1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing dwarf debug info into asm files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "DwarfDebug.h" 14 #include "ByteStreamer.h" 15 #include "DIEHash.h" 16 #include "DebugLocEntry.h" 17 #include "DebugLocStream.h" 18 #include "DwarfCompileUnit.h" 19 #include "DwarfExpression.h" 20 #include "DwarfFile.h" 21 #include "DwarfUnit.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/DenseSet.h" 25 #include "llvm/ADT/MapVector.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/BinaryFormat/Dwarf.h" 33 #include "llvm/CodeGen/AccelTable.h" 34 #include "llvm/CodeGen/AsmPrinter.h" 35 #include "llvm/CodeGen/DIE.h" 36 #include "llvm/CodeGen/LexicalScopes.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineInstr.h" 40 #include "llvm/CodeGen/MachineModuleInfo.h" 41 #include "llvm/CodeGen/MachineOperand.h" 42 #include "llvm/CodeGen/TargetInstrInfo.h" 43 #include "llvm/CodeGen/TargetLowering.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/DebugInfo/DWARF/DWARFExpression.h" 47 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GlobalVariable.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/MC/MCAsmInfo.h" 55 #include "llvm/MC/MCContext.h" 56 #include "llvm/MC/MCDwarf.h" 57 #include "llvm/MC/MCSection.h" 58 #include "llvm/MC/MCStreamer.h" 59 #include "llvm/MC/MCSymbol.h" 60 #include "llvm/MC/MCTargetOptions.h" 61 #include "llvm/MC/MachineLocation.h" 62 #include "llvm/MC/SectionKind.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MD5.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/Timer.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Target/TargetLoweringObjectFile.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include "llvm/Target/TargetOptions.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <iterator> 80 #include <string> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 #define DEBUG_TYPE "dwarfdebug" 87 88 STATISTIC(NumCSParams, "Number of dbg call site params created"); 89 90 static cl::opt<bool> 91 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, 92 cl::desc("Disable debug info printing")); 93 94 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier( 95 "use-dwarf-ranges-base-address-specifier", cl::Hidden, 96 cl::desc("Use base address specifiers in debug_ranges"), cl::init(false)); 97 98 static cl::opt<bool> GenerateARangeSection("generate-arange-section", 99 cl::Hidden, 100 cl::desc("Generate dwarf aranges"), 101 cl::init(false)); 102 103 static cl::opt<bool> 104 GenerateDwarfTypeUnits("generate-type-units", cl::Hidden, 105 cl::desc("Generate DWARF4 type units."), 106 cl::init(false)); 107 108 static cl::opt<bool> SplitDwarfCrossCuReferences( 109 "split-dwarf-cross-cu-references", cl::Hidden, 110 cl::desc("Enable cross-cu references in DWO files"), cl::init(false)); 111 112 enum DefaultOnOff { Default, Enable, Disable }; 113 114 static cl::opt<DefaultOnOff> UnknownLocations( 115 "use-unknown-locations", cl::Hidden, 116 cl::desc("Make an absence of debug location information explicit."), 117 cl::values(clEnumVal(Default, "At top of block or after label"), 118 clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")), 119 cl::init(Default)); 120 121 static cl::opt<AccelTableKind> AccelTables( 122 "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."), 123 cl::values(clEnumValN(AccelTableKind::Default, "Default", 124 "Default for platform"), 125 clEnumValN(AccelTableKind::None, "Disable", "Disabled."), 126 clEnumValN(AccelTableKind::Apple, "Apple", "Apple"), 127 clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")), 128 cl::init(AccelTableKind::Default)); 129 130 static cl::opt<DefaultOnOff> 131 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden, 132 cl::desc("Use inlined strings rather than string section."), 133 cl::values(clEnumVal(Default, "Default for platform"), 134 clEnumVal(Enable, "Enabled"), 135 clEnumVal(Disable, "Disabled")), 136 cl::init(Default)); 137 138 static cl::opt<bool> 139 NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden, 140 cl::desc("Disable emission .debug_ranges section."), 141 cl::init(false)); 142 143 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences( 144 "dwarf-sections-as-references", cl::Hidden, 145 cl::desc("Use sections+offset as references rather than labels."), 146 cl::values(clEnumVal(Default, "Default for platform"), 147 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 148 cl::init(Default)); 149 150 enum LinkageNameOption { 151 DefaultLinkageNames, 152 AllLinkageNames, 153 AbstractLinkageNames 154 }; 155 156 static cl::opt<LinkageNameOption> 157 DwarfLinkageNames("dwarf-linkage-names", cl::Hidden, 158 cl::desc("Which DWARF linkage-name attributes to emit."), 159 cl::values(clEnumValN(DefaultLinkageNames, "Default", 160 "Default for platform"), 161 clEnumValN(AllLinkageNames, "All", "All"), 162 clEnumValN(AbstractLinkageNames, "Abstract", 163 "Abstract subprograms")), 164 cl::init(DefaultLinkageNames)); 165 166 static const char *const DWARFGroupName = "dwarf"; 167 static const char *const DWARFGroupDescription = "DWARF Emission"; 168 static const char *const DbgTimerName = "writer"; 169 static const char *const DbgTimerDescription = "DWARF Debug Writer"; 170 static constexpr unsigned ULEB128PadSize = 4; 171 172 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) { 173 BS.EmitInt8( 174 Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op) 175 : dwarf::OperationEncodingString(Op)); 176 } 177 178 void DebugLocDwarfExpression::emitSigned(int64_t Value) { 179 BS.EmitSLEB128(Value, Twine(Value)); 180 } 181 182 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) { 183 BS.EmitULEB128(Value, Twine(Value)); 184 } 185 186 void DebugLocDwarfExpression::emitData1(uint8_t Value) { 187 BS.EmitInt8(Value, Twine(Value)); 188 } 189 190 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) { 191 assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit"); 192 BS.EmitULEB128(Idx, Twine(Idx), ULEB128PadSize); 193 } 194 195 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI, 196 unsigned MachineReg) { 197 // This information is not available while emitting .debug_loc entries. 198 return false; 199 } 200 201 const DIType *DbgVariable::getType() const { 202 return getVariable()->getType(); 203 } 204 205 /// Get .debug_loc entry for the instruction range starting at MI. 206 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) { 207 const DIExpression *Expr = MI->getDebugExpression(); 208 assert(MI->getNumOperands() == 4); 209 if (MI->getOperand(0).isReg()) { 210 auto RegOp = MI->getOperand(0); 211 auto Op1 = MI->getOperand(1); 212 // If the second operand is an immediate, this is a 213 // register-indirect address. 214 assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset"); 215 MachineLocation MLoc(RegOp.getReg(), Op1.isImm()); 216 return DbgValueLoc(Expr, MLoc); 217 } 218 if (MI->getOperand(0).isImm()) 219 return DbgValueLoc(Expr, MI->getOperand(0).getImm()); 220 if (MI->getOperand(0).isFPImm()) 221 return DbgValueLoc(Expr, MI->getOperand(0).getFPImm()); 222 if (MI->getOperand(0).isCImm()) 223 return DbgValueLoc(Expr, MI->getOperand(0).getCImm()); 224 225 llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!"); 226 } 227 228 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) { 229 assert(FrameIndexExprs.empty() && "Already initialized?"); 230 assert(!ValueLoc.get() && "Already initialized?"); 231 232 assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable"); 233 assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() && 234 "Wrong inlined-at"); 235 236 ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue)); 237 if (auto *E = DbgValue->getDebugExpression()) 238 if (E->getNumElements()) 239 FrameIndexExprs.push_back({0, E}); 240 } 241 242 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const { 243 if (FrameIndexExprs.size() == 1) 244 return FrameIndexExprs; 245 246 assert(llvm::all_of(FrameIndexExprs, 247 [](const FrameIndexExpr &A) { 248 return A.Expr->isFragment(); 249 }) && 250 "multiple FI expressions without DW_OP_LLVM_fragment"); 251 llvm::sort(FrameIndexExprs, 252 [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool { 253 return A.Expr->getFragmentInfo()->OffsetInBits < 254 B.Expr->getFragmentInfo()->OffsetInBits; 255 }); 256 257 return FrameIndexExprs; 258 } 259 260 void DbgVariable::addMMIEntry(const DbgVariable &V) { 261 assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry"); 262 assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry"); 263 assert(V.getVariable() == getVariable() && "conflicting variable"); 264 assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location"); 265 266 assert(!FrameIndexExprs.empty() && "Expected an MMI entry"); 267 assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry"); 268 269 // FIXME: This logic should not be necessary anymore, as we now have proper 270 // deduplication. However, without it, we currently run into the assertion 271 // below, which means that we are likely dealing with broken input, i.e. two 272 // non-fragment entries for the same variable at different frame indices. 273 if (FrameIndexExprs.size()) { 274 auto *Expr = FrameIndexExprs.back().Expr; 275 if (!Expr || !Expr->isFragment()) 276 return; 277 } 278 279 for (const auto &FIE : V.FrameIndexExprs) 280 // Ignore duplicate entries. 281 if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) { 282 return FIE.FI == Other.FI && FIE.Expr == Other.Expr; 283 })) 284 FrameIndexExprs.push_back(FIE); 285 286 assert((FrameIndexExprs.size() == 1 || 287 llvm::all_of(FrameIndexExprs, 288 [](FrameIndexExpr &FIE) { 289 return FIE.Expr && FIE.Expr->isFragment(); 290 })) && 291 "conflicting locations for variable"); 292 } 293 294 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion, 295 bool GenerateTypeUnits, 296 DebuggerKind Tuning, 297 const Triple &TT) { 298 // Honor an explicit request. 299 if (AccelTables != AccelTableKind::Default) 300 return AccelTables; 301 302 // Accelerator tables with type units are currently not supported. 303 if (GenerateTypeUnits) 304 return AccelTableKind::None; 305 306 // Accelerator tables get emitted if targetting DWARF v5 or LLDB. DWARF v5 307 // always implies debug_names. For lower standard versions we use apple 308 // accelerator tables on apple platforms and debug_names elsewhere. 309 if (DwarfVersion >= 5) 310 return AccelTableKind::Dwarf; 311 if (Tuning == DebuggerKind::LLDB) 312 return TT.isOSBinFormatMachO() ? AccelTableKind::Apple 313 : AccelTableKind::Dwarf; 314 return AccelTableKind::None; 315 } 316 317 DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M) 318 : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()), 319 InfoHolder(A, "info_string", DIEValueAllocator), 320 SkeletonHolder(A, "skel_string", DIEValueAllocator), 321 IsDarwin(A->TM.getTargetTriple().isOSDarwin()) { 322 const Triple &TT = Asm->TM.getTargetTriple(); 323 324 // Make sure we know our "debugger tuning". The target option takes 325 // precedence; fall back to triple-based defaults. 326 if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default) 327 DebuggerTuning = Asm->TM.Options.DebuggerTuning; 328 else if (IsDarwin) 329 DebuggerTuning = DebuggerKind::LLDB; 330 else if (TT.isPS4CPU()) 331 DebuggerTuning = DebuggerKind::SCE; 332 else 333 DebuggerTuning = DebuggerKind::GDB; 334 335 if (DwarfInlinedStrings == Default) 336 UseInlineStrings = TT.isNVPTX(); 337 else 338 UseInlineStrings = DwarfInlinedStrings == Enable; 339 340 UseLocSection = !TT.isNVPTX(); 341 342 HasAppleExtensionAttributes = tuneForLLDB(); 343 344 // Handle split DWARF. 345 HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty(); 346 347 // SCE defaults to linkage names only for abstract subprograms. 348 if (DwarfLinkageNames == DefaultLinkageNames) 349 UseAllLinkageNames = !tuneForSCE(); 350 else 351 UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames; 352 353 unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion; 354 unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber 355 : MMI->getModule()->getDwarfVersion(); 356 // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2. 357 DwarfVersion = 358 TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION); 359 360 UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX(); 361 362 // Use sections as references. Force for NVPTX. 363 if (DwarfSectionsAsReferences == Default) 364 UseSectionsAsReferences = TT.isNVPTX(); 365 else 366 UseSectionsAsReferences = DwarfSectionsAsReferences == Enable; 367 368 // Don't generate type units for unsupported object file formats. 369 GenerateTypeUnits = 370 A->TM.getTargetTriple().isOSBinFormatELF() && GenerateDwarfTypeUnits; 371 372 TheAccelTableKind = computeAccelTableKind( 373 DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple()); 374 375 // Work around a GDB bug. GDB doesn't support the standard opcode; 376 // SCE doesn't support GNU's; LLDB prefers the standard opcode, which 377 // is defined as of DWARF 3. 378 // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented 379 // https://sourceware.org/bugzilla/show_bug.cgi?id=11616 380 UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3; 381 382 // GDB does not fully support the DWARF 4 representation for bitfields. 383 UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB(); 384 385 // The DWARF v5 string offsets table has - possibly shared - contributions 386 // from each compile and type unit each preceded by a header. The string 387 // offsets table used by the pre-DWARF v5 split-DWARF implementation uses 388 // a monolithic string offsets table without any header. 389 UseSegmentedStringOffsetsTable = DwarfVersion >= 5; 390 391 Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion); 392 } 393 394 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h. 395 DwarfDebug::~DwarfDebug() = default; 396 397 static bool isObjCClass(StringRef Name) { 398 return Name.startswith("+") || Name.startswith("-"); 399 } 400 401 static bool hasObjCCategory(StringRef Name) { 402 if (!isObjCClass(Name)) 403 return false; 404 405 return Name.find(") ") != StringRef::npos; 406 } 407 408 static void getObjCClassCategory(StringRef In, StringRef &Class, 409 StringRef &Category) { 410 if (!hasObjCCategory(In)) { 411 Class = In.slice(In.find('[') + 1, In.find(' ')); 412 Category = ""; 413 return; 414 } 415 416 Class = In.slice(In.find('[') + 1, In.find('(')); 417 Category = In.slice(In.find('[') + 1, In.find(' ')); 418 } 419 420 static StringRef getObjCMethodName(StringRef In) { 421 return In.slice(In.find(' ') + 1, In.find(']')); 422 } 423 424 // Add the various names to the Dwarf accelerator table names. 425 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU, 426 const DISubprogram *SP, DIE &Die) { 427 if (getAccelTableKind() != AccelTableKind::Apple && 428 CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None) 429 return; 430 431 if (!SP->isDefinition()) 432 return; 433 434 if (SP->getName() != "") 435 addAccelName(CU, SP->getName(), Die); 436 437 // If the linkage name is different than the name, go ahead and output that as 438 // well into the name table. Only do that if we are going to actually emit 439 // that name. 440 if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() && 441 (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP))) 442 addAccelName(CU, SP->getLinkageName(), Die); 443 444 // If this is an Objective-C selector name add it to the ObjC accelerator 445 // too. 446 if (isObjCClass(SP->getName())) { 447 StringRef Class, Category; 448 getObjCClassCategory(SP->getName(), Class, Category); 449 addAccelObjC(CU, Class, Die); 450 if (Category != "") 451 addAccelObjC(CU, Category, Die); 452 // Also add the base method name to the name table. 453 addAccelName(CU, getObjCMethodName(SP->getName()), Die); 454 } 455 } 456 457 /// Check whether we should create a DIE for the given Scope, return true 458 /// if we don't create a DIE (the corresponding DIE is null). 459 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) { 460 if (Scope->isAbstractScope()) 461 return false; 462 463 // We don't create a DIE if there is no Range. 464 const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges(); 465 if (Ranges.empty()) 466 return true; 467 468 if (Ranges.size() > 1) 469 return false; 470 471 // We don't create a DIE if we have a single Range and the end label 472 // is null. 473 return !getLabelAfterInsn(Ranges.front().second); 474 } 475 476 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) { 477 F(CU); 478 if (auto *SkelCU = CU.getSkeleton()) 479 if (CU.getCUNode()->getSplitDebugInlining()) 480 F(*SkelCU); 481 } 482 483 bool DwarfDebug::shareAcrossDWOCUs() const { 484 return SplitDwarfCrossCuReferences; 485 } 486 487 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU, 488 LexicalScope *Scope) { 489 assert(Scope && Scope->getScopeNode()); 490 assert(Scope->isAbstractScope()); 491 assert(!Scope->getInlinedAt()); 492 493 auto *SP = cast<DISubprogram>(Scope->getScopeNode()); 494 495 // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram 496 // was inlined from another compile unit. 497 if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining()) 498 // Avoid building the original CU if it won't be used 499 SrcCU.constructAbstractSubprogramScopeDIE(Scope); 500 else { 501 auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 502 if (auto *SkelCU = CU.getSkeleton()) { 503 (shareAcrossDWOCUs() ? CU : SrcCU) 504 .constructAbstractSubprogramScopeDIE(Scope); 505 if (CU.getCUNode()->getSplitDebugInlining()) 506 SkelCU->constructAbstractSubprogramScopeDIE(Scope); 507 } else 508 CU.constructAbstractSubprogramScopeDIE(Scope); 509 } 510 } 511 512 /// Try to interpret values loaded into registers that forward parameters 513 /// for \p CallMI. Store parameters with interpreted value into \p Params. 514 static void collectCallSiteParameters(const MachineInstr *CallMI, 515 ParamSet &Params) { 516 auto *MF = CallMI->getMF(); 517 auto CalleesMap = MF->getCallSitesInfo(); 518 auto CallFwdRegsInfo = CalleesMap.find(CallMI); 519 520 // There is no information for the call instruction. 521 if (CallFwdRegsInfo == CalleesMap.end()) 522 return; 523 524 auto *MBB = CallMI->getParent(); 525 const auto &TRI = MF->getSubtarget().getRegisterInfo(); 526 const auto &TII = MF->getSubtarget().getInstrInfo(); 527 const auto &TLI = MF->getSubtarget().getTargetLowering(); 528 529 // Skip the call instruction. 530 auto I = std::next(CallMI->getReverseIterator()); 531 532 DenseSet<unsigned> ForwardedRegWorklist; 533 // Add all the forwarding registers into the ForwardedRegWorklist. 534 for (auto ArgReg : CallFwdRegsInfo->second) { 535 bool InsertedReg = ForwardedRegWorklist.insert(ArgReg.Reg).second; 536 assert(InsertedReg && "Single register used to forward two arguments?"); 537 (void)InsertedReg; 538 } 539 540 // We erase, from the ForwardedRegWorklist, those forwarding registers for 541 // which we successfully describe a loaded value (by using 542 // the describeLoadedValue()). For those remaining arguments in the working 543 // list, for which we do not describe a loaded value by 544 // the describeLoadedValue(), we try to generate an entry value expression 545 // for their call site value desctipion, if the call is within the entry MBB. 546 // The RegsForEntryValues maps a forwarding register into the register holding 547 // the entry value. 548 // TODO: Handle situations when call site parameter value can be described 549 // as the entry value within basic blocks other then the first one. 550 bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin(); 551 DenseMap<unsigned, unsigned> RegsForEntryValues; 552 553 // If the MI is an instruction defining one or more parameters' forwarding 554 // registers, add those defines. We can currently only describe forwarded 555 // registers that are explicitly defined, but keep track of implicit defines 556 // also to remove those registers from the work list. 557 auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI, 558 SmallVectorImpl<unsigned> &Explicit, 559 SmallVectorImpl<unsigned> &Implicit) { 560 if (MI.isDebugInstr()) 561 return; 562 563 for (const MachineOperand &MO : MI.operands()) { 564 if (MO.isReg() && MO.isDef() && 565 Register::isPhysicalRegister(MO.getReg())) { 566 for (auto FwdReg : ForwardedRegWorklist) { 567 if (TRI->regsOverlap(FwdReg, MO.getReg())) { 568 if (MO.isImplicit()) 569 Implicit.push_back(FwdReg); 570 else 571 Explicit.push_back(FwdReg); 572 break; 573 } 574 } 575 } 576 } 577 }; 578 579 auto finishCallSiteParam = [&](DbgValueLoc DbgLocVal, unsigned Reg) { 580 unsigned FwdReg = Reg; 581 if (ShouldTryEmitEntryVals) { 582 auto EntryValReg = RegsForEntryValues.find(Reg); 583 if (EntryValReg != RegsForEntryValues.end()) 584 FwdReg = EntryValReg->second; 585 } 586 587 DbgCallSiteParam CSParm(FwdReg, DbgLocVal); 588 Params.push_back(CSParm); 589 ++NumCSParams; 590 }; 591 592 // Search for a loading value in forwaring registers. 593 for (; I != MBB->rend(); ++I) { 594 // If the next instruction is a call we can not interpret parameter's 595 // forwarding registers or we finished the interpretation of all parameters. 596 if (I->isCall()) 597 return; 598 599 if (ForwardedRegWorklist.empty()) 600 return; 601 602 SmallVector<unsigned, 4> ExplicitFwdRegDefs; 603 SmallVector<unsigned, 4> ImplicitFwdRegDefs; 604 getForwardingRegsDefinedByMI(*I, ExplicitFwdRegDefs, ImplicitFwdRegDefs); 605 if (ExplicitFwdRegDefs.empty() && ImplicitFwdRegDefs.empty()) 606 continue; 607 608 // If the MI clobbers more then one forwarding register we must remove 609 // all of them from the working list. 610 for (auto Reg : concat<unsigned>(ExplicitFwdRegDefs, ImplicitFwdRegDefs)) 611 ForwardedRegWorklist.erase(Reg); 612 613 // The describeLoadedValue() hook currently does not have any information 614 // about which register it should describe in case of multiple defines, so 615 // for now we only handle instructions where a forwarded register is (at 616 // least partially) defined by the instruction's single explicit define. 617 if (I->getNumExplicitDefs() != 1 || ExplicitFwdRegDefs.empty()) 618 continue; 619 unsigned Reg = ExplicitFwdRegDefs[0]; 620 621 if (auto ParamValue = TII->describeLoadedValue(*I)) { 622 if (ParamValue->first.isImm()) { 623 unsigned Val = ParamValue->first.getImm(); 624 DbgValueLoc DbgLocVal(ParamValue->second, Val); 625 finishCallSiteParam(DbgLocVal, Reg); 626 } else if (ParamValue->first.isReg()) { 627 Register RegLoc = ParamValue->first.getReg(); 628 unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); 629 Register FP = TRI->getFrameRegister(*MF); 630 bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP); 631 if (TRI->isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) { 632 DbgValueLoc DbgLocVal(ParamValue->second, 633 MachineLocation(RegLoc, 634 /*IsIndirect=*/IsSPorFP)); 635 finishCallSiteParam(DbgLocVal, Reg); 636 } else if (ShouldTryEmitEntryVals) { 637 ForwardedRegWorklist.insert(RegLoc); 638 RegsForEntryValues[RegLoc] = Reg; 639 } 640 } 641 } 642 } 643 644 // Emit the call site parameter's value as an entry value. 645 if (ShouldTryEmitEntryVals) { 646 // Create an entry value expression where the expression following 647 // the 'DW_OP_entry_value' will be the size of 1 (a register operation). 648 DIExpression *EntryExpr = DIExpression::get(MF->getFunction().getContext(), 649 {dwarf::DW_OP_entry_value, 1}); 650 for (auto RegEntry : ForwardedRegWorklist) { 651 unsigned FwdReg = RegEntry; 652 auto EntryValReg = RegsForEntryValues.find(RegEntry); 653 if (EntryValReg != RegsForEntryValues.end()) 654 FwdReg = EntryValReg->second; 655 656 DbgValueLoc DbgLocVal(EntryExpr, MachineLocation(RegEntry)); 657 DbgCallSiteParam CSParm(FwdReg, DbgLocVal); 658 Params.push_back(CSParm); 659 ++NumCSParams; 660 } 661 } 662 } 663 664 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP, 665 DwarfCompileUnit &CU, DIE &ScopeDIE, 666 const MachineFunction &MF) { 667 // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if 668 // the subprogram is required to have one. 669 if (!SP.areAllCallsDescribed() || !SP.isDefinition()) 670 return; 671 672 // Use DW_AT_call_all_calls to express that call site entries are present 673 // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls 674 // because one of its requirements is not met: call site entries for 675 // optimized-out calls are elided. 676 CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls)); 677 678 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 679 assert(TII && "TargetInstrInfo not found: cannot label tail calls"); 680 bool ApplyGNUExtensions = getDwarfVersion() == 4 && tuneForGDB(); 681 682 // Emit call site entries for each call or tail call in the function. 683 for (const MachineBasicBlock &MBB : MF) { 684 for (const MachineInstr &MI : MBB.instrs()) { 685 // Skip instructions which aren't calls. Both calls and tail-calling jump 686 // instructions (e.g TAILJMPd64) are classified correctly here. 687 if (!MI.isCall()) 688 continue; 689 690 // TODO: Add support for targets with delay slots (see: beginInstruction). 691 if (MI.hasDelaySlot()) 692 return; 693 694 // If this is a direct call, find the callee's subprogram. 695 // In the case of an indirect call find the register that holds 696 // the callee. 697 const MachineOperand &CalleeOp = MI.getOperand(0); 698 if (!CalleeOp.isGlobal() && !CalleeOp.isReg()) 699 continue; 700 701 unsigned CallReg = 0; 702 const DISubprogram *CalleeSP = nullptr; 703 const Function *CalleeDecl = nullptr; 704 if (CalleeOp.isReg()) { 705 CallReg = CalleeOp.getReg(); 706 if (!CallReg) 707 continue; 708 } else { 709 CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal()); 710 if (!CalleeDecl || !CalleeDecl->getSubprogram()) 711 continue; 712 CalleeSP = CalleeDecl->getSubprogram(); 713 } 714 715 // TODO: Omit call site entries for runtime calls (objc_msgSend, etc). 716 717 bool IsTail = TII->isTailCall(MI); 718 719 // For tail calls, for non-gdb tuning, no return PC information is needed. 720 // For regular calls (and tail calls in GDB tuning), the return PC 721 // is needed to disambiguate paths in the call graph which could lead to 722 // some target function. 723 const MCExpr *PCOffset = 724 (IsTail && !tuneForGDB()) ? nullptr 725 : getFunctionLocalOffsetAfterInsn(&MI); 726 727 // Address of a call-like instruction for a normal call or a jump-like 728 // instruction for a tail call. This is needed for GDB + DWARF 4 tuning. 729 const MCSymbol *PCAddr = 730 ApplyGNUExtensions ? const_cast<MCSymbol*>(getLabelAfterInsn(&MI)) 731 : nullptr; 732 733 assert((IsTail || PCOffset || PCAddr) && 734 "Call without return PC information"); 735 736 LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> " 737 << (CalleeDecl ? CalleeDecl->getName() 738 : StringRef(MF.getSubtarget() 739 .getRegisterInfo() 740 ->getName(CallReg))) 741 << (IsTail ? " [IsTail]" : "") << "\n"); 742 743 DIE &CallSiteDIE = 744 CU.constructCallSiteEntryDIE(ScopeDIE, CalleeSP, IsTail, PCAddr, 745 PCOffset, CallReg); 746 747 // GDB and LLDB support call site parameter debug info. 748 if (Asm->TM.Options.EnableDebugEntryValues && 749 (tuneForGDB() || tuneForLLDB())) { 750 ParamSet Params; 751 // Try to interpret values of call site parameters. 752 collectCallSiteParameters(&MI, Params); 753 CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params); 754 } 755 } 756 } 757 } 758 759 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const { 760 if (!U.hasDwarfPubSections()) 761 return; 762 763 U.addFlag(D, dwarf::DW_AT_GNU_pubnames); 764 } 765 766 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit, 767 DwarfCompileUnit &NewCU) { 768 DIE &Die = NewCU.getUnitDie(); 769 StringRef FN = DIUnit->getFilename(); 770 771 StringRef Producer = DIUnit->getProducer(); 772 StringRef Flags = DIUnit->getFlags(); 773 if (!Flags.empty() && !useAppleExtensionAttributes()) { 774 std::string ProducerWithFlags = Producer.str() + " " + Flags.str(); 775 NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags); 776 } else 777 NewCU.addString(Die, dwarf::DW_AT_producer, Producer); 778 779 NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 780 DIUnit->getSourceLanguage()); 781 NewCU.addString(Die, dwarf::DW_AT_name, FN); 782 783 // Add DW_str_offsets_base to the unit DIE, except for split units. 784 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 785 NewCU.addStringOffsetsStart(); 786 787 if (!useSplitDwarf()) { 788 NewCU.initStmtList(); 789 790 // If we're using split dwarf the compilation dir is going to be in the 791 // skeleton CU and so we don't need to duplicate it here. 792 if (!CompilationDir.empty()) 793 NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 794 795 addGnuPubAttributes(NewCU, Die); 796 } 797 798 if (useAppleExtensionAttributes()) { 799 if (DIUnit->isOptimized()) 800 NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized); 801 802 StringRef Flags = DIUnit->getFlags(); 803 if (!Flags.empty()) 804 NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags); 805 806 if (unsigned RVer = DIUnit->getRuntimeVersion()) 807 NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers, 808 dwarf::DW_FORM_data1, RVer); 809 } 810 811 if (DIUnit->getDWOId()) { 812 // This CU is either a clang module DWO or a skeleton CU. 813 NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, 814 DIUnit->getDWOId()); 815 if (!DIUnit->getSplitDebugFilename().empty()) 816 // This is a prefabricated skeleton CU. 817 NewCU.addString(Die, dwarf::DW_AT_GNU_dwo_name, 818 DIUnit->getSplitDebugFilename()); 819 } 820 } 821 // Create new DwarfCompileUnit for the given metadata node with tag 822 // DW_TAG_compile_unit. 823 DwarfCompileUnit & 824 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) { 825 if (auto *CU = CUMap.lookup(DIUnit)) 826 return *CU; 827 828 CompilationDir = DIUnit->getDirectory(); 829 830 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 831 InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder); 832 DwarfCompileUnit &NewCU = *OwnedUnit; 833 InfoHolder.addUnit(std::move(OwnedUnit)); 834 835 for (auto *IE : DIUnit->getImportedEntities()) 836 NewCU.addImportedEntity(IE); 837 838 // LTO with assembly output shares a single line table amongst multiple CUs. 839 // To avoid the compilation directory being ambiguous, let the line table 840 // explicitly describe the directory of all files, never relying on the 841 // compilation directory. 842 if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU) 843 Asm->OutStreamer->emitDwarfFile0Directive( 844 CompilationDir, DIUnit->getFilename(), 845 NewCU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource(), 846 NewCU.getUniqueID()); 847 848 if (useSplitDwarf()) { 849 NewCU.setSkeleton(constructSkeletonCU(NewCU)); 850 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection()); 851 } else { 852 finishUnitAttributes(DIUnit, NewCU); 853 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 854 } 855 856 // Create DIEs for function declarations used for call site debug info. 857 for (auto Scope : DIUnit->getRetainedTypes()) 858 if (auto *SP = dyn_cast_or_null<DISubprogram>(Scope)) 859 NewCU.getOrCreateSubprogramDIE(SP); 860 861 CUMap.insert({DIUnit, &NewCU}); 862 CUDieMap.insert({&NewCU.getUnitDie(), &NewCU}); 863 return NewCU; 864 } 865 866 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU, 867 const DIImportedEntity *N) { 868 if (isa<DILocalScope>(N->getScope())) 869 return; 870 if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope())) 871 D->addChild(TheCU.constructImportedEntityDIE(N)); 872 } 873 874 /// Sort and unique GVEs by comparing their fragment offset. 875 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> & 876 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) { 877 llvm::sort( 878 GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) { 879 // Sort order: first null exprs, then exprs without fragment 880 // info, then sort by fragment offset in bits. 881 // FIXME: Come up with a more comprehensive comparator so 882 // the sorting isn't non-deterministic, and so the following 883 // std::unique call works correctly. 884 if (!A.Expr || !B.Expr) 885 return !!B.Expr; 886 auto FragmentA = A.Expr->getFragmentInfo(); 887 auto FragmentB = B.Expr->getFragmentInfo(); 888 if (!FragmentA || !FragmentB) 889 return !!FragmentB; 890 return FragmentA->OffsetInBits < FragmentB->OffsetInBits; 891 }); 892 GVEs.erase(std::unique(GVEs.begin(), GVEs.end(), 893 [](DwarfCompileUnit::GlobalExpr A, 894 DwarfCompileUnit::GlobalExpr B) { 895 return A.Expr == B.Expr; 896 }), 897 GVEs.end()); 898 return GVEs; 899 } 900 901 // Emit all Dwarf sections that should come prior to the content. Create 902 // global DIEs and emit initial debug info sections. This is invoked by 903 // the target AsmPrinter. 904 void DwarfDebug::beginModule() { 905 NamedRegionTimer T(DbgTimerName, DbgTimerDescription, DWARFGroupName, 906 DWARFGroupDescription, TimePassesIsEnabled); 907 if (DisableDebugInfoPrinting) { 908 MMI->setDebugInfoAvailability(false); 909 return; 910 } 911 912 const Module *M = MMI->getModule(); 913 914 unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(), 915 M->debug_compile_units_end()); 916 // Tell MMI whether we have debug info. 917 assert(MMI->hasDebugInfo() == (NumDebugCUs > 0) && 918 "DebugInfoAvailabilty initialized unexpectedly"); 919 SingleCU = NumDebugCUs == 1; 920 DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>> 921 GVMap; 922 for (const GlobalVariable &Global : M->globals()) { 923 SmallVector<DIGlobalVariableExpression *, 1> GVs; 924 Global.getDebugInfo(GVs); 925 for (auto *GVE : GVs) 926 GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()}); 927 } 928 929 // Create the symbol that designates the start of the unit's contribution 930 // to the string offsets table. In a split DWARF scenario, only the skeleton 931 // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol). 932 if (useSegmentedStringOffsetsTable()) 933 (useSplitDwarf() ? SkeletonHolder : InfoHolder) 934 .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base")); 935 936 937 // Create the symbols that designates the start of the DWARF v5 range list 938 // and locations list tables. They are located past the table headers. 939 if (getDwarfVersion() >= 5) { 940 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 941 Holder.setRnglistsTableBaseSym( 942 Asm->createTempSymbol("rnglists_table_base")); 943 Holder.setLoclistsTableBaseSym( 944 Asm->createTempSymbol("loclists_table_base")); 945 946 if (useSplitDwarf()) 947 InfoHolder.setRnglistsTableBaseSym( 948 Asm->createTempSymbol("rnglists_dwo_table_base")); 949 } 950 951 // Create the symbol that points to the first entry following the debug 952 // address table (.debug_addr) header. 953 AddrPool.setLabel(Asm->createTempSymbol("addr_table_base")); 954 955 for (DICompileUnit *CUNode : M->debug_compile_units()) { 956 // FIXME: Move local imported entities into a list attached to the 957 // subprogram, then this search won't be needed and a 958 // getImportedEntities().empty() test should go below with the rest. 959 bool HasNonLocalImportedEntities = llvm::any_of( 960 CUNode->getImportedEntities(), [](const DIImportedEntity *IE) { 961 return !isa<DILocalScope>(IE->getScope()); 962 }); 963 964 if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() && 965 CUNode->getRetainedTypes().empty() && 966 CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty()) 967 continue; 968 969 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode); 970 971 // Global Variables. 972 for (auto *GVE : CUNode->getGlobalVariables()) { 973 // Don't bother adding DIGlobalVariableExpressions listed in the CU if we 974 // already know about the variable and it isn't adding a constant 975 // expression. 976 auto &GVMapEntry = GVMap[GVE->getVariable()]; 977 auto *Expr = GVE->getExpression(); 978 if (!GVMapEntry.size() || (Expr && Expr->isConstant())) 979 GVMapEntry.push_back({nullptr, Expr}); 980 } 981 DenseSet<DIGlobalVariable *> Processed; 982 for (auto *GVE : CUNode->getGlobalVariables()) { 983 DIGlobalVariable *GV = GVE->getVariable(); 984 if (Processed.insert(GV).second) 985 CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV])); 986 } 987 988 for (auto *Ty : CUNode->getEnumTypes()) { 989 // The enum types array by design contains pointers to 990 // MDNodes rather than DIRefs. Unique them here. 991 CU.getOrCreateTypeDIE(cast<DIType>(Ty)); 992 } 993 for (auto *Ty : CUNode->getRetainedTypes()) { 994 // The retained types array by design contains pointers to 995 // MDNodes rather than DIRefs. Unique them here. 996 if (DIType *RT = dyn_cast<DIType>(Ty)) 997 // There is no point in force-emitting a forward declaration. 998 CU.getOrCreateTypeDIE(RT); 999 } 1000 // Emit imported_modules last so that the relevant context is already 1001 // available. 1002 for (auto *IE : CUNode->getImportedEntities()) 1003 constructAndAddImportedEntityDIE(CU, IE); 1004 } 1005 } 1006 1007 void DwarfDebug::finishEntityDefinitions() { 1008 for (const auto &Entity : ConcreteEntities) { 1009 DIE *Die = Entity->getDIE(); 1010 assert(Die); 1011 // FIXME: Consider the time-space tradeoff of just storing the unit pointer 1012 // in the ConcreteEntities list, rather than looking it up again here. 1013 // DIE::getUnit isn't simple - it walks parent pointers, etc. 1014 DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie()); 1015 assert(Unit); 1016 Unit->finishEntityDefinition(Entity.get()); 1017 } 1018 } 1019 1020 void DwarfDebug::finishSubprogramDefinitions() { 1021 for (const DISubprogram *SP : ProcessedSPNodes) { 1022 assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug); 1023 forBothCUs( 1024 getOrCreateDwarfCompileUnit(SP->getUnit()), 1025 [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); }); 1026 } 1027 } 1028 1029 void DwarfDebug::finalizeModuleInfo() { 1030 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); 1031 1032 finishSubprogramDefinitions(); 1033 1034 finishEntityDefinitions(); 1035 1036 // Include the DWO file name in the hash if there's more than one CU. 1037 // This handles ThinLTO's situation where imported CUs may very easily be 1038 // duplicate with the same CU partially imported into another ThinLTO unit. 1039 StringRef DWOName; 1040 if (CUMap.size() > 1) 1041 DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile; 1042 1043 // Handle anything that needs to be done on a per-unit basis after 1044 // all other generation. 1045 for (const auto &P : CUMap) { 1046 auto &TheCU = *P.second; 1047 if (TheCU.getCUNode()->isDebugDirectivesOnly()) 1048 continue; 1049 // Emit DW_AT_containing_type attribute to connect types with their 1050 // vtable holding type. 1051 TheCU.constructContainingTypeDIEs(); 1052 1053 // Add CU specific attributes if we need to add any. 1054 // If we're splitting the dwarf out now that we've got the entire 1055 // CU then add the dwo id to it. 1056 auto *SkCU = TheCU.getSkeleton(); 1057 if (useSplitDwarf() && !TheCU.getUnitDie().children().empty()) { 1058 finishUnitAttributes(TheCU.getCUNode(), TheCU); 1059 TheCU.addString(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_name, 1060 Asm->TM.Options.MCOptions.SplitDwarfFile); 1061 SkCU->addString(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_name, 1062 Asm->TM.Options.MCOptions.SplitDwarfFile); 1063 // Emit a unique identifier for this CU. 1064 uint64_t ID = 1065 DIEHash(Asm).computeCUSignature(DWOName, TheCU.getUnitDie()); 1066 if (getDwarfVersion() >= 5) { 1067 TheCU.setDWOId(ID); 1068 SkCU->setDWOId(ID); 1069 } else { 1070 TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1071 dwarf::DW_FORM_data8, ID); 1072 SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1073 dwarf::DW_FORM_data8, ID); 1074 } 1075 1076 if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) { 1077 const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol(); 1078 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base, 1079 Sym, Sym); 1080 } 1081 } else if (SkCU) { 1082 finishUnitAttributes(SkCU->getCUNode(), *SkCU); 1083 } 1084 1085 // If we have code split among multiple sections or non-contiguous 1086 // ranges of code then emit a DW_AT_ranges attribute on the unit that will 1087 // remain in the .o file, otherwise add a DW_AT_low_pc. 1088 // FIXME: We should use ranges allow reordering of code ala 1089 // .subsections_via_symbols in mach-o. This would mean turning on 1090 // ranges for all subprogram DIEs for mach-o. 1091 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 1092 1093 if (unsigned NumRanges = TheCU.getRanges().size()) { 1094 if (NumRanges > 1 && useRangesSection()) 1095 // A DW_AT_low_pc attribute may also be specified in combination with 1096 // DW_AT_ranges to specify the default base address for use in 1097 // location lists (see Section 2.6.2) and range lists (see Section 1098 // 2.17.3). 1099 U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0); 1100 else 1101 U.setBaseAddress(TheCU.getRanges().front().Begin); 1102 U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges()); 1103 } 1104 1105 // We don't keep track of which addresses are used in which CU so this 1106 // is a bit pessimistic under LTO. 1107 if (!AddrPool.isEmpty() && 1108 (getDwarfVersion() >= 5 || 1109 (SkCU && !TheCU.getUnitDie().children().empty()))) 1110 U.addAddrTableBase(); 1111 1112 if (getDwarfVersion() >= 5) { 1113 if (U.hasRangeLists()) 1114 U.addRnglistsBase(); 1115 1116 if (!DebugLocs.getLists().empty() && !useSplitDwarf()) 1117 U.addLoclistsBase(); 1118 } 1119 1120 auto *CUNode = cast<DICompileUnit>(P.first); 1121 // If compile Unit has macros, emit "DW_AT_macro_info" attribute. 1122 if (CUNode->getMacros()) 1123 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info, 1124 U.getMacroLabelBegin(), 1125 TLOF.getDwarfMacinfoSection()->getBeginSymbol()); 1126 } 1127 1128 // Emit all frontend-produced Skeleton CUs, i.e., Clang modules. 1129 for (auto *CUNode : MMI->getModule()->debug_compile_units()) 1130 if (CUNode->getDWOId()) 1131 getOrCreateDwarfCompileUnit(CUNode); 1132 1133 // Compute DIE offsets and sizes. 1134 InfoHolder.computeSizeAndOffsets(); 1135 if (useSplitDwarf()) 1136 SkeletonHolder.computeSizeAndOffsets(); 1137 } 1138 1139 // Emit all Dwarf sections that should come after the content. 1140 void DwarfDebug::endModule() { 1141 assert(CurFn == nullptr); 1142 assert(CurMI == nullptr); 1143 1144 for (const auto &P : CUMap) { 1145 auto &CU = *P.second; 1146 CU.createBaseTypeDIEs(); 1147 } 1148 1149 // If we aren't actually generating debug info (check beginModule - 1150 // conditionalized on !DisableDebugInfoPrinting and the presence of the 1151 // llvm.dbg.cu metadata node) 1152 if (!MMI->hasDebugInfo()) 1153 return; 1154 1155 // Finalize the debug info for the module. 1156 finalizeModuleInfo(); 1157 1158 emitDebugStr(); 1159 1160 if (useSplitDwarf()) 1161 emitDebugLocDWO(); 1162 else 1163 // Emit info into a debug loc section. 1164 emitDebugLoc(); 1165 1166 // Corresponding abbreviations into a abbrev section. 1167 emitAbbreviations(); 1168 1169 // Emit all the DIEs into a debug info section. 1170 emitDebugInfo(); 1171 1172 // Emit info into a debug aranges section. 1173 if (GenerateARangeSection) 1174 emitDebugARanges(); 1175 1176 // Emit info into a debug ranges section. 1177 emitDebugRanges(); 1178 1179 // Emit info into a debug macinfo section. 1180 emitDebugMacinfo(); 1181 1182 if (useSplitDwarf()) { 1183 emitDebugStrDWO(); 1184 emitDebugInfoDWO(); 1185 emitDebugAbbrevDWO(); 1186 emitDebugLineDWO(); 1187 emitDebugRangesDWO(); 1188 } 1189 1190 emitDebugAddr(); 1191 1192 // Emit info into the dwarf accelerator table sections. 1193 switch (getAccelTableKind()) { 1194 case AccelTableKind::Apple: 1195 emitAccelNames(); 1196 emitAccelObjC(); 1197 emitAccelNamespaces(); 1198 emitAccelTypes(); 1199 break; 1200 case AccelTableKind::Dwarf: 1201 emitAccelDebugNames(); 1202 break; 1203 case AccelTableKind::None: 1204 break; 1205 case AccelTableKind::Default: 1206 llvm_unreachable("Default should have already been resolved."); 1207 } 1208 1209 // Emit the pubnames and pubtypes sections if requested. 1210 emitDebugPubSections(); 1211 1212 // clean up. 1213 // FIXME: AbstractVariables.clear(); 1214 } 1215 1216 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU, 1217 const DINode *Node, 1218 const MDNode *ScopeNode) { 1219 if (CU.getExistingAbstractEntity(Node)) 1220 return; 1221 1222 CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope( 1223 cast<DILocalScope>(ScopeNode))); 1224 } 1225 1226 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU, 1227 const DINode *Node, const MDNode *ScopeNode) { 1228 if (CU.getExistingAbstractEntity(Node)) 1229 return; 1230 1231 if (LexicalScope *Scope = 1232 LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode))) 1233 CU.createAbstractEntity(Node, Scope); 1234 } 1235 1236 // Collect variable information from side table maintained by MF. 1237 void DwarfDebug::collectVariableInfoFromMFTable( 1238 DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) { 1239 SmallDenseMap<InlinedEntity, DbgVariable *> MFVars; 1240 for (const auto &VI : Asm->MF->getVariableDbgInfo()) { 1241 if (!VI.Var) 1242 continue; 1243 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1244 "Expected inlined-at fields to agree"); 1245 1246 InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt()); 1247 Processed.insert(Var); 1248 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1249 1250 // If variable scope is not found then skip this variable. 1251 if (!Scope) 1252 continue; 1253 1254 ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode()); 1255 auto RegVar = std::make_unique<DbgVariable>( 1256 cast<DILocalVariable>(Var.first), Var.second); 1257 RegVar->initializeMMI(VI.Expr, VI.Slot); 1258 if (DbgVariable *DbgVar = MFVars.lookup(Var)) 1259 DbgVar->addMMIEntry(*RegVar); 1260 else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) { 1261 MFVars.insert({Var, RegVar.get()}); 1262 ConcreteEntities.push_back(std::move(RegVar)); 1263 } 1264 } 1265 } 1266 1267 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its 1268 /// enclosing lexical scope. The check ensures there are no other instructions 1269 /// in the same lexical scope preceding the DBG_VALUE and that its range is 1270 /// either open or otherwise rolls off the end of the scope. 1271 static bool validThroughout(LexicalScopes &LScopes, 1272 const MachineInstr *DbgValue, 1273 const MachineInstr *RangeEnd) { 1274 assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location"); 1275 auto MBB = DbgValue->getParent(); 1276 auto DL = DbgValue->getDebugLoc(); 1277 auto *LScope = LScopes.findLexicalScope(DL); 1278 // Scope doesn't exist; this is a dead DBG_VALUE. 1279 if (!LScope) 1280 return false; 1281 auto &LSRange = LScope->getRanges(); 1282 if (LSRange.size() == 0) 1283 return false; 1284 1285 // Determine if the DBG_VALUE is valid at the beginning of its lexical block. 1286 const MachineInstr *LScopeBegin = LSRange.front().first; 1287 // Early exit if the lexical scope begins outside of the current block. 1288 if (LScopeBegin->getParent() != MBB) 1289 return false; 1290 MachineBasicBlock::const_reverse_iterator Pred(DbgValue); 1291 for (++Pred; Pred != MBB->rend(); ++Pred) { 1292 if (Pred->getFlag(MachineInstr::FrameSetup)) 1293 break; 1294 auto PredDL = Pred->getDebugLoc(); 1295 if (!PredDL || Pred->isMetaInstruction()) 1296 continue; 1297 // Check whether the instruction preceding the DBG_VALUE is in the same 1298 // (sub)scope as the DBG_VALUE. 1299 if (DL->getScope() == PredDL->getScope()) 1300 return false; 1301 auto *PredScope = LScopes.findLexicalScope(PredDL); 1302 if (!PredScope || LScope->dominates(PredScope)) 1303 return false; 1304 } 1305 1306 // If the range of the DBG_VALUE is open-ended, report success. 1307 if (!RangeEnd) 1308 return true; 1309 1310 // Fail if there are instructions belonging to our scope in another block. 1311 const MachineInstr *LScopeEnd = LSRange.back().second; 1312 if (LScopeEnd->getParent() != MBB) 1313 return false; 1314 1315 // Single, constant DBG_VALUEs in the prologue are promoted to be live 1316 // throughout the function. This is a hack, presumably for DWARF v2 and not 1317 // necessarily correct. It would be much better to use a dbg.declare instead 1318 // if we know the constant is live throughout the scope. 1319 if (DbgValue->getOperand(0).isImm() && MBB->pred_empty()) 1320 return true; 1321 1322 return false; 1323 } 1324 1325 /// Build the location list for all DBG_VALUEs in the function that 1326 /// describe the same variable. The resulting DebugLocEntries will have 1327 /// strict monotonically increasing begin addresses and will never 1328 /// overlap. If the resulting list has only one entry that is valid 1329 /// throughout variable's scope return true. 1330 // 1331 // See the definition of DbgValueHistoryMap::Entry for an explanation of the 1332 // different kinds of history map entries. One thing to be aware of is that if 1333 // a debug value is ended by another entry (rather than being valid until the 1334 // end of the function), that entry's instruction may or may not be included in 1335 // the range, depending on if the entry is a clobbering entry (it has an 1336 // instruction that clobbers one or more preceding locations), or if it is an 1337 // (overlapping) debug value entry. This distinction can be seen in the example 1338 // below. The first debug value is ended by the clobbering entry 2, and the 1339 // second and third debug values are ended by the overlapping debug value entry 1340 // 4. 1341 // 1342 // Input: 1343 // 1344 // History map entries [type, end index, mi] 1345 // 1346 // 0 | [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)] 1347 // 1 | | [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)] 1348 // 2 | | [Clobber, $reg0 = [...], -, -] 1349 // 3 | | [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)] 1350 // 4 [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)] 1351 // 1352 // Output [start, end) [Value...]: 1353 // 1354 // [0-1) [(reg0, fragment 0, 32)] 1355 // [1-3) [(reg0, fragment 0, 32), (reg1, fragment 32, 32)] 1356 // [3-4) [(reg1, fragment 32, 32), (123, fragment 64, 32)] 1357 // [4-) [(@g, fragment 0, 96)] 1358 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc, 1359 const DbgValueHistoryMap::Entries &Entries) { 1360 using OpenRange = 1361 std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>; 1362 SmallVector<OpenRange, 4> OpenRanges; 1363 bool isSafeForSingleLocation = true; 1364 const MachineInstr *StartDebugMI = nullptr; 1365 const MachineInstr *EndMI = nullptr; 1366 1367 for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) { 1368 const MachineInstr *Instr = EI->getInstr(); 1369 1370 // Remove all values that are no longer live. 1371 size_t Index = std::distance(EB, EI); 1372 auto Last = 1373 remove_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; }); 1374 OpenRanges.erase(Last, OpenRanges.end()); 1375 1376 // If we are dealing with a clobbering entry, this iteration will result in 1377 // a location list entry starting after the clobbering instruction. 1378 const MCSymbol *StartLabel = 1379 EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr); 1380 assert(StartLabel && 1381 "Forgot label before/after instruction starting a range!"); 1382 1383 const MCSymbol *EndLabel; 1384 if (std::next(EI) == Entries.end()) { 1385 EndLabel = Asm->getFunctionEnd(); 1386 if (EI->isClobber()) 1387 EndMI = EI->getInstr(); 1388 } 1389 else if (std::next(EI)->isClobber()) 1390 EndLabel = getLabelAfterInsn(std::next(EI)->getInstr()); 1391 else 1392 EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr()); 1393 assert(EndLabel && "Forgot label after instruction ending a range!"); 1394 1395 if (EI->isDbgValue()) 1396 LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n"); 1397 1398 // If this history map entry has a debug value, add that to the list of 1399 // open ranges and check if its location is valid for a single value 1400 // location. 1401 if (EI->isDbgValue()) { 1402 // Do not add undef debug values, as they are redundant information in 1403 // the location list entries. An undef debug results in an empty location 1404 // description. If there are any non-undef fragments then padding pieces 1405 // with empty location descriptions will automatically be inserted, and if 1406 // all fragments are undef then the whole location list entry is 1407 // redundant. 1408 if (!Instr->isUndefDebugValue()) { 1409 auto Value = getDebugLocValue(Instr); 1410 OpenRanges.emplace_back(EI->getEndIndex(), Value); 1411 1412 // TODO: Add support for single value fragment locations. 1413 if (Instr->getDebugExpression()->isFragment()) 1414 isSafeForSingleLocation = false; 1415 1416 if (!StartDebugMI) 1417 StartDebugMI = Instr; 1418 } else { 1419 isSafeForSingleLocation = false; 1420 } 1421 } 1422 1423 // Location list entries with empty location descriptions are redundant 1424 // information in DWARF, so do not emit those. 1425 if (OpenRanges.empty()) 1426 continue; 1427 1428 // Omit entries with empty ranges as they do not have any effect in DWARF. 1429 if (StartLabel == EndLabel) { 1430 LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n"); 1431 continue; 1432 } 1433 1434 SmallVector<DbgValueLoc, 4> Values; 1435 for (auto &R : OpenRanges) 1436 Values.push_back(R.second); 1437 DebugLoc.emplace_back(StartLabel, EndLabel, Values); 1438 1439 // Attempt to coalesce the ranges of two otherwise identical 1440 // DebugLocEntries. 1441 auto CurEntry = DebugLoc.rbegin(); 1442 LLVM_DEBUG({ 1443 dbgs() << CurEntry->getValues().size() << " Values:\n"; 1444 for (auto &Value : CurEntry->getValues()) 1445 Value.dump(); 1446 dbgs() << "-----\n"; 1447 }); 1448 1449 auto PrevEntry = std::next(CurEntry); 1450 if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry)) 1451 DebugLoc.pop_back(); 1452 } 1453 1454 return DebugLoc.size() == 1 && isSafeForSingleLocation && 1455 validThroughout(LScopes, StartDebugMI, EndMI); 1456 } 1457 1458 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU, 1459 LexicalScope &Scope, 1460 const DINode *Node, 1461 const DILocation *Location, 1462 const MCSymbol *Sym) { 1463 ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode()); 1464 if (isa<const DILocalVariable>(Node)) { 1465 ConcreteEntities.push_back( 1466 std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node), 1467 Location)); 1468 InfoHolder.addScopeVariable(&Scope, 1469 cast<DbgVariable>(ConcreteEntities.back().get())); 1470 } else if (isa<const DILabel>(Node)) { 1471 ConcreteEntities.push_back( 1472 std::make_unique<DbgLabel>(cast<const DILabel>(Node), 1473 Location, Sym)); 1474 InfoHolder.addScopeLabel(&Scope, 1475 cast<DbgLabel>(ConcreteEntities.back().get())); 1476 } 1477 return ConcreteEntities.back().get(); 1478 } 1479 1480 // Find variables for each lexical scope. 1481 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU, 1482 const DISubprogram *SP, 1483 DenseSet<InlinedEntity> &Processed) { 1484 // Grab the variable info that was squirreled away in the MMI side-table. 1485 collectVariableInfoFromMFTable(TheCU, Processed); 1486 1487 for (const auto &I : DbgValues) { 1488 InlinedEntity IV = I.first; 1489 if (Processed.count(IV)) 1490 continue; 1491 1492 // Instruction ranges, specifying where IV is accessible. 1493 const auto &HistoryMapEntries = I.second; 1494 if (HistoryMapEntries.empty()) 1495 continue; 1496 1497 LexicalScope *Scope = nullptr; 1498 const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first); 1499 if (const DILocation *IA = IV.second) 1500 Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA); 1501 else 1502 Scope = LScopes.findLexicalScope(LocalVar->getScope()); 1503 // If variable scope is not found then skip this variable. 1504 if (!Scope) 1505 continue; 1506 1507 Processed.insert(IV); 1508 DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU, 1509 *Scope, LocalVar, IV.second)); 1510 1511 const MachineInstr *MInsn = HistoryMapEntries.front().getInstr(); 1512 assert(MInsn->isDebugValue() && "History must begin with debug value"); 1513 1514 // Check if there is a single DBG_VALUE, valid throughout the var's scope. 1515 // If the history map contains a single debug value, there may be an 1516 // additional entry which clobbers the debug value. 1517 size_t HistSize = HistoryMapEntries.size(); 1518 bool SingleValueWithClobber = 1519 HistSize == 2 && HistoryMapEntries[1].isClobber(); 1520 if (HistSize == 1 || SingleValueWithClobber) { 1521 const auto *End = 1522 SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr; 1523 if (validThroughout(LScopes, MInsn, End)) { 1524 RegVar->initializeDbgValue(MInsn); 1525 continue; 1526 } 1527 } 1528 1529 // Do not emit location lists if .debug_loc secton is disabled. 1530 if (!useLocSection()) 1531 continue; 1532 1533 // Handle multiple DBG_VALUE instructions describing one variable. 1534 DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn); 1535 1536 // Build the location list for this variable. 1537 SmallVector<DebugLocEntry, 8> Entries; 1538 bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries); 1539 1540 // Check whether buildLocationList managed to merge all locations to one 1541 // that is valid throughout the variable's scope. If so, produce single 1542 // value location. 1543 if (isValidSingleLocation) { 1544 RegVar->initializeDbgValue(Entries[0].getValues()[0]); 1545 continue; 1546 } 1547 1548 // If the variable has a DIBasicType, extract it. Basic types cannot have 1549 // unique identifiers, so don't bother resolving the type with the 1550 // identifier map. 1551 const DIBasicType *BT = dyn_cast<DIBasicType>( 1552 static_cast<const Metadata *>(LocalVar->getType())); 1553 1554 // Finalize the entry by lowering it into a DWARF bytestream. 1555 for (auto &Entry : Entries) 1556 Entry.finalize(*Asm, List, BT, TheCU); 1557 } 1558 1559 // For each InlinedEntity collected from DBG_LABEL instructions, convert to 1560 // DWARF-related DbgLabel. 1561 for (const auto &I : DbgLabels) { 1562 InlinedEntity IL = I.first; 1563 const MachineInstr *MI = I.second; 1564 if (MI == nullptr) 1565 continue; 1566 1567 LexicalScope *Scope = nullptr; 1568 const DILabel *Label = cast<DILabel>(IL.first); 1569 // The scope could have an extra lexical block file. 1570 const DILocalScope *LocalScope = 1571 Label->getScope()->getNonLexicalBlockFileScope(); 1572 // Get inlined DILocation if it is inlined label. 1573 if (const DILocation *IA = IL.second) 1574 Scope = LScopes.findInlinedScope(LocalScope, IA); 1575 else 1576 Scope = LScopes.findLexicalScope(LocalScope); 1577 // If label scope is not found then skip this label. 1578 if (!Scope) 1579 continue; 1580 1581 Processed.insert(IL); 1582 /// At this point, the temporary label is created. 1583 /// Save the temporary label to DbgLabel entity to get the 1584 /// actually address when generating Dwarf DIE. 1585 MCSymbol *Sym = getLabelBeforeInsn(MI); 1586 createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym); 1587 } 1588 1589 // Collect info for variables/labels that were optimized out. 1590 for (const DINode *DN : SP->getRetainedNodes()) { 1591 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 1592 continue; 1593 LexicalScope *Scope = nullptr; 1594 if (auto *DV = dyn_cast<DILocalVariable>(DN)) { 1595 Scope = LScopes.findLexicalScope(DV->getScope()); 1596 } else if (auto *DL = dyn_cast<DILabel>(DN)) { 1597 Scope = LScopes.findLexicalScope(DL->getScope()); 1598 } 1599 1600 if (Scope) 1601 createConcreteEntity(TheCU, *Scope, DN, nullptr); 1602 } 1603 } 1604 1605 // Process beginning of an instruction. 1606 void DwarfDebug::beginInstruction(const MachineInstr *MI) { 1607 DebugHandlerBase::beginInstruction(MI); 1608 assert(CurMI); 1609 1610 const auto *SP = MI->getMF()->getFunction().getSubprogram(); 1611 if (!SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) 1612 return; 1613 1614 // Check if source location changes, but ignore DBG_VALUE and CFI locations. 1615 // If the instruction is part of the function frame setup code, do not emit 1616 // any line record, as there is no correspondence with any user code. 1617 if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup)) 1618 return; 1619 const DebugLoc &DL = MI->getDebugLoc(); 1620 // When we emit a line-0 record, we don't update PrevInstLoc; so look at 1621 // the last line number actually emitted, to see if it was line 0. 1622 unsigned LastAsmLine = 1623 Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine(); 1624 1625 // Request a label after the call in order to emit AT_return_pc information 1626 // in call site entries. TODO: Add support for targets with delay slots. 1627 if (SP->areAllCallsDescribed() && MI->isCall() && !MI->hasDelaySlot()) 1628 requestLabelAfterInsn(MI); 1629 1630 if (DL == PrevInstLoc) { 1631 // If we have an ongoing unspecified location, nothing to do here. 1632 if (!DL) 1633 return; 1634 // We have an explicit location, same as the previous location. 1635 // But we might be coming back to it after a line 0 record. 1636 if (LastAsmLine == 0 && DL.getLine() != 0) { 1637 // Reinstate the source location but not marked as a statement. 1638 const MDNode *Scope = DL.getScope(); 1639 recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0); 1640 } 1641 return; 1642 } 1643 1644 if (!DL) { 1645 // We have an unspecified location, which might want to be line 0. 1646 // If we have already emitted a line-0 record, don't repeat it. 1647 if (LastAsmLine == 0) 1648 return; 1649 // If user said Don't Do That, don't do that. 1650 if (UnknownLocations == Disable) 1651 return; 1652 // See if we have a reason to emit a line-0 record now. 1653 // Reasons to emit a line-0 record include: 1654 // - User asked for it (UnknownLocations). 1655 // - Instruction has a label, so it's referenced from somewhere else, 1656 // possibly debug information; we want it to have a source location. 1657 // - Instruction is at the top of a block; we don't want to inherit the 1658 // location from the physically previous (maybe unrelated) block. 1659 if (UnknownLocations == Enable || PrevLabel || 1660 (PrevInstBB && PrevInstBB != MI->getParent())) { 1661 // Preserve the file and column numbers, if we can, to save space in 1662 // the encoded line table. 1663 // Do not update PrevInstLoc, it remembers the last non-0 line. 1664 const MDNode *Scope = nullptr; 1665 unsigned Column = 0; 1666 if (PrevInstLoc) { 1667 Scope = PrevInstLoc.getScope(); 1668 Column = PrevInstLoc.getCol(); 1669 } 1670 recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0); 1671 } 1672 return; 1673 } 1674 1675 // We have an explicit location, different from the previous location. 1676 // Don't repeat a line-0 record, but otherwise emit the new location. 1677 // (The new location might be an explicit line 0, which we do emit.) 1678 if (DL.getLine() == 0 && LastAsmLine == 0) 1679 return; 1680 unsigned Flags = 0; 1681 if (DL == PrologEndLoc) { 1682 Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT; 1683 PrologEndLoc = DebugLoc(); 1684 } 1685 // If the line changed, we call that a new statement; unless we went to 1686 // line 0 and came back, in which case it is not a new statement. 1687 unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine; 1688 if (DL.getLine() && DL.getLine() != OldLine) 1689 Flags |= DWARF2_FLAG_IS_STMT; 1690 1691 const MDNode *Scope = DL.getScope(); 1692 recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags); 1693 1694 // If we're not at line 0, remember this location. 1695 if (DL.getLine()) 1696 PrevInstLoc = DL; 1697 } 1698 1699 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) { 1700 // First known non-DBG_VALUE and non-frame setup location marks 1701 // the beginning of the function body. 1702 for (const auto &MBB : *MF) 1703 for (const auto &MI : MBB) 1704 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1705 MI.getDebugLoc()) 1706 return MI.getDebugLoc(); 1707 return DebugLoc(); 1708 } 1709 1710 /// Register a source line with debug info. Returns the unique label that was 1711 /// emitted and which provides correspondence to the source line list. 1712 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col, 1713 const MDNode *S, unsigned Flags, unsigned CUID, 1714 uint16_t DwarfVersion, 1715 ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) { 1716 StringRef Fn; 1717 unsigned FileNo = 1; 1718 unsigned Discriminator = 0; 1719 if (auto *Scope = cast_or_null<DIScope>(S)) { 1720 Fn = Scope->getFilename(); 1721 if (Line != 0 && DwarfVersion >= 4) 1722 if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope)) 1723 Discriminator = LBF->getDiscriminator(); 1724 1725 FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID]) 1726 .getOrCreateSourceID(Scope->getFile()); 1727 } 1728 Asm.OutStreamer->EmitDwarfLocDirective(FileNo, Line, Col, Flags, 0, 1729 Discriminator, Fn); 1730 } 1731 1732 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF, 1733 unsigned CUID) { 1734 // Get beginning of function. 1735 if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) { 1736 // Ensure the compile unit is created if the function is called before 1737 // beginFunction(). 1738 (void)getOrCreateDwarfCompileUnit( 1739 MF.getFunction().getSubprogram()->getUnit()); 1740 // We'd like to list the prologue as "not statements" but GDB behaves 1741 // poorly if we do that. Revisit this with caution/GDB (7.5+) testing. 1742 const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram(); 1743 ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT, 1744 CUID, getDwarfVersion(), getUnits()); 1745 return PrologEndLoc; 1746 } 1747 return DebugLoc(); 1748 } 1749 1750 // Gather pre-function debug information. Assumes being called immediately 1751 // after the function entry point has been emitted. 1752 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) { 1753 CurFn = MF; 1754 1755 auto *SP = MF->getFunction().getSubprogram(); 1756 assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode()); 1757 if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) 1758 return; 1759 1760 SectionLabels.insert(std::make_pair(&Asm->getFunctionBegin()->getSection(), 1761 Asm->getFunctionBegin())); 1762 1763 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 1764 1765 // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function 1766 // belongs to so that we add to the correct per-cu line table in the 1767 // non-asm case. 1768 if (Asm->OutStreamer->hasRawTextSupport()) 1769 // Use a single line table if we are generating assembly. 1770 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 1771 else 1772 Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID()); 1773 1774 // Record beginning of function. 1775 PrologEndLoc = emitInitialLocDirective( 1776 *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID()); 1777 } 1778 1779 void DwarfDebug::skippedNonDebugFunction() { 1780 // If we don't have a subprogram for this function then there will be a hole 1781 // in the range information. Keep note of this by setting the previously used 1782 // section to nullptr. 1783 PrevCU = nullptr; 1784 CurFn = nullptr; 1785 } 1786 1787 // Gather and emit post-function debug information. 1788 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) { 1789 const DISubprogram *SP = MF->getFunction().getSubprogram(); 1790 1791 assert(CurFn == MF && 1792 "endFunction should be called with the same function as beginFunction"); 1793 1794 // Set DwarfDwarfCompileUnitID in MCContext to default value. 1795 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 1796 1797 LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); 1798 assert(!FnScope || SP == FnScope->getScopeNode()); 1799 DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit()); 1800 if (TheCU.getCUNode()->isDebugDirectivesOnly()) { 1801 PrevLabel = nullptr; 1802 CurFn = nullptr; 1803 return; 1804 } 1805 1806 DenseSet<InlinedEntity> Processed; 1807 collectEntityInfo(TheCU, SP, Processed); 1808 1809 // Add the range of this function to the list of ranges for the CU. 1810 TheCU.addRange({Asm->getFunctionBegin(), Asm->getFunctionEnd()}); 1811 1812 // Under -gmlt, skip building the subprogram if there are no inlined 1813 // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram 1814 // is still needed as we need its source location. 1815 if (!TheCU.getCUNode()->getDebugInfoForProfiling() && 1816 TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly && 1817 LScopes.getAbstractScopesList().empty() && !IsDarwin) { 1818 assert(InfoHolder.getScopeVariables().empty()); 1819 PrevLabel = nullptr; 1820 CurFn = nullptr; 1821 return; 1822 } 1823 1824 #ifndef NDEBUG 1825 size_t NumAbstractScopes = LScopes.getAbstractScopesList().size(); 1826 #endif 1827 // Construct abstract scopes. 1828 for (LexicalScope *AScope : LScopes.getAbstractScopesList()) { 1829 auto *SP = cast<DISubprogram>(AScope->getScopeNode()); 1830 for (const DINode *DN : SP->getRetainedNodes()) { 1831 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 1832 continue; 1833 1834 const MDNode *Scope = nullptr; 1835 if (auto *DV = dyn_cast<DILocalVariable>(DN)) 1836 Scope = DV->getScope(); 1837 else if (auto *DL = dyn_cast<DILabel>(DN)) 1838 Scope = DL->getScope(); 1839 else 1840 llvm_unreachable("Unexpected DI type!"); 1841 1842 // Collect info for variables/labels that were optimized out. 1843 ensureAbstractEntityIsCreated(TheCU, DN, Scope); 1844 assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes 1845 && "ensureAbstractEntityIsCreated inserted abstract scopes"); 1846 } 1847 constructAbstractSubprogramScopeDIE(TheCU, AScope); 1848 } 1849 1850 ProcessedSPNodes.insert(SP); 1851 DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope); 1852 if (auto *SkelCU = TheCU.getSkeleton()) 1853 if (!LScopes.getAbstractScopesList().empty() && 1854 TheCU.getCUNode()->getSplitDebugInlining()) 1855 SkelCU->constructSubprogramScopeDIE(SP, FnScope); 1856 1857 // Construct call site entries. 1858 constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF); 1859 1860 // Clear debug info 1861 // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the 1862 // DbgVariables except those that are also in AbstractVariables (since they 1863 // can be used cross-function) 1864 InfoHolder.getScopeVariables().clear(); 1865 InfoHolder.getScopeLabels().clear(); 1866 PrevLabel = nullptr; 1867 CurFn = nullptr; 1868 } 1869 1870 // Register a source line with debug info. Returns the unique label that was 1871 // emitted and which provides correspondence to the source line list. 1872 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S, 1873 unsigned Flags) { 1874 ::recordSourceLine(*Asm, Line, Col, S, Flags, 1875 Asm->OutStreamer->getContext().getDwarfCompileUnitID(), 1876 getDwarfVersion(), getUnits()); 1877 } 1878 1879 //===----------------------------------------------------------------------===// 1880 // Emit Methods 1881 //===----------------------------------------------------------------------===// 1882 1883 // Emit the debug info section. 1884 void DwarfDebug::emitDebugInfo() { 1885 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1886 Holder.emitUnits(/* UseOffsets */ false); 1887 } 1888 1889 // Emit the abbreviation section. 1890 void DwarfDebug::emitAbbreviations() { 1891 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1892 1893 Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection()); 1894 } 1895 1896 void DwarfDebug::emitStringOffsetsTableHeader() { 1897 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1898 Holder.getStringPool().emitStringOffsetsTableHeader( 1899 *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(), 1900 Holder.getStringOffsetsStartSym()); 1901 } 1902 1903 template <typename AccelTableT> 1904 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section, 1905 StringRef TableName) { 1906 Asm->OutStreamer->SwitchSection(Section); 1907 1908 // Emit the full data. 1909 emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol()); 1910 } 1911 1912 void DwarfDebug::emitAccelDebugNames() { 1913 // Don't emit anything if we have no compilation units to index. 1914 if (getUnits().empty()) 1915 return; 1916 1917 emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits()); 1918 } 1919 1920 // Emit visible names into a hashed accelerator table section. 1921 void DwarfDebug::emitAccelNames() { 1922 emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(), 1923 "Names"); 1924 } 1925 1926 // Emit objective C classes and categories into a hashed accelerator table 1927 // section. 1928 void DwarfDebug::emitAccelObjC() { 1929 emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(), 1930 "ObjC"); 1931 } 1932 1933 // Emit namespace dies into a hashed accelerator table. 1934 void DwarfDebug::emitAccelNamespaces() { 1935 emitAccel(AccelNamespace, 1936 Asm->getObjFileLowering().getDwarfAccelNamespaceSection(), 1937 "namespac"); 1938 } 1939 1940 // Emit type dies into a hashed accelerator table. 1941 void DwarfDebug::emitAccelTypes() { 1942 emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(), 1943 "types"); 1944 } 1945 1946 // Public name handling. 1947 // The format for the various pubnames: 1948 // 1949 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU 1950 // for the DIE that is named. 1951 // 1952 // gnu pubnames - offset/index value/name tuples where the offset is the offset 1953 // into the CU and the index value is computed according to the type of value 1954 // for the DIE that is named. 1955 // 1956 // For type units the offset is the offset of the skeleton DIE. For split dwarf 1957 // it's the offset within the debug_info/debug_types dwo section, however, the 1958 // reference in the pubname header doesn't change. 1959 1960 /// computeIndexValue - Compute the gdb index value for the DIE and CU. 1961 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU, 1962 const DIE *Die) { 1963 // Entities that ended up only in a Type Unit reference the CU instead (since 1964 // the pub entry has offsets within the CU there's no real offset that can be 1965 // provided anyway). As it happens all such entities (namespaces and types, 1966 // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out 1967 // not to be true it would be necessary to persist this information from the 1968 // point at which the entry is added to the index data structure - since by 1969 // the time the index is built from that, the original type/namespace DIE in a 1970 // type unit has already been destroyed so it can't be queried for properties 1971 // like tag, etc. 1972 if (Die->getTag() == dwarf::DW_TAG_compile_unit) 1973 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, 1974 dwarf::GIEL_EXTERNAL); 1975 dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC; 1976 1977 // We could have a specification DIE that has our most of our knowledge, 1978 // look for that now. 1979 if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) { 1980 DIE &SpecDIE = SpecVal.getDIEEntry().getEntry(); 1981 if (SpecDIE.findAttribute(dwarf::DW_AT_external)) 1982 Linkage = dwarf::GIEL_EXTERNAL; 1983 } else if (Die->findAttribute(dwarf::DW_AT_external)) 1984 Linkage = dwarf::GIEL_EXTERNAL; 1985 1986 switch (Die->getTag()) { 1987 case dwarf::DW_TAG_class_type: 1988 case dwarf::DW_TAG_structure_type: 1989 case dwarf::DW_TAG_union_type: 1990 case dwarf::DW_TAG_enumeration_type: 1991 return dwarf::PubIndexEntryDescriptor( 1992 dwarf::GIEK_TYPE, 1993 dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage()) 1994 ? dwarf::GIEL_EXTERNAL 1995 : dwarf::GIEL_STATIC); 1996 case dwarf::DW_TAG_typedef: 1997 case dwarf::DW_TAG_base_type: 1998 case dwarf::DW_TAG_subrange_type: 1999 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC); 2000 case dwarf::DW_TAG_namespace: 2001 return dwarf::GIEK_TYPE; 2002 case dwarf::DW_TAG_subprogram: 2003 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage); 2004 case dwarf::DW_TAG_variable: 2005 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage); 2006 case dwarf::DW_TAG_enumerator: 2007 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, 2008 dwarf::GIEL_STATIC); 2009 default: 2010 return dwarf::GIEK_NONE; 2011 } 2012 } 2013 2014 /// emitDebugPubSections - Emit visible names and types into debug pubnames and 2015 /// pubtypes sections. 2016 void DwarfDebug::emitDebugPubSections() { 2017 for (const auto &NU : CUMap) { 2018 DwarfCompileUnit *TheU = NU.second; 2019 if (!TheU->hasDwarfPubSections()) 2020 continue; 2021 2022 bool GnuStyle = TheU->getCUNode()->getNameTableKind() == 2023 DICompileUnit::DebugNameTableKind::GNU; 2024 2025 Asm->OutStreamer->SwitchSection( 2026 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection() 2027 : Asm->getObjFileLowering().getDwarfPubNamesSection()); 2028 emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames()); 2029 2030 Asm->OutStreamer->SwitchSection( 2031 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection() 2032 : Asm->getObjFileLowering().getDwarfPubTypesSection()); 2033 emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes()); 2034 } 2035 } 2036 2037 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) { 2038 if (useSectionsAsReferences()) 2039 Asm->EmitDwarfOffset(CU.getSection()->getBeginSymbol(), 2040 CU.getDebugSectionOffset()); 2041 else 2042 Asm->emitDwarfSymbolReference(CU.getLabelBegin()); 2043 } 2044 2045 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name, 2046 DwarfCompileUnit *TheU, 2047 const StringMap<const DIE *> &Globals) { 2048 if (auto *Skeleton = TheU->getSkeleton()) 2049 TheU = Skeleton; 2050 2051 // Emit the header. 2052 Asm->OutStreamer->AddComment("Length of Public " + Name + " Info"); 2053 MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin"); 2054 MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end"); 2055 Asm->EmitLabelDifference(EndLabel, BeginLabel, 4); 2056 2057 Asm->OutStreamer->EmitLabel(BeginLabel); 2058 2059 Asm->OutStreamer->AddComment("DWARF Version"); 2060 Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION); 2061 2062 Asm->OutStreamer->AddComment("Offset of Compilation Unit Info"); 2063 emitSectionReference(*TheU); 2064 2065 Asm->OutStreamer->AddComment("Compilation Unit Length"); 2066 Asm->emitInt32(TheU->getLength()); 2067 2068 // Emit the pubnames for this compilation unit. 2069 for (const auto &GI : Globals) { 2070 const char *Name = GI.getKeyData(); 2071 const DIE *Entity = GI.second; 2072 2073 Asm->OutStreamer->AddComment("DIE offset"); 2074 Asm->emitInt32(Entity->getOffset()); 2075 2076 if (GnuStyle) { 2077 dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity); 2078 Asm->OutStreamer->AddComment( 2079 Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + 2080 ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage)); 2081 Asm->emitInt8(Desc.toBits()); 2082 } 2083 2084 Asm->OutStreamer->AddComment("External Name"); 2085 Asm->OutStreamer->EmitBytes(StringRef(Name, GI.getKeyLength() + 1)); 2086 } 2087 2088 Asm->OutStreamer->AddComment("End Mark"); 2089 Asm->emitInt32(0); 2090 Asm->OutStreamer->EmitLabel(EndLabel); 2091 } 2092 2093 /// Emit null-terminated strings into a debug str section. 2094 void DwarfDebug::emitDebugStr() { 2095 MCSection *StringOffsetsSection = nullptr; 2096 if (useSegmentedStringOffsetsTable()) { 2097 emitStringOffsetsTableHeader(); 2098 StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection(); 2099 } 2100 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2101 Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(), 2102 StringOffsetsSection, /* UseRelativeOffsets = */ true); 2103 } 2104 2105 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer, 2106 const DebugLocStream::Entry &Entry, 2107 const DwarfCompileUnit *CU) { 2108 auto &&Comments = DebugLocs.getComments(Entry); 2109 auto Comment = Comments.begin(); 2110 auto End = Comments.end(); 2111 2112 // The expressions are inserted into a byte stream rather early (see 2113 // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that 2114 // need to reference a base_type DIE the offset of that DIE is not yet known. 2115 // To deal with this we instead insert a placeholder early and then extract 2116 // it here and replace it with the real reference. 2117 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2118 DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(), 2119 DebugLocs.getBytes(Entry).size()), 2120 Asm->getDataLayout().isLittleEndian(), PtrSize); 2121 DWARFExpression Expr(Data, getDwarfVersion(), PtrSize); 2122 2123 using Encoding = DWARFExpression::Operation::Encoding; 2124 uint64_t Offset = 0; 2125 for (auto &Op : Expr) { 2126 assert(Op.getCode() != dwarf::DW_OP_const_type && 2127 "3 operand ops not yet supported"); 2128 Streamer.EmitInt8(Op.getCode(), Comment != End ? *(Comment++) : ""); 2129 Offset++; 2130 for (unsigned I = 0; I < 2; ++I) { 2131 if (Op.getDescription().Op[I] == Encoding::SizeNA) 2132 continue; 2133 if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) { 2134 if (CU) { 2135 uint64_t Offset = CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset(); 2136 assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit"); 2137 Asm->EmitULEB128(Offset, nullptr, ULEB128PadSize); 2138 } else { 2139 // Emit a reference to the 'generic type'. 2140 Asm->EmitULEB128(0, nullptr, ULEB128PadSize); 2141 } 2142 // Make sure comments stay aligned. 2143 for (unsigned J = 0; J < ULEB128PadSize; ++J) 2144 if (Comment != End) 2145 Comment++; 2146 } else { 2147 for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J) 2148 Streamer.EmitInt8(Data.getData()[J], Comment != End ? *(Comment++) : ""); 2149 } 2150 Offset = Op.getOperandEndOffset(I); 2151 } 2152 assert(Offset == Op.getEndOffset()); 2153 } 2154 } 2155 2156 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT, 2157 const DbgValueLoc &Value, 2158 DwarfExpression &DwarfExpr) { 2159 auto *DIExpr = Value.getExpression(); 2160 DIExpressionCursor ExprCursor(DIExpr); 2161 DwarfExpr.addFragmentOffset(DIExpr); 2162 // Regular entry. 2163 if (Value.isInt()) { 2164 if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed || 2165 BT->getEncoding() == dwarf::DW_ATE_signed_char)) 2166 DwarfExpr.addSignedConstant(Value.getInt()); 2167 else 2168 DwarfExpr.addUnsignedConstant(Value.getInt()); 2169 } else if (Value.isLocation()) { 2170 MachineLocation Location = Value.getLoc(); 2171 if (Location.isIndirect()) 2172 DwarfExpr.setMemoryLocationKind(); 2173 DIExpressionCursor Cursor(DIExpr); 2174 2175 if (DIExpr->isEntryValue()) { 2176 DwarfExpr.setEntryValueFlag(); 2177 DwarfExpr.addEntryValueExpression(Cursor); 2178 } 2179 2180 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); 2181 if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg())) 2182 return; 2183 return DwarfExpr.addExpression(std::move(Cursor)); 2184 } else if (Value.isConstantFP()) { 2185 APInt RawBytes = Value.getConstantFP()->getValueAPF().bitcastToAPInt(); 2186 DwarfExpr.addUnsignedConstant(RawBytes); 2187 } 2188 DwarfExpr.addExpression(std::move(ExprCursor)); 2189 } 2190 2191 void DebugLocEntry::finalize(const AsmPrinter &AP, 2192 DebugLocStream::ListBuilder &List, 2193 const DIBasicType *BT, 2194 DwarfCompileUnit &TheCU) { 2195 assert(!Values.empty() && 2196 "location list entries without values are redundant"); 2197 assert(Begin != End && "unexpected location list entry with empty range"); 2198 DebugLocStream::EntryBuilder Entry(List, Begin, End); 2199 BufferByteStreamer Streamer = Entry.getStreamer(); 2200 DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU); 2201 const DbgValueLoc &Value = Values[0]; 2202 if (Value.isFragment()) { 2203 // Emit all fragments that belong to the same variable and range. 2204 assert(llvm::all_of(Values, [](DbgValueLoc P) { 2205 return P.isFragment(); 2206 }) && "all values are expected to be fragments"); 2207 assert(std::is_sorted(Values.begin(), Values.end()) && 2208 "fragments are expected to be sorted"); 2209 2210 for (auto Fragment : Values) 2211 DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr); 2212 2213 } else { 2214 assert(Values.size() == 1 && "only fragments may have >1 value"); 2215 DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr); 2216 } 2217 DwarfExpr.finalize(); 2218 } 2219 2220 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry, 2221 const DwarfCompileUnit *CU) { 2222 // Emit the size. 2223 Asm->OutStreamer->AddComment("Loc expr size"); 2224 if (getDwarfVersion() >= 5) 2225 Asm->EmitULEB128(DebugLocs.getBytes(Entry).size()); 2226 else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max()) 2227 Asm->emitInt16(DebugLocs.getBytes(Entry).size()); 2228 else { 2229 // The entry is too big to fit into 16 bit, drop it as there is nothing we 2230 // can do. 2231 Asm->emitInt16(0); 2232 return; 2233 } 2234 // Emit the entry. 2235 APByteStreamer Streamer(*Asm); 2236 emitDebugLocEntry(Streamer, Entry, CU); 2237 } 2238 2239 // Emit the common part of the DWARF 5 range/locations list tables header. 2240 static void emitListsTableHeaderStart(AsmPrinter *Asm, const DwarfFile &Holder, 2241 MCSymbol *TableStart, 2242 MCSymbol *TableEnd) { 2243 // Build the table header, which starts with the length field. 2244 Asm->OutStreamer->AddComment("Length"); 2245 Asm->EmitLabelDifference(TableEnd, TableStart, 4); 2246 Asm->OutStreamer->EmitLabel(TableStart); 2247 // Version number (DWARF v5 and later). 2248 Asm->OutStreamer->AddComment("Version"); 2249 Asm->emitInt16(Asm->OutStreamer->getContext().getDwarfVersion()); 2250 // Address size. 2251 Asm->OutStreamer->AddComment("Address size"); 2252 Asm->emitInt8(Asm->MAI->getCodePointerSize()); 2253 // Segment selector size. 2254 Asm->OutStreamer->AddComment("Segment selector size"); 2255 Asm->emitInt8(0); 2256 } 2257 2258 // Emit the header of a DWARF 5 range list table list table. Returns the symbol 2259 // that designates the end of the table for the caller to emit when the table is 2260 // complete. 2261 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm, 2262 const DwarfFile &Holder) { 2263 MCSymbol *TableStart = Asm->createTempSymbol("debug_rnglist_table_start"); 2264 MCSymbol *TableEnd = Asm->createTempSymbol("debug_rnglist_table_end"); 2265 emitListsTableHeaderStart(Asm, Holder, TableStart, TableEnd); 2266 2267 Asm->OutStreamer->AddComment("Offset entry count"); 2268 Asm->emitInt32(Holder.getRangeLists().size()); 2269 Asm->OutStreamer->EmitLabel(Holder.getRnglistsTableBaseSym()); 2270 2271 for (const RangeSpanList &List : Holder.getRangeLists()) 2272 Asm->EmitLabelDifference(List.getSym(), Holder.getRnglistsTableBaseSym(), 2273 4); 2274 2275 return TableEnd; 2276 } 2277 2278 // Emit the header of a DWARF 5 locations list table. Returns the symbol that 2279 // designates the end of the table for the caller to emit when the table is 2280 // complete. 2281 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm, 2282 const DwarfFile &Holder) { 2283 MCSymbol *TableStart = Asm->createTempSymbol("debug_loclist_table_start"); 2284 MCSymbol *TableEnd = Asm->createTempSymbol("debug_loclist_table_end"); 2285 emitListsTableHeaderStart(Asm, Holder, TableStart, TableEnd); 2286 2287 // FIXME: Generate the offsets table and use DW_FORM_loclistx with the 2288 // DW_AT_loclists_base attribute. Until then set the number of offsets to 0. 2289 Asm->OutStreamer->AddComment("Offset entry count"); 2290 Asm->emitInt32(0); 2291 Asm->OutStreamer->EmitLabel(Holder.getLoclistsTableBaseSym()); 2292 2293 return TableEnd; 2294 } 2295 2296 // Emit locations into the .debug_loc/.debug_rnglists section. 2297 void DwarfDebug::emitDebugLoc() { 2298 if (DebugLocs.getLists().empty()) 2299 return; 2300 2301 bool IsLocLists = getDwarfVersion() >= 5; 2302 MCSymbol *TableEnd = nullptr; 2303 if (IsLocLists) { 2304 Asm->OutStreamer->SwitchSection( 2305 Asm->getObjFileLowering().getDwarfLoclistsSection()); 2306 TableEnd = emitLoclistsTableHeader(Asm, useSplitDwarf() ? SkeletonHolder 2307 : InfoHolder); 2308 } else { 2309 Asm->OutStreamer->SwitchSection( 2310 Asm->getObjFileLowering().getDwarfLocSection()); 2311 } 2312 2313 unsigned char Size = Asm->MAI->getCodePointerSize(); 2314 for (const auto &List : DebugLocs.getLists()) { 2315 Asm->OutStreamer->EmitLabel(List.Label); 2316 2317 const DwarfCompileUnit *CU = List.CU; 2318 const MCSymbol *Base = CU->getBaseAddress(); 2319 for (const auto &Entry : DebugLocs.getEntries(List)) { 2320 if (Base) { 2321 // Set up the range. This range is relative to the entry point of the 2322 // compile unit. This is a hard coded 0 for low_pc when we're emitting 2323 // ranges, or the DW_AT_low_pc on the compile unit otherwise. 2324 if (IsLocLists) { 2325 Asm->OutStreamer->AddComment("DW_LLE_offset_pair"); 2326 Asm->OutStreamer->EmitIntValue(dwarf::DW_LLE_offset_pair, 1); 2327 Asm->OutStreamer->AddComment(" starting offset"); 2328 Asm->EmitLabelDifferenceAsULEB128(Entry.Begin, Base); 2329 Asm->OutStreamer->AddComment(" ending offset"); 2330 Asm->EmitLabelDifferenceAsULEB128(Entry.End, Base); 2331 } else { 2332 Asm->EmitLabelDifference(Entry.Begin, Base, Size); 2333 Asm->EmitLabelDifference(Entry.End, Base, Size); 2334 } 2335 2336 emitDebugLocEntryLocation(Entry, CU); 2337 continue; 2338 } 2339 2340 // We have no base address. 2341 if (IsLocLists) { 2342 // TODO: Use DW_LLE_base_addressx + DW_LLE_offset_pair, or 2343 // DW_LLE_startx_length in case if there is only a single range. 2344 // That should reduce the size of the debug data emited. 2345 // For now just use the DW_LLE_startx_length for all cases. 2346 Asm->OutStreamer->AddComment("DW_LLE_startx_length"); 2347 Asm->emitInt8(dwarf::DW_LLE_startx_length); 2348 Asm->OutStreamer->AddComment(" start idx"); 2349 Asm->EmitULEB128(AddrPool.getIndex(Entry.Begin)); 2350 Asm->OutStreamer->AddComment(" length"); 2351 Asm->EmitLabelDifferenceAsULEB128(Entry.End, Entry.Begin); 2352 } else { 2353 Asm->OutStreamer->EmitSymbolValue(Entry.Begin, Size); 2354 Asm->OutStreamer->EmitSymbolValue(Entry.End, Size); 2355 } 2356 2357 emitDebugLocEntryLocation(Entry, CU); 2358 } 2359 2360 if (IsLocLists) { 2361 // .debug_loclists section ends with DW_LLE_end_of_list. 2362 Asm->OutStreamer->AddComment("DW_LLE_end_of_list"); 2363 Asm->OutStreamer->EmitIntValue(dwarf::DW_LLE_end_of_list, 1); 2364 } else { 2365 // Terminate the .debug_loc list with two 0 values. 2366 Asm->OutStreamer->EmitIntValue(0, Size); 2367 Asm->OutStreamer->EmitIntValue(0, Size); 2368 } 2369 } 2370 2371 if (TableEnd) 2372 Asm->OutStreamer->EmitLabel(TableEnd); 2373 } 2374 2375 void DwarfDebug::emitDebugLocDWO() { 2376 for (const auto &List : DebugLocs.getLists()) { 2377 Asm->OutStreamer->SwitchSection( 2378 Asm->getObjFileLowering().getDwarfLocDWOSection()); 2379 Asm->OutStreamer->EmitLabel(List.Label); 2380 for (const auto &Entry : DebugLocs.getEntries(List)) { 2381 // GDB only supports startx_length in pre-standard split-DWARF. 2382 // (in v5 standard loclists, it currently* /only/ supports base_address + 2383 // offset_pair, so the implementations can't really share much since they 2384 // need to use different representations) 2385 // * as of October 2018, at least 2386 // Ideally/in v5, this could use SectionLabels to reuse existing addresses 2387 // in the address pool to minimize object size/relocations. 2388 Asm->emitInt8(dwarf::DW_LLE_startx_length); 2389 unsigned idx = AddrPool.getIndex(Entry.Begin); 2390 Asm->EmitULEB128(idx); 2391 Asm->EmitLabelDifference(Entry.End, Entry.Begin, 4); 2392 2393 emitDebugLocEntryLocation(Entry, List.CU); 2394 } 2395 Asm->emitInt8(dwarf::DW_LLE_end_of_list); 2396 } 2397 } 2398 2399 struct ArangeSpan { 2400 const MCSymbol *Start, *End; 2401 }; 2402 2403 // Emit a debug aranges section, containing a CU lookup for any 2404 // address we can tie back to a CU. 2405 void DwarfDebug::emitDebugARanges() { 2406 // Provides a unique id per text section. 2407 MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap; 2408 2409 // Filter labels by section. 2410 for (const SymbolCU &SCU : ArangeLabels) { 2411 if (SCU.Sym->isInSection()) { 2412 // Make a note of this symbol and it's section. 2413 MCSection *Section = &SCU.Sym->getSection(); 2414 if (!Section->getKind().isMetadata()) 2415 SectionMap[Section].push_back(SCU); 2416 } else { 2417 // Some symbols (e.g. common/bss on mach-o) can have no section but still 2418 // appear in the output. This sucks as we rely on sections to build 2419 // arange spans. We can do it without, but it's icky. 2420 SectionMap[nullptr].push_back(SCU); 2421 } 2422 } 2423 2424 DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans; 2425 2426 for (auto &I : SectionMap) { 2427 MCSection *Section = I.first; 2428 SmallVector<SymbolCU, 8> &List = I.second; 2429 if (List.size() < 1) 2430 continue; 2431 2432 // If we have no section (e.g. common), just write out 2433 // individual spans for each symbol. 2434 if (!Section) { 2435 for (const SymbolCU &Cur : List) { 2436 ArangeSpan Span; 2437 Span.Start = Cur.Sym; 2438 Span.End = nullptr; 2439 assert(Cur.CU); 2440 Spans[Cur.CU].push_back(Span); 2441 } 2442 continue; 2443 } 2444 2445 // Sort the symbols by offset within the section. 2446 llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) { 2447 unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0; 2448 unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0; 2449 2450 // Symbols with no order assigned should be placed at the end. 2451 // (e.g. section end labels) 2452 if (IA == 0) 2453 return false; 2454 if (IB == 0) 2455 return true; 2456 return IA < IB; 2457 }); 2458 2459 // Insert a final terminator. 2460 List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section))); 2461 2462 // Build spans between each label. 2463 const MCSymbol *StartSym = List[0].Sym; 2464 for (size_t n = 1, e = List.size(); n < e; n++) { 2465 const SymbolCU &Prev = List[n - 1]; 2466 const SymbolCU &Cur = List[n]; 2467 2468 // Try and build the longest span we can within the same CU. 2469 if (Cur.CU != Prev.CU) { 2470 ArangeSpan Span; 2471 Span.Start = StartSym; 2472 Span.End = Cur.Sym; 2473 assert(Prev.CU); 2474 Spans[Prev.CU].push_back(Span); 2475 StartSym = Cur.Sym; 2476 } 2477 } 2478 } 2479 2480 // Start the dwarf aranges section. 2481 Asm->OutStreamer->SwitchSection( 2482 Asm->getObjFileLowering().getDwarfARangesSection()); 2483 2484 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2485 2486 // Build a list of CUs used. 2487 std::vector<DwarfCompileUnit *> CUs; 2488 for (const auto &it : Spans) { 2489 DwarfCompileUnit *CU = it.first; 2490 CUs.push_back(CU); 2491 } 2492 2493 // Sort the CU list (again, to ensure consistent output order). 2494 llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) { 2495 return A->getUniqueID() < B->getUniqueID(); 2496 }); 2497 2498 // Emit an arange table for each CU we used. 2499 for (DwarfCompileUnit *CU : CUs) { 2500 std::vector<ArangeSpan> &List = Spans[CU]; 2501 2502 // Describe the skeleton CU's offset and length, not the dwo file's. 2503 if (auto *Skel = CU->getSkeleton()) 2504 CU = Skel; 2505 2506 // Emit size of content not including length itself. 2507 unsigned ContentSize = 2508 sizeof(int16_t) + // DWARF ARange version number 2509 sizeof(int32_t) + // Offset of CU in the .debug_info section 2510 sizeof(int8_t) + // Pointer Size (in bytes) 2511 sizeof(int8_t); // Segment Size (in bytes) 2512 2513 unsigned TupleSize = PtrSize * 2; 2514 2515 // 7.20 in the Dwarf specs requires the table to be aligned to a tuple. 2516 unsigned Padding = 2517 offsetToAlignment(sizeof(int32_t) + ContentSize, Align(TupleSize)); 2518 2519 ContentSize += Padding; 2520 ContentSize += (List.size() + 1) * TupleSize; 2521 2522 // For each compile unit, write the list of spans it covers. 2523 Asm->OutStreamer->AddComment("Length of ARange Set"); 2524 Asm->emitInt32(ContentSize); 2525 Asm->OutStreamer->AddComment("DWARF Arange version number"); 2526 Asm->emitInt16(dwarf::DW_ARANGES_VERSION); 2527 Asm->OutStreamer->AddComment("Offset Into Debug Info Section"); 2528 emitSectionReference(*CU); 2529 Asm->OutStreamer->AddComment("Address Size (in bytes)"); 2530 Asm->emitInt8(PtrSize); 2531 Asm->OutStreamer->AddComment("Segment Size (in bytes)"); 2532 Asm->emitInt8(0); 2533 2534 Asm->OutStreamer->emitFill(Padding, 0xff); 2535 2536 for (const ArangeSpan &Span : List) { 2537 Asm->EmitLabelReference(Span.Start, PtrSize); 2538 2539 // Calculate the size as being from the span start to it's end. 2540 if (Span.End) { 2541 Asm->EmitLabelDifference(Span.End, Span.Start, PtrSize); 2542 } else { 2543 // For symbols without an end marker (e.g. common), we 2544 // write a single arange entry containing just that one symbol. 2545 uint64_t Size = SymSize[Span.Start]; 2546 if (Size == 0) 2547 Size = 1; 2548 2549 Asm->OutStreamer->EmitIntValue(Size, PtrSize); 2550 } 2551 } 2552 2553 Asm->OutStreamer->AddComment("ARange terminator"); 2554 Asm->OutStreamer->EmitIntValue(0, PtrSize); 2555 Asm->OutStreamer->EmitIntValue(0, PtrSize); 2556 } 2557 } 2558 2559 template <typename Ranges> 2560 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, 2561 const Ranges &R, const DwarfCompileUnit &CU, 2562 unsigned BaseAddressx, unsigned OffsetPair, 2563 unsigned StartxLength, unsigned EndOfList, 2564 StringRef (*StringifyEnum)(unsigned)) { 2565 auto DwarfVersion = DD.getDwarfVersion(); 2566 // Emit our symbol so we can find the beginning of the range. 2567 Asm->OutStreamer->EmitLabel(Sym); 2568 // Gather all the ranges that apply to the same section so they can share 2569 // a base address entry. 2570 MapVector<const MCSection *, std::vector<const RangeSpan *>> SectionRanges; 2571 // Size for our labels. 2572 auto Size = Asm->MAI->getCodePointerSize(); 2573 2574 for (const RangeSpan &Range : R) 2575 SectionRanges[&Range.Begin->getSection()].push_back(&Range); 2576 2577 const MCSymbol *CUBase = CU.getBaseAddress(); 2578 bool BaseIsSet = false; 2579 for (const auto &P : SectionRanges) { 2580 // Don't bother with a base address entry if there's only one range in 2581 // this section in this range list - for example ranges for a CU will 2582 // usually consist of single regions from each of many sections 2583 // (-ffunction-sections, or just C++ inline functions) except under LTO 2584 // or optnone where there may be holes in a single CU's section 2585 // contributions. 2586 auto *Base = CUBase; 2587 if (!Base && (P.second.size() > 1 || DwarfVersion < 5) && 2588 (CU.getCUNode()->getRangesBaseAddress() || DwarfVersion >= 5)) { 2589 BaseIsSet = true; 2590 Base = DD.getSectionLabel(&P.second.front()->Begin->getSection()); 2591 if (DwarfVersion >= 5) { 2592 Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx)); 2593 Asm->OutStreamer->EmitIntValue(BaseAddressx, 1); 2594 Asm->OutStreamer->AddComment(" base address index"); 2595 Asm->EmitULEB128(DD.getAddressPool().getIndex(Base)); 2596 } else { 2597 Asm->OutStreamer->EmitIntValue(-1, Size); 2598 Asm->OutStreamer->AddComment(" base address"); 2599 Asm->OutStreamer->EmitSymbolValue(Base, Size); 2600 } 2601 } else if (BaseIsSet && DwarfVersion < 5) { 2602 BaseIsSet = false; 2603 assert(!Base); 2604 Asm->OutStreamer->EmitIntValue(-1, Size); 2605 Asm->OutStreamer->EmitIntValue(0, Size); 2606 } 2607 2608 for (const auto *RS : P.second) { 2609 const MCSymbol *Begin = RS->Begin; 2610 const MCSymbol *End = RS->End; 2611 assert(Begin && "Range without a begin symbol?"); 2612 assert(End && "Range without an end symbol?"); 2613 if (Base) { 2614 if (DwarfVersion >= 5) { 2615 // Emit DW_RLE_offset_pair when we have a base. 2616 Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair)); 2617 Asm->emitInt8(OffsetPair); 2618 Asm->OutStreamer->AddComment(" starting offset"); 2619 Asm->EmitLabelDifferenceAsULEB128(Begin, Base); 2620 Asm->OutStreamer->AddComment(" ending offset"); 2621 Asm->EmitLabelDifferenceAsULEB128(End, Base); 2622 } else { 2623 Asm->EmitLabelDifference(Begin, Base, Size); 2624 Asm->EmitLabelDifference(End, Base, Size); 2625 } 2626 } else if (DwarfVersion >= 5) { 2627 Asm->OutStreamer->AddComment(StringifyEnum(StartxLength)); 2628 Asm->emitInt8(StartxLength); 2629 Asm->OutStreamer->AddComment(" start index"); 2630 Asm->EmitULEB128(DD.getAddressPool().getIndex(Begin)); 2631 Asm->OutStreamer->AddComment(" length"); 2632 Asm->EmitLabelDifferenceAsULEB128(End, Begin); 2633 } else { 2634 Asm->OutStreamer->EmitSymbolValue(Begin, Size); 2635 Asm->OutStreamer->EmitSymbolValue(End, Size); 2636 } 2637 } 2638 } 2639 if (DwarfVersion >= 5) { 2640 Asm->OutStreamer->AddComment(StringifyEnum(EndOfList)); 2641 Asm->emitInt8(EndOfList); 2642 } else { 2643 // Terminate the list with two 0 values. 2644 Asm->OutStreamer->EmitIntValue(0, Size); 2645 Asm->OutStreamer->EmitIntValue(0, Size); 2646 } 2647 } 2648 2649 /// Emit a single range list. We handle both DWARF v5 and earlier. 2650 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm, 2651 const RangeSpanList &List) { 2652 emitRangeList(DD, Asm, List.getSym(), List.getRanges(), List.getCU(), 2653 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair, 2654 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list, 2655 llvm::dwarf::RangeListEncodingString); 2656 } 2657 2658 static void emitDebugRangesImpl(DwarfDebug &DD, AsmPrinter *Asm, 2659 const DwarfFile &Holder, MCSymbol *TableEnd) { 2660 for (const RangeSpanList &List : Holder.getRangeLists()) 2661 emitRangeList(DD, Asm, List); 2662 2663 if (TableEnd) 2664 Asm->OutStreamer->EmitLabel(TableEnd); 2665 } 2666 2667 /// Emit address ranges into the .debug_ranges section or into the DWARF v5 2668 /// .debug_rnglists section. 2669 void DwarfDebug::emitDebugRanges() { 2670 if (CUMap.empty()) 2671 return; 2672 2673 const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2674 2675 if (Holder.getRangeLists().empty()) 2676 return; 2677 2678 assert(useRangesSection()); 2679 assert(llvm::none_of(CUMap, [](const decltype(CUMap)::value_type &Pair) { 2680 return Pair.second->getCUNode()->isDebugDirectivesOnly(); 2681 })); 2682 2683 // Start the dwarf ranges section. 2684 MCSymbol *TableEnd = nullptr; 2685 if (getDwarfVersion() >= 5) { 2686 Asm->OutStreamer->SwitchSection( 2687 Asm->getObjFileLowering().getDwarfRnglistsSection()); 2688 TableEnd = emitRnglistsTableHeader(Asm, Holder); 2689 } else 2690 Asm->OutStreamer->SwitchSection( 2691 Asm->getObjFileLowering().getDwarfRangesSection()); 2692 2693 emitDebugRangesImpl(*this, Asm, Holder, TableEnd); 2694 } 2695 2696 void DwarfDebug::emitDebugRangesDWO() { 2697 assert(useSplitDwarf()); 2698 2699 if (CUMap.empty()) 2700 return; 2701 2702 const auto &Holder = InfoHolder; 2703 2704 if (Holder.getRangeLists().empty()) 2705 return; 2706 2707 assert(getDwarfVersion() >= 5); 2708 assert(useRangesSection()); 2709 assert(llvm::none_of(CUMap, [](const decltype(CUMap)::value_type &Pair) { 2710 return Pair.second->getCUNode()->isDebugDirectivesOnly(); 2711 })); 2712 2713 // Start the dwarf ranges section. 2714 Asm->OutStreamer->SwitchSection( 2715 Asm->getObjFileLowering().getDwarfRnglistsDWOSection()); 2716 MCSymbol *TableEnd = emitRnglistsTableHeader(Asm, Holder); 2717 2718 emitDebugRangesImpl(*this, Asm, Holder, TableEnd); 2719 } 2720 2721 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) { 2722 for (auto *MN : Nodes) { 2723 if (auto *M = dyn_cast<DIMacro>(MN)) 2724 emitMacro(*M); 2725 else if (auto *F = dyn_cast<DIMacroFile>(MN)) 2726 emitMacroFile(*F, U); 2727 else 2728 llvm_unreachable("Unexpected DI type!"); 2729 } 2730 } 2731 2732 void DwarfDebug::emitMacro(DIMacro &M) { 2733 Asm->EmitULEB128(M.getMacinfoType()); 2734 Asm->EmitULEB128(M.getLine()); 2735 StringRef Name = M.getName(); 2736 StringRef Value = M.getValue(); 2737 Asm->OutStreamer->EmitBytes(Name); 2738 if (!Value.empty()) { 2739 // There should be one space between macro name and macro value. 2740 Asm->emitInt8(' '); 2741 Asm->OutStreamer->EmitBytes(Value); 2742 } 2743 Asm->emitInt8('\0'); 2744 } 2745 2746 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) { 2747 assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file); 2748 Asm->EmitULEB128(dwarf::DW_MACINFO_start_file); 2749 Asm->EmitULEB128(F.getLine()); 2750 Asm->EmitULEB128(U.getOrCreateSourceID(F.getFile())); 2751 handleMacroNodes(F.getElements(), U); 2752 Asm->EmitULEB128(dwarf::DW_MACINFO_end_file); 2753 } 2754 2755 /// Emit macros into a debug macinfo section. 2756 void DwarfDebug::emitDebugMacinfo() { 2757 if (CUMap.empty()) 2758 return; 2759 2760 if (llvm::all_of(CUMap, [](const decltype(CUMap)::value_type &Pair) { 2761 return Pair.second->getCUNode()->isDebugDirectivesOnly(); 2762 })) 2763 return; 2764 2765 // Start the dwarf macinfo section. 2766 Asm->OutStreamer->SwitchSection( 2767 Asm->getObjFileLowering().getDwarfMacinfoSection()); 2768 2769 for (const auto &P : CUMap) { 2770 auto &TheCU = *P.second; 2771 if (TheCU.getCUNode()->isDebugDirectivesOnly()) 2772 continue; 2773 auto *SkCU = TheCU.getSkeleton(); 2774 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 2775 auto *CUNode = cast<DICompileUnit>(P.first); 2776 DIMacroNodeArray Macros = CUNode->getMacros(); 2777 if (!Macros.empty()) { 2778 Asm->OutStreamer->EmitLabel(U.getMacroLabelBegin()); 2779 handleMacroNodes(Macros, U); 2780 } 2781 } 2782 Asm->OutStreamer->AddComment("End Of Macro List Mark"); 2783 Asm->emitInt8(0); 2784 } 2785 2786 // DWARF5 Experimental Separate Dwarf emitters. 2787 2788 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die, 2789 std::unique_ptr<DwarfCompileUnit> NewU) { 2790 2791 if (!CompilationDir.empty()) 2792 NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 2793 2794 addGnuPubAttributes(*NewU, Die); 2795 2796 SkeletonHolder.addUnit(std::move(NewU)); 2797 } 2798 2799 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) { 2800 2801 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 2802 CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder); 2803 DwarfCompileUnit &NewCU = *OwnedUnit; 2804 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 2805 2806 NewCU.initStmtList(); 2807 2808 if (useSegmentedStringOffsetsTable()) 2809 NewCU.addStringOffsetsStart(); 2810 2811 initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit)); 2812 2813 return NewCU; 2814 } 2815 2816 // Emit the .debug_info.dwo section for separated dwarf. This contains the 2817 // compile units that would normally be in debug_info. 2818 void DwarfDebug::emitDebugInfoDWO() { 2819 assert(useSplitDwarf() && "No split dwarf debug info?"); 2820 // Don't emit relocations into the dwo file. 2821 InfoHolder.emitUnits(/* UseOffsets */ true); 2822 } 2823 2824 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the 2825 // abbreviations for the .debug_info.dwo section. 2826 void DwarfDebug::emitDebugAbbrevDWO() { 2827 assert(useSplitDwarf() && "No split dwarf?"); 2828 InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection()); 2829 } 2830 2831 void DwarfDebug::emitDebugLineDWO() { 2832 assert(useSplitDwarf() && "No split dwarf?"); 2833 SplitTypeUnitFileTable.Emit( 2834 *Asm->OutStreamer, MCDwarfLineTableParams(), 2835 Asm->getObjFileLowering().getDwarfLineDWOSection()); 2836 } 2837 2838 void DwarfDebug::emitStringOffsetsTableHeaderDWO() { 2839 assert(useSplitDwarf() && "No split dwarf?"); 2840 InfoHolder.getStringPool().emitStringOffsetsTableHeader( 2841 *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(), 2842 InfoHolder.getStringOffsetsStartSym()); 2843 } 2844 2845 // Emit the .debug_str.dwo section for separated dwarf. This contains the 2846 // string section and is identical in format to traditional .debug_str 2847 // sections. 2848 void DwarfDebug::emitDebugStrDWO() { 2849 if (useSegmentedStringOffsetsTable()) 2850 emitStringOffsetsTableHeaderDWO(); 2851 assert(useSplitDwarf() && "No split dwarf?"); 2852 MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection(); 2853 InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(), 2854 OffSec, /* UseRelativeOffsets = */ false); 2855 } 2856 2857 // Emit address pool. 2858 void DwarfDebug::emitDebugAddr() { 2859 AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection()); 2860 } 2861 2862 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) { 2863 if (!useSplitDwarf()) 2864 return nullptr; 2865 const DICompileUnit *DIUnit = CU.getCUNode(); 2866 SplitTypeUnitFileTable.maybeSetRootFile( 2867 DIUnit->getDirectory(), DIUnit->getFilename(), 2868 CU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource()); 2869 return &SplitTypeUnitFileTable; 2870 } 2871 2872 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) { 2873 MD5 Hash; 2874 Hash.update(Identifier); 2875 // ... take the least significant 8 bytes and return those. Our MD5 2876 // implementation always returns its results in little endian, so we actually 2877 // need the "high" word. 2878 MD5::MD5Result Result; 2879 Hash.final(Result); 2880 return Result.high(); 2881 } 2882 2883 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU, 2884 StringRef Identifier, DIE &RefDie, 2885 const DICompositeType *CTy) { 2886 // Fast path if we're building some type units and one has already used the 2887 // address pool we know we're going to throw away all this work anyway, so 2888 // don't bother building dependent types. 2889 if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed()) 2890 return; 2891 2892 auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0)); 2893 if (!Ins.second) { 2894 CU.addDIETypeSignature(RefDie, Ins.first->second); 2895 return; 2896 } 2897 2898 bool TopLevelType = TypeUnitsUnderConstruction.empty(); 2899 AddrPool.resetUsedFlag(); 2900 2901 auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder, 2902 getDwoLineTable(CU)); 2903 DwarfTypeUnit &NewTU = *OwnedUnit; 2904 DIE &UnitDie = NewTU.getUnitDie(); 2905 TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy); 2906 2907 NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 2908 CU.getLanguage()); 2909 2910 uint64_t Signature = makeTypeSignature(Identifier); 2911 NewTU.setTypeSignature(Signature); 2912 Ins.first->second = Signature; 2913 2914 if (useSplitDwarf()) { 2915 MCSection *Section = 2916 getDwarfVersion() <= 4 2917 ? Asm->getObjFileLowering().getDwarfTypesDWOSection() 2918 : Asm->getObjFileLowering().getDwarfInfoDWOSection(); 2919 NewTU.setSection(Section); 2920 } else { 2921 MCSection *Section = 2922 getDwarfVersion() <= 4 2923 ? Asm->getObjFileLowering().getDwarfTypesSection(Signature) 2924 : Asm->getObjFileLowering().getDwarfInfoSection(Signature); 2925 NewTU.setSection(Section); 2926 // Non-split type units reuse the compile unit's line table. 2927 CU.applyStmtList(UnitDie); 2928 } 2929 2930 // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type 2931 // units. 2932 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 2933 NewTU.addStringOffsetsStart(); 2934 2935 NewTU.setType(NewTU.createTypeDIE(CTy)); 2936 2937 if (TopLevelType) { 2938 auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction); 2939 TypeUnitsUnderConstruction.clear(); 2940 2941 // Types referencing entries in the address table cannot be placed in type 2942 // units. 2943 if (AddrPool.hasBeenUsed()) { 2944 2945 // Remove all the types built while building this type. 2946 // This is pessimistic as some of these types might not be dependent on 2947 // the type that used an address. 2948 for (const auto &TU : TypeUnitsToAdd) 2949 TypeSignatures.erase(TU.second); 2950 2951 // Construct this type in the CU directly. 2952 // This is inefficient because all the dependent types will be rebuilt 2953 // from scratch, including building them in type units, discovering that 2954 // they depend on addresses, throwing them out and rebuilding them. 2955 CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy)); 2956 return; 2957 } 2958 2959 // If the type wasn't dependent on fission addresses, finish adding the type 2960 // and all its dependent types. 2961 for (auto &TU : TypeUnitsToAdd) { 2962 InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get()); 2963 InfoHolder.emitUnit(TU.first.get(), useSplitDwarf()); 2964 } 2965 } 2966 CU.addDIETypeSignature(RefDie, Signature); 2967 } 2968 2969 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD) 2970 : DD(DD), 2971 TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)) { 2972 DD->TypeUnitsUnderConstruction.clear(); 2973 assert(TypeUnitsUnderConstruction.empty() || !DD->AddrPool.hasBeenUsed()); 2974 } 2975 2976 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() { 2977 DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction); 2978 DD->AddrPool.resetUsedFlag(); 2979 } 2980 2981 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() { 2982 return NonTypeUnitContext(this); 2983 } 2984 2985 // Add the Name along with its companion DIE to the appropriate accelerator 2986 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for 2987 // AccelTableKind::Apple, we use the table we got as an argument). If 2988 // accelerator tables are disabled, this function does nothing. 2989 template <typename DataT> 2990 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU, 2991 AccelTable<DataT> &AppleAccel, StringRef Name, 2992 const DIE &Die) { 2993 if (getAccelTableKind() == AccelTableKind::None) 2994 return; 2995 2996 if (getAccelTableKind() != AccelTableKind::Apple && 2997 CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default) 2998 return; 2999 3000 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 3001 DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name); 3002 3003 switch (getAccelTableKind()) { 3004 case AccelTableKind::Apple: 3005 AppleAccel.addName(Ref, Die); 3006 break; 3007 case AccelTableKind::Dwarf: 3008 AccelDebugNames.addName(Ref, Die); 3009 break; 3010 case AccelTableKind::Default: 3011 llvm_unreachable("Default should have already been resolved."); 3012 case AccelTableKind::None: 3013 llvm_unreachable("None handled above"); 3014 } 3015 } 3016 3017 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name, 3018 const DIE &Die) { 3019 addAccelNameImpl(CU, AccelNames, Name, Die); 3020 } 3021 3022 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name, 3023 const DIE &Die) { 3024 // ObjC names go only into the Apple accelerator tables. 3025 if (getAccelTableKind() == AccelTableKind::Apple) 3026 addAccelNameImpl(CU, AccelObjC, Name, Die); 3027 } 3028 3029 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name, 3030 const DIE &Die) { 3031 addAccelNameImpl(CU, AccelNamespace, Name, Die); 3032 } 3033 3034 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name, 3035 const DIE &Die, char Flags) { 3036 addAccelNameImpl(CU, AccelTypes, Name, Die); 3037 } 3038 3039 uint16_t DwarfDebug::getDwarfVersion() const { 3040 return Asm->OutStreamer->getContext().getDwarfVersion(); 3041 } 3042 3043 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) { 3044 return SectionLabels.find(S)->second; 3045 } 3046