1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing dwarf debug info into asm files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "DwarfDebug.h" 14 #include "ByteStreamer.h" 15 #include "DIEHash.h" 16 #include "DebugLocEntry.h" 17 #include "DebugLocStream.h" 18 #include "DwarfCompileUnit.h" 19 #include "DwarfExpression.h" 20 #include "DwarfFile.h" 21 #include "DwarfUnit.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/DenseSet.h" 25 #include "llvm/ADT/MapVector.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/BinaryFormat/Dwarf.h" 33 #include "llvm/CodeGen/AccelTable.h" 34 #include "llvm/CodeGen/AsmPrinter.h" 35 #include "llvm/CodeGen/DIE.h" 36 #include "llvm/CodeGen/LexicalScopes.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineInstr.h" 40 #include "llvm/CodeGen/MachineModuleInfo.h" 41 #include "llvm/CodeGen/MachineOperand.h" 42 #include "llvm/CodeGen/TargetInstrInfo.h" 43 #include "llvm/CodeGen/TargetLowering.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/DebugInfo/DWARF/DWARFExpression.h" 47 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GlobalVariable.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/MC/MCAsmInfo.h" 55 #include "llvm/MC/MCContext.h" 56 #include "llvm/MC/MCDwarf.h" 57 #include "llvm/MC/MCSection.h" 58 #include "llvm/MC/MCStreamer.h" 59 #include "llvm/MC/MCSymbol.h" 60 #include "llvm/MC/MCTargetOptions.h" 61 #include "llvm/MC/MachineLocation.h" 62 #include "llvm/MC/SectionKind.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MD5.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/Timer.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Target/TargetLoweringObjectFile.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include "llvm/Target/TargetOptions.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <iterator> 80 #include <string> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 #define DEBUG_TYPE "dwarfdebug" 87 88 STATISTIC(NumCSParams, "Number of dbg call site params created"); 89 90 static cl::opt<bool> 91 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, 92 cl::desc("Disable debug info printing")); 93 94 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier( 95 "use-dwarf-ranges-base-address-specifier", cl::Hidden, 96 cl::desc("Use base address specifiers in debug_ranges"), cl::init(false)); 97 98 static cl::opt<bool> EmitDwarfDebugEntryValues( 99 "emit-debug-entry-values", cl::Hidden, 100 cl::desc("Emit the debug entry values"), cl::init(false)); 101 102 static cl::opt<bool> GenerateARangeSection("generate-arange-section", 103 cl::Hidden, 104 cl::desc("Generate dwarf aranges"), 105 cl::init(false)); 106 107 static cl::opt<bool> 108 GenerateDwarfTypeUnits("generate-type-units", cl::Hidden, 109 cl::desc("Generate DWARF4 type units."), 110 cl::init(false)); 111 112 static cl::opt<bool> SplitDwarfCrossCuReferences( 113 "split-dwarf-cross-cu-references", cl::Hidden, 114 cl::desc("Enable cross-cu references in DWO files"), cl::init(false)); 115 116 enum DefaultOnOff { Default, Enable, Disable }; 117 118 static cl::opt<DefaultOnOff> UnknownLocations( 119 "use-unknown-locations", cl::Hidden, 120 cl::desc("Make an absence of debug location information explicit."), 121 cl::values(clEnumVal(Default, "At top of block or after label"), 122 clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")), 123 cl::init(Default)); 124 125 static cl::opt<AccelTableKind> AccelTables( 126 "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."), 127 cl::values(clEnumValN(AccelTableKind::Default, "Default", 128 "Default for platform"), 129 clEnumValN(AccelTableKind::None, "Disable", "Disabled."), 130 clEnumValN(AccelTableKind::Apple, "Apple", "Apple"), 131 clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")), 132 cl::init(AccelTableKind::Default)); 133 134 static cl::opt<DefaultOnOff> 135 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden, 136 cl::desc("Use inlined strings rather than string section."), 137 cl::values(clEnumVal(Default, "Default for platform"), 138 clEnumVal(Enable, "Enabled"), 139 clEnumVal(Disable, "Disabled")), 140 cl::init(Default)); 141 142 static cl::opt<bool> 143 NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden, 144 cl::desc("Disable emission .debug_ranges section."), 145 cl::init(false)); 146 147 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences( 148 "dwarf-sections-as-references", cl::Hidden, 149 cl::desc("Use sections+offset as references rather than labels."), 150 cl::values(clEnumVal(Default, "Default for platform"), 151 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 152 cl::init(Default)); 153 154 enum LinkageNameOption { 155 DefaultLinkageNames, 156 AllLinkageNames, 157 AbstractLinkageNames 158 }; 159 160 static cl::opt<LinkageNameOption> 161 DwarfLinkageNames("dwarf-linkage-names", cl::Hidden, 162 cl::desc("Which DWARF linkage-name attributes to emit."), 163 cl::values(clEnumValN(DefaultLinkageNames, "Default", 164 "Default for platform"), 165 clEnumValN(AllLinkageNames, "All", "All"), 166 clEnumValN(AbstractLinkageNames, "Abstract", 167 "Abstract subprograms")), 168 cl::init(DefaultLinkageNames)); 169 170 static const char *const DWARFGroupName = "dwarf"; 171 static const char *const DWARFGroupDescription = "DWARF Emission"; 172 static const char *const DbgTimerName = "writer"; 173 static const char *const DbgTimerDescription = "DWARF Debug Writer"; 174 static constexpr unsigned ULEB128PadSize = 4; 175 176 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) { 177 getActiveStreamer().EmitInt8( 178 Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op) 179 : dwarf::OperationEncodingString(Op)); 180 } 181 182 void DebugLocDwarfExpression::emitSigned(int64_t Value) { 183 getActiveStreamer().emitSLEB128(Value, Twine(Value)); 184 } 185 186 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) { 187 getActiveStreamer().emitULEB128(Value, Twine(Value)); 188 } 189 190 void DebugLocDwarfExpression::emitData1(uint8_t Value) { 191 getActiveStreamer().EmitInt8(Value, Twine(Value)); 192 } 193 194 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) { 195 assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit"); 196 getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize); 197 } 198 199 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI, 200 unsigned MachineReg) { 201 // This information is not available while emitting .debug_loc entries. 202 return false; 203 } 204 205 void DebugLocDwarfExpression::enableTemporaryBuffer() { 206 assert(!IsBuffering && "Already buffering?"); 207 if (!TmpBuf) 208 TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments); 209 IsBuffering = true; 210 } 211 212 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; } 213 214 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() { 215 return TmpBuf ? TmpBuf->Bytes.size() : 0; 216 } 217 218 void DebugLocDwarfExpression::commitTemporaryBuffer() { 219 if (!TmpBuf) 220 return; 221 for (auto Byte : enumerate(TmpBuf->Bytes)) { 222 const char *Comment = (Byte.index() < TmpBuf->Comments.size()) 223 ? TmpBuf->Comments[Byte.index()].c_str() 224 : ""; 225 OutBS.EmitInt8(Byte.value(), Comment); 226 } 227 TmpBuf->Bytes.clear(); 228 TmpBuf->Comments.clear(); 229 } 230 231 const DIType *DbgVariable::getType() const { 232 return getVariable()->getType(); 233 } 234 235 /// Get .debug_loc entry for the instruction range starting at MI. 236 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) { 237 const DIExpression *Expr = MI->getDebugExpression(); 238 assert(MI->getNumOperands() == 4); 239 if (MI->getOperand(0).isReg()) { 240 auto RegOp = MI->getOperand(0); 241 auto Op1 = MI->getOperand(1); 242 // If the second operand is an immediate, this is a 243 // register-indirect address. 244 assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset"); 245 MachineLocation MLoc(RegOp.getReg(), Op1.isImm()); 246 return DbgValueLoc(Expr, MLoc); 247 } 248 if (MI->getOperand(0).isTargetIndex()) { 249 auto Op = MI->getOperand(0); 250 return DbgValueLoc(Expr, 251 TargetIndexLocation(Op.getIndex(), Op.getOffset())); 252 } 253 if (MI->getOperand(0).isImm()) 254 return DbgValueLoc(Expr, MI->getOperand(0).getImm()); 255 if (MI->getOperand(0).isFPImm()) 256 return DbgValueLoc(Expr, MI->getOperand(0).getFPImm()); 257 if (MI->getOperand(0).isCImm()) 258 return DbgValueLoc(Expr, MI->getOperand(0).getCImm()); 259 260 llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!"); 261 } 262 263 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) { 264 assert(FrameIndexExprs.empty() && "Already initialized?"); 265 assert(!ValueLoc.get() && "Already initialized?"); 266 267 assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable"); 268 assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() && 269 "Wrong inlined-at"); 270 271 ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue)); 272 if (auto *E = DbgValue->getDebugExpression()) 273 if (E->getNumElements()) 274 FrameIndexExprs.push_back({0, E}); 275 } 276 277 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const { 278 if (FrameIndexExprs.size() == 1) 279 return FrameIndexExprs; 280 281 assert(llvm::all_of(FrameIndexExprs, 282 [](const FrameIndexExpr &A) { 283 return A.Expr->isFragment(); 284 }) && 285 "multiple FI expressions without DW_OP_LLVM_fragment"); 286 llvm::sort(FrameIndexExprs, 287 [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool { 288 return A.Expr->getFragmentInfo()->OffsetInBits < 289 B.Expr->getFragmentInfo()->OffsetInBits; 290 }); 291 292 return FrameIndexExprs; 293 } 294 295 void DbgVariable::addMMIEntry(const DbgVariable &V) { 296 assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry"); 297 assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry"); 298 assert(V.getVariable() == getVariable() && "conflicting variable"); 299 assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location"); 300 301 assert(!FrameIndexExprs.empty() && "Expected an MMI entry"); 302 assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry"); 303 304 // FIXME: This logic should not be necessary anymore, as we now have proper 305 // deduplication. However, without it, we currently run into the assertion 306 // below, which means that we are likely dealing with broken input, i.e. two 307 // non-fragment entries for the same variable at different frame indices. 308 if (FrameIndexExprs.size()) { 309 auto *Expr = FrameIndexExprs.back().Expr; 310 if (!Expr || !Expr->isFragment()) 311 return; 312 } 313 314 for (const auto &FIE : V.FrameIndexExprs) 315 // Ignore duplicate entries. 316 if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) { 317 return FIE.FI == Other.FI && FIE.Expr == Other.Expr; 318 })) 319 FrameIndexExprs.push_back(FIE); 320 321 assert((FrameIndexExprs.size() == 1 || 322 llvm::all_of(FrameIndexExprs, 323 [](FrameIndexExpr &FIE) { 324 return FIE.Expr && FIE.Expr->isFragment(); 325 })) && 326 "conflicting locations for variable"); 327 } 328 329 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion, 330 bool GenerateTypeUnits, 331 DebuggerKind Tuning, 332 const Triple &TT) { 333 // Honor an explicit request. 334 if (AccelTables != AccelTableKind::Default) 335 return AccelTables; 336 337 // Accelerator tables with type units are currently not supported. 338 if (GenerateTypeUnits) 339 return AccelTableKind::None; 340 341 // Accelerator tables get emitted if targetting DWARF v5 or LLDB. DWARF v5 342 // always implies debug_names. For lower standard versions we use apple 343 // accelerator tables on apple platforms and debug_names elsewhere. 344 if (DwarfVersion >= 5) 345 return AccelTableKind::Dwarf; 346 if (Tuning == DebuggerKind::LLDB) 347 return TT.isOSBinFormatMachO() ? AccelTableKind::Apple 348 : AccelTableKind::Dwarf; 349 return AccelTableKind::None; 350 } 351 352 DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M) 353 : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()), 354 InfoHolder(A, "info_string", DIEValueAllocator), 355 SkeletonHolder(A, "skel_string", DIEValueAllocator), 356 IsDarwin(A->TM.getTargetTriple().isOSDarwin()) { 357 const Triple &TT = Asm->TM.getTargetTriple(); 358 359 // Make sure we know our "debugger tuning". The target option takes 360 // precedence; fall back to triple-based defaults. 361 if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default) 362 DebuggerTuning = Asm->TM.Options.DebuggerTuning; 363 else if (IsDarwin) 364 DebuggerTuning = DebuggerKind::LLDB; 365 else if (TT.isPS4CPU()) 366 DebuggerTuning = DebuggerKind::SCE; 367 else 368 DebuggerTuning = DebuggerKind::GDB; 369 370 if (DwarfInlinedStrings == Default) 371 UseInlineStrings = TT.isNVPTX(); 372 else 373 UseInlineStrings = DwarfInlinedStrings == Enable; 374 375 UseLocSection = !TT.isNVPTX(); 376 377 HasAppleExtensionAttributes = tuneForLLDB(); 378 379 // Handle split DWARF. 380 HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty(); 381 382 // SCE defaults to linkage names only for abstract subprograms. 383 if (DwarfLinkageNames == DefaultLinkageNames) 384 UseAllLinkageNames = !tuneForSCE(); 385 else 386 UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames; 387 388 unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion; 389 unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber 390 : MMI->getModule()->getDwarfVersion(); 391 // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2. 392 DwarfVersion = 393 TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION); 394 395 UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX(); 396 397 // Use sections as references. Force for NVPTX. 398 if (DwarfSectionsAsReferences == Default) 399 UseSectionsAsReferences = TT.isNVPTX(); 400 else 401 UseSectionsAsReferences = DwarfSectionsAsReferences == Enable; 402 403 // Don't generate type units for unsupported object file formats. 404 GenerateTypeUnits = 405 A->TM.getTargetTriple().isOSBinFormatELF() && GenerateDwarfTypeUnits; 406 407 TheAccelTableKind = computeAccelTableKind( 408 DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple()); 409 410 // Work around a GDB bug. GDB doesn't support the standard opcode; 411 // SCE doesn't support GNU's; LLDB prefers the standard opcode, which 412 // is defined as of DWARF 3. 413 // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented 414 // https://sourceware.org/bugzilla/show_bug.cgi?id=11616 415 UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3; 416 417 // GDB does not fully support the DWARF 4 representation for bitfields. 418 UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB(); 419 420 // The DWARF v5 string offsets table has - possibly shared - contributions 421 // from each compile and type unit each preceded by a header. The string 422 // offsets table used by the pre-DWARF v5 split-DWARF implementation uses 423 // a monolithic string offsets table without any header. 424 UseSegmentedStringOffsetsTable = DwarfVersion >= 5; 425 426 // Emit call-site-param debug info for GDB and LLDB, if the target supports 427 // the debug entry values feature. It can also be enabled explicitly. 428 EmitDebugEntryValues = (Asm->TM.Options.ShouldEmitDebugEntryValues() && 429 (tuneForGDB() || tuneForLLDB())) || 430 EmitDwarfDebugEntryValues; 431 432 Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion); 433 } 434 435 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h. 436 DwarfDebug::~DwarfDebug() = default; 437 438 static bool isObjCClass(StringRef Name) { 439 return Name.startswith("+") || Name.startswith("-"); 440 } 441 442 static bool hasObjCCategory(StringRef Name) { 443 if (!isObjCClass(Name)) 444 return false; 445 446 return Name.find(") ") != StringRef::npos; 447 } 448 449 static void getObjCClassCategory(StringRef In, StringRef &Class, 450 StringRef &Category) { 451 if (!hasObjCCategory(In)) { 452 Class = In.slice(In.find('[') + 1, In.find(' ')); 453 Category = ""; 454 return; 455 } 456 457 Class = In.slice(In.find('[') + 1, In.find('(')); 458 Category = In.slice(In.find('[') + 1, In.find(' ')); 459 } 460 461 static StringRef getObjCMethodName(StringRef In) { 462 return In.slice(In.find(' ') + 1, In.find(']')); 463 } 464 465 // Add the various names to the Dwarf accelerator table names. 466 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU, 467 const DISubprogram *SP, DIE &Die) { 468 if (getAccelTableKind() != AccelTableKind::Apple && 469 CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None) 470 return; 471 472 if (!SP->isDefinition()) 473 return; 474 475 if (SP->getName() != "") 476 addAccelName(CU, SP->getName(), Die); 477 478 // If the linkage name is different than the name, go ahead and output that as 479 // well into the name table. Only do that if we are going to actually emit 480 // that name. 481 if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() && 482 (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP))) 483 addAccelName(CU, SP->getLinkageName(), Die); 484 485 // If this is an Objective-C selector name add it to the ObjC accelerator 486 // too. 487 if (isObjCClass(SP->getName())) { 488 StringRef Class, Category; 489 getObjCClassCategory(SP->getName(), Class, Category); 490 addAccelObjC(CU, Class, Die); 491 if (Category != "") 492 addAccelObjC(CU, Category, Die); 493 // Also add the base method name to the name table. 494 addAccelName(CU, getObjCMethodName(SP->getName()), Die); 495 } 496 } 497 498 /// Check whether we should create a DIE for the given Scope, return true 499 /// if we don't create a DIE (the corresponding DIE is null). 500 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) { 501 if (Scope->isAbstractScope()) 502 return false; 503 504 // We don't create a DIE if there is no Range. 505 const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges(); 506 if (Ranges.empty()) 507 return true; 508 509 if (Ranges.size() > 1) 510 return false; 511 512 // We don't create a DIE if we have a single Range and the end label 513 // is null. 514 return !getLabelAfterInsn(Ranges.front().second); 515 } 516 517 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) { 518 F(CU); 519 if (auto *SkelCU = CU.getSkeleton()) 520 if (CU.getCUNode()->getSplitDebugInlining()) 521 F(*SkelCU); 522 } 523 524 bool DwarfDebug::shareAcrossDWOCUs() const { 525 return SplitDwarfCrossCuReferences; 526 } 527 528 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU, 529 LexicalScope *Scope) { 530 assert(Scope && Scope->getScopeNode()); 531 assert(Scope->isAbstractScope()); 532 assert(!Scope->getInlinedAt()); 533 534 auto *SP = cast<DISubprogram>(Scope->getScopeNode()); 535 536 // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram 537 // was inlined from another compile unit. 538 if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining()) 539 // Avoid building the original CU if it won't be used 540 SrcCU.constructAbstractSubprogramScopeDIE(Scope); 541 else { 542 auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 543 if (auto *SkelCU = CU.getSkeleton()) { 544 (shareAcrossDWOCUs() ? CU : SrcCU) 545 .constructAbstractSubprogramScopeDIE(Scope); 546 if (CU.getCUNode()->getSplitDebugInlining()) 547 SkelCU->constructAbstractSubprogramScopeDIE(Scope); 548 } else 549 CU.constructAbstractSubprogramScopeDIE(Scope); 550 } 551 } 552 553 DIE &DwarfDebug::constructSubprogramDefinitionDIE(const DISubprogram *SP) { 554 DICompileUnit *Unit = SP->getUnit(); 555 assert(SP->isDefinition() && "Subprogram not a definition"); 556 assert(Unit && "Subprogram definition without parent unit"); 557 auto &CU = getOrCreateDwarfCompileUnit(Unit); 558 return *CU.getOrCreateSubprogramDIE(SP); 559 } 560 561 /// Represents a parameter whose call site value can be described by applying a 562 /// debug expression to a register in the forwarded register worklist. 563 struct FwdRegParamInfo { 564 /// The described parameter register. 565 unsigned ParamReg; 566 567 /// Debug expression that has been built up when walking through the 568 /// instruction chain that produces the parameter's value. 569 const DIExpression *Expr; 570 }; 571 572 /// Register worklist for finding call site values. 573 using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>; 574 575 /// Append the expression \p Addition to \p Original and return the result. 576 static const DIExpression *combineDIExpressions(const DIExpression *Original, 577 const DIExpression *Addition) { 578 std::vector<uint64_t> Elts = Addition->getElements().vec(); 579 // Avoid multiple DW_OP_stack_values. 580 if (Original->isImplicit() && Addition->isImplicit()) 581 erase_if(Elts, [](uint64_t Op) { return Op == dwarf::DW_OP_stack_value; }); 582 const DIExpression *CombinedExpr = 583 (Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original; 584 return CombinedExpr; 585 } 586 587 /// Emit call site parameter entries that are described by the given value and 588 /// debug expression. 589 template <typename ValT> 590 static void finishCallSiteParams(ValT Val, const DIExpression *Expr, 591 ArrayRef<FwdRegParamInfo> DescribedParams, 592 ParamSet &Params) { 593 for (auto Param : DescribedParams) { 594 bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0; 595 596 // TODO: Entry value operations can currently not be combined with any 597 // other expressions, so we can't emit call site entries in those cases. 598 if (ShouldCombineExpressions && Expr->isEntryValue()) 599 continue; 600 601 // If a parameter's call site value is produced by a chain of 602 // instructions we may have already created an expression for the 603 // parameter when walking through the instructions. Append that to the 604 // base expression. 605 const DIExpression *CombinedExpr = 606 ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr) 607 : Expr; 608 assert((!CombinedExpr || CombinedExpr->isValid()) && 609 "Combined debug expression is invalid"); 610 611 DbgValueLoc DbgLocVal(CombinedExpr, Val); 612 DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal); 613 Params.push_back(CSParm); 614 ++NumCSParams; 615 } 616 } 617 618 /// Add \p Reg to the worklist, if it's not already present, and mark that the 619 /// given parameter registers' values can (potentially) be described using 620 /// that register and an debug expression. 621 static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg, 622 const DIExpression *Expr, 623 ArrayRef<FwdRegParamInfo> ParamsToAdd) { 624 auto I = Worklist.insert({Reg, {}}); 625 auto &ParamsForFwdReg = I.first->second; 626 for (auto Param : ParamsToAdd) { 627 assert(none_of(ParamsForFwdReg, 628 [Param](const FwdRegParamInfo &D) { 629 return D.ParamReg == Param.ParamReg; 630 }) && 631 "Same parameter described twice by forwarding reg"); 632 633 // If a parameter's call site value is produced by a chain of 634 // instructions we may have already created an expression for the 635 // parameter when walking through the instructions. Append that to the 636 // new expression. 637 const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr); 638 ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr}); 639 } 640 } 641 642 /// Try to interpret values loaded into registers that forward parameters 643 /// for \p CallMI. Store parameters with interpreted value into \p Params. 644 static void collectCallSiteParameters(const MachineInstr *CallMI, 645 ParamSet &Params) { 646 auto *MF = CallMI->getMF(); 647 auto CalleesMap = MF->getCallSitesInfo(); 648 auto CallFwdRegsInfo = CalleesMap.find(CallMI); 649 650 // There is no information for the call instruction. 651 if (CallFwdRegsInfo == CalleesMap.end()) 652 return; 653 654 auto *MBB = CallMI->getParent(); 655 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); 656 const TargetInstrInfo &TII = *MF->getSubtarget().getInstrInfo(); 657 const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering(); 658 659 // Skip the call instruction. 660 auto I = std::next(CallMI->getReverseIterator()); 661 662 FwdRegWorklist ForwardedRegWorklist; 663 664 // If an instruction defines more than one item in the worklist, we may run 665 // into situations where a worklist register's value is (potentially) 666 // described by the previous value of another register that is also defined 667 // by that instruction. 668 // 669 // This can for example occur in cases like this: 670 // 671 // $r1 = mov 123 672 // $r0, $r1 = mvrr $r1, 456 673 // call @foo, $r0, $r1 674 // 675 // When describing $r1's value for the mvrr instruction, we need to make sure 676 // that we don't finalize an entry value for $r0, as that is dependent on the 677 // previous value of $r1 (123 rather than 456). 678 // 679 // In order to not have to distinguish between those cases when finalizing 680 // entry values, we simply postpone adding new parameter registers to the 681 // worklist, by first keeping them in this temporary container until the 682 // instruction has been handled. 683 FwdRegWorklist NewWorklistItems; 684 685 const DIExpression *EmptyExpr = 686 DIExpression::get(MF->getFunction().getContext(), {}); 687 688 // Add all the forwarding registers into the ForwardedRegWorklist. 689 for (auto ArgReg : CallFwdRegsInfo->second) { 690 bool InsertedReg = 691 ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}}) 692 .second; 693 assert(InsertedReg && "Single register used to forward two arguments?"); 694 (void)InsertedReg; 695 } 696 697 // We erase, from the ForwardedRegWorklist, those forwarding registers for 698 // which we successfully describe a loaded value (by using 699 // the describeLoadedValue()). For those remaining arguments in the working 700 // list, for which we do not describe a loaded value by 701 // the describeLoadedValue(), we try to generate an entry value expression 702 // for their call site value description, if the call is within the entry MBB. 703 // TODO: Handle situations when call site parameter value can be described 704 // as the entry value within basic blocks other than the first one. 705 bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin(); 706 707 // If the MI is an instruction defining one or more parameters' forwarding 708 // registers, add those defines. 709 auto getForwardingRegsDefinedByMI = 710 [&TRI](const MachineInstr &MI, SmallSetVector<unsigned, 4> &Defs, 711 const FwdRegWorklist &ForwardedRegWorklist) { 712 if (MI.isDebugInstr()) 713 return; 714 715 for (const MachineOperand &MO : MI.operands()) { 716 if (MO.isReg() && MO.isDef() && 717 Register::isPhysicalRegister(MO.getReg())) { 718 for (auto FwdReg : ForwardedRegWorklist) 719 if (TRI.regsOverlap(FwdReg.first, MO.getReg())) 720 Defs.insert(FwdReg.first); 721 } 722 } 723 }; 724 725 // Search for a loading value in forwarding registers. 726 for (; I != MBB->rend(); ++I) { 727 // Skip bundle headers. 728 if (I->isBundle()) 729 continue; 730 731 // If the next instruction is a call we can not interpret parameter's 732 // forwarding registers or we finished the interpretation of all parameters. 733 if (I->isCall()) 734 return; 735 736 if (ForwardedRegWorklist.empty()) 737 return; 738 739 // Set of worklist registers that are defined by this instruction. 740 SmallSetVector<unsigned, 4> FwdRegDefs; 741 742 getForwardingRegsDefinedByMI(*I, FwdRegDefs, ForwardedRegWorklist); 743 if (FwdRegDefs.empty()) 744 continue; 745 746 for (auto ParamFwdReg : FwdRegDefs) { 747 if (auto ParamValue = TII.describeLoadedValue(*I, ParamFwdReg)) { 748 if (ParamValue->first.isImm()) { 749 int64_t Val = ParamValue->first.getImm(); 750 finishCallSiteParams(Val, ParamValue->second, 751 ForwardedRegWorklist[ParamFwdReg], Params); 752 } else if (ParamValue->first.isReg()) { 753 Register RegLoc = ParamValue->first.getReg(); 754 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 755 Register FP = TRI.getFrameRegister(*MF); 756 bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP); 757 if (TRI.isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) { 758 MachineLocation MLoc(RegLoc, /*IsIndirect=*/IsSPorFP); 759 finishCallSiteParams(MLoc, ParamValue->second, 760 ForwardedRegWorklist[ParamFwdReg], Params); 761 } else { 762 // ParamFwdReg was described by the non-callee saved register 763 // RegLoc. Mark that the call site values for the parameters are 764 // dependent on that register instead of ParamFwdReg. Since RegLoc 765 // may be a register that will be handled in this iteration, we 766 // postpone adding the items to the worklist, and instead keep them 767 // in a temporary container. 768 addToFwdRegWorklist(NewWorklistItems, RegLoc, ParamValue->second, 769 ForwardedRegWorklist[ParamFwdReg]); 770 } 771 } 772 } 773 } 774 775 // Remove all registers that this instruction defines from the worklist. 776 for (auto ParamFwdReg : FwdRegDefs) 777 ForwardedRegWorklist.erase(ParamFwdReg); 778 779 // Now that we are done handling this instruction, add items from the 780 // temporary worklist to the real one. 781 for (auto New : NewWorklistItems) 782 addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, 783 New.second); 784 NewWorklistItems.clear(); 785 } 786 787 // Emit the call site parameter's value as an entry value. 788 if (ShouldTryEmitEntryVals) { 789 // Create an expression where the register's entry value is used. 790 DIExpression *EntryExpr = DIExpression::get( 791 MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1}); 792 for (auto RegEntry : ForwardedRegWorklist) { 793 MachineLocation MLoc(RegEntry.first); 794 finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params); 795 } 796 } 797 } 798 799 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP, 800 DwarfCompileUnit &CU, DIE &ScopeDIE, 801 const MachineFunction &MF) { 802 // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if 803 // the subprogram is required to have one. 804 if (!SP.areAllCallsDescribed() || !SP.isDefinition()) 805 return; 806 807 // Use DW_AT_call_all_calls to express that call site entries are present 808 // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls 809 // because one of its requirements is not met: call site entries for 810 // optimized-out calls are elided. 811 CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls)); 812 813 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 814 assert(TII && "TargetInstrInfo not found: cannot label tail calls"); 815 816 // Emit call site entries for each call or tail call in the function. 817 for (const MachineBasicBlock &MBB : MF) { 818 for (const MachineInstr &MI : MBB.instrs()) { 819 // Bundles with call in them will pass the isCall() test below but do not 820 // have callee operand information so skip them here. Iterator will 821 // eventually reach the call MI. 822 if (MI.isBundle()) 823 continue; 824 825 // Skip instructions which aren't calls. Both calls and tail-calling jump 826 // instructions (e.g TAILJMPd64) are classified correctly here. 827 if (!MI.isCandidateForCallSiteEntry()) 828 continue; 829 830 // Skip instructions marked as frame setup, as they are not interesting to 831 // the user. 832 if (MI.getFlag(MachineInstr::FrameSetup)) 833 continue; 834 835 // TODO: Add support for targets with delay slots (see: beginInstruction). 836 if (MI.hasDelaySlot()) 837 return; 838 839 // If this is a direct call, find the callee's subprogram. 840 // In the case of an indirect call find the register that holds 841 // the callee. 842 const MachineOperand &CalleeOp = MI.getOperand(0); 843 if (!CalleeOp.isGlobal() && !CalleeOp.isReg()) 844 continue; 845 846 unsigned CallReg = 0; 847 DIE *CalleeDIE = nullptr; 848 const Function *CalleeDecl = nullptr; 849 if (CalleeOp.isReg()) { 850 CallReg = CalleeOp.getReg(); 851 if (!CallReg) 852 continue; 853 } else { 854 CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal()); 855 if (!CalleeDecl || !CalleeDecl->getSubprogram()) 856 continue; 857 const DISubprogram *CalleeSP = CalleeDecl->getSubprogram(); 858 859 if (CalleeSP->isDefinition()) { 860 // Ensure that a subprogram DIE for the callee is available in the 861 // appropriate CU. 862 CalleeDIE = &constructSubprogramDefinitionDIE(CalleeSP); 863 } else { 864 // Create the declaration DIE if it is missing. This is required to 865 // support compilation of old bitcode with an incomplete list of 866 // retained metadata. 867 CalleeDIE = CU.getOrCreateSubprogramDIE(CalleeSP); 868 } 869 assert(CalleeDIE && "Must have a DIE for the callee"); 870 } 871 872 // TODO: Omit call site entries for runtime calls (objc_msgSend, etc). 873 874 bool IsTail = TII->isTailCall(MI); 875 876 // If MI is in a bundle, the label was created after the bundle since 877 // EmitFunctionBody iterates over top-level MIs. Get that top-level MI 878 // to search for that label below. 879 const MachineInstr *TopLevelCallMI = 880 MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI; 881 882 // For non-tail calls, the return PC is needed to disambiguate paths in 883 // the call graph which could lead to some target function. For tail 884 // calls, no return PC information is needed, unless tuning for GDB in 885 // DWARF4 mode in which case we fake a return PC for compatibility. 886 const MCSymbol *PCAddr = 887 (!IsTail || CU.useGNUAnalogForDwarf5Feature()) 888 ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI)) 889 : nullptr; 890 891 // For tail calls, it's necessary to record the address of the branch 892 // instruction so that the debugger can show where the tail call occurred. 893 const MCSymbol *CallAddr = 894 IsTail ? getLabelBeforeInsn(TopLevelCallMI) : nullptr; 895 896 assert((IsTail || PCAddr) && "Non-tail call without return PC"); 897 898 LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> " 899 << (CalleeDecl ? CalleeDecl->getName() 900 : StringRef(MF.getSubtarget() 901 .getRegisterInfo() 902 ->getName(CallReg))) 903 << (IsTail ? " [IsTail]" : "") << "\n"); 904 905 DIE &CallSiteDIE = CU.constructCallSiteEntryDIE( 906 ScopeDIE, CalleeDIE, IsTail, PCAddr, CallAddr, CallReg); 907 908 // Optionally emit call-site-param debug info. 909 if (emitDebugEntryValues()) { 910 ParamSet Params; 911 // Try to interpret values of call site parameters. 912 collectCallSiteParameters(&MI, Params); 913 CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params); 914 } 915 } 916 } 917 } 918 919 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const { 920 if (!U.hasDwarfPubSections()) 921 return; 922 923 U.addFlag(D, dwarf::DW_AT_GNU_pubnames); 924 } 925 926 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit, 927 DwarfCompileUnit &NewCU) { 928 DIE &Die = NewCU.getUnitDie(); 929 StringRef FN = DIUnit->getFilename(); 930 931 StringRef Producer = DIUnit->getProducer(); 932 StringRef Flags = DIUnit->getFlags(); 933 if (!Flags.empty() && !useAppleExtensionAttributes()) { 934 std::string ProducerWithFlags = Producer.str() + " " + Flags.str(); 935 NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags); 936 } else 937 NewCU.addString(Die, dwarf::DW_AT_producer, Producer); 938 939 NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 940 DIUnit->getSourceLanguage()); 941 NewCU.addString(Die, dwarf::DW_AT_name, FN); 942 StringRef SysRoot = DIUnit->getSysRoot(); 943 if (!SysRoot.empty()) 944 NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot); 945 StringRef SDK = DIUnit->getSDK(); 946 if (!SDK.empty()) 947 NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK); 948 949 // Add DW_str_offsets_base to the unit DIE, except for split units. 950 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 951 NewCU.addStringOffsetsStart(); 952 953 if (!useSplitDwarf()) { 954 NewCU.initStmtList(); 955 956 // If we're using split dwarf the compilation dir is going to be in the 957 // skeleton CU and so we don't need to duplicate it here. 958 if (!CompilationDir.empty()) 959 NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 960 addGnuPubAttributes(NewCU, Die); 961 } 962 963 if (useAppleExtensionAttributes()) { 964 if (DIUnit->isOptimized()) 965 NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized); 966 967 StringRef Flags = DIUnit->getFlags(); 968 if (!Flags.empty()) 969 NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags); 970 971 if (unsigned RVer = DIUnit->getRuntimeVersion()) 972 NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers, 973 dwarf::DW_FORM_data1, RVer); 974 } 975 976 if (DIUnit->getDWOId()) { 977 // This CU is either a clang module DWO or a skeleton CU. 978 NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, 979 DIUnit->getDWOId()); 980 if (!DIUnit->getSplitDebugFilename().empty()) { 981 // This is a prefabricated skeleton CU. 982 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 983 ? dwarf::DW_AT_dwo_name 984 : dwarf::DW_AT_GNU_dwo_name; 985 NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename()); 986 } 987 } 988 } 989 // Create new DwarfCompileUnit for the given metadata node with tag 990 // DW_TAG_compile_unit. 991 DwarfCompileUnit & 992 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) { 993 if (auto *CU = CUMap.lookup(DIUnit)) 994 return *CU; 995 996 CompilationDir = DIUnit->getDirectory(); 997 998 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 999 InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder); 1000 DwarfCompileUnit &NewCU = *OwnedUnit; 1001 InfoHolder.addUnit(std::move(OwnedUnit)); 1002 1003 for (auto *IE : DIUnit->getImportedEntities()) 1004 NewCU.addImportedEntity(IE); 1005 1006 // LTO with assembly output shares a single line table amongst multiple CUs. 1007 // To avoid the compilation directory being ambiguous, let the line table 1008 // explicitly describe the directory of all files, never relying on the 1009 // compilation directory. 1010 if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU) 1011 Asm->OutStreamer->emitDwarfFile0Directive( 1012 CompilationDir, DIUnit->getFilename(), 1013 NewCU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource(), 1014 NewCU.getUniqueID()); 1015 1016 if (useSplitDwarf()) { 1017 NewCU.setSkeleton(constructSkeletonCU(NewCU)); 1018 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection()); 1019 } else { 1020 finishUnitAttributes(DIUnit, NewCU); 1021 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 1022 } 1023 1024 CUMap.insert({DIUnit, &NewCU}); 1025 CUDieMap.insert({&NewCU.getUnitDie(), &NewCU}); 1026 return NewCU; 1027 } 1028 1029 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU, 1030 const DIImportedEntity *N) { 1031 if (isa<DILocalScope>(N->getScope())) 1032 return; 1033 if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope())) 1034 D->addChild(TheCU.constructImportedEntityDIE(N)); 1035 } 1036 1037 /// Sort and unique GVEs by comparing their fragment offset. 1038 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> & 1039 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) { 1040 llvm::sort( 1041 GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) { 1042 // Sort order: first null exprs, then exprs without fragment 1043 // info, then sort by fragment offset in bits. 1044 // FIXME: Come up with a more comprehensive comparator so 1045 // the sorting isn't non-deterministic, and so the following 1046 // std::unique call works correctly. 1047 if (!A.Expr || !B.Expr) 1048 return !!B.Expr; 1049 auto FragmentA = A.Expr->getFragmentInfo(); 1050 auto FragmentB = B.Expr->getFragmentInfo(); 1051 if (!FragmentA || !FragmentB) 1052 return !!FragmentB; 1053 return FragmentA->OffsetInBits < FragmentB->OffsetInBits; 1054 }); 1055 GVEs.erase(std::unique(GVEs.begin(), GVEs.end(), 1056 [](DwarfCompileUnit::GlobalExpr A, 1057 DwarfCompileUnit::GlobalExpr B) { 1058 return A.Expr == B.Expr; 1059 }), 1060 GVEs.end()); 1061 return GVEs; 1062 } 1063 1064 // Emit all Dwarf sections that should come prior to the content. Create 1065 // global DIEs and emit initial debug info sections. This is invoked by 1066 // the target AsmPrinter. 1067 void DwarfDebug::beginModule() { 1068 NamedRegionTimer T(DbgTimerName, DbgTimerDescription, DWARFGroupName, 1069 DWARFGroupDescription, TimePassesIsEnabled); 1070 if (DisableDebugInfoPrinting) { 1071 MMI->setDebugInfoAvailability(false); 1072 return; 1073 } 1074 1075 const Module *M = MMI->getModule(); 1076 1077 unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(), 1078 M->debug_compile_units_end()); 1079 // Tell MMI whether we have debug info. 1080 assert(MMI->hasDebugInfo() == (NumDebugCUs > 0) && 1081 "DebugInfoAvailabilty initialized unexpectedly"); 1082 SingleCU = NumDebugCUs == 1; 1083 DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>> 1084 GVMap; 1085 for (const GlobalVariable &Global : M->globals()) { 1086 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1087 Global.getDebugInfo(GVs); 1088 for (auto *GVE : GVs) 1089 GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()}); 1090 } 1091 1092 // Create the symbol that designates the start of the unit's contribution 1093 // to the string offsets table. In a split DWARF scenario, only the skeleton 1094 // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol). 1095 if (useSegmentedStringOffsetsTable()) 1096 (useSplitDwarf() ? SkeletonHolder : InfoHolder) 1097 .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base")); 1098 1099 1100 // Create the symbols that designates the start of the DWARF v5 range list 1101 // and locations list tables. They are located past the table headers. 1102 if (getDwarfVersion() >= 5) { 1103 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1104 Holder.setRnglistsTableBaseSym( 1105 Asm->createTempSymbol("rnglists_table_base")); 1106 1107 if (useSplitDwarf()) 1108 InfoHolder.setRnglistsTableBaseSym( 1109 Asm->createTempSymbol("rnglists_dwo_table_base")); 1110 } 1111 1112 // Create the symbol that points to the first entry following the debug 1113 // address table (.debug_addr) header. 1114 AddrPool.setLabel(Asm->createTempSymbol("addr_table_base")); 1115 DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base")); 1116 1117 for (DICompileUnit *CUNode : M->debug_compile_units()) { 1118 // FIXME: Move local imported entities into a list attached to the 1119 // subprogram, then this search won't be needed and a 1120 // getImportedEntities().empty() test should go below with the rest. 1121 bool HasNonLocalImportedEntities = llvm::any_of( 1122 CUNode->getImportedEntities(), [](const DIImportedEntity *IE) { 1123 return !isa<DILocalScope>(IE->getScope()); 1124 }); 1125 1126 if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() && 1127 CUNode->getRetainedTypes().empty() && 1128 CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty()) 1129 continue; 1130 1131 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode); 1132 1133 // Global Variables. 1134 for (auto *GVE : CUNode->getGlobalVariables()) { 1135 // Don't bother adding DIGlobalVariableExpressions listed in the CU if we 1136 // already know about the variable and it isn't adding a constant 1137 // expression. 1138 auto &GVMapEntry = GVMap[GVE->getVariable()]; 1139 auto *Expr = GVE->getExpression(); 1140 if (!GVMapEntry.size() || (Expr && Expr->isConstant())) 1141 GVMapEntry.push_back({nullptr, Expr}); 1142 } 1143 DenseSet<DIGlobalVariable *> Processed; 1144 for (auto *GVE : CUNode->getGlobalVariables()) { 1145 DIGlobalVariable *GV = GVE->getVariable(); 1146 if (Processed.insert(GV).second) 1147 CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV])); 1148 } 1149 1150 for (auto *Ty : CUNode->getEnumTypes()) { 1151 // The enum types array by design contains pointers to 1152 // MDNodes rather than DIRefs. Unique them here. 1153 CU.getOrCreateTypeDIE(cast<DIType>(Ty)); 1154 } 1155 for (auto *Ty : CUNode->getRetainedTypes()) { 1156 // The retained types array by design contains pointers to 1157 // MDNodes rather than DIRefs. Unique them here. 1158 if (DIType *RT = dyn_cast<DIType>(Ty)) 1159 // There is no point in force-emitting a forward declaration. 1160 CU.getOrCreateTypeDIE(RT); 1161 } 1162 // Emit imported_modules last so that the relevant context is already 1163 // available. 1164 for (auto *IE : CUNode->getImportedEntities()) 1165 constructAndAddImportedEntityDIE(CU, IE); 1166 } 1167 } 1168 1169 void DwarfDebug::finishEntityDefinitions() { 1170 for (const auto &Entity : ConcreteEntities) { 1171 DIE *Die = Entity->getDIE(); 1172 assert(Die); 1173 // FIXME: Consider the time-space tradeoff of just storing the unit pointer 1174 // in the ConcreteEntities list, rather than looking it up again here. 1175 // DIE::getUnit isn't simple - it walks parent pointers, etc. 1176 DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie()); 1177 assert(Unit); 1178 Unit->finishEntityDefinition(Entity.get()); 1179 } 1180 } 1181 1182 void DwarfDebug::finishSubprogramDefinitions() { 1183 for (const DISubprogram *SP : ProcessedSPNodes) { 1184 assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug); 1185 forBothCUs( 1186 getOrCreateDwarfCompileUnit(SP->getUnit()), 1187 [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); }); 1188 } 1189 } 1190 1191 void DwarfDebug::finalizeModuleInfo() { 1192 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); 1193 1194 finishSubprogramDefinitions(); 1195 1196 finishEntityDefinitions(); 1197 1198 // Include the DWO file name in the hash if there's more than one CU. 1199 // This handles ThinLTO's situation where imported CUs may very easily be 1200 // duplicate with the same CU partially imported into another ThinLTO unit. 1201 StringRef DWOName; 1202 if (CUMap.size() > 1) 1203 DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile; 1204 1205 // Handle anything that needs to be done on a per-unit basis after 1206 // all other generation. 1207 for (const auto &P : CUMap) { 1208 auto &TheCU = *P.second; 1209 if (TheCU.getCUNode()->isDebugDirectivesOnly()) 1210 continue; 1211 // Emit DW_AT_containing_type attribute to connect types with their 1212 // vtable holding type. 1213 TheCU.constructContainingTypeDIEs(); 1214 1215 // Add CU specific attributes if we need to add any. 1216 // If we're splitting the dwarf out now that we've got the entire 1217 // CU then add the dwo id to it. 1218 auto *SkCU = TheCU.getSkeleton(); 1219 1220 bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty(); 1221 1222 if (HasSplitUnit) { 1223 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1224 ? dwarf::DW_AT_dwo_name 1225 : dwarf::DW_AT_GNU_dwo_name; 1226 finishUnitAttributes(TheCU.getCUNode(), TheCU); 1227 TheCU.addString(TheCU.getUnitDie(), attrDWOName, 1228 Asm->TM.Options.MCOptions.SplitDwarfFile); 1229 SkCU->addString(SkCU->getUnitDie(), attrDWOName, 1230 Asm->TM.Options.MCOptions.SplitDwarfFile); 1231 // Emit a unique identifier for this CU. 1232 uint64_t ID = 1233 DIEHash(Asm).computeCUSignature(DWOName, TheCU.getUnitDie()); 1234 if (getDwarfVersion() >= 5) { 1235 TheCU.setDWOId(ID); 1236 SkCU->setDWOId(ID); 1237 } else { 1238 TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1239 dwarf::DW_FORM_data8, ID); 1240 SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1241 dwarf::DW_FORM_data8, ID); 1242 } 1243 1244 if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) { 1245 const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol(); 1246 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base, 1247 Sym, Sym); 1248 } 1249 } else if (SkCU) { 1250 finishUnitAttributes(SkCU->getCUNode(), *SkCU); 1251 } 1252 1253 // If we have code split among multiple sections or non-contiguous 1254 // ranges of code then emit a DW_AT_ranges attribute on the unit that will 1255 // remain in the .o file, otherwise add a DW_AT_low_pc. 1256 // FIXME: We should use ranges allow reordering of code ala 1257 // .subsections_via_symbols in mach-o. This would mean turning on 1258 // ranges for all subprogram DIEs for mach-o. 1259 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 1260 1261 if (unsigned NumRanges = TheCU.getRanges().size()) { 1262 if (NumRanges > 1 && useRangesSection()) 1263 // A DW_AT_low_pc attribute may also be specified in combination with 1264 // DW_AT_ranges to specify the default base address for use in 1265 // location lists (see Section 2.6.2) and range lists (see Section 1266 // 2.17.3). 1267 U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0); 1268 else 1269 U.setBaseAddress(TheCU.getRanges().front().Begin); 1270 U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges()); 1271 } 1272 1273 // We don't keep track of which addresses are used in which CU so this 1274 // is a bit pessimistic under LTO. 1275 if ((!AddrPool.isEmpty() || TheCU.hasRangeLists()) && 1276 (getDwarfVersion() >= 5 || HasSplitUnit)) 1277 U.addAddrTableBase(); 1278 1279 if (getDwarfVersion() >= 5) { 1280 if (U.hasRangeLists()) 1281 U.addRnglistsBase(); 1282 1283 if (!DebugLocs.getLists().empty()) { 1284 if (!useSplitDwarf()) 1285 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base, 1286 DebugLocs.getSym(), 1287 TLOF.getDwarfLoclistsSection()->getBeginSymbol()); 1288 } 1289 } 1290 1291 auto *CUNode = cast<DICompileUnit>(P.first); 1292 // If compile Unit has macros, emit "DW_AT_macro_info/DW_AT_macros" 1293 // attribute. 1294 if (CUNode->getMacros()) { 1295 if (getDwarfVersion() >= 5) { 1296 // FIXME: Add support for DWARFv5 DW_AT_macros attribute for split 1297 // case. 1298 if (!useSplitDwarf()) 1299 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macros, 1300 U.getMacroLabelBegin(), 1301 TLOF.getDwarfMacroSection()->getBeginSymbol()); 1302 } else { 1303 if (useSplitDwarf()) 1304 TheCU.addSectionDelta( 1305 TheCU.getUnitDie(), dwarf::DW_AT_macro_info, 1306 U.getMacroLabelBegin(), 1307 TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol()); 1308 else 1309 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info, 1310 U.getMacroLabelBegin(), 1311 TLOF.getDwarfMacinfoSection()->getBeginSymbol()); 1312 } 1313 } 1314 } 1315 1316 // Emit all frontend-produced Skeleton CUs, i.e., Clang modules. 1317 for (auto *CUNode : MMI->getModule()->debug_compile_units()) 1318 if (CUNode->getDWOId()) 1319 getOrCreateDwarfCompileUnit(CUNode); 1320 1321 // Compute DIE offsets and sizes. 1322 InfoHolder.computeSizeAndOffsets(); 1323 if (useSplitDwarf()) 1324 SkeletonHolder.computeSizeAndOffsets(); 1325 } 1326 1327 // Emit all Dwarf sections that should come after the content. 1328 void DwarfDebug::endModule() { 1329 assert(CurFn == nullptr); 1330 assert(CurMI == nullptr); 1331 1332 for (const auto &P : CUMap) { 1333 auto &CU = *P.second; 1334 CU.createBaseTypeDIEs(); 1335 } 1336 1337 // If we aren't actually generating debug info (check beginModule - 1338 // conditionalized on !DisableDebugInfoPrinting and the presence of the 1339 // llvm.dbg.cu metadata node) 1340 if (!MMI->hasDebugInfo()) 1341 return; 1342 1343 // Finalize the debug info for the module. 1344 finalizeModuleInfo(); 1345 1346 if (useSplitDwarf()) 1347 // Emit debug_loc.dwo/debug_loclists.dwo section. 1348 emitDebugLocDWO(); 1349 else 1350 // Emit debug_loc/debug_loclists section. 1351 emitDebugLoc(); 1352 1353 // Corresponding abbreviations into a abbrev section. 1354 emitAbbreviations(); 1355 1356 // Emit all the DIEs into a debug info section. 1357 emitDebugInfo(); 1358 1359 // Emit info into a debug aranges section. 1360 if (GenerateARangeSection) 1361 emitDebugARanges(); 1362 1363 // Emit info into a debug ranges section. 1364 emitDebugRanges(); 1365 1366 if (useSplitDwarf()) 1367 // Emit info into a debug macinfo.dwo section. 1368 emitDebugMacinfoDWO(); 1369 else 1370 // Emit info into a debug macinfo/macro section. 1371 emitDebugMacinfo(); 1372 1373 emitDebugStr(); 1374 1375 if (useSplitDwarf()) { 1376 emitDebugStrDWO(); 1377 emitDebugInfoDWO(); 1378 emitDebugAbbrevDWO(); 1379 emitDebugLineDWO(); 1380 emitDebugRangesDWO(); 1381 } 1382 1383 emitDebugAddr(); 1384 1385 // Emit info into the dwarf accelerator table sections. 1386 switch (getAccelTableKind()) { 1387 case AccelTableKind::Apple: 1388 emitAccelNames(); 1389 emitAccelObjC(); 1390 emitAccelNamespaces(); 1391 emitAccelTypes(); 1392 break; 1393 case AccelTableKind::Dwarf: 1394 emitAccelDebugNames(); 1395 break; 1396 case AccelTableKind::None: 1397 break; 1398 case AccelTableKind::Default: 1399 llvm_unreachable("Default should have already been resolved."); 1400 } 1401 1402 // Emit the pubnames and pubtypes sections if requested. 1403 emitDebugPubSections(); 1404 1405 // clean up. 1406 // FIXME: AbstractVariables.clear(); 1407 } 1408 1409 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU, 1410 const DINode *Node, 1411 const MDNode *ScopeNode) { 1412 if (CU.getExistingAbstractEntity(Node)) 1413 return; 1414 1415 CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope( 1416 cast<DILocalScope>(ScopeNode))); 1417 } 1418 1419 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU, 1420 const DINode *Node, const MDNode *ScopeNode) { 1421 if (CU.getExistingAbstractEntity(Node)) 1422 return; 1423 1424 if (LexicalScope *Scope = 1425 LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode))) 1426 CU.createAbstractEntity(Node, Scope); 1427 } 1428 1429 // Collect variable information from side table maintained by MF. 1430 void DwarfDebug::collectVariableInfoFromMFTable( 1431 DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) { 1432 SmallDenseMap<InlinedEntity, DbgVariable *> MFVars; 1433 LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n"); 1434 for (const auto &VI : Asm->MF->getVariableDbgInfo()) { 1435 if (!VI.Var) 1436 continue; 1437 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1438 "Expected inlined-at fields to agree"); 1439 1440 InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt()); 1441 Processed.insert(Var); 1442 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1443 1444 // If variable scope is not found then skip this variable. 1445 if (!Scope) { 1446 LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName() 1447 << ", no variable scope found\n"); 1448 continue; 1449 } 1450 1451 ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode()); 1452 auto RegVar = std::make_unique<DbgVariable>( 1453 cast<DILocalVariable>(Var.first), Var.second); 1454 RegVar->initializeMMI(VI.Expr, VI.Slot); 1455 LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName() 1456 << "\n"); 1457 if (DbgVariable *DbgVar = MFVars.lookup(Var)) 1458 DbgVar->addMMIEntry(*RegVar); 1459 else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) { 1460 MFVars.insert({Var, RegVar.get()}); 1461 ConcreteEntities.push_back(std::move(RegVar)); 1462 } 1463 } 1464 } 1465 1466 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its 1467 /// enclosing lexical scope. The check ensures there are no other instructions 1468 /// in the same lexical scope preceding the DBG_VALUE and that its range is 1469 /// either open or otherwise rolls off the end of the scope. 1470 static bool validThroughout(LexicalScopes &LScopes, 1471 const MachineInstr *DbgValue, 1472 const MachineInstr *RangeEnd) { 1473 assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location"); 1474 auto MBB = DbgValue->getParent(); 1475 auto DL = DbgValue->getDebugLoc(); 1476 auto *LScope = LScopes.findLexicalScope(DL); 1477 // Scope doesn't exist; this is a dead DBG_VALUE. 1478 if (!LScope) 1479 return false; 1480 auto &LSRange = LScope->getRanges(); 1481 if (LSRange.size() == 0) 1482 return false; 1483 1484 // If this range is neither open ended nor a constant, then it is not a 1485 // candidate for being validThroughout. 1486 if (RangeEnd && !DbgValue->getOperand(0).isImm()) 1487 return false; 1488 1489 // Determine if the DBG_VALUE is valid at the beginning of its lexical block. 1490 const MachineInstr *LScopeBegin = LSRange.front().first; 1491 // Early exit if the lexical scope begins outside of the current block. 1492 if (LScopeBegin->getParent() != MBB) 1493 return false; 1494 1495 // If there are instructions belonging to our scope in another block, and 1496 // we're not a constant (see DWARF2 comment below), then we can't be 1497 // validThroughout. 1498 const MachineInstr *LScopeEnd = LSRange.back().second; 1499 if (RangeEnd && LScopeEnd->getParent() != MBB) 1500 return false; 1501 1502 MachineBasicBlock::const_reverse_iterator Pred(DbgValue); 1503 for (++Pred; Pred != MBB->rend(); ++Pred) { 1504 if (Pred->getFlag(MachineInstr::FrameSetup)) 1505 break; 1506 auto PredDL = Pred->getDebugLoc(); 1507 if (!PredDL || Pred->isMetaInstruction()) 1508 continue; 1509 // Check whether the instruction preceding the DBG_VALUE is in the same 1510 // (sub)scope as the DBG_VALUE. 1511 if (DL->getScope() == PredDL->getScope()) 1512 return false; 1513 auto *PredScope = LScopes.findLexicalScope(PredDL); 1514 if (!PredScope || LScope->dominates(PredScope)) 1515 return false; 1516 } 1517 1518 // If the range of the DBG_VALUE is open-ended, report success. 1519 if (!RangeEnd) 1520 return true; 1521 1522 // Single, constant DBG_VALUEs in the prologue are promoted to be live 1523 // throughout the function. This is a hack, presumably for DWARF v2 and not 1524 // necessarily correct. It would be much better to use a dbg.declare instead 1525 // if we know the constant is live throughout the scope. 1526 if (DbgValue->getOperand(0).isImm() && MBB->pred_empty()) 1527 return true; 1528 1529 return false; 1530 } 1531 1532 /// Build the location list for all DBG_VALUEs in the function that 1533 /// describe the same variable. The resulting DebugLocEntries will have 1534 /// strict monotonically increasing begin addresses and will never 1535 /// overlap. If the resulting list has only one entry that is valid 1536 /// throughout variable's scope return true. 1537 // 1538 // See the definition of DbgValueHistoryMap::Entry for an explanation of the 1539 // different kinds of history map entries. One thing to be aware of is that if 1540 // a debug value is ended by another entry (rather than being valid until the 1541 // end of the function), that entry's instruction may or may not be included in 1542 // the range, depending on if the entry is a clobbering entry (it has an 1543 // instruction that clobbers one or more preceding locations), or if it is an 1544 // (overlapping) debug value entry. This distinction can be seen in the example 1545 // below. The first debug value is ended by the clobbering entry 2, and the 1546 // second and third debug values are ended by the overlapping debug value entry 1547 // 4. 1548 // 1549 // Input: 1550 // 1551 // History map entries [type, end index, mi] 1552 // 1553 // 0 | [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)] 1554 // 1 | | [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)] 1555 // 2 | | [Clobber, $reg0 = [...], -, -] 1556 // 3 | | [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)] 1557 // 4 [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)] 1558 // 1559 // Output [start, end) [Value...]: 1560 // 1561 // [0-1) [(reg0, fragment 0, 32)] 1562 // [1-3) [(reg0, fragment 0, 32), (reg1, fragment 32, 32)] 1563 // [3-4) [(reg1, fragment 32, 32), (123, fragment 64, 32)] 1564 // [4-) [(@g, fragment 0, 96)] 1565 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc, 1566 const DbgValueHistoryMap::Entries &Entries) { 1567 using OpenRange = 1568 std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>; 1569 SmallVector<OpenRange, 4> OpenRanges; 1570 bool isSafeForSingleLocation = true; 1571 const MachineInstr *StartDebugMI = nullptr; 1572 const MachineInstr *EndMI = nullptr; 1573 1574 for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) { 1575 const MachineInstr *Instr = EI->getInstr(); 1576 1577 // Remove all values that are no longer live. 1578 size_t Index = std::distance(EB, EI); 1579 auto Last = 1580 remove_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; }); 1581 OpenRanges.erase(Last, OpenRanges.end()); 1582 1583 // If we are dealing with a clobbering entry, this iteration will result in 1584 // a location list entry starting after the clobbering instruction. 1585 const MCSymbol *StartLabel = 1586 EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr); 1587 assert(StartLabel && 1588 "Forgot label before/after instruction starting a range!"); 1589 1590 const MCSymbol *EndLabel; 1591 if (std::next(EI) == Entries.end()) { 1592 EndLabel = Asm->getFunctionEnd(); 1593 if (EI->isClobber()) 1594 EndMI = EI->getInstr(); 1595 } 1596 else if (std::next(EI)->isClobber()) 1597 EndLabel = getLabelAfterInsn(std::next(EI)->getInstr()); 1598 else 1599 EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr()); 1600 assert(EndLabel && "Forgot label after instruction ending a range!"); 1601 1602 if (EI->isDbgValue()) 1603 LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n"); 1604 1605 // If this history map entry has a debug value, add that to the list of 1606 // open ranges and check if its location is valid for a single value 1607 // location. 1608 if (EI->isDbgValue()) { 1609 // Do not add undef debug values, as they are redundant information in 1610 // the location list entries. An undef debug results in an empty location 1611 // description. If there are any non-undef fragments then padding pieces 1612 // with empty location descriptions will automatically be inserted, and if 1613 // all fragments are undef then the whole location list entry is 1614 // redundant. 1615 if (!Instr->isUndefDebugValue()) { 1616 auto Value = getDebugLocValue(Instr); 1617 OpenRanges.emplace_back(EI->getEndIndex(), Value); 1618 1619 // TODO: Add support for single value fragment locations. 1620 if (Instr->getDebugExpression()->isFragment()) 1621 isSafeForSingleLocation = false; 1622 1623 if (!StartDebugMI) 1624 StartDebugMI = Instr; 1625 } else { 1626 isSafeForSingleLocation = false; 1627 } 1628 } 1629 1630 // Location list entries with empty location descriptions are redundant 1631 // information in DWARF, so do not emit those. 1632 if (OpenRanges.empty()) 1633 continue; 1634 1635 // Omit entries with empty ranges as they do not have any effect in DWARF. 1636 if (StartLabel == EndLabel) { 1637 LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n"); 1638 continue; 1639 } 1640 1641 SmallVector<DbgValueLoc, 4> Values; 1642 for (auto &R : OpenRanges) 1643 Values.push_back(R.second); 1644 DebugLoc.emplace_back(StartLabel, EndLabel, Values); 1645 1646 // Attempt to coalesce the ranges of two otherwise identical 1647 // DebugLocEntries. 1648 auto CurEntry = DebugLoc.rbegin(); 1649 LLVM_DEBUG({ 1650 dbgs() << CurEntry->getValues().size() << " Values:\n"; 1651 for (auto &Value : CurEntry->getValues()) 1652 Value.dump(); 1653 dbgs() << "-----\n"; 1654 }); 1655 1656 auto PrevEntry = std::next(CurEntry); 1657 if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry)) 1658 DebugLoc.pop_back(); 1659 } 1660 1661 return DebugLoc.size() == 1 && isSafeForSingleLocation && 1662 validThroughout(LScopes, StartDebugMI, EndMI); 1663 } 1664 1665 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU, 1666 LexicalScope &Scope, 1667 const DINode *Node, 1668 const DILocation *Location, 1669 const MCSymbol *Sym) { 1670 ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode()); 1671 if (isa<const DILocalVariable>(Node)) { 1672 ConcreteEntities.push_back( 1673 std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node), 1674 Location)); 1675 InfoHolder.addScopeVariable(&Scope, 1676 cast<DbgVariable>(ConcreteEntities.back().get())); 1677 } else if (isa<const DILabel>(Node)) { 1678 ConcreteEntities.push_back( 1679 std::make_unique<DbgLabel>(cast<const DILabel>(Node), 1680 Location, Sym)); 1681 InfoHolder.addScopeLabel(&Scope, 1682 cast<DbgLabel>(ConcreteEntities.back().get())); 1683 } 1684 return ConcreteEntities.back().get(); 1685 } 1686 1687 // Find variables for each lexical scope. 1688 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU, 1689 const DISubprogram *SP, 1690 DenseSet<InlinedEntity> &Processed) { 1691 // Grab the variable info that was squirreled away in the MMI side-table. 1692 collectVariableInfoFromMFTable(TheCU, Processed); 1693 1694 for (const auto &I : DbgValues) { 1695 InlinedEntity IV = I.first; 1696 if (Processed.count(IV)) 1697 continue; 1698 1699 // Instruction ranges, specifying where IV is accessible. 1700 const auto &HistoryMapEntries = I.second; 1701 if (HistoryMapEntries.empty()) 1702 continue; 1703 1704 LexicalScope *Scope = nullptr; 1705 const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first); 1706 if (const DILocation *IA = IV.second) 1707 Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA); 1708 else 1709 Scope = LScopes.findLexicalScope(LocalVar->getScope()); 1710 // If variable scope is not found then skip this variable. 1711 if (!Scope) 1712 continue; 1713 1714 Processed.insert(IV); 1715 DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU, 1716 *Scope, LocalVar, IV.second)); 1717 1718 const MachineInstr *MInsn = HistoryMapEntries.front().getInstr(); 1719 assert(MInsn->isDebugValue() && "History must begin with debug value"); 1720 1721 // Check if there is a single DBG_VALUE, valid throughout the var's scope. 1722 // If the history map contains a single debug value, there may be an 1723 // additional entry which clobbers the debug value. 1724 size_t HistSize = HistoryMapEntries.size(); 1725 bool SingleValueWithClobber = 1726 HistSize == 2 && HistoryMapEntries[1].isClobber(); 1727 if (HistSize == 1 || SingleValueWithClobber) { 1728 const auto *End = 1729 SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr; 1730 if (validThroughout(LScopes, MInsn, End)) { 1731 RegVar->initializeDbgValue(MInsn); 1732 continue; 1733 } 1734 } 1735 1736 // Do not emit location lists if .debug_loc secton is disabled. 1737 if (!useLocSection()) 1738 continue; 1739 1740 // Handle multiple DBG_VALUE instructions describing one variable. 1741 DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn); 1742 1743 // Build the location list for this variable. 1744 SmallVector<DebugLocEntry, 8> Entries; 1745 bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries); 1746 1747 // Check whether buildLocationList managed to merge all locations to one 1748 // that is valid throughout the variable's scope. If so, produce single 1749 // value location. 1750 if (isValidSingleLocation) { 1751 RegVar->initializeDbgValue(Entries[0].getValues()[0]); 1752 continue; 1753 } 1754 1755 // If the variable has a DIBasicType, extract it. Basic types cannot have 1756 // unique identifiers, so don't bother resolving the type with the 1757 // identifier map. 1758 const DIBasicType *BT = dyn_cast<DIBasicType>( 1759 static_cast<const Metadata *>(LocalVar->getType())); 1760 1761 // Finalize the entry by lowering it into a DWARF bytestream. 1762 for (auto &Entry : Entries) 1763 Entry.finalize(*Asm, List, BT, TheCU); 1764 } 1765 1766 // For each InlinedEntity collected from DBG_LABEL instructions, convert to 1767 // DWARF-related DbgLabel. 1768 for (const auto &I : DbgLabels) { 1769 InlinedEntity IL = I.first; 1770 const MachineInstr *MI = I.second; 1771 if (MI == nullptr) 1772 continue; 1773 1774 LexicalScope *Scope = nullptr; 1775 const DILabel *Label = cast<DILabel>(IL.first); 1776 // The scope could have an extra lexical block file. 1777 const DILocalScope *LocalScope = 1778 Label->getScope()->getNonLexicalBlockFileScope(); 1779 // Get inlined DILocation if it is inlined label. 1780 if (const DILocation *IA = IL.second) 1781 Scope = LScopes.findInlinedScope(LocalScope, IA); 1782 else 1783 Scope = LScopes.findLexicalScope(LocalScope); 1784 // If label scope is not found then skip this label. 1785 if (!Scope) 1786 continue; 1787 1788 Processed.insert(IL); 1789 /// At this point, the temporary label is created. 1790 /// Save the temporary label to DbgLabel entity to get the 1791 /// actually address when generating Dwarf DIE. 1792 MCSymbol *Sym = getLabelBeforeInsn(MI); 1793 createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym); 1794 } 1795 1796 // Collect info for variables/labels that were optimized out. 1797 for (const DINode *DN : SP->getRetainedNodes()) { 1798 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 1799 continue; 1800 LexicalScope *Scope = nullptr; 1801 if (auto *DV = dyn_cast<DILocalVariable>(DN)) { 1802 Scope = LScopes.findLexicalScope(DV->getScope()); 1803 } else if (auto *DL = dyn_cast<DILabel>(DN)) { 1804 Scope = LScopes.findLexicalScope(DL->getScope()); 1805 } 1806 1807 if (Scope) 1808 createConcreteEntity(TheCU, *Scope, DN, nullptr); 1809 } 1810 } 1811 1812 // Process beginning of an instruction. 1813 void DwarfDebug::beginInstruction(const MachineInstr *MI) { 1814 const MachineFunction &MF = *MI->getMF(); 1815 const auto *SP = MF.getFunction().getSubprogram(); 1816 bool NoDebug = 1817 !SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug; 1818 1819 // When describing calls, we need a label for the call instruction. 1820 // TODO: Add support for targets with delay slots. 1821 if (!NoDebug && SP->areAllCallsDescribed() && 1822 MI->isCandidateForCallSiteEntry(MachineInstr::AnyInBundle) && 1823 !MI->hasDelaySlot()) { 1824 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1825 bool IsTail = TII->isTailCall(*MI); 1826 // For tail calls, we need the address of the branch instruction for 1827 // DW_AT_call_pc. 1828 if (IsTail) 1829 requestLabelBeforeInsn(MI); 1830 // For non-tail calls, we need the return address for the call for 1831 // DW_AT_call_return_pc. Under GDB tuning, this information is needed for 1832 // tail calls as well. 1833 requestLabelAfterInsn(MI); 1834 } 1835 1836 DebugHandlerBase::beginInstruction(MI); 1837 assert(CurMI); 1838 1839 if (NoDebug) 1840 return; 1841 1842 // Check if source location changes, but ignore DBG_VALUE and CFI locations. 1843 // If the instruction is part of the function frame setup code, do not emit 1844 // any line record, as there is no correspondence with any user code. 1845 if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup)) 1846 return; 1847 const DebugLoc &DL = MI->getDebugLoc(); 1848 // When we emit a line-0 record, we don't update PrevInstLoc; so look at 1849 // the last line number actually emitted, to see if it was line 0. 1850 unsigned LastAsmLine = 1851 Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine(); 1852 1853 if (DL == PrevInstLoc) { 1854 // If we have an ongoing unspecified location, nothing to do here. 1855 if (!DL) 1856 return; 1857 // We have an explicit location, same as the previous location. 1858 // But we might be coming back to it after a line 0 record. 1859 if (LastAsmLine == 0 && DL.getLine() != 0) { 1860 // Reinstate the source location but not marked as a statement. 1861 const MDNode *Scope = DL.getScope(); 1862 recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0); 1863 } 1864 return; 1865 } 1866 1867 if (!DL) { 1868 // We have an unspecified location, which might want to be line 0. 1869 // If we have already emitted a line-0 record, don't repeat it. 1870 if (LastAsmLine == 0) 1871 return; 1872 // If user said Don't Do That, don't do that. 1873 if (UnknownLocations == Disable) 1874 return; 1875 // See if we have a reason to emit a line-0 record now. 1876 // Reasons to emit a line-0 record include: 1877 // - User asked for it (UnknownLocations). 1878 // - Instruction has a label, so it's referenced from somewhere else, 1879 // possibly debug information; we want it to have a source location. 1880 // - Instruction is at the top of a block; we don't want to inherit the 1881 // location from the physically previous (maybe unrelated) block. 1882 if (UnknownLocations == Enable || PrevLabel || 1883 (PrevInstBB && PrevInstBB != MI->getParent())) { 1884 // Preserve the file and column numbers, if we can, to save space in 1885 // the encoded line table. 1886 // Do not update PrevInstLoc, it remembers the last non-0 line. 1887 const MDNode *Scope = nullptr; 1888 unsigned Column = 0; 1889 if (PrevInstLoc) { 1890 Scope = PrevInstLoc.getScope(); 1891 Column = PrevInstLoc.getCol(); 1892 } 1893 recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0); 1894 } 1895 return; 1896 } 1897 1898 // We have an explicit location, different from the previous location. 1899 // Don't repeat a line-0 record, but otherwise emit the new location. 1900 // (The new location might be an explicit line 0, which we do emit.) 1901 if (DL.getLine() == 0 && LastAsmLine == 0) 1902 return; 1903 unsigned Flags = 0; 1904 if (DL == PrologEndLoc) { 1905 Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT; 1906 PrologEndLoc = DebugLoc(); 1907 } 1908 // If the line changed, we call that a new statement; unless we went to 1909 // line 0 and came back, in which case it is not a new statement. 1910 unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine; 1911 if (DL.getLine() && DL.getLine() != OldLine) 1912 Flags |= DWARF2_FLAG_IS_STMT; 1913 1914 const MDNode *Scope = DL.getScope(); 1915 recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags); 1916 1917 // If we're not at line 0, remember this location. 1918 if (DL.getLine()) 1919 PrevInstLoc = DL; 1920 } 1921 1922 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) { 1923 // First known non-DBG_VALUE and non-frame setup location marks 1924 // the beginning of the function body. 1925 for (const auto &MBB : *MF) 1926 for (const auto &MI : MBB) 1927 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1928 MI.getDebugLoc()) 1929 return MI.getDebugLoc(); 1930 return DebugLoc(); 1931 } 1932 1933 /// Register a source line with debug info. Returns the unique label that was 1934 /// emitted and which provides correspondence to the source line list. 1935 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col, 1936 const MDNode *S, unsigned Flags, unsigned CUID, 1937 uint16_t DwarfVersion, 1938 ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) { 1939 StringRef Fn; 1940 unsigned FileNo = 1; 1941 unsigned Discriminator = 0; 1942 if (auto *Scope = cast_or_null<DIScope>(S)) { 1943 Fn = Scope->getFilename(); 1944 if (Line != 0 && DwarfVersion >= 4) 1945 if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope)) 1946 Discriminator = LBF->getDiscriminator(); 1947 1948 FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID]) 1949 .getOrCreateSourceID(Scope->getFile()); 1950 } 1951 Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0, 1952 Discriminator, Fn); 1953 } 1954 1955 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF, 1956 unsigned CUID) { 1957 // Get beginning of function. 1958 if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) { 1959 // Ensure the compile unit is created if the function is called before 1960 // beginFunction(). 1961 (void)getOrCreateDwarfCompileUnit( 1962 MF.getFunction().getSubprogram()->getUnit()); 1963 // We'd like to list the prologue as "not statements" but GDB behaves 1964 // poorly if we do that. Revisit this with caution/GDB (7.5+) testing. 1965 const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram(); 1966 ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT, 1967 CUID, getDwarfVersion(), getUnits()); 1968 return PrologEndLoc; 1969 } 1970 return DebugLoc(); 1971 } 1972 1973 // Gather pre-function debug information. Assumes being called immediately 1974 // after the function entry point has been emitted. 1975 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) { 1976 CurFn = MF; 1977 1978 auto *SP = MF->getFunction().getSubprogram(); 1979 assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode()); 1980 if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) 1981 return; 1982 1983 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 1984 1985 // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function 1986 // belongs to so that we add to the correct per-cu line table in the 1987 // non-asm case. 1988 if (Asm->OutStreamer->hasRawTextSupport()) 1989 // Use a single line table if we are generating assembly. 1990 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 1991 else 1992 Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID()); 1993 1994 // Record beginning of function. 1995 PrologEndLoc = emitInitialLocDirective( 1996 *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID()); 1997 } 1998 1999 void DwarfDebug::skippedNonDebugFunction() { 2000 // If we don't have a subprogram for this function then there will be a hole 2001 // in the range information. Keep note of this by setting the previously used 2002 // section to nullptr. 2003 PrevCU = nullptr; 2004 CurFn = nullptr; 2005 } 2006 2007 // Gather and emit post-function debug information. 2008 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) { 2009 const DISubprogram *SP = MF->getFunction().getSubprogram(); 2010 2011 assert(CurFn == MF && 2012 "endFunction should be called with the same function as beginFunction"); 2013 2014 // Set DwarfDwarfCompileUnitID in MCContext to default value. 2015 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 2016 2017 LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); 2018 assert(!FnScope || SP == FnScope->getScopeNode()); 2019 DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit()); 2020 if (TheCU.getCUNode()->isDebugDirectivesOnly()) { 2021 PrevLabel = nullptr; 2022 CurFn = nullptr; 2023 return; 2024 } 2025 2026 DenseSet<InlinedEntity> Processed; 2027 collectEntityInfo(TheCU, SP, Processed); 2028 2029 // Add the range of this function to the list of ranges for the CU. 2030 TheCU.addRange({Asm->getFunctionBegin(), Asm->getFunctionEnd()}); 2031 2032 // Under -gmlt, skip building the subprogram if there are no inlined 2033 // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram 2034 // is still needed as we need its source location. 2035 if (!TheCU.getCUNode()->getDebugInfoForProfiling() && 2036 TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly && 2037 LScopes.getAbstractScopesList().empty() && !IsDarwin) { 2038 assert(InfoHolder.getScopeVariables().empty()); 2039 PrevLabel = nullptr; 2040 CurFn = nullptr; 2041 return; 2042 } 2043 2044 #ifndef NDEBUG 2045 size_t NumAbstractScopes = LScopes.getAbstractScopesList().size(); 2046 #endif 2047 // Construct abstract scopes. 2048 for (LexicalScope *AScope : LScopes.getAbstractScopesList()) { 2049 auto *SP = cast<DISubprogram>(AScope->getScopeNode()); 2050 for (const DINode *DN : SP->getRetainedNodes()) { 2051 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 2052 continue; 2053 2054 const MDNode *Scope = nullptr; 2055 if (auto *DV = dyn_cast<DILocalVariable>(DN)) 2056 Scope = DV->getScope(); 2057 else if (auto *DL = dyn_cast<DILabel>(DN)) 2058 Scope = DL->getScope(); 2059 else 2060 llvm_unreachable("Unexpected DI type!"); 2061 2062 // Collect info for variables/labels that were optimized out. 2063 ensureAbstractEntityIsCreated(TheCU, DN, Scope); 2064 assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes 2065 && "ensureAbstractEntityIsCreated inserted abstract scopes"); 2066 } 2067 constructAbstractSubprogramScopeDIE(TheCU, AScope); 2068 } 2069 2070 ProcessedSPNodes.insert(SP); 2071 DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope); 2072 if (auto *SkelCU = TheCU.getSkeleton()) 2073 if (!LScopes.getAbstractScopesList().empty() && 2074 TheCU.getCUNode()->getSplitDebugInlining()) 2075 SkelCU->constructSubprogramScopeDIE(SP, FnScope); 2076 2077 // Construct call site entries. 2078 constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF); 2079 2080 // Clear debug info 2081 // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the 2082 // DbgVariables except those that are also in AbstractVariables (since they 2083 // can be used cross-function) 2084 InfoHolder.getScopeVariables().clear(); 2085 InfoHolder.getScopeLabels().clear(); 2086 PrevLabel = nullptr; 2087 CurFn = nullptr; 2088 } 2089 2090 // Register a source line with debug info. Returns the unique label that was 2091 // emitted and which provides correspondence to the source line list. 2092 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S, 2093 unsigned Flags) { 2094 ::recordSourceLine(*Asm, Line, Col, S, Flags, 2095 Asm->OutStreamer->getContext().getDwarfCompileUnitID(), 2096 getDwarfVersion(), getUnits()); 2097 } 2098 2099 //===----------------------------------------------------------------------===// 2100 // Emit Methods 2101 //===----------------------------------------------------------------------===// 2102 2103 // Emit the debug info section. 2104 void DwarfDebug::emitDebugInfo() { 2105 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2106 Holder.emitUnits(/* UseOffsets */ false); 2107 } 2108 2109 // Emit the abbreviation section. 2110 void DwarfDebug::emitAbbreviations() { 2111 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2112 2113 Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection()); 2114 } 2115 2116 void DwarfDebug::emitStringOffsetsTableHeader() { 2117 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2118 Holder.getStringPool().emitStringOffsetsTableHeader( 2119 *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(), 2120 Holder.getStringOffsetsStartSym()); 2121 } 2122 2123 template <typename AccelTableT> 2124 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section, 2125 StringRef TableName) { 2126 Asm->OutStreamer->SwitchSection(Section); 2127 2128 // Emit the full data. 2129 emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol()); 2130 } 2131 2132 void DwarfDebug::emitAccelDebugNames() { 2133 // Don't emit anything if we have no compilation units to index. 2134 if (getUnits().empty()) 2135 return; 2136 2137 emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits()); 2138 } 2139 2140 // Emit visible names into a hashed accelerator table section. 2141 void DwarfDebug::emitAccelNames() { 2142 emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(), 2143 "Names"); 2144 } 2145 2146 // Emit objective C classes and categories into a hashed accelerator table 2147 // section. 2148 void DwarfDebug::emitAccelObjC() { 2149 emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(), 2150 "ObjC"); 2151 } 2152 2153 // Emit namespace dies into a hashed accelerator table. 2154 void DwarfDebug::emitAccelNamespaces() { 2155 emitAccel(AccelNamespace, 2156 Asm->getObjFileLowering().getDwarfAccelNamespaceSection(), 2157 "namespac"); 2158 } 2159 2160 // Emit type dies into a hashed accelerator table. 2161 void DwarfDebug::emitAccelTypes() { 2162 emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(), 2163 "types"); 2164 } 2165 2166 // Public name handling. 2167 // The format for the various pubnames: 2168 // 2169 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU 2170 // for the DIE that is named. 2171 // 2172 // gnu pubnames - offset/index value/name tuples where the offset is the offset 2173 // into the CU and the index value is computed according to the type of value 2174 // for the DIE that is named. 2175 // 2176 // For type units the offset is the offset of the skeleton DIE. For split dwarf 2177 // it's the offset within the debug_info/debug_types dwo section, however, the 2178 // reference in the pubname header doesn't change. 2179 2180 /// computeIndexValue - Compute the gdb index value for the DIE and CU. 2181 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU, 2182 const DIE *Die) { 2183 // Entities that ended up only in a Type Unit reference the CU instead (since 2184 // the pub entry has offsets within the CU there's no real offset that can be 2185 // provided anyway). As it happens all such entities (namespaces and types, 2186 // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out 2187 // not to be true it would be necessary to persist this information from the 2188 // point at which the entry is added to the index data structure - since by 2189 // the time the index is built from that, the original type/namespace DIE in a 2190 // type unit has already been destroyed so it can't be queried for properties 2191 // like tag, etc. 2192 if (Die->getTag() == dwarf::DW_TAG_compile_unit) 2193 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, 2194 dwarf::GIEL_EXTERNAL); 2195 dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC; 2196 2197 // We could have a specification DIE that has our most of our knowledge, 2198 // look for that now. 2199 if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) { 2200 DIE &SpecDIE = SpecVal.getDIEEntry().getEntry(); 2201 if (SpecDIE.findAttribute(dwarf::DW_AT_external)) 2202 Linkage = dwarf::GIEL_EXTERNAL; 2203 } else if (Die->findAttribute(dwarf::DW_AT_external)) 2204 Linkage = dwarf::GIEL_EXTERNAL; 2205 2206 switch (Die->getTag()) { 2207 case dwarf::DW_TAG_class_type: 2208 case dwarf::DW_TAG_structure_type: 2209 case dwarf::DW_TAG_union_type: 2210 case dwarf::DW_TAG_enumeration_type: 2211 return dwarf::PubIndexEntryDescriptor( 2212 dwarf::GIEK_TYPE, 2213 dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage()) 2214 ? dwarf::GIEL_EXTERNAL 2215 : dwarf::GIEL_STATIC); 2216 case dwarf::DW_TAG_typedef: 2217 case dwarf::DW_TAG_base_type: 2218 case dwarf::DW_TAG_subrange_type: 2219 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC); 2220 case dwarf::DW_TAG_namespace: 2221 return dwarf::GIEK_TYPE; 2222 case dwarf::DW_TAG_subprogram: 2223 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage); 2224 case dwarf::DW_TAG_variable: 2225 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage); 2226 case dwarf::DW_TAG_enumerator: 2227 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, 2228 dwarf::GIEL_STATIC); 2229 default: 2230 return dwarf::GIEK_NONE; 2231 } 2232 } 2233 2234 /// emitDebugPubSections - Emit visible names and types into debug pubnames and 2235 /// pubtypes sections. 2236 void DwarfDebug::emitDebugPubSections() { 2237 for (const auto &NU : CUMap) { 2238 DwarfCompileUnit *TheU = NU.second; 2239 if (!TheU->hasDwarfPubSections()) 2240 continue; 2241 2242 bool GnuStyle = TheU->getCUNode()->getNameTableKind() == 2243 DICompileUnit::DebugNameTableKind::GNU; 2244 2245 Asm->OutStreamer->SwitchSection( 2246 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection() 2247 : Asm->getObjFileLowering().getDwarfPubNamesSection()); 2248 emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames()); 2249 2250 Asm->OutStreamer->SwitchSection( 2251 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection() 2252 : Asm->getObjFileLowering().getDwarfPubTypesSection()); 2253 emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes()); 2254 } 2255 } 2256 2257 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) { 2258 if (useSectionsAsReferences()) 2259 Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(), 2260 CU.getDebugSectionOffset()); 2261 else 2262 Asm->emitDwarfSymbolReference(CU.getLabelBegin()); 2263 } 2264 2265 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name, 2266 DwarfCompileUnit *TheU, 2267 const StringMap<const DIE *> &Globals) { 2268 if (auto *Skeleton = TheU->getSkeleton()) 2269 TheU = Skeleton; 2270 2271 // Emit the header. 2272 Asm->OutStreamer->AddComment("Length of Public " + Name + " Info"); 2273 MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin"); 2274 MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end"); 2275 Asm->emitLabelDifference(EndLabel, BeginLabel, 4); 2276 2277 Asm->OutStreamer->emitLabel(BeginLabel); 2278 2279 Asm->OutStreamer->AddComment("DWARF Version"); 2280 Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION); 2281 2282 Asm->OutStreamer->AddComment("Offset of Compilation Unit Info"); 2283 emitSectionReference(*TheU); 2284 2285 Asm->OutStreamer->AddComment("Compilation Unit Length"); 2286 Asm->emitInt32(TheU->getLength()); 2287 2288 // Emit the pubnames for this compilation unit. 2289 for (const auto &GI : Globals) { 2290 const char *Name = GI.getKeyData(); 2291 const DIE *Entity = GI.second; 2292 2293 Asm->OutStreamer->AddComment("DIE offset"); 2294 Asm->emitInt32(Entity->getOffset()); 2295 2296 if (GnuStyle) { 2297 dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity); 2298 Asm->OutStreamer->AddComment( 2299 Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + 2300 ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage)); 2301 Asm->emitInt8(Desc.toBits()); 2302 } 2303 2304 Asm->OutStreamer->AddComment("External Name"); 2305 Asm->OutStreamer->emitBytes(StringRef(Name, GI.getKeyLength() + 1)); 2306 } 2307 2308 Asm->OutStreamer->AddComment("End Mark"); 2309 Asm->emitInt32(0); 2310 Asm->OutStreamer->emitLabel(EndLabel); 2311 } 2312 2313 /// Emit null-terminated strings into a debug str section. 2314 void DwarfDebug::emitDebugStr() { 2315 MCSection *StringOffsetsSection = nullptr; 2316 if (useSegmentedStringOffsetsTable()) { 2317 emitStringOffsetsTableHeader(); 2318 StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection(); 2319 } 2320 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2321 Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(), 2322 StringOffsetsSection, /* UseRelativeOffsets = */ true); 2323 } 2324 2325 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer, 2326 const DebugLocStream::Entry &Entry, 2327 const DwarfCompileUnit *CU) { 2328 auto &&Comments = DebugLocs.getComments(Entry); 2329 auto Comment = Comments.begin(); 2330 auto End = Comments.end(); 2331 2332 // The expressions are inserted into a byte stream rather early (see 2333 // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that 2334 // need to reference a base_type DIE the offset of that DIE is not yet known. 2335 // To deal with this we instead insert a placeholder early and then extract 2336 // it here and replace it with the real reference. 2337 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2338 DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(), 2339 DebugLocs.getBytes(Entry).size()), 2340 Asm->getDataLayout().isLittleEndian(), PtrSize); 2341 DWARFExpression Expr(Data, PtrSize, Asm->OutContext.getDwarfFormat()); 2342 2343 using Encoding = DWARFExpression::Operation::Encoding; 2344 uint64_t Offset = 0; 2345 for (auto &Op : Expr) { 2346 assert(Op.getCode() != dwarf::DW_OP_const_type && 2347 "3 operand ops not yet supported"); 2348 Streamer.EmitInt8(Op.getCode(), Comment != End ? *(Comment++) : ""); 2349 Offset++; 2350 for (unsigned I = 0; I < 2; ++I) { 2351 if (Op.getDescription().Op[I] == Encoding::SizeNA) 2352 continue; 2353 if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) { 2354 uint64_t Offset = 2355 CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset(); 2356 assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit"); 2357 Streamer.emitULEB128(Offset, "", ULEB128PadSize); 2358 // Make sure comments stay aligned. 2359 for (unsigned J = 0; J < ULEB128PadSize; ++J) 2360 if (Comment != End) 2361 Comment++; 2362 } else { 2363 for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J) 2364 Streamer.EmitInt8(Data.getData()[J], Comment != End ? *(Comment++) : ""); 2365 } 2366 Offset = Op.getOperandEndOffset(I); 2367 } 2368 assert(Offset == Op.getEndOffset()); 2369 } 2370 } 2371 2372 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT, 2373 const DbgValueLoc &Value, 2374 DwarfExpression &DwarfExpr) { 2375 auto *DIExpr = Value.getExpression(); 2376 DIExpressionCursor ExprCursor(DIExpr); 2377 DwarfExpr.addFragmentOffset(DIExpr); 2378 // Regular entry. 2379 if (Value.isInt()) { 2380 if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed || 2381 BT->getEncoding() == dwarf::DW_ATE_signed_char)) 2382 DwarfExpr.addSignedConstant(Value.getInt()); 2383 else 2384 DwarfExpr.addUnsignedConstant(Value.getInt()); 2385 } else if (Value.isLocation()) { 2386 MachineLocation Location = Value.getLoc(); 2387 if (Location.isIndirect()) 2388 DwarfExpr.setMemoryLocationKind(); 2389 DIExpressionCursor Cursor(DIExpr); 2390 2391 if (DIExpr->isEntryValue()) { 2392 DwarfExpr.setEntryValueFlag(); 2393 DwarfExpr.beginEntryValueExpression(Cursor); 2394 } 2395 2396 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); 2397 if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg())) 2398 return; 2399 return DwarfExpr.addExpression(std::move(Cursor)); 2400 } else if (Value.isTargetIndexLocation()) { 2401 TargetIndexLocation Loc = Value.getTargetIndexLocation(); 2402 // TODO TargetIndexLocation is a target-independent. Currently only the WebAssembly-specific 2403 // encoding is supported. 2404 DwarfExpr.addWasmLocation(Loc.Index, static_cast<uint64_t>(Loc.Offset)); 2405 } else if (Value.isConstantFP()) { 2406 APInt RawBytes = Value.getConstantFP()->getValueAPF().bitcastToAPInt(); 2407 DwarfExpr.addUnsignedConstant(RawBytes); 2408 } 2409 DwarfExpr.addExpression(std::move(ExprCursor)); 2410 } 2411 2412 void DebugLocEntry::finalize(const AsmPrinter &AP, 2413 DebugLocStream::ListBuilder &List, 2414 const DIBasicType *BT, 2415 DwarfCompileUnit &TheCU) { 2416 assert(!Values.empty() && 2417 "location list entries without values are redundant"); 2418 assert(Begin != End && "unexpected location list entry with empty range"); 2419 DebugLocStream::EntryBuilder Entry(List, Begin, End); 2420 BufferByteStreamer Streamer = Entry.getStreamer(); 2421 DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU); 2422 const DbgValueLoc &Value = Values[0]; 2423 if (Value.isFragment()) { 2424 // Emit all fragments that belong to the same variable and range. 2425 assert(llvm::all_of(Values, [](DbgValueLoc P) { 2426 return P.isFragment(); 2427 }) && "all values are expected to be fragments"); 2428 assert(llvm::is_sorted(Values) && "fragments are expected to be sorted"); 2429 2430 for (auto Fragment : Values) 2431 DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr); 2432 2433 } else { 2434 assert(Values.size() == 1 && "only fragments may have >1 value"); 2435 DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr); 2436 } 2437 DwarfExpr.finalize(); 2438 if (DwarfExpr.TagOffset) 2439 List.setTagOffset(*DwarfExpr.TagOffset); 2440 } 2441 2442 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry, 2443 const DwarfCompileUnit *CU) { 2444 // Emit the size. 2445 Asm->OutStreamer->AddComment("Loc expr size"); 2446 if (getDwarfVersion() >= 5) 2447 Asm->emitULEB128(DebugLocs.getBytes(Entry).size()); 2448 else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max()) 2449 Asm->emitInt16(DebugLocs.getBytes(Entry).size()); 2450 else { 2451 // The entry is too big to fit into 16 bit, drop it as there is nothing we 2452 // can do. 2453 Asm->emitInt16(0); 2454 return; 2455 } 2456 // Emit the entry. 2457 APByteStreamer Streamer(*Asm); 2458 emitDebugLocEntry(Streamer, Entry, CU); 2459 } 2460 2461 // Emit the header of a DWARF 5 range list table list table. Returns the symbol 2462 // that designates the end of the table for the caller to emit when the table is 2463 // complete. 2464 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm, 2465 const DwarfFile &Holder) { 2466 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2467 2468 Asm->OutStreamer->AddComment("Offset entry count"); 2469 Asm->emitInt32(Holder.getRangeLists().size()); 2470 Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym()); 2471 2472 for (const RangeSpanList &List : Holder.getRangeLists()) 2473 Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(), 4); 2474 2475 return TableEnd; 2476 } 2477 2478 // Emit the header of a DWARF 5 locations list table. Returns the symbol that 2479 // designates the end of the table for the caller to emit when the table is 2480 // complete. 2481 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm, 2482 const DwarfDebug &DD) { 2483 MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer); 2484 2485 const auto &DebugLocs = DD.getDebugLocs(); 2486 2487 Asm->OutStreamer->AddComment("Offset entry count"); 2488 Asm->emitInt32(DebugLocs.getLists().size()); 2489 Asm->OutStreamer->emitLabel(DebugLocs.getSym()); 2490 2491 for (const auto &List : DebugLocs.getLists()) 2492 Asm->emitLabelDifference(List.Label, DebugLocs.getSym(), 4); 2493 2494 return TableEnd; 2495 } 2496 2497 template <typename Ranges, typename PayloadEmitter> 2498 static void emitRangeList( 2499 DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R, 2500 const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair, 2501 unsigned StartxLength, unsigned EndOfList, 2502 StringRef (*StringifyEnum)(unsigned), 2503 bool ShouldUseBaseAddress, 2504 PayloadEmitter EmitPayload) { 2505 2506 auto Size = Asm->MAI->getCodePointerSize(); 2507 bool UseDwarf5 = DD.getDwarfVersion() >= 5; 2508 2509 // Emit our symbol so we can find the beginning of the range. 2510 Asm->OutStreamer->emitLabel(Sym); 2511 2512 // Gather all the ranges that apply to the same section so they can share 2513 // a base address entry. 2514 MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges; 2515 2516 for (const auto &Range : R) 2517 SectionRanges[&Range.Begin->getSection()].push_back(&Range); 2518 2519 const MCSymbol *CUBase = CU.getBaseAddress(); 2520 bool BaseIsSet = false; 2521 for (const auto &P : SectionRanges) { 2522 auto *Base = CUBase; 2523 if (!Base && ShouldUseBaseAddress) { 2524 const MCSymbol *Begin = P.second.front()->Begin; 2525 const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection()); 2526 if (!UseDwarf5) { 2527 Base = NewBase; 2528 BaseIsSet = true; 2529 Asm->OutStreamer->emitIntValue(-1, Size); 2530 Asm->OutStreamer->AddComment(" base address"); 2531 Asm->OutStreamer->emitSymbolValue(Base, Size); 2532 } else if (NewBase != Begin || P.second.size() > 1) { 2533 // Only use a base address if 2534 // * the existing pool address doesn't match (NewBase != Begin) 2535 // * or, there's more than one entry to share the base address 2536 Base = NewBase; 2537 BaseIsSet = true; 2538 Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx)); 2539 Asm->emitInt8(BaseAddressx); 2540 Asm->OutStreamer->AddComment(" base address index"); 2541 Asm->emitULEB128(DD.getAddressPool().getIndex(Base)); 2542 } 2543 } else if (BaseIsSet && !UseDwarf5) { 2544 BaseIsSet = false; 2545 assert(!Base); 2546 Asm->OutStreamer->emitIntValue(-1, Size); 2547 Asm->OutStreamer->emitIntValue(0, Size); 2548 } 2549 2550 for (const auto *RS : P.second) { 2551 const MCSymbol *Begin = RS->Begin; 2552 const MCSymbol *End = RS->End; 2553 assert(Begin && "Range without a begin symbol?"); 2554 assert(End && "Range without an end symbol?"); 2555 if (Base) { 2556 if (UseDwarf5) { 2557 // Emit offset_pair when we have a base. 2558 Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair)); 2559 Asm->emitInt8(OffsetPair); 2560 Asm->OutStreamer->AddComment(" starting offset"); 2561 Asm->emitLabelDifferenceAsULEB128(Begin, Base); 2562 Asm->OutStreamer->AddComment(" ending offset"); 2563 Asm->emitLabelDifferenceAsULEB128(End, Base); 2564 } else { 2565 Asm->emitLabelDifference(Begin, Base, Size); 2566 Asm->emitLabelDifference(End, Base, Size); 2567 } 2568 } else if (UseDwarf5) { 2569 Asm->OutStreamer->AddComment(StringifyEnum(StartxLength)); 2570 Asm->emitInt8(StartxLength); 2571 Asm->OutStreamer->AddComment(" start index"); 2572 Asm->emitULEB128(DD.getAddressPool().getIndex(Begin)); 2573 Asm->OutStreamer->AddComment(" length"); 2574 Asm->emitLabelDifferenceAsULEB128(End, Begin); 2575 } else { 2576 Asm->OutStreamer->emitSymbolValue(Begin, Size); 2577 Asm->OutStreamer->emitSymbolValue(End, Size); 2578 } 2579 EmitPayload(*RS); 2580 } 2581 } 2582 2583 if (UseDwarf5) { 2584 Asm->OutStreamer->AddComment(StringifyEnum(EndOfList)); 2585 Asm->emitInt8(EndOfList); 2586 } else { 2587 // Terminate the list with two 0 values. 2588 Asm->OutStreamer->emitIntValue(0, Size); 2589 Asm->OutStreamer->emitIntValue(0, Size); 2590 } 2591 } 2592 2593 // Handles emission of both debug_loclist / debug_loclist.dwo 2594 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) { 2595 emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List), 2596 *List.CU, dwarf::DW_LLE_base_addressx, 2597 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length, 2598 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString, 2599 /* ShouldUseBaseAddress */ true, 2600 [&](const DebugLocStream::Entry &E) { 2601 DD.emitDebugLocEntryLocation(E, List.CU); 2602 }); 2603 } 2604 2605 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) { 2606 if (DebugLocs.getLists().empty()) 2607 return; 2608 2609 Asm->OutStreamer->SwitchSection(Sec); 2610 2611 MCSymbol *TableEnd = nullptr; 2612 if (getDwarfVersion() >= 5) 2613 TableEnd = emitLoclistsTableHeader(Asm, *this); 2614 2615 for (const auto &List : DebugLocs.getLists()) 2616 emitLocList(*this, Asm, List); 2617 2618 if (TableEnd) 2619 Asm->OutStreamer->emitLabel(TableEnd); 2620 } 2621 2622 // Emit locations into the .debug_loc/.debug_loclists section. 2623 void DwarfDebug::emitDebugLoc() { 2624 emitDebugLocImpl( 2625 getDwarfVersion() >= 5 2626 ? Asm->getObjFileLowering().getDwarfLoclistsSection() 2627 : Asm->getObjFileLowering().getDwarfLocSection()); 2628 } 2629 2630 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section. 2631 void DwarfDebug::emitDebugLocDWO() { 2632 if (getDwarfVersion() >= 5) { 2633 emitDebugLocImpl( 2634 Asm->getObjFileLowering().getDwarfLoclistsDWOSection()); 2635 2636 return; 2637 } 2638 2639 for (const auto &List : DebugLocs.getLists()) { 2640 Asm->OutStreamer->SwitchSection( 2641 Asm->getObjFileLowering().getDwarfLocDWOSection()); 2642 Asm->OutStreamer->emitLabel(List.Label); 2643 2644 for (const auto &Entry : DebugLocs.getEntries(List)) { 2645 // GDB only supports startx_length in pre-standard split-DWARF. 2646 // (in v5 standard loclists, it currently* /only/ supports base_address + 2647 // offset_pair, so the implementations can't really share much since they 2648 // need to use different representations) 2649 // * as of October 2018, at least 2650 // 2651 // In v5 (see emitLocList), this uses SectionLabels to reuse existing 2652 // addresses in the address pool to minimize object size/relocations. 2653 Asm->emitInt8(dwarf::DW_LLE_startx_length); 2654 unsigned idx = AddrPool.getIndex(Entry.Begin); 2655 Asm->emitULEB128(idx); 2656 // Also the pre-standard encoding is slightly different, emitting this as 2657 // an address-length entry here, but its a ULEB128 in DWARFv5 loclists. 2658 Asm->emitLabelDifference(Entry.End, Entry.Begin, 4); 2659 emitDebugLocEntryLocation(Entry, List.CU); 2660 } 2661 Asm->emitInt8(dwarf::DW_LLE_end_of_list); 2662 } 2663 } 2664 2665 struct ArangeSpan { 2666 const MCSymbol *Start, *End; 2667 }; 2668 2669 // Emit a debug aranges section, containing a CU lookup for any 2670 // address we can tie back to a CU. 2671 void DwarfDebug::emitDebugARanges() { 2672 // Provides a unique id per text section. 2673 MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap; 2674 2675 // Filter labels by section. 2676 for (const SymbolCU &SCU : ArangeLabels) { 2677 if (SCU.Sym->isInSection()) { 2678 // Make a note of this symbol and it's section. 2679 MCSection *Section = &SCU.Sym->getSection(); 2680 if (!Section->getKind().isMetadata()) 2681 SectionMap[Section].push_back(SCU); 2682 } else { 2683 // Some symbols (e.g. common/bss on mach-o) can have no section but still 2684 // appear in the output. This sucks as we rely on sections to build 2685 // arange spans. We can do it without, but it's icky. 2686 SectionMap[nullptr].push_back(SCU); 2687 } 2688 } 2689 2690 DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans; 2691 2692 for (auto &I : SectionMap) { 2693 MCSection *Section = I.first; 2694 SmallVector<SymbolCU, 8> &List = I.second; 2695 if (List.size() < 1) 2696 continue; 2697 2698 // If we have no section (e.g. common), just write out 2699 // individual spans for each symbol. 2700 if (!Section) { 2701 for (const SymbolCU &Cur : List) { 2702 ArangeSpan Span; 2703 Span.Start = Cur.Sym; 2704 Span.End = nullptr; 2705 assert(Cur.CU); 2706 Spans[Cur.CU].push_back(Span); 2707 } 2708 continue; 2709 } 2710 2711 // Sort the symbols by offset within the section. 2712 llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) { 2713 unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0; 2714 unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0; 2715 2716 // Symbols with no order assigned should be placed at the end. 2717 // (e.g. section end labels) 2718 if (IA == 0) 2719 return false; 2720 if (IB == 0) 2721 return true; 2722 return IA < IB; 2723 }); 2724 2725 // Insert a final terminator. 2726 List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section))); 2727 2728 // Build spans between each label. 2729 const MCSymbol *StartSym = List[0].Sym; 2730 for (size_t n = 1, e = List.size(); n < e; n++) { 2731 const SymbolCU &Prev = List[n - 1]; 2732 const SymbolCU &Cur = List[n]; 2733 2734 // Try and build the longest span we can within the same CU. 2735 if (Cur.CU != Prev.CU) { 2736 ArangeSpan Span; 2737 Span.Start = StartSym; 2738 Span.End = Cur.Sym; 2739 assert(Prev.CU); 2740 Spans[Prev.CU].push_back(Span); 2741 StartSym = Cur.Sym; 2742 } 2743 } 2744 } 2745 2746 // Start the dwarf aranges section. 2747 Asm->OutStreamer->SwitchSection( 2748 Asm->getObjFileLowering().getDwarfARangesSection()); 2749 2750 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2751 2752 // Build a list of CUs used. 2753 std::vector<DwarfCompileUnit *> CUs; 2754 for (const auto &it : Spans) { 2755 DwarfCompileUnit *CU = it.first; 2756 CUs.push_back(CU); 2757 } 2758 2759 // Sort the CU list (again, to ensure consistent output order). 2760 llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) { 2761 return A->getUniqueID() < B->getUniqueID(); 2762 }); 2763 2764 // Emit an arange table for each CU we used. 2765 for (DwarfCompileUnit *CU : CUs) { 2766 std::vector<ArangeSpan> &List = Spans[CU]; 2767 2768 // Describe the skeleton CU's offset and length, not the dwo file's. 2769 if (auto *Skel = CU->getSkeleton()) 2770 CU = Skel; 2771 2772 // Emit size of content not including length itself. 2773 unsigned ContentSize = 2774 sizeof(int16_t) + // DWARF ARange version number 2775 sizeof(int32_t) + // Offset of CU in the .debug_info section 2776 sizeof(int8_t) + // Pointer Size (in bytes) 2777 sizeof(int8_t); // Segment Size (in bytes) 2778 2779 unsigned TupleSize = PtrSize * 2; 2780 2781 // 7.20 in the Dwarf specs requires the table to be aligned to a tuple. 2782 unsigned Padding = 2783 offsetToAlignment(sizeof(int32_t) + ContentSize, Align(TupleSize)); 2784 2785 ContentSize += Padding; 2786 ContentSize += (List.size() + 1) * TupleSize; 2787 2788 // For each compile unit, write the list of spans it covers. 2789 Asm->OutStreamer->AddComment("Length of ARange Set"); 2790 Asm->emitInt32(ContentSize); 2791 Asm->OutStreamer->AddComment("DWARF Arange version number"); 2792 Asm->emitInt16(dwarf::DW_ARANGES_VERSION); 2793 Asm->OutStreamer->AddComment("Offset Into Debug Info Section"); 2794 emitSectionReference(*CU); 2795 Asm->OutStreamer->AddComment("Address Size (in bytes)"); 2796 Asm->emitInt8(PtrSize); 2797 Asm->OutStreamer->AddComment("Segment Size (in bytes)"); 2798 Asm->emitInt8(0); 2799 2800 Asm->OutStreamer->emitFill(Padding, 0xff); 2801 2802 for (const ArangeSpan &Span : List) { 2803 Asm->emitLabelReference(Span.Start, PtrSize); 2804 2805 // Calculate the size as being from the span start to it's end. 2806 if (Span.End) { 2807 Asm->emitLabelDifference(Span.End, Span.Start, PtrSize); 2808 } else { 2809 // For symbols without an end marker (e.g. common), we 2810 // write a single arange entry containing just that one symbol. 2811 uint64_t Size = SymSize[Span.Start]; 2812 if (Size == 0) 2813 Size = 1; 2814 2815 Asm->OutStreamer->emitIntValue(Size, PtrSize); 2816 } 2817 } 2818 2819 Asm->OutStreamer->AddComment("ARange terminator"); 2820 Asm->OutStreamer->emitIntValue(0, PtrSize); 2821 Asm->OutStreamer->emitIntValue(0, PtrSize); 2822 } 2823 } 2824 2825 /// Emit a single range list. We handle both DWARF v5 and earlier. 2826 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm, 2827 const RangeSpanList &List) { 2828 emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU, 2829 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair, 2830 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list, 2831 llvm::dwarf::RangeListEncodingString, 2832 List.CU->getCUNode()->getRangesBaseAddress() || 2833 DD.getDwarfVersion() >= 5, 2834 [](auto) {}); 2835 } 2836 2837 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) { 2838 if (Holder.getRangeLists().empty()) 2839 return; 2840 2841 assert(useRangesSection()); 2842 assert(!CUMap.empty()); 2843 assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) { 2844 return !Pair.second->getCUNode()->isDebugDirectivesOnly(); 2845 })); 2846 2847 Asm->OutStreamer->SwitchSection(Section); 2848 2849 MCSymbol *TableEnd = nullptr; 2850 if (getDwarfVersion() >= 5) 2851 TableEnd = emitRnglistsTableHeader(Asm, Holder); 2852 2853 for (const RangeSpanList &List : Holder.getRangeLists()) 2854 emitRangeList(*this, Asm, List); 2855 2856 if (TableEnd) 2857 Asm->OutStreamer->emitLabel(TableEnd); 2858 } 2859 2860 /// Emit address ranges into the .debug_ranges section or into the DWARF v5 2861 /// .debug_rnglists section. 2862 void DwarfDebug::emitDebugRanges() { 2863 const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2864 2865 emitDebugRangesImpl(Holder, 2866 getDwarfVersion() >= 5 2867 ? Asm->getObjFileLowering().getDwarfRnglistsSection() 2868 : Asm->getObjFileLowering().getDwarfRangesSection()); 2869 } 2870 2871 void DwarfDebug::emitDebugRangesDWO() { 2872 emitDebugRangesImpl(InfoHolder, 2873 Asm->getObjFileLowering().getDwarfRnglistsDWOSection()); 2874 } 2875 2876 /// Emit the header of a DWARF 5 macro section. 2877 static void emitMacroHeader(AsmPrinter *Asm, const DwarfDebug &DD, 2878 const DwarfCompileUnit &CU) { 2879 enum HeaderFlagMask { 2880 #define HANDLE_MACRO_FLAG(ID, NAME) MACRO_FLAG_##NAME = ID, 2881 #include "llvm/BinaryFormat/Dwarf.def" 2882 }; 2883 uint8_t Flags = 0; 2884 Asm->OutStreamer->AddComment("Macro information version"); 2885 Asm->emitInt16(5); 2886 // We are setting Offset and line offset flags unconditionally here, 2887 // since we're only supporting DWARF32 and line offset should be mostly 2888 // present. 2889 // FIXME: Add support for DWARF64. 2890 Flags |= MACRO_FLAG_DEBUG_LINE_OFFSET; 2891 Asm->OutStreamer->AddComment("Flags: 32 bit, debug_line_offset present"); 2892 Asm->emitInt8(Flags); 2893 Asm->OutStreamer->AddComment("debug_line_offset"); 2894 Asm->OutStreamer->emitSymbolValue(CU.getLineTableStartSym(), /*Size=*/4); 2895 } 2896 2897 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) { 2898 for (auto *MN : Nodes) { 2899 if (auto *M = dyn_cast<DIMacro>(MN)) 2900 emitMacro(*M); 2901 else if (auto *F = dyn_cast<DIMacroFile>(MN)) 2902 emitMacroFile(*F, U); 2903 else 2904 llvm_unreachable("Unexpected DI type!"); 2905 } 2906 } 2907 2908 void DwarfDebug::emitMacro(DIMacro &M) { 2909 StringRef Name = M.getName(); 2910 StringRef Value = M.getValue(); 2911 bool UseMacro = getDwarfVersion() >= 5; 2912 2913 if (UseMacro) { 2914 unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define 2915 ? dwarf::DW_MACRO_define_strp 2916 : dwarf::DW_MACRO_undef_strp; 2917 Asm->OutStreamer->AddComment(dwarf::MacroString(Type)); 2918 Asm->emitULEB128(Type); 2919 Asm->OutStreamer->AddComment("Line Number"); 2920 Asm->emitULEB128(M.getLine()); 2921 Asm->OutStreamer->AddComment("Macro String"); 2922 if (!Value.empty()) 2923 Asm->OutStreamer->emitSymbolValue( 2924 this->InfoHolder.getStringPool() 2925 .getEntry(*Asm, (Name + " " + Value).str()) 2926 .getSymbol(), 2927 4); 2928 else 2929 // DW_MACRO_undef_strp doesn't have a value, so just emit the macro 2930 // string. 2931 Asm->OutStreamer->emitSymbolValue(this->InfoHolder.getStringPool() 2932 .getEntry(*Asm, (Name).str()) 2933 .getSymbol(), 2934 4); 2935 } else { 2936 Asm->OutStreamer->AddComment(dwarf::MacinfoString(M.getMacinfoType())); 2937 Asm->emitULEB128(M.getMacinfoType()); 2938 Asm->OutStreamer->AddComment("Line Number"); 2939 Asm->emitULEB128(M.getLine()); 2940 Asm->OutStreamer->AddComment("Macro String"); 2941 Asm->OutStreamer->emitBytes(Name); 2942 if (!Value.empty()) { 2943 // There should be one space between macro name and macro value. 2944 Asm->emitInt8(' '); 2945 Asm->OutStreamer->AddComment("Macro Value="); 2946 Asm->OutStreamer->emitBytes(Value); 2947 } 2948 Asm->emitInt8('\0'); 2949 } 2950 } 2951 2952 void DwarfDebug::emitMacroFileImpl( 2953 DIMacroFile &F, DwarfCompileUnit &U, unsigned StartFile, unsigned EndFile, 2954 StringRef (*MacroFormToString)(unsigned Form)) { 2955 2956 Asm->OutStreamer->AddComment(MacroFormToString(StartFile)); 2957 Asm->emitULEB128(StartFile); 2958 Asm->OutStreamer->AddComment("Line Number"); 2959 Asm->emitULEB128(F.getLine()); 2960 Asm->OutStreamer->AddComment("File Number"); 2961 Asm->emitULEB128(U.getOrCreateSourceID(F.getFile())); 2962 handleMacroNodes(F.getElements(), U); 2963 Asm->OutStreamer->AddComment(MacroFormToString(EndFile)); 2964 Asm->emitULEB128(EndFile); 2965 } 2966 2967 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) { 2968 // DWARFv5 macro and DWARFv4 macinfo share some common encodings, 2969 // so for readibility/uniformity, We are explicitly emitting those. 2970 assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file); 2971 bool UseMacro = getDwarfVersion() >= 5; 2972 if (UseMacro) 2973 emitMacroFileImpl(F, U, dwarf::DW_MACRO_start_file, 2974 dwarf::DW_MACRO_end_file, dwarf::MacroString); 2975 else 2976 emitMacroFileImpl(F, U, dwarf::DW_MACINFO_start_file, 2977 dwarf::DW_MACINFO_end_file, dwarf::MacinfoString); 2978 } 2979 2980 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) { 2981 for (const auto &P : CUMap) { 2982 auto &TheCU = *P.second; 2983 auto *SkCU = TheCU.getSkeleton(); 2984 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 2985 auto *CUNode = cast<DICompileUnit>(P.first); 2986 DIMacroNodeArray Macros = CUNode->getMacros(); 2987 if (Macros.empty()) 2988 continue; 2989 Asm->OutStreamer->SwitchSection(Section); 2990 Asm->OutStreamer->emitLabel(U.getMacroLabelBegin()); 2991 if (getDwarfVersion() >= 5) 2992 emitMacroHeader(Asm, *this, U); 2993 handleMacroNodes(Macros, U); 2994 Asm->OutStreamer->AddComment("End Of Macro List Mark"); 2995 Asm->emitInt8(0); 2996 } 2997 } 2998 2999 /// Emit macros into a debug macinfo/macro section. 3000 void DwarfDebug::emitDebugMacinfo() { 3001 auto &ObjLower = Asm->getObjFileLowering(); 3002 emitDebugMacinfoImpl(getDwarfVersion() >= 5 3003 ? ObjLower.getDwarfMacroSection() 3004 : ObjLower.getDwarfMacinfoSection()); 3005 } 3006 3007 void DwarfDebug::emitDebugMacinfoDWO() { 3008 // FIXME: Add support for macro.dwo section. 3009 if (getDwarfVersion() >= 5) 3010 return; 3011 emitDebugMacinfoImpl(Asm->getObjFileLowering().getDwarfMacinfoDWOSection()); 3012 } 3013 3014 // DWARF5 Experimental Separate Dwarf emitters. 3015 3016 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die, 3017 std::unique_ptr<DwarfCompileUnit> NewU) { 3018 3019 if (!CompilationDir.empty()) 3020 NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 3021 addGnuPubAttributes(*NewU, Die); 3022 3023 SkeletonHolder.addUnit(std::move(NewU)); 3024 } 3025 3026 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) { 3027 3028 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 3029 CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder, 3030 UnitKind::Skeleton); 3031 DwarfCompileUnit &NewCU = *OwnedUnit; 3032 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 3033 3034 NewCU.initStmtList(); 3035 3036 if (useSegmentedStringOffsetsTable()) 3037 NewCU.addStringOffsetsStart(); 3038 3039 initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit)); 3040 3041 return NewCU; 3042 } 3043 3044 // Emit the .debug_info.dwo section for separated dwarf. This contains the 3045 // compile units that would normally be in debug_info. 3046 void DwarfDebug::emitDebugInfoDWO() { 3047 assert(useSplitDwarf() && "No split dwarf debug info?"); 3048 // Don't emit relocations into the dwo file. 3049 InfoHolder.emitUnits(/* UseOffsets */ true); 3050 } 3051 3052 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the 3053 // abbreviations for the .debug_info.dwo section. 3054 void DwarfDebug::emitDebugAbbrevDWO() { 3055 assert(useSplitDwarf() && "No split dwarf?"); 3056 InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection()); 3057 } 3058 3059 void DwarfDebug::emitDebugLineDWO() { 3060 assert(useSplitDwarf() && "No split dwarf?"); 3061 SplitTypeUnitFileTable.Emit( 3062 *Asm->OutStreamer, MCDwarfLineTableParams(), 3063 Asm->getObjFileLowering().getDwarfLineDWOSection()); 3064 } 3065 3066 void DwarfDebug::emitStringOffsetsTableHeaderDWO() { 3067 assert(useSplitDwarf() && "No split dwarf?"); 3068 InfoHolder.getStringPool().emitStringOffsetsTableHeader( 3069 *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(), 3070 InfoHolder.getStringOffsetsStartSym()); 3071 } 3072 3073 // Emit the .debug_str.dwo section for separated dwarf. This contains the 3074 // string section and is identical in format to traditional .debug_str 3075 // sections. 3076 void DwarfDebug::emitDebugStrDWO() { 3077 if (useSegmentedStringOffsetsTable()) 3078 emitStringOffsetsTableHeaderDWO(); 3079 assert(useSplitDwarf() && "No split dwarf?"); 3080 MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection(); 3081 InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(), 3082 OffSec, /* UseRelativeOffsets = */ false); 3083 } 3084 3085 // Emit address pool. 3086 void DwarfDebug::emitDebugAddr() { 3087 AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection()); 3088 } 3089 3090 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) { 3091 if (!useSplitDwarf()) 3092 return nullptr; 3093 const DICompileUnit *DIUnit = CU.getCUNode(); 3094 SplitTypeUnitFileTable.maybeSetRootFile( 3095 DIUnit->getDirectory(), DIUnit->getFilename(), 3096 CU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource()); 3097 return &SplitTypeUnitFileTable; 3098 } 3099 3100 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) { 3101 MD5 Hash; 3102 Hash.update(Identifier); 3103 // ... take the least significant 8 bytes and return those. Our MD5 3104 // implementation always returns its results in little endian, so we actually 3105 // need the "high" word. 3106 MD5::MD5Result Result; 3107 Hash.final(Result); 3108 return Result.high(); 3109 } 3110 3111 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU, 3112 StringRef Identifier, DIE &RefDie, 3113 const DICompositeType *CTy) { 3114 // Fast path if we're building some type units and one has already used the 3115 // address pool we know we're going to throw away all this work anyway, so 3116 // don't bother building dependent types. 3117 if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed()) 3118 return; 3119 3120 auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0)); 3121 if (!Ins.second) { 3122 CU.addDIETypeSignature(RefDie, Ins.first->second); 3123 return; 3124 } 3125 3126 bool TopLevelType = TypeUnitsUnderConstruction.empty(); 3127 AddrPool.resetUsedFlag(); 3128 3129 auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder, 3130 getDwoLineTable(CU)); 3131 DwarfTypeUnit &NewTU = *OwnedUnit; 3132 DIE &UnitDie = NewTU.getUnitDie(); 3133 TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy); 3134 3135 NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 3136 CU.getLanguage()); 3137 3138 uint64_t Signature = makeTypeSignature(Identifier); 3139 NewTU.setTypeSignature(Signature); 3140 Ins.first->second = Signature; 3141 3142 if (useSplitDwarf()) { 3143 MCSection *Section = 3144 getDwarfVersion() <= 4 3145 ? Asm->getObjFileLowering().getDwarfTypesDWOSection() 3146 : Asm->getObjFileLowering().getDwarfInfoDWOSection(); 3147 NewTU.setSection(Section); 3148 } else { 3149 MCSection *Section = 3150 getDwarfVersion() <= 4 3151 ? Asm->getObjFileLowering().getDwarfTypesSection(Signature) 3152 : Asm->getObjFileLowering().getDwarfInfoSection(Signature); 3153 NewTU.setSection(Section); 3154 // Non-split type units reuse the compile unit's line table. 3155 CU.applyStmtList(UnitDie); 3156 } 3157 3158 // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type 3159 // units. 3160 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 3161 NewTU.addStringOffsetsStart(); 3162 3163 NewTU.setType(NewTU.createTypeDIE(CTy)); 3164 3165 if (TopLevelType) { 3166 auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction); 3167 TypeUnitsUnderConstruction.clear(); 3168 3169 // Types referencing entries in the address table cannot be placed in type 3170 // units. 3171 if (AddrPool.hasBeenUsed()) { 3172 3173 // Remove all the types built while building this type. 3174 // This is pessimistic as some of these types might not be dependent on 3175 // the type that used an address. 3176 for (const auto &TU : TypeUnitsToAdd) 3177 TypeSignatures.erase(TU.second); 3178 3179 // Construct this type in the CU directly. 3180 // This is inefficient because all the dependent types will be rebuilt 3181 // from scratch, including building them in type units, discovering that 3182 // they depend on addresses, throwing them out and rebuilding them. 3183 CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy)); 3184 return; 3185 } 3186 3187 // If the type wasn't dependent on fission addresses, finish adding the type 3188 // and all its dependent types. 3189 for (auto &TU : TypeUnitsToAdd) { 3190 InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get()); 3191 InfoHolder.emitUnit(TU.first.get(), useSplitDwarf()); 3192 } 3193 } 3194 CU.addDIETypeSignature(RefDie, Signature); 3195 } 3196 3197 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD) 3198 : DD(DD), 3199 TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)) { 3200 DD->TypeUnitsUnderConstruction.clear(); 3201 assert(TypeUnitsUnderConstruction.empty() || !DD->AddrPool.hasBeenUsed()); 3202 } 3203 3204 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() { 3205 DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction); 3206 DD->AddrPool.resetUsedFlag(); 3207 } 3208 3209 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() { 3210 return NonTypeUnitContext(this); 3211 } 3212 3213 // Add the Name along with its companion DIE to the appropriate accelerator 3214 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for 3215 // AccelTableKind::Apple, we use the table we got as an argument). If 3216 // accelerator tables are disabled, this function does nothing. 3217 template <typename DataT> 3218 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU, 3219 AccelTable<DataT> &AppleAccel, StringRef Name, 3220 const DIE &Die) { 3221 if (getAccelTableKind() == AccelTableKind::None) 3222 return; 3223 3224 if (getAccelTableKind() != AccelTableKind::Apple && 3225 CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default) 3226 return; 3227 3228 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 3229 DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name); 3230 3231 switch (getAccelTableKind()) { 3232 case AccelTableKind::Apple: 3233 AppleAccel.addName(Ref, Die); 3234 break; 3235 case AccelTableKind::Dwarf: 3236 AccelDebugNames.addName(Ref, Die); 3237 break; 3238 case AccelTableKind::Default: 3239 llvm_unreachable("Default should have already been resolved."); 3240 case AccelTableKind::None: 3241 llvm_unreachable("None handled above"); 3242 } 3243 } 3244 3245 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name, 3246 const DIE &Die) { 3247 addAccelNameImpl(CU, AccelNames, Name, Die); 3248 } 3249 3250 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name, 3251 const DIE &Die) { 3252 // ObjC names go only into the Apple accelerator tables. 3253 if (getAccelTableKind() == AccelTableKind::Apple) 3254 addAccelNameImpl(CU, AccelObjC, Name, Die); 3255 } 3256 3257 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name, 3258 const DIE &Die) { 3259 addAccelNameImpl(CU, AccelNamespace, Name, Die); 3260 } 3261 3262 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name, 3263 const DIE &Die, char Flags) { 3264 addAccelNameImpl(CU, AccelTypes, Name, Die); 3265 } 3266 3267 uint16_t DwarfDebug::getDwarfVersion() const { 3268 return Asm->OutStreamer->getContext().getDwarfVersion(); 3269 } 3270 3271 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) { 3272 return SectionLabels.find(S)->second; 3273 } 3274 void DwarfDebug::insertSectionLabel(const MCSymbol *S) { 3275 SectionLabels.insert(std::make_pair(&S->getSection(), S)); 3276 } 3277