bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP); 709 if (TRI.isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) { 710 MachineLocation MLoc(RegLoc, /*Indirect=*/IsSPorFP); 711 finishCallSiteParams(MLoc, ParamValue->second, 712 ForwardedRegWorklist[ParamFwdReg], Params); 713 } else { 714 // ParamFwdReg was described by the non-callee saved register 715 // RegLoc. Mark that the call site values for the parameters are 716 // dependent on that register instead of ParamFwdReg. Since RegLoc 717 // may be a register that will be handled in this iteration, we 718 // postpone adding the items to the worklist, and instead keep them 719 // in a temporary container. 720 addToFwdRegWorklist(TmpWorklistItems, RegLoc, ParamValue->second, 721 ForwardedRegWorklist[ParamFwdReg]); 722 } 723 } 724 } 725 } 726 727 // Remove all registers that this instruction defines from the worklist. 728 for (auto ParamFwdReg : FwdRegDefs) 729 ForwardedRegWorklist.erase(ParamFwdReg); 730 731 // Now that we are done handling this instruction, add items from the 732 // temporary worklist to the real one. 733 for (auto New : TmpWorklistItems) 734 addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, New.second); 735 TmpWorklistItems.clear(); 736 } 737 738 static bool interpretNextInstr(const MachineInstr *CurMI, 739 FwdRegWorklist &ForwardedRegWorklist, 740 ParamSet &Params) { 741 // Skip bundle headers. 742 if (CurMI->isBundle()) 743 return true; 744 745 // If the next instruction is a call we can not interpret parameter's 746 // forwarding registers or we finished the interpretation of all 747 // parameters. 748 if (CurMI->isCall()) 749 return false; 750 751 if (ForwardedRegWorklist.empty()) 752 return false; 753 754 // Avoid NOP description. 755 if (CurMI->getNumOperands() == 0) 756 return true; 757 758 interpretValues(CurMI, ForwardedRegWorklist, Params); 759 760 return true; 761 } 762 763 /// Try to interpret values loaded into registers that forward parameters 764 /// for \p CallMI. Store parameters with interpreted value into \p Params. 765 static void collectCallSiteParameters(const MachineInstr *CallMI, 766 ParamSet &Params) { 767 const MachineFunction *MF = CallMI->getMF(); 768 auto CalleesMap = MF->getCallSitesInfo(); 769 auto CallFwdRegsInfo = CalleesMap.find(CallMI); 770 771 // There is no information for the call instruction. 772 if (CallFwdRegsInfo == CalleesMap.end()) 773 return; 774 775 const MachineBasicBlock *MBB = CallMI->getParent(); 776 777 // Skip the call instruction. 778 auto I = std::next(CallMI->getReverseIterator()); 779 780 FwdRegWorklist ForwardedRegWorklist; 781 782 const DIExpression *EmptyExpr = 783 DIExpression::get(MF->getFunction().getContext(), {}); 784 785 // Add all the forwarding registers into the ForwardedRegWorklist. 786 for (auto ArgReg : CallFwdRegsInfo->second) { 787 bool InsertedReg = 788 ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}}) 789 .second; 790 assert(InsertedReg && "Single register used to forward two arguments?"); 791 (void)InsertedReg; 792 } 793 794 // We erase, from the ForwardedRegWorklist, those forwarding registers for 795 // which we successfully describe a loaded value (by using 796 // the describeLoadedValue()). For those remaining arguments in the working 797 // list, for which we do not describe a loaded value by 798 // the describeLoadedValue(), we try to generate an entry value expression 799 // for their call site value description, if the call is within the entry MBB. 800 // TODO: Handle situations when call site parameter value can be described 801 // as the entry value within basic blocks other than the first one. 802 bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin(); 803 804 // Search for a loading value in forwarding registers inside call delay slot. 805 if (CallMI->hasDelaySlot()) { 806 auto Suc = std::next(CallMI->getIterator()); 807 // Only one-instruction delay slot is supported. 808 auto BundleEnd = llvm::getBundleEnd(CallMI->getIterator()); 809 (void)BundleEnd; 810 assert(std::next(Suc) == BundleEnd && 811 "More than one instruction in call delay slot"); 812 // Try to interpret value loaded by instruction. 813 if (!interpretNextInstr(&*Suc, ForwardedRegWorklist, Params)) 814 return; 815 } 816 817 // Search for a loading value in forwarding registers. 818 for (; I != MBB->rend(); ++I) { 819 // Try to interpret values loaded by instruction. 820 if (!interpretNextInstr(&*I, ForwardedRegWorklist, Params)) 821 return; 822 } 823 824 // Emit the call site parameter's value as an entry value. 825 if (ShouldTryEmitEntryVals) { 826 // Create an expression where the register's entry value is used. 827 DIExpression *EntryExpr = DIExpression::get( 828 MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1}); 829 for (auto RegEntry : ForwardedRegWorklist) { 830 MachineLocation MLoc(RegEntry.first); 831 finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params); 832 } 833 } 834 } 835 836 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP, 837 DwarfCompileUnit &CU, DIE &ScopeDIE, 838 const MachineFunction &MF) { 839 // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if 840 // the subprogram is required to have one. 841 if (!SP.areAllCallsDescribed() || !SP.isDefinition()) 842 return; 843 844 // Use DW_AT_call_all_calls to express that call site entries are present 845 // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls 846 // because one of its requirements is not met: call site entries for 847 // optimized-out calls are elided. 848 CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls)); 849 850 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 851 assert(TII && "TargetInstrInfo not found: cannot label tail calls"); 852 853 // Delay slot support check. 854 auto delaySlotSupported = [&](const MachineInstr &MI) { 855 if (!MI.isBundledWithSucc()) 856 return false; 857 auto Suc = std::next(MI.getIterator()); 858 auto CallInstrBundle = getBundleStart(MI.getIterator()); 859 (void)CallInstrBundle; 860 auto DelaySlotBundle = getBundleStart(Suc); 861 (void)DelaySlotBundle; 862 // Ensure that label after call is following delay slot instruction. 863 // Ex. CALL_INSTRUCTION { 864 // DELAY_SLOT_INSTRUCTION } 865 // LABEL_AFTER_CALL 866 assert(getLabelAfterInsn(&*CallInstrBundle) == 867 getLabelAfterInsn(&*DelaySlotBundle) && 868 "Call and its successor instruction don't have same label after."); 869 return true; 870 }; 871 872 // Emit call site entries for each call or tail call in the function. 873 for (const MachineBasicBlock &MBB : MF) { 874 for (const MachineInstr &MI : MBB.instrs()) { 875 // Bundles with call in them will pass the isCall() test below but do not 876 // have callee operand information so skip them here. Iterator will 877 // eventually reach the call MI. 878 if (MI.isBundle()) 879 continue; 880 881 // Skip instructions which aren't calls. Both calls and tail-calling jump 882 // instructions (e.g TAILJMPd64) are classified correctly here. 883 if (!MI.isCandidateForCallSiteEntry()) 884 continue; 885 886 // Skip instructions marked as frame setup, as they are not interesting to 887 // the user. 888 if (MI.getFlag(MachineInstr::FrameSetup)) 889 continue; 890 891 // Check if delay slot support is enabled. 892 if (MI.hasDelaySlot() && !delaySlotSupported(*&MI)) 893 return; 894 895 // If this is a direct call, find the callee's subprogram. 896 // In the case of an indirect call find the register that holds 897 // the callee. 898 const MachineOperand &CalleeOp = MI.getOperand(0); 899 if (!CalleeOp.isGlobal() && !CalleeOp.isReg()) 900 continue; 901 902 unsigned CallReg = 0; 903 DIE *CalleeDIE = nullptr; 904 const Function *CalleeDecl = nullptr; 905 if (CalleeOp.isReg()) { 906 CallReg = CalleeOp.getReg(); 907 if (!CallReg) 908 continue; 909 } else { 910 CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal()); 911 if (!CalleeDecl || !CalleeDecl->getSubprogram()) 912 continue; 913 const DISubprogram *CalleeSP = CalleeDecl->getSubprogram(); 914 915 if (CalleeSP->isDefinition()) { 916 // Ensure that a subprogram DIE for the callee is available in the 917 // appropriate CU. 918 CalleeDIE = &constructSubprogramDefinitionDIE(CalleeSP); 919 } else { 920 // Create the declaration DIE if it is missing. This is required to 921 // support compilation of old bitcode with an incomplete list of 922 // retained metadata. 923 CalleeDIE = CU.getOrCreateSubprogramDIE(CalleeSP); 924 } 925 assert(CalleeDIE && "Must have a DIE for the callee"); 926 } 927 928 // TODO: Omit call site entries for runtime calls (objc_msgSend, etc). 929 930 bool IsTail = TII->isTailCall(MI); 931 932 // If MI is in a bundle, the label was created after the bundle since 933 // EmitFunctionBody iterates over top-level MIs. Get that top-level MI 934 // to search for that label below. 935 const MachineInstr *TopLevelCallMI = 936 MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI; 937 938 // For non-tail calls, the return PC is needed to disambiguate paths in 939 // the call graph which could lead to some target function. For tail 940 // calls, no return PC information is needed, unless tuning for GDB in 941 // DWARF4 mode in which case we fake a return PC for compatibility. 942 const MCSymbol *PCAddr = 943 (!IsTail || CU.useGNUAnalogForDwarf5Feature()) 944 ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI)) 945 : nullptr; 946 947 // For tail calls, it's necessary to record the address of the branch 948 // instruction so that the debugger can show where the tail call occurred. 949 const MCSymbol *CallAddr = 950 IsTail ? getLabelBeforeInsn(TopLevelCallMI) : nullptr; 951 952 assert((IsTail || PCAddr) && "Non-tail call without return PC"); 953 954 LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> " 955 << (CalleeDecl ? CalleeDecl->getName() 956 : StringRef(MF.getSubtarget() 957 .getRegisterInfo() 958 ->getName(CallReg))) 959 << (IsTail ? " [IsTail]" : "") << "\n"); 960 961 DIE &CallSiteDIE = CU.constructCallSiteEntryDIE( 962 ScopeDIE, CalleeDIE, IsTail, PCAddr, CallAddr, CallReg); 963 964 // Optionally emit call-site-param debug info. 965 if (emitDebugEntryValues()) { 966 ParamSet Params; 967 // Try to interpret values of call site parameters. 968 collectCallSiteParameters(&MI, Params); 969 CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params); 970 } 971 } 972 } 973 } 974 975 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const { 976 if (!U.hasDwarfPubSections()) 977 return; 978 979 U.addFlag(D, dwarf::DW_AT_GNU_pubnames); 980 } 981 982 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit, 983 DwarfCompileUnit &NewCU) { 984 DIE &Die = NewCU.getUnitDie(); 985 StringRef FN = DIUnit->getFilename(); 986 987 StringRef Producer = DIUnit->getProducer(); 988 StringRef Flags = DIUnit->getFlags(); 989 if (!Flags.empty() && !useAppleExtensionAttributes()) { 990 std::string ProducerWithFlags = Producer.str() + " " + Flags.str(); 991 NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags); 992 } else 993 NewCU.addString(Die, dwarf::DW_AT_producer, Producer); 994 995 NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 996 DIUnit->getSourceLanguage()); 997 NewCU.addString(Die, dwarf::DW_AT_name, FN); 998 StringRef SysRoot = DIUnit->getSysRoot(); 999 if (!SysRoot.empty()) 1000 NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot); 1001 StringRef SDK = DIUnit->getSDK(); 1002 if (!SDK.empty()) 1003 NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK); 1004 1005 // Add DW_str_offsets_base to the unit DIE, except for split units. 1006 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 1007 NewCU.addStringOffsetsStart(); 1008 1009 if (!useSplitDwarf()) { 1010 NewCU.initStmtList(); 1011 1012 // If we're using split dwarf the compilation dir is going to be in the 1013 // skeleton CU and so we don't need to duplicate it here. 1014 if (!CompilationDir.empty()) 1015 NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 1016 addGnuPubAttributes(NewCU, Die); 1017 } 1018 1019 if (useAppleExtensionAttributes()) { 1020 if (DIUnit->isOptimized()) 1021 NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized); 1022 1023 StringRef Flags = DIUnit->getFlags(); 1024 if (!Flags.empty()) 1025 NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags); 1026 1027 if (unsigned RVer = DIUnit->getRuntimeVersion()) 1028 NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers, 1029 dwarf::DW_FORM_data1, RVer); 1030 } 1031 1032 if (DIUnit->getDWOId()) { 1033 // This CU is either a clang module DWO or a skeleton CU. 1034 NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, 1035 DIUnit->getDWOId()); 1036 if (!DIUnit->getSplitDebugFilename().empty()) { 1037 // This is a prefabricated skeleton CU. 1038 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1039 ? dwarf::DW_AT_dwo_name 1040 : dwarf::DW_AT_GNU_dwo_name; 1041 NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename()); 1042 } 1043 } 1044 } 1045 // Create new DwarfCompileUnit for the given metadata node with tag 1046 // DW_TAG_compile_unit. 1047 DwarfCompileUnit & 1048 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) { 1049 if (auto *CU = CUMap.lookup(DIUnit)) 1050 return *CU; 1051 1052 CompilationDir = DIUnit->getDirectory(); 1053 1054 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 1055 InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder); 1056 DwarfCompileUnit &NewCU = *OwnedUnit; 1057 InfoHolder.addUnit(std::move(OwnedUnit)); 1058 1059 for (auto *IE : DIUnit->getImportedEntities()) 1060 NewCU.addImportedEntity(IE); 1061 1062 // LTO with assembly output shares a single line table amongst multiple CUs. 1063 // To avoid the compilation directory being ambiguous, let the line table 1064 // explicitly describe the directory of all files, never relying on the 1065 // compilation directory. 1066 if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU) 1067 Asm->OutStreamer->emitDwarfFile0Directive( 1068 CompilationDir, DIUnit->getFilename(), getMD5AsBytes(DIUnit->getFile()), 1069 DIUnit->getSource(), NewCU.getUniqueID()); 1070 1071 if (useSplitDwarf()) { 1072 NewCU.setSkeleton(constructSkeletonCU(NewCU)); 1073 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection()); 1074 } else { 1075 finishUnitAttributes(DIUnit, NewCU); 1076 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 1077 } 1078 1079 CUMap.insert({DIUnit, &NewCU}); 1080 CUDieMap.insert({&NewCU.getUnitDie(), &NewCU}); 1081 return NewCU; 1082 } 1083 1084 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU, 1085 const DIImportedEntity *N) { 1086 if (isa<DILocalScope>(N->getScope())) 1087 return; 1088 if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope())) 1089 D->addChild(TheCU.constructImportedEntityDIE(N)); 1090 } 1091 1092 /// Sort and unique GVEs by comparing their fragment offset. 1093 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> & 1094 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) { 1095 llvm::sort( 1096 GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) { 1097 // Sort order: first null exprs, then exprs without fragment 1098 // info, then sort by fragment offset in bits. 1099 // FIXME: Come up with a more comprehensive comparator so 1100 // the sorting isn't non-deterministic, and so the following 1101 // std::unique call works correctly. 1102 if (!A.Expr || !B.Expr) 1103 return !!B.Expr; 1104 auto FragmentA = A.Expr->getFragmentInfo(); 1105 auto FragmentB = B.Expr->getFragmentInfo(); 1106 if (!FragmentA || !FragmentB) 1107 return !!FragmentB; 1108 return FragmentA->OffsetInBits < FragmentB->OffsetInBits; 1109 }); 1110 GVEs.erase(std::unique(GVEs.begin(), GVEs.end(), 1111 [](DwarfCompileUnit::GlobalExpr A, 1112 DwarfCompileUnit::GlobalExpr B) { 1113 return A.Expr == B.Expr; 1114 }), 1115 GVEs.end()); 1116 return GVEs; 1117 } 1118 1119 // Emit all Dwarf sections that should come prior to the content. Create 1120 // global DIEs and emit initial debug info sections. This is invoked by 1121 // the target AsmPrinter. 1122 void DwarfDebug::beginModule(Module *M) { 1123 DebugHandlerBase::beginModule(M); 1124 1125 if (!Asm || !MMI->hasDebugInfo() || DisableDebugInfoPrinting) 1126 return; 1127 1128 unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(), 1129 M->debug_compile_units_end()); 1130 assert(NumDebugCUs > 0 && "Asm unexpectedly initialized"); 1131 assert(MMI->hasDebugInfo() && 1132 "DebugInfoAvailabilty unexpectedly not initialized"); 1133 SingleCU = NumDebugCUs == 1; 1134 DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>> 1135 GVMap; 1136 for (const GlobalVariable &Global : M->globals()) { 1137 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1138 Global.getDebugInfo(GVs); 1139 for (auto *GVE : GVs) 1140 GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()}); 1141 } 1142 1143 // Create the symbol that designates the start of the unit's contribution 1144 // to the string offsets table. In a split DWARF scenario, only the skeleton 1145 // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol). 1146 if (useSegmentedStringOffsetsTable()) 1147 (useSplitDwarf() ? SkeletonHolder : InfoHolder) 1148 .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base")); 1149 1150 1151 // Create the symbols that designates the start of the DWARF v5 range list 1152 // and locations list tables. They are located past the table headers. 1153 if (getDwarfVersion() >= 5) { 1154 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1155 Holder.setRnglistsTableBaseSym( 1156 Asm->createTempSymbol("rnglists_table_base")); 1157 1158 if (useSplitDwarf()) 1159 InfoHolder.setRnglistsTableBaseSym( 1160 Asm->createTempSymbol("rnglists_dwo_table_base")); 1161 } 1162 1163 // Create the symbol that points to the first entry following the debug 1164 // address table (.debug_addr) header. 1165 AddrPool.setLabel(Asm->createTempSymbol("addr_table_base")); 1166 DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base")); 1167 1168 for (DICompileUnit *CUNode : M->debug_compile_units()) { 1169 // FIXME: Move local imported entities into a list attached to the 1170 // subprogram, then this search won't be needed and a 1171 // getImportedEntities().empty() test should go below with the rest. 1172 bool HasNonLocalImportedEntities = llvm::any_of( 1173 CUNode->getImportedEntities(), [](const DIImportedEntity *IE) { 1174 return !isa<DILocalScope>(IE->getScope()); 1175 }); 1176 1177 if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() && 1178 CUNode->getRetainedTypes().empty() && 1179 CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty()) 1180 continue; 1181 1182 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode); 1183 1184 // Global Variables. 1185 for (auto *GVE : CUNode->getGlobalVariables()) { 1186 // Don't bother adding DIGlobalVariableExpressions listed in the CU if we 1187 // already know about the variable and it isn't adding a constant 1188 // expression. 1189 auto &GVMapEntry = GVMap[GVE->getVariable()]; 1190 auto *Expr = GVE->getExpression(); 1191 if (!GVMapEntry.size() || (Expr && Expr->isConstant())) 1192 GVMapEntry.push_back({nullptr, Expr}); 1193 } 1194 DenseSet<DIGlobalVariable *> Processed; 1195 for (auto *GVE : CUNode->getGlobalVariables()) { 1196 DIGlobalVariable *GV = GVE->getVariable(); 1197 if (Processed.insert(GV).second) 1198 CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV])); 1199 } 1200 1201 for (auto *Ty : CUNode->getEnumTypes()) { 1202 // The enum types array by design contains pointers to 1203 // MDNodes rather than DIRefs. Unique them here. 1204 CU.getOrCreateTypeDIE(cast<DIType>(Ty)); 1205 } 1206 for (auto *Ty : CUNode->getRetainedTypes()) { 1207 // The retained types array by design contains pointers to 1208 // MDNodes rather than DIRefs. Unique them here. 1209 if (DIType *RT = dyn_cast<DIType>(Ty)) 1210 // There is no point in force-emitting a forward declaration. 1211 CU.getOrCreateTypeDIE(RT); 1212 } 1213 // Emit imported_modules last so that the relevant context is already 1214 // available. 1215 for (auto *IE : CUNode->getImportedEntities()) 1216 constructAndAddImportedEntityDIE(CU, IE); 1217 } 1218 } 1219 1220 void DwarfDebug::finishEntityDefinitions() { 1221 for (const auto &Entity : ConcreteEntities) { 1222 DIE *Die = Entity->getDIE(); 1223 assert(Die); 1224 // FIXME: Consider the time-space tradeoff of just storing the unit pointer 1225 // in the ConcreteEntities list, rather than looking it up again here. 1226 // DIE::getUnit isn't simple - it walks parent pointers, etc. 1227 DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie()); 1228 assert(Unit); 1229 Unit->finishEntityDefinition(Entity.get()); 1230 } 1231 } 1232 1233 void DwarfDebug::finishSubprogramDefinitions() { 1234 for (const DISubprogram *SP : ProcessedSPNodes) { 1235 assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug); 1236 forBothCUs( 1237 getOrCreateDwarfCompileUnit(SP->getUnit()), 1238 [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); }); 1239 } 1240 } 1241 1242 void DwarfDebug::finalizeModuleInfo() { 1243 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); 1244 1245 finishSubprogramDefinitions(); 1246 1247 finishEntityDefinitions(); 1248 1249 // Include the DWO file name in the hash if there's more than one CU. 1250 // This handles ThinLTO's situation where imported CUs may very easily be 1251 // duplicate with the same CU partially imported into another ThinLTO unit. 1252 StringRef DWOName; 1253 if (CUMap.size() > 1) 1254 DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile; 1255 1256 // Handle anything that needs to be done on a per-unit basis after 1257 // all other generation. 1258 for (const auto &P : CUMap) { 1259 auto &TheCU = *P.second; 1260 if (TheCU.getCUNode()->isDebugDirectivesOnly()) 1261 continue; 1262 // Emit DW_AT_containing_type attribute to connect types with their 1263 // vtable holding type. 1264 TheCU.constructContainingTypeDIEs(); 1265 1266 // Add CU specific attributes if we need to add any. 1267 // If we're splitting the dwarf out now that we've got the entire 1268 // CU then add the dwo id to it. 1269 auto *SkCU = TheCU.getSkeleton(); 1270 1271 bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty(); 1272 1273 if (HasSplitUnit) { 1274 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1275 ? dwarf::DW_AT_dwo_name 1276 : dwarf::DW_AT_GNU_dwo_name; 1277 finishUnitAttributes(TheCU.getCUNode(), TheCU); 1278 TheCU.addString(TheCU.getUnitDie(), attrDWOName, 1279 Asm->TM.Options.MCOptions.SplitDwarfFile); 1280 SkCU->addString(SkCU->getUnitDie(), attrDWOName, 1281 Asm->TM.Options.MCOptions.SplitDwarfFile); 1282 // Emit a unique identifier for this CU. 1283 uint64_t ID = 1284 DIEHash(Asm, &TheCU).computeCUSignature(DWOName, TheCU.getUnitDie()); 1285 if (getDwarfVersion() >= 5) { 1286 TheCU.setDWOId(ID); 1287 SkCU->setDWOId(ID); 1288 } else { 1289 TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1290 dwarf::DW_FORM_data8, ID); 1291 SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1292 dwarf::DW_FORM_data8, ID); 1293 } 1294 1295 if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) { 1296 const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol(); 1297 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base, 1298 Sym, Sym); 1299 } 1300 } else if (SkCU) { 1301 finishUnitAttributes(SkCU->getCUNode(), *SkCU); 1302 } 1303 1304 // If we have code split among multiple sections or non-contiguous 1305 // ranges of code then emit a DW_AT_ranges attribute on the unit that will 1306 // remain in the .o file, otherwise add a DW_AT_low_pc. 1307 // FIXME: We should use ranges allow reordering of code ala 1308 // .subsections_via_symbols in mach-o. This would mean turning on 1309 // ranges for all subprogram DIEs for mach-o. 1310 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 1311 1312 if (unsigned NumRanges = TheCU.getRanges().size()) { 1313 if (NumRanges > 1 && useRangesSection()) 1314 // A DW_AT_low_pc attribute may also be specified in combination with 1315 // DW_AT_ranges to specify the default base address for use in 1316 // location lists (see Section 2.6.2) and range lists (see Section 1317 // 2.17.3). 1318 U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0); 1319 else 1320 U.setBaseAddress(TheCU.getRanges().front().Begin); 1321 U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges()); 1322 } 1323 1324 // We don't keep track of which addresses are used in which CU so this 1325 // is a bit pessimistic under LTO. 1326 if ((HasSplitUnit || getDwarfVersion() >= 5) && !AddrPool.isEmpty()) 1327 U.addAddrTableBase(); 1328 1329 if (getDwarfVersion() >= 5) { 1330 if (U.hasRangeLists()) 1331 U.addRnglistsBase(); 1332 1333 if (!DebugLocs.getLists().empty()) { 1334 if (!useSplitDwarf()) 1335 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base, 1336 DebugLocs.getSym(), 1337 TLOF.getDwarfLoclistsSection()->getBeginSymbol()); 1338 } 1339 } 1340 1341 auto *CUNode = cast<DICompileUnit>(P.first); 1342 // If compile Unit has macros, emit "DW_AT_macro_info/DW_AT_macros" 1343 // attribute. 1344 if (CUNode->getMacros()) { 1345 if (UseDebugMacroSection) { 1346 if (useSplitDwarf()) 1347 TheCU.addSectionDelta( 1348 TheCU.getUnitDie(), dwarf::DW_AT_macros, U.getMacroLabelBegin(), 1349 TLOF.getDwarfMacroDWOSection()->getBeginSymbol()); 1350 else { 1351 dwarf::Attribute MacrosAttr = getDwarfVersion() >= 5 1352 ? dwarf::DW_AT_macros 1353 : dwarf::DW_AT_GNU_macros; 1354 U.addSectionLabel(U.getUnitDie(), MacrosAttr, U.getMacroLabelBegin(), 1355 TLOF.getDwarfMacroSection()->getBeginSymbol()); 1356 } 1357 } else { 1358 if (useSplitDwarf()) 1359 TheCU.addSectionDelta( 1360 TheCU.getUnitDie(), dwarf::DW_AT_macro_info, 1361 U.getMacroLabelBegin(), 1362 TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol()); 1363 else 1364 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info, 1365 U.getMacroLabelBegin(), 1366 TLOF.getDwarfMacinfoSection()->getBeginSymbol()); 1367 } 1368 } 1369 } 1370 1371 // Emit all frontend-produced Skeleton CUs, i.e., Clang modules. 1372 for (auto *CUNode : MMI->getModule()->debug_compile_units()) 1373 if (CUNode->getDWOId()) 1374 getOrCreateDwarfCompileUnit(CUNode); 1375 1376 // Compute DIE offsets and sizes. 1377 InfoHolder.computeSizeAndOffsets(); 1378 if (useSplitDwarf()) 1379 SkeletonHolder.computeSizeAndOffsets(); 1380 } 1381 1382 // Emit all Dwarf sections that should come after the content. 1383 void DwarfDebug::endModule() { 1384 assert(CurFn == nullptr); 1385 assert(CurMI == nullptr); 1386 1387 for (const auto &P : CUMap) { 1388 auto &CU = *P.second; 1389 CU.createBaseTypeDIEs(); 1390 } 1391 1392 // If we aren't actually generating debug info (check beginModule - 1393 // conditionalized on !DisableDebugInfoPrinting and the presence of the 1394 // llvm.dbg.cu metadata node) 1395 if (!Asm || !MMI->hasDebugInfo() || DisableDebugInfoPrinting) 1396 return; 1397 1398 // Finalize the debug info for the module. 1399 finalizeModuleInfo(); 1400 1401 if (useSplitDwarf()) 1402 // Emit debug_loc.dwo/debug_loclists.dwo section. 1403 emitDebugLocDWO(); 1404 else 1405 // Emit debug_loc/debug_loclists section. 1406 emitDebugLoc(); 1407 1408 // Corresponding abbreviations into a abbrev section. 1409 emitAbbreviations(); 1410 1411 // Emit all the DIEs into a debug info section. 1412 emitDebugInfo(); 1413 1414 // Emit info into a debug aranges section. 1415 if (GenerateARangeSection) 1416 emitDebugARanges(); 1417 1418 // Emit info into a debug ranges section. 1419 emitDebugRanges(); 1420 1421 if (useSplitDwarf()) 1422 // Emit info into a debug macinfo.dwo section. 1423 emitDebugMacinfoDWO(); 1424 else 1425 // Emit info into a debug macinfo/macro section. 1426 emitDebugMacinfo(); 1427 1428 emitDebugStr(); 1429 1430 if (useSplitDwarf()) { 1431 emitDebugStrDWO(); 1432 emitDebugInfoDWO(); 1433 emitDebugAbbrevDWO(); 1434 emitDebugLineDWO(); 1435 emitDebugRangesDWO(); 1436 } 1437 1438 emitDebugAddr(); 1439 1440 // Emit info into the dwarf accelerator table sections. 1441 switch (getAccelTableKind()) { 1442 case AccelTableKind::Apple: 1443 emitAccelNames(); 1444 emitAccelObjC(); 1445 emitAccelNamespaces(); 1446 emitAccelTypes(); 1447 break; 1448 case AccelTableKind::Dwarf: 1449 emitAccelDebugNames(); 1450 break; 1451 case AccelTableKind::None: 1452 break; 1453 case AccelTableKind::Default: 1454 llvm_unreachable("Default should have already been resolved."); 1455 } 1456 1457 // Emit the pubnames and pubtypes sections if requested. 1458 emitDebugPubSections(); 1459 1460 // clean up. 1461 // FIXME: AbstractVariables.clear(); 1462 } 1463 1464 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU, 1465 const DINode *Node, 1466 const MDNode *ScopeNode) { 1467 if (CU.getExistingAbstractEntity(Node)) 1468 return; 1469 1470 CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope( 1471 cast<DILocalScope>(ScopeNode))); 1472 } 1473 1474 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU, 1475 const DINode *Node, const MDNode *ScopeNode) { 1476 if (CU.getExistingAbstractEntity(Node)) 1477 return; 1478 1479 if (LexicalScope *Scope = 1480 LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode))) 1481 CU.createAbstractEntity(Node, Scope); 1482 } 1483 1484 // Collect variable information from side table maintained by MF. 1485 void DwarfDebug::collectVariableInfoFromMFTable( 1486 DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) { 1487 SmallDenseMap<InlinedEntity, DbgVariable *> MFVars; 1488 LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n"); 1489 for (const auto &VI : Asm->MF->getVariableDbgInfo()) { 1490 if (!VI.Var) 1491 continue; 1492 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1493 "Expected inlined-at fields to agree"); 1494 1495 InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt()); 1496 Processed.insert(Var); 1497 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1498 1499 // If variable scope is not found then skip this variable. 1500 if (!Scope) { 1501 LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName() 1502 << ", no variable scope found\n"); 1503 continue; 1504 } 1505 1506 ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode()); 1507 auto RegVar = std::make_unique<DbgVariable>( 1508 cast<DILocalVariable>(Var.first), Var.second); 1509 RegVar->initializeMMI(VI.Expr, VI.Slot); 1510 LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName() 1511 << "\n"); 1512 if (DbgVariable *DbgVar = MFVars.lookup(Var)) 1513 DbgVar->addMMIEntry(*RegVar); 1514 else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) { 1515 MFVars.insert({Var, RegVar.get()}); 1516 ConcreteEntities.push_back(std::move(RegVar)); 1517 } 1518 } 1519 } 1520 1521 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its 1522 /// enclosing lexical scope. The check ensures there are no other instructions 1523 /// in the same lexical scope preceding the DBG_VALUE and that its range is 1524 /// either open or otherwise rolls off the end of the scope. 1525 static bool validThroughout(LexicalScopes &LScopes, 1526 const MachineInstr *DbgValue, 1527 const MachineInstr *RangeEnd, 1528 const InstructionOrdering &Ordering) { 1529 assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location"); 1530 auto MBB = DbgValue->getParent(); 1531 auto DL = DbgValue->getDebugLoc(); 1532 auto *LScope = LScopes.findLexicalScope(DL); 1533 // Scope doesn't exist; this is a dead DBG_VALUE. 1534 if (!LScope) 1535 return false; 1536 auto &LSRange = LScope->getRanges(); 1537 if (LSRange.size() == 0) 1538 return false; 1539 1540 const MachineInstr *LScopeBegin = LSRange.front().first; 1541 // If the scope starts before the DBG_VALUE then we may have a negative 1542 // result. Otherwise the location is live coming into the scope and we 1543 // can skip the following checks. 1544 if (!Ordering.isBefore(DbgValue, LScopeBegin)) { 1545 // Exit if the lexical scope begins outside of the current block. 1546 if (LScopeBegin->getParent() != MBB) 1547 return false; 1548 1549 MachineBasicBlock::const_reverse_iterator Pred(DbgValue); 1550 for (++Pred; Pred != MBB->rend(); ++Pred) { 1551 if (Pred->getFlag(MachineInstr::FrameSetup)) 1552 break; 1553 auto PredDL = Pred->getDebugLoc(); 1554 if (!PredDL || Pred->isMetaInstruction()) 1555 continue; 1556 // Check whether the instruction preceding the DBG_VALUE is in the same 1557 // (sub)scope as the DBG_VALUE. 1558 if (DL->getScope() == PredDL->getScope()) 1559 return false; 1560 auto *PredScope = LScopes.findLexicalScope(PredDL); 1561 if (!PredScope || LScope->dominates(PredScope)) 1562 return false; 1563 } 1564 } 1565 1566 // If the range of the DBG_VALUE is open-ended, report success. 1567 if (!RangeEnd) 1568 return true; 1569 1570 // Single, constant DBG_VALUEs in the prologue are promoted to be live 1571 // throughout the function. This is a hack, presumably for DWARF v2 and not 1572 // necessarily correct. It would be much better to use a dbg.declare instead 1573 // if we know the constant is live throughout the scope. 1574 if (DbgValue->getDebugOperand(0).isImm() && MBB->pred_empty()) 1575 return true; 1576 1577 // Test if the location terminates before the end of the scope. 1578 const MachineInstr *LScopeEnd = LSRange.back().second; 1579 if (Ordering.isBefore(RangeEnd, LScopeEnd)) 1580 return false; 1581 1582 // There's a single location which starts at the scope start, and ends at or 1583 // after the scope end. 1584 return true; 1585 } 1586 1587 /// Build the location list for all DBG_VALUEs in the function that 1588 /// describe the same variable. The resulting DebugLocEntries will have 1589 /// strict monotonically increasing begin addresses and will never 1590 /// overlap. If the resulting list has only one entry that is valid 1591 /// throughout variable's scope return true. 1592 // 1593 // See the definition of DbgValueHistoryMap::Entry for an explanation of the 1594 // different kinds of history map entries. One thing to be aware of is that if 1595 // a debug value is ended by another entry (rather than being valid until the 1596 // end of the function), that entry's instruction may or may not be included in 1597 // the range, depending on if the entry is a clobbering entry (it has an 1598 // instruction that clobbers one or more preceding locations), or if it is an 1599 // (overlapping) debug value entry. This distinction can be seen in the example 1600 // below. The first debug value is ended by the clobbering entry 2, and the 1601 // second and third debug values are ended by the overlapping debug value entry 1602 // 4. 1603 // 1604 // Input: 1605 // 1606 // History map entries [type, end index, mi] 1607 // 1608 // 0 | [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)] 1609 // 1 | | [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)] 1610 // 2 | | [Clobber, $reg0 = [...], -, -] 1611 // 3 | | [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)] 1612 // 4 [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)] 1613 // 1614 // Output [start, end) [Value...]: 1615 // 1616 // [0-1) [(reg0, fragment 0, 32)] 1617 // [1-3) [(reg0, fragment 0, 32), (reg1, fragment 32, 32)] 1618 // [3-4) [(reg1, fragment 32, 32), (123, fragment 64, 32)] 1619 // [4-) [(@g, fragment 0, 96)] 1620 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc, 1621 const DbgValueHistoryMap::Entries &Entries) { 1622 using OpenRange = 1623 std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>; 1624 SmallVector<OpenRange, 4> OpenRanges; 1625 bool isSafeForSingleLocation = true; 1626 const MachineInstr *StartDebugMI = nullptr; 1627 const MachineInstr *EndMI = nullptr; 1628 1629 for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) { 1630 const MachineInstr *Instr = EI->getInstr(); 1631 1632 // Remove all values that are no longer live. 1633 size_t Index = std::distance(EB, EI); 1634 auto Last = 1635 remove_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; }); 1636 OpenRanges.erase(Last, OpenRanges.end()); 1637 1638 // If we are dealing with a clobbering entry, this iteration will result in 1639 // a location list entry starting after the clobbering instruction. 1640 const MCSymbol *StartLabel = 1641 EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr); 1642 assert(StartLabel && 1643 "Forgot label before/after instruction starting a range!"); 1644 1645 const MCSymbol *EndLabel; 1646 if (std::next(EI) == Entries.end()) { 1647 const MachineBasicBlock &EndMBB = Asm->MF->back(); 1648 EndLabel = Asm->MBBSectionRanges[EndMBB.getSectionIDNum()].EndLabel; 1649 if (EI->isClobber()) 1650 EndMI = EI->getInstr(); 1651 } 1652 else if (std::next(EI)->isClobber()) 1653 EndLabel = getLabelAfterInsn(std::next(EI)->getInstr()); 1654 else 1655 EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr()); 1656 assert(EndLabel && "Forgot label after instruction ending a range!"); 1657 1658 if (EI->isDbgValue()) 1659 LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n"); 1660 1661 // If this history map entry has a debug value, add that to the list of 1662 // open ranges and check if its location is valid for a single value 1663 // location. 1664 if (EI->isDbgValue()) { 1665 // Do not add undef debug values, as they are redundant information in 1666 // the location list entries. An undef debug results in an empty location 1667 // description. If there are any non-undef fragments then padding pieces 1668 // with empty location descriptions will automatically be inserted, and if 1669 // all fragments are undef then the whole location list entry is 1670 // redundant. 1671 if (!Instr->isUndefDebugValue()) { 1672 auto Value = getDebugLocValue(Instr); 1673 OpenRanges.emplace_back(EI->getEndIndex(), Value); 1674 1675 // TODO: Add support for single value fragment locations. 1676 if (Instr->getDebugExpression()->isFragment()) 1677 isSafeForSingleLocation = false; 1678 1679 if (!StartDebugMI) 1680 StartDebugMI = Instr; 1681 } else { 1682 isSafeForSingleLocation = false; 1683 } 1684 } 1685 1686 // Location list entries with empty location descriptions are redundant 1687 // information in DWARF, so do not emit those. 1688 if (OpenRanges.empty()) 1689 continue; 1690 1691 // Omit entries with empty ranges as they do not have any effect in DWARF. 1692 if (StartLabel == EndLabel) { 1693 LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n"); 1694 continue; 1695 } 1696 1697 SmallVector<DbgValueLoc, 4> Values; 1698 for (auto &R : OpenRanges) 1699 Values.push_back(R.second); 1700 DebugLoc.emplace_back(StartLabel, EndLabel, Values); 1701 1702 // Attempt to coalesce the ranges of two otherwise identical 1703 // DebugLocEntries. 1704 auto CurEntry = DebugLoc.rbegin(); 1705 LLVM_DEBUG({ 1706 dbgs() << CurEntry->getValues().size() << " Values:\n"; 1707 for (auto &Value : CurEntry->getValues()) 1708 Value.dump(); 1709 dbgs() << "-----\n"; 1710 }); 1711 1712 auto PrevEntry = std::next(CurEntry); 1713 if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry)) 1714 DebugLoc.pop_back(); 1715 } 1716 1717 return DebugLoc.size() == 1 && isSafeForSingleLocation && 1718 validThroughout(LScopes, StartDebugMI, EndMI, getInstOrdering()); 1719 } 1720 1721 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU, 1722 LexicalScope &Scope, 1723 const DINode *Node, 1724 const DILocation *Location, 1725 const MCSymbol *Sym) { 1726 ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode()); 1727 if (isa<const DILocalVariable>(Node)) { 1728 ConcreteEntities.push_back( 1729 std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node), 1730 Location)); 1731 InfoHolder.addScopeVariable(&Scope, 1732 cast<DbgVariable>(ConcreteEntities.back().get())); 1733 } else if (isa<const DILabel>(Node)) { 1734 ConcreteEntities.push_back( 1735 std::make_unique<DbgLabel>(cast<const DILabel>(Node), 1736 Location, Sym)); 1737 InfoHolder.addScopeLabel(&Scope, 1738 cast<DbgLabel>(ConcreteEntities.back().get())); 1739 } 1740 return ConcreteEntities.back().get(); 1741 } 1742 1743 // Find variables for each lexical scope. 1744 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU, 1745 const DISubprogram *SP, 1746 DenseSet<InlinedEntity> &Processed) { 1747 // Grab the variable info that was squirreled away in the MMI side-table. 1748 collectVariableInfoFromMFTable(TheCU, Processed); 1749 1750 for (const auto &I : DbgValues) { 1751 InlinedEntity IV = I.first; 1752 if (Processed.count(IV)) 1753 continue; 1754 1755 // Instruction ranges, specifying where IV is accessible. 1756 const auto &HistoryMapEntries = I.second; 1757 if (HistoryMapEntries.empty()) 1758 continue; 1759 1760 LexicalScope *Scope = nullptr; 1761 const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first); 1762 if (const DILocation *IA = IV.second) 1763 Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA); 1764 else 1765 Scope = LScopes.findLexicalScope(LocalVar->getScope()); 1766 // If variable scope is not found then skip this variable. 1767 if (!Scope) 1768 continue; 1769 1770 Processed.insert(IV); 1771 DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU, 1772 *Scope, LocalVar, IV.second)); 1773 1774 const MachineInstr *MInsn = HistoryMapEntries.front().getInstr(); 1775 assert(MInsn->isDebugValue() && "History must begin with debug value"); 1776 1777 // Check if there is a single DBG_VALUE, valid throughout the var's scope. 1778 // If the history map contains a single debug value, there may be an 1779 // additional entry which clobbers the debug value. 1780 size_t HistSize = HistoryMapEntries.size(); 1781 bool SingleValueWithClobber = 1782 HistSize == 2 && HistoryMapEntries[1].isClobber(); 1783 if (HistSize == 1 || SingleValueWithClobber) { 1784 const auto *End = 1785 SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr; 1786 if (validThroughout(LScopes, MInsn, End, getInstOrdering())) { 1787 RegVar->initializeDbgValue(MInsn); 1788 continue; 1789 } 1790 } 1791 1792 // Do not emit location lists if .debug_loc secton is disabled. 1793 if (!useLocSection()) 1794 continue; 1795 1796 // Handle multiple DBG_VALUE instructions describing one variable. 1797 DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn); 1798 1799 // Build the location list for this variable. 1800 SmallVector<DebugLocEntry, 8> Entries; 1801 bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries); 1802 1803 // Check whether buildLocationList managed to merge all locations to one 1804 // that is valid throughout the variable's scope. If so, produce single 1805 // value location. 1806 if (isValidSingleLocation) { 1807 RegVar->initializeDbgValue(Entries[0].getValues()[0]); 1808 continue; 1809 } 1810 1811 // If the variable has a DIBasicType, extract it. Basic types cannot have 1812 // unique identifiers, so don't bother resolving the type with the 1813 // identifier map. 1814 const DIBasicType *BT = dyn_cast<DIBasicType>( 1815 static_cast<const Metadata *>(LocalVar->getType())); 1816 1817 // Finalize the entry by lowering it into a DWARF bytestream. 1818 for (auto &Entry : Entries) 1819 Entry.finalize(*Asm, List, BT, TheCU); 1820 } 1821 1822 // For each InlinedEntity collected from DBG_LABEL instructions, convert to 1823 // DWARF-related DbgLabel. 1824 for (const auto &I : DbgLabels) { 1825 InlinedEntity IL = I.first; 1826 const MachineInstr *MI = I.second; 1827 if (MI == nullptr) 1828 continue; 1829 1830 LexicalScope *Scope = nullptr; 1831 const DILabel *Label = cast<DILabel>(IL.first); 1832 // The scope could have an extra lexical block file. 1833 const DILocalScope *LocalScope = 1834 Label->getScope()->getNonLexicalBlockFileScope(); 1835 // Get inlined DILocation if it is inlined label. 1836 if (const DILocation *IA = IL.second) 1837 Scope = LScopes.findInlinedScope(LocalScope, IA); 1838 else 1839 Scope = LScopes.findLexicalScope(LocalScope); 1840 // If label scope is not found then skip this label. 1841 if (!Scope) 1842 continue; 1843 1844 Processed.insert(IL); 1845 /// At this point, the temporary label is created. 1846 /// Save the temporary label to DbgLabel entity to get the 1847 /// actually address when generating Dwarf DIE. 1848 MCSymbol *Sym = getLabelBeforeInsn(MI); 1849 createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym); 1850 } 1851 1852 // Collect info for variables/labels that were optimized out. 1853 for (const DINode *DN : SP->getRetainedNodes()) { 1854 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 1855 continue; 1856 LexicalScope *Scope = nullptr; 1857 if (auto *DV = dyn_cast<DILocalVariable>(DN)) { 1858 Scope = LScopes.findLexicalScope(DV->getScope()); 1859 } else if (auto *DL = dyn_cast<DILabel>(DN)) { 1860 Scope = LScopes.findLexicalScope(DL->getScope()); 1861 } 1862 1863 if (Scope) 1864 createConcreteEntity(TheCU, *Scope, DN, nullptr); 1865 } 1866 } 1867 1868 // Process beginning of an instruction. 1869 void DwarfDebug::beginInstruction(const MachineInstr *MI) { 1870 const MachineFunction &MF = *MI->getMF(); 1871 const auto *SP = MF.getFunction().getSubprogram(); 1872 bool NoDebug = 1873 !SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug; 1874 1875 // Delay slot support check. 1876 auto delaySlotSupported = [](const MachineInstr &MI) { 1877 if (!MI.isBundledWithSucc()) 1878 return false; 1879 auto Suc = std::next(MI.getIterator()); 1880 (void)Suc; 1881 // Ensure that delay slot instruction is successor of the call instruction. 1882 // Ex. CALL_INSTRUCTION { 1883 // DELAY_SLOT_INSTRUCTION } 1884 assert(Suc->isBundledWithPred() && 1885 "Call bundle instructions are out of order"); 1886 return true; 1887 }; 1888 1889 // When describing calls, we need a label for the call instruction. 1890 if (!NoDebug && SP->areAllCallsDescribed() && 1891 MI->isCandidateForCallSiteEntry(MachineInstr::AnyInBundle) && 1892 (!MI->hasDelaySlot() || delaySlotSupported(*MI))) { 1893 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1894 bool IsTail = TII->isTailCall(*MI); 1895 // For tail calls, we need the address of the branch instruction for 1896 // DW_AT_call_pc. 1897 if (IsTail) 1898 requestLabelBeforeInsn(MI); 1899 // For non-tail calls, we need the return address for the call for 1900 // DW_AT_call_return_pc. Under GDB tuning, this information is needed for 1901 // tail calls as well. 1902 requestLabelAfterInsn(MI); 1903 } 1904 1905 DebugHandlerBase::beginInstruction(MI); 1906 if (!CurMI) 1907 return; 1908 1909 if (NoDebug) 1910 return; 1911 1912 // Check if source location changes, but ignore DBG_VALUE and CFI locations. 1913 // If the instruction is part of the function frame setup code, do not emit 1914 // any line record, as there is no correspondence with any user code. 1915 if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup)) 1916 return; 1917 const DebugLoc &DL = MI->getDebugLoc(); 1918 // When we emit a line-0 record, we don't update PrevInstLoc; so look at 1919 // the last line number actually emitted, to see if it was line 0. 1920 unsigned LastAsmLine = 1921 Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine(); 1922 1923 if (DL == PrevInstLoc) { 1924 // If we have an ongoing unspecified location, nothing to do here. 1925 if (!DL) 1926 return; 1927 // We have an explicit location, same as the previous location. 1928 // But we might be coming back to it after a line 0 record. 1929 if (LastAsmLine == 0 && DL.getLine() != 0) { 1930 // Reinstate the source location but not marked as a statement. 1931 const MDNode *Scope = DL.getScope(); 1932 recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0); 1933 } 1934 return; 1935 } 1936 1937 if (!DL) { 1938 // We have an unspecified location, which might want to be line 0. 1939 // If we have already emitted a line-0 record, don't repeat it. 1940 if (LastAsmLine == 0) 1941 return; 1942 // If user said Don't Do That, don't do that. 1943 if (UnknownLocations == Disable) 1944 return; 1945 // See if we have a reason to emit a line-0 record now. 1946 // Reasons to emit a line-0 record include: 1947 // - User asked for it (UnknownLocations). 1948 // - Instruction has a label, so it's referenced from somewhere else, 1949 // possibly debug information; we want it to have a source location. 1950 // - Instruction is at the top of a block; we don't want to inherit the 1951 // location from the physically previous (maybe unrelated) block. 1952 if (UnknownLocations == Enable || PrevLabel || 1953 (PrevInstBB && PrevInstBB != MI->getParent())) { 1954 // Preserve the file and column numbers, if we can, to save space in 1955 // the encoded line table. 1956 // Do not update PrevInstLoc, it remembers the last non-0 line. 1957 const MDNode *Scope = nullptr; 1958 unsigned Column = 0; 1959 if (PrevInstLoc) { 1960 Scope = PrevInstLoc.getScope(); 1961 Column = PrevInstLoc.getCol(); 1962 } 1963 recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0); 1964 } 1965 return; 1966 } 1967 1968 // We have an explicit location, different from the previous location. 1969 // Don't repeat a line-0 record, but otherwise emit the new location. 1970 // (The new location might be an explicit line 0, which we do emit.) 1971 if (DL.getLine() == 0 && LastAsmLine == 0) 1972 return; 1973 unsigned Flags = 0; 1974 if (DL == PrologEndLoc) { 1975 Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT; 1976 PrologEndLoc = DebugLoc(); 1977 } 1978 // If the line changed, we call that a new statement; unless we went to 1979 // line 0 and came back, in which case it is not a new statement. 1980 unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine; 1981 if (DL.getLine() && DL.getLine() != OldLine) 1982 Flags |= DWARF2_FLAG_IS_STMT; 1983 1984 const MDNode *Scope = DL.getScope(); 1985 recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags); 1986 1987 // If we're not at line 0, remember this location. 1988 if (DL.getLine()) 1989 PrevInstLoc = DL; 1990 } 1991 1992 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) { 1993 // First known non-DBG_VALUE and non-frame setup location marks 1994 // the beginning of the function body. 1995 for (const auto &MBB : *MF) 1996 for (const auto &MI : MBB) 1997 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1998 MI.getDebugLoc()) 1999 return MI.getDebugLoc(); 2000 return DebugLoc(); 2001 } 2002 2003 /// Register a source line with debug info. Returns the unique label that was 2004 /// emitted and which provides correspondence to the source line list. 2005 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col, 2006 const MDNode *S, unsigned Flags, unsigned CUID, 2007 uint16_t DwarfVersion, 2008 ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) { 2009 StringRef Fn; 2010 unsigned FileNo = 1; 2011 unsigned Discriminator = 0; 2012 if (auto *Scope = cast_or_null<DIScope>(S)) { 2013 Fn = Scope->getFilename(); 2014 if (Line != 0 && DwarfVersion >= 4) 2015 if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope)) 2016 Discriminator = LBF->getDiscriminator(); 2017 2018 FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID]) 2019 .getOrCreateSourceID(Scope->getFile()); 2020 } 2021 Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0, 2022 Discriminator, Fn); 2023 } 2024 2025 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF, 2026 unsigned CUID) { 2027 // Get beginning of function. 2028 if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) { 2029 // Ensure the compile unit is created if the function is called before 2030 // beginFunction(). 2031 (void)getOrCreateDwarfCompileUnit( 2032 MF.getFunction().getSubprogram()->getUnit()); 2033 // We'd like to list the prologue as "not statements" but GDB behaves 2034 // poorly if we do that. Revisit this with caution/GDB (7.5+) testing. 2035 const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram(); 2036 ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT, 2037 CUID, getDwarfVersion(), getUnits()); 2038 return PrologEndLoc; 2039 } 2040 return DebugLoc(); 2041 } 2042 2043 // Gather pre-function debug information. Assumes being called immediately 2044 // after the function entry point has been emitted. 2045 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) { 2046 CurFn = MF; 2047 2048 auto *SP = MF->getFunction().getSubprogram(); 2049 assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode()); 2050 if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) 2051 return; 2052 2053 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 2054 2055 // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function 2056 // belongs to so that we add to the correct per-cu line table in the 2057 // non-asm case. 2058 if (Asm->OutStreamer->hasRawTextSupport()) 2059 // Use a single line table if we are generating assembly. 2060 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 2061 else 2062 Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID()); 2063 2064 // Record beginning of function. 2065 PrologEndLoc = emitInitialLocDirective( 2066 *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID()); 2067 } 2068 2069 void DwarfDebug::skippedNonDebugFunction() { 2070 // If we don't have a subprogram for this function then there will be a hole 2071 // in the range information. Keep note of this by setting the previously used 2072 // section to nullptr. 2073 PrevCU = nullptr; 2074 CurFn = nullptr; 2075 } 2076 2077 // Gather and emit post-function debug information. 2078 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) { 2079 const DISubprogram *SP = MF->getFunction().getSubprogram(); 2080 2081 assert(CurFn == MF && 2082 "endFunction should be called with the same function as beginFunction"); 2083 2084 // Set DwarfDwarfCompileUnitID in MCContext to default value. 2085 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 2086 2087 LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); 2088 assert(!FnScope || SP == FnScope->getScopeNode()); 2089 DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit()); 2090 if (TheCU.getCUNode()->isDebugDirectivesOnly()) { 2091 PrevLabel = nullptr; 2092 CurFn = nullptr; 2093 return; 2094 } 2095 2096 DenseSet<InlinedEntity> Processed; 2097 collectEntityInfo(TheCU, SP, Processed); 2098 2099 // Add the range of this function to the list of ranges for the CU. 2100 // With basic block sections, add ranges for all basic block sections. 2101 for (const auto &R : Asm->MBBSectionRanges) 2102 TheCU.addRange({R.second.BeginLabel, R.second.EndLabel}); 2103 2104 // Under -gmlt, skip building the subprogram if there are no inlined 2105 // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram 2106 // is still needed as we need its source location. 2107 if (!TheCU.getCUNode()->getDebugInfoForProfiling() && 2108 TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly && 2109 LScopes.getAbstractScopesList().empty() && !IsDarwin) { 2110 assert(InfoHolder.getScopeVariables().empty()); 2111 PrevLabel = nullptr; 2112 CurFn = nullptr; 2113 return; 2114 } 2115 2116 #ifndef NDEBUG 2117 size_t NumAbstractScopes = LScopes.getAbstractScopesList().size(); 2118 #endif 2119 // Construct abstract scopes. 2120 for (LexicalScope *AScope : LScopes.getAbstractScopesList()) { 2121 auto *SP = cast<DISubprogram>(AScope->getScopeNode()); 2122 for (const DINode *DN : SP->getRetainedNodes()) { 2123 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 2124 continue; 2125 2126 const MDNode *Scope = nullptr; 2127 if (auto *DV = dyn_cast<DILocalVariable>(DN)) 2128 Scope = DV->getScope(); 2129 else if (auto *DL = dyn_cast<DILabel>(DN)) 2130 Scope = DL->getScope(); 2131 else 2132 llvm_unreachable("Unexpected DI type!"); 2133 2134 // Collect info for variables/labels that were optimized out. 2135 ensureAbstractEntityIsCreated(TheCU, DN, Scope); 2136 assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes 2137 && "ensureAbstractEntityIsCreated inserted abstract scopes"); 2138 } 2139 constructAbstractSubprogramScopeDIE(TheCU, AScope); 2140 } 2141 2142 ProcessedSPNodes.insert(SP); 2143 DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope); 2144 if (auto *SkelCU = TheCU.getSkeleton()) 2145 if (!LScopes.getAbstractScopesList().empty() && 2146 TheCU.getCUNode()->getSplitDebugInlining()) 2147 SkelCU->constructSubprogramScopeDIE(SP, FnScope); 2148 2149 // Construct call site entries. 2150 constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF); 2151 2152 // Clear debug info 2153 // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the 2154 // DbgVariables except those that are also in AbstractVariables (since they 2155 // can be used cross-function) 2156 InfoHolder.getScopeVariables().clear(); 2157 InfoHolder.getScopeLabels().clear(); 2158 PrevLabel = nullptr; 2159 CurFn = nullptr; 2160 } 2161 2162 // Register a source line with debug info. Returns the unique label that was 2163 // emitted and which provides correspondence to the source line list. 2164 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S, 2165 unsigned Flags) { 2166 ::recordSourceLine(*Asm, Line, Col, S, Flags, 2167 Asm->OutStreamer->getContext().getDwarfCompileUnitID(), 2168 getDwarfVersion(), getUnits()); 2169 } 2170 2171 //===----------------------------------------------------------------------===// 2172 // Emit Methods 2173 //===----------------------------------------------------------------------===// 2174 2175 // Emit the debug info section. 2176 void DwarfDebug::emitDebugInfo() { 2177 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2178 Holder.emitUnits(/* UseOffsets */ false); 2179 } 2180 2181 // Emit the abbreviation section. 2182 void DwarfDebug::emitAbbreviations() { 2183 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2184 2185 Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection()); 2186 } 2187 2188 void DwarfDebug::emitStringOffsetsTableHeader() { 2189 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2190 Holder.getStringPool().emitStringOffsetsTableHeader( 2191 *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(), 2192 Holder.getStringOffsetsStartSym()); 2193 } 2194 2195 template <typename AccelTableT> 2196 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section, 2197 StringRef TableName) { 2198 Asm->OutStreamer->SwitchSection(Section); 2199 2200 // Emit the full data. 2201 emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol()); 2202 } 2203 2204 void DwarfDebug::emitAccelDebugNames() { 2205 // Don't emit anything if we have no compilation units to index. 2206 if (getUnits().empty()) 2207 return; 2208 2209 emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits()); 2210 } 2211 2212 // Emit visible names into a hashed accelerator table section. 2213 void DwarfDebug::emitAccelNames() { 2214 emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(), 2215 "Names"); 2216 } 2217 2218 // Emit objective C classes and categories into a hashed accelerator table 2219 // section. 2220 void DwarfDebug::emitAccelObjC() { 2221 emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(), 2222 "ObjC"); 2223 } 2224 2225 // Emit namespace dies into a hashed accelerator table. 2226 void DwarfDebug::emitAccelNamespaces() { 2227 emitAccel(AccelNamespace, 2228 Asm->getObjFileLowering().getDwarfAccelNamespaceSection(), 2229 "namespac"); 2230 } 2231 2232 // Emit type dies into a hashed accelerator table. 2233 void DwarfDebug::emitAccelTypes() { 2234 emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(), 2235 "types"); 2236 } 2237 2238 // Public name handling. 2239 // The format for the various pubnames: 2240 // 2241 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU 2242 // for the DIE that is named. 2243 // 2244 // gnu pubnames - offset/index value/name tuples where the offset is the offset 2245 // into the CU and the index value is computed according to the type of value 2246 // for the DIE that is named. 2247 // 2248 // For type units the offset is the offset of the skeleton DIE. For split dwarf 2249 // it's the offset within the debug_info/debug_types dwo section, however, the 2250 // reference in the pubname header doesn't change. 2251 2252 /// computeIndexValue - Compute the gdb index value for the DIE and CU. 2253 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU, 2254 const DIE *Die) { 2255 // Entities that ended up only in a Type Unit reference the CU instead (since 2256 // the pub entry has offsets within the CU there's no real offset that can be 2257 // provided anyway). As it happens all such entities (namespaces and types, 2258 // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out 2259 // not to be true it would be necessary to persist this information from the 2260 // point at which the entry is added to the index data structure - since by 2261 // the time the index is built from that, the original type/namespace DIE in a 2262 // type unit has already been destroyed so it can't be queried for properties 2263 // like tag, etc. 2264 if (Die->getTag() == dwarf::DW_TAG_compile_unit) 2265 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, 2266 dwarf::GIEL_EXTERNAL); 2267 dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC; 2268 2269 // We could have a specification DIE that has our most of our knowledge, 2270 // look for that now. 2271 if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) { 2272 DIE &SpecDIE = SpecVal.getDIEEntry().getEntry(); 2273 if (SpecDIE.findAttribute(dwarf::DW_AT_external)) 2274 Linkage = dwarf::GIEL_EXTERNAL; 2275 } else if (Die->findAttribute(dwarf::DW_AT_external)) 2276 Linkage = dwarf::GIEL_EXTERNAL; 2277 2278 switch (Die->getTag()) { 2279 case dwarf::DW_TAG_class_type: 2280 case dwarf::DW_TAG_structure_type: 2281 case dwarf::DW_TAG_union_type: 2282 case dwarf::DW_TAG_enumeration_type: 2283 return dwarf::PubIndexEntryDescriptor( 2284 dwarf::GIEK_TYPE, 2285 dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage()) 2286 ? dwarf::GIEL_EXTERNAL 2287 : dwarf::GIEL_STATIC); 2288 case dwarf::DW_TAG_typedef: 2289 case dwarf::DW_TAG_base_type: 2290 case dwarf::DW_TAG_subrange_type: 2291 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC); 2292 case dwarf::DW_TAG_namespace: 2293 return dwarf::GIEK_TYPE; 2294 case dwarf::DW_TAG_subprogram: 2295 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage); 2296 case dwarf::DW_TAG_variable: 2297 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage); 2298 case dwarf::DW_TAG_enumerator: 2299 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, 2300 dwarf::GIEL_STATIC); 2301 default: 2302 return dwarf::GIEK_NONE; 2303 } 2304 } 2305 2306 /// emitDebugPubSections - Emit visible names and types into debug pubnames and 2307 /// pubtypes sections. 2308 void DwarfDebug::emitDebugPubSections() { 2309 for (const auto &NU : CUMap) { 2310 DwarfCompileUnit *TheU = NU.second; 2311 if (!TheU->hasDwarfPubSections()) 2312 continue; 2313 2314 bool GnuStyle = TheU->getCUNode()->getNameTableKind() == 2315 DICompileUnit::DebugNameTableKind::GNU; 2316 2317 Asm->OutStreamer->SwitchSection( 2318 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection() 2319 : Asm->getObjFileLowering().getDwarfPubNamesSection()); 2320 emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames()); 2321 2322 Asm->OutStreamer->SwitchSection( 2323 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection() 2324 : Asm->getObjFileLowering().getDwarfPubTypesSection()); 2325 emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes()); 2326 } 2327 } 2328 2329 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) { 2330 if (useSectionsAsReferences()) 2331 Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(), 2332 CU.getDebugSectionOffset()); 2333 else 2334 Asm->emitDwarfSymbolReference(CU.getLabelBegin()); 2335 } 2336 2337 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name, 2338 DwarfCompileUnit *TheU, 2339 const StringMap<const DIE *> &Globals) { 2340 if (auto *Skeleton = TheU->getSkeleton()) 2341 TheU = Skeleton; 2342 2343 // Emit the header. 2344 MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin"); 2345 MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end"); 2346 Asm->emitDwarfUnitLength(EndLabel, BeginLabel, 2347 "Length of Public " + Name + " Info"); 2348 2349 Asm->OutStreamer->emitLabel(BeginLabel); 2350 2351 Asm->OutStreamer->AddComment("DWARF Version"); 2352 Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION); 2353 2354 Asm->OutStreamer->AddComment("Offset of Compilation Unit Info"); 2355 emitSectionReference(*TheU); 2356 2357 Asm->OutStreamer->AddComment("Compilation Unit Length"); 2358 Asm->emitDwarfLengthOrOffset(TheU->getLength()); 2359 2360 // Emit the pubnames for this compilation unit. 2361 for (const auto &GI : Globals) { 2362 const char *Name = GI.getKeyData(); 2363 const DIE *Entity = GI.second; 2364 2365 Asm->OutStreamer->AddComment("DIE offset"); 2366 Asm->emitDwarfLengthOrOffset(Entity->getOffset()); 2367 2368 if (GnuStyle) { 2369 dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity); 2370 Asm->OutStreamer->AddComment( 2371 Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + 2372 ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage)); 2373 Asm->emitInt8(Desc.toBits()); 2374 } 2375 2376 Asm->OutStreamer->AddComment("External Name"); 2377 Asm->OutStreamer->emitBytes(StringRef(Name, GI.getKeyLength() + 1)); 2378 } 2379 2380 Asm->OutStreamer->AddComment("End Mark"); 2381 Asm->emitDwarfLengthOrOffset(0); 2382 Asm->OutStreamer->emitLabel(EndLabel); 2383 } 2384 2385 /// Emit null-terminated strings into a debug str section. 2386 void DwarfDebug::emitDebugStr() { 2387 MCSection *StringOffsetsSection = nullptr; 2388 if (useSegmentedStringOffsetsTable()) { 2389 emitStringOffsetsTableHeader(); 2390 StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection(); 2391 } 2392 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2393 Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(), 2394 StringOffsetsSection, /* UseRelativeOffsets = */ true); 2395 } 2396 2397 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer, 2398 const DebugLocStream::Entry &Entry, 2399 const DwarfCompileUnit *CU) { 2400 auto &&Comments = DebugLocs.getComments(Entry); 2401 auto Comment = Comments.begin(); 2402 auto End = Comments.end(); 2403 2404 // The expressions are inserted into a byte stream rather early (see 2405 // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that 2406 // need to reference a base_type DIE the offset of that DIE is not yet known. 2407 // To deal with this we instead insert a placeholder early and then extract 2408 // it here and replace it with the real reference. 2409 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2410 DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(), 2411 DebugLocs.getBytes(Entry).size()), 2412 Asm->getDataLayout().isLittleEndian(), PtrSize); 2413 DWARFExpression Expr(Data, PtrSize, Asm->OutContext.getDwarfFormat()); 2414 2415 using Encoding = DWARFExpression::Operation::Encoding; 2416 uint64_t Offset = 0; 2417 for (auto &Op : Expr) { 2418 assert(Op.getCode() != dwarf::DW_OP_const_type && 2419 "3 operand ops not yet supported"); 2420 Streamer.emitInt8(Op.getCode(), Comment != End ? *(Comment++) : ""); 2421 Offset++; 2422 for (unsigned I = 0; I < 2; ++I) { 2423 if (Op.getDescription().Op[I] == Encoding::SizeNA) 2424 continue; 2425 if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) { 2426 uint64_t Offset = 2427 CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset(); 2428 assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit"); 2429 Streamer.emitULEB128(Offset, "", ULEB128PadSize); 2430 // Make sure comments stay aligned. 2431 for (unsigned J = 0; J < ULEB128PadSize; ++J) 2432 if (Comment != End) 2433 Comment++; 2434 } else { 2435 for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J) 2436 Streamer.emitInt8(Data.getData()[J], Comment != End ? *(Comment++) : ""); 2437 } 2438 Offset = Op.getOperandEndOffset(I); 2439 } 2440 assert(Offset == Op.getEndOffset()); 2441 } 2442 } 2443 2444 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT, 2445 const DbgValueLoc &Value, 2446 DwarfExpression &DwarfExpr) { 2447 auto *DIExpr = Value.getExpression(); 2448 DIExpressionCursor ExprCursor(DIExpr); 2449 DwarfExpr.addFragmentOffset(DIExpr); 2450 // Regular entry. 2451 if (Value.isInt()) { 2452 if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed || 2453 BT->getEncoding() == dwarf::DW_ATE_signed_char)) 2454 DwarfExpr.addSignedConstant(Value.getInt()); 2455 else 2456 DwarfExpr.addUnsignedConstant(Value.getInt()); 2457 } else if (Value.isLocation()) { 2458 MachineLocation Location = Value.getLoc(); 2459 DwarfExpr.setLocation(Location, DIExpr); 2460 DIExpressionCursor Cursor(DIExpr); 2461 2462 if (DIExpr->isEntryValue()) 2463 DwarfExpr.beginEntryValueExpression(Cursor); 2464 2465 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); 2466 if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg())) 2467 return; 2468 return DwarfExpr.addExpression(std::move(Cursor)); 2469 } else if (Value.isTargetIndexLocation()) { 2470 TargetIndexLocation Loc = Value.getTargetIndexLocation(); 2471 // TODO TargetIndexLocation is a target-independent. Currently only the WebAssembly-specific 2472 // encoding is supported. 2473 DwarfExpr.addWasmLocation(Loc.Index, static_cast<uint64_t>(Loc.Offset)); 2474 DwarfExpr.addExpression(std::move(ExprCursor)); 2475 return; 2476 } else if (Value.isConstantFP()) { 2477 if (AP.getDwarfVersion() >= 4 && !AP.getDwarfDebug()->tuneForSCE()) { 2478 DwarfExpr.addConstantFP(Value.getConstantFP()->getValueAPF(), AP); 2479 return; 2480 } else if (Value.getConstantFP() 2481 ->getValueAPF() 2482 .bitcastToAPInt() 2483 .getBitWidth() <= 64 /*bits*/) 2484 DwarfExpr.addUnsignedConstant( 2485 Value.getConstantFP()->getValueAPF().bitcastToAPInt()); 2486 else 2487 LLVM_DEBUG( 2488 dbgs() 2489 << "Skipped DwarfExpression creation for ConstantFP of size" 2490 << Value.getConstantFP()->getValueAPF().bitcastToAPInt().getBitWidth() 2491 << " bits\n"); 2492 } 2493 DwarfExpr.addExpression(std::move(ExprCursor)); 2494 } 2495 2496 void DebugLocEntry::finalize(const AsmPrinter &AP, 2497 DebugLocStream::ListBuilder &List, 2498 const DIBasicType *BT, 2499 DwarfCompileUnit &TheCU) { 2500 assert(!Values.empty() && 2501 "location list entries without values are redundant"); 2502 assert(Begin != End && "unexpected location list entry with empty range"); 2503 DebugLocStream::EntryBuilder Entry(List, Begin, End); 2504 BufferByteStreamer Streamer = Entry.getStreamer(); 2505 DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU); 2506 const DbgValueLoc &Value = Values[0]; 2507 if (Value.isFragment()) { 2508 // Emit all fragments that belong to the same variable and range. 2509 assert(llvm::all_of(Values, [](DbgValueLoc P) { 2510 return P.isFragment(); 2511 }) && "all values are expected to be fragments"); 2512 assert(llvm::is_sorted(Values) && "fragments are expected to be sorted"); 2513 2514 for (const auto &Fragment : Values) 2515 DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr); 2516 2517 } else { 2518 assert(Values.size() == 1 && "only fragments may have >1 value"); 2519 DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr); 2520 } 2521 DwarfExpr.finalize(); 2522 if (DwarfExpr.TagOffset) 2523 List.setTagOffset(*DwarfExpr.TagOffset); 2524 } 2525 2526 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry, 2527 const DwarfCompileUnit *CU) { 2528 // Emit the size. 2529 Asm->OutStreamer->AddComment("Loc expr size"); 2530 if (getDwarfVersion() >= 5) 2531 Asm->emitULEB128(DebugLocs.getBytes(Entry).size()); 2532 else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max()) 2533 Asm->emitInt16(DebugLocs.getBytes(Entry).size()); 2534 else { 2535 // The entry is too big to fit into 16 bit, drop it as there is nothing we 2536 // can do. 2537 Asm->emitInt16(0); 2538 return; 2539 } 2540 // Emit the entry. 2541 APByteStreamer Streamer(*Asm); 2542 emitDebugLocEntry(Streamer, Entry, CU); 2543 } 2544 2545 // Emit the header of a DWARF 5 range list table list table. Returns the symbol 2546 // that designates the end of the table for the caller to emit when the table is 2547 // complete. 2548 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm, 2549 const DwarfFile &Holder) { 2550 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2551 2552 Asm->OutStreamer->AddComment("Offset entry count"); 2553 Asm->emitInt32(Holder.getRangeLists().size()); 2554 Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym()); 2555 2556 for (const RangeSpanList &List : Holder.getRangeLists()) 2557 Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(), 2558 Asm->getDwarfOffsetByteSize()); 2559 2560 return TableEnd; 2561 } 2562 2563 // Emit the header of a DWARF 5 locations list table. Returns the symbol that 2564 // designates the end of the table for the caller to emit when the table is 2565 // complete. 2566 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm, 2567 const DwarfDebug &DD) { 2568 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2569 2570 const auto &DebugLocs = DD.getDebugLocs(); 2571 2572 Asm->OutStreamer->AddComment("Offset entry count"); 2573 Asm->emitInt32(DebugLocs.getLists().size()); 2574 Asm->OutStreamer->emitLabel(DebugLocs.getSym()); 2575 2576 for (const auto &List : DebugLocs.getLists()) 2577 Asm->emitLabelDifference(List.Label, DebugLocs.getSym(), 2578 Asm->getDwarfOffsetByteSize()); 2579 2580 return TableEnd; 2581 } 2582 2583 template <typename Ranges, typename PayloadEmitter> 2584 static void emitRangeList( 2585 DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R, 2586 const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair, 2587 unsigned StartxLength, unsigned EndOfList, 2588 StringRef (*StringifyEnum)(unsigned), 2589 bool ShouldUseBaseAddress, 2590 PayloadEmitter EmitPayload) { 2591 2592 auto Size = Asm->MAI->getCodePointerSize(); 2593 bool UseDwarf5 = DD.getDwarfVersion() >= 5; 2594 2595 // Emit our symbol so we can find the beginning of the range. 2596 Asm->OutStreamer->emitLabel(Sym); 2597 2598 // Gather all the ranges that apply to the same section so they can share 2599 // a base address entry. 2600 MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges; 2601 2602 for (const auto &Range : R) 2603 SectionRanges[&Range.Begin->getSection()].push_back(&Range); 2604 2605 const MCSymbol *CUBase = CU.getBaseAddress(); 2606 bool BaseIsSet = false; 2607 for (const auto &P : SectionRanges) { 2608 auto *Base = CUBase; 2609 if (!Base && ShouldUseBaseAddress) { 2610 const MCSymbol *Begin = P.second.front()->Begin; 2611 const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection()); 2612 if (!UseDwarf5) { 2613 Base = NewBase; 2614 BaseIsSet = true; 2615 Asm->OutStreamer->emitIntValue(-1, Size); 2616 Asm->OutStreamer->AddComment(" base address"); 2617 Asm->OutStreamer->emitSymbolValue(Base, Size); 2618 } else if (NewBase != Begin || P.second.size() > 1) { 2619 // Only use a base address if 2620 // * the existing pool address doesn't match (NewBase != Begin) 2621 // * or, there's more than one entry to share the base address 2622 Base = NewBase; 2623 BaseIsSet = true; 2624 Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx)); 2625 Asm->emitInt8(BaseAddressx); 2626 Asm->OutStreamer->AddComment(" base address index"); 2627 Asm->emitULEB128(DD.getAddressPool().getIndex(Base)); 2628 } 2629 } else if (BaseIsSet && !UseDwarf5) { 2630 BaseIsSet = false; 2631 assert(!Base); 2632 Asm->OutStreamer->emitIntValue(-1, Size); 2633 Asm->OutStreamer->emitIntValue(0, Size); 2634 } 2635 2636 for (const auto *RS : P.second) { 2637 const MCSymbol *Begin = RS->Begin; 2638 const MCSymbol *End = RS->End; 2639 assert(Begin && "Range without a begin symbol?"); 2640 assert(End && "Range without an end symbol?"); 2641 if (Base) { 2642 if (UseDwarf5) { 2643 // Emit offset_pair when we have a base. 2644 Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair)); 2645 Asm->emitInt8(OffsetPair); 2646 Asm->OutStreamer->AddComment(" starting offset"); 2647 Asm->emitLabelDifferenceAsULEB128(Begin, Base); 2648 Asm->OutStreamer->AddComment(" ending offset"); 2649 Asm->emitLabelDifferenceAsULEB128(End, Base); 2650 } else { 2651 Asm->emitLabelDifference(Begin, Base, Size); 2652 Asm->emitLabelDifference(End, Base, Size); 2653 } 2654 } else if (UseDwarf5) { 2655 Asm->OutStreamer->AddComment(StringifyEnum(StartxLength)); 2656 Asm->emitInt8(StartxLength); 2657 Asm->OutStreamer->AddComment(" start index"); 2658 Asm->emitULEB128(DD.getAddressPool().getIndex(Begin)); 2659 Asm->OutStreamer->AddComment(" length"); 2660 Asm->emitLabelDifferenceAsULEB128(End, Begin); 2661 } else { 2662 Asm->OutStreamer->emitSymbolValue(Begin, Size); 2663 Asm->OutStreamer->emitSymbolValue(End, Size); 2664 } 2665 EmitPayload(*RS); 2666 } 2667 } 2668 2669 if (UseDwarf5) { 2670 Asm->OutStreamer->AddComment(StringifyEnum(EndOfList)); 2671 Asm->emitInt8(EndOfList); 2672 } else { 2673 // Terminate the list with two 0 values. 2674 Asm->OutStreamer->emitIntValue(0, Size); 2675 Asm->OutStreamer->emitIntValue(0, Size); 2676 } 2677 } 2678 2679 // Handles emission of both debug_loclist / debug_loclist.dwo 2680 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) { 2681 emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List), 2682 *List.CU, dwarf::DW_LLE_base_addressx, 2683 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length, 2684 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString, 2685 /* ShouldUseBaseAddress */ true, 2686 [&](const DebugLocStream::Entry &E) { 2687 DD.emitDebugLocEntryLocation(E, List.CU); 2688 }); 2689 } 2690 2691 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) { 2692 if (DebugLocs.getLists().empty()) 2693 return; 2694 2695 Asm->OutStreamer->SwitchSection(Sec); 2696 2697 MCSymbol *TableEnd = nullptr; 2698 if (getDwarfVersion() >= 5) 2699 TableEnd = emitLoclistsTableHeader(Asm, *this); 2700 2701 for (const auto &List : DebugLocs.getLists()) 2702 emitLocList(*this, Asm, List); 2703 2704 if (TableEnd) 2705 Asm->OutStreamer->emitLabel(TableEnd); 2706 } 2707 2708 // Emit locations into the .debug_loc/.debug_loclists section. 2709 void DwarfDebug::emitDebugLoc() { 2710 emitDebugLocImpl( 2711 getDwarfVersion() >= 5 2712 ? Asm->getObjFileLowering().getDwarfLoclistsSection() 2713 : Asm->getObjFileLowering().getDwarfLocSection()); 2714 } 2715 2716 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section. 2717 void DwarfDebug::emitDebugLocDWO() { 2718 if (getDwarfVersion() >= 5) { 2719 emitDebugLocImpl( 2720 Asm->getObjFileLowering().getDwarfLoclistsDWOSection()); 2721 2722 return; 2723 } 2724 2725 for (const auto &List : DebugLocs.getLists()) { 2726 Asm->OutStreamer->SwitchSection( 2727 Asm->getObjFileLowering().getDwarfLocDWOSection()); 2728 Asm->OutStreamer->emitLabel(List.Label); 2729 2730 for (const auto &Entry : DebugLocs.getEntries(List)) { 2731 // GDB only supports startx_length in pre-standard split-DWARF. 2732 // (in v5 standard loclists, it currently* /only/ supports base_address + 2733 // offset_pair, so the implementations can't really share much since they 2734 // need to use different representations) 2735 // * as of October 2018, at least 2736 // 2737 // In v5 (see emitLocList), this uses SectionLabels to reuse existing 2738 // addresses in the address pool to minimize object size/relocations. 2739 Asm->emitInt8(dwarf::DW_LLE_startx_length); 2740 unsigned idx = AddrPool.getIndex(Entry.Begin); 2741 Asm->emitULEB128(idx); 2742 // Also the pre-standard encoding is slightly different, emitting this as 2743 // an address-length entry here, but its a ULEB128 in DWARFv5 loclists. 2744 Asm->emitLabelDifference(Entry.End, Entry.Begin, 4); 2745 emitDebugLocEntryLocation(Entry, List.CU); 2746 } 2747 Asm->emitInt8(dwarf::DW_LLE_end_of_list); 2748 } 2749 } 2750 2751 struct ArangeSpan { 2752 const MCSymbol *Start, *End; 2753 }; 2754 2755 // Emit a debug aranges section, containing a CU lookup for any 2756 // address we can tie back to a CU. 2757 void DwarfDebug::emitDebugARanges() { 2758 // Provides a unique id per text section. 2759 MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap; 2760 2761 // Filter labels by section. 2762 for (const SymbolCU &SCU : ArangeLabels) { 2763 if (SCU.Sym->isInSection()) { 2764 // Make a note of this symbol and it's section. 2765 MCSection *Section = &SCU.Sym->getSection(); 2766 if (!Section->getKind().isMetadata()) 2767 SectionMap[Section].push_back(SCU); 2768 } else { 2769 // Some symbols (e.g. common/bss on mach-o) can have no section but still 2770 // appear in the output. This sucks as we rely on sections to build 2771 // arange spans. We can do it without, but it's icky. 2772 SectionMap[nullptr].push_back(SCU); 2773 } 2774 } 2775 2776 DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans; 2777 2778 for (auto &I : SectionMap) { 2779 MCSection *Section = I.first; 2780 SmallVector<SymbolCU, 8> &List = I.second; 2781 if (List.size() < 1) 2782 continue; 2783 2784 // If we have no section (e.g. common), just write out 2785 // individual spans for each symbol. 2786 if (!Section) { 2787 for (const SymbolCU &Cur : List) { 2788 ArangeSpan Span; 2789 Span.Start = Cur.Sym; 2790 Span.End = nullptr; 2791 assert(Cur.CU); 2792 Spans[Cur.CU].push_back(Span); 2793 } 2794 continue; 2795 } 2796 2797 // Sort the symbols by offset within the section. 2798 llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) { 2799 unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0; 2800 unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0; 2801 2802 // Symbols with no order assigned should be placed at the end. 2803 // (e.g. section end labels) 2804 if (IA == 0) 2805 return false; 2806 if (IB == 0) 2807 return true; 2808 return IA < IB; 2809 }); 2810 2811 // Insert a final terminator. 2812 List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section))); 2813 2814 // Build spans between each label. 2815 const MCSymbol *StartSym = List[0].Sym; 2816 for (size_t n = 1, e = List.size(); n < e; n++) { 2817 const SymbolCU &Prev = List[n - 1]; 2818 const SymbolCU &Cur = List[n]; 2819 2820 // Try and build the longest span we can within the same CU. 2821 if (Cur.CU != Prev.CU) { 2822 ArangeSpan Span; 2823 Span.Start = StartSym; 2824 Span.End = Cur.Sym; 2825 assert(Prev.CU); 2826 Spans[Prev.CU].push_back(Span); 2827 StartSym = Cur.Sym; 2828 } 2829 } 2830 } 2831 2832 // Start the dwarf aranges section. 2833 Asm->OutStreamer->SwitchSection( 2834 Asm->getObjFileLowering().getDwarfARangesSection()); 2835 2836 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2837 2838 // Build a list of CUs used. 2839 std::vector<DwarfCompileUnit *> CUs; 2840 for (const auto &it : Spans) { 2841 DwarfCompileUnit *CU = it.first; 2842 CUs.push_back(CU); 2843 } 2844 2845 // Sort the CU list (again, to ensure consistent output order). 2846 llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) { 2847 return A->getUniqueID() < B->getUniqueID(); 2848 }); 2849 2850 // Emit an arange table for each CU we used. 2851 for (DwarfCompileUnit *CU : CUs) { 2852 std::vector<ArangeSpan> &List = Spans[CU]; 2853 2854 // Describe the skeleton CU's offset and length, not the dwo file's. 2855 if (auto *Skel = CU->getSkeleton()) 2856 CU = Skel; 2857 2858 // Emit size of content not including length itself. 2859 unsigned ContentSize = 2860 sizeof(int16_t) + // DWARF ARange version number 2861 Asm->getDwarfOffsetByteSize() + // Offset of CU in the .debug_info 2862 // section 2863 sizeof(int8_t) + // Pointer Size (in bytes) 2864 sizeof(int8_t); // Segment Size (in bytes) 2865 2866 unsigned TupleSize = PtrSize * 2; 2867 2868 // 7.20 in the Dwarf specs requires the table to be aligned to a tuple. 2869 unsigned Padding = offsetToAlignment( 2870 Asm->getUnitLengthFieldByteSize() + ContentSize, Align(TupleSize)); 2871 2872 ContentSize += Padding; 2873 ContentSize += (List.size() + 1) * TupleSize; 2874 2875 // For each compile unit, write the list of spans it covers. 2876 Asm->emitDwarfUnitLength(ContentSize, "Length of ARange Set"); 2877 Asm->OutStreamer->AddComment("DWARF Arange version number"); 2878 Asm->emitInt16(dwarf::DW_ARANGES_VERSION); 2879 Asm->OutStreamer->AddComment("Offset Into Debug Info Section"); 2880 emitSectionReference(*CU); 2881 Asm->OutStreamer->AddComment("Address Size (in bytes)"); 2882 Asm->emitInt8(PtrSize); 2883 Asm->OutStreamer->AddComment("Segment Size (in bytes)"); 2884 Asm->emitInt8(0); 2885 2886 Asm->OutStreamer->emitFill(Padding, 0xff); 2887 2888 for (const ArangeSpan &Span : List) { 2889 Asm->emitLabelReference(Span.Start, PtrSize); 2890 2891 // Calculate the size as being from the span start to it's end. 2892 if (Span.End) { 2893 Asm->emitLabelDifference(Span.End, Span.Start, PtrSize); 2894 } else { 2895 // For symbols without an end marker (e.g. common), we 2896 // write a single arange entry containing just that one symbol. 2897 uint64_t Size = SymSize[Span.Start]; 2898 if (Size == 0) 2899 Size = 1; 2900 2901 Asm->OutStreamer->emitIntValue(Size, PtrSize); 2902 } 2903 } 2904 2905 Asm->OutStreamer->AddComment("ARange terminator"); 2906 Asm->OutStreamer->emitIntValue(0, PtrSize); 2907 Asm->OutStreamer->emitIntValue(0, PtrSize); 2908 } 2909 } 2910 2911 /// Emit a single range list. We handle both DWARF v5 and earlier. 2912 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm, 2913 const RangeSpanList &List) { 2914 emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU, 2915 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair, 2916 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list, 2917 llvm::dwarf::RangeListEncodingString, 2918 List.CU->getCUNode()->getRangesBaseAddress() || 2919 DD.getDwarfVersion() >= 5, 2920 [](auto) {}); 2921 } 2922 2923 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) { 2924 if (Holder.getRangeLists().empty()) 2925 return; 2926 2927 assert(useRangesSection()); 2928 assert(!CUMap.empty()); 2929 assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) { 2930 return !Pair.second->getCUNode()->isDebugDirectivesOnly(); 2931 })); 2932 2933 Asm->OutStreamer->SwitchSection(Section); 2934 2935 MCSymbol *TableEnd = nullptr; 2936 if (getDwarfVersion() >= 5) 2937 TableEnd = emitRnglistsTableHeader(Asm, Holder); 2938 2939 for (const RangeSpanList &List : Holder.getRangeLists()) 2940 emitRangeList(*this, Asm, List); 2941 2942 if (TableEnd) 2943 Asm->OutStreamer->emitLabel(TableEnd); 2944 } 2945 2946 /// Emit address ranges into the .debug_ranges section or into the DWARF v5 2947 /// .debug_rnglists section. 2948 void DwarfDebug::emitDebugRanges() { 2949 const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2950 2951 emitDebugRangesImpl(Holder, 2952 getDwarfVersion() >= 5 2953 ? Asm->getObjFileLowering().getDwarfRnglistsSection() 2954 : Asm->getObjFileLowering().getDwarfRangesSection()); 2955 } 2956 2957 void DwarfDebug::emitDebugRangesDWO() { 2958 emitDebugRangesImpl(InfoHolder, 2959 Asm->getObjFileLowering().getDwarfRnglistsDWOSection()); 2960 } 2961 2962 /// Emit the header of a DWARF 5 macro section, or the GNU extension for 2963 /// DWARF 4. 2964 static void emitMacroHeader(AsmPrinter *Asm, const DwarfDebug &DD, 2965 const DwarfCompileUnit &CU, uint16_t DwarfVersion) { 2966 enum HeaderFlagMask { 2967 #define HANDLE_MACRO_FLAG(ID, NAME) MACRO_FLAG_##NAME = ID, 2968 #include "llvm/BinaryFormat/Dwarf.def" 2969 }; 2970 Asm->OutStreamer->AddComment("Macro information version"); 2971 Asm->emitInt16(DwarfVersion >= 5 ? DwarfVersion : 4); 2972 // We emit the line offset flag unconditionally here, since line offset should 2973 // be mostly present. 2974 if (Asm->isDwarf64()) { 2975 Asm->OutStreamer->AddComment("Flags: 64 bit, debug_line_offset present"); 2976 Asm->emitInt8(MACRO_FLAG_OFFSET_SIZE | MACRO_FLAG_DEBUG_LINE_OFFSET); 2977 } else { 2978 Asm->OutStreamer->AddComment("Flags: 32 bit, debug_line_offset present"); 2979 Asm->emitInt8(MACRO_FLAG_DEBUG_LINE_OFFSET); 2980 } 2981 Asm->OutStreamer->AddComment("debug_line_offset"); 2982 if (DD.useSplitDwarf()) 2983 Asm->emitDwarfLengthOrOffset(0); 2984 else 2985 Asm->emitDwarfSymbolReference(CU.getLineTableStartSym()); 2986 } 2987 2988 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) { 2989 for (auto *MN : Nodes) { 2990 if (auto *M = dyn_cast<DIMacro>(MN)) 2991 emitMacro(*M); 2992 else if (auto *F = dyn_cast<DIMacroFile>(MN)) 2993 emitMacroFile(*F, U); 2994 else 2995 llvm_unreachable("Unexpected DI type!"); 2996 } 2997 } 2998 2999 void DwarfDebug::emitMacro(DIMacro &M) { 3000 StringRef Name = M.getName(); 3001 StringRef Value = M.getValue(); 3002 3003 // There should be one space between the macro name and the macro value in 3004 // define entries. In undef entries, only the macro name is emitted. 3005 std::string Str = Value.empty() ? Name.str() : (Name + " " + Value).str(); 3006 3007 if (UseDebugMacroSection) { 3008 if (getDwarfVersion() >= 5) { 3009 unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define 3010 ? dwarf::DW_MACRO_define_strx 3011 : dwarf::DW_MACRO_undef_strx; 3012 Asm->OutStreamer->AddComment(dwarf::MacroString(Type)); 3013 Asm->emitULEB128(Type); 3014 Asm->OutStreamer->AddComment("Line Number"); 3015 Asm->emitULEB128(M.getLine()); 3016 Asm->OutStreamer->AddComment("Macro String"); 3017 Asm->emitULEB128( 3018 InfoHolder.getStringPool().getIndexedEntry(*Asm, Str).getIndex()); 3019 } else { 3020 unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define 3021 ? dwarf::DW_MACRO_GNU_define_indirect 3022 : dwarf::DW_MACRO_GNU_undef_indirect; 3023 Asm->OutStreamer->AddComment(dwarf::GnuMacroString(Type)); 3024 Asm->emitULEB128(Type); 3025 Asm->OutStreamer->AddComment("Line Number"); 3026 Asm->emitULEB128(M.getLine()); 3027 Asm->OutStreamer->AddComment("Macro String"); 3028 Asm->emitDwarfSymbolReference( 3029 InfoHolder.getStringPool().getEntry(*Asm, Str).getSymbol()); 3030 } 3031 } else { 3032 Asm->OutStreamer->AddComment(dwarf::MacinfoString(M.getMacinfoType())); 3033 Asm->emitULEB128(M.getMacinfoType()); 3034 Asm->OutStreamer->AddComment("Line Number"); 3035 Asm->emitULEB128(M.getLine()); 3036 Asm->OutStreamer->AddComment("Macro String"); 3037 Asm->OutStreamer->emitBytes(Str); 3038 Asm->emitInt8('\0'); 3039 } 3040 } 3041 3042 void DwarfDebug::emitMacroFileImpl( 3043 DIMacroFile &MF, DwarfCompileUnit &U, unsigned StartFile, unsigned EndFile, 3044 StringRef (*MacroFormToString)(unsigned Form)) { 3045 3046 Asm->OutStreamer->AddComment(MacroFormToString(StartFile)); 3047 Asm->emitULEB128(StartFile); 3048 Asm->OutStreamer->AddComment("Line Number"); 3049 Asm->emitULEB128(MF.getLine()); 3050 Asm->OutStreamer->AddComment("File Number"); 3051 DIFile &F = *MF.getFile(); 3052 if (useSplitDwarf()) 3053 Asm->emitULEB128(getDwoLineTable(U)->getFile( 3054 F.getDirectory(), F.getFilename(), getMD5AsBytes(&F), 3055 Asm->OutContext.getDwarfVersion(), F.getSource())); 3056 else 3057 Asm->emitULEB128(U.getOrCreateSourceID(&F)); 3058 handleMacroNodes(MF.getElements(), U); 3059 Asm->OutStreamer->AddComment(MacroFormToString(EndFile)); 3060 Asm->emitULEB128(EndFile); 3061 } 3062 3063 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) { 3064 // DWARFv5 macro and DWARFv4 macinfo share some common encodings, 3065 // so for readibility/uniformity, We are explicitly emitting those. 3066 assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file); 3067 if (UseDebugMacroSection) 3068 emitMacroFileImpl( 3069 F, U, dwarf::DW_MACRO_start_file, dwarf::DW_MACRO_end_file, 3070 (getDwarfVersion() >= 5) ? dwarf::MacroString : dwarf::GnuMacroString); 3071 else 3072 emitMacroFileImpl(F, U, dwarf::DW_MACINFO_start_file, 3073 dwarf::DW_MACINFO_end_file, dwarf::MacinfoString); 3074 } 3075 3076 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) { 3077 for (const auto &P : CUMap) { 3078 auto &TheCU = *P.second; 3079 auto *SkCU = TheCU.getSkeleton(); 3080 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 3081 auto *CUNode = cast<DICompileUnit>(P.first); 3082 DIMacroNodeArray Macros = CUNode->getMacros(); 3083 if (Macros.empty()) 3084 continue; 3085 Asm->OutStreamer->SwitchSection(Section); 3086 Asm->OutStreamer->emitLabel(U.getMacroLabelBegin()); 3087 if (UseDebugMacroSection) 3088 emitMacroHeader(Asm, *this, U, getDwarfVersion()); 3089 handleMacroNodes(Macros, U); 3090 Asm->OutStreamer->AddComment("End Of Macro List Mark"); 3091 Asm->emitInt8(0); 3092 } 3093 } 3094 3095 /// Emit macros into a debug macinfo/macro section. 3096 void DwarfDebug::emitDebugMacinfo() { 3097 auto &ObjLower = Asm->getObjFileLowering(); 3098 emitDebugMacinfoImpl(UseDebugMacroSection 3099 ? ObjLower.getDwarfMacroSection() 3100 : ObjLower.getDwarfMacinfoSection()); 3101 } 3102 3103 void DwarfDebug::emitDebugMacinfoDWO() { 3104 auto &ObjLower = Asm->getObjFileLowering(); 3105 emitDebugMacinfoImpl(UseDebugMacroSection 3106 ? ObjLower.getDwarfMacroDWOSection() 3107 : ObjLower.getDwarfMacinfoDWOSection()); 3108 } 3109 3110 // DWARF5 Experimental Separate Dwarf emitters. 3111 3112 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die, 3113 std::unique_ptr<DwarfCompileUnit> NewU) { 3114 3115 if (!CompilationDir.empty()) 3116 NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 3117 addGnuPubAttributes(*NewU, Die); 3118 3119 SkeletonHolder.addUnit(std::move(NewU)); 3120 } 3121 3122 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) { 3123 3124 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 3125 CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder, 3126 UnitKind::Skeleton); 3127 DwarfCompileUnit &NewCU = *OwnedUnit; 3128 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 3129 3130 NewCU.initStmtList(); 3131 3132 if (useSegmentedStringOffsetsTable()) 3133 NewCU.addStringOffsetsStart(); 3134 3135 initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit)); 3136 3137 return NewCU; 3138 } 3139 3140 // Emit the .debug_info.dwo section for separated dwarf. This contains the 3141 // compile units that would normally be in debug_info. 3142 void DwarfDebug::emitDebugInfoDWO() { 3143 assert(useSplitDwarf() && "No split dwarf debug info?"); 3144 // Don't emit relocations into the dwo file. 3145 InfoHolder.emitUnits(/* UseOffsets */ true); 3146 } 3147 3148 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the 3149 // abbreviations for the .debug_info.dwo section. 3150 void DwarfDebug::emitDebugAbbrevDWO() { 3151 assert(useSplitDwarf() && "No split dwarf?"); 3152 InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection()); 3153 } 3154 3155 void DwarfDebug::emitDebugLineDWO() { 3156 assert(useSplitDwarf() && "No split dwarf?"); 3157 SplitTypeUnitFileTable.Emit( 3158 *Asm->OutStreamer, MCDwarfLineTableParams(), 3159 Asm->getObjFileLowering().getDwarfLineDWOSection()); 3160 } 3161 3162 void DwarfDebug::emitStringOffsetsTableHeaderDWO() { 3163 assert(useSplitDwarf() && "No split dwarf?"); 3164 InfoHolder.getStringPool().emitStringOffsetsTableHeader( 3165 *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(), 3166 InfoHolder.getStringOffsetsStartSym()); 3167 } 3168 3169 // Emit the .debug_str.dwo section for separated dwarf. This contains the 3170 // string section and is identical in format to traditional .debug_str 3171 // sections. 3172 void DwarfDebug::emitDebugStrDWO() { 3173 if (useSegmentedStringOffsetsTable()) 3174 emitStringOffsetsTableHeaderDWO(); 3175 assert(useSplitDwarf() && "No split dwarf?"); 3176 MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection(); 3177 InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(), 3178 OffSec, /* UseRelativeOffsets = */ false); 3179 } 3180 3181 // Emit address pool. 3182 void DwarfDebug::emitDebugAddr() { 3183 AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection()); 3184 } 3185 3186 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) { 3187 if (!useSplitDwarf()) 3188 return nullptr; 3189 const DICompileUnit *DIUnit = CU.getCUNode(); 3190 SplitTypeUnitFileTable.maybeSetRootFile( 3191 DIUnit->getDirectory(), DIUnit->getFilename(), 3192 getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource()); 3193 return &SplitTypeUnitFileTable; 3194 } 3195 3196 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) { 3197 MD5 Hash; 3198 Hash.update(Identifier); 3199 // ... take the least significant 8 bytes and return those. Our MD5 3200 // implementation always returns its results in little endian, so we actually 3201 // need the "high" word. 3202 MD5::MD5Result Result; 3203 Hash.final(Result); 3204 return Result.high(); 3205 } 3206 3207 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU, 3208 StringRef Identifier, DIE &RefDie, 3209 const DICompositeType *CTy) { 3210 // Fast path if we're building some type units and one has already used the 3211 // address pool we know we're going to throw away all this work anyway, so 3212 // don't bother building dependent types. 3213 if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed()) 3214 return; 3215 3216 auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0)); 3217 if (!Ins.second) { 3218 CU.addDIETypeSignature(RefDie, Ins.first->second); 3219 return; 3220 } 3221 3222 bool TopLevelType = TypeUnitsUnderConstruction.empty(); 3223 AddrPool.resetUsedFlag(); 3224 3225 auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder, 3226 getDwoLineTable(CU)); 3227 DwarfTypeUnit &NewTU = *OwnedUnit; 3228 DIE &UnitDie = NewTU.getUnitDie(); 3229 TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy); 3230 3231 NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 3232 CU.getLanguage()); 3233 3234 uint64_t Signature = makeTypeSignature(Identifier); 3235 NewTU.setTypeSignature(Signature); 3236 Ins.first->second = Signature; 3237 3238 if (useSplitDwarf()) { 3239 MCSection *Section = 3240 getDwarfVersion() <= 4 3241 ? Asm->getObjFileLowering().getDwarfTypesDWOSection() 3242 : Asm->getObjFileLowering().getDwarfInfoDWOSection(); 3243 NewTU.setSection(Section); 3244 } else { 3245 MCSection *Section = 3246 getDwarfVersion() <= 4 3247 ? Asm->getObjFileLowering().getDwarfTypesSection(Signature) 3248 : Asm->getObjFileLowering().getDwarfInfoSection(Signature); 3249 NewTU.setSection(Section); 3250 // Non-split type units reuse the compile unit's line table. 3251 CU.applyStmtList(UnitDie); 3252 } 3253 3254 // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type 3255 // units. 3256 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 3257 NewTU.addStringOffsetsStart(); 3258 3259 NewTU.setType(NewTU.createTypeDIE(CTy)); 3260 3261 if (TopLevelType) { 3262 auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction); 3263 TypeUnitsUnderConstruction.clear(); 3264 3265 // Types referencing entries in the address table cannot be placed in type 3266 // units. 3267 if (AddrPool.hasBeenUsed()) { 3268 3269 // Remove all the types built while building this type. 3270 // This is pessimistic as some of these types might not be dependent on 3271 // the type that used an address. 3272 for (const auto &TU : TypeUnitsToAdd) 3273 TypeSignatures.erase(TU.second); 3274 3275 // Construct this type in the CU directly. 3276 // This is inefficient because all the dependent types will be rebuilt 3277 // from scratch, including building them in type units, discovering that 3278 // they depend on addresses, throwing them out and rebuilding them. 3279 CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy)); 3280 return; 3281 } 3282 3283 // If the type wasn't dependent on fission addresses, finish adding the type 3284 // and all its dependent types. 3285 for (auto &TU : TypeUnitsToAdd) { 3286 InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get()); 3287 InfoHolder.emitUnit(TU.first.get(), useSplitDwarf()); 3288 } 3289 } 3290 CU.addDIETypeSignature(RefDie, Signature); 3291 } 3292 3293 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD) 3294 : DD(DD), 3295 TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)), AddrPoolUsed(DD->AddrPool.hasBeenUsed()) { 3296 DD->TypeUnitsUnderConstruction.clear(); 3297 DD->AddrPool.resetUsedFlag(); 3298 } 3299 3300 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() { 3301 DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction); 3302 DD->AddrPool.resetUsedFlag(AddrPoolUsed); 3303 } 3304 3305 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() { 3306 return NonTypeUnitContext(this); 3307 } 3308 3309 // Add the Name along with its companion DIE to the appropriate accelerator 3310 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for 3311 // AccelTableKind::Apple, we use the table we got as an argument). If 3312 // accelerator tables are disabled, this function does nothing. 3313 template <typename DataT> 3314 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU, 3315 AccelTable<DataT> &AppleAccel, StringRef Name, 3316 const DIE &Die) { 3317 if (getAccelTableKind() == AccelTableKind::None) 3318 return; 3319 3320 if (getAccelTableKind() != AccelTableKind::Apple && 3321 CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default) 3322 return; 3323 3324 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 3325 DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name); 3326 3327 switch (getAccelTableKind()) { 3328 case AccelTableKind::Apple: 3329 AppleAccel.addName(Ref, Die); 3330 break; 3331 case AccelTableKind::Dwarf: 3332 AccelDebugNames.addName(Ref, Die); 3333 break; 3334 case AccelTableKind::Default: 3335 llvm_unreachable("Default should have already been resolved."); 3336 case AccelTableKind::None: 3337 llvm_unreachable("None handled above"); 3338 } 3339 } 3340 3341 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name, 3342 const DIE &Die) { 3343 addAccelNameImpl(CU, AccelNames, Name, Die); 3344 } 3345 3346 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name, 3347 const DIE &Die) { 3348 // ObjC names go only into the Apple accelerator tables. 3349 if (getAccelTableKind() == AccelTableKind::Apple) 3350 addAccelNameImpl(CU, AccelObjC, Name, Die); 3351 } 3352 3353 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name, 3354 const DIE &Die) { 3355 addAccelNameImpl(CU, AccelNamespace, Name, Die); 3356 } 3357 3358 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name, 3359 const DIE &Die, char Flags) { 3360 addAccelNameImpl(CU, AccelTypes, Name, Die); 3361 } 3362 3363 uint16_t DwarfDebug::getDwarfVersion() const { 3364 return Asm->OutStreamer->getContext().getDwarfVersion(); 3365 } 3366 3367 dwarf::Form DwarfDebug::getDwarfSectionOffsetForm() const { 3368 if (Asm->getDwarfVersion() >= 4) 3369 return dwarf::Form::DW_FORM_sec_offset; 3370 assert((!Asm->isDwarf64() || (Asm->getDwarfVersion() == 3)) && 3371 "DWARF64 is not defined prior DWARFv3"); 3372 return Asm->isDwarf64() ? dwarf::Form::DW_FORM_data8 3373 : dwarf::Form::DW_FORM_data4; 3374 } 3375 3376 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) { 3377 return SectionLabels.find(S)->second; 3378 } 3379 void DwarfDebug::insertSectionLabel(const MCSymbol *S) { 3380 if (SectionLabels.insert(std::make_pair(&S->getSection(), S)).second) 3381 if (useSplitDwarf() || getDwarfVersion() >= 5) 3382 AddrPool.getIndex(S); 3383 } 3384 3385 Optional<MD5::MD5Result> DwarfDebug::getMD5AsBytes(const DIFile *File) const { 3386 assert(File); 3387 if (getDwarfVersion() < 5) 3388 return None; 3389 Optional<DIFile::ChecksumInfo<StringRef>> Checksum = File->getChecksum(); 3390 if (!Checksum || Checksum->Kind != DIFile::CSK_MD5) 3391 return None; 3392 3393 // Convert the string checksum to an MD5Result for the streamer. 3394 // The verifier validates the checksum so we assume it's okay. 3395 // An MD5 checksum is 16 bytes. 3396 std::string ChecksumString = fromHex(Checksum->Value); 3397 MD5::MD5Result CKMem; 3398 std::copy(ChecksumString.begin(), ChecksumString.end(), CKMem.Bytes.data()); 3399 return CKMem; 3400 } 3401