1 //===-- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing dwarf debug info into asm files.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "DwarfDebug.h"
15 #include "ByteStreamer.h"
16 #include "DIEHash.h"
17 #include "DebugLocEntry.h"
18 #include "DwarfCompileUnit.h"
19 #include "DwarfExpression.h"
20 #include "DwarfUnit.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/CodeGen/DIE.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineModuleInfo.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DebugInfo.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/ValueHandle.h"
34 #include "llvm/MC/MCAsmInfo.h"
35 #include "llvm/MC/MCDwarf.h"
36 #include "llvm/MC/MCSection.h"
37 #include "llvm/MC/MCStreamer.h"
38 #include "llvm/MC/MCSymbol.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/Dwarf.h"
42 #include "llvm/Support/Endian.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/FormattedStream.h"
45 #include "llvm/Support/LEB128.h"
46 #include "llvm/Support/MD5.h"
47 #include "llvm/Support/Path.h"
48 #include "llvm/Support/Timer.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include "llvm/Target/TargetFrameLowering.h"
51 #include "llvm/Target/TargetLoweringObjectFile.h"
52 #include "llvm/Target/TargetMachine.h"
53 #include "llvm/Target/TargetOptions.h"
54 #include "llvm/Target/TargetRegisterInfo.h"
55 #include "llvm/Target/TargetSubtargetInfo.h"
56 
57 using namespace llvm;
58 
59 #define DEBUG_TYPE "dwarfdebug"
60 
61 static cl::opt<bool>
62 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden,
63                          cl::desc("Disable debug info printing"));
64 
65 static cl::opt<bool> UnknownLocations(
66     "use-unknown-locations", cl::Hidden,
67     cl::desc("Make an absence of debug location information explicit."),
68     cl::init(false));
69 
70 static cl::opt<bool>
71 GenerateGnuPubSections("generate-gnu-dwarf-pub-sections", cl::Hidden,
72                        cl::desc("Generate GNU-style pubnames and pubtypes"),
73                        cl::init(false));
74 
75 static cl::opt<bool> GenerateARangeSection("generate-arange-section",
76                                            cl::Hidden,
77                                            cl::desc("Generate dwarf aranges"),
78                                            cl::init(false));
79 
80 namespace {
81 enum DefaultOnOff { Default, Enable, Disable };
82 }
83 
84 static cl::opt<DefaultOnOff>
85 DwarfAccelTables("dwarf-accel-tables", cl::Hidden,
86                  cl::desc("Output prototype dwarf accelerator tables."),
87                  cl::values(clEnumVal(Default, "Default for platform"),
88                             clEnumVal(Enable, "Enabled"),
89                             clEnumVal(Disable, "Disabled"), clEnumValEnd),
90                  cl::init(Default));
91 
92 static cl::opt<DefaultOnOff>
93 SplitDwarf("split-dwarf", cl::Hidden,
94            cl::desc("Output DWARF5 split debug info."),
95            cl::values(clEnumVal(Default, "Default for platform"),
96                       clEnumVal(Enable, "Enabled"),
97                       clEnumVal(Disable, "Disabled"), clEnumValEnd),
98            cl::init(Default));
99 
100 static cl::opt<DefaultOnOff>
101 DwarfPubSections("generate-dwarf-pub-sections", cl::Hidden,
102                  cl::desc("Generate DWARF pubnames and pubtypes sections"),
103                  cl::values(clEnumVal(Default, "Default for platform"),
104                             clEnumVal(Enable, "Enabled"),
105                             clEnumVal(Disable, "Disabled"), clEnumValEnd),
106                  cl::init(Default));
107 
108 enum LinkageNameOption {
109   DefaultLinkageNames,
110   AllLinkageNames,
111   AbstractLinkageNames
112 };
113 static cl::opt<LinkageNameOption>
114     DwarfLinkageNames("dwarf-linkage-names", cl::Hidden,
115                       cl::desc("Which DWARF linkage-name attributes to emit."),
116                       cl::values(clEnumValN(DefaultLinkageNames, "Default",
117                                             "Default for platform"),
118                                  clEnumValN(AllLinkageNames, "All", "All"),
119                                  clEnumValN(AbstractLinkageNames, "Abstract",
120                                             "Abstract subprograms"),
121                                  clEnumValEnd),
122                       cl::init(DefaultLinkageNames));
123 
124 static const char *const DWARFGroupName = "DWARF Emission";
125 static const char *const DbgTimerName = "DWARF Debug Writer";
126 
127 void DebugLocDwarfExpression::EmitOp(uint8_t Op, const char *Comment) {
128   BS.EmitInt8(
129       Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op)
130                   : dwarf::OperationEncodingString(Op));
131 }
132 
133 void DebugLocDwarfExpression::EmitSigned(int64_t Value) {
134   BS.EmitSLEB128(Value, Twine(Value));
135 }
136 
137 void DebugLocDwarfExpression::EmitUnsigned(uint64_t Value) {
138   BS.EmitULEB128(Value, Twine(Value));
139 }
140 
141 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI,
142                                               unsigned MachineReg) {
143   // This information is not available while emitting .debug_loc entries.
144   return false;
145 }
146 
147 //===----------------------------------------------------------------------===//
148 
149 bool DbgVariable::isBlockByrefVariable() const {
150   assert(Var && "Invalid complex DbgVariable!");
151   return Var->getType().resolve()->isBlockByrefStruct();
152 }
153 
154 const DIType *DbgVariable::getType() const {
155   DIType *Ty = Var->getType().resolve();
156   // FIXME: isBlockByrefVariable should be reformulated in terms of complex
157   // addresses instead.
158   if (Ty->isBlockByrefStruct()) {
159     /* Byref variables, in Blocks, are declared by the programmer as
160        "SomeType VarName;", but the compiler creates a
161        __Block_byref_x_VarName struct, and gives the variable VarName
162        either the struct, or a pointer to the struct, as its type.  This
163        is necessary for various behind-the-scenes things the compiler
164        needs to do with by-reference variables in blocks.
165 
166        However, as far as the original *programmer* is concerned, the
167        variable should still have type 'SomeType', as originally declared.
168 
169        The following function dives into the __Block_byref_x_VarName
170        struct to find the original type of the variable.  This will be
171        passed back to the code generating the type for the Debug
172        Information Entry for the variable 'VarName'.  'VarName' will then
173        have the original type 'SomeType' in its debug information.
174 
175        The original type 'SomeType' will be the type of the field named
176        'VarName' inside the __Block_byref_x_VarName struct.
177 
178        NOTE: In order for this to not completely fail on the debugger
179        side, the Debug Information Entry for the variable VarName needs to
180        have a DW_AT_location that tells the debugger how to unwind through
181        the pointers and __Block_byref_x_VarName struct to find the actual
182        value of the variable.  The function addBlockByrefType does this.  */
183     DIType *subType = Ty;
184     uint16_t tag = Ty->getTag();
185 
186     if (tag == dwarf::DW_TAG_pointer_type)
187       subType = resolve(cast<DIDerivedType>(Ty)->getBaseType());
188 
189     auto Elements = cast<DICompositeType>(subType)->getElements();
190     for (unsigned i = 0, N = Elements.size(); i < N; ++i) {
191       auto *DT = cast<DIDerivedType>(Elements[i]);
192       if (getName() == DT->getName())
193         return resolve(DT->getBaseType());
194     }
195   }
196   return Ty;
197 }
198 
199 static const DwarfAccelTable::Atom TypeAtoms[] = {
200     DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset, dwarf::DW_FORM_data4),
201     DwarfAccelTable::Atom(dwarf::DW_ATOM_die_tag, dwarf::DW_FORM_data2),
202     DwarfAccelTable::Atom(dwarf::DW_ATOM_type_flags, dwarf::DW_FORM_data1)};
203 
204 DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M)
205     : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()),
206       InfoHolder(A, "info_string", DIEValueAllocator),
207       SkeletonHolder(A, "skel_string", DIEValueAllocator),
208       IsDarwin(Triple(A->getTargetTriple()).isOSDarwin()),
209       AccelNames(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset,
210                                        dwarf::DW_FORM_data4)),
211       AccelObjC(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset,
212                                       dwarf::DW_FORM_data4)),
213       AccelNamespace(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset,
214                                            dwarf::DW_FORM_data4)),
215       AccelTypes(TypeAtoms), DebuggerTuning(DebuggerKind::Default) {
216 
217   CurFn = nullptr;
218   Triple TT(Asm->getTargetTriple());
219 
220   // Make sure we know our "debugger tuning."  The target option takes
221   // precedence; fall back to triple-based defaults.
222   if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default)
223     DebuggerTuning = Asm->TM.Options.DebuggerTuning;
224   else if (IsDarwin)
225     DebuggerTuning = DebuggerKind::LLDB;
226   else if (TT.isPS4CPU())
227     DebuggerTuning = DebuggerKind::SCE;
228   else
229     DebuggerTuning = DebuggerKind::GDB;
230 
231   // Turn on accelerator tables for LLDB by default.
232   if (DwarfAccelTables == Default)
233     HasDwarfAccelTables = tuneForLLDB();
234   else
235     HasDwarfAccelTables = DwarfAccelTables == Enable;
236 
237   HasAppleExtensionAttributes = tuneForLLDB();
238 
239   // Handle split DWARF. Off by default for now.
240   if (SplitDwarf == Default)
241     HasSplitDwarf = false;
242   else
243     HasSplitDwarf = SplitDwarf == Enable;
244 
245   // Pubnames/pubtypes on by default for GDB.
246   if (DwarfPubSections == Default)
247     HasDwarfPubSections = tuneForGDB();
248   else
249     HasDwarfPubSections = DwarfPubSections == Enable;
250 
251   // SCE defaults to linkage names only for abstract subprograms.
252   if (DwarfLinkageNames == DefaultLinkageNames)
253     UseAllLinkageNames = !tuneForSCE();
254   else
255     UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames;
256 
257   unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion;
258   DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber
259                                     : MMI->getModule()->getDwarfVersion();
260   // Use dwarf 4 by default if nothing is requested.
261   DwarfVersion = DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION;
262 
263   // Work around a GDB bug. GDB doesn't support the standard opcode;
264   // SCE doesn't support GNU's; LLDB prefers the standard opcode, which
265   // is defined as of DWARF 3.
266   // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented
267   // https://sourceware.org/bugzilla/show_bug.cgi?id=11616
268   UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3;
269 
270   // GDB does not fully support the DWARF 4 representation for bitfields.
271   UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB();
272 
273   Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion);
274 }
275 
276 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h.
277 DwarfDebug::~DwarfDebug() { }
278 
279 static bool isObjCClass(StringRef Name) {
280   return Name.startswith("+") || Name.startswith("-");
281 }
282 
283 static bool hasObjCCategory(StringRef Name) {
284   if (!isObjCClass(Name))
285     return false;
286 
287   return Name.find(") ") != StringRef::npos;
288 }
289 
290 static void getObjCClassCategory(StringRef In, StringRef &Class,
291                                  StringRef &Category) {
292   if (!hasObjCCategory(In)) {
293     Class = In.slice(In.find('[') + 1, In.find(' '));
294     Category = "";
295     return;
296   }
297 
298   Class = In.slice(In.find('[') + 1, In.find('('));
299   Category = In.slice(In.find('[') + 1, In.find(' '));
300 }
301 
302 static StringRef getObjCMethodName(StringRef In) {
303   return In.slice(In.find(' ') + 1, In.find(']'));
304 }
305 
306 // Add the various names to the Dwarf accelerator table names.
307 // TODO: Determine whether or not we should add names for programs
308 // that do not have a DW_AT_name or DW_AT_linkage_name field - this
309 // is only slightly different than the lookup of non-standard ObjC names.
310 void DwarfDebug::addSubprogramNames(const DISubprogram *SP, DIE &Die) {
311   if (!SP->isDefinition())
312     return;
313   addAccelName(SP->getName(), Die);
314 
315   // If the linkage name is different than the name, go ahead and output
316   // that as well into the name table.
317   if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName())
318     addAccelName(SP->getLinkageName(), Die);
319 
320   // If this is an Objective-C selector name add it to the ObjC accelerator
321   // too.
322   if (isObjCClass(SP->getName())) {
323     StringRef Class, Category;
324     getObjCClassCategory(SP->getName(), Class, Category);
325     addAccelObjC(Class, Die);
326     if (Category != "")
327       addAccelObjC(Category, Die);
328     // Also add the base method name to the name table.
329     addAccelName(getObjCMethodName(SP->getName()), Die);
330   }
331 }
332 
333 /// Check whether we should create a DIE for the given Scope, return true
334 /// if we don't create a DIE (the corresponding DIE is null).
335 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) {
336   if (Scope->isAbstractScope())
337     return false;
338 
339   // We don't create a DIE if there is no Range.
340   const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges();
341   if (Ranges.empty())
342     return true;
343 
344   if (Ranges.size() > 1)
345     return false;
346 
347   // We don't create a DIE if we have a single Range and the end label
348   // is null.
349   return !getLabelAfterInsn(Ranges.front().second);
350 }
351 
352 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) {
353   F(CU);
354   if (auto *SkelCU = CU.getSkeleton())
355     if (CU.getCUNode()->getSplitDebugInlining())
356       F(*SkelCU);
357 }
358 
359 void DwarfDebug::constructAbstractSubprogramScopeDIE(LexicalScope *Scope) {
360   assert(Scope && Scope->getScopeNode());
361   assert(Scope->isAbstractScope());
362   assert(!Scope->getInlinedAt());
363 
364   const MDNode *SP = Scope->getScopeNode();
365 
366   ProcessedSPNodes.insert(SP);
367 
368   // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
369   // was inlined from another compile unit.
370   auto &CU = *CUMap.lookup(cast<DISubprogram>(SP)->getUnit());
371   forBothCUs(CU, [&](DwarfCompileUnit &CU) {
372     CU.constructAbstractSubprogramScopeDIE(Scope);
373   });
374 }
375 
376 void DwarfDebug::addGnuPubAttributes(DwarfUnit &U, DIE &D) const {
377   if (!GenerateGnuPubSections)
378     return;
379 
380   U.addFlag(D, dwarf::DW_AT_GNU_pubnames);
381 }
382 
383 // Create new DwarfCompileUnit for the given metadata node with tag
384 // DW_TAG_compile_unit.
385 DwarfCompileUnit &
386 DwarfDebug::constructDwarfCompileUnit(const DICompileUnit *DIUnit) {
387   StringRef FN = DIUnit->getFilename();
388   CompilationDir = DIUnit->getDirectory();
389 
390   auto OwnedUnit = make_unique<DwarfCompileUnit>(
391       InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder);
392   DwarfCompileUnit &NewCU = *OwnedUnit;
393   DIE &Die = NewCU.getUnitDie();
394   InfoHolder.addUnit(std::move(OwnedUnit));
395   if (useSplitDwarf()) {
396     NewCU.setSkeleton(constructSkeletonCU(NewCU));
397     NewCU.addString(Die, dwarf::DW_AT_GNU_dwo_name,
398                     DIUnit->getSplitDebugFilename());
399   }
400 
401   // LTO with assembly output shares a single line table amongst multiple CUs.
402   // To avoid the compilation directory being ambiguous, let the line table
403   // explicitly describe the directory of all files, never relying on the
404   // compilation directory.
405   if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU)
406     Asm->OutStreamer->getContext().setMCLineTableCompilationDir(
407         NewCU.getUniqueID(), CompilationDir);
408 
409   NewCU.addString(Die, dwarf::DW_AT_producer, DIUnit->getProducer());
410   NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
411                 DIUnit->getSourceLanguage());
412   NewCU.addString(Die, dwarf::DW_AT_name, FN);
413 
414   if (!useSplitDwarf()) {
415     NewCU.initStmtList();
416 
417     // If we're using split dwarf the compilation dir is going to be in the
418     // skeleton CU and so we don't need to duplicate it here.
419     if (!CompilationDir.empty())
420       NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
421 
422     addGnuPubAttributes(NewCU, Die);
423   }
424 
425   if (useAppleExtensionAttributes()) {
426     if (DIUnit->isOptimized())
427       NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized);
428 
429     StringRef Flags = DIUnit->getFlags();
430     if (!Flags.empty())
431       NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags);
432 
433     if (unsigned RVer = DIUnit->getRuntimeVersion())
434       NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers,
435                     dwarf::DW_FORM_data1, RVer);
436   }
437 
438   if (useSplitDwarf())
439     NewCU.initSection(Asm->getObjFileLowering().getDwarfInfoDWOSection());
440   else
441     NewCU.initSection(Asm->getObjFileLowering().getDwarfInfoSection());
442 
443   if (DIUnit->getDWOId()) {
444     // This CU is either a clang module DWO or a skeleton CU.
445     NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8,
446                   DIUnit->getDWOId());
447     if (!DIUnit->getSplitDebugFilename().empty())
448       // This is a prefabricated skeleton CU.
449       NewCU.addString(Die, dwarf::DW_AT_GNU_dwo_name,
450                       DIUnit->getSplitDebugFilename());
451   }
452 
453   CUMap.insert({DIUnit, &NewCU});
454   CUDieMap.insert({&Die, &NewCU});
455   return NewCU;
456 }
457 
458 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU,
459                                                   const DIImportedEntity *N) {
460   if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope()))
461     D->addChild(TheCU.constructImportedEntityDIE(N));
462 }
463 
464 // Emit all Dwarf sections that should come prior to the content. Create
465 // global DIEs and emit initial debug info sections. This is invoked by
466 // the target AsmPrinter.
467 void DwarfDebug::beginModule() {
468   NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
469   if (DisableDebugInfoPrinting)
470     return;
471 
472   const Module *M = MMI->getModule();
473 
474   unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(),
475                                        M->debug_compile_units_end());
476   // Tell MMI whether we have debug info.
477   MMI->setDebugInfoAvailability(NumDebugCUs > 0);
478   SingleCU = NumDebugCUs == 1;
479 
480   DenseMap<DIGlobalVariable *, const GlobalVariable *> GVMap;
481   for (const GlobalVariable &Global : M->globals()) {
482     SmallVector<DIGlobalVariable *, 1> GVs;
483     Global.getDebugInfo(GVs);
484     for (auto &GV : GVs)
485       GVMap[GV] = &Global;
486   }
487 
488   for (DICompileUnit *CUNode : M->debug_compile_units()) {
489     DwarfCompileUnit &CU = constructDwarfCompileUnit(CUNode);
490     for (auto *IE : CUNode->getImportedEntities())
491       CU.addImportedEntity(IE);
492     for (auto *GV : CUNode->getGlobalVariables())
493       CU.getOrCreateGlobalVariableDIE(GV, GVMap.lookup(GV));
494     for (auto *Ty : CUNode->getEnumTypes()) {
495       // The enum types array by design contains pointers to
496       // MDNodes rather than DIRefs. Unique them here.
497       CU.getOrCreateTypeDIE(cast<DIType>(Ty));
498     }
499     for (auto *Ty : CUNode->getRetainedTypes()) {
500       // The retained types array by design contains pointers to
501       // MDNodes rather than DIRefs. Unique them here.
502       if (DIType *RT = dyn_cast<DIType>(Ty))
503         if (!RT->isExternalTypeRef())
504           // There is no point in force-emitting a forward declaration.
505           CU.getOrCreateTypeDIE(RT);
506     }
507     // Emit imported_modules last so that the relevant context is already
508     // available.
509     for (auto *IE : CUNode->getImportedEntities())
510       constructAndAddImportedEntityDIE(CU, IE);
511   }
512 }
513 
514 void DwarfDebug::finishVariableDefinitions() {
515   for (const auto &Var : ConcreteVariables) {
516     DIE *VariableDie = Var->getDIE();
517     assert(VariableDie);
518     // FIXME: Consider the time-space tradeoff of just storing the unit pointer
519     // in the ConcreteVariables list, rather than looking it up again here.
520     // DIE::getUnit isn't simple - it walks parent pointers, etc.
521     DwarfCompileUnit *Unit = lookupUnit(VariableDie->getUnit());
522     assert(Unit);
523     DbgVariable *AbsVar = getExistingAbstractVariable(
524         InlinedVariable(Var->getVariable(), Var->getInlinedAt()));
525     if (AbsVar && AbsVar->getDIE()) {
526       Unit->addDIEEntry(*VariableDie, dwarf::DW_AT_abstract_origin,
527                         *AbsVar->getDIE());
528     } else
529       Unit->applyVariableAttributes(*Var, *VariableDie);
530   }
531 }
532 
533 void DwarfDebug::finishSubprogramDefinitions() {
534   for (auto &F : MMI->getModule()->functions())
535     if (auto *SP = F.getSubprogram())
536       if (ProcessedSPNodes.count(SP) &&
537           SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug)
538         forBothCUs(*CUMap.lookup(SP->getUnit()), [&](DwarfCompileUnit &CU) {
539           CU.finishSubprogramDefinition(SP);
540         });
541 }
542 
543 void DwarfDebug::finalizeModuleInfo() {
544   const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
545 
546   finishSubprogramDefinitions();
547 
548   finishVariableDefinitions();
549 
550   // Handle anything that needs to be done on a per-unit basis after
551   // all other generation.
552   for (const auto &P : CUMap) {
553     auto &TheCU = *P.second;
554     // Emit DW_AT_containing_type attribute to connect types with their
555     // vtable holding type.
556     TheCU.constructContainingTypeDIEs();
557 
558     // Add CU specific attributes if we need to add any.
559     // If we're splitting the dwarf out now that we've got the entire
560     // CU then add the dwo id to it.
561     auto *SkCU = TheCU.getSkeleton();
562     if (useSplitDwarf()) {
563       // Emit a unique identifier for this CU.
564       uint64_t ID = DIEHash(Asm).computeCUSignature(TheCU.getUnitDie());
565       TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
566                     dwarf::DW_FORM_data8, ID);
567       SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
568                     dwarf::DW_FORM_data8, ID);
569 
570       // We don't keep track of which addresses are used in which CU so this
571       // is a bit pessimistic under LTO.
572       if (!AddrPool.isEmpty()) {
573         const MCSymbol *Sym = TLOF.getDwarfAddrSection()->getBeginSymbol();
574         SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_addr_base,
575                               Sym, Sym);
576       }
577       if (!SkCU->getRangeLists().empty()) {
578         const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol();
579         SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base,
580                               Sym, Sym);
581       }
582     }
583 
584     // If we have code split among multiple sections or non-contiguous
585     // ranges of code then emit a DW_AT_ranges attribute on the unit that will
586     // remain in the .o file, otherwise add a DW_AT_low_pc.
587     // FIXME: We should use ranges allow reordering of code ala
588     // .subsections_via_symbols in mach-o. This would mean turning on
589     // ranges for all subprogram DIEs for mach-o.
590     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
591     if (unsigned NumRanges = TheCU.getRanges().size()) {
592       if (NumRanges > 1)
593         // A DW_AT_low_pc attribute may also be specified in combination with
594         // DW_AT_ranges to specify the default base address for use in
595         // location lists (see Section 2.6.2) and range lists (see Section
596         // 2.17.3).
597         U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0);
598       else
599         U.setBaseAddress(TheCU.getRanges().front().getStart());
600       U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges());
601     }
602 
603     auto *CUNode = cast<DICompileUnit>(P.first);
604     // If compile Unit has macros, emit "DW_AT_macro_info" attribute.
605     if (CUNode->getMacros())
606       U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info,
607                         U.getMacroLabelBegin(),
608                         TLOF.getDwarfMacinfoSection()->getBeginSymbol());
609   }
610 
611   // Compute DIE offsets and sizes.
612   InfoHolder.computeSizeAndOffsets();
613   if (useSplitDwarf())
614     SkeletonHolder.computeSizeAndOffsets();
615 }
616 
617 // Emit all Dwarf sections that should come after the content.
618 void DwarfDebug::endModule() {
619   assert(CurFn == nullptr);
620   assert(CurMI == nullptr);
621 
622   // If we aren't actually generating debug info (check beginModule -
623   // conditionalized on !DisableDebugInfoPrinting and the presence of the
624   // llvm.dbg.cu metadata node)
625   if (!MMI->hasDebugInfo())
626     return;
627 
628   // Finalize the debug info for the module.
629   finalizeModuleInfo();
630 
631   emitDebugStr();
632 
633   if (useSplitDwarf())
634     emitDebugLocDWO();
635   else
636     // Emit info into a debug loc section.
637     emitDebugLoc();
638 
639   // Corresponding abbreviations into a abbrev section.
640   emitAbbreviations();
641 
642   // Emit all the DIEs into a debug info section.
643   emitDebugInfo();
644 
645   // Emit info into a debug aranges section.
646   if (GenerateARangeSection)
647     emitDebugARanges();
648 
649   // Emit info into a debug ranges section.
650   emitDebugRanges();
651 
652   // Emit info into a debug macinfo section.
653   emitDebugMacinfo();
654 
655   if (useSplitDwarf()) {
656     emitDebugStrDWO();
657     emitDebugInfoDWO();
658     emitDebugAbbrevDWO();
659     emitDebugLineDWO();
660     // Emit DWO addresses.
661     AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection());
662   }
663 
664   // Emit info into the dwarf accelerator table sections.
665   if (useDwarfAccelTables()) {
666     emitAccelNames();
667     emitAccelObjC();
668     emitAccelNamespaces();
669     emitAccelTypes();
670   }
671 
672   // Emit the pubnames and pubtypes sections if requested.
673   if (HasDwarfPubSections) {
674     emitDebugPubNames(GenerateGnuPubSections);
675     emitDebugPubTypes(GenerateGnuPubSections);
676   }
677 
678   // clean up.
679   AbstractVariables.clear();
680 }
681 
682 // Find abstract variable, if any, associated with Var.
683 DbgVariable *
684 DwarfDebug::getExistingAbstractVariable(InlinedVariable IV,
685                                         const DILocalVariable *&Cleansed) {
686   // More then one inlined variable corresponds to one abstract variable.
687   Cleansed = IV.first;
688   auto I = AbstractVariables.find(Cleansed);
689   if (I != AbstractVariables.end())
690     return I->second.get();
691   return nullptr;
692 }
693 
694 DbgVariable *DwarfDebug::getExistingAbstractVariable(InlinedVariable IV) {
695   const DILocalVariable *Cleansed;
696   return getExistingAbstractVariable(IV, Cleansed);
697 }
698 
699 void DwarfDebug::createAbstractVariable(const DILocalVariable *Var,
700                                         LexicalScope *Scope) {
701   auto AbsDbgVariable = make_unique<DbgVariable>(Var, /* IA */ nullptr);
702   InfoHolder.addScopeVariable(Scope, AbsDbgVariable.get());
703   AbstractVariables[Var] = std::move(AbsDbgVariable);
704 }
705 
706 void DwarfDebug::ensureAbstractVariableIsCreated(InlinedVariable IV,
707                                                  const MDNode *ScopeNode) {
708   const DILocalVariable *Cleansed = nullptr;
709   if (getExistingAbstractVariable(IV, Cleansed))
710     return;
711 
712   createAbstractVariable(Cleansed, LScopes.getOrCreateAbstractScope(
713                                        cast<DILocalScope>(ScopeNode)));
714 }
715 
716 void DwarfDebug::ensureAbstractVariableIsCreatedIfScoped(
717     InlinedVariable IV, const MDNode *ScopeNode) {
718   const DILocalVariable *Cleansed = nullptr;
719   if (getExistingAbstractVariable(IV, Cleansed))
720     return;
721 
722   if (LexicalScope *Scope =
723           LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode)))
724     createAbstractVariable(Cleansed, Scope);
725 }
726 
727 // Collect variable information from side table maintained by MMI.
728 void DwarfDebug::collectVariableInfoFromMMITable(
729     DenseSet<InlinedVariable> &Processed) {
730   for (const auto &VI : MMI->getVariableDbgInfo()) {
731     if (!VI.Var)
732       continue;
733     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
734            "Expected inlined-at fields to agree");
735 
736     InlinedVariable Var(VI.Var, VI.Loc->getInlinedAt());
737     Processed.insert(Var);
738     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
739 
740     // If variable scope is not found then skip this variable.
741     if (!Scope)
742       continue;
743 
744     ensureAbstractVariableIsCreatedIfScoped(Var, Scope->getScopeNode());
745     auto RegVar = make_unique<DbgVariable>(Var.first, Var.second);
746     RegVar->initializeMMI(VI.Expr, VI.Slot);
747     if (InfoHolder.addScopeVariable(Scope, RegVar.get()))
748       ConcreteVariables.push_back(std::move(RegVar));
749   }
750 }
751 
752 // Get .debug_loc entry for the instruction range starting at MI.
753 static DebugLocEntry::Value getDebugLocValue(const MachineInstr *MI) {
754   const DIExpression *Expr = MI->getDebugExpression();
755 
756   assert(MI->getNumOperands() == 4);
757   if (MI->getOperand(0).isReg()) {
758     MachineLocation MLoc;
759     // If the second operand is an immediate, this is a
760     // register-indirect address.
761     if (!MI->getOperand(1).isImm())
762       MLoc.set(MI->getOperand(0).getReg());
763     else
764       MLoc.set(MI->getOperand(0).getReg(), MI->getOperand(1).getImm());
765     return DebugLocEntry::Value(Expr, MLoc);
766   }
767   if (MI->getOperand(0).isImm())
768     return DebugLocEntry::Value(Expr, MI->getOperand(0).getImm());
769   if (MI->getOperand(0).isFPImm())
770     return DebugLocEntry::Value(Expr, MI->getOperand(0).getFPImm());
771   if (MI->getOperand(0).isCImm())
772     return DebugLocEntry::Value(Expr, MI->getOperand(0).getCImm());
773 
774   llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!");
775 }
776 
777 /// \brief If this and Next are describing different pieces of the same
778 /// variable, merge them by appending Next's values to the current
779 /// list of values.
780 /// Return true if the merge was successful.
781 bool DebugLocEntry::MergeValues(const DebugLocEntry &Next) {
782   if (Begin == Next.Begin) {
783     auto *FirstExpr = cast<DIExpression>(Values[0].Expression);
784     auto *FirstNextExpr = cast<DIExpression>(Next.Values[0].Expression);
785     if (!FirstExpr->isBitPiece() || !FirstNextExpr->isBitPiece())
786       return false;
787 
788     // We can only merge entries if none of the pieces overlap any others.
789     // In doing so, we can take advantage of the fact that both lists are
790     // sorted.
791     for (unsigned i = 0, j = 0; i < Values.size(); ++i) {
792       for (; j < Next.Values.size(); ++j) {
793         int res = DebugHandlerBase::pieceCmp(
794             cast<DIExpression>(Values[i].Expression),
795             cast<DIExpression>(Next.Values[j].Expression));
796         if (res == 0) // The two expressions overlap, we can't merge.
797           return false;
798         // Values[i] is entirely before Next.Values[j],
799         // so go back to the next entry of Values.
800         else if (res == -1)
801           break;
802         // Next.Values[j] is entirely before Values[i], so go on to the
803         // next entry of Next.Values.
804       }
805     }
806 
807     addValues(Next.Values);
808     End = Next.End;
809     return true;
810   }
811   return false;
812 }
813 
814 /// Build the location list for all DBG_VALUEs in the function that
815 /// describe the same variable.  If the ranges of several independent
816 /// pieces of the same variable overlap partially, split them up and
817 /// combine the ranges. The resulting DebugLocEntries are will have
818 /// strict monotonically increasing begin addresses and will never
819 /// overlap.
820 //
821 // Input:
822 //
823 //   Ranges History [var, loc, piece ofs size]
824 // 0 |      [x, (reg0, piece 0, 32)]
825 // 1 | |    [x, (reg1, piece 32, 32)] <- IsPieceOfPrevEntry
826 // 2 | |    ...
827 // 3   |    [clobber reg0]
828 // 4        [x, (mem, piece 0, 64)] <- overlapping with both previous pieces of
829 //                                     x.
830 //
831 // Output:
832 //
833 // [0-1]    [x, (reg0, piece  0, 32)]
834 // [1-3]    [x, (reg0, piece  0, 32), (reg1, piece 32, 32)]
835 // [3-4]    [x, (reg1, piece 32, 32)]
836 // [4- ]    [x, (mem,  piece  0, 64)]
837 void
838 DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc,
839                               const DbgValueHistoryMap::InstrRanges &Ranges) {
840   SmallVector<DebugLocEntry::Value, 4> OpenRanges;
841 
842   for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) {
843     const MachineInstr *Begin = I->first;
844     const MachineInstr *End = I->second;
845     assert(Begin->isDebugValue() && "Invalid History entry");
846 
847     // Check if a variable is inaccessible in this range.
848     if (Begin->getNumOperands() > 1 &&
849         Begin->getOperand(0).isReg() && !Begin->getOperand(0).getReg()) {
850       OpenRanges.clear();
851       continue;
852     }
853 
854     // If this piece overlaps with any open ranges, truncate them.
855     const DIExpression *DIExpr = Begin->getDebugExpression();
856     auto Last = remove_if(OpenRanges, [&](DebugLocEntry::Value R) {
857       return piecesOverlap(DIExpr, R.getExpression());
858     });
859     OpenRanges.erase(Last, OpenRanges.end());
860 
861     const MCSymbol *StartLabel = getLabelBeforeInsn(Begin);
862     assert(StartLabel && "Forgot label before DBG_VALUE starting a range!");
863 
864     const MCSymbol *EndLabel;
865     if (End != nullptr)
866       EndLabel = getLabelAfterInsn(End);
867     else if (std::next(I) == Ranges.end())
868       EndLabel = Asm->getFunctionEnd();
869     else
870       EndLabel = getLabelBeforeInsn(std::next(I)->first);
871     assert(EndLabel && "Forgot label after instruction ending a range!");
872 
873     DEBUG(dbgs() << "DotDebugLoc: " << *Begin << "\n");
874 
875     auto Value = getDebugLocValue(Begin);
876     DebugLocEntry Loc(StartLabel, EndLabel, Value);
877     bool couldMerge = false;
878 
879     // If this is a piece, it may belong to the current DebugLocEntry.
880     if (DIExpr->isBitPiece()) {
881       // Add this value to the list of open ranges.
882       OpenRanges.push_back(Value);
883 
884       // Attempt to add the piece to the last entry.
885       if (!DebugLoc.empty())
886         if (DebugLoc.back().MergeValues(Loc))
887           couldMerge = true;
888     }
889 
890     if (!couldMerge) {
891       // Need to add a new DebugLocEntry. Add all values from still
892       // valid non-overlapping pieces.
893       if (OpenRanges.size())
894         Loc.addValues(OpenRanges);
895 
896       DebugLoc.push_back(std::move(Loc));
897     }
898 
899     // Attempt to coalesce the ranges of two otherwise identical
900     // DebugLocEntries.
901     auto CurEntry = DebugLoc.rbegin();
902     DEBUG({
903       dbgs() << CurEntry->getValues().size() << " Values:\n";
904       for (auto &Value : CurEntry->getValues())
905         Value.dump();
906       dbgs() << "-----\n";
907     });
908 
909     auto PrevEntry = std::next(CurEntry);
910     if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry))
911       DebugLoc.pop_back();
912   }
913 }
914 
915 DbgVariable *DwarfDebug::createConcreteVariable(LexicalScope &Scope,
916                                                 InlinedVariable IV) {
917   ensureAbstractVariableIsCreatedIfScoped(IV, Scope.getScopeNode());
918   ConcreteVariables.push_back(make_unique<DbgVariable>(IV.first, IV.second));
919   InfoHolder.addScopeVariable(&Scope, ConcreteVariables.back().get());
920   return ConcreteVariables.back().get();
921 }
922 
923 // Determine whether this DBG_VALUE is valid at the beginning of the function.
924 static bool validAtEntry(const MachineInstr *MInsn) {
925   auto MBB = MInsn->getParent();
926   // Is it in the entry basic block?
927   if (!MBB->pred_empty())
928     return false;
929   for (MachineBasicBlock::const_reverse_iterator I(MInsn); I != MBB->rend(); ++I)
930     if (!(I->isDebugValue() || I->getFlag(MachineInstr::FrameSetup)))
931       return false;
932   return true;
933 }
934 
935 // Find variables for each lexical scope.
936 void DwarfDebug::collectVariableInfo(DwarfCompileUnit &TheCU,
937                                      const DISubprogram *SP,
938                                      DenseSet<InlinedVariable> &Processed) {
939   // Grab the variable info that was squirreled away in the MMI side-table.
940   collectVariableInfoFromMMITable(Processed);
941 
942   for (const auto &I : DbgValues) {
943     InlinedVariable IV = I.first;
944     if (Processed.count(IV))
945       continue;
946 
947     // Instruction ranges, specifying where IV is accessible.
948     const auto &Ranges = I.second;
949     if (Ranges.empty())
950       continue;
951 
952     LexicalScope *Scope = nullptr;
953     if (const DILocation *IA = IV.second)
954       Scope = LScopes.findInlinedScope(IV.first->getScope(), IA);
955     else
956       Scope = LScopes.findLexicalScope(IV.first->getScope());
957     // If variable scope is not found then skip this variable.
958     if (!Scope)
959       continue;
960 
961     Processed.insert(IV);
962     DbgVariable *RegVar = createConcreteVariable(*Scope, IV);
963 
964     const MachineInstr *MInsn = Ranges.front().first;
965     assert(MInsn->isDebugValue() && "History must begin with debug value");
966 
967     // Check if there is a single DBG_VALUE, valid throughout the function.
968     // A single constant is also considered valid for the entire function.
969     if (Ranges.size() == 1 &&
970         (MInsn->getOperand(0).isImm() ||
971          (validAtEntry(MInsn) && Ranges.front().second == nullptr))) {
972       RegVar->initializeDbgValue(MInsn);
973       continue;
974     }
975 
976     // Handle multiple DBG_VALUE instructions describing one variable.
977     DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn);
978 
979     // Build the location list for this variable.
980     SmallVector<DebugLocEntry, 8> Entries;
981     buildLocationList(Entries, Ranges);
982 
983     // If the variable has a DIBasicType, extract it.  Basic types cannot have
984     // unique identifiers, so don't bother resolving the type with the
985     // identifier map.
986     const DIBasicType *BT = dyn_cast<DIBasicType>(
987         static_cast<const Metadata *>(IV.first->getType()));
988 
989     // Finalize the entry by lowering it into a DWARF bytestream.
990     for (auto &Entry : Entries)
991       Entry.finalize(*Asm, List, BT);
992   }
993 
994   // Collect info for variables that were optimized out.
995   for (const DILocalVariable *DV : SP->getVariables()) {
996     if (Processed.insert(InlinedVariable(DV, nullptr)).second)
997       if (LexicalScope *Scope = LScopes.findLexicalScope(DV->getScope()))
998         createConcreteVariable(*Scope, InlinedVariable(DV, nullptr));
999   }
1000 }
1001 
1002 // Process beginning of an instruction.
1003 void DwarfDebug::beginInstruction(const MachineInstr *MI) {
1004   DebugHandlerBase::beginInstruction(MI);
1005   assert(CurMI);
1006 
1007   // Check if source location changes, but ignore DBG_VALUE locations.
1008   if (!MI->isDebugValue()) {
1009     const DebugLoc &DL = MI->getDebugLoc();
1010     if (DL != PrevInstLoc) {
1011       if (DL) {
1012         unsigned Flags = 0;
1013         PrevInstLoc = DL;
1014         if (DL == PrologEndLoc) {
1015           Flags |= DWARF2_FLAG_PROLOGUE_END;
1016           PrologEndLoc = DebugLoc();
1017           Flags |= DWARF2_FLAG_IS_STMT;
1018         }
1019         if (DL.getLine() !=
1020             Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine())
1021           Flags |= DWARF2_FLAG_IS_STMT;
1022 
1023         const MDNode *Scope = DL.getScope();
1024         recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
1025       } else if (UnknownLocations) {
1026         PrevInstLoc = DL;
1027         recordSourceLine(0, 0, nullptr, 0);
1028       }
1029     }
1030   }
1031 }
1032 
1033 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) {
1034   // First known non-DBG_VALUE and non-frame setup location marks
1035   // the beginning of the function body.
1036   for (const auto &MBB : *MF)
1037     for (const auto &MI : MBB)
1038       if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) &&
1039           MI.getDebugLoc())
1040         return MI.getDebugLoc();
1041   return DebugLoc();
1042 }
1043 
1044 // Gather pre-function debug information.  Assumes being called immediately
1045 // after the function entry point has been emitted.
1046 void DwarfDebug::beginFunction(const MachineFunction *MF) {
1047   CurFn = MF;
1048 
1049   // If there's no debug info for the function we're not going to do anything.
1050   if (!MMI->hasDebugInfo())
1051     return;
1052 
1053   auto DI = MF->getFunction()->getSubprogram();
1054   if (!DI)
1055     return;
1056 
1057   // Grab the lexical scopes for the function, if we don't have any of those
1058   // then we're not going to be able to do anything.
1059   DebugHandlerBase::beginFunction(MF);
1060   if (LScopes.empty())
1061     return;
1062 
1063   // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function
1064   // belongs to so that we add to the correct per-cu line table in the
1065   // non-asm case.
1066   LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
1067   // FnScope->getScopeNode() and DI->second should represent the same function,
1068   // though they may not be the same MDNode due to inline functions merged in
1069   // LTO where the debug info metadata still differs (either due to distinct
1070   // written differences - two versions of a linkonce_odr function
1071   // written/copied into two separate files, or some sub-optimal metadata that
1072   // isn't structurally identical (see: file path/name info from clang, which
1073   // includes the directory of the cpp file being built, even when the file name
1074   // is absolute (such as an <> lookup header)))
1075   auto *SP = cast<DISubprogram>(FnScope->getScopeNode());
1076   DwarfCompileUnit *TheCU = CUMap.lookup(SP->getUnit());
1077   if (!TheCU) {
1078     assert(SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug &&
1079            "DICompileUnit missing from llvm.dbg.cu?");
1080     return;
1081   }
1082   if (Asm->OutStreamer->hasRawTextSupport())
1083     // Use a single line table if we are generating assembly.
1084     Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
1085   else
1086     Asm->OutStreamer->getContext().setDwarfCompileUnitID(TheCU->getUniqueID());
1087 
1088   // Record beginning of function.
1089   PrologEndLoc = findPrologueEndLoc(MF);
1090   if (DILocation *L = PrologEndLoc) {
1091     // We'd like to list the prologue as "not statements" but GDB behaves
1092     // poorly if we do that. Revisit this with caution/GDB (7.5+) testing.
1093     auto *SP = L->getInlinedAtScope()->getSubprogram();
1094     recordSourceLine(SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT);
1095   }
1096 }
1097 
1098 // Gather and emit post-function debug information.
1099 void DwarfDebug::endFunction(const MachineFunction *MF) {
1100   assert(CurFn == MF &&
1101       "endFunction should be called with the same function as beginFunction");
1102 
1103   const DISubprogram *SP = MF->getFunction()->getSubprogram();
1104   if (!MMI->hasDebugInfo() || LScopes.empty() || !SP ||
1105       SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) {
1106     // If we don't have a lexical scope for this function then there will
1107     // be a hole in the range information. Keep note of this by setting the
1108     // previously used section to nullptr.
1109     PrevCU = nullptr;
1110     CurFn = nullptr;
1111     DebugHandlerBase::endFunction(MF);
1112     // Mark functions with no debug info on any instructions, but a
1113     // valid DISubprogram as processed.
1114     if (SP)
1115       ProcessedSPNodes.insert(SP);
1116     return;
1117   }
1118 
1119   // Set DwarfDwarfCompileUnitID in MCContext to default value.
1120   Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
1121 
1122   LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
1123   SP = cast<DISubprogram>(FnScope->getScopeNode());
1124   DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit());
1125 
1126   DenseSet<InlinedVariable> ProcessedVars;
1127   collectVariableInfo(TheCU, SP, ProcessedVars);
1128 
1129   // Add the range of this function to the list of ranges for the CU.
1130   TheCU.addRange(RangeSpan(Asm->getFunctionBegin(), Asm->getFunctionEnd()));
1131 
1132   // Under -gmlt, skip building the subprogram if there are no inlined
1133   // subroutines inside it.
1134   if (TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly &&
1135       LScopes.getAbstractScopesList().empty() && !IsDarwin) {
1136     assert(InfoHolder.getScopeVariables().empty());
1137     assert(DbgValues.empty());
1138     // FIXME: This wouldn't be true in LTO with a -g (with inlining) CU followed
1139     // by a -gmlt CU. Add a test and remove this assertion.
1140     assert(AbstractVariables.empty());
1141     PrevLabel = nullptr;
1142     CurFn = nullptr;
1143     DebugHandlerBase::endFunction(MF);
1144     return;
1145   }
1146 
1147 #ifndef NDEBUG
1148   size_t NumAbstractScopes = LScopes.getAbstractScopesList().size();
1149 #endif
1150   // Construct abstract scopes.
1151   for (LexicalScope *AScope : LScopes.getAbstractScopesList()) {
1152     auto *SP = cast<DISubprogram>(AScope->getScopeNode());
1153     // Collect info for variables that were optimized out.
1154     for (const DILocalVariable *DV : SP->getVariables()) {
1155       if (!ProcessedVars.insert(InlinedVariable(DV, nullptr)).second)
1156         continue;
1157       ensureAbstractVariableIsCreated(InlinedVariable(DV, nullptr),
1158                                       DV->getScope());
1159       assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes
1160              && "ensureAbstractVariableIsCreated inserted abstract scopes");
1161     }
1162     constructAbstractSubprogramScopeDIE(AScope);
1163   }
1164 
1165   TheCU.constructSubprogramScopeDIE(FnScope);
1166   if (auto *SkelCU = TheCU.getSkeleton())
1167     if (!LScopes.getAbstractScopesList().empty() &&
1168         TheCU.getCUNode()->getSplitDebugInlining())
1169       SkelCU->constructSubprogramScopeDIE(FnScope);
1170 
1171   // Clear debug info
1172   // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the
1173   // DbgVariables except those that are also in AbstractVariables (since they
1174   // can be used cross-function)
1175   InfoHolder.getScopeVariables().clear();
1176   PrevLabel = nullptr;
1177   CurFn = nullptr;
1178   DebugHandlerBase::endFunction(MF);
1179 }
1180 
1181 // Register a source line with debug info. Returns the  unique label that was
1182 // emitted and which provides correspondence to the source line list.
1183 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S,
1184                                   unsigned Flags) {
1185   StringRef Fn;
1186   StringRef Dir;
1187   unsigned Src = 1;
1188   unsigned Discriminator = 0;
1189   if (auto *Scope = cast_or_null<DIScope>(S)) {
1190     Fn = Scope->getFilename();
1191     Dir = Scope->getDirectory();
1192     if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope))
1193       Discriminator = LBF->getDiscriminator();
1194 
1195     unsigned CUID = Asm->OutStreamer->getContext().getDwarfCompileUnitID();
1196     Src = static_cast<DwarfCompileUnit &>(*InfoHolder.getUnits()[CUID])
1197               .getOrCreateSourceID(Fn, Dir);
1198   }
1199   Asm->OutStreamer->EmitDwarfLocDirective(Src, Line, Col, Flags, 0,
1200                                           Discriminator, Fn);
1201 }
1202 
1203 //===----------------------------------------------------------------------===//
1204 // Emit Methods
1205 //===----------------------------------------------------------------------===//
1206 
1207 // Emit the debug info section.
1208 void DwarfDebug::emitDebugInfo() {
1209   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1210   Holder.emitUnits(/* UseOffsets */ false);
1211 }
1212 
1213 // Emit the abbreviation section.
1214 void DwarfDebug::emitAbbreviations() {
1215   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1216 
1217   Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection());
1218 }
1219 
1220 void DwarfDebug::emitAccel(DwarfAccelTable &Accel, MCSection *Section,
1221                            StringRef TableName) {
1222   Accel.FinalizeTable(Asm, TableName);
1223   Asm->OutStreamer->SwitchSection(Section);
1224 
1225   // Emit the full data.
1226   Accel.emit(Asm, Section->getBeginSymbol(), this);
1227 }
1228 
1229 // Emit visible names into a hashed accelerator table section.
1230 void DwarfDebug::emitAccelNames() {
1231   emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(),
1232             "Names");
1233 }
1234 
1235 // Emit objective C classes and categories into a hashed accelerator table
1236 // section.
1237 void DwarfDebug::emitAccelObjC() {
1238   emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(),
1239             "ObjC");
1240 }
1241 
1242 // Emit namespace dies into a hashed accelerator table.
1243 void DwarfDebug::emitAccelNamespaces() {
1244   emitAccel(AccelNamespace,
1245             Asm->getObjFileLowering().getDwarfAccelNamespaceSection(),
1246             "namespac");
1247 }
1248 
1249 // Emit type dies into a hashed accelerator table.
1250 void DwarfDebug::emitAccelTypes() {
1251   emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(),
1252             "types");
1253 }
1254 
1255 // Public name handling.
1256 // The format for the various pubnames:
1257 //
1258 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU
1259 // for the DIE that is named.
1260 //
1261 // gnu pubnames - offset/index value/name tuples where the offset is the offset
1262 // into the CU and the index value is computed according to the type of value
1263 // for the DIE that is named.
1264 //
1265 // For type units the offset is the offset of the skeleton DIE. For split dwarf
1266 // it's the offset within the debug_info/debug_types dwo section, however, the
1267 // reference in the pubname header doesn't change.
1268 
1269 /// computeIndexValue - Compute the gdb index value for the DIE and CU.
1270 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU,
1271                                                         const DIE *Die) {
1272   dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC;
1273 
1274   // We could have a specification DIE that has our most of our knowledge,
1275   // look for that now.
1276   if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) {
1277     DIE &SpecDIE = SpecVal.getDIEEntry().getEntry();
1278     if (SpecDIE.findAttribute(dwarf::DW_AT_external))
1279       Linkage = dwarf::GIEL_EXTERNAL;
1280   } else if (Die->findAttribute(dwarf::DW_AT_external))
1281     Linkage = dwarf::GIEL_EXTERNAL;
1282 
1283   switch (Die->getTag()) {
1284   case dwarf::DW_TAG_class_type:
1285   case dwarf::DW_TAG_structure_type:
1286   case dwarf::DW_TAG_union_type:
1287   case dwarf::DW_TAG_enumeration_type:
1288     return dwarf::PubIndexEntryDescriptor(
1289         dwarf::GIEK_TYPE, CU->getLanguage() != dwarf::DW_LANG_C_plus_plus
1290                               ? dwarf::GIEL_STATIC
1291                               : dwarf::GIEL_EXTERNAL);
1292   case dwarf::DW_TAG_typedef:
1293   case dwarf::DW_TAG_base_type:
1294   case dwarf::DW_TAG_subrange_type:
1295     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC);
1296   case dwarf::DW_TAG_namespace:
1297     return dwarf::GIEK_TYPE;
1298   case dwarf::DW_TAG_subprogram:
1299     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage);
1300   case dwarf::DW_TAG_variable:
1301     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage);
1302   case dwarf::DW_TAG_enumerator:
1303     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE,
1304                                           dwarf::GIEL_STATIC);
1305   default:
1306     return dwarf::GIEK_NONE;
1307   }
1308 }
1309 
1310 /// emitDebugPubNames - Emit visible names into a debug pubnames section.
1311 ///
1312 void DwarfDebug::emitDebugPubNames(bool GnuStyle) {
1313   MCSection *PSec = GnuStyle
1314                         ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection()
1315                         : Asm->getObjFileLowering().getDwarfPubNamesSection();
1316 
1317   emitDebugPubSection(GnuStyle, PSec, "Names",
1318                       &DwarfCompileUnit::getGlobalNames);
1319 }
1320 
1321 void DwarfDebug::emitDebugPubSection(
1322     bool GnuStyle, MCSection *PSec, StringRef Name,
1323     const StringMap<const DIE *> &(DwarfCompileUnit::*Accessor)() const) {
1324   for (const auto &NU : CUMap) {
1325     DwarfCompileUnit *TheU = NU.second;
1326 
1327     const auto &Globals = (TheU->*Accessor)();
1328 
1329     if (Globals.empty())
1330       continue;
1331 
1332     if (auto *Skeleton = TheU->getSkeleton())
1333       TheU = Skeleton;
1334 
1335     // Start the dwarf pubnames section.
1336     Asm->OutStreamer->SwitchSection(PSec);
1337 
1338     // Emit the header.
1339     Asm->OutStreamer->AddComment("Length of Public " + Name + " Info");
1340     MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin");
1341     MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end");
1342     Asm->EmitLabelDifference(EndLabel, BeginLabel, 4);
1343 
1344     Asm->OutStreamer->EmitLabel(BeginLabel);
1345 
1346     Asm->OutStreamer->AddComment("DWARF Version");
1347     Asm->EmitInt16(dwarf::DW_PUBNAMES_VERSION);
1348 
1349     Asm->OutStreamer->AddComment("Offset of Compilation Unit Info");
1350     Asm->emitDwarfSymbolReference(TheU->getLabelBegin());
1351 
1352     Asm->OutStreamer->AddComment("Compilation Unit Length");
1353     Asm->EmitInt32(TheU->getLength());
1354 
1355     // Emit the pubnames for this compilation unit.
1356     for (const auto &GI : Globals) {
1357       const char *Name = GI.getKeyData();
1358       const DIE *Entity = GI.second;
1359 
1360       Asm->OutStreamer->AddComment("DIE offset");
1361       Asm->EmitInt32(Entity->getOffset());
1362 
1363       if (GnuStyle) {
1364         dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity);
1365         Asm->OutStreamer->AddComment(
1366             Twine("Kind: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + ", " +
1367             dwarf::GDBIndexEntryLinkageString(Desc.Linkage));
1368         Asm->EmitInt8(Desc.toBits());
1369       }
1370 
1371       Asm->OutStreamer->AddComment("External Name");
1372       Asm->OutStreamer->EmitBytes(StringRef(Name, GI.getKeyLength() + 1));
1373     }
1374 
1375     Asm->OutStreamer->AddComment("End Mark");
1376     Asm->EmitInt32(0);
1377     Asm->OutStreamer->EmitLabel(EndLabel);
1378   }
1379 }
1380 
1381 void DwarfDebug::emitDebugPubTypes(bool GnuStyle) {
1382   MCSection *PSec = GnuStyle
1383                         ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection()
1384                         : Asm->getObjFileLowering().getDwarfPubTypesSection();
1385 
1386   emitDebugPubSection(GnuStyle, PSec, "Types",
1387                       &DwarfCompileUnit::getGlobalTypes);
1388 }
1389 
1390 /// Emit null-terminated strings into a debug str section.
1391 void DwarfDebug::emitDebugStr() {
1392   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1393   Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection());
1394 }
1395 
1396 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer,
1397                                    const DebugLocStream::Entry &Entry) {
1398   auto &&Comments = DebugLocs.getComments(Entry);
1399   auto Comment = Comments.begin();
1400   auto End = Comments.end();
1401   for (uint8_t Byte : DebugLocs.getBytes(Entry))
1402     Streamer.EmitInt8(Byte, Comment != End ? *(Comment++) : "");
1403 }
1404 
1405 static void emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT,
1406                               ByteStreamer &Streamer,
1407                               const DebugLocEntry::Value &Value,
1408                               unsigned PieceOffsetInBits) {
1409   DebugLocDwarfExpression DwarfExpr(AP.getDwarfDebug()->getDwarfVersion(),
1410                                     Streamer);
1411   // Regular entry.
1412   if (Value.isInt()) {
1413     if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed ||
1414                BT->getEncoding() == dwarf::DW_ATE_signed_char))
1415       DwarfExpr.AddSignedConstant(Value.getInt());
1416     else
1417       DwarfExpr.AddUnsignedConstant(Value.getInt());
1418   } else if (Value.isLocation()) {
1419     MachineLocation Loc = Value.getLoc();
1420     const DIExpression *Expr = Value.getExpression();
1421     if (!Expr || !Expr->getNumElements())
1422       // Regular entry.
1423       AP.EmitDwarfRegOp(Streamer, Loc);
1424     else {
1425       // Complex address entry.
1426       const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
1427       if (Loc.getOffset()) {
1428         DwarfExpr.AddMachineRegIndirect(TRI, Loc.getReg(), Loc.getOffset());
1429         DwarfExpr.AddExpression(Expr->expr_op_begin(), Expr->expr_op_end(),
1430                                 PieceOffsetInBits);
1431       } else
1432         DwarfExpr.AddMachineRegExpression(TRI, Expr, Loc.getReg(),
1433                                           PieceOffsetInBits);
1434     }
1435   } else if (Value.isConstantFP()) {
1436     APInt RawBytes = Value.getConstantFP()->getValueAPF().bitcastToAPInt();
1437     DwarfExpr.AddUnsignedConstant(RawBytes);
1438   }
1439 }
1440 
1441 void DebugLocEntry::finalize(const AsmPrinter &AP,
1442                              DebugLocStream::ListBuilder &List,
1443                              const DIBasicType *BT) {
1444   DebugLocStream::EntryBuilder Entry(List, Begin, End);
1445   BufferByteStreamer Streamer = Entry.getStreamer();
1446   const DebugLocEntry::Value &Value = Values[0];
1447   if (Value.isBitPiece()) {
1448     // Emit all pieces that belong to the same variable and range.
1449     assert(all_of(Values, [](DebugLocEntry::Value P) {
1450           return P.isBitPiece();
1451         }) && "all values are expected to be pieces");
1452     assert(std::is_sorted(Values.begin(), Values.end()) &&
1453            "pieces are expected to be sorted");
1454 
1455     unsigned Offset = 0;
1456     for (auto Piece : Values) {
1457       const DIExpression *Expr = Piece.getExpression();
1458       unsigned PieceOffset = Expr->getBitPieceOffset();
1459       unsigned PieceSize = Expr->getBitPieceSize();
1460       assert(Offset <= PieceOffset && "overlapping or duplicate pieces");
1461       if (Offset < PieceOffset) {
1462         // The DWARF spec seriously mandates pieces with no locations for gaps.
1463         DebugLocDwarfExpression Expr(AP.getDwarfDebug()->getDwarfVersion(),
1464                                      Streamer);
1465         Expr.AddOpPiece(PieceOffset-Offset, 0);
1466         Offset += PieceOffset-Offset;
1467       }
1468       Offset += PieceSize;
1469 
1470       emitDebugLocValue(AP, BT, Streamer, Piece, PieceOffset);
1471     }
1472   } else {
1473     assert(Values.size() == 1 && "only pieces may have >1 value");
1474     emitDebugLocValue(AP, BT, Streamer, Value, 0);
1475   }
1476 }
1477 
1478 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry) {
1479   // Emit the size.
1480   Asm->OutStreamer->AddComment("Loc expr size");
1481   Asm->EmitInt16(DebugLocs.getBytes(Entry).size());
1482 
1483   // Emit the entry.
1484   APByteStreamer Streamer(*Asm);
1485   emitDebugLocEntry(Streamer, Entry);
1486 }
1487 
1488 // Emit locations into the debug loc section.
1489 void DwarfDebug::emitDebugLoc() {
1490   // Start the dwarf loc section.
1491   Asm->OutStreamer->SwitchSection(
1492       Asm->getObjFileLowering().getDwarfLocSection());
1493   unsigned char Size = Asm->getDataLayout().getPointerSize();
1494   for (const auto &List : DebugLocs.getLists()) {
1495     Asm->OutStreamer->EmitLabel(List.Label);
1496     const DwarfCompileUnit *CU = List.CU;
1497     for (const auto &Entry : DebugLocs.getEntries(List)) {
1498       // Set up the range. This range is relative to the entry point of the
1499       // compile unit. This is a hard coded 0 for low_pc when we're emitting
1500       // ranges, or the DW_AT_low_pc on the compile unit otherwise.
1501       if (auto *Base = CU->getBaseAddress()) {
1502         Asm->EmitLabelDifference(Entry.BeginSym, Base, Size);
1503         Asm->EmitLabelDifference(Entry.EndSym, Base, Size);
1504       } else {
1505         Asm->OutStreamer->EmitSymbolValue(Entry.BeginSym, Size);
1506         Asm->OutStreamer->EmitSymbolValue(Entry.EndSym, Size);
1507       }
1508 
1509       emitDebugLocEntryLocation(Entry);
1510     }
1511     Asm->OutStreamer->EmitIntValue(0, Size);
1512     Asm->OutStreamer->EmitIntValue(0, Size);
1513   }
1514 }
1515 
1516 void DwarfDebug::emitDebugLocDWO() {
1517   Asm->OutStreamer->SwitchSection(
1518       Asm->getObjFileLowering().getDwarfLocDWOSection());
1519   for (const auto &List : DebugLocs.getLists()) {
1520     Asm->OutStreamer->EmitLabel(List.Label);
1521     for (const auto &Entry : DebugLocs.getEntries(List)) {
1522       // Just always use start_length for now - at least that's one address
1523       // rather than two. We could get fancier and try to, say, reuse an
1524       // address we know we've emitted elsewhere (the start of the function?
1525       // The start of the CU or CU subrange that encloses this range?)
1526       Asm->EmitInt8(dwarf::DW_LLE_start_length_entry);
1527       unsigned idx = AddrPool.getIndex(Entry.BeginSym);
1528       Asm->EmitULEB128(idx);
1529       Asm->EmitLabelDifference(Entry.EndSym, Entry.BeginSym, 4);
1530 
1531       emitDebugLocEntryLocation(Entry);
1532     }
1533     Asm->EmitInt8(dwarf::DW_LLE_end_of_list_entry);
1534   }
1535 }
1536 
1537 struct ArangeSpan {
1538   const MCSymbol *Start, *End;
1539 };
1540 
1541 // Emit a debug aranges section, containing a CU lookup for any
1542 // address we can tie back to a CU.
1543 void DwarfDebug::emitDebugARanges() {
1544   // Provides a unique id per text section.
1545   MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap;
1546 
1547   // Filter labels by section.
1548   for (const SymbolCU &SCU : ArangeLabels) {
1549     if (SCU.Sym->isInSection()) {
1550       // Make a note of this symbol and it's section.
1551       MCSection *Section = &SCU.Sym->getSection();
1552       if (!Section->getKind().isMetadata())
1553         SectionMap[Section].push_back(SCU);
1554     } else {
1555       // Some symbols (e.g. common/bss on mach-o) can have no section but still
1556       // appear in the output. This sucks as we rely on sections to build
1557       // arange spans. We can do it without, but it's icky.
1558       SectionMap[nullptr].push_back(SCU);
1559     }
1560   }
1561 
1562   DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans;
1563 
1564   for (auto &I : SectionMap) {
1565     MCSection *Section = I.first;
1566     SmallVector<SymbolCU, 8> &List = I.second;
1567     if (List.size() < 1)
1568       continue;
1569 
1570     // If we have no section (e.g. common), just write out
1571     // individual spans for each symbol.
1572     if (!Section) {
1573       for (const SymbolCU &Cur : List) {
1574         ArangeSpan Span;
1575         Span.Start = Cur.Sym;
1576         Span.End = nullptr;
1577         assert(Cur.CU);
1578         Spans[Cur.CU].push_back(Span);
1579       }
1580       continue;
1581     }
1582 
1583     // Sort the symbols by offset within the section.
1584     std::sort(
1585         List.begin(), List.end(), [&](const SymbolCU &A, const SymbolCU &B) {
1586           unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0;
1587           unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0;
1588 
1589           // Symbols with no order assigned should be placed at the end.
1590           // (e.g. section end labels)
1591           if (IA == 0)
1592             return false;
1593           if (IB == 0)
1594             return true;
1595           return IA < IB;
1596         });
1597 
1598     // Insert a final terminator.
1599     List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section)));
1600 
1601     // Build spans between each label.
1602     const MCSymbol *StartSym = List[0].Sym;
1603     for (size_t n = 1, e = List.size(); n < e; n++) {
1604       const SymbolCU &Prev = List[n - 1];
1605       const SymbolCU &Cur = List[n];
1606 
1607       // Try and build the longest span we can within the same CU.
1608       if (Cur.CU != Prev.CU) {
1609         ArangeSpan Span;
1610         Span.Start = StartSym;
1611         Span.End = Cur.Sym;
1612         assert(Prev.CU);
1613         Spans[Prev.CU].push_back(Span);
1614         StartSym = Cur.Sym;
1615       }
1616     }
1617   }
1618 
1619   // Start the dwarf aranges section.
1620   Asm->OutStreamer->SwitchSection(
1621       Asm->getObjFileLowering().getDwarfARangesSection());
1622 
1623   unsigned PtrSize = Asm->getDataLayout().getPointerSize();
1624 
1625   // Build a list of CUs used.
1626   std::vector<DwarfCompileUnit *> CUs;
1627   for (const auto &it : Spans) {
1628     DwarfCompileUnit *CU = it.first;
1629     CUs.push_back(CU);
1630   }
1631 
1632   // Sort the CU list (again, to ensure consistent output order).
1633   std::sort(CUs.begin(), CUs.end(),
1634             [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) {
1635               return A->getUniqueID() < B->getUniqueID();
1636             });
1637 
1638   // Emit an arange table for each CU we used.
1639   for (DwarfCompileUnit *CU : CUs) {
1640     std::vector<ArangeSpan> &List = Spans[CU];
1641 
1642     // Describe the skeleton CU's offset and length, not the dwo file's.
1643     if (auto *Skel = CU->getSkeleton())
1644       CU = Skel;
1645 
1646     // Emit size of content not including length itself.
1647     unsigned ContentSize =
1648         sizeof(int16_t) + // DWARF ARange version number
1649         sizeof(int32_t) + // Offset of CU in the .debug_info section
1650         sizeof(int8_t) +  // Pointer Size (in bytes)
1651         sizeof(int8_t);   // Segment Size (in bytes)
1652 
1653     unsigned TupleSize = PtrSize * 2;
1654 
1655     // 7.20 in the Dwarf specs requires the table to be aligned to a tuple.
1656     unsigned Padding =
1657         OffsetToAlignment(sizeof(int32_t) + ContentSize, TupleSize);
1658 
1659     ContentSize += Padding;
1660     ContentSize += (List.size() + 1) * TupleSize;
1661 
1662     // For each compile unit, write the list of spans it covers.
1663     Asm->OutStreamer->AddComment("Length of ARange Set");
1664     Asm->EmitInt32(ContentSize);
1665     Asm->OutStreamer->AddComment("DWARF Arange version number");
1666     Asm->EmitInt16(dwarf::DW_ARANGES_VERSION);
1667     Asm->OutStreamer->AddComment("Offset Into Debug Info Section");
1668     Asm->emitDwarfSymbolReference(CU->getLabelBegin());
1669     Asm->OutStreamer->AddComment("Address Size (in bytes)");
1670     Asm->EmitInt8(PtrSize);
1671     Asm->OutStreamer->AddComment("Segment Size (in bytes)");
1672     Asm->EmitInt8(0);
1673 
1674     Asm->OutStreamer->emitFill(Padding, 0xff);
1675 
1676     for (const ArangeSpan &Span : List) {
1677       Asm->EmitLabelReference(Span.Start, PtrSize);
1678 
1679       // Calculate the size as being from the span start to it's end.
1680       if (Span.End) {
1681         Asm->EmitLabelDifference(Span.End, Span.Start, PtrSize);
1682       } else {
1683         // For symbols without an end marker (e.g. common), we
1684         // write a single arange entry containing just that one symbol.
1685         uint64_t Size = SymSize[Span.Start];
1686         if (Size == 0)
1687           Size = 1;
1688 
1689         Asm->OutStreamer->EmitIntValue(Size, PtrSize);
1690       }
1691     }
1692 
1693     Asm->OutStreamer->AddComment("ARange terminator");
1694     Asm->OutStreamer->EmitIntValue(0, PtrSize);
1695     Asm->OutStreamer->EmitIntValue(0, PtrSize);
1696   }
1697 }
1698 
1699 /// Emit address ranges into a debug ranges section.
1700 void DwarfDebug::emitDebugRanges() {
1701   // Start the dwarf ranges section.
1702   Asm->OutStreamer->SwitchSection(
1703       Asm->getObjFileLowering().getDwarfRangesSection());
1704 
1705   // Size for our labels.
1706   unsigned char Size = Asm->getDataLayout().getPointerSize();
1707 
1708   // Grab the specific ranges for the compile units in the module.
1709   for (const auto &I : CUMap) {
1710     DwarfCompileUnit *TheCU = I.second;
1711 
1712     if (auto *Skel = TheCU->getSkeleton())
1713       TheCU = Skel;
1714 
1715     // Iterate over the misc ranges for the compile units in the module.
1716     for (const RangeSpanList &List : TheCU->getRangeLists()) {
1717       // Emit our symbol so we can find the beginning of the range.
1718       Asm->OutStreamer->EmitLabel(List.getSym());
1719 
1720       for (const RangeSpan &Range : List.getRanges()) {
1721         const MCSymbol *Begin = Range.getStart();
1722         const MCSymbol *End = Range.getEnd();
1723         assert(Begin && "Range without a begin symbol?");
1724         assert(End && "Range without an end symbol?");
1725         if (auto *Base = TheCU->getBaseAddress()) {
1726           Asm->EmitLabelDifference(Begin, Base, Size);
1727           Asm->EmitLabelDifference(End, Base, Size);
1728         } else {
1729           Asm->OutStreamer->EmitSymbolValue(Begin, Size);
1730           Asm->OutStreamer->EmitSymbolValue(End, Size);
1731         }
1732       }
1733 
1734       // And terminate the list with two 0 values.
1735       Asm->OutStreamer->EmitIntValue(0, Size);
1736       Asm->OutStreamer->EmitIntValue(0, Size);
1737     }
1738   }
1739 }
1740 
1741 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) {
1742   for (auto *MN : Nodes) {
1743     if (auto *M = dyn_cast<DIMacro>(MN))
1744       emitMacro(*M);
1745     else if (auto *F = dyn_cast<DIMacroFile>(MN))
1746       emitMacroFile(*F, U);
1747     else
1748       llvm_unreachable("Unexpected DI type!");
1749   }
1750 }
1751 
1752 void DwarfDebug::emitMacro(DIMacro &M) {
1753   Asm->EmitULEB128(M.getMacinfoType());
1754   Asm->EmitULEB128(M.getLine());
1755   StringRef Name = M.getName();
1756   StringRef Value = M.getValue();
1757   Asm->OutStreamer->EmitBytes(Name);
1758   if (!Value.empty()) {
1759     // There should be one space between macro name and macro value.
1760     Asm->EmitInt8(' ');
1761     Asm->OutStreamer->EmitBytes(Value);
1762   }
1763   Asm->EmitInt8('\0');
1764 }
1765 
1766 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) {
1767   assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file);
1768   Asm->EmitULEB128(dwarf::DW_MACINFO_start_file);
1769   Asm->EmitULEB128(F.getLine());
1770   DIFile *File = F.getFile();
1771   unsigned FID =
1772       U.getOrCreateSourceID(File->getFilename(), File->getDirectory());
1773   Asm->EmitULEB128(FID);
1774   handleMacroNodes(F.getElements(), U);
1775   Asm->EmitULEB128(dwarf::DW_MACINFO_end_file);
1776 }
1777 
1778 /// Emit macros into a debug macinfo section.
1779 void DwarfDebug::emitDebugMacinfo() {
1780   // Start the dwarf macinfo section.
1781   Asm->OutStreamer->SwitchSection(
1782       Asm->getObjFileLowering().getDwarfMacinfoSection());
1783 
1784   for (const auto &P : CUMap) {
1785     auto &TheCU = *P.second;
1786     auto *SkCU = TheCU.getSkeleton();
1787     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
1788     auto *CUNode = cast<DICompileUnit>(P.first);
1789     Asm->OutStreamer->EmitLabel(U.getMacroLabelBegin());
1790     handleMacroNodes(CUNode->getMacros(), U);
1791   }
1792   Asm->OutStreamer->AddComment("End Of Macro List Mark");
1793   Asm->EmitInt8(0);
1794 }
1795 
1796 // DWARF5 Experimental Separate Dwarf emitters.
1797 
1798 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die,
1799                                   std::unique_ptr<DwarfCompileUnit> NewU) {
1800   NewU->addString(Die, dwarf::DW_AT_GNU_dwo_name,
1801                   U.getCUNode()->getSplitDebugFilename());
1802 
1803   if (!CompilationDir.empty())
1804     NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
1805 
1806   addGnuPubAttributes(*NewU, Die);
1807 
1808   SkeletonHolder.addUnit(std::move(NewU));
1809 }
1810 
1811 // This DIE has the following attributes: DW_AT_comp_dir, DW_AT_stmt_list,
1812 // DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges, DW_AT_dwo_name, DW_AT_dwo_id,
1813 // DW_AT_addr_base, DW_AT_ranges_base.
1814 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) {
1815 
1816   auto OwnedUnit = make_unique<DwarfCompileUnit>(
1817       CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder);
1818   DwarfCompileUnit &NewCU = *OwnedUnit;
1819   NewCU.initSection(Asm->getObjFileLowering().getDwarfInfoSection());
1820 
1821   NewCU.initStmtList();
1822 
1823   initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit));
1824 
1825   return NewCU;
1826 }
1827 
1828 // Emit the .debug_info.dwo section for separated dwarf. This contains the
1829 // compile units that would normally be in debug_info.
1830 void DwarfDebug::emitDebugInfoDWO() {
1831   assert(useSplitDwarf() && "No split dwarf debug info?");
1832   // Don't emit relocations into the dwo file.
1833   InfoHolder.emitUnits(/* UseOffsets */ true);
1834 }
1835 
1836 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the
1837 // abbreviations for the .debug_info.dwo section.
1838 void DwarfDebug::emitDebugAbbrevDWO() {
1839   assert(useSplitDwarf() && "No split dwarf?");
1840   InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection());
1841 }
1842 
1843 void DwarfDebug::emitDebugLineDWO() {
1844   assert(useSplitDwarf() && "No split dwarf?");
1845   Asm->OutStreamer->SwitchSection(
1846       Asm->getObjFileLowering().getDwarfLineDWOSection());
1847   SplitTypeUnitFileTable.Emit(*Asm->OutStreamer, MCDwarfLineTableParams());
1848 }
1849 
1850 // Emit the .debug_str.dwo section for separated dwarf. This contains the
1851 // string section and is identical in format to traditional .debug_str
1852 // sections.
1853 void DwarfDebug::emitDebugStrDWO() {
1854   assert(useSplitDwarf() && "No split dwarf?");
1855   MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection();
1856   InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(),
1857                          OffSec);
1858 }
1859 
1860 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) {
1861   if (!useSplitDwarf())
1862     return nullptr;
1863   if (SingleCU)
1864     SplitTypeUnitFileTable.setCompilationDir(CU.getCUNode()->getDirectory());
1865   return &SplitTypeUnitFileTable;
1866 }
1867 
1868 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) {
1869   MD5 Hash;
1870   Hash.update(Identifier);
1871   // ... take the least significant 8 bytes and return those. Our MD5
1872   // implementation always returns its results in little endian, swap bytes
1873   // appropriately.
1874   MD5::MD5Result Result;
1875   Hash.final(Result);
1876   return support::endian::read64le(Result + 8);
1877 }
1878 
1879 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
1880                                       StringRef Identifier, DIE &RefDie,
1881                                       const DICompositeType *CTy) {
1882   // Fast path if we're building some type units and one has already used the
1883   // address pool we know we're going to throw away all this work anyway, so
1884   // don't bother building dependent types.
1885   if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed())
1886     return;
1887 
1888   auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0));
1889   if (!Ins.second) {
1890     CU.addDIETypeSignature(RefDie, Ins.first->second);
1891     return;
1892   }
1893 
1894   bool TopLevelType = TypeUnitsUnderConstruction.empty();
1895   AddrPool.resetUsedFlag();
1896 
1897   auto OwnedUnit = make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder,
1898                                               getDwoLineTable(CU));
1899   DwarfTypeUnit &NewTU = *OwnedUnit;
1900   DIE &UnitDie = NewTU.getUnitDie();
1901   TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy);
1902 
1903   NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
1904                 CU.getLanguage());
1905 
1906   uint64_t Signature = makeTypeSignature(Identifier);
1907   NewTU.setTypeSignature(Signature);
1908   Ins.first->second = Signature;
1909 
1910   if (useSplitDwarf())
1911     NewTU.initSection(Asm->getObjFileLowering().getDwarfTypesDWOSection());
1912   else {
1913     CU.applyStmtList(UnitDie);
1914     NewTU.initSection(
1915         Asm->getObjFileLowering().getDwarfTypesSection(Signature));
1916   }
1917 
1918   NewTU.setType(NewTU.createTypeDIE(CTy));
1919 
1920   if (TopLevelType) {
1921     auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction);
1922     TypeUnitsUnderConstruction.clear();
1923 
1924     // Types referencing entries in the address table cannot be placed in type
1925     // units.
1926     if (AddrPool.hasBeenUsed()) {
1927 
1928       // Remove all the types built while building this type.
1929       // This is pessimistic as some of these types might not be dependent on
1930       // the type that used an address.
1931       for (const auto &TU : TypeUnitsToAdd)
1932         TypeSignatures.erase(TU.second);
1933 
1934       // Construct this type in the CU directly.
1935       // This is inefficient because all the dependent types will be rebuilt
1936       // from scratch, including building them in type units, discovering that
1937       // they depend on addresses, throwing them out and rebuilding them.
1938       CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy));
1939       return;
1940     }
1941 
1942     // If the type wasn't dependent on fission addresses, finish adding the type
1943     // and all its dependent types.
1944     for (auto &TU : TypeUnitsToAdd) {
1945       InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get());
1946       InfoHolder.emitUnit(TU.first.get(), useSplitDwarf());
1947     }
1948   }
1949   CU.addDIETypeSignature(RefDie, Signature);
1950 }
1951 
1952 // Accelerator table mutators - add each name along with its companion
1953 // DIE to the proper table while ensuring that the name that we're going
1954 // to reference is in the string table. We do this since the names we
1955 // add may not only be identical to the names in the DIE.
1956 void DwarfDebug::addAccelName(StringRef Name, const DIE &Die) {
1957   if (!useDwarfAccelTables())
1958     return;
1959   AccelNames.AddName(InfoHolder.getStringPool().getEntry(*Asm, Name), &Die);
1960 }
1961 
1962 void DwarfDebug::addAccelObjC(StringRef Name, const DIE &Die) {
1963   if (!useDwarfAccelTables())
1964     return;
1965   AccelObjC.AddName(InfoHolder.getStringPool().getEntry(*Asm, Name), &Die);
1966 }
1967 
1968 void DwarfDebug::addAccelNamespace(StringRef Name, const DIE &Die) {
1969   if (!useDwarfAccelTables())
1970     return;
1971   AccelNamespace.AddName(InfoHolder.getStringPool().getEntry(*Asm, Name), &Die);
1972 }
1973 
1974 void DwarfDebug::addAccelType(StringRef Name, const DIE &Die, char Flags) {
1975   if (!useDwarfAccelTables())
1976     return;
1977   AccelTypes.AddName(InfoHolder.getStringPool().getEntry(*Asm, Name), &Die);
1978 }
1979