1 //===-- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing dwarf debug info into asm files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "DwarfDebug.h" 15 #include "ByteStreamer.h" 16 #include "DIEHash.h" 17 #include "DebugLocEntry.h" 18 #include "DwarfCompileUnit.h" 19 #include "DwarfExpression.h" 20 #include "DwarfUnit.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/CodeGen/DIE.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineModuleInfo.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DebugInfo.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ValueHandle.h" 34 #include "llvm/MC/MCAsmInfo.h" 35 #include "llvm/MC/MCDwarf.h" 36 #include "llvm/MC/MCSection.h" 37 #include "llvm/MC/MCStreamer.h" 38 #include "llvm/MC/MCSymbol.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/Dwarf.h" 42 #include "llvm/Support/Endian.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/FormattedStream.h" 45 #include "llvm/Support/LEB128.h" 46 #include "llvm/Support/MD5.h" 47 #include "llvm/Support/Path.h" 48 #include "llvm/Support/Timer.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include "llvm/Target/TargetFrameLowering.h" 51 #include "llvm/Target/TargetLoweringObjectFile.h" 52 #include "llvm/Target/TargetMachine.h" 53 #include "llvm/Target/TargetOptions.h" 54 #include "llvm/Target/TargetRegisterInfo.h" 55 #include "llvm/Target/TargetSubtargetInfo.h" 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "dwarfdebug" 60 61 static cl::opt<bool> 62 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, 63 cl::desc("Disable debug info printing")); 64 65 static cl::opt<bool> UnknownLocations( 66 "use-unknown-locations", cl::Hidden, 67 cl::desc("Make an absence of debug location information explicit."), 68 cl::init(false)); 69 70 static cl::opt<bool> 71 GenerateGnuPubSections("generate-gnu-dwarf-pub-sections", cl::Hidden, 72 cl::desc("Generate GNU-style pubnames and pubtypes"), 73 cl::init(false)); 74 75 static cl::opt<bool> GenerateARangeSection("generate-arange-section", 76 cl::Hidden, 77 cl::desc("Generate dwarf aranges"), 78 cl::init(false)); 79 80 namespace { 81 enum DefaultOnOff { Default, Enable, Disable }; 82 } 83 84 static cl::opt<DefaultOnOff> 85 DwarfAccelTables("dwarf-accel-tables", cl::Hidden, 86 cl::desc("Output prototype dwarf accelerator tables."), 87 cl::values(clEnumVal(Default, "Default for platform"), 88 clEnumVal(Enable, "Enabled"), 89 clEnumVal(Disable, "Disabled"), clEnumValEnd), 90 cl::init(Default)); 91 92 static cl::opt<DefaultOnOff> 93 SplitDwarf("split-dwarf", cl::Hidden, 94 cl::desc("Output DWARF5 split debug info."), 95 cl::values(clEnumVal(Default, "Default for platform"), 96 clEnumVal(Enable, "Enabled"), 97 clEnumVal(Disable, "Disabled"), clEnumValEnd), 98 cl::init(Default)); 99 100 static cl::opt<DefaultOnOff> 101 DwarfPubSections("generate-dwarf-pub-sections", cl::Hidden, 102 cl::desc("Generate DWARF pubnames and pubtypes sections"), 103 cl::values(clEnumVal(Default, "Default for platform"), 104 clEnumVal(Enable, "Enabled"), 105 clEnumVal(Disable, "Disabled"), clEnumValEnd), 106 cl::init(Default)); 107 108 enum LinkageNameOption { 109 DefaultLinkageNames, 110 AllLinkageNames, 111 AbstractLinkageNames 112 }; 113 static cl::opt<LinkageNameOption> 114 DwarfLinkageNames("dwarf-linkage-names", cl::Hidden, 115 cl::desc("Which DWARF linkage-name attributes to emit."), 116 cl::values(clEnumValN(DefaultLinkageNames, "Default", 117 "Default for platform"), 118 clEnumValN(AllLinkageNames, "All", "All"), 119 clEnumValN(AbstractLinkageNames, "Abstract", 120 "Abstract subprograms"), 121 clEnumValEnd), 122 cl::init(DefaultLinkageNames)); 123 124 static const char *const DWARFGroupName = "DWARF Emission"; 125 static const char *const DbgTimerName = "DWARF Debug Writer"; 126 127 void DebugLocDwarfExpression::EmitOp(uint8_t Op, const char *Comment) { 128 BS.EmitInt8( 129 Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op) 130 : dwarf::OperationEncodingString(Op)); 131 } 132 133 void DebugLocDwarfExpression::EmitSigned(int64_t Value) { 134 BS.EmitSLEB128(Value, Twine(Value)); 135 } 136 137 void DebugLocDwarfExpression::EmitUnsigned(uint64_t Value) { 138 BS.EmitULEB128(Value, Twine(Value)); 139 } 140 141 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI, 142 unsigned MachineReg) { 143 // This information is not available while emitting .debug_loc entries. 144 return false; 145 } 146 147 //===----------------------------------------------------------------------===// 148 149 bool DbgVariable::isBlockByrefVariable() const { 150 assert(Var && "Invalid complex DbgVariable!"); 151 return Var->getType().resolve()->isBlockByrefStruct(); 152 } 153 154 const DIType *DbgVariable::getType() const { 155 DIType *Ty = Var->getType().resolve(); 156 // FIXME: isBlockByrefVariable should be reformulated in terms of complex 157 // addresses instead. 158 if (Ty->isBlockByrefStruct()) { 159 /* Byref variables, in Blocks, are declared by the programmer as 160 "SomeType VarName;", but the compiler creates a 161 __Block_byref_x_VarName struct, and gives the variable VarName 162 either the struct, or a pointer to the struct, as its type. This 163 is necessary for various behind-the-scenes things the compiler 164 needs to do with by-reference variables in blocks. 165 166 However, as far as the original *programmer* is concerned, the 167 variable should still have type 'SomeType', as originally declared. 168 169 The following function dives into the __Block_byref_x_VarName 170 struct to find the original type of the variable. This will be 171 passed back to the code generating the type for the Debug 172 Information Entry for the variable 'VarName'. 'VarName' will then 173 have the original type 'SomeType' in its debug information. 174 175 The original type 'SomeType' will be the type of the field named 176 'VarName' inside the __Block_byref_x_VarName struct. 177 178 NOTE: In order for this to not completely fail on the debugger 179 side, the Debug Information Entry for the variable VarName needs to 180 have a DW_AT_location that tells the debugger how to unwind through 181 the pointers and __Block_byref_x_VarName struct to find the actual 182 value of the variable. The function addBlockByrefType does this. */ 183 DIType *subType = Ty; 184 uint16_t tag = Ty->getTag(); 185 186 if (tag == dwarf::DW_TAG_pointer_type) 187 subType = resolve(cast<DIDerivedType>(Ty)->getBaseType()); 188 189 auto Elements = cast<DICompositeType>(subType)->getElements(); 190 for (unsigned i = 0, N = Elements.size(); i < N; ++i) { 191 auto *DT = cast<DIDerivedType>(Elements[i]); 192 if (getName() == DT->getName()) 193 return resolve(DT->getBaseType()); 194 } 195 } 196 return Ty; 197 } 198 199 static const DwarfAccelTable::Atom TypeAtoms[] = { 200 DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset, dwarf::DW_FORM_data4), 201 DwarfAccelTable::Atom(dwarf::DW_ATOM_die_tag, dwarf::DW_FORM_data2), 202 DwarfAccelTable::Atom(dwarf::DW_ATOM_type_flags, dwarf::DW_FORM_data1)}; 203 204 DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M) 205 : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()), 206 InfoHolder(A, "info_string", DIEValueAllocator), 207 SkeletonHolder(A, "skel_string", DIEValueAllocator), 208 IsDarwin(Triple(A->getTargetTriple()).isOSDarwin()), 209 AccelNames(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset, 210 dwarf::DW_FORM_data4)), 211 AccelObjC(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset, 212 dwarf::DW_FORM_data4)), 213 AccelNamespace(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset, 214 dwarf::DW_FORM_data4)), 215 AccelTypes(TypeAtoms), DebuggerTuning(DebuggerKind::Default) { 216 217 CurFn = nullptr; 218 Triple TT(Asm->getTargetTriple()); 219 220 // Make sure we know our "debugger tuning." The target option takes 221 // precedence; fall back to triple-based defaults. 222 if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default) 223 DebuggerTuning = Asm->TM.Options.DebuggerTuning; 224 else if (IsDarwin) 225 DebuggerTuning = DebuggerKind::LLDB; 226 else if (TT.isPS4CPU()) 227 DebuggerTuning = DebuggerKind::SCE; 228 else 229 DebuggerTuning = DebuggerKind::GDB; 230 231 // Turn on accelerator tables for LLDB by default. 232 if (DwarfAccelTables == Default) 233 HasDwarfAccelTables = tuneForLLDB(); 234 else 235 HasDwarfAccelTables = DwarfAccelTables == Enable; 236 237 HasAppleExtensionAttributes = tuneForLLDB(); 238 239 // Handle split DWARF. Off by default for now. 240 if (SplitDwarf == Default) 241 HasSplitDwarf = false; 242 else 243 HasSplitDwarf = SplitDwarf == Enable; 244 245 // Pubnames/pubtypes on by default for GDB. 246 if (DwarfPubSections == Default) 247 HasDwarfPubSections = tuneForGDB(); 248 else 249 HasDwarfPubSections = DwarfPubSections == Enable; 250 251 // SCE defaults to linkage names only for abstract subprograms. 252 if (DwarfLinkageNames == DefaultLinkageNames) 253 UseAllLinkageNames = !tuneForSCE(); 254 else 255 UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames; 256 257 unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion; 258 DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber 259 : MMI->getModule()->getDwarfVersion(); 260 // Use dwarf 4 by default if nothing is requested. 261 DwarfVersion = DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION; 262 263 // Work around a GDB bug. GDB doesn't support the standard opcode; 264 // SCE doesn't support GNU's; LLDB prefers the standard opcode, which 265 // is defined as of DWARF 3. 266 // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented 267 // https://sourceware.org/bugzilla/show_bug.cgi?id=11616 268 UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3; 269 270 // GDB does not fully support the DWARF 4 representation for bitfields. 271 UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB(); 272 273 Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion); 274 } 275 276 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h. 277 DwarfDebug::~DwarfDebug() { } 278 279 static bool isObjCClass(StringRef Name) { 280 return Name.startswith("+") || Name.startswith("-"); 281 } 282 283 static bool hasObjCCategory(StringRef Name) { 284 if (!isObjCClass(Name)) 285 return false; 286 287 return Name.find(") ") != StringRef::npos; 288 } 289 290 static void getObjCClassCategory(StringRef In, StringRef &Class, 291 StringRef &Category) { 292 if (!hasObjCCategory(In)) { 293 Class = In.slice(In.find('[') + 1, In.find(' ')); 294 Category = ""; 295 return; 296 } 297 298 Class = In.slice(In.find('[') + 1, In.find('(')); 299 Category = In.slice(In.find('[') + 1, In.find(' ')); 300 } 301 302 static StringRef getObjCMethodName(StringRef In) { 303 return In.slice(In.find(' ') + 1, In.find(']')); 304 } 305 306 // Add the various names to the Dwarf accelerator table names. 307 // TODO: Determine whether or not we should add names for programs 308 // that do not have a DW_AT_name or DW_AT_linkage_name field - this 309 // is only slightly different than the lookup of non-standard ObjC names. 310 void DwarfDebug::addSubprogramNames(const DISubprogram *SP, DIE &Die) { 311 if (!SP->isDefinition()) 312 return; 313 addAccelName(SP->getName(), Die); 314 315 // If the linkage name is different than the name, go ahead and output 316 // that as well into the name table. 317 if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName()) 318 addAccelName(SP->getLinkageName(), Die); 319 320 // If this is an Objective-C selector name add it to the ObjC accelerator 321 // too. 322 if (isObjCClass(SP->getName())) { 323 StringRef Class, Category; 324 getObjCClassCategory(SP->getName(), Class, Category); 325 addAccelObjC(Class, Die); 326 if (Category != "") 327 addAccelObjC(Category, Die); 328 // Also add the base method name to the name table. 329 addAccelName(getObjCMethodName(SP->getName()), Die); 330 } 331 } 332 333 /// Check whether we should create a DIE for the given Scope, return true 334 /// if we don't create a DIE (the corresponding DIE is null). 335 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) { 336 if (Scope->isAbstractScope()) 337 return false; 338 339 // We don't create a DIE if there is no Range. 340 const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges(); 341 if (Ranges.empty()) 342 return true; 343 344 if (Ranges.size() > 1) 345 return false; 346 347 // We don't create a DIE if we have a single Range and the end label 348 // is null. 349 return !getLabelAfterInsn(Ranges.front().second); 350 } 351 352 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) { 353 F(CU); 354 if (auto *SkelCU = CU.getSkeleton()) 355 if (CU.getCUNode()->getSplitDebugInlining()) 356 F(*SkelCU); 357 } 358 359 void DwarfDebug::constructAbstractSubprogramScopeDIE(LexicalScope *Scope) { 360 assert(Scope && Scope->getScopeNode()); 361 assert(Scope->isAbstractScope()); 362 assert(!Scope->getInlinedAt()); 363 364 const MDNode *SP = Scope->getScopeNode(); 365 366 ProcessedSPNodes.insert(SP); 367 368 // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram 369 // was inlined from another compile unit. 370 auto &CU = *CUMap.lookup(cast<DISubprogram>(SP)->getUnit()); 371 forBothCUs(CU, [&](DwarfCompileUnit &CU) { 372 CU.constructAbstractSubprogramScopeDIE(Scope); 373 }); 374 } 375 376 void DwarfDebug::addGnuPubAttributes(DwarfUnit &U, DIE &D) const { 377 if (!GenerateGnuPubSections) 378 return; 379 380 U.addFlag(D, dwarf::DW_AT_GNU_pubnames); 381 } 382 383 // Create new DwarfCompileUnit for the given metadata node with tag 384 // DW_TAG_compile_unit. 385 DwarfCompileUnit & 386 DwarfDebug::constructDwarfCompileUnit(const DICompileUnit *DIUnit) { 387 StringRef FN = DIUnit->getFilename(); 388 CompilationDir = DIUnit->getDirectory(); 389 390 auto OwnedUnit = make_unique<DwarfCompileUnit>( 391 InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder); 392 DwarfCompileUnit &NewCU = *OwnedUnit; 393 DIE &Die = NewCU.getUnitDie(); 394 InfoHolder.addUnit(std::move(OwnedUnit)); 395 if (useSplitDwarf()) { 396 NewCU.setSkeleton(constructSkeletonCU(NewCU)); 397 NewCU.addString(Die, dwarf::DW_AT_GNU_dwo_name, 398 DIUnit->getSplitDebugFilename()); 399 } 400 401 // LTO with assembly output shares a single line table amongst multiple CUs. 402 // To avoid the compilation directory being ambiguous, let the line table 403 // explicitly describe the directory of all files, never relying on the 404 // compilation directory. 405 if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU) 406 Asm->OutStreamer->getContext().setMCLineTableCompilationDir( 407 NewCU.getUniqueID(), CompilationDir); 408 409 NewCU.addString(Die, dwarf::DW_AT_producer, DIUnit->getProducer()); 410 NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 411 DIUnit->getSourceLanguage()); 412 NewCU.addString(Die, dwarf::DW_AT_name, FN); 413 414 if (!useSplitDwarf()) { 415 NewCU.initStmtList(); 416 417 // If we're using split dwarf the compilation dir is going to be in the 418 // skeleton CU and so we don't need to duplicate it here. 419 if (!CompilationDir.empty()) 420 NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 421 422 addGnuPubAttributes(NewCU, Die); 423 } 424 425 if (useAppleExtensionAttributes()) { 426 if (DIUnit->isOptimized()) 427 NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized); 428 429 StringRef Flags = DIUnit->getFlags(); 430 if (!Flags.empty()) 431 NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags); 432 433 if (unsigned RVer = DIUnit->getRuntimeVersion()) 434 NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers, 435 dwarf::DW_FORM_data1, RVer); 436 } 437 438 if (useSplitDwarf()) 439 NewCU.initSection(Asm->getObjFileLowering().getDwarfInfoDWOSection()); 440 else 441 NewCU.initSection(Asm->getObjFileLowering().getDwarfInfoSection()); 442 443 if (DIUnit->getDWOId()) { 444 // This CU is either a clang module DWO or a skeleton CU. 445 NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, 446 DIUnit->getDWOId()); 447 if (!DIUnit->getSplitDebugFilename().empty()) 448 // This is a prefabricated skeleton CU. 449 NewCU.addString(Die, dwarf::DW_AT_GNU_dwo_name, 450 DIUnit->getSplitDebugFilename()); 451 } 452 453 CUMap.insert({DIUnit, &NewCU}); 454 CUDieMap.insert({&Die, &NewCU}); 455 return NewCU; 456 } 457 458 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU, 459 const DIImportedEntity *N) { 460 if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope())) 461 D->addChild(TheCU.constructImportedEntityDIE(N)); 462 } 463 464 // Emit all Dwarf sections that should come prior to the content. Create 465 // global DIEs and emit initial debug info sections. This is invoked by 466 // the target AsmPrinter. 467 void DwarfDebug::beginModule() { 468 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 469 if (DisableDebugInfoPrinting) 470 return; 471 472 const Module *M = MMI->getModule(); 473 474 unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(), 475 M->debug_compile_units_end()); 476 // Tell MMI whether we have debug info. 477 MMI->setDebugInfoAvailability(NumDebugCUs > 0); 478 SingleCU = NumDebugCUs == 1; 479 480 DenseMap<DIGlobalVariable *, const GlobalVariable *> GVMap; 481 for (const GlobalVariable &Global : M->globals()) { 482 SmallVector<DIGlobalVariable *, 1> GVs; 483 Global.getDebugInfo(GVs); 484 for (auto &GV : GVs) 485 GVMap[GV] = &Global; 486 } 487 488 for (DICompileUnit *CUNode : M->debug_compile_units()) { 489 DwarfCompileUnit &CU = constructDwarfCompileUnit(CUNode); 490 for (auto *IE : CUNode->getImportedEntities()) 491 CU.addImportedEntity(IE); 492 for (auto *GV : CUNode->getGlobalVariables()) 493 CU.getOrCreateGlobalVariableDIE(GV, GVMap.lookup(GV)); 494 for (auto *Ty : CUNode->getEnumTypes()) { 495 // The enum types array by design contains pointers to 496 // MDNodes rather than DIRefs. Unique them here. 497 CU.getOrCreateTypeDIE(cast<DIType>(Ty)); 498 } 499 for (auto *Ty : CUNode->getRetainedTypes()) { 500 // The retained types array by design contains pointers to 501 // MDNodes rather than DIRefs. Unique them here. 502 if (DIType *RT = dyn_cast<DIType>(Ty)) 503 if (!RT->isExternalTypeRef()) 504 // There is no point in force-emitting a forward declaration. 505 CU.getOrCreateTypeDIE(RT); 506 } 507 // Emit imported_modules last so that the relevant context is already 508 // available. 509 for (auto *IE : CUNode->getImportedEntities()) 510 constructAndAddImportedEntityDIE(CU, IE); 511 } 512 } 513 514 void DwarfDebug::finishVariableDefinitions() { 515 for (const auto &Var : ConcreteVariables) { 516 DIE *VariableDie = Var->getDIE(); 517 assert(VariableDie); 518 // FIXME: Consider the time-space tradeoff of just storing the unit pointer 519 // in the ConcreteVariables list, rather than looking it up again here. 520 // DIE::getUnit isn't simple - it walks parent pointers, etc. 521 DwarfCompileUnit *Unit = lookupUnit(VariableDie->getUnit()); 522 assert(Unit); 523 DbgVariable *AbsVar = getExistingAbstractVariable( 524 InlinedVariable(Var->getVariable(), Var->getInlinedAt())); 525 if (AbsVar && AbsVar->getDIE()) { 526 Unit->addDIEEntry(*VariableDie, dwarf::DW_AT_abstract_origin, 527 *AbsVar->getDIE()); 528 } else 529 Unit->applyVariableAttributes(*Var, *VariableDie); 530 } 531 } 532 533 void DwarfDebug::finishSubprogramDefinitions() { 534 for (auto &F : MMI->getModule()->functions()) 535 if (auto *SP = F.getSubprogram()) 536 if (ProcessedSPNodes.count(SP) && 537 SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug) 538 forBothCUs(*CUMap.lookup(SP->getUnit()), [&](DwarfCompileUnit &CU) { 539 CU.finishSubprogramDefinition(SP); 540 }); 541 } 542 543 void DwarfDebug::finalizeModuleInfo() { 544 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); 545 546 finishSubprogramDefinitions(); 547 548 finishVariableDefinitions(); 549 550 // Handle anything that needs to be done on a per-unit basis after 551 // all other generation. 552 for (const auto &P : CUMap) { 553 auto &TheCU = *P.second; 554 // Emit DW_AT_containing_type attribute to connect types with their 555 // vtable holding type. 556 TheCU.constructContainingTypeDIEs(); 557 558 // Add CU specific attributes if we need to add any. 559 // If we're splitting the dwarf out now that we've got the entire 560 // CU then add the dwo id to it. 561 auto *SkCU = TheCU.getSkeleton(); 562 if (useSplitDwarf()) { 563 // Emit a unique identifier for this CU. 564 uint64_t ID = DIEHash(Asm).computeCUSignature(TheCU.getUnitDie()); 565 TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 566 dwarf::DW_FORM_data8, ID); 567 SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 568 dwarf::DW_FORM_data8, ID); 569 570 // We don't keep track of which addresses are used in which CU so this 571 // is a bit pessimistic under LTO. 572 if (!AddrPool.isEmpty()) { 573 const MCSymbol *Sym = TLOF.getDwarfAddrSection()->getBeginSymbol(); 574 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_addr_base, 575 Sym, Sym); 576 } 577 if (!SkCU->getRangeLists().empty()) { 578 const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol(); 579 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base, 580 Sym, Sym); 581 } 582 } 583 584 // If we have code split among multiple sections or non-contiguous 585 // ranges of code then emit a DW_AT_ranges attribute on the unit that will 586 // remain in the .o file, otherwise add a DW_AT_low_pc. 587 // FIXME: We should use ranges allow reordering of code ala 588 // .subsections_via_symbols in mach-o. This would mean turning on 589 // ranges for all subprogram DIEs for mach-o. 590 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 591 if (unsigned NumRanges = TheCU.getRanges().size()) { 592 if (NumRanges > 1) 593 // A DW_AT_low_pc attribute may also be specified in combination with 594 // DW_AT_ranges to specify the default base address for use in 595 // location lists (see Section 2.6.2) and range lists (see Section 596 // 2.17.3). 597 U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0); 598 else 599 U.setBaseAddress(TheCU.getRanges().front().getStart()); 600 U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges()); 601 } 602 603 auto *CUNode = cast<DICompileUnit>(P.first); 604 // If compile Unit has macros, emit "DW_AT_macro_info" attribute. 605 if (CUNode->getMacros()) 606 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info, 607 U.getMacroLabelBegin(), 608 TLOF.getDwarfMacinfoSection()->getBeginSymbol()); 609 } 610 611 // Compute DIE offsets and sizes. 612 InfoHolder.computeSizeAndOffsets(); 613 if (useSplitDwarf()) 614 SkeletonHolder.computeSizeAndOffsets(); 615 } 616 617 // Emit all Dwarf sections that should come after the content. 618 void DwarfDebug::endModule() { 619 assert(CurFn == nullptr); 620 assert(CurMI == nullptr); 621 622 // If we aren't actually generating debug info (check beginModule - 623 // conditionalized on !DisableDebugInfoPrinting and the presence of the 624 // llvm.dbg.cu metadata node) 625 if (!MMI->hasDebugInfo()) 626 return; 627 628 // Finalize the debug info for the module. 629 finalizeModuleInfo(); 630 631 emitDebugStr(); 632 633 if (useSplitDwarf()) 634 emitDebugLocDWO(); 635 else 636 // Emit info into a debug loc section. 637 emitDebugLoc(); 638 639 // Corresponding abbreviations into a abbrev section. 640 emitAbbreviations(); 641 642 // Emit all the DIEs into a debug info section. 643 emitDebugInfo(); 644 645 // Emit info into a debug aranges section. 646 if (GenerateARangeSection) 647 emitDebugARanges(); 648 649 // Emit info into a debug ranges section. 650 emitDebugRanges(); 651 652 // Emit info into a debug macinfo section. 653 emitDebugMacinfo(); 654 655 if (useSplitDwarf()) { 656 emitDebugStrDWO(); 657 emitDebugInfoDWO(); 658 emitDebugAbbrevDWO(); 659 emitDebugLineDWO(); 660 // Emit DWO addresses. 661 AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection()); 662 } 663 664 // Emit info into the dwarf accelerator table sections. 665 if (useDwarfAccelTables()) { 666 emitAccelNames(); 667 emitAccelObjC(); 668 emitAccelNamespaces(); 669 emitAccelTypes(); 670 } 671 672 // Emit the pubnames and pubtypes sections if requested. 673 if (HasDwarfPubSections) { 674 emitDebugPubNames(GenerateGnuPubSections); 675 emitDebugPubTypes(GenerateGnuPubSections); 676 } 677 678 // clean up. 679 AbstractVariables.clear(); 680 } 681 682 // Find abstract variable, if any, associated with Var. 683 DbgVariable * 684 DwarfDebug::getExistingAbstractVariable(InlinedVariable IV, 685 const DILocalVariable *&Cleansed) { 686 // More then one inlined variable corresponds to one abstract variable. 687 Cleansed = IV.first; 688 auto I = AbstractVariables.find(Cleansed); 689 if (I != AbstractVariables.end()) 690 return I->second.get(); 691 return nullptr; 692 } 693 694 DbgVariable *DwarfDebug::getExistingAbstractVariable(InlinedVariable IV) { 695 const DILocalVariable *Cleansed; 696 return getExistingAbstractVariable(IV, Cleansed); 697 } 698 699 void DwarfDebug::createAbstractVariable(const DILocalVariable *Var, 700 LexicalScope *Scope) { 701 auto AbsDbgVariable = make_unique<DbgVariable>(Var, /* IA */ nullptr); 702 InfoHolder.addScopeVariable(Scope, AbsDbgVariable.get()); 703 AbstractVariables[Var] = std::move(AbsDbgVariable); 704 } 705 706 void DwarfDebug::ensureAbstractVariableIsCreated(InlinedVariable IV, 707 const MDNode *ScopeNode) { 708 const DILocalVariable *Cleansed = nullptr; 709 if (getExistingAbstractVariable(IV, Cleansed)) 710 return; 711 712 createAbstractVariable(Cleansed, LScopes.getOrCreateAbstractScope( 713 cast<DILocalScope>(ScopeNode))); 714 } 715 716 void DwarfDebug::ensureAbstractVariableIsCreatedIfScoped( 717 InlinedVariable IV, const MDNode *ScopeNode) { 718 const DILocalVariable *Cleansed = nullptr; 719 if (getExistingAbstractVariable(IV, Cleansed)) 720 return; 721 722 if (LexicalScope *Scope = 723 LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode))) 724 createAbstractVariable(Cleansed, Scope); 725 } 726 727 // Collect variable information from side table maintained by MMI. 728 void DwarfDebug::collectVariableInfoFromMMITable( 729 DenseSet<InlinedVariable> &Processed) { 730 for (const auto &VI : MMI->getVariableDbgInfo()) { 731 if (!VI.Var) 732 continue; 733 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 734 "Expected inlined-at fields to agree"); 735 736 InlinedVariable Var(VI.Var, VI.Loc->getInlinedAt()); 737 Processed.insert(Var); 738 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 739 740 // If variable scope is not found then skip this variable. 741 if (!Scope) 742 continue; 743 744 ensureAbstractVariableIsCreatedIfScoped(Var, Scope->getScopeNode()); 745 auto RegVar = make_unique<DbgVariable>(Var.first, Var.second); 746 RegVar->initializeMMI(VI.Expr, VI.Slot); 747 if (InfoHolder.addScopeVariable(Scope, RegVar.get())) 748 ConcreteVariables.push_back(std::move(RegVar)); 749 } 750 } 751 752 // Get .debug_loc entry for the instruction range starting at MI. 753 static DebugLocEntry::Value getDebugLocValue(const MachineInstr *MI) { 754 const DIExpression *Expr = MI->getDebugExpression(); 755 756 assert(MI->getNumOperands() == 4); 757 if (MI->getOperand(0).isReg()) { 758 MachineLocation MLoc; 759 // If the second operand is an immediate, this is a 760 // register-indirect address. 761 if (!MI->getOperand(1).isImm()) 762 MLoc.set(MI->getOperand(0).getReg()); 763 else 764 MLoc.set(MI->getOperand(0).getReg(), MI->getOperand(1).getImm()); 765 return DebugLocEntry::Value(Expr, MLoc); 766 } 767 if (MI->getOperand(0).isImm()) 768 return DebugLocEntry::Value(Expr, MI->getOperand(0).getImm()); 769 if (MI->getOperand(0).isFPImm()) 770 return DebugLocEntry::Value(Expr, MI->getOperand(0).getFPImm()); 771 if (MI->getOperand(0).isCImm()) 772 return DebugLocEntry::Value(Expr, MI->getOperand(0).getCImm()); 773 774 llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!"); 775 } 776 777 /// \brief If this and Next are describing different pieces of the same 778 /// variable, merge them by appending Next's values to the current 779 /// list of values. 780 /// Return true if the merge was successful. 781 bool DebugLocEntry::MergeValues(const DebugLocEntry &Next) { 782 if (Begin == Next.Begin) { 783 auto *FirstExpr = cast<DIExpression>(Values[0].Expression); 784 auto *FirstNextExpr = cast<DIExpression>(Next.Values[0].Expression); 785 if (!FirstExpr->isBitPiece() || !FirstNextExpr->isBitPiece()) 786 return false; 787 788 // We can only merge entries if none of the pieces overlap any others. 789 // In doing so, we can take advantage of the fact that both lists are 790 // sorted. 791 for (unsigned i = 0, j = 0; i < Values.size(); ++i) { 792 for (; j < Next.Values.size(); ++j) { 793 int res = DebugHandlerBase::pieceCmp( 794 cast<DIExpression>(Values[i].Expression), 795 cast<DIExpression>(Next.Values[j].Expression)); 796 if (res == 0) // The two expressions overlap, we can't merge. 797 return false; 798 // Values[i] is entirely before Next.Values[j], 799 // so go back to the next entry of Values. 800 else if (res == -1) 801 break; 802 // Next.Values[j] is entirely before Values[i], so go on to the 803 // next entry of Next.Values. 804 } 805 } 806 807 addValues(Next.Values); 808 End = Next.End; 809 return true; 810 } 811 return false; 812 } 813 814 /// Build the location list for all DBG_VALUEs in the function that 815 /// describe the same variable. If the ranges of several independent 816 /// pieces of the same variable overlap partially, split them up and 817 /// combine the ranges. The resulting DebugLocEntries are will have 818 /// strict monotonically increasing begin addresses and will never 819 /// overlap. 820 // 821 // Input: 822 // 823 // Ranges History [var, loc, piece ofs size] 824 // 0 | [x, (reg0, piece 0, 32)] 825 // 1 | | [x, (reg1, piece 32, 32)] <- IsPieceOfPrevEntry 826 // 2 | | ... 827 // 3 | [clobber reg0] 828 // 4 [x, (mem, piece 0, 64)] <- overlapping with both previous pieces of 829 // x. 830 // 831 // Output: 832 // 833 // [0-1] [x, (reg0, piece 0, 32)] 834 // [1-3] [x, (reg0, piece 0, 32), (reg1, piece 32, 32)] 835 // [3-4] [x, (reg1, piece 32, 32)] 836 // [4- ] [x, (mem, piece 0, 64)] 837 void 838 DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc, 839 const DbgValueHistoryMap::InstrRanges &Ranges) { 840 SmallVector<DebugLocEntry::Value, 4> OpenRanges; 841 842 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 843 const MachineInstr *Begin = I->first; 844 const MachineInstr *End = I->second; 845 assert(Begin->isDebugValue() && "Invalid History entry"); 846 847 // Check if a variable is inaccessible in this range. 848 if (Begin->getNumOperands() > 1 && 849 Begin->getOperand(0).isReg() && !Begin->getOperand(0).getReg()) { 850 OpenRanges.clear(); 851 continue; 852 } 853 854 // If this piece overlaps with any open ranges, truncate them. 855 const DIExpression *DIExpr = Begin->getDebugExpression(); 856 auto Last = remove_if(OpenRanges, [&](DebugLocEntry::Value R) { 857 return piecesOverlap(DIExpr, R.getExpression()); 858 }); 859 OpenRanges.erase(Last, OpenRanges.end()); 860 861 const MCSymbol *StartLabel = getLabelBeforeInsn(Begin); 862 assert(StartLabel && "Forgot label before DBG_VALUE starting a range!"); 863 864 const MCSymbol *EndLabel; 865 if (End != nullptr) 866 EndLabel = getLabelAfterInsn(End); 867 else if (std::next(I) == Ranges.end()) 868 EndLabel = Asm->getFunctionEnd(); 869 else 870 EndLabel = getLabelBeforeInsn(std::next(I)->first); 871 assert(EndLabel && "Forgot label after instruction ending a range!"); 872 873 DEBUG(dbgs() << "DotDebugLoc: " << *Begin << "\n"); 874 875 auto Value = getDebugLocValue(Begin); 876 DebugLocEntry Loc(StartLabel, EndLabel, Value); 877 bool couldMerge = false; 878 879 // If this is a piece, it may belong to the current DebugLocEntry. 880 if (DIExpr->isBitPiece()) { 881 // Add this value to the list of open ranges. 882 OpenRanges.push_back(Value); 883 884 // Attempt to add the piece to the last entry. 885 if (!DebugLoc.empty()) 886 if (DebugLoc.back().MergeValues(Loc)) 887 couldMerge = true; 888 } 889 890 if (!couldMerge) { 891 // Need to add a new DebugLocEntry. Add all values from still 892 // valid non-overlapping pieces. 893 if (OpenRanges.size()) 894 Loc.addValues(OpenRanges); 895 896 DebugLoc.push_back(std::move(Loc)); 897 } 898 899 // Attempt to coalesce the ranges of two otherwise identical 900 // DebugLocEntries. 901 auto CurEntry = DebugLoc.rbegin(); 902 DEBUG({ 903 dbgs() << CurEntry->getValues().size() << " Values:\n"; 904 for (auto &Value : CurEntry->getValues()) 905 Value.dump(); 906 dbgs() << "-----\n"; 907 }); 908 909 auto PrevEntry = std::next(CurEntry); 910 if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry)) 911 DebugLoc.pop_back(); 912 } 913 } 914 915 DbgVariable *DwarfDebug::createConcreteVariable(LexicalScope &Scope, 916 InlinedVariable IV) { 917 ensureAbstractVariableIsCreatedIfScoped(IV, Scope.getScopeNode()); 918 ConcreteVariables.push_back(make_unique<DbgVariable>(IV.first, IV.second)); 919 InfoHolder.addScopeVariable(&Scope, ConcreteVariables.back().get()); 920 return ConcreteVariables.back().get(); 921 } 922 923 // Determine whether this DBG_VALUE is valid at the beginning of the function. 924 static bool validAtEntry(const MachineInstr *MInsn) { 925 auto MBB = MInsn->getParent(); 926 // Is it in the entry basic block? 927 if (!MBB->pred_empty()) 928 return false; 929 for (MachineBasicBlock::const_reverse_iterator I(MInsn); I != MBB->rend(); ++I) 930 if (!(I->isDebugValue() || I->getFlag(MachineInstr::FrameSetup))) 931 return false; 932 return true; 933 } 934 935 // Find variables for each lexical scope. 936 void DwarfDebug::collectVariableInfo(DwarfCompileUnit &TheCU, 937 const DISubprogram *SP, 938 DenseSet<InlinedVariable> &Processed) { 939 // Grab the variable info that was squirreled away in the MMI side-table. 940 collectVariableInfoFromMMITable(Processed); 941 942 for (const auto &I : DbgValues) { 943 InlinedVariable IV = I.first; 944 if (Processed.count(IV)) 945 continue; 946 947 // Instruction ranges, specifying where IV is accessible. 948 const auto &Ranges = I.second; 949 if (Ranges.empty()) 950 continue; 951 952 LexicalScope *Scope = nullptr; 953 if (const DILocation *IA = IV.second) 954 Scope = LScopes.findInlinedScope(IV.first->getScope(), IA); 955 else 956 Scope = LScopes.findLexicalScope(IV.first->getScope()); 957 // If variable scope is not found then skip this variable. 958 if (!Scope) 959 continue; 960 961 Processed.insert(IV); 962 DbgVariable *RegVar = createConcreteVariable(*Scope, IV); 963 964 const MachineInstr *MInsn = Ranges.front().first; 965 assert(MInsn->isDebugValue() && "History must begin with debug value"); 966 967 // Check if there is a single DBG_VALUE, valid throughout the function. 968 // A single constant is also considered valid for the entire function. 969 if (Ranges.size() == 1 && 970 (MInsn->getOperand(0).isImm() || 971 (validAtEntry(MInsn) && Ranges.front().second == nullptr))) { 972 RegVar->initializeDbgValue(MInsn); 973 continue; 974 } 975 976 // Handle multiple DBG_VALUE instructions describing one variable. 977 DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn); 978 979 // Build the location list for this variable. 980 SmallVector<DebugLocEntry, 8> Entries; 981 buildLocationList(Entries, Ranges); 982 983 // If the variable has a DIBasicType, extract it. Basic types cannot have 984 // unique identifiers, so don't bother resolving the type with the 985 // identifier map. 986 const DIBasicType *BT = dyn_cast<DIBasicType>( 987 static_cast<const Metadata *>(IV.first->getType())); 988 989 // Finalize the entry by lowering it into a DWARF bytestream. 990 for (auto &Entry : Entries) 991 Entry.finalize(*Asm, List, BT); 992 } 993 994 // Collect info for variables that were optimized out. 995 for (const DILocalVariable *DV : SP->getVariables()) { 996 if (Processed.insert(InlinedVariable(DV, nullptr)).second) 997 if (LexicalScope *Scope = LScopes.findLexicalScope(DV->getScope())) 998 createConcreteVariable(*Scope, InlinedVariable(DV, nullptr)); 999 } 1000 } 1001 1002 // Process beginning of an instruction. 1003 void DwarfDebug::beginInstruction(const MachineInstr *MI) { 1004 DebugHandlerBase::beginInstruction(MI); 1005 assert(CurMI); 1006 1007 // Check if source location changes, but ignore DBG_VALUE locations. 1008 if (!MI->isDebugValue()) { 1009 const DebugLoc &DL = MI->getDebugLoc(); 1010 if (DL != PrevInstLoc) { 1011 if (DL) { 1012 unsigned Flags = 0; 1013 PrevInstLoc = DL; 1014 if (DL == PrologEndLoc) { 1015 Flags |= DWARF2_FLAG_PROLOGUE_END; 1016 PrologEndLoc = DebugLoc(); 1017 Flags |= DWARF2_FLAG_IS_STMT; 1018 } 1019 if (DL.getLine() != 1020 Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine()) 1021 Flags |= DWARF2_FLAG_IS_STMT; 1022 1023 const MDNode *Scope = DL.getScope(); 1024 recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags); 1025 } else if (UnknownLocations) { 1026 PrevInstLoc = DL; 1027 recordSourceLine(0, 0, nullptr, 0); 1028 } 1029 } 1030 } 1031 } 1032 1033 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) { 1034 // First known non-DBG_VALUE and non-frame setup location marks 1035 // the beginning of the function body. 1036 for (const auto &MBB : *MF) 1037 for (const auto &MI : MBB) 1038 if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) && 1039 MI.getDebugLoc()) 1040 return MI.getDebugLoc(); 1041 return DebugLoc(); 1042 } 1043 1044 // Gather pre-function debug information. Assumes being called immediately 1045 // after the function entry point has been emitted. 1046 void DwarfDebug::beginFunction(const MachineFunction *MF) { 1047 CurFn = MF; 1048 1049 // If there's no debug info for the function we're not going to do anything. 1050 if (!MMI->hasDebugInfo()) 1051 return; 1052 1053 auto DI = MF->getFunction()->getSubprogram(); 1054 if (!DI) 1055 return; 1056 1057 // Grab the lexical scopes for the function, if we don't have any of those 1058 // then we're not going to be able to do anything. 1059 DebugHandlerBase::beginFunction(MF); 1060 if (LScopes.empty()) 1061 return; 1062 1063 // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function 1064 // belongs to so that we add to the correct per-cu line table in the 1065 // non-asm case. 1066 LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); 1067 // FnScope->getScopeNode() and DI->second should represent the same function, 1068 // though they may not be the same MDNode due to inline functions merged in 1069 // LTO where the debug info metadata still differs (either due to distinct 1070 // written differences - two versions of a linkonce_odr function 1071 // written/copied into two separate files, or some sub-optimal metadata that 1072 // isn't structurally identical (see: file path/name info from clang, which 1073 // includes the directory of the cpp file being built, even when the file name 1074 // is absolute (such as an <> lookup header))) 1075 auto *SP = cast<DISubprogram>(FnScope->getScopeNode()); 1076 DwarfCompileUnit *TheCU = CUMap.lookup(SP->getUnit()); 1077 if (!TheCU) { 1078 assert(SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug && 1079 "DICompileUnit missing from llvm.dbg.cu?"); 1080 return; 1081 } 1082 if (Asm->OutStreamer->hasRawTextSupport()) 1083 // Use a single line table if we are generating assembly. 1084 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 1085 else 1086 Asm->OutStreamer->getContext().setDwarfCompileUnitID(TheCU->getUniqueID()); 1087 1088 // Record beginning of function. 1089 PrologEndLoc = findPrologueEndLoc(MF); 1090 if (DILocation *L = PrologEndLoc) { 1091 // We'd like to list the prologue as "not statements" but GDB behaves 1092 // poorly if we do that. Revisit this with caution/GDB (7.5+) testing. 1093 auto *SP = L->getInlinedAtScope()->getSubprogram(); 1094 recordSourceLine(SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT); 1095 } 1096 } 1097 1098 // Gather and emit post-function debug information. 1099 void DwarfDebug::endFunction(const MachineFunction *MF) { 1100 assert(CurFn == MF && 1101 "endFunction should be called with the same function as beginFunction"); 1102 1103 const DISubprogram *SP = MF->getFunction()->getSubprogram(); 1104 if (!MMI->hasDebugInfo() || LScopes.empty() || !SP || 1105 SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) { 1106 // If we don't have a lexical scope for this function then there will 1107 // be a hole in the range information. Keep note of this by setting the 1108 // previously used section to nullptr. 1109 PrevCU = nullptr; 1110 CurFn = nullptr; 1111 DebugHandlerBase::endFunction(MF); 1112 // Mark functions with no debug info on any instructions, but a 1113 // valid DISubprogram as processed. 1114 if (SP) 1115 ProcessedSPNodes.insert(SP); 1116 return; 1117 } 1118 1119 // Set DwarfDwarfCompileUnitID in MCContext to default value. 1120 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 1121 1122 LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); 1123 SP = cast<DISubprogram>(FnScope->getScopeNode()); 1124 DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit()); 1125 1126 DenseSet<InlinedVariable> ProcessedVars; 1127 collectVariableInfo(TheCU, SP, ProcessedVars); 1128 1129 // Add the range of this function to the list of ranges for the CU. 1130 TheCU.addRange(RangeSpan(Asm->getFunctionBegin(), Asm->getFunctionEnd())); 1131 1132 // Under -gmlt, skip building the subprogram if there are no inlined 1133 // subroutines inside it. 1134 if (TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly && 1135 LScopes.getAbstractScopesList().empty() && !IsDarwin) { 1136 assert(InfoHolder.getScopeVariables().empty()); 1137 assert(DbgValues.empty()); 1138 // FIXME: This wouldn't be true in LTO with a -g (with inlining) CU followed 1139 // by a -gmlt CU. Add a test and remove this assertion. 1140 assert(AbstractVariables.empty()); 1141 PrevLabel = nullptr; 1142 CurFn = nullptr; 1143 DebugHandlerBase::endFunction(MF); 1144 return; 1145 } 1146 1147 #ifndef NDEBUG 1148 size_t NumAbstractScopes = LScopes.getAbstractScopesList().size(); 1149 #endif 1150 // Construct abstract scopes. 1151 for (LexicalScope *AScope : LScopes.getAbstractScopesList()) { 1152 auto *SP = cast<DISubprogram>(AScope->getScopeNode()); 1153 // Collect info for variables that were optimized out. 1154 for (const DILocalVariable *DV : SP->getVariables()) { 1155 if (!ProcessedVars.insert(InlinedVariable(DV, nullptr)).second) 1156 continue; 1157 ensureAbstractVariableIsCreated(InlinedVariable(DV, nullptr), 1158 DV->getScope()); 1159 assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes 1160 && "ensureAbstractVariableIsCreated inserted abstract scopes"); 1161 } 1162 constructAbstractSubprogramScopeDIE(AScope); 1163 } 1164 1165 TheCU.constructSubprogramScopeDIE(FnScope); 1166 if (auto *SkelCU = TheCU.getSkeleton()) 1167 if (!LScopes.getAbstractScopesList().empty() && 1168 TheCU.getCUNode()->getSplitDebugInlining()) 1169 SkelCU->constructSubprogramScopeDIE(FnScope); 1170 1171 // Clear debug info 1172 // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the 1173 // DbgVariables except those that are also in AbstractVariables (since they 1174 // can be used cross-function) 1175 InfoHolder.getScopeVariables().clear(); 1176 PrevLabel = nullptr; 1177 CurFn = nullptr; 1178 DebugHandlerBase::endFunction(MF); 1179 } 1180 1181 // Register a source line with debug info. Returns the unique label that was 1182 // emitted and which provides correspondence to the source line list. 1183 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S, 1184 unsigned Flags) { 1185 StringRef Fn; 1186 StringRef Dir; 1187 unsigned Src = 1; 1188 unsigned Discriminator = 0; 1189 if (auto *Scope = cast_or_null<DIScope>(S)) { 1190 Fn = Scope->getFilename(); 1191 Dir = Scope->getDirectory(); 1192 if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope)) 1193 Discriminator = LBF->getDiscriminator(); 1194 1195 unsigned CUID = Asm->OutStreamer->getContext().getDwarfCompileUnitID(); 1196 Src = static_cast<DwarfCompileUnit &>(*InfoHolder.getUnits()[CUID]) 1197 .getOrCreateSourceID(Fn, Dir); 1198 } 1199 Asm->OutStreamer->EmitDwarfLocDirective(Src, Line, Col, Flags, 0, 1200 Discriminator, Fn); 1201 } 1202 1203 //===----------------------------------------------------------------------===// 1204 // Emit Methods 1205 //===----------------------------------------------------------------------===// 1206 1207 // Emit the debug info section. 1208 void DwarfDebug::emitDebugInfo() { 1209 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1210 Holder.emitUnits(/* UseOffsets */ false); 1211 } 1212 1213 // Emit the abbreviation section. 1214 void DwarfDebug::emitAbbreviations() { 1215 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1216 1217 Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection()); 1218 } 1219 1220 void DwarfDebug::emitAccel(DwarfAccelTable &Accel, MCSection *Section, 1221 StringRef TableName) { 1222 Accel.FinalizeTable(Asm, TableName); 1223 Asm->OutStreamer->SwitchSection(Section); 1224 1225 // Emit the full data. 1226 Accel.emit(Asm, Section->getBeginSymbol(), this); 1227 } 1228 1229 // Emit visible names into a hashed accelerator table section. 1230 void DwarfDebug::emitAccelNames() { 1231 emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(), 1232 "Names"); 1233 } 1234 1235 // Emit objective C classes and categories into a hashed accelerator table 1236 // section. 1237 void DwarfDebug::emitAccelObjC() { 1238 emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(), 1239 "ObjC"); 1240 } 1241 1242 // Emit namespace dies into a hashed accelerator table. 1243 void DwarfDebug::emitAccelNamespaces() { 1244 emitAccel(AccelNamespace, 1245 Asm->getObjFileLowering().getDwarfAccelNamespaceSection(), 1246 "namespac"); 1247 } 1248 1249 // Emit type dies into a hashed accelerator table. 1250 void DwarfDebug::emitAccelTypes() { 1251 emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(), 1252 "types"); 1253 } 1254 1255 // Public name handling. 1256 // The format for the various pubnames: 1257 // 1258 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU 1259 // for the DIE that is named. 1260 // 1261 // gnu pubnames - offset/index value/name tuples where the offset is the offset 1262 // into the CU and the index value is computed according to the type of value 1263 // for the DIE that is named. 1264 // 1265 // For type units the offset is the offset of the skeleton DIE. For split dwarf 1266 // it's the offset within the debug_info/debug_types dwo section, however, the 1267 // reference in the pubname header doesn't change. 1268 1269 /// computeIndexValue - Compute the gdb index value for the DIE and CU. 1270 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU, 1271 const DIE *Die) { 1272 dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC; 1273 1274 // We could have a specification DIE that has our most of our knowledge, 1275 // look for that now. 1276 if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) { 1277 DIE &SpecDIE = SpecVal.getDIEEntry().getEntry(); 1278 if (SpecDIE.findAttribute(dwarf::DW_AT_external)) 1279 Linkage = dwarf::GIEL_EXTERNAL; 1280 } else if (Die->findAttribute(dwarf::DW_AT_external)) 1281 Linkage = dwarf::GIEL_EXTERNAL; 1282 1283 switch (Die->getTag()) { 1284 case dwarf::DW_TAG_class_type: 1285 case dwarf::DW_TAG_structure_type: 1286 case dwarf::DW_TAG_union_type: 1287 case dwarf::DW_TAG_enumeration_type: 1288 return dwarf::PubIndexEntryDescriptor( 1289 dwarf::GIEK_TYPE, CU->getLanguage() != dwarf::DW_LANG_C_plus_plus 1290 ? dwarf::GIEL_STATIC 1291 : dwarf::GIEL_EXTERNAL); 1292 case dwarf::DW_TAG_typedef: 1293 case dwarf::DW_TAG_base_type: 1294 case dwarf::DW_TAG_subrange_type: 1295 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC); 1296 case dwarf::DW_TAG_namespace: 1297 return dwarf::GIEK_TYPE; 1298 case dwarf::DW_TAG_subprogram: 1299 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage); 1300 case dwarf::DW_TAG_variable: 1301 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage); 1302 case dwarf::DW_TAG_enumerator: 1303 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, 1304 dwarf::GIEL_STATIC); 1305 default: 1306 return dwarf::GIEK_NONE; 1307 } 1308 } 1309 1310 /// emitDebugPubNames - Emit visible names into a debug pubnames section. 1311 /// 1312 void DwarfDebug::emitDebugPubNames(bool GnuStyle) { 1313 MCSection *PSec = GnuStyle 1314 ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection() 1315 : Asm->getObjFileLowering().getDwarfPubNamesSection(); 1316 1317 emitDebugPubSection(GnuStyle, PSec, "Names", 1318 &DwarfCompileUnit::getGlobalNames); 1319 } 1320 1321 void DwarfDebug::emitDebugPubSection( 1322 bool GnuStyle, MCSection *PSec, StringRef Name, 1323 const StringMap<const DIE *> &(DwarfCompileUnit::*Accessor)() const) { 1324 for (const auto &NU : CUMap) { 1325 DwarfCompileUnit *TheU = NU.second; 1326 1327 const auto &Globals = (TheU->*Accessor)(); 1328 1329 if (Globals.empty()) 1330 continue; 1331 1332 if (auto *Skeleton = TheU->getSkeleton()) 1333 TheU = Skeleton; 1334 1335 // Start the dwarf pubnames section. 1336 Asm->OutStreamer->SwitchSection(PSec); 1337 1338 // Emit the header. 1339 Asm->OutStreamer->AddComment("Length of Public " + Name + " Info"); 1340 MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin"); 1341 MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end"); 1342 Asm->EmitLabelDifference(EndLabel, BeginLabel, 4); 1343 1344 Asm->OutStreamer->EmitLabel(BeginLabel); 1345 1346 Asm->OutStreamer->AddComment("DWARF Version"); 1347 Asm->EmitInt16(dwarf::DW_PUBNAMES_VERSION); 1348 1349 Asm->OutStreamer->AddComment("Offset of Compilation Unit Info"); 1350 Asm->emitDwarfSymbolReference(TheU->getLabelBegin()); 1351 1352 Asm->OutStreamer->AddComment("Compilation Unit Length"); 1353 Asm->EmitInt32(TheU->getLength()); 1354 1355 // Emit the pubnames for this compilation unit. 1356 for (const auto &GI : Globals) { 1357 const char *Name = GI.getKeyData(); 1358 const DIE *Entity = GI.second; 1359 1360 Asm->OutStreamer->AddComment("DIE offset"); 1361 Asm->EmitInt32(Entity->getOffset()); 1362 1363 if (GnuStyle) { 1364 dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity); 1365 Asm->OutStreamer->AddComment( 1366 Twine("Kind: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + ", " + 1367 dwarf::GDBIndexEntryLinkageString(Desc.Linkage)); 1368 Asm->EmitInt8(Desc.toBits()); 1369 } 1370 1371 Asm->OutStreamer->AddComment("External Name"); 1372 Asm->OutStreamer->EmitBytes(StringRef(Name, GI.getKeyLength() + 1)); 1373 } 1374 1375 Asm->OutStreamer->AddComment("End Mark"); 1376 Asm->EmitInt32(0); 1377 Asm->OutStreamer->EmitLabel(EndLabel); 1378 } 1379 } 1380 1381 void DwarfDebug::emitDebugPubTypes(bool GnuStyle) { 1382 MCSection *PSec = GnuStyle 1383 ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection() 1384 : Asm->getObjFileLowering().getDwarfPubTypesSection(); 1385 1386 emitDebugPubSection(GnuStyle, PSec, "Types", 1387 &DwarfCompileUnit::getGlobalTypes); 1388 } 1389 1390 /// Emit null-terminated strings into a debug str section. 1391 void DwarfDebug::emitDebugStr() { 1392 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1393 Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection()); 1394 } 1395 1396 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer, 1397 const DebugLocStream::Entry &Entry) { 1398 auto &&Comments = DebugLocs.getComments(Entry); 1399 auto Comment = Comments.begin(); 1400 auto End = Comments.end(); 1401 for (uint8_t Byte : DebugLocs.getBytes(Entry)) 1402 Streamer.EmitInt8(Byte, Comment != End ? *(Comment++) : ""); 1403 } 1404 1405 static void emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT, 1406 ByteStreamer &Streamer, 1407 const DebugLocEntry::Value &Value, 1408 unsigned PieceOffsetInBits) { 1409 DebugLocDwarfExpression DwarfExpr(AP.getDwarfDebug()->getDwarfVersion(), 1410 Streamer); 1411 // Regular entry. 1412 if (Value.isInt()) { 1413 if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed || 1414 BT->getEncoding() == dwarf::DW_ATE_signed_char)) 1415 DwarfExpr.AddSignedConstant(Value.getInt()); 1416 else 1417 DwarfExpr.AddUnsignedConstant(Value.getInt()); 1418 } else if (Value.isLocation()) { 1419 MachineLocation Loc = Value.getLoc(); 1420 const DIExpression *Expr = Value.getExpression(); 1421 if (!Expr || !Expr->getNumElements()) 1422 // Regular entry. 1423 AP.EmitDwarfRegOp(Streamer, Loc); 1424 else { 1425 // Complex address entry. 1426 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); 1427 if (Loc.getOffset()) { 1428 DwarfExpr.AddMachineRegIndirect(TRI, Loc.getReg(), Loc.getOffset()); 1429 DwarfExpr.AddExpression(Expr->expr_op_begin(), Expr->expr_op_end(), 1430 PieceOffsetInBits); 1431 } else 1432 DwarfExpr.AddMachineRegExpression(TRI, Expr, Loc.getReg(), 1433 PieceOffsetInBits); 1434 } 1435 } else if (Value.isConstantFP()) { 1436 APInt RawBytes = Value.getConstantFP()->getValueAPF().bitcastToAPInt(); 1437 DwarfExpr.AddUnsignedConstant(RawBytes); 1438 } 1439 } 1440 1441 void DebugLocEntry::finalize(const AsmPrinter &AP, 1442 DebugLocStream::ListBuilder &List, 1443 const DIBasicType *BT) { 1444 DebugLocStream::EntryBuilder Entry(List, Begin, End); 1445 BufferByteStreamer Streamer = Entry.getStreamer(); 1446 const DebugLocEntry::Value &Value = Values[0]; 1447 if (Value.isBitPiece()) { 1448 // Emit all pieces that belong to the same variable and range. 1449 assert(all_of(Values, [](DebugLocEntry::Value P) { 1450 return P.isBitPiece(); 1451 }) && "all values are expected to be pieces"); 1452 assert(std::is_sorted(Values.begin(), Values.end()) && 1453 "pieces are expected to be sorted"); 1454 1455 unsigned Offset = 0; 1456 for (auto Piece : Values) { 1457 const DIExpression *Expr = Piece.getExpression(); 1458 unsigned PieceOffset = Expr->getBitPieceOffset(); 1459 unsigned PieceSize = Expr->getBitPieceSize(); 1460 assert(Offset <= PieceOffset && "overlapping or duplicate pieces"); 1461 if (Offset < PieceOffset) { 1462 // The DWARF spec seriously mandates pieces with no locations for gaps. 1463 DebugLocDwarfExpression Expr(AP.getDwarfDebug()->getDwarfVersion(), 1464 Streamer); 1465 Expr.AddOpPiece(PieceOffset-Offset, 0); 1466 Offset += PieceOffset-Offset; 1467 } 1468 Offset += PieceSize; 1469 1470 emitDebugLocValue(AP, BT, Streamer, Piece, PieceOffset); 1471 } 1472 } else { 1473 assert(Values.size() == 1 && "only pieces may have >1 value"); 1474 emitDebugLocValue(AP, BT, Streamer, Value, 0); 1475 } 1476 } 1477 1478 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry) { 1479 // Emit the size. 1480 Asm->OutStreamer->AddComment("Loc expr size"); 1481 Asm->EmitInt16(DebugLocs.getBytes(Entry).size()); 1482 1483 // Emit the entry. 1484 APByteStreamer Streamer(*Asm); 1485 emitDebugLocEntry(Streamer, Entry); 1486 } 1487 1488 // Emit locations into the debug loc section. 1489 void DwarfDebug::emitDebugLoc() { 1490 // Start the dwarf loc section. 1491 Asm->OutStreamer->SwitchSection( 1492 Asm->getObjFileLowering().getDwarfLocSection()); 1493 unsigned char Size = Asm->getDataLayout().getPointerSize(); 1494 for (const auto &List : DebugLocs.getLists()) { 1495 Asm->OutStreamer->EmitLabel(List.Label); 1496 const DwarfCompileUnit *CU = List.CU; 1497 for (const auto &Entry : DebugLocs.getEntries(List)) { 1498 // Set up the range. This range is relative to the entry point of the 1499 // compile unit. This is a hard coded 0 for low_pc when we're emitting 1500 // ranges, or the DW_AT_low_pc on the compile unit otherwise. 1501 if (auto *Base = CU->getBaseAddress()) { 1502 Asm->EmitLabelDifference(Entry.BeginSym, Base, Size); 1503 Asm->EmitLabelDifference(Entry.EndSym, Base, Size); 1504 } else { 1505 Asm->OutStreamer->EmitSymbolValue(Entry.BeginSym, Size); 1506 Asm->OutStreamer->EmitSymbolValue(Entry.EndSym, Size); 1507 } 1508 1509 emitDebugLocEntryLocation(Entry); 1510 } 1511 Asm->OutStreamer->EmitIntValue(0, Size); 1512 Asm->OutStreamer->EmitIntValue(0, Size); 1513 } 1514 } 1515 1516 void DwarfDebug::emitDebugLocDWO() { 1517 Asm->OutStreamer->SwitchSection( 1518 Asm->getObjFileLowering().getDwarfLocDWOSection()); 1519 for (const auto &List : DebugLocs.getLists()) { 1520 Asm->OutStreamer->EmitLabel(List.Label); 1521 for (const auto &Entry : DebugLocs.getEntries(List)) { 1522 // Just always use start_length for now - at least that's one address 1523 // rather than two. We could get fancier and try to, say, reuse an 1524 // address we know we've emitted elsewhere (the start of the function? 1525 // The start of the CU or CU subrange that encloses this range?) 1526 Asm->EmitInt8(dwarf::DW_LLE_start_length_entry); 1527 unsigned idx = AddrPool.getIndex(Entry.BeginSym); 1528 Asm->EmitULEB128(idx); 1529 Asm->EmitLabelDifference(Entry.EndSym, Entry.BeginSym, 4); 1530 1531 emitDebugLocEntryLocation(Entry); 1532 } 1533 Asm->EmitInt8(dwarf::DW_LLE_end_of_list_entry); 1534 } 1535 } 1536 1537 struct ArangeSpan { 1538 const MCSymbol *Start, *End; 1539 }; 1540 1541 // Emit a debug aranges section, containing a CU lookup for any 1542 // address we can tie back to a CU. 1543 void DwarfDebug::emitDebugARanges() { 1544 // Provides a unique id per text section. 1545 MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap; 1546 1547 // Filter labels by section. 1548 for (const SymbolCU &SCU : ArangeLabels) { 1549 if (SCU.Sym->isInSection()) { 1550 // Make a note of this symbol and it's section. 1551 MCSection *Section = &SCU.Sym->getSection(); 1552 if (!Section->getKind().isMetadata()) 1553 SectionMap[Section].push_back(SCU); 1554 } else { 1555 // Some symbols (e.g. common/bss on mach-o) can have no section but still 1556 // appear in the output. This sucks as we rely on sections to build 1557 // arange spans. We can do it without, but it's icky. 1558 SectionMap[nullptr].push_back(SCU); 1559 } 1560 } 1561 1562 DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans; 1563 1564 for (auto &I : SectionMap) { 1565 MCSection *Section = I.first; 1566 SmallVector<SymbolCU, 8> &List = I.second; 1567 if (List.size() < 1) 1568 continue; 1569 1570 // If we have no section (e.g. common), just write out 1571 // individual spans for each symbol. 1572 if (!Section) { 1573 for (const SymbolCU &Cur : List) { 1574 ArangeSpan Span; 1575 Span.Start = Cur.Sym; 1576 Span.End = nullptr; 1577 assert(Cur.CU); 1578 Spans[Cur.CU].push_back(Span); 1579 } 1580 continue; 1581 } 1582 1583 // Sort the symbols by offset within the section. 1584 std::sort( 1585 List.begin(), List.end(), [&](const SymbolCU &A, const SymbolCU &B) { 1586 unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0; 1587 unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0; 1588 1589 // Symbols with no order assigned should be placed at the end. 1590 // (e.g. section end labels) 1591 if (IA == 0) 1592 return false; 1593 if (IB == 0) 1594 return true; 1595 return IA < IB; 1596 }); 1597 1598 // Insert a final terminator. 1599 List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section))); 1600 1601 // Build spans between each label. 1602 const MCSymbol *StartSym = List[0].Sym; 1603 for (size_t n = 1, e = List.size(); n < e; n++) { 1604 const SymbolCU &Prev = List[n - 1]; 1605 const SymbolCU &Cur = List[n]; 1606 1607 // Try and build the longest span we can within the same CU. 1608 if (Cur.CU != Prev.CU) { 1609 ArangeSpan Span; 1610 Span.Start = StartSym; 1611 Span.End = Cur.Sym; 1612 assert(Prev.CU); 1613 Spans[Prev.CU].push_back(Span); 1614 StartSym = Cur.Sym; 1615 } 1616 } 1617 } 1618 1619 // Start the dwarf aranges section. 1620 Asm->OutStreamer->SwitchSection( 1621 Asm->getObjFileLowering().getDwarfARangesSection()); 1622 1623 unsigned PtrSize = Asm->getDataLayout().getPointerSize(); 1624 1625 // Build a list of CUs used. 1626 std::vector<DwarfCompileUnit *> CUs; 1627 for (const auto &it : Spans) { 1628 DwarfCompileUnit *CU = it.first; 1629 CUs.push_back(CU); 1630 } 1631 1632 // Sort the CU list (again, to ensure consistent output order). 1633 std::sort(CUs.begin(), CUs.end(), 1634 [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) { 1635 return A->getUniqueID() < B->getUniqueID(); 1636 }); 1637 1638 // Emit an arange table for each CU we used. 1639 for (DwarfCompileUnit *CU : CUs) { 1640 std::vector<ArangeSpan> &List = Spans[CU]; 1641 1642 // Describe the skeleton CU's offset and length, not the dwo file's. 1643 if (auto *Skel = CU->getSkeleton()) 1644 CU = Skel; 1645 1646 // Emit size of content not including length itself. 1647 unsigned ContentSize = 1648 sizeof(int16_t) + // DWARF ARange version number 1649 sizeof(int32_t) + // Offset of CU in the .debug_info section 1650 sizeof(int8_t) + // Pointer Size (in bytes) 1651 sizeof(int8_t); // Segment Size (in bytes) 1652 1653 unsigned TupleSize = PtrSize * 2; 1654 1655 // 7.20 in the Dwarf specs requires the table to be aligned to a tuple. 1656 unsigned Padding = 1657 OffsetToAlignment(sizeof(int32_t) + ContentSize, TupleSize); 1658 1659 ContentSize += Padding; 1660 ContentSize += (List.size() + 1) * TupleSize; 1661 1662 // For each compile unit, write the list of spans it covers. 1663 Asm->OutStreamer->AddComment("Length of ARange Set"); 1664 Asm->EmitInt32(ContentSize); 1665 Asm->OutStreamer->AddComment("DWARF Arange version number"); 1666 Asm->EmitInt16(dwarf::DW_ARANGES_VERSION); 1667 Asm->OutStreamer->AddComment("Offset Into Debug Info Section"); 1668 Asm->emitDwarfSymbolReference(CU->getLabelBegin()); 1669 Asm->OutStreamer->AddComment("Address Size (in bytes)"); 1670 Asm->EmitInt8(PtrSize); 1671 Asm->OutStreamer->AddComment("Segment Size (in bytes)"); 1672 Asm->EmitInt8(0); 1673 1674 Asm->OutStreamer->emitFill(Padding, 0xff); 1675 1676 for (const ArangeSpan &Span : List) { 1677 Asm->EmitLabelReference(Span.Start, PtrSize); 1678 1679 // Calculate the size as being from the span start to it's end. 1680 if (Span.End) { 1681 Asm->EmitLabelDifference(Span.End, Span.Start, PtrSize); 1682 } else { 1683 // For symbols without an end marker (e.g. common), we 1684 // write a single arange entry containing just that one symbol. 1685 uint64_t Size = SymSize[Span.Start]; 1686 if (Size == 0) 1687 Size = 1; 1688 1689 Asm->OutStreamer->EmitIntValue(Size, PtrSize); 1690 } 1691 } 1692 1693 Asm->OutStreamer->AddComment("ARange terminator"); 1694 Asm->OutStreamer->EmitIntValue(0, PtrSize); 1695 Asm->OutStreamer->EmitIntValue(0, PtrSize); 1696 } 1697 } 1698 1699 /// Emit address ranges into a debug ranges section. 1700 void DwarfDebug::emitDebugRanges() { 1701 // Start the dwarf ranges section. 1702 Asm->OutStreamer->SwitchSection( 1703 Asm->getObjFileLowering().getDwarfRangesSection()); 1704 1705 // Size for our labels. 1706 unsigned char Size = Asm->getDataLayout().getPointerSize(); 1707 1708 // Grab the specific ranges for the compile units in the module. 1709 for (const auto &I : CUMap) { 1710 DwarfCompileUnit *TheCU = I.second; 1711 1712 if (auto *Skel = TheCU->getSkeleton()) 1713 TheCU = Skel; 1714 1715 // Iterate over the misc ranges for the compile units in the module. 1716 for (const RangeSpanList &List : TheCU->getRangeLists()) { 1717 // Emit our symbol so we can find the beginning of the range. 1718 Asm->OutStreamer->EmitLabel(List.getSym()); 1719 1720 for (const RangeSpan &Range : List.getRanges()) { 1721 const MCSymbol *Begin = Range.getStart(); 1722 const MCSymbol *End = Range.getEnd(); 1723 assert(Begin && "Range without a begin symbol?"); 1724 assert(End && "Range without an end symbol?"); 1725 if (auto *Base = TheCU->getBaseAddress()) { 1726 Asm->EmitLabelDifference(Begin, Base, Size); 1727 Asm->EmitLabelDifference(End, Base, Size); 1728 } else { 1729 Asm->OutStreamer->EmitSymbolValue(Begin, Size); 1730 Asm->OutStreamer->EmitSymbolValue(End, Size); 1731 } 1732 } 1733 1734 // And terminate the list with two 0 values. 1735 Asm->OutStreamer->EmitIntValue(0, Size); 1736 Asm->OutStreamer->EmitIntValue(0, Size); 1737 } 1738 } 1739 } 1740 1741 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) { 1742 for (auto *MN : Nodes) { 1743 if (auto *M = dyn_cast<DIMacro>(MN)) 1744 emitMacro(*M); 1745 else if (auto *F = dyn_cast<DIMacroFile>(MN)) 1746 emitMacroFile(*F, U); 1747 else 1748 llvm_unreachable("Unexpected DI type!"); 1749 } 1750 } 1751 1752 void DwarfDebug::emitMacro(DIMacro &M) { 1753 Asm->EmitULEB128(M.getMacinfoType()); 1754 Asm->EmitULEB128(M.getLine()); 1755 StringRef Name = M.getName(); 1756 StringRef Value = M.getValue(); 1757 Asm->OutStreamer->EmitBytes(Name); 1758 if (!Value.empty()) { 1759 // There should be one space between macro name and macro value. 1760 Asm->EmitInt8(' '); 1761 Asm->OutStreamer->EmitBytes(Value); 1762 } 1763 Asm->EmitInt8('\0'); 1764 } 1765 1766 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) { 1767 assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file); 1768 Asm->EmitULEB128(dwarf::DW_MACINFO_start_file); 1769 Asm->EmitULEB128(F.getLine()); 1770 DIFile *File = F.getFile(); 1771 unsigned FID = 1772 U.getOrCreateSourceID(File->getFilename(), File->getDirectory()); 1773 Asm->EmitULEB128(FID); 1774 handleMacroNodes(F.getElements(), U); 1775 Asm->EmitULEB128(dwarf::DW_MACINFO_end_file); 1776 } 1777 1778 /// Emit macros into a debug macinfo section. 1779 void DwarfDebug::emitDebugMacinfo() { 1780 // Start the dwarf macinfo section. 1781 Asm->OutStreamer->SwitchSection( 1782 Asm->getObjFileLowering().getDwarfMacinfoSection()); 1783 1784 for (const auto &P : CUMap) { 1785 auto &TheCU = *P.second; 1786 auto *SkCU = TheCU.getSkeleton(); 1787 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 1788 auto *CUNode = cast<DICompileUnit>(P.first); 1789 Asm->OutStreamer->EmitLabel(U.getMacroLabelBegin()); 1790 handleMacroNodes(CUNode->getMacros(), U); 1791 } 1792 Asm->OutStreamer->AddComment("End Of Macro List Mark"); 1793 Asm->EmitInt8(0); 1794 } 1795 1796 // DWARF5 Experimental Separate Dwarf emitters. 1797 1798 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die, 1799 std::unique_ptr<DwarfCompileUnit> NewU) { 1800 NewU->addString(Die, dwarf::DW_AT_GNU_dwo_name, 1801 U.getCUNode()->getSplitDebugFilename()); 1802 1803 if (!CompilationDir.empty()) 1804 NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 1805 1806 addGnuPubAttributes(*NewU, Die); 1807 1808 SkeletonHolder.addUnit(std::move(NewU)); 1809 } 1810 1811 // This DIE has the following attributes: DW_AT_comp_dir, DW_AT_stmt_list, 1812 // DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges, DW_AT_dwo_name, DW_AT_dwo_id, 1813 // DW_AT_addr_base, DW_AT_ranges_base. 1814 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) { 1815 1816 auto OwnedUnit = make_unique<DwarfCompileUnit>( 1817 CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder); 1818 DwarfCompileUnit &NewCU = *OwnedUnit; 1819 NewCU.initSection(Asm->getObjFileLowering().getDwarfInfoSection()); 1820 1821 NewCU.initStmtList(); 1822 1823 initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit)); 1824 1825 return NewCU; 1826 } 1827 1828 // Emit the .debug_info.dwo section for separated dwarf. This contains the 1829 // compile units that would normally be in debug_info. 1830 void DwarfDebug::emitDebugInfoDWO() { 1831 assert(useSplitDwarf() && "No split dwarf debug info?"); 1832 // Don't emit relocations into the dwo file. 1833 InfoHolder.emitUnits(/* UseOffsets */ true); 1834 } 1835 1836 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the 1837 // abbreviations for the .debug_info.dwo section. 1838 void DwarfDebug::emitDebugAbbrevDWO() { 1839 assert(useSplitDwarf() && "No split dwarf?"); 1840 InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection()); 1841 } 1842 1843 void DwarfDebug::emitDebugLineDWO() { 1844 assert(useSplitDwarf() && "No split dwarf?"); 1845 Asm->OutStreamer->SwitchSection( 1846 Asm->getObjFileLowering().getDwarfLineDWOSection()); 1847 SplitTypeUnitFileTable.Emit(*Asm->OutStreamer, MCDwarfLineTableParams()); 1848 } 1849 1850 // Emit the .debug_str.dwo section for separated dwarf. This contains the 1851 // string section and is identical in format to traditional .debug_str 1852 // sections. 1853 void DwarfDebug::emitDebugStrDWO() { 1854 assert(useSplitDwarf() && "No split dwarf?"); 1855 MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection(); 1856 InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(), 1857 OffSec); 1858 } 1859 1860 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) { 1861 if (!useSplitDwarf()) 1862 return nullptr; 1863 if (SingleCU) 1864 SplitTypeUnitFileTable.setCompilationDir(CU.getCUNode()->getDirectory()); 1865 return &SplitTypeUnitFileTable; 1866 } 1867 1868 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) { 1869 MD5 Hash; 1870 Hash.update(Identifier); 1871 // ... take the least significant 8 bytes and return those. Our MD5 1872 // implementation always returns its results in little endian, swap bytes 1873 // appropriately. 1874 MD5::MD5Result Result; 1875 Hash.final(Result); 1876 return support::endian::read64le(Result + 8); 1877 } 1878 1879 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU, 1880 StringRef Identifier, DIE &RefDie, 1881 const DICompositeType *CTy) { 1882 // Fast path if we're building some type units and one has already used the 1883 // address pool we know we're going to throw away all this work anyway, so 1884 // don't bother building dependent types. 1885 if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed()) 1886 return; 1887 1888 auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0)); 1889 if (!Ins.second) { 1890 CU.addDIETypeSignature(RefDie, Ins.first->second); 1891 return; 1892 } 1893 1894 bool TopLevelType = TypeUnitsUnderConstruction.empty(); 1895 AddrPool.resetUsedFlag(); 1896 1897 auto OwnedUnit = make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder, 1898 getDwoLineTable(CU)); 1899 DwarfTypeUnit &NewTU = *OwnedUnit; 1900 DIE &UnitDie = NewTU.getUnitDie(); 1901 TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy); 1902 1903 NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 1904 CU.getLanguage()); 1905 1906 uint64_t Signature = makeTypeSignature(Identifier); 1907 NewTU.setTypeSignature(Signature); 1908 Ins.first->second = Signature; 1909 1910 if (useSplitDwarf()) 1911 NewTU.initSection(Asm->getObjFileLowering().getDwarfTypesDWOSection()); 1912 else { 1913 CU.applyStmtList(UnitDie); 1914 NewTU.initSection( 1915 Asm->getObjFileLowering().getDwarfTypesSection(Signature)); 1916 } 1917 1918 NewTU.setType(NewTU.createTypeDIE(CTy)); 1919 1920 if (TopLevelType) { 1921 auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction); 1922 TypeUnitsUnderConstruction.clear(); 1923 1924 // Types referencing entries in the address table cannot be placed in type 1925 // units. 1926 if (AddrPool.hasBeenUsed()) { 1927 1928 // Remove all the types built while building this type. 1929 // This is pessimistic as some of these types might not be dependent on 1930 // the type that used an address. 1931 for (const auto &TU : TypeUnitsToAdd) 1932 TypeSignatures.erase(TU.second); 1933 1934 // Construct this type in the CU directly. 1935 // This is inefficient because all the dependent types will be rebuilt 1936 // from scratch, including building them in type units, discovering that 1937 // they depend on addresses, throwing them out and rebuilding them. 1938 CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy)); 1939 return; 1940 } 1941 1942 // If the type wasn't dependent on fission addresses, finish adding the type 1943 // and all its dependent types. 1944 for (auto &TU : TypeUnitsToAdd) { 1945 InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get()); 1946 InfoHolder.emitUnit(TU.first.get(), useSplitDwarf()); 1947 } 1948 } 1949 CU.addDIETypeSignature(RefDie, Signature); 1950 } 1951 1952 // Accelerator table mutators - add each name along with its companion 1953 // DIE to the proper table while ensuring that the name that we're going 1954 // to reference is in the string table. We do this since the names we 1955 // add may not only be identical to the names in the DIE. 1956 void DwarfDebug::addAccelName(StringRef Name, const DIE &Die) { 1957 if (!useDwarfAccelTables()) 1958 return; 1959 AccelNames.AddName(InfoHolder.getStringPool().getEntry(*Asm, Name), &Die); 1960 } 1961 1962 void DwarfDebug::addAccelObjC(StringRef Name, const DIE &Die) { 1963 if (!useDwarfAccelTables()) 1964 return; 1965 AccelObjC.AddName(InfoHolder.getStringPool().getEntry(*Asm, Name), &Die); 1966 } 1967 1968 void DwarfDebug::addAccelNamespace(StringRef Name, const DIE &Die) { 1969 if (!useDwarfAccelTables()) 1970 return; 1971 AccelNamespace.AddName(InfoHolder.getStringPool().getEntry(*Asm, Name), &Die); 1972 } 1973 1974 void DwarfDebug::addAccelType(StringRef Name, const DIE &Die, char Flags) { 1975 if (!useDwarfAccelTables()) 1976 return; 1977 AccelTypes.AddName(InfoHolder.getStringPool().getEntry(*Asm, Name), &Die); 1978 } 1979