1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing dwarf debug info into asm files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "DwarfDebug.h"
14 #include "ByteStreamer.h"
15 #include "DIEHash.h"
16 #include "DwarfCompileUnit.h"
17 #include "DwarfExpression.h"
18 #include "DwarfUnit.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/CodeGen/AsmPrinter.h"
24 #include "llvm/CodeGen/DIE.h"
25 #include "llvm/CodeGen/LexicalScopes.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/TargetInstrInfo.h"
31 #include "llvm/CodeGen/TargetLowering.h"
32 #include "llvm/CodeGen/TargetRegisterInfo.h"
33 #include "llvm/CodeGen/TargetSubtargetInfo.h"
34 #include "llvm/DebugInfo/DWARF/DWARFExpression.h"
35 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/MC/MCAsmInfo.h"
41 #include "llvm/MC/MCContext.h"
42 #include "llvm/MC/MCSection.h"
43 #include "llvm/MC/MCStreamer.h"
44 #include "llvm/MC/MCSymbol.h"
45 #include "llvm/MC/MCTargetOptions.h"
46 #include "llvm/MC/MachineLocation.h"
47 #include "llvm/MC/SectionKind.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/MD5.h"
54 #include "llvm/Support/MathExtras.h"
55 #include "llvm/Support/Timer.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Target/TargetLoweringObjectFile.h"
58 #include "llvm/Target/TargetMachine.h"
59 #include <algorithm>
60 #include <cstddef>
61 #include <iterator>
62 #include <string>
63 
64 using namespace llvm;
65 
66 #define DEBUG_TYPE "dwarfdebug"
67 
68 STATISTIC(NumCSParams, "Number of dbg call site params created");
69 
70 static cl::opt<bool>
71 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden,
72                          cl::desc("Disable debug info printing"));
73 
74 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier(
75     "use-dwarf-ranges-base-address-specifier", cl::Hidden,
76     cl::desc("Use base address specifiers in debug_ranges"), cl::init(false));
77 
78 static cl::opt<bool> GenerateARangeSection("generate-arange-section",
79                                            cl::Hidden,
80                                            cl::desc("Generate dwarf aranges"),
81                                            cl::init(false));
82 
83 static cl::opt<bool>
84     GenerateDwarfTypeUnits("generate-type-units", cl::Hidden,
85                            cl::desc("Generate DWARF4 type units."),
86                            cl::init(false));
87 
88 static cl::opt<bool> SplitDwarfCrossCuReferences(
89     "split-dwarf-cross-cu-references", cl::Hidden,
90     cl::desc("Enable cross-cu references in DWO files"), cl::init(false));
91 
92 enum DefaultOnOff { Default, Enable, Disable };
93 
94 static cl::opt<DefaultOnOff> UnknownLocations(
95     "use-unknown-locations", cl::Hidden,
96     cl::desc("Make an absence of debug location information explicit."),
97     cl::values(clEnumVal(Default, "At top of block or after label"),
98                clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")),
99     cl::init(Default));
100 
101 static cl::opt<AccelTableKind> AccelTables(
102     "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."),
103     cl::values(clEnumValN(AccelTableKind::Default, "Default",
104                           "Default for platform"),
105                clEnumValN(AccelTableKind::None, "Disable", "Disabled."),
106                clEnumValN(AccelTableKind::Apple, "Apple", "Apple"),
107                clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")),
108     cl::init(AccelTableKind::Default));
109 
110 static cl::opt<DefaultOnOff>
111 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden,
112                  cl::desc("Use inlined strings rather than string section."),
113                  cl::values(clEnumVal(Default, "Default for platform"),
114                             clEnumVal(Enable, "Enabled"),
115                             clEnumVal(Disable, "Disabled")),
116                  cl::init(Default));
117 
118 static cl::opt<bool>
119     NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden,
120                          cl::desc("Disable emission .debug_ranges section."),
121                          cl::init(false));
122 
123 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences(
124     "dwarf-sections-as-references", cl::Hidden,
125     cl::desc("Use sections+offset as references rather than labels."),
126     cl::values(clEnumVal(Default, "Default for platform"),
127                clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
128     cl::init(Default));
129 
130 static cl::opt<bool>
131     UseGNUDebugMacro("use-gnu-debug-macro", cl::Hidden,
132                      cl::desc("Emit the GNU .debug_macro format with DWARF <5"),
133                      cl::init(false));
134 
135 static cl::opt<DefaultOnOff> DwarfOpConvert(
136     "dwarf-op-convert", cl::Hidden,
137     cl::desc("Enable use of the DWARFv5 DW_OP_convert operator"),
138     cl::values(clEnumVal(Default, "Default for platform"),
139                clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
140     cl::init(Default));
141 
142 enum LinkageNameOption {
143   DefaultLinkageNames,
144   AllLinkageNames,
145   AbstractLinkageNames
146 };
147 
148 static cl::opt<LinkageNameOption>
149     DwarfLinkageNames("dwarf-linkage-names", cl::Hidden,
150                       cl::desc("Which DWARF linkage-name attributes to emit."),
151                       cl::values(clEnumValN(DefaultLinkageNames, "Default",
152                                             "Default for platform"),
153                                  clEnumValN(AllLinkageNames, "All", "All"),
154                                  clEnumValN(AbstractLinkageNames, "Abstract",
155                                             "Abstract subprograms")),
156                       cl::init(DefaultLinkageNames));
157 
158 static const char *const DWARFGroupName = "dwarf";
159 static const char *const DWARFGroupDescription = "DWARF Emission";
160 static const char *const DbgTimerName = "writer";
161 static const char *const DbgTimerDescription = "DWARF Debug Writer";
162 static constexpr unsigned ULEB128PadSize = 4;
163 
164 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) {
165   getActiveStreamer().EmitInt8(
166       Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op)
167                   : dwarf::OperationEncodingString(Op));
168 }
169 
170 void DebugLocDwarfExpression::emitSigned(int64_t Value) {
171   getActiveStreamer().emitSLEB128(Value, Twine(Value));
172 }
173 
174 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) {
175   getActiveStreamer().emitULEB128(Value, Twine(Value));
176 }
177 
178 void DebugLocDwarfExpression::emitData1(uint8_t Value) {
179   getActiveStreamer().EmitInt8(Value, Twine(Value));
180 }
181 
182 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) {
183   assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit");
184   getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize);
185 }
186 
187 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI,
188                                               unsigned MachineReg) {
189   // This information is not available while emitting .debug_loc entries.
190   return false;
191 }
192 
193 void DebugLocDwarfExpression::enableTemporaryBuffer() {
194   assert(!IsBuffering && "Already buffering?");
195   if (!TmpBuf)
196     TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments);
197   IsBuffering = true;
198 }
199 
200 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; }
201 
202 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() {
203   return TmpBuf ? TmpBuf->Bytes.size() : 0;
204 }
205 
206 void DebugLocDwarfExpression::commitTemporaryBuffer() {
207   if (!TmpBuf)
208     return;
209   for (auto Byte : enumerate(TmpBuf->Bytes)) {
210     const char *Comment = (Byte.index() < TmpBuf->Comments.size())
211                               ? TmpBuf->Comments[Byte.index()].c_str()
212                               : "";
213     OutBS.EmitInt8(Byte.value(), Comment);
214   }
215   TmpBuf->Bytes.clear();
216   TmpBuf->Comments.clear();
217 }
218 
219 const DIType *DbgVariable::getType() const {
220   return getVariable()->getType();
221 }
222 
223 /// Get .debug_loc entry for the instruction range starting at MI.
224 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) {
225   const DIExpression *Expr = MI->getDebugExpression();
226   assert(MI->getNumOperands() == 4);
227   if (MI->getDebugOperand(0).isReg()) {
228     const auto &RegOp = MI->getDebugOperand(0);
229     const auto &Op1 = MI->getDebugOffset();
230     // If the second operand is an immediate, this is a
231     // register-indirect address.
232     assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset");
233     MachineLocation MLoc(RegOp.getReg(), Op1.isImm());
234     return DbgValueLoc(Expr, MLoc);
235   }
236   if (MI->getDebugOperand(0).isTargetIndex()) {
237     const auto &Op = MI->getDebugOperand(0);
238     return DbgValueLoc(Expr,
239                        TargetIndexLocation(Op.getIndex(), Op.getOffset()));
240   }
241   if (MI->getDebugOperand(0).isImm())
242     return DbgValueLoc(Expr, MI->getDebugOperand(0).getImm());
243   if (MI->getDebugOperand(0).isFPImm())
244     return DbgValueLoc(Expr, MI->getDebugOperand(0).getFPImm());
245   if (MI->getDebugOperand(0).isCImm())
246     return DbgValueLoc(Expr, MI->getDebugOperand(0).getCImm());
247 
248   llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!");
249 }
250 
251 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) {
252   assert(FrameIndexExprs.empty() && "Already initialized?");
253   assert(!ValueLoc.get() && "Already initialized?");
254 
255   assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable");
256   assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() &&
257          "Wrong inlined-at");
258 
259   ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue));
260   if (auto *E = DbgValue->getDebugExpression())
261     if (E->getNumElements())
262       FrameIndexExprs.push_back({0, E});
263 }
264 
265 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const {
266   if (FrameIndexExprs.size() == 1)
267     return FrameIndexExprs;
268 
269   assert(llvm::all_of(FrameIndexExprs,
270                       [](const FrameIndexExpr &A) {
271                         return A.Expr->isFragment();
272                       }) &&
273          "multiple FI expressions without DW_OP_LLVM_fragment");
274   llvm::sort(FrameIndexExprs,
275              [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool {
276                return A.Expr->getFragmentInfo()->OffsetInBits <
277                       B.Expr->getFragmentInfo()->OffsetInBits;
278              });
279 
280   return FrameIndexExprs;
281 }
282 
283 void DbgVariable::addMMIEntry(const DbgVariable &V) {
284   assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry");
285   assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry");
286   assert(V.getVariable() == getVariable() && "conflicting variable");
287   assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location");
288 
289   assert(!FrameIndexExprs.empty() && "Expected an MMI entry");
290   assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry");
291 
292   // FIXME: This logic should not be necessary anymore, as we now have proper
293   // deduplication. However, without it, we currently run into the assertion
294   // below, which means that we are likely dealing with broken input, i.e. two
295   // non-fragment entries for the same variable at different frame indices.
296   if (FrameIndexExprs.size()) {
297     auto *Expr = FrameIndexExprs.back().Expr;
298     if (!Expr || !Expr->isFragment())
299       return;
300   }
301 
302   for (const auto &FIE : V.FrameIndexExprs)
303     // Ignore duplicate entries.
304     if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) {
305           return FIE.FI == Other.FI && FIE.Expr == Other.Expr;
306         }))
307       FrameIndexExprs.push_back(FIE);
308 
309   assert((FrameIndexExprs.size() == 1 ||
310           llvm::all_of(FrameIndexExprs,
311                        [](FrameIndexExpr &FIE) {
312                          return FIE.Expr && FIE.Expr->isFragment();
313                        })) &&
314          "conflicting locations for variable");
315 }
316 
317 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion,
318                                             bool GenerateTypeUnits,
319                                             DebuggerKind Tuning,
320                                             const Triple &TT) {
321   // Honor an explicit request.
322   if (AccelTables != AccelTableKind::Default)
323     return AccelTables;
324 
325   // Accelerator tables with type units are currently not supported.
326   if (GenerateTypeUnits)
327     return AccelTableKind::None;
328 
329   // Accelerator tables get emitted if targetting DWARF v5 or LLDB.  DWARF v5
330   // always implies debug_names. For lower standard versions we use apple
331   // accelerator tables on apple platforms and debug_names elsewhere.
332   if (DwarfVersion >= 5)
333     return AccelTableKind::Dwarf;
334   if (Tuning == DebuggerKind::LLDB)
335     return TT.isOSBinFormatMachO() ? AccelTableKind::Apple
336                                    : AccelTableKind::Dwarf;
337   return AccelTableKind::None;
338 }
339 
340 DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M)
341     : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()),
342       InfoHolder(A, "info_string", DIEValueAllocator),
343       SkeletonHolder(A, "skel_string", DIEValueAllocator),
344       IsDarwin(A->TM.getTargetTriple().isOSDarwin()) {
345   const Triple &TT = Asm->TM.getTargetTriple();
346 
347   // Make sure we know our "debugger tuning".  The target option takes
348   // precedence; fall back to triple-based defaults.
349   if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default)
350     DebuggerTuning = Asm->TM.Options.DebuggerTuning;
351   else if (IsDarwin)
352     DebuggerTuning = DebuggerKind::LLDB;
353   else if (TT.isPS4CPU())
354     DebuggerTuning = DebuggerKind::SCE;
355   else
356     DebuggerTuning = DebuggerKind::GDB;
357 
358   if (DwarfInlinedStrings == Default)
359     UseInlineStrings = TT.isNVPTX();
360   else
361     UseInlineStrings = DwarfInlinedStrings == Enable;
362 
363   UseLocSection = !TT.isNVPTX();
364 
365   HasAppleExtensionAttributes = tuneForLLDB();
366 
367   // Handle split DWARF.
368   HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty();
369 
370   // SCE defaults to linkage names only for abstract subprograms.
371   if (DwarfLinkageNames == DefaultLinkageNames)
372     UseAllLinkageNames = !tuneForSCE();
373   else
374     UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames;
375 
376   unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion;
377   unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber
378                                     : MMI->getModule()->getDwarfVersion();
379   // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2.
380   DwarfVersion =
381       TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION);
382 
383   bool Dwarf64 = Asm->TM.Options.MCOptions.Dwarf64 &&
384                  DwarfVersion >= 3 &&   // DWARF64 was introduced in DWARFv3.
385                  TT.isArch64Bit() &&    // DWARF64 requires 64-bit relocations.
386                  TT.isOSBinFormatELF(); // Support only ELF for now.
387 
388   UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX();
389 
390   // Use sections as references. Force for NVPTX.
391   if (DwarfSectionsAsReferences == Default)
392     UseSectionsAsReferences = TT.isNVPTX();
393   else
394     UseSectionsAsReferences = DwarfSectionsAsReferences == Enable;
395 
396   // Don't generate type units for unsupported object file formats.
397   GenerateTypeUnits = (A->TM.getTargetTriple().isOSBinFormatELF() ||
398                        A->TM.getTargetTriple().isOSBinFormatWasm()) &&
399                       GenerateDwarfTypeUnits;
400 
401   TheAccelTableKind = computeAccelTableKind(
402       DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple());
403 
404   // Work around a GDB bug. GDB doesn't support the standard opcode;
405   // SCE doesn't support GNU's; LLDB prefers the standard opcode, which
406   // is defined as of DWARF 3.
407   // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented
408   // https://sourceware.org/bugzilla/show_bug.cgi?id=11616
409   UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3;
410 
411   // GDB does not fully support the DWARF 4 representation for bitfields.
412   UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB();
413 
414   // The DWARF v5 string offsets table has - possibly shared - contributions
415   // from each compile and type unit each preceded by a header. The string
416   // offsets table used by the pre-DWARF v5 split-DWARF implementation uses
417   // a monolithic string offsets table without any header.
418   UseSegmentedStringOffsetsTable = DwarfVersion >= 5;
419 
420   // Emit call-site-param debug info for GDB and LLDB, if the target supports
421   // the debug entry values feature. It can also be enabled explicitly.
422   EmitDebugEntryValues = Asm->TM.Options.ShouldEmitDebugEntryValues();
423 
424   // It is unclear if the GCC .debug_macro extension is well-specified
425   // for split DWARF. For now, do not allow LLVM to emit it.
426   UseDebugMacroSection =
427       DwarfVersion >= 5 || (UseGNUDebugMacro && !useSplitDwarf());
428   if (DwarfOpConvert == Default)
429     EnableOpConvert = !((tuneForGDB() && useSplitDwarf()) || (tuneForLLDB() && !TT.isOSBinFormatMachO()));
430   else
431     EnableOpConvert = (DwarfOpConvert == Enable);
432 
433   Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion);
434   Asm->OutStreamer->getContext().setDwarfFormat(Dwarf64 ? dwarf::DWARF64
435                                                         : dwarf::DWARF32);
436 }
437 
438 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h.
439 DwarfDebug::~DwarfDebug() = default;
440 
441 static bool isObjCClass(StringRef Name) {
442   return Name.startswith("+") || Name.startswith("-");
443 }
444 
445 static bool hasObjCCategory(StringRef Name) {
446   if (!isObjCClass(Name))
447     return false;
448 
449   return Name.find(") ") != StringRef::npos;
450 }
451 
452 static void getObjCClassCategory(StringRef In, StringRef &Class,
453                                  StringRef &Category) {
454   if (!hasObjCCategory(In)) {
455     Class = In.slice(In.find('[') + 1, In.find(' '));
456     Category = "";
457     return;
458   }
459 
460   Class = In.slice(In.find('[') + 1, In.find('('));
461   Category = In.slice(In.find('[') + 1, In.find(' '));
462 }
463 
464 static StringRef getObjCMethodName(StringRef In) {
465   return In.slice(In.find(' ') + 1, In.find(']'));
466 }
467 
468 // Add the various names to the Dwarf accelerator table names.
469 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU,
470                                     const DISubprogram *SP, DIE &Die) {
471   if (getAccelTableKind() != AccelTableKind::Apple &&
472       CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None)
473     return;
474 
475   if (!SP->isDefinition())
476     return;
477 
478   if (SP->getName() != "")
479     addAccelName(CU, SP->getName(), Die);
480 
481   // If the linkage name is different than the name, go ahead and output that as
482   // well into the name table. Only do that if we are going to actually emit
483   // that name.
484   if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() &&
485       (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP)))
486     addAccelName(CU, SP->getLinkageName(), Die);
487 
488   // If this is an Objective-C selector name add it to the ObjC accelerator
489   // too.
490   if (isObjCClass(SP->getName())) {
491     StringRef Class, Category;
492     getObjCClassCategory(SP->getName(), Class, Category);
493     addAccelObjC(CU, Class, Die);
494     if (Category != "")
495       addAccelObjC(CU, Category, Die);
496     // Also add the base method name to the name table.
497     addAccelName(CU, getObjCMethodName(SP->getName()), Die);
498   }
499 }
500 
501 /// Check whether we should create a DIE for the given Scope, return true
502 /// if we don't create a DIE (the corresponding DIE is null).
503 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) {
504   if (Scope->isAbstractScope())
505     return false;
506 
507   // We don't create a DIE if there is no Range.
508   const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges();
509   if (Ranges.empty())
510     return true;
511 
512   if (Ranges.size() > 1)
513     return false;
514 
515   // We don't create a DIE if we have a single Range and the end label
516   // is null.
517   return !getLabelAfterInsn(Ranges.front().second);
518 }
519 
520 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) {
521   F(CU);
522   if (auto *SkelCU = CU.getSkeleton())
523     if (CU.getCUNode()->getSplitDebugInlining())
524       F(*SkelCU);
525 }
526 
527 bool DwarfDebug::shareAcrossDWOCUs() const {
528   return SplitDwarfCrossCuReferences;
529 }
530 
531 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU,
532                                                      LexicalScope *Scope) {
533   assert(Scope && Scope->getScopeNode());
534   assert(Scope->isAbstractScope());
535   assert(!Scope->getInlinedAt());
536 
537   auto *SP = cast<DISubprogram>(Scope->getScopeNode());
538 
539   // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
540   // was inlined from another compile unit.
541   if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining())
542     // Avoid building the original CU if it won't be used
543     SrcCU.constructAbstractSubprogramScopeDIE(Scope);
544   else {
545     auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
546     if (auto *SkelCU = CU.getSkeleton()) {
547       (shareAcrossDWOCUs() ? CU : SrcCU)
548           .constructAbstractSubprogramScopeDIE(Scope);
549       if (CU.getCUNode()->getSplitDebugInlining())
550         SkelCU->constructAbstractSubprogramScopeDIE(Scope);
551     } else
552       CU.constructAbstractSubprogramScopeDIE(Scope);
553   }
554 }
555 
556 DIE &DwarfDebug::constructSubprogramDefinitionDIE(const DISubprogram *SP) {
557   DICompileUnit *Unit = SP->getUnit();
558   assert(SP->isDefinition() && "Subprogram not a definition");
559   assert(Unit && "Subprogram definition without parent unit");
560   auto &CU = getOrCreateDwarfCompileUnit(Unit);
561   return *CU.getOrCreateSubprogramDIE(SP);
562 }
563 
564 /// Represents a parameter whose call site value can be described by applying a
565 /// debug expression to a register in the forwarded register worklist.
566 struct FwdRegParamInfo {
567   /// The described parameter register.
568   unsigned ParamReg;
569 
570   /// Debug expression that has been built up when walking through the
571   /// instruction chain that produces the parameter's value.
572   const DIExpression *Expr;
573 };
574 
575 /// Register worklist for finding call site values.
576 using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>;
577 
578 /// Append the expression \p Addition to \p Original and return the result.
579 static const DIExpression *combineDIExpressions(const DIExpression *Original,
580                                                 const DIExpression *Addition) {
581   std::vector<uint64_t> Elts = Addition->getElements().vec();
582   // Avoid multiple DW_OP_stack_values.
583   if (Original->isImplicit() && Addition->isImplicit())
584     erase_if(Elts, [](uint64_t Op) { return Op == dwarf::DW_OP_stack_value; });
585   const DIExpression *CombinedExpr =
586       (Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original;
587   return CombinedExpr;
588 }
589 
590 /// Emit call site parameter entries that are described by the given value and
591 /// debug expression.
592 template <typename ValT>
593 static void finishCallSiteParams(ValT Val, const DIExpression *Expr,
594                                  ArrayRef<FwdRegParamInfo> DescribedParams,
595                                  ParamSet &Params) {
596   for (auto Param : DescribedParams) {
597     bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0;
598 
599     // TODO: Entry value operations can currently not be combined with any
600     // other expressions, so we can't emit call site entries in those cases.
601     if (ShouldCombineExpressions && Expr->isEntryValue())
602       continue;
603 
604     // If a parameter's call site value is produced by a chain of
605     // instructions we may have already created an expression for the
606     // parameter when walking through the instructions. Append that to the
607     // base expression.
608     const DIExpression *CombinedExpr =
609         ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr)
610                                  : Expr;
611     assert((!CombinedExpr || CombinedExpr->isValid()) &&
612            "Combined debug expression is invalid");
613 
614     DbgValueLoc DbgLocVal(CombinedExpr, Val);
615     DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal);
616     Params.push_back(CSParm);
617     ++NumCSParams;
618   }
619 }
620 
621 /// Add \p Reg to the worklist, if it's not already present, and mark that the
622 /// given parameter registers' values can (potentially) be described using
623 /// that register and an debug expression.
624 static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg,
625                                 const DIExpression *Expr,
626                                 ArrayRef<FwdRegParamInfo> ParamsToAdd) {
627   auto I = Worklist.insert({Reg, {}});
628   auto &ParamsForFwdReg = I.first->second;
629   for (auto Param : ParamsToAdd) {
630     assert(none_of(ParamsForFwdReg,
631                    [Param](const FwdRegParamInfo &D) {
632                      return D.ParamReg == Param.ParamReg;
633                    }) &&
634            "Same parameter described twice by forwarding reg");
635 
636     // If a parameter's call site value is produced by a chain of
637     // instructions we may have already created an expression for the
638     // parameter when walking through the instructions. Append that to the
639     // new expression.
640     const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr);
641     ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr});
642   }
643 }
644 
645 /// Interpret values loaded into registers by \p CurMI.
646 static void interpretValues(const MachineInstr *CurMI,
647                             FwdRegWorklist &ForwardedRegWorklist,
648                             ParamSet &Params) {
649 
650   const MachineFunction *MF = CurMI->getMF();
651   const DIExpression *EmptyExpr =
652       DIExpression::get(MF->getFunction().getContext(), {});
653   const auto &TRI = *MF->getSubtarget().getRegisterInfo();
654   const auto &TII = *MF->getSubtarget().getInstrInfo();
655   const auto &TLI = *MF->getSubtarget().getTargetLowering();
656 
657   // If an instruction defines more than one item in the worklist, we may run
658   // into situations where a worklist register's value is (potentially)
659   // described by the previous value of another register that is also defined
660   // by that instruction.
661   //
662   // This can for example occur in cases like this:
663   //
664   //   $r1 = mov 123
665   //   $r0, $r1 = mvrr $r1, 456
666   //   call @foo, $r0, $r1
667   //
668   // When describing $r1's value for the mvrr instruction, we need to make sure
669   // that we don't finalize an entry value for $r0, as that is dependent on the
670   // previous value of $r1 (123 rather than 456).
671   //
672   // In order to not have to distinguish between those cases when finalizing
673   // entry values, we simply postpone adding new parameter registers to the
674   // worklist, by first keeping them in this temporary container until the
675   // instruction has been handled.
676   FwdRegWorklist TmpWorklistItems;
677 
678   // If the MI is an instruction defining one or more parameters' forwarding
679   // registers, add those defines.
680   auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI,
681                                           SmallSetVector<unsigned, 4> &Defs) {
682     if (MI.isDebugInstr())
683       return;
684 
685     for (const MachineOperand &MO : MI.operands()) {
686       if (MO.isReg() && MO.isDef() &&
687           Register::isPhysicalRegister(MO.getReg())) {
688         for (auto FwdReg : ForwardedRegWorklist)
689           if (TRI.regsOverlap(FwdReg.first, MO.getReg()))
690             Defs.insert(FwdReg.first);
691       }
692     }
693   };
694 
695   // Set of worklist registers that are defined by this instruction.
696   SmallSetVector<unsigned, 4> FwdRegDefs;
697 
698   getForwardingRegsDefinedByMI(*CurMI, FwdRegDefs);
699   if (FwdRegDefs.empty())
700     return;
701 
702   for (auto ParamFwdReg : FwdRegDefs) {
703     if (auto ParamValue = TII.describeLoadedValue(*CurMI, ParamFwdReg)) {
704       if (ParamValue->first.isImm()) {
705         int64_t Val = ParamValue->first.getImm();
706         finishCallSiteParams(Val, ParamValue->second,
707                              ForwardedRegWorklist[ParamFwdReg], Params);
708       } else if (ParamValue->first.isReg()) {
709         Register RegLoc = ParamValue->first.getReg();
710         Register SP = TLI.getStackPointerRegisterToSaveRestore();
711         Register FP = TRI.getFrameRegister(*MF);
712         bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP);
713         if (TRI.isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) {
714           MachineLocation MLoc(RegLoc, /*Indirect=*/IsSPorFP);
715           finishCallSiteParams(MLoc, ParamValue->second,
716                                ForwardedRegWorklist[ParamFwdReg], Params);
717         } else {
718           // ParamFwdReg was described by the non-callee saved register
719           // RegLoc. Mark that the call site values for the parameters are
720           // dependent on that register instead of ParamFwdReg. Since RegLoc
721           // may be a register that will be handled in this iteration, we
722           // postpone adding the items to the worklist, and instead keep them
723           // in a temporary container.
724           addToFwdRegWorklist(TmpWorklistItems, RegLoc, ParamValue->second,
725                               ForwardedRegWorklist[ParamFwdReg]);
726         }
727       }
728     }
729   }
730 
731   // Remove all registers that this instruction defines from the worklist.
732   for (auto ParamFwdReg : FwdRegDefs)
733     ForwardedRegWorklist.erase(ParamFwdReg);
734 
735   // Now that we are done handling this instruction, add items from the
736   // temporary worklist to the real one.
737   for (auto New : TmpWorklistItems)
738     addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, New.second);
739   TmpWorklistItems.clear();
740 }
741 
742 static bool interpretNextInstr(const MachineInstr *CurMI,
743                                FwdRegWorklist &ForwardedRegWorklist,
744                                ParamSet &Params) {
745   // Skip bundle headers.
746   if (CurMI->isBundle())
747     return true;
748 
749   // If the next instruction is a call we can not interpret parameter's
750   // forwarding registers or we finished the interpretation of all
751   // parameters.
752   if (CurMI->isCall())
753     return false;
754 
755   if (ForwardedRegWorklist.empty())
756     return false;
757 
758   // Avoid NOP description.
759   if (CurMI->getNumOperands() == 0)
760     return true;
761 
762   interpretValues(CurMI, ForwardedRegWorklist, Params);
763 
764   return true;
765 }
766 
767 /// Try to interpret values loaded into registers that forward parameters
768 /// for \p CallMI. Store parameters with interpreted value into \p Params.
769 static void collectCallSiteParameters(const MachineInstr *CallMI,
770                                       ParamSet &Params) {
771   const MachineFunction *MF = CallMI->getMF();
772   auto CalleesMap = MF->getCallSitesInfo();
773   auto CallFwdRegsInfo = CalleesMap.find(CallMI);
774 
775   // There is no information for the call instruction.
776   if (CallFwdRegsInfo == CalleesMap.end())
777     return;
778 
779   const MachineBasicBlock *MBB = CallMI->getParent();
780 
781   // Skip the call instruction.
782   auto I = std::next(CallMI->getReverseIterator());
783 
784   FwdRegWorklist ForwardedRegWorklist;
785 
786   const DIExpression *EmptyExpr =
787       DIExpression::get(MF->getFunction().getContext(), {});
788 
789   // Add all the forwarding registers into the ForwardedRegWorklist.
790   for (auto ArgReg : CallFwdRegsInfo->second) {
791     bool InsertedReg =
792         ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}})
793             .second;
794     assert(InsertedReg && "Single register used to forward two arguments?");
795     (void)InsertedReg;
796   }
797 
798   // We erase, from the ForwardedRegWorklist, those forwarding registers for
799   // which we successfully describe a loaded value (by using
800   // the describeLoadedValue()). For those remaining arguments in the working
801   // list, for which we do not describe a loaded value by
802   // the describeLoadedValue(), we try to generate an entry value expression
803   // for their call site value description, if the call is within the entry MBB.
804   // TODO: Handle situations when call site parameter value can be described
805   // as the entry value within basic blocks other than the first one.
806   bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin();
807 
808   // Search for a loading value in forwarding registers inside call delay slot.
809   if (CallMI->hasDelaySlot()) {
810     auto Suc = std::next(CallMI->getIterator());
811     // Only one-instruction delay slot is supported.
812     auto BundleEnd = llvm::getBundleEnd(CallMI->getIterator());
813     (void)BundleEnd;
814     assert(std::next(Suc) == BundleEnd &&
815            "More than one instruction in call delay slot");
816     // Try to interpret value loaded by instruction.
817     if (!interpretNextInstr(&*Suc, ForwardedRegWorklist, Params))
818       return;
819   }
820 
821   // Search for a loading value in forwarding registers.
822   for (; I != MBB->rend(); ++I) {
823     // Try to interpret values loaded by instruction.
824     if (!interpretNextInstr(&*I, ForwardedRegWorklist, Params))
825       return;
826   }
827 
828   // Emit the call site parameter's value as an entry value.
829   if (ShouldTryEmitEntryVals) {
830     // Create an expression where the register's entry value is used.
831     DIExpression *EntryExpr = DIExpression::get(
832         MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1});
833     for (auto RegEntry : ForwardedRegWorklist) {
834       MachineLocation MLoc(RegEntry.first);
835       finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params);
836     }
837   }
838 }
839 
840 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP,
841                                             DwarfCompileUnit &CU, DIE &ScopeDIE,
842                                             const MachineFunction &MF) {
843   // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if
844   // the subprogram is required to have one.
845   if (!SP.areAllCallsDescribed() || !SP.isDefinition())
846     return;
847 
848   // Use DW_AT_call_all_calls to express that call site entries are present
849   // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls
850   // because one of its requirements is not met: call site entries for
851   // optimized-out calls are elided.
852   CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls));
853 
854   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
855   assert(TII && "TargetInstrInfo not found: cannot label tail calls");
856 
857   // Delay slot support check.
858   auto delaySlotSupported = [&](const MachineInstr &MI) {
859     if (!MI.isBundledWithSucc())
860       return false;
861     auto Suc = std::next(MI.getIterator());
862     auto CallInstrBundle = getBundleStart(MI.getIterator());
863     (void)CallInstrBundle;
864     auto DelaySlotBundle = getBundleStart(Suc);
865     (void)DelaySlotBundle;
866     // Ensure that label after call is following delay slot instruction.
867     // Ex. CALL_INSTRUCTION {
868     //       DELAY_SLOT_INSTRUCTION }
869     //      LABEL_AFTER_CALL
870     assert(getLabelAfterInsn(&*CallInstrBundle) ==
871                getLabelAfterInsn(&*DelaySlotBundle) &&
872            "Call and its successor instruction don't have same label after.");
873     return true;
874   };
875 
876   // Emit call site entries for each call or tail call in the function.
877   for (const MachineBasicBlock &MBB : MF) {
878     for (const MachineInstr &MI : MBB.instrs()) {
879       // Bundles with call in them will pass the isCall() test below but do not
880       // have callee operand information so skip them here. Iterator will
881       // eventually reach the call MI.
882       if (MI.isBundle())
883         continue;
884 
885       // Skip instructions which aren't calls. Both calls and tail-calling jump
886       // instructions (e.g TAILJMPd64) are classified correctly here.
887       if (!MI.isCandidateForCallSiteEntry())
888         continue;
889 
890       // Skip instructions marked as frame setup, as they are not interesting to
891       // the user.
892       if (MI.getFlag(MachineInstr::FrameSetup))
893         continue;
894 
895       // Check if delay slot support is enabled.
896       if (MI.hasDelaySlot() && !delaySlotSupported(*&MI))
897         return;
898 
899       // If this is a direct call, find the callee's subprogram.
900       // In the case of an indirect call find the register that holds
901       // the callee.
902       const MachineOperand &CalleeOp = MI.getOperand(0);
903       if (!CalleeOp.isGlobal() && !CalleeOp.isReg())
904         continue;
905 
906       unsigned CallReg = 0;
907       DIE *CalleeDIE = nullptr;
908       const Function *CalleeDecl = nullptr;
909       if (CalleeOp.isReg()) {
910         CallReg = CalleeOp.getReg();
911         if (!CallReg)
912           continue;
913       } else {
914         CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal());
915         if (!CalleeDecl || !CalleeDecl->getSubprogram())
916           continue;
917         const DISubprogram *CalleeSP = CalleeDecl->getSubprogram();
918 
919         if (CalleeSP->isDefinition()) {
920           // Ensure that a subprogram DIE for the callee is available in the
921           // appropriate CU.
922           CalleeDIE = &constructSubprogramDefinitionDIE(CalleeSP);
923         } else {
924           // Create the declaration DIE if it is missing. This is required to
925           // support compilation of old bitcode with an incomplete list of
926           // retained metadata.
927           CalleeDIE = CU.getOrCreateSubprogramDIE(CalleeSP);
928         }
929         assert(CalleeDIE && "Must have a DIE for the callee");
930       }
931 
932       // TODO: Omit call site entries for runtime calls (objc_msgSend, etc).
933 
934       bool IsTail = TII->isTailCall(MI);
935 
936       // If MI is in a bundle, the label was created after the bundle since
937       // EmitFunctionBody iterates over top-level MIs. Get that top-level MI
938       // to search for that label below.
939       const MachineInstr *TopLevelCallMI =
940           MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI;
941 
942       // For non-tail calls, the return PC is needed to disambiguate paths in
943       // the call graph which could lead to some target function. For tail
944       // calls, no return PC information is needed, unless tuning for GDB in
945       // DWARF4 mode in which case we fake a return PC for compatibility.
946       const MCSymbol *PCAddr =
947           (!IsTail || CU.useGNUAnalogForDwarf5Feature())
948               ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI))
949               : nullptr;
950 
951       // For tail calls, it's necessary to record the address of the branch
952       // instruction so that the debugger can show where the tail call occurred.
953       const MCSymbol *CallAddr =
954           IsTail ? getLabelBeforeInsn(TopLevelCallMI) : nullptr;
955 
956       assert((IsTail || PCAddr) && "Non-tail call without return PC");
957 
958       LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> "
959                         << (CalleeDecl ? CalleeDecl->getName()
960                                        : StringRef(MF.getSubtarget()
961                                                        .getRegisterInfo()
962                                                        ->getName(CallReg)))
963                         << (IsTail ? " [IsTail]" : "") << "\n");
964 
965       DIE &CallSiteDIE = CU.constructCallSiteEntryDIE(
966           ScopeDIE, CalleeDIE, IsTail, PCAddr, CallAddr, CallReg);
967 
968       // Optionally emit call-site-param debug info.
969       if (emitDebugEntryValues()) {
970         ParamSet Params;
971         // Try to interpret values of call site parameters.
972         collectCallSiteParameters(&MI, Params);
973         CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params);
974       }
975     }
976   }
977 }
978 
979 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const {
980   if (!U.hasDwarfPubSections())
981     return;
982 
983   U.addFlag(D, dwarf::DW_AT_GNU_pubnames);
984 }
985 
986 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit,
987                                       DwarfCompileUnit &NewCU) {
988   DIE &Die = NewCU.getUnitDie();
989   StringRef FN = DIUnit->getFilename();
990 
991   StringRef Producer = DIUnit->getProducer();
992   StringRef Flags = DIUnit->getFlags();
993   if (!Flags.empty() && !useAppleExtensionAttributes()) {
994     std::string ProducerWithFlags = Producer.str() + " " + Flags.str();
995     NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags);
996   } else
997     NewCU.addString(Die, dwarf::DW_AT_producer, Producer);
998 
999   NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
1000                 DIUnit->getSourceLanguage());
1001   NewCU.addString(Die, dwarf::DW_AT_name, FN);
1002   StringRef SysRoot = DIUnit->getSysRoot();
1003   if (!SysRoot.empty())
1004     NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot);
1005   StringRef SDK = DIUnit->getSDK();
1006   if (!SDK.empty())
1007     NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK);
1008 
1009   // Add DW_str_offsets_base to the unit DIE, except for split units.
1010   if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
1011     NewCU.addStringOffsetsStart();
1012 
1013   if (!useSplitDwarf()) {
1014     NewCU.initStmtList();
1015 
1016     // If we're using split dwarf the compilation dir is going to be in the
1017     // skeleton CU and so we don't need to duplicate it here.
1018     if (!CompilationDir.empty())
1019       NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
1020     addGnuPubAttributes(NewCU, Die);
1021   }
1022 
1023   if (useAppleExtensionAttributes()) {
1024     if (DIUnit->isOptimized())
1025       NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized);
1026 
1027     StringRef Flags = DIUnit->getFlags();
1028     if (!Flags.empty())
1029       NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags);
1030 
1031     if (unsigned RVer = DIUnit->getRuntimeVersion())
1032       NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers,
1033                     dwarf::DW_FORM_data1, RVer);
1034   }
1035 
1036   if (DIUnit->getDWOId()) {
1037     // This CU is either a clang module DWO or a skeleton CU.
1038     NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8,
1039                   DIUnit->getDWOId());
1040     if (!DIUnit->getSplitDebugFilename().empty()) {
1041       // This is a prefabricated skeleton CU.
1042       dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
1043                                          ? dwarf::DW_AT_dwo_name
1044                                          : dwarf::DW_AT_GNU_dwo_name;
1045       NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename());
1046     }
1047   }
1048 }
1049 // Create new DwarfCompileUnit for the given metadata node with tag
1050 // DW_TAG_compile_unit.
1051 DwarfCompileUnit &
1052 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) {
1053   if (auto *CU = CUMap.lookup(DIUnit))
1054     return *CU;
1055 
1056   CompilationDir = DIUnit->getDirectory();
1057 
1058   auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
1059       InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder);
1060   DwarfCompileUnit &NewCU = *OwnedUnit;
1061   InfoHolder.addUnit(std::move(OwnedUnit));
1062 
1063   for (auto *IE : DIUnit->getImportedEntities())
1064     NewCU.addImportedEntity(IE);
1065 
1066   // LTO with assembly output shares a single line table amongst multiple CUs.
1067   // To avoid the compilation directory being ambiguous, let the line table
1068   // explicitly describe the directory of all files, never relying on the
1069   // compilation directory.
1070   if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU)
1071     Asm->OutStreamer->emitDwarfFile0Directive(
1072         CompilationDir, DIUnit->getFilename(), getMD5AsBytes(DIUnit->getFile()),
1073         DIUnit->getSource(), NewCU.getUniqueID());
1074 
1075   if (useSplitDwarf()) {
1076     NewCU.setSkeleton(constructSkeletonCU(NewCU));
1077     NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection());
1078   } else {
1079     finishUnitAttributes(DIUnit, NewCU);
1080     NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
1081   }
1082 
1083   CUMap.insert({DIUnit, &NewCU});
1084   CUDieMap.insert({&NewCU.getUnitDie(), &NewCU});
1085   return NewCU;
1086 }
1087 
1088 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU,
1089                                                   const DIImportedEntity *N) {
1090   if (isa<DILocalScope>(N->getScope()))
1091     return;
1092   if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope()))
1093     D->addChild(TheCU.constructImportedEntityDIE(N));
1094 }
1095 
1096 /// Sort and unique GVEs by comparing their fragment offset.
1097 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &
1098 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) {
1099   llvm::sort(
1100       GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) {
1101         // Sort order: first null exprs, then exprs without fragment
1102         // info, then sort by fragment offset in bits.
1103         // FIXME: Come up with a more comprehensive comparator so
1104         // the sorting isn't non-deterministic, and so the following
1105         // std::unique call works correctly.
1106         if (!A.Expr || !B.Expr)
1107           return !!B.Expr;
1108         auto FragmentA = A.Expr->getFragmentInfo();
1109         auto FragmentB = B.Expr->getFragmentInfo();
1110         if (!FragmentA || !FragmentB)
1111           return !!FragmentB;
1112         return FragmentA->OffsetInBits < FragmentB->OffsetInBits;
1113       });
1114   GVEs.erase(std::unique(GVEs.begin(), GVEs.end(),
1115                          [](DwarfCompileUnit::GlobalExpr A,
1116                             DwarfCompileUnit::GlobalExpr B) {
1117                            return A.Expr == B.Expr;
1118                          }),
1119              GVEs.end());
1120   return GVEs;
1121 }
1122 
1123 // Emit all Dwarf sections that should come prior to the content. Create
1124 // global DIEs and emit initial debug info sections. This is invoked by
1125 // the target AsmPrinter.
1126 void DwarfDebug::beginModule() {
1127   NamedRegionTimer T(DbgTimerName, DbgTimerDescription, DWARFGroupName,
1128                      DWARFGroupDescription, TimePassesIsEnabled);
1129   if (DisableDebugInfoPrinting) {
1130     MMI->setDebugInfoAvailability(false);
1131     return;
1132   }
1133 
1134   const Module *M = MMI->getModule();
1135 
1136   unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(),
1137                                        M->debug_compile_units_end());
1138   // Tell MMI whether we have debug info.
1139   assert(MMI->hasDebugInfo() == (NumDebugCUs > 0) &&
1140          "DebugInfoAvailabilty initialized unexpectedly");
1141   SingleCU = NumDebugCUs == 1;
1142   DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>>
1143       GVMap;
1144   for (const GlobalVariable &Global : M->globals()) {
1145     SmallVector<DIGlobalVariableExpression *, 1> GVs;
1146     Global.getDebugInfo(GVs);
1147     for (auto *GVE : GVs)
1148       GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()});
1149   }
1150 
1151   // Create the symbol that designates the start of the unit's contribution
1152   // to the string offsets table. In a split DWARF scenario, only the skeleton
1153   // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol).
1154   if (useSegmentedStringOffsetsTable())
1155     (useSplitDwarf() ? SkeletonHolder : InfoHolder)
1156         .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base"));
1157 
1158 
1159   // Create the symbols that designates the start of the DWARF v5 range list
1160   // and locations list tables. They are located past the table headers.
1161   if (getDwarfVersion() >= 5) {
1162     DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1163     Holder.setRnglistsTableBaseSym(
1164         Asm->createTempSymbol("rnglists_table_base"));
1165 
1166     if (useSplitDwarf())
1167       InfoHolder.setRnglistsTableBaseSym(
1168           Asm->createTempSymbol("rnglists_dwo_table_base"));
1169   }
1170 
1171   // Create the symbol that points to the first entry following the debug
1172   // address table (.debug_addr) header.
1173   AddrPool.setLabel(Asm->createTempSymbol("addr_table_base"));
1174   DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base"));
1175 
1176   for (DICompileUnit *CUNode : M->debug_compile_units()) {
1177     // FIXME: Move local imported entities into a list attached to the
1178     // subprogram, then this search won't be needed and a
1179     // getImportedEntities().empty() test should go below with the rest.
1180     bool HasNonLocalImportedEntities = llvm::any_of(
1181         CUNode->getImportedEntities(), [](const DIImportedEntity *IE) {
1182           return !isa<DILocalScope>(IE->getScope());
1183         });
1184 
1185     if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() &&
1186         CUNode->getRetainedTypes().empty() &&
1187         CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty())
1188       continue;
1189 
1190     DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode);
1191 
1192     // Global Variables.
1193     for (auto *GVE : CUNode->getGlobalVariables()) {
1194       // Don't bother adding DIGlobalVariableExpressions listed in the CU if we
1195       // already know about the variable and it isn't adding a constant
1196       // expression.
1197       auto &GVMapEntry = GVMap[GVE->getVariable()];
1198       auto *Expr = GVE->getExpression();
1199       if (!GVMapEntry.size() || (Expr && Expr->isConstant()))
1200         GVMapEntry.push_back({nullptr, Expr});
1201     }
1202     DenseSet<DIGlobalVariable *> Processed;
1203     for (auto *GVE : CUNode->getGlobalVariables()) {
1204       DIGlobalVariable *GV = GVE->getVariable();
1205       if (Processed.insert(GV).second)
1206         CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV]));
1207     }
1208 
1209     for (auto *Ty : CUNode->getEnumTypes()) {
1210       // The enum types array by design contains pointers to
1211       // MDNodes rather than DIRefs. Unique them here.
1212       CU.getOrCreateTypeDIE(cast<DIType>(Ty));
1213     }
1214     for (auto *Ty : CUNode->getRetainedTypes()) {
1215       // The retained types array by design contains pointers to
1216       // MDNodes rather than DIRefs. Unique them here.
1217       if (DIType *RT = dyn_cast<DIType>(Ty))
1218           // There is no point in force-emitting a forward declaration.
1219           CU.getOrCreateTypeDIE(RT);
1220     }
1221     // Emit imported_modules last so that the relevant context is already
1222     // available.
1223     for (auto *IE : CUNode->getImportedEntities())
1224       constructAndAddImportedEntityDIE(CU, IE);
1225   }
1226 }
1227 
1228 void DwarfDebug::finishEntityDefinitions() {
1229   for (const auto &Entity : ConcreteEntities) {
1230     DIE *Die = Entity->getDIE();
1231     assert(Die);
1232     // FIXME: Consider the time-space tradeoff of just storing the unit pointer
1233     // in the ConcreteEntities list, rather than looking it up again here.
1234     // DIE::getUnit isn't simple - it walks parent pointers, etc.
1235     DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie());
1236     assert(Unit);
1237     Unit->finishEntityDefinition(Entity.get());
1238   }
1239 }
1240 
1241 void DwarfDebug::finishSubprogramDefinitions() {
1242   for (const DISubprogram *SP : ProcessedSPNodes) {
1243     assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug);
1244     forBothCUs(
1245         getOrCreateDwarfCompileUnit(SP->getUnit()),
1246         [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); });
1247   }
1248 }
1249 
1250 void DwarfDebug::finalizeModuleInfo() {
1251   const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
1252 
1253   finishSubprogramDefinitions();
1254 
1255   finishEntityDefinitions();
1256 
1257   // Include the DWO file name in the hash if there's more than one CU.
1258   // This handles ThinLTO's situation where imported CUs may very easily be
1259   // duplicate with the same CU partially imported into another ThinLTO unit.
1260   StringRef DWOName;
1261   if (CUMap.size() > 1)
1262     DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile;
1263 
1264   // Handle anything that needs to be done on a per-unit basis after
1265   // all other generation.
1266   for (const auto &P : CUMap) {
1267     auto &TheCU = *P.second;
1268     if (TheCU.getCUNode()->isDebugDirectivesOnly())
1269       continue;
1270     // Emit DW_AT_containing_type attribute to connect types with their
1271     // vtable holding type.
1272     TheCU.constructContainingTypeDIEs();
1273 
1274     // Add CU specific attributes if we need to add any.
1275     // If we're splitting the dwarf out now that we've got the entire
1276     // CU then add the dwo id to it.
1277     auto *SkCU = TheCU.getSkeleton();
1278 
1279     bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty();
1280 
1281     if (HasSplitUnit) {
1282       dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
1283                                          ? dwarf::DW_AT_dwo_name
1284                                          : dwarf::DW_AT_GNU_dwo_name;
1285       finishUnitAttributes(TheCU.getCUNode(), TheCU);
1286       TheCU.addString(TheCU.getUnitDie(), attrDWOName,
1287                       Asm->TM.Options.MCOptions.SplitDwarfFile);
1288       SkCU->addString(SkCU->getUnitDie(), attrDWOName,
1289                       Asm->TM.Options.MCOptions.SplitDwarfFile);
1290       // Emit a unique identifier for this CU.
1291       uint64_t ID =
1292           DIEHash(Asm, &TheCU).computeCUSignature(DWOName, TheCU.getUnitDie());
1293       if (getDwarfVersion() >= 5) {
1294         TheCU.setDWOId(ID);
1295         SkCU->setDWOId(ID);
1296       } else {
1297         TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1298                       dwarf::DW_FORM_data8, ID);
1299         SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1300                       dwarf::DW_FORM_data8, ID);
1301       }
1302 
1303       if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) {
1304         const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol();
1305         SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base,
1306                               Sym, Sym);
1307       }
1308     } else if (SkCU) {
1309       finishUnitAttributes(SkCU->getCUNode(), *SkCU);
1310     }
1311 
1312     // If we have code split among multiple sections or non-contiguous
1313     // ranges of code then emit a DW_AT_ranges attribute on the unit that will
1314     // remain in the .o file, otherwise add a DW_AT_low_pc.
1315     // FIXME: We should use ranges allow reordering of code ala
1316     // .subsections_via_symbols in mach-o. This would mean turning on
1317     // ranges for all subprogram DIEs for mach-o.
1318     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
1319 
1320     if (unsigned NumRanges = TheCU.getRanges().size()) {
1321       if (NumRanges > 1 && useRangesSection())
1322         // A DW_AT_low_pc attribute may also be specified in combination with
1323         // DW_AT_ranges to specify the default base address for use in
1324         // location lists (see Section 2.6.2) and range lists (see Section
1325         // 2.17.3).
1326         U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0);
1327       else
1328         U.setBaseAddress(TheCU.getRanges().front().Begin);
1329       U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges());
1330     }
1331 
1332     // We don't keep track of which addresses are used in which CU so this
1333     // is a bit pessimistic under LTO.
1334     if ((HasSplitUnit || getDwarfVersion() >= 5) && !AddrPool.isEmpty())
1335       U.addAddrTableBase();
1336 
1337     if (getDwarfVersion() >= 5) {
1338       if (U.hasRangeLists())
1339         U.addRnglistsBase();
1340 
1341       if (!DebugLocs.getLists().empty()) {
1342         if (!useSplitDwarf())
1343           U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base,
1344                             DebugLocs.getSym(),
1345                             TLOF.getDwarfLoclistsSection()->getBeginSymbol());
1346       }
1347     }
1348 
1349     auto *CUNode = cast<DICompileUnit>(P.first);
1350     // If compile Unit has macros, emit "DW_AT_macro_info/DW_AT_macros"
1351     // attribute.
1352     if (CUNode->getMacros()) {
1353       if (UseDebugMacroSection) {
1354         if (useSplitDwarf())
1355           TheCU.addSectionDelta(
1356               TheCU.getUnitDie(), dwarf::DW_AT_macros, U.getMacroLabelBegin(),
1357               TLOF.getDwarfMacroDWOSection()->getBeginSymbol());
1358         else {
1359           dwarf::Attribute MacrosAttr = getDwarfVersion() >= 5
1360                                             ? dwarf::DW_AT_macros
1361                                             : dwarf::DW_AT_GNU_macros;
1362           U.addSectionLabel(U.getUnitDie(), MacrosAttr, U.getMacroLabelBegin(),
1363                             TLOF.getDwarfMacroSection()->getBeginSymbol());
1364         }
1365       } else {
1366         if (useSplitDwarf())
1367           TheCU.addSectionDelta(
1368               TheCU.getUnitDie(), dwarf::DW_AT_macro_info,
1369               U.getMacroLabelBegin(),
1370               TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol());
1371         else
1372           U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info,
1373                             U.getMacroLabelBegin(),
1374                             TLOF.getDwarfMacinfoSection()->getBeginSymbol());
1375       }
1376     }
1377     }
1378 
1379   // Emit all frontend-produced Skeleton CUs, i.e., Clang modules.
1380   for (auto *CUNode : MMI->getModule()->debug_compile_units())
1381     if (CUNode->getDWOId())
1382       getOrCreateDwarfCompileUnit(CUNode);
1383 
1384   // Compute DIE offsets and sizes.
1385   InfoHolder.computeSizeAndOffsets();
1386   if (useSplitDwarf())
1387     SkeletonHolder.computeSizeAndOffsets();
1388 }
1389 
1390 // Emit all Dwarf sections that should come after the content.
1391 void DwarfDebug::endModule() {
1392   assert(CurFn == nullptr);
1393   assert(CurMI == nullptr);
1394 
1395   for (const auto &P : CUMap) {
1396     auto &CU = *P.second;
1397     CU.createBaseTypeDIEs();
1398   }
1399 
1400   // If we aren't actually generating debug info (check beginModule -
1401   // conditionalized on !DisableDebugInfoPrinting and the presence of the
1402   // llvm.dbg.cu metadata node)
1403   if (!MMI->hasDebugInfo())
1404     return;
1405 
1406   // Finalize the debug info for the module.
1407   finalizeModuleInfo();
1408 
1409   if (useSplitDwarf())
1410     // Emit debug_loc.dwo/debug_loclists.dwo section.
1411     emitDebugLocDWO();
1412   else
1413     // Emit debug_loc/debug_loclists section.
1414     emitDebugLoc();
1415 
1416   // Corresponding abbreviations into a abbrev section.
1417   emitAbbreviations();
1418 
1419   // Emit all the DIEs into a debug info section.
1420   emitDebugInfo();
1421 
1422   // Emit info into a debug aranges section.
1423   if (GenerateARangeSection)
1424     emitDebugARanges();
1425 
1426   // Emit info into a debug ranges section.
1427   emitDebugRanges();
1428 
1429   if (useSplitDwarf())
1430   // Emit info into a debug macinfo.dwo section.
1431     emitDebugMacinfoDWO();
1432   else
1433     // Emit info into a debug macinfo/macro section.
1434     emitDebugMacinfo();
1435 
1436   emitDebugStr();
1437 
1438   if (useSplitDwarf()) {
1439     emitDebugStrDWO();
1440     emitDebugInfoDWO();
1441     emitDebugAbbrevDWO();
1442     emitDebugLineDWO();
1443     emitDebugRangesDWO();
1444   }
1445 
1446   emitDebugAddr();
1447 
1448   // Emit info into the dwarf accelerator table sections.
1449   switch (getAccelTableKind()) {
1450   case AccelTableKind::Apple:
1451     emitAccelNames();
1452     emitAccelObjC();
1453     emitAccelNamespaces();
1454     emitAccelTypes();
1455     break;
1456   case AccelTableKind::Dwarf:
1457     emitAccelDebugNames();
1458     break;
1459   case AccelTableKind::None:
1460     break;
1461   case AccelTableKind::Default:
1462     llvm_unreachable("Default should have already been resolved.");
1463   }
1464 
1465   // Emit the pubnames and pubtypes sections if requested.
1466   emitDebugPubSections();
1467 
1468   // clean up.
1469   // FIXME: AbstractVariables.clear();
1470 }
1471 
1472 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU,
1473                                                const DINode *Node,
1474                                                const MDNode *ScopeNode) {
1475   if (CU.getExistingAbstractEntity(Node))
1476     return;
1477 
1478   CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope(
1479                                        cast<DILocalScope>(ScopeNode)));
1480 }
1481 
1482 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU,
1483     const DINode *Node, const MDNode *ScopeNode) {
1484   if (CU.getExistingAbstractEntity(Node))
1485     return;
1486 
1487   if (LexicalScope *Scope =
1488           LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode)))
1489     CU.createAbstractEntity(Node, Scope);
1490 }
1491 
1492 // Collect variable information from side table maintained by MF.
1493 void DwarfDebug::collectVariableInfoFromMFTable(
1494     DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) {
1495   SmallDenseMap<InlinedEntity, DbgVariable *> MFVars;
1496   LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n");
1497   for (const auto &VI : Asm->MF->getVariableDbgInfo()) {
1498     if (!VI.Var)
1499       continue;
1500     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1501            "Expected inlined-at fields to agree");
1502 
1503     InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt());
1504     Processed.insert(Var);
1505     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1506 
1507     // If variable scope is not found then skip this variable.
1508     if (!Scope) {
1509       LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName()
1510                         << ", no variable scope found\n");
1511       continue;
1512     }
1513 
1514     ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode());
1515     auto RegVar = std::make_unique<DbgVariable>(
1516                     cast<DILocalVariable>(Var.first), Var.second);
1517     RegVar->initializeMMI(VI.Expr, VI.Slot);
1518     LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName()
1519                       << "\n");
1520     if (DbgVariable *DbgVar = MFVars.lookup(Var))
1521       DbgVar->addMMIEntry(*RegVar);
1522     else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) {
1523       MFVars.insert({Var, RegVar.get()});
1524       ConcreteEntities.push_back(std::move(RegVar));
1525     }
1526   }
1527 }
1528 
1529 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its
1530 /// enclosing lexical scope. The check ensures there are no other instructions
1531 /// in the same lexical scope preceding the DBG_VALUE and that its range is
1532 /// either open or otherwise rolls off the end of the scope.
1533 static bool validThroughout(LexicalScopes &LScopes,
1534                             const MachineInstr *DbgValue,
1535                             const MachineInstr *RangeEnd,
1536                             const InstructionOrdering &Ordering) {
1537   assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location");
1538   auto MBB = DbgValue->getParent();
1539   auto DL = DbgValue->getDebugLoc();
1540   auto *LScope = LScopes.findLexicalScope(DL);
1541   // Scope doesn't exist; this is a dead DBG_VALUE.
1542   if (!LScope)
1543     return false;
1544   auto &LSRange = LScope->getRanges();
1545   if (LSRange.size() == 0)
1546     return false;
1547 
1548   const MachineInstr *LScopeBegin = LSRange.front().first;
1549   // If the scope starts before the DBG_VALUE then we may have a negative
1550   // result. Otherwise the location is live coming into the scope and we
1551   // can skip the following checks.
1552   if (!Ordering.isBefore(DbgValue, LScopeBegin)) {
1553     // Exit if the lexical scope begins outside of the current block.
1554     if (LScopeBegin->getParent() != MBB)
1555       return false;
1556 
1557     MachineBasicBlock::const_reverse_iterator Pred(DbgValue);
1558     for (++Pred; Pred != MBB->rend(); ++Pred) {
1559       if (Pred->getFlag(MachineInstr::FrameSetup))
1560         break;
1561       auto PredDL = Pred->getDebugLoc();
1562       if (!PredDL || Pred->isMetaInstruction())
1563         continue;
1564       // Check whether the instruction preceding the DBG_VALUE is in the same
1565       // (sub)scope as the DBG_VALUE.
1566       if (DL->getScope() == PredDL->getScope())
1567         return false;
1568       auto *PredScope = LScopes.findLexicalScope(PredDL);
1569       if (!PredScope || LScope->dominates(PredScope))
1570         return false;
1571     }
1572   }
1573 
1574   // If the range of the DBG_VALUE is open-ended, report success.
1575   if (!RangeEnd)
1576     return true;
1577 
1578   // Single, constant DBG_VALUEs in the prologue are promoted to be live
1579   // throughout the function. This is a hack, presumably for DWARF v2 and not
1580   // necessarily correct. It would be much better to use a dbg.declare instead
1581   // if we know the constant is live throughout the scope.
1582   if (DbgValue->getDebugOperand(0).isImm() && MBB->pred_empty())
1583     return true;
1584 
1585   // Test if the location terminates before the end of the scope.
1586   const MachineInstr *LScopeEnd = LSRange.back().second;
1587   if (Ordering.isBefore(RangeEnd, LScopeEnd))
1588     return false;
1589 
1590   // There's a single location which starts at the scope start, and ends at or
1591   // after the scope end.
1592   return true;
1593 }
1594 
1595 /// Build the location list for all DBG_VALUEs in the function that
1596 /// describe the same variable. The resulting DebugLocEntries will have
1597 /// strict monotonically increasing begin addresses and will never
1598 /// overlap. If the resulting list has only one entry that is valid
1599 /// throughout variable's scope return true.
1600 //
1601 // See the definition of DbgValueHistoryMap::Entry for an explanation of the
1602 // different kinds of history map entries. One thing to be aware of is that if
1603 // a debug value is ended by another entry (rather than being valid until the
1604 // end of the function), that entry's instruction may or may not be included in
1605 // the range, depending on if the entry is a clobbering entry (it has an
1606 // instruction that clobbers one or more preceding locations), or if it is an
1607 // (overlapping) debug value entry. This distinction can be seen in the example
1608 // below. The first debug value is ended by the clobbering entry 2, and the
1609 // second and third debug values are ended by the overlapping debug value entry
1610 // 4.
1611 //
1612 // Input:
1613 //
1614 //   History map entries [type, end index, mi]
1615 //
1616 // 0 |      [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)]
1617 // 1 | |    [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)]
1618 // 2 | |    [Clobber, $reg0 = [...], -, -]
1619 // 3   | |  [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)]
1620 // 4        [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)]
1621 //
1622 // Output [start, end) [Value...]:
1623 //
1624 // [0-1)    [(reg0, fragment 0, 32)]
1625 // [1-3)    [(reg0, fragment 0, 32), (reg1, fragment 32, 32)]
1626 // [3-4)    [(reg1, fragment 32, 32), (123, fragment 64, 32)]
1627 // [4-)     [(@g, fragment 0, 96)]
1628 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc,
1629                                    const DbgValueHistoryMap::Entries &Entries) {
1630   using OpenRange =
1631       std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>;
1632   SmallVector<OpenRange, 4> OpenRanges;
1633   bool isSafeForSingleLocation = true;
1634   const MachineInstr *StartDebugMI = nullptr;
1635   const MachineInstr *EndMI = nullptr;
1636 
1637   for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) {
1638     const MachineInstr *Instr = EI->getInstr();
1639 
1640     // Remove all values that are no longer live.
1641     size_t Index = std::distance(EB, EI);
1642     auto Last =
1643         remove_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; });
1644     OpenRanges.erase(Last, OpenRanges.end());
1645 
1646     // If we are dealing with a clobbering entry, this iteration will result in
1647     // a location list entry starting after the clobbering instruction.
1648     const MCSymbol *StartLabel =
1649         EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr);
1650     assert(StartLabel &&
1651            "Forgot label before/after instruction starting a range!");
1652 
1653     const MCSymbol *EndLabel;
1654     if (std::next(EI) == Entries.end()) {
1655       const MachineBasicBlock &EndMBB = Asm->MF->back();
1656       EndLabel = Asm->MBBSectionRanges[EndMBB.getSectionIDNum()].EndLabel;
1657       if (EI->isClobber())
1658         EndMI = EI->getInstr();
1659     }
1660     else if (std::next(EI)->isClobber())
1661       EndLabel = getLabelAfterInsn(std::next(EI)->getInstr());
1662     else
1663       EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr());
1664     assert(EndLabel && "Forgot label after instruction ending a range!");
1665 
1666     if (EI->isDbgValue())
1667       LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n");
1668 
1669     // If this history map entry has a debug value, add that to the list of
1670     // open ranges and check if its location is valid for a single value
1671     // location.
1672     if (EI->isDbgValue()) {
1673       // Do not add undef debug values, as they are redundant information in
1674       // the location list entries. An undef debug results in an empty location
1675       // description. If there are any non-undef fragments then padding pieces
1676       // with empty location descriptions will automatically be inserted, and if
1677       // all fragments are undef then the whole location list entry is
1678       // redundant.
1679       if (!Instr->isUndefDebugValue()) {
1680         auto Value = getDebugLocValue(Instr);
1681         OpenRanges.emplace_back(EI->getEndIndex(), Value);
1682 
1683         // TODO: Add support for single value fragment locations.
1684         if (Instr->getDebugExpression()->isFragment())
1685           isSafeForSingleLocation = false;
1686 
1687         if (!StartDebugMI)
1688           StartDebugMI = Instr;
1689       } else {
1690         isSafeForSingleLocation = false;
1691       }
1692     }
1693 
1694     // Location list entries with empty location descriptions are redundant
1695     // information in DWARF, so do not emit those.
1696     if (OpenRanges.empty())
1697       continue;
1698 
1699     // Omit entries with empty ranges as they do not have any effect in DWARF.
1700     if (StartLabel == EndLabel) {
1701       LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n");
1702       continue;
1703     }
1704 
1705     SmallVector<DbgValueLoc, 4> Values;
1706     for (auto &R : OpenRanges)
1707       Values.push_back(R.second);
1708     DebugLoc.emplace_back(StartLabel, EndLabel, Values);
1709 
1710     // Attempt to coalesce the ranges of two otherwise identical
1711     // DebugLocEntries.
1712     auto CurEntry = DebugLoc.rbegin();
1713     LLVM_DEBUG({
1714       dbgs() << CurEntry->getValues().size() << " Values:\n";
1715       for (auto &Value : CurEntry->getValues())
1716         Value.dump();
1717       dbgs() << "-----\n";
1718     });
1719 
1720     auto PrevEntry = std::next(CurEntry);
1721     if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry))
1722       DebugLoc.pop_back();
1723   }
1724 
1725   return DebugLoc.size() == 1 && isSafeForSingleLocation &&
1726          validThroughout(LScopes, StartDebugMI, EndMI, getInstOrdering());
1727 }
1728 
1729 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU,
1730                                             LexicalScope &Scope,
1731                                             const DINode *Node,
1732                                             const DILocation *Location,
1733                                             const MCSymbol *Sym) {
1734   ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode());
1735   if (isa<const DILocalVariable>(Node)) {
1736     ConcreteEntities.push_back(
1737         std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node),
1738                                        Location));
1739     InfoHolder.addScopeVariable(&Scope,
1740         cast<DbgVariable>(ConcreteEntities.back().get()));
1741   } else if (isa<const DILabel>(Node)) {
1742     ConcreteEntities.push_back(
1743         std::make_unique<DbgLabel>(cast<const DILabel>(Node),
1744                                     Location, Sym));
1745     InfoHolder.addScopeLabel(&Scope,
1746         cast<DbgLabel>(ConcreteEntities.back().get()));
1747   }
1748   return ConcreteEntities.back().get();
1749 }
1750 
1751 // Find variables for each lexical scope.
1752 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU,
1753                                    const DISubprogram *SP,
1754                                    DenseSet<InlinedEntity> &Processed) {
1755   // Grab the variable info that was squirreled away in the MMI side-table.
1756   collectVariableInfoFromMFTable(TheCU, Processed);
1757 
1758   for (const auto &I : DbgValues) {
1759     InlinedEntity IV = I.first;
1760     if (Processed.count(IV))
1761       continue;
1762 
1763     // Instruction ranges, specifying where IV is accessible.
1764     const auto &HistoryMapEntries = I.second;
1765     if (HistoryMapEntries.empty())
1766       continue;
1767 
1768     LexicalScope *Scope = nullptr;
1769     const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first);
1770     if (const DILocation *IA = IV.second)
1771       Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA);
1772     else
1773       Scope = LScopes.findLexicalScope(LocalVar->getScope());
1774     // If variable scope is not found then skip this variable.
1775     if (!Scope)
1776       continue;
1777 
1778     Processed.insert(IV);
1779     DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU,
1780                                             *Scope, LocalVar, IV.second));
1781 
1782     const MachineInstr *MInsn = HistoryMapEntries.front().getInstr();
1783     assert(MInsn->isDebugValue() && "History must begin with debug value");
1784 
1785     // Check if there is a single DBG_VALUE, valid throughout the var's scope.
1786     // If the history map contains a single debug value, there may be an
1787     // additional entry which clobbers the debug value.
1788     size_t HistSize = HistoryMapEntries.size();
1789     bool SingleValueWithClobber =
1790         HistSize == 2 && HistoryMapEntries[1].isClobber();
1791     if (HistSize == 1 || SingleValueWithClobber) {
1792       const auto *End =
1793           SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr;
1794       if (validThroughout(LScopes, MInsn, End, getInstOrdering())) {
1795         RegVar->initializeDbgValue(MInsn);
1796         continue;
1797       }
1798     }
1799 
1800     // Do not emit location lists if .debug_loc secton is disabled.
1801     if (!useLocSection())
1802       continue;
1803 
1804     // Handle multiple DBG_VALUE instructions describing one variable.
1805     DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn);
1806 
1807     // Build the location list for this variable.
1808     SmallVector<DebugLocEntry, 8> Entries;
1809     bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries);
1810 
1811     // Check whether buildLocationList managed to merge all locations to one
1812     // that is valid throughout the variable's scope. If so, produce single
1813     // value location.
1814     if (isValidSingleLocation) {
1815       RegVar->initializeDbgValue(Entries[0].getValues()[0]);
1816       continue;
1817     }
1818 
1819     // If the variable has a DIBasicType, extract it.  Basic types cannot have
1820     // unique identifiers, so don't bother resolving the type with the
1821     // identifier map.
1822     const DIBasicType *BT = dyn_cast<DIBasicType>(
1823         static_cast<const Metadata *>(LocalVar->getType()));
1824 
1825     // Finalize the entry by lowering it into a DWARF bytestream.
1826     for (auto &Entry : Entries)
1827       Entry.finalize(*Asm, List, BT, TheCU);
1828   }
1829 
1830   // For each InlinedEntity collected from DBG_LABEL instructions, convert to
1831   // DWARF-related DbgLabel.
1832   for (const auto &I : DbgLabels) {
1833     InlinedEntity IL = I.first;
1834     const MachineInstr *MI = I.second;
1835     if (MI == nullptr)
1836       continue;
1837 
1838     LexicalScope *Scope = nullptr;
1839     const DILabel *Label = cast<DILabel>(IL.first);
1840     // The scope could have an extra lexical block file.
1841     const DILocalScope *LocalScope =
1842         Label->getScope()->getNonLexicalBlockFileScope();
1843     // Get inlined DILocation if it is inlined label.
1844     if (const DILocation *IA = IL.second)
1845       Scope = LScopes.findInlinedScope(LocalScope, IA);
1846     else
1847       Scope = LScopes.findLexicalScope(LocalScope);
1848     // If label scope is not found then skip this label.
1849     if (!Scope)
1850       continue;
1851 
1852     Processed.insert(IL);
1853     /// At this point, the temporary label is created.
1854     /// Save the temporary label to DbgLabel entity to get the
1855     /// actually address when generating Dwarf DIE.
1856     MCSymbol *Sym = getLabelBeforeInsn(MI);
1857     createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym);
1858   }
1859 
1860   // Collect info for variables/labels that were optimized out.
1861   for (const DINode *DN : SP->getRetainedNodes()) {
1862     if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
1863       continue;
1864     LexicalScope *Scope = nullptr;
1865     if (auto *DV = dyn_cast<DILocalVariable>(DN)) {
1866       Scope = LScopes.findLexicalScope(DV->getScope());
1867     } else if (auto *DL = dyn_cast<DILabel>(DN)) {
1868       Scope = LScopes.findLexicalScope(DL->getScope());
1869     }
1870 
1871     if (Scope)
1872       createConcreteEntity(TheCU, *Scope, DN, nullptr);
1873   }
1874 }
1875 
1876 // Process beginning of an instruction.
1877 void DwarfDebug::beginInstruction(const MachineInstr *MI) {
1878   const MachineFunction &MF = *MI->getMF();
1879   const auto *SP = MF.getFunction().getSubprogram();
1880   bool NoDebug =
1881       !SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug;
1882 
1883   // Delay slot support check.
1884   auto delaySlotSupported = [](const MachineInstr &MI) {
1885     if (!MI.isBundledWithSucc())
1886       return false;
1887     auto Suc = std::next(MI.getIterator());
1888     (void)Suc;
1889     // Ensure that delay slot instruction is successor of the call instruction.
1890     // Ex. CALL_INSTRUCTION {
1891     //        DELAY_SLOT_INSTRUCTION }
1892     assert(Suc->isBundledWithPred() &&
1893            "Call bundle instructions are out of order");
1894     return true;
1895   };
1896 
1897   // When describing calls, we need a label for the call instruction.
1898   if (!NoDebug && SP->areAllCallsDescribed() &&
1899       MI->isCandidateForCallSiteEntry(MachineInstr::AnyInBundle) &&
1900       (!MI->hasDelaySlot() || delaySlotSupported(*MI))) {
1901     const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1902     bool IsTail = TII->isTailCall(*MI);
1903     // For tail calls, we need the address of the branch instruction for
1904     // DW_AT_call_pc.
1905     if (IsTail)
1906       requestLabelBeforeInsn(MI);
1907     // For non-tail calls, we need the return address for the call for
1908     // DW_AT_call_return_pc. Under GDB tuning, this information is needed for
1909     // tail calls as well.
1910     requestLabelAfterInsn(MI);
1911   }
1912 
1913   DebugHandlerBase::beginInstruction(MI);
1914   assert(CurMI);
1915 
1916   if (NoDebug)
1917     return;
1918 
1919   // Check if source location changes, but ignore DBG_VALUE and CFI locations.
1920   // If the instruction is part of the function frame setup code, do not emit
1921   // any line record, as there is no correspondence with any user code.
1922   if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup))
1923     return;
1924   const DebugLoc &DL = MI->getDebugLoc();
1925   // When we emit a line-0 record, we don't update PrevInstLoc; so look at
1926   // the last line number actually emitted, to see if it was line 0.
1927   unsigned LastAsmLine =
1928       Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine();
1929 
1930   if (DL == PrevInstLoc) {
1931     // If we have an ongoing unspecified location, nothing to do here.
1932     if (!DL)
1933       return;
1934     // We have an explicit location, same as the previous location.
1935     // But we might be coming back to it after a line 0 record.
1936     if (LastAsmLine == 0 && DL.getLine() != 0) {
1937       // Reinstate the source location but not marked as a statement.
1938       const MDNode *Scope = DL.getScope();
1939       recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0);
1940     }
1941     return;
1942   }
1943 
1944   if (!DL) {
1945     // We have an unspecified location, which might want to be line 0.
1946     // If we have already emitted a line-0 record, don't repeat it.
1947     if (LastAsmLine == 0)
1948       return;
1949     // If user said Don't Do That, don't do that.
1950     if (UnknownLocations == Disable)
1951       return;
1952     // See if we have a reason to emit a line-0 record now.
1953     // Reasons to emit a line-0 record include:
1954     // - User asked for it (UnknownLocations).
1955     // - Instruction has a label, so it's referenced from somewhere else,
1956     //   possibly debug information; we want it to have a source location.
1957     // - Instruction is at the top of a block; we don't want to inherit the
1958     //   location from the physically previous (maybe unrelated) block.
1959     if (UnknownLocations == Enable || PrevLabel ||
1960         (PrevInstBB && PrevInstBB != MI->getParent())) {
1961       // Preserve the file and column numbers, if we can, to save space in
1962       // the encoded line table.
1963       // Do not update PrevInstLoc, it remembers the last non-0 line.
1964       const MDNode *Scope = nullptr;
1965       unsigned Column = 0;
1966       if (PrevInstLoc) {
1967         Scope = PrevInstLoc.getScope();
1968         Column = PrevInstLoc.getCol();
1969       }
1970       recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0);
1971     }
1972     return;
1973   }
1974 
1975   // We have an explicit location, different from the previous location.
1976   // Don't repeat a line-0 record, but otherwise emit the new location.
1977   // (The new location might be an explicit line 0, which we do emit.)
1978   if (DL.getLine() == 0 && LastAsmLine == 0)
1979     return;
1980   unsigned Flags = 0;
1981   if (DL == PrologEndLoc) {
1982     Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT;
1983     PrologEndLoc = DebugLoc();
1984   }
1985   // If the line changed, we call that a new statement; unless we went to
1986   // line 0 and came back, in which case it is not a new statement.
1987   unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine;
1988   if (DL.getLine() && DL.getLine() != OldLine)
1989     Flags |= DWARF2_FLAG_IS_STMT;
1990 
1991   const MDNode *Scope = DL.getScope();
1992   recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
1993 
1994   // If we're not at line 0, remember this location.
1995   if (DL.getLine())
1996     PrevInstLoc = DL;
1997 }
1998 
1999 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) {
2000   // First known non-DBG_VALUE and non-frame setup location marks
2001   // the beginning of the function body.
2002   for (const auto &MBB : *MF)
2003     for (const auto &MI : MBB)
2004       if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
2005           MI.getDebugLoc())
2006         return MI.getDebugLoc();
2007   return DebugLoc();
2008 }
2009 
2010 /// Register a source line with debug info. Returns the  unique label that was
2011 /// emitted and which provides correspondence to the source line list.
2012 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col,
2013                              const MDNode *S, unsigned Flags, unsigned CUID,
2014                              uint16_t DwarfVersion,
2015                              ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) {
2016   StringRef Fn;
2017   unsigned FileNo = 1;
2018   unsigned Discriminator = 0;
2019   if (auto *Scope = cast_or_null<DIScope>(S)) {
2020     Fn = Scope->getFilename();
2021     if (Line != 0 && DwarfVersion >= 4)
2022       if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope))
2023         Discriminator = LBF->getDiscriminator();
2024 
2025     FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID])
2026                  .getOrCreateSourceID(Scope->getFile());
2027   }
2028   Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0,
2029                                          Discriminator, Fn);
2030 }
2031 
2032 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF,
2033                                              unsigned CUID) {
2034   // Get beginning of function.
2035   if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) {
2036     // Ensure the compile unit is created if the function is called before
2037     // beginFunction().
2038     (void)getOrCreateDwarfCompileUnit(
2039         MF.getFunction().getSubprogram()->getUnit());
2040     // We'd like to list the prologue as "not statements" but GDB behaves
2041     // poorly if we do that. Revisit this with caution/GDB (7.5+) testing.
2042     const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram();
2043     ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT,
2044                        CUID, getDwarfVersion(), getUnits());
2045     return PrologEndLoc;
2046   }
2047   return DebugLoc();
2048 }
2049 
2050 // Gather pre-function debug information.  Assumes being called immediately
2051 // after the function entry point has been emitted.
2052 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) {
2053   CurFn = MF;
2054 
2055   auto *SP = MF->getFunction().getSubprogram();
2056   assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode());
2057   if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
2058     return;
2059 
2060   DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
2061 
2062   // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function
2063   // belongs to so that we add to the correct per-cu line table in the
2064   // non-asm case.
2065   if (Asm->OutStreamer->hasRawTextSupport())
2066     // Use a single line table if we are generating assembly.
2067     Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
2068   else
2069     Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID());
2070 
2071   // Record beginning of function.
2072   PrologEndLoc = emitInitialLocDirective(
2073       *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID());
2074 }
2075 
2076 void DwarfDebug::skippedNonDebugFunction() {
2077   // If we don't have a subprogram for this function then there will be a hole
2078   // in the range information. Keep note of this by setting the previously used
2079   // section to nullptr.
2080   PrevCU = nullptr;
2081   CurFn = nullptr;
2082 }
2083 
2084 // Gather and emit post-function debug information.
2085 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) {
2086   const DISubprogram *SP = MF->getFunction().getSubprogram();
2087 
2088   assert(CurFn == MF &&
2089       "endFunction should be called with the same function as beginFunction");
2090 
2091   // Set DwarfDwarfCompileUnitID in MCContext to default value.
2092   Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
2093 
2094   LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
2095   assert(!FnScope || SP == FnScope->getScopeNode());
2096   DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit());
2097   if (TheCU.getCUNode()->isDebugDirectivesOnly()) {
2098     PrevLabel = nullptr;
2099     CurFn = nullptr;
2100     return;
2101   }
2102 
2103   DenseSet<InlinedEntity> Processed;
2104   collectEntityInfo(TheCU, SP, Processed);
2105 
2106   // Add the range of this function to the list of ranges for the CU.
2107   // With basic block sections, add ranges for all basic block sections.
2108   for (const auto &R : Asm->MBBSectionRanges)
2109     TheCU.addRange({R.second.BeginLabel, R.second.EndLabel});
2110 
2111   // Under -gmlt, skip building the subprogram if there are no inlined
2112   // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram
2113   // is still needed as we need its source location.
2114   if (!TheCU.getCUNode()->getDebugInfoForProfiling() &&
2115       TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly &&
2116       LScopes.getAbstractScopesList().empty() && !IsDarwin) {
2117     assert(InfoHolder.getScopeVariables().empty());
2118     PrevLabel = nullptr;
2119     CurFn = nullptr;
2120     return;
2121   }
2122 
2123 #ifndef NDEBUG
2124   size_t NumAbstractScopes = LScopes.getAbstractScopesList().size();
2125 #endif
2126   // Construct abstract scopes.
2127   for (LexicalScope *AScope : LScopes.getAbstractScopesList()) {
2128     auto *SP = cast<DISubprogram>(AScope->getScopeNode());
2129     for (const DINode *DN : SP->getRetainedNodes()) {
2130       if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
2131         continue;
2132 
2133       const MDNode *Scope = nullptr;
2134       if (auto *DV = dyn_cast<DILocalVariable>(DN))
2135         Scope = DV->getScope();
2136       else if (auto *DL = dyn_cast<DILabel>(DN))
2137         Scope = DL->getScope();
2138       else
2139         llvm_unreachable("Unexpected DI type!");
2140 
2141       // Collect info for variables/labels that were optimized out.
2142       ensureAbstractEntityIsCreated(TheCU, DN, Scope);
2143       assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes
2144              && "ensureAbstractEntityIsCreated inserted abstract scopes");
2145     }
2146     constructAbstractSubprogramScopeDIE(TheCU, AScope);
2147   }
2148 
2149   ProcessedSPNodes.insert(SP);
2150   DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope);
2151   if (auto *SkelCU = TheCU.getSkeleton())
2152     if (!LScopes.getAbstractScopesList().empty() &&
2153         TheCU.getCUNode()->getSplitDebugInlining())
2154       SkelCU->constructSubprogramScopeDIE(SP, FnScope);
2155 
2156   // Construct call site entries.
2157   constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF);
2158 
2159   // Clear debug info
2160   // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the
2161   // DbgVariables except those that are also in AbstractVariables (since they
2162   // can be used cross-function)
2163   InfoHolder.getScopeVariables().clear();
2164   InfoHolder.getScopeLabels().clear();
2165   PrevLabel = nullptr;
2166   CurFn = nullptr;
2167 }
2168 
2169 // Register a source line with debug info. Returns the  unique label that was
2170 // emitted and which provides correspondence to the source line list.
2171 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S,
2172                                   unsigned Flags) {
2173   ::recordSourceLine(*Asm, Line, Col, S, Flags,
2174                      Asm->OutStreamer->getContext().getDwarfCompileUnitID(),
2175                      getDwarfVersion(), getUnits());
2176 }
2177 
2178 //===----------------------------------------------------------------------===//
2179 // Emit Methods
2180 //===----------------------------------------------------------------------===//
2181 
2182 // Emit the debug info section.
2183 void DwarfDebug::emitDebugInfo() {
2184   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2185   Holder.emitUnits(/* UseOffsets */ false);
2186 }
2187 
2188 // Emit the abbreviation section.
2189 void DwarfDebug::emitAbbreviations() {
2190   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2191 
2192   Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection());
2193 }
2194 
2195 void DwarfDebug::emitStringOffsetsTableHeader() {
2196   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2197   Holder.getStringPool().emitStringOffsetsTableHeader(
2198       *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(),
2199       Holder.getStringOffsetsStartSym());
2200 }
2201 
2202 template <typename AccelTableT>
2203 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section,
2204                            StringRef TableName) {
2205   Asm->OutStreamer->SwitchSection(Section);
2206 
2207   // Emit the full data.
2208   emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol());
2209 }
2210 
2211 void DwarfDebug::emitAccelDebugNames() {
2212   // Don't emit anything if we have no compilation units to index.
2213   if (getUnits().empty())
2214     return;
2215 
2216   emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits());
2217 }
2218 
2219 // Emit visible names into a hashed accelerator table section.
2220 void DwarfDebug::emitAccelNames() {
2221   emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(),
2222             "Names");
2223 }
2224 
2225 // Emit objective C classes and categories into a hashed accelerator table
2226 // section.
2227 void DwarfDebug::emitAccelObjC() {
2228   emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(),
2229             "ObjC");
2230 }
2231 
2232 // Emit namespace dies into a hashed accelerator table.
2233 void DwarfDebug::emitAccelNamespaces() {
2234   emitAccel(AccelNamespace,
2235             Asm->getObjFileLowering().getDwarfAccelNamespaceSection(),
2236             "namespac");
2237 }
2238 
2239 // Emit type dies into a hashed accelerator table.
2240 void DwarfDebug::emitAccelTypes() {
2241   emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(),
2242             "types");
2243 }
2244 
2245 // Public name handling.
2246 // The format for the various pubnames:
2247 //
2248 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU
2249 // for the DIE that is named.
2250 //
2251 // gnu pubnames - offset/index value/name tuples where the offset is the offset
2252 // into the CU and the index value is computed according to the type of value
2253 // for the DIE that is named.
2254 //
2255 // For type units the offset is the offset of the skeleton DIE. For split dwarf
2256 // it's the offset within the debug_info/debug_types dwo section, however, the
2257 // reference in the pubname header doesn't change.
2258 
2259 /// computeIndexValue - Compute the gdb index value for the DIE and CU.
2260 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU,
2261                                                         const DIE *Die) {
2262   // Entities that ended up only in a Type Unit reference the CU instead (since
2263   // the pub entry has offsets within the CU there's no real offset that can be
2264   // provided anyway). As it happens all such entities (namespaces and types,
2265   // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out
2266   // not to be true it would be necessary to persist this information from the
2267   // point at which the entry is added to the index data structure - since by
2268   // the time the index is built from that, the original type/namespace DIE in a
2269   // type unit has already been destroyed so it can't be queried for properties
2270   // like tag, etc.
2271   if (Die->getTag() == dwarf::DW_TAG_compile_unit)
2272     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE,
2273                                           dwarf::GIEL_EXTERNAL);
2274   dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC;
2275 
2276   // We could have a specification DIE that has our most of our knowledge,
2277   // look for that now.
2278   if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) {
2279     DIE &SpecDIE = SpecVal.getDIEEntry().getEntry();
2280     if (SpecDIE.findAttribute(dwarf::DW_AT_external))
2281       Linkage = dwarf::GIEL_EXTERNAL;
2282   } else if (Die->findAttribute(dwarf::DW_AT_external))
2283     Linkage = dwarf::GIEL_EXTERNAL;
2284 
2285   switch (Die->getTag()) {
2286   case dwarf::DW_TAG_class_type:
2287   case dwarf::DW_TAG_structure_type:
2288   case dwarf::DW_TAG_union_type:
2289   case dwarf::DW_TAG_enumeration_type:
2290     return dwarf::PubIndexEntryDescriptor(
2291         dwarf::GIEK_TYPE,
2292         dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage())
2293             ? dwarf::GIEL_EXTERNAL
2294             : dwarf::GIEL_STATIC);
2295   case dwarf::DW_TAG_typedef:
2296   case dwarf::DW_TAG_base_type:
2297   case dwarf::DW_TAG_subrange_type:
2298     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC);
2299   case dwarf::DW_TAG_namespace:
2300     return dwarf::GIEK_TYPE;
2301   case dwarf::DW_TAG_subprogram:
2302     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage);
2303   case dwarf::DW_TAG_variable:
2304     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage);
2305   case dwarf::DW_TAG_enumerator:
2306     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE,
2307                                           dwarf::GIEL_STATIC);
2308   default:
2309     return dwarf::GIEK_NONE;
2310   }
2311 }
2312 
2313 /// emitDebugPubSections - Emit visible names and types into debug pubnames and
2314 /// pubtypes sections.
2315 void DwarfDebug::emitDebugPubSections() {
2316   for (const auto &NU : CUMap) {
2317     DwarfCompileUnit *TheU = NU.second;
2318     if (!TheU->hasDwarfPubSections())
2319       continue;
2320 
2321     bool GnuStyle = TheU->getCUNode()->getNameTableKind() ==
2322                     DICompileUnit::DebugNameTableKind::GNU;
2323 
2324     Asm->OutStreamer->SwitchSection(
2325         GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection()
2326                  : Asm->getObjFileLowering().getDwarfPubNamesSection());
2327     emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames());
2328 
2329     Asm->OutStreamer->SwitchSection(
2330         GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection()
2331                  : Asm->getObjFileLowering().getDwarfPubTypesSection());
2332     emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes());
2333   }
2334 }
2335 
2336 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) {
2337   if (useSectionsAsReferences())
2338     Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(),
2339                          CU.getDebugSectionOffset());
2340   else
2341     Asm->emitDwarfSymbolReference(CU.getLabelBegin());
2342 }
2343 
2344 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name,
2345                                      DwarfCompileUnit *TheU,
2346                                      const StringMap<const DIE *> &Globals) {
2347   if (auto *Skeleton = TheU->getSkeleton())
2348     TheU = Skeleton;
2349 
2350   // Emit the header.
2351   MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin");
2352   MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end");
2353   Asm->emitDwarfUnitLength(EndLabel, BeginLabel,
2354                            "Length of Public " + Name + " Info");
2355 
2356   Asm->OutStreamer->emitLabel(BeginLabel);
2357 
2358   Asm->OutStreamer->AddComment("DWARF Version");
2359   Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION);
2360 
2361   Asm->OutStreamer->AddComment("Offset of Compilation Unit Info");
2362   emitSectionReference(*TheU);
2363 
2364   Asm->OutStreamer->AddComment("Compilation Unit Length");
2365   Asm->emitDwarfLengthOrOffset(TheU->getLength());
2366 
2367   // Emit the pubnames for this compilation unit.
2368   for (const auto &GI : Globals) {
2369     const char *Name = GI.getKeyData();
2370     const DIE *Entity = GI.second;
2371 
2372     Asm->OutStreamer->AddComment("DIE offset");
2373     Asm->emitDwarfLengthOrOffset(Entity->getOffset());
2374 
2375     if (GnuStyle) {
2376       dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity);
2377       Asm->OutStreamer->AddComment(
2378           Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) +
2379           ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage));
2380       Asm->emitInt8(Desc.toBits());
2381     }
2382 
2383     Asm->OutStreamer->AddComment("External Name");
2384     Asm->OutStreamer->emitBytes(StringRef(Name, GI.getKeyLength() + 1));
2385   }
2386 
2387   Asm->OutStreamer->AddComment("End Mark");
2388   Asm->emitDwarfLengthOrOffset(0);
2389   Asm->OutStreamer->emitLabel(EndLabel);
2390 }
2391 
2392 /// Emit null-terminated strings into a debug str section.
2393 void DwarfDebug::emitDebugStr() {
2394   MCSection *StringOffsetsSection = nullptr;
2395   if (useSegmentedStringOffsetsTable()) {
2396     emitStringOffsetsTableHeader();
2397     StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection();
2398   }
2399   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2400   Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(),
2401                      StringOffsetsSection, /* UseRelativeOffsets = */ true);
2402 }
2403 
2404 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer,
2405                                    const DebugLocStream::Entry &Entry,
2406                                    const DwarfCompileUnit *CU) {
2407   auto &&Comments = DebugLocs.getComments(Entry);
2408   auto Comment = Comments.begin();
2409   auto End = Comments.end();
2410 
2411   // The expressions are inserted into a byte stream rather early (see
2412   // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that
2413   // need to reference a base_type DIE the offset of that DIE is not yet known.
2414   // To deal with this we instead insert a placeholder early and then extract
2415   // it here and replace it with the real reference.
2416   unsigned PtrSize = Asm->MAI->getCodePointerSize();
2417   DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(),
2418                                     DebugLocs.getBytes(Entry).size()),
2419                           Asm->getDataLayout().isLittleEndian(), PtrSize);
2420   DWARFExpression Expr(Data, PtrSize, Asm->OutContext.getDwarfFormat());
2421 
2422   using Encoding = DWARFExpression::Operation::Encoding;
2423   uint64_t Offset = 0;
2424   for (auto &Op : Expr) {
2425     assert(Op.getCode() != dwarf::DW_OP_const_type &&
2426            "3 operand ops not yet supported");
2427     Streamer.EmitInt8(Op.getCode(), Comment != End ? *(Comment++) : "");
2428     Offset++;
2429     for (unsigned I = 0; I < 2; ++I) {
2430       if (Op.getDescription().Op[I] == Encoding::SizeNA)
2431         continue;
2432       if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) {
2433         uint64_t Offset =
2434             CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset();
2435         assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit");
2436         Streamer.emitULEB128(Offset, "", ULEB128PadSize);
2437         // Make sure comments stay aligned.
2438         for (unsigned J = 0; J < ULEB128PadSize; ++J)
2439           if (Comment != End)
2440             Comment++;
2441       } else {
2442         for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J)
2443           Streamer.EmitInt8(Data.getData()[J], Comment != End ? *(Comment++) : "");
2444       }
2445       Offset = Op.getOperandEndOffset(I);
2446     }
2447     assert(Offset == Op.getEndOffset());
2448   }
2449 }
2450 
2451 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT,
2452                                    const DbgValueLoc &Value,
2453                                    DwarfExpression &DwarfExpr) {
2454   auto *DIExpr = Value.getExpression();
2455   DIExpressionCursor ExprCursor(DIExpr);
2456   DwarfExpr.addFragmentOffset(DIExpr);
2457   // Regular entry.
2458   if (Value.isInt()) {
2459     if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed ||
2460                BT->getEncoding() == dwarf::DW_ATE_signed_char))
2461       DwarfExpr.addSignedConstant(Value.getInt());
2462     else
2463       DwarfExpr.addUnsignedConstant(Value.getInt());
2464   } else if (Value.isLocation()) {
2465     MachineLocation Location = Value.getLoc();
2466     DwarfExpr.setLocation(Location, DIExpr);
2467     DIExpressionCursor Cursor(DIExpr);
2468 
2469     if (DIExpr->isEntryValue())
2470       DwarfExpr.beginEntryValueExpression(Cursor);
2471 
2472     const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
2473     if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg()))
2474       return;
2475     return DwarfExpr.addExpression(std::move(Cursor));
2476   } else if (Value.isTargetIndexLocation()) {
2477     TargetIndexLocation Loc = Value.getTargetIndexLocation();
2478     // TODO TargetIndexLocation is a target-independent. Currently only the WebAssembly-specific
2479     // encoding is supported.
2480     DwarfExpr.addWasmLocation(Loc.Index, static_cast<uint64_t>(Loc.Offset));
2481       DwarfExpr.addExpression(std::move(ExprCursor));
2482       return;
2483   } else if (Value.isConstantFP()) {
2484     if (AP.getDwarfVersion() >= 4 && !AP.getDwarfDebug()->tuneForSCE()) {
2485       DwarfExpr.addConstantFP(Value.getConstantFP()->getValueAPF(), AP);
2486       return;
2487     } else if (Value.getConstantFP()
2488                    ->getValueAPF()
2489                    .bitcastToAPInt()
2490                    .getBitWidth() <= 64 /*bits*/)
2491       DwarfExpr.addUnsignedConstant(
2492           Value.getConstantFP()->getValueAPF().bitcastToAPInt());
2493     else
2494       LLVM_DEBUG(
2495           dbgs()
2496           << "Skipped DwarfExpression creation for ConstantFP of size"
2497           << Value.getConstantFP()->getValueAPF().bitcastToAPInt().getBitWidth()
2498           << " bits\n");
2499   }
2500   DwarfExpr.addExpression(std::move(ExprCursor));
2501 }
2502 
2503 void DebugLocEntry::finalize(const AsmPrinter &AP,
2504                              DebugLocStream::ListBuilder &List,
2505                              const DIBasicType *BT,
2506                              DwarfCompileUnit &TheCU) {
2507   assert(!Values.empty() &&
2508          "location list entries without values are redundant");
2509   assert(Begin != End && "unexpected location list entry with empty range");
2510   DebugLocStream::EntryBuilder Entry(List, Begin, End);
2511   BufferByteStreamer Streamer = Entry.getStreamer();
2512   DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU);
2513   const DbgValueLoc &Value = Values[0];
2514   if (Value.isFragment()) {
2515     // Emit all fragments that belong to the same variable and range.
2516     assert(llvm::all_of(Values, [](DbgValueLoc P) {
2517           return P.isFragment();
2518         }) && "all values are expected to be fragments");
2519     assert(llvm::is_sorted(Values) && "fragments are expected to be sorted");
2520 
2521     for (const auto &Fragment : Values)
2522       DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr);
2523 
2524   } else {
2525     assert(Values.size() == 1 && "only fragments may have >1 value");
2526     DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr);
2527   }
2528   DwarfExpr.finalize();
2529   if (DwarfExpr.TagOffset)
2530     List.setTagOffset(*DwarfExpr.TagOffset);
2531 }
2532 
2533 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry,
2534                                            const DwarfCompileUnit *CU) {
2535   // Emit the size.
2536   Asm->OutStreamer->AddComment("Loc expr size");
2537   if (getDwarfVersion() >= 5)
2538     Asm->emitULEB128(DebugLocs.getBytes(Entry).size());
2539   else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max())
2540     Asm->emitInt16(DebugLocs.getBytes(Entry).size());
2541   else {
2542     // The entry is too big to fit into 16 bit, drop it as there is nothing we
2543     // can do.
2544     Asm->emitInt16(0);
2545     return;
2546   }
2547   // Emit the entry.
2548   APByteStreamer Streamer(*Asm);
2549   emitDebugLocEntry(Streamer, Entry, CU);
2550 }
2551 
2552 // Emit the header of a DWARF 5 range list table list table. Returns the symbol
2553 // that designates the end of the table for the caller to emit when the table is
2554 // complete.
2555 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm,
2556                                          const DwarfFile &Holder) {
2557   MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer);
2558 
2559   Asm->OutStreamer->AddComment("Offset entry count");
2560   Asm->emitInt32(Holder.getRangeLists().size());
2561   Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym());
2562 
2563   for (const RangeSpanList &List : Holder.getRangeLists())
2564     Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(),
2565                              Asm->getDwarfOffsetByteSize());
2566 
2567   return TableEnd;
2568 }
2569 
2570 // Emit the header of a DWARF 5 locations list table. Returns the symbol that
2571 // designates the end of the table for the caller to emit when the table is
2572 // complete.
2573 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm,
2574                                          const DwarfDebug &DD) {
2575   MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer);
2576 
2577   const auto &DebugLocs = DD.getDebugLocs();
2578 
2579   Asm->OutStreamer->AddComment("Offset entry count");
2580   Asm->emitInt32(DebugLocs.getLists().size());
2581   Asm->OutStreamer->emitLabel(DebugLocs.getSym());
2582 
2583   for (const auto &List : DebugLocs.getLists())
2584     Asm->emitLabelDifference(List.Label, DebugLocs.getSym(),
2585                              Asm->getDwarfOffsetByteSize());
2586 
2587   return TableEnd;
2588 }
2589 
2590 template <typename Ranges, typename PayloadEmitter>
2591 static void emitRangeList(
2592     DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R,
2593     const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair,
2594     unsigned StartxLength, unsigned EndOfList,
2595     StringRef (*StringifyEnum)(unsigned),
2596     bool ShouldUseBaseAddress,
2597     PayloadEmitter EmitPayload) {
2598 
2599   auto Size = Asm->MAI->getCodePointerSize();
2600   bool UseDwarf5 = DD.getDwarfVersion() >= 5;
2601 
2602   // Emit our symbol so we can find the beginning of the range.
2603   Asm->OutStreamer->emitLabel(Sym);
2604 
2605   // Gather all the ranges that apply to the same section so they can share
2606   // a base address entry.
2607   MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges;
2608 
2609   for (const auto &Range : R)
2610     SectionRanges[&Range.Begin->getSection()].push_back(&Range);
2611 
2612   const MCSymbol *CUBase = CU.getBaseAddress();
2613   bool BaseIsSet = false;
2614   for (const auto &P : SectionRanges) {
2615     auto *Base = CUBase;
2616     if (!Base && ShouldUseBaseAddress) {
2617       const MCSymbol *Begin = P.second.front()->Begin;
2618       const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection());
2619       if (!UseDwarf5) {
2620         Base = NewBase;
2621         BaseIsSet = true;
2622         Asm->OutStreamer->emitIntValue(-1, Size);
2623         Asm->OutStreamer->AddComment("  base address");
2624         Asm->OutStreamer->emitSymbolValue(Base, Size);
2625       } else if (NewBase != Begin || P.second.size() > 1) {
2626         // Only use a base address if
2627         //  * the existing pool address doesn't match (NewBase != Begin)
2628         //  * or, there's more than one entry to share the base address
2629         Base = NewBase;
2630         BaseIsSet = true;
2631         Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx));
2632         Asm->emitInt8(BaseAddressx);
2633         Asm->OutStreamer->AddComment("  base address index");
2634         Asm->emitULEB128(DD.getAddressPool().getIndex(Base));
2635       }
2636     } else if (BaseIsSet && !UseDwarf5) {
2637       BaseIsSet = false;
2638       assert(!Base);
2639       Asm->OutStreamer->emitIntValue(-1, Size);
2640       Asm->OutStreamer->emitIntValue(0, Size);
2641     }
2642 
2643     for (const auto *RS : P.second) {
2644       const MCSymbol *Begin = RS->Begin;
2645       const MCSymbol *End = RS->End;
2646       assert(Begin && "Range without a begin symbol?");
2647       assert(End && "Range without an end symbol?");
2648       if (Base) {
2649         if (UseDwarf5) {
2650           // Emit offset_pair when we have a base.
2651           Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair));
2652           Asm->emitInt8(OffsetPair);
2653           Asm->OutStreamer->AddComment("  starting offset");
2654           Asm->emitLabelDifferenceAsULEB128(Begin, Base);
2655           Asm->OutStreamer->AddComment("  ending offset");
2656           Asm->emitLabelDifferenceAsULEB128(End, Base);
2657         } else {
2658           Asm->emitLabelDifference(Begin, Base, Size);
2659           Asm->emitLabelDifference(End, Base, Size);
2660         }
2661       } else if (UseDwarf5) {
2662         Asm->OutStreamer->AddComment(StringifyEnum(StartxLength));
2663         Asm->emitInt8(StartxLength);
2664         Asm->OutStreamer->AddComment("  start index");
2665         Asm->emitULEB128(DD.getAddressPool().getIndex(Begin));
2666         Asm->OutStreamer->AddComment("  length");
2667         Asm->emitLabelDifferenceAsULEB128(End, Begin);
2668       } else {
2669         Asm->OutStreamer->emitSymbolValue(Begin, Size);
2670         Asm->OutStreamer->emitSymbolValue(End, Size);
2671       }
2672       EmitPayload(*RS);
2673     }
2674   }
2675 
2676   if (UseDwarf5) {
2677     Asm->OutStreamer->AddComment(StringifyEnum(EndOfList));
2678     Asm->emitInt8(EndOfList);
2679   } else {
2680     // Terminate the list with two 0 values.
2681     Asm->OutStreamer->emitIntValue(0, Size);
2682     Asm->OutStreamer->emitIntValue(0, Size);
2683   }
2684 }
2685 
2686 // Handles emission of both debug_loclist / debug_loclist.dwo
2687 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) {
2688   emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List),
2689                 *List.CU, dwarf::DW_LLE_base_addressx,
2690                 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length,
2691                 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString,
2692                 /* ShouldUseBaseAddress */ true,
2693                 [&](const DebugLocStream::Entry &E) {
2694                   DD.emitDebugLocEntryLocation(E, List.CU);
2695                 });
2696 }
2697 
2698 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) {
2699   if (DebugLocs.getLists().empty())
2700     return;
2701 
2702   Asm->OutStreamer->SwitchSection(Sec);
2703 
2704   MCSymbol *TableEnd = nullptr;
2705   if (getDwarfVersion() >= 5)
2706     TableEnd = emitLoclistsTableHeader(Asm, *this);
2707 
2708   for (const auto &List : DebugLocs.getLists())
2709     emitLocList(*this, Asm, List);
2710 
2711   if (TableEnd)
2712     Asm->OutStreamer->emitLabel(TableEnd);
2713 }
2714 
2715 // Emit locations into the .debug_loc/.debug_loclists section.
2716 void DwarfDebug::emitDebugLoc() {
2717   emitDebugLocImpl(
2718       getDwarfVersion() >= 5
2719           ? Asm->getObjFileLowering().getDwarfLoclistsSection()
2720           : Asm->getObjFileLowering().getDwarfLocSection());
2721 }
2722 
2723 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section.
2724 void DwarfDebug::emitDebugLocDWO() {
2725   if (getDwarfVersion() >= 5) {
2726     emitDebugLocImpl(
2727         Asm->getObjFileLowering().getDwarfLoclistsDWOSection());
2728 
2729     return;
2730   }
2731 
2732   for (const auto &List : DebugLocs.getLists()) {
2733     Asm->OutStreamer->SwitchSection(
2734         Asm->getObjFileLowering().getDwarfLocDWOSection());
2735     Asm->OutStreamer->emitLabel(List.Label);
2736 
2737     for (const auto &Entry : DebugLocs.getEntries(List)) {
2738       // GDB only supports startx_length in pre-standard split-DWARF.
2739       // (in v5 standard loclists, it currently* /only/ supports base_address +
2740       // offset_pair, so the implementations can't really share much since they
2741       // need to use different representations)
2742       // * as of October 2018, at least
2743       //
2744       // In v5 (see emitLocList), this uses SectionLabels to reuse existing
2745       // addresses in the address pool to minimize object size/relocations.
2746       Asm->emitInt8(dwarf::DW_LLE_startx_length);
2747       unsigned idx = AddrPool.getIndex(Entry.Begin);
2748       Asm->emitULEB128(idx);
2749       // Also the pre-standard encoding is slightly different, emitting this as
2750       // an address-length entry here, but its a ULEB128 in DWARFv5 loclists.
2751       Asm->emitLabelDifference(Entry.End, Entry.Begin, 4);
2752       emitDebugLocEntryLocation(Entry, List.CU);
2753     }
2754     Asm->emitInt8(dwarf::DW_LLE_end_of_list);
2755   }
2756 }
2757 
2758 struct ArangeSpan {
2759   const MCSymbol *Start, *End;
2760 };
2761 
2762 // Emit a debug aranges section, containing a CU lookup for any
2763 // address we can tie back to a CU.
2764 void DwarfDebug::emitDebugARanges() {
2765   // Provides a unique id per text section.
2766   MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap;
2767 
2768   // Filter labels by section.
2769   for (const SymbolCU &SCU : ArangeLabels) {
2770     if (SCU.Sym->isInSection()) {
2771       // Make a note of this symbol and it's section.
2772       MCSection *Section = &SCU.Sym->getSection();
2773       if (!Section->getKind().isMetadata())
2774         SectionMap[Section].push_back(SCU);
2775     } else {
2776       // Some symbols (e.g. common/bss on mach-o) can have no section but still
2777       // appear in the output. This sucks as we rely on sections to build
2778       // arange spans. We can do it without, but it's icky.
2779       SectionMap[nullptr].push_back(SCU);
2780     }
2781   }
2782 
2783   DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans;
2784 
2785   for (auto &I : SectionMap) {
2786     MCSection *Section = I.first;
2787     SmallVector<SymbolCU, 8> &List = I.second;
2788     if (List.size() < 1)
2789       continue;
2790 
2791     // If we have no section (e.g. common), just write out
2792     // individual spans for each symbol.
2793     if (!Section) {
2794       for (const SymbolCU &Cur : List) {
2795         ArangeSpan Span;
2796         Span.Start = Cur.Sym;
2797         Span.End = nullptr;
2798         assert(Cur.CU);
2799         Spans[Cur.CU].push_back(Span);
2800       }
2801       continue;
2802     }
2803 
2804     // Sort the symbols by offset within the section.
2805     llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) {
2806       unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0;
2807       unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0;
2808 
2809       // Symbols with no order assigned should be placed at the end.
2810       // (e.g. section end labels)
2811       if (IA == 0)
2812         return false;
2813       if (IB == 0)
2814         return true;
2815       return IA < IB;
2816     });
2817 
2818     // Insert a final terminator.
2819     List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section)));
2820 
2821     // Build spans between each label.
2822     const MCSymbol *StartSym = List[0].Sym;
2823     for (size_t n = 1, e = List.size(); n < e; n++) {
2824       const SymbolCU &Prev = List[n - 1];
2825       const SymbolCU &Cur = List[n];
2826 
2827       // Try and build the longest span we can within the same CU.
2828       if (Cur.CU != Prev.CU) {
2829         ArangeSpan Span;
2830         Span.Start = StartSym;
2831         Span.End = Cur.Sym;
2832         assert(Prev.CU);
2833         Spans[Prev.CU].push_back(Span);
2834         StartSym = Cur.Sym;
2835       }
2836     }
2837   }
2838 
2839   // Start the dwarf aranges section.
2840   Asm->OutStreamer->SwitchSection(
2841       Asm->getObjFileLowering().getDwarfARangesSection());
2842 
2843   unsigned PtrSize = Asm->MAI->getCodePointerSize();
2844 
2845   // Build a list of CUs used.
2846   std::vector<DwarfCompileUnit *> CUs;
2847   for (const auto &it : Spans) {
2848     DwarfCompileUnit *CU = it.first;
2849     CUs.push_back(CU);
2850   }
2851 
2852   // Sort the CU list (again, to ensure consistent output order).
2853   llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) {
2854     return A->getUniqueID() < B->getUniqueID();
2855   });
2856 
2857   // Emit an arange table for each CU we used.
2858   for (DwarfCompileUnit *CU : CUs) {
2859     std::vector<ArangeSpan> &List = Spans[CU];
2860 
2861     // Describe the skeleton CU's offset and length, not the dwo file's.
2862     if (auto *Skel = CU->getSkeleton())
2863       CU = Skel;
2864 
2865     // Emit size of content not including length itself.
2866     unsigned ContentSize =
2867         sizeof(int16_t) +               // DWARF ARange version number
2868         Asm->getDwarfOffsetByteSize() + // Offset of CU in the .debug_info
2869                                         // section
2870         sizeof(int8_t) +                // Pointer Size (in bytes)
2871         sizeof(int8_t);                 // Segment Size (in bytes)
2872 
2873     unsigned TupleSize = PtrSize * 2;
2874 
2875     // 7.20 in the Dwarf specs requires the table to be aligned to a tuple.
2876     unsigned Padding = offsetToAlignment(
2877         Asm->getUnitLengthFieldByteSize() + ContentSize, Align(TupleSize));
2878 
2879     ContentSize += Padding;
2880     ContentSize += (List.size() + 1) * TupleSize;
2881 
2882     // For each compile unit, write the list of spans it covers.
2883     Asm->emitDwarfUnitLength(ContentSize, "Length of ARange Set");
2884     Asm->OutStreamer->AddComment("DWARF Arange version number");
2885     Asm->emitInt16(dwarf::DW_ARANGES_VERSION);
2886     Asm->OutStreamer->AddComment("Offset Into Debug Info Section");
2887     emitSectionReference(*CU);
2888     Asm->OutStreamer->AddComment("Address Size (in bytes)");
2889     Asm->emitInt8(PtrSize);
2890     Asm->OutStreamer->AddComment("Segment Size (in bytes)");
2891     Asm->emitInt8(0);
2892 
2893     Asm->OutStreamer->emitFill(Padding, 0xff);
2894 
2895     for (const ArangeSpan &Span : List) {
2896       Asm->emitLabelReference(Span.Start, PtrSize);
2897 
2898       // Calculate the size as being from the span start to it's end.
2899       if (Span.End) {
2900         Asm->emitLabelDifference(Span.End, Span.Start, PtrSize);
2901       } else {
2902         // For symbols without an end marker (e.g. common), we
2903         // write a single arange entry containing just that one symbol.
2904         uint64_t Size = SymSize[Span.Start];
2905         if (Size == 0)
2906           Size = 1;
2907 
2908         Asm->OutStreamer->emitIntValue(Size, PtrSize);
2909       }
2910     }
2911 
2912     Asm->OutStreamer->AddComment("ARange terminator");
2913     Asm->OutStreamer->emitIntValue(0, PtrSize);
2914     Asm->OutStreamer->emitIntValue(0, PtrSize);
2915   }
2916 }
2917 
2918 /// Emit a single range list. We handle both DWARF v5 and earlier.
2919 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm,
2920                           const RangeSpanList &List) {
2921   emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU,
2922                 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair,
2923                 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list,
2924                 llvm::dwarf::RangeListEncodingString,
2925                 List.CU->getCUNode()->getRangesBaseAddress() ||
2926                     DD.getDwarfVersion() >= 5,
2927                 [](auto) {});
2928 }
2929 
2930 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) {
2931   if (Holder.getRangeLists().empty())
2932     return;
2933 
2934   assert(useRangesSection());
2935   assert(!CUMap.empty());
2936   assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) {
2937     return !Pair.second->getCUNode()->isDebugDirectivesOnly();
2938   }));
2939 
2940   Asm->OutStreamer->SwitchSection(Section);
2941 
2942   MCSymbol *TableEnd = nullptr;
2943   if (getDwarfVersion() >= 5)
2944     TableEnd = emitRnglistsTableHeader(Asm, Holder);
2945 
2946   for (const RangeSpanList &List : Holder.getRangeLists())
2947     emitRangeList(*this, Asm, List);
2948 
2949   if (TableEnd)
2950     Asm->OutStreamer->emitLabel(TableEnd);
2951 }
2952 
2953 /// Emit address ranges into the .debug_ranges section or into the DWARF v5
2954 /// .debug_rnglists section.
2955 void DwarfDebug::emitDebugRanges() {
2956   const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2957 
2958   emitDebugRangesImpl(Holder,
2959                       getDwarfVersion() >= 5
2960                           ? Asm->getObjFileLowering().getDwarfRnglistsSection()
2961                           : Asm->getObjFileLowering().getDwarfRangesSection());
2962 }
2963 
2964 void DwarfDebug::emitDebugRangesDWO() {
2965   emitDebugRangesImpl(InfoHolder,
2966                       Asm->getObjFileLowering().getDwarfRnglistsDWOSection());
2967 }
2968 
2969 /// Emit the header of a DWARF 5 macro section, or the GNU extension for
2970 /// DWARF 4.
2971 static void emitMacroHeader(AsmPrinter *Asm, const DwarfDebug &DD,
2972                             const DwarfCompileUnit &CU, uint16_t DwarfVersion) {
2973   enum HeaderFlagMask {
2974 #define HANDLE_MACRO_FLAG(ID, NAME) MACRO_FLAG_##NAME = ID,
2975 #include "llvm/BinaryFormat/Dwarf.def"
2976   };
2977   Asm->OutStreamer->AddComment("Macro information version");
2978   Asm->emitInt16(DwarfVersion >= 5 ? DwarfVersion : 4);
2979   // We emit the line offset flag unconditionally here, since line offset should
2980   // be mostly present.
2981   if (Asm->isDwarf64()) {
2982     Asm->OutStreamer->AddComment("Flags: 64 bit, debug_line_offset present");
2983     Asm->emitInt8(MACRO_FLAG_OFFSET_SIZE | MACRO_FLAG_DEBUG_LINE_OFFSET);
2984   } else {
2985     Asm->OutStreamer->AddComment("Flags: 32 bit, debug_line_offset present");
2986     Asm->emitInt8(MACRO_FLAG_DEBUG_LINE_OFFSET);
2987   }
2988   Asm->OutStreamer->AddComment("debug_line_offset");
2989   if (DD.useSplitDwarf())
2990     Asm->emitDwarfLengthOrOffset(0);
2991   else
2992     Asm->emitDwarfSymbolReference(CU.getLineTableStartSym());
2993 }
2994 
2995 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) {
2996   for (auto *MN : Nodes) {
2997     if (auto *M = dyn_cast<DIMacro>(MN))
2998       emitMacro(*M);
2999     else if (auto *F = dyn_cast<DIMacroFile>(MN))
3000       emitMacroFile(*F, U);
3001     else
3002       llvm_unreachable("Unexpected DI type!");
3003   }
3004 }
3005 
3006 void DwarfDebug::emitMacro(DIMacro &M) {
3007   StringRef Name = M.getName();
3008   StringRef Value = M.getValue();
3009 
3010   // There should be one space between the macro name and the macro value in
3011   // define entries. In undef entries, only the macro name is emitted.
3012   std::string Str = Value.empty() ? Name.str() : (Name + " " + Value).str();
3013 
3014   if (UseDebugMacroSection) {
3015     if (getDwarfVersion() >= 5) {
3016       unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define
3017                           ? dwarf::DW_MACRO_define_strx
3018                           : dwarf::DW_MACRO_undef_strx;
3019       Asm->OutStreamer->AddComment(dwarf::MacroString(Type));
3020       Asm->emitULEB128(Type);
3021       Asm->OutStreamer->AddComment("Line Number");
3022       Asm->emitULEB128(M.getLine());
3023       Asm->OutStreamer->AddComment("Macro String");
3024       Asm->emitULEB128(
3025           InfoHolder.getStringPool().getIndexedEntry(*Asm, Str).getIndex());
3026     } else {
3027       unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define
3028                           ? dwarf::DW_MACRO_GNU_define_indirect
3029                           : dwarf::DW_MACRO_GNU_undef_indirect;
3030       Asm->OutStreamer->AddComment(dwarf::GnuMacroString(Type));
3031       Asm->emitULEB128(Type);
3032       Asm->OutStreamer->AddComment("Line Number");
3033       Asm->emitULEB128(M.getLine());
3034       Asm->OutStreamer->AddComment("Macro String");
3035       Asm->emitDwarfSymbolReference(
3036           InfoHolder.getStringPool().getEntry(*Asm, Str).getSymbol());
3037     }
3038   } else {
3039     Asm->OutStreamer->AddComment(dwarf::MacinfoString(M.getMacinfoType()));
3040     Asm->emitULEB128(M.getMacinfoType());
3041     Asm->OutStreamer->AddComment("Line Number");
3042     Asm->emitULEB128(M.getLine());
3043     Asm->OutStreamer->AddComment("Macro String");
3044     Asm->OutStreamer->emitBytes(Str);
3045     Asm->emitInt8('\0');
3046   }
3047 }
3048 
3049 void DwarfDebug::emitMacroFileImpl(
3050     DIMacroFile &MF, DwarfCompileUnit &U, unsigned StartFile, unsigned EndFile,
3051     StringRef (*MacroFormToString)(unsigned Form)) {
3052 
3053   Asm->OutStreamer->AddComment(MacroFormToString(StartFile));
3054   Asm->emitULEB128(StartFile);
3055   Asm->OutStreamer->AddComment("Line Number");
3056   Asm->emitULEB128(MF.getLine());
3057   Asm->OutStreamer->AddComment("File Number");
3058   DIFile &F = *MF.getFile();
3059   if (useSplitDwarf())
3060     Asm->emitULEB128(getDwoLineTable(U)->getFile(
3061         F.getDirectory(), F.getFilename(), getMD5AsBytes(&F),
3062         Asm->OutContext.getDwarfVersion(), F.getSource()));
3063   else
3064     Asm->emitULEB128(U.getOrCreateSourceID(&F));
3065   handleMacroNodes(MF.getElements(), U);
3066   Asm->OutStreamer->AddComment(MacroFormToString(EndFile));
3067   Asm->emitULEB128(EndFile);
3068 }
3069 
3070 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) {
3071   // DWARFv5 macro and DWARFv4 macinfo share some common encodings,
3072   // so for readibility/uniformity, We are explicitly emitting those.
3073   assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file);
3074   if (UseDebugMacroSection)
3075     emitMacroFileImpl(
3076         F, U, dwarf::DW_MACRO_start_file, dwarf::DW_MACRO_end_file,
3077         (getDwarfVersion() >= 5) ? dwarf::MacroString : dwarf::GnuMacroString);
3078   else
3079     emitMacroFileImpl(F, U, dwarf::DW_MACINFO_start_file,
3080                       dwarf::DW_MACINFO_end_file, dwarf::MacinfoString);
3081 }
3082 
3083 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) {
3084   for (const auto &P : CUMap) {
3085     auto &TheCU = *P.second;
3086     auto *SkCU = TheCU.getSkeleton();
3087     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
3088     auto *CUNode = cast<DICompileUnit>(P.first);
3089     DIMacroNodeArray Macros = CUNode->getMacros();
3090     if (Macros.empty())
3091       continue;
3092     Asm->OutStreamer->SwitchSection(Section);
3093     Asm->OutStreamer->emitLabel(U.getMacroLabelBegin());
3094     if (UseDebugMacroSection)
3095       emitMacroHeader(Asm, *this, U, getDwarfVersion());
3096     handleMacroNodes(Macros, U);
3097     Asm->OutStreamer->AddComment("End Of Macro List Mark");
3098     Asm->emitInt8(0);
3099   }
3100 }
3101 
3102 /// Emit macros into a debug macinfo/macro section.
3103 void DwarfDebug::emitDebugMacinfo() {
3104   auto &ObjLower = Asm->getObjFileLowering();
3105   emitDebugMacinfoImpl(UseDebugMacroSection
3106                            ? ObjLower.getDwarfMacroSection()
3107                            : ObjLower.getDwarfMacinfoSection());
3108 }
3109 
3110 void DwarfDebug::emitDebugMacinfoDWO() {
3111   auto &ObjLower = Asm->getObjFileLowering();
3112   emitDebugMacinfoImpl(UseDebugMacroSection
3113                            ? ObjLower.getDwarfMacroDWOSection()
3114                            : ObjLower.getDwarfMacinfoDWOSection());
3115 }
3116 
3117 // DWARF5 Experimental Separate Dwarf emitters.
3118 
3119 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die,
3120                                   std::unique_ptr<DwarfCompileUnit> NewU) {
3121 
3122   if (!CompilationDir.empty())
3123     NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
3124   addGnuPubAttributes(*NewU, Die);
3125 
3126   SkeletonHolder.addUnit(std::move(NewU));
3127 }
3128 
3129 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) {
3130 
3131   auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
3132       CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder,
3133       UnitKind::Skeleton);
3134   DwarfCompileUnit &NewCU = *OwnedUnit;
3135   NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
3136 
3137   NewCU.initStmtList();
3138 
3139   if (useSegmentedStringOffsetsTable())
3140     NewCU.addStringOffsetsStart();
3141 
3142   initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit));
3143 
3144   return NewCU;
3145 }
3146 
3147 // Emit the .debug_info.dwo section for separated dwarf. This contains the
3148 // compile units that would normally be in debug_info.
3149 void DwarfDebug::emitDebugInfoDWO() {
3150   assert(useSplitDwarf() && "No split dwarf debug info?");
3151   // Don't emit relocations into the dwo file.
3152   InfoHolder.emitUnits(/* UseOffsets */ true);
3153 }
3154 
3155 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the
3156 // abbreviations for the .debug_info.dwo section.
3157 void DwarfDebug::emitDebugAbbrevDWO() {
3158   assert(useSplitDwarf() && "No split dwarf?");
3159   InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection());
3160 }
3161 
3162 void DwarfDebug::emitDebugLineDWO() {
3163   assert(useSplitDwarf() && "No split dwarf?");
3164   SplitTypeUnitFileTable.Emit(
3165       *Asm->OutStreamer, MCDwarfLineTableParams(),
3166       Asm->getObjFileLowering().getDwarfLineDWOSection());
3167 }
3168 
3169 void DwarfDebug::emitStringOffsetsTableHeaderDWO() {
3170   assert(useSplitDwarf() && "No split dwarf?");
3171   InfoHolder.getStringPool().emitStringOffsetsTableHeader(
3172       *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(),
3173       InfoHolder.getStringOffsetsStartSym());
3174 }
3175 
3176 // Emit the .debug_str.dwo section for separated dwarf. This contains the
3177 // string section and is identical in format to traditional .debug_str
3178 // sections.
3179 void DwarfDebug::emitDebugStrDWO() {
3180   if (useSegmentedStringOffsetsTable())
3181     emitStringOffsetsTableHeaderDWO();
3182   assert(useSplitDwarf() && "No split dwarf?");
3183   MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection();
3184   InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(),
3185                          OffSec, /* UseRelativeOffsets = */ false);
3186 }
3187 
3188 // Emit address pool.
3189 void DwarfDebug::emitDebugAddr() {
3190   AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection());
3191 }
3192 
3193 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) {
3194   if (!useSplitDwarf())
3195     return nullptr;
3196   const DICompileUnit *DIUnit = CU.getCUNode();
3197   SplitTypeUnitFileTable.maybeSetRootFile(
3198       DIUnit->getDirectory(), DIUnit->getFilename(),
3199       getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource());
3200   return &SplitTypeUnitFileTable;
3201 }
3202 
3203 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) {
3204   MD5 Hash;
3205   Hash.update(Identifier);
3206   // ... take the least significant 8 bytes and return those. Our MD5
3207   // implementation always returns its results in little endian, so we actually
3208   // need the "high" word.
3209   MD5::MD5Result Result;
3210   Hash.final(Result);
3211   return Result.high();
3212 }
3213 
3214 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
3215                                       StringRef Identifier, DIE &RefDie,
3216                                       const DICompositeType *CTy) {
3217   // Fast path if we're building some type units and one has already used the
3218   // address pool we know we're going to throw away all this work anyway, so
3219   // don't bother building dependent types.
3220   if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed())
3221     return;
3222 
3223   auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0));
3224   if (!Ins.second) {
3225     CU.addDIETypeSignature(RefDie, Ins.first->second);
3226     return;
3227   }
3228 
3229   bool TopLevelType = TypeUnitsUnderConstruction.empty();
3230   AddrPool.resetUsedFlag();
3231 
3232   auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder,
3233                                                     getDwoLineTable(CU));
3234   DwarfTypeUnit &NewTU = *OwnedUnit;
3235   DIE &UnitDie = NewTU.getUnitDie();
3236   TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy);
3237 
3238   NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
3239                 CU.getLanguage());
3240 
3241   uint64_t Signature = makeTypeSignature(Identifier);
3242   NewTU.setTypeSignature(Signature);
3243   Ins.first->second = Signature;
3244 
3245   if (useSplitDwarf()) {
3246     MCSection *Section =
3247         getDwarfVersion() <= 4
3248             ? Asm->getObjFileLowering().getDwarfTypesDWOSection()
3249             : Asm->getObjFileLowering().getDwarfInfoDWOSection();
3250     NewTU.setSection(Section);
3251   } else {
3252     MCSection *Section =
3253         getDwarfVersion() <= 4
3254             ? Asm->getObjFileLowering().getDwarfTypesSection(Signature)
3255             : Asm->getObjFileLowering().getDwarfInfoSection(Signature);
3256     NewTU.setSection(Section);
3257     // Non-split type units reuse the compile unit's line table.
3258     CU.applyStmtList(UnitDie);
3259   }
3260 
3261   // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type
3262   // units.
3263   if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
3264     NewTU.addStringOffsetsStart();
3265 
3266   NewTU.setType(NewTU.createTypeDIE(CTy));
3267 
3268   if (TopLevelType) {
3269     auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction);
3270     TypeUnitsUnderConstruction.clear();
3271 
3272     // Types referencing entries in the address table cannot be placed in type
3273     // units.
3274     if (AddrPool.hasBeenUsed()) {
3275 
3276       // Remove all the types built while building this type.
3277       // This is pessimistic as some of these types might not be dependent on
3278       // the type that used an address.
3279       for (const auto &TU : TypeUnitsToAdd)
3280         TypeSignatures.erase(TU.second);
3281 
3282       // Construct this type in the CU directly.
3283       // This is inefficient because all the dependent types will be rebuilt
3284       // from scratch, including building them in type units, discovering that
3285       // they depend on addresses, throwing them out and rebuilding them.
3286       CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy));
3287       return;
3288     }
3289 
3290     // If the type wasn't dependent on fission addresses, finish adding the type
3291     // and all its dependent types.
3292     for (auto &TU : TypeUnitsToAdd) {
3293       InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get());
3294       InfoHolder.emitUnit(TU.first.get(), useSplitDwarf());
3295     }
3296   }
3297   CU.addDIETypeSignature(RefDie, Signature);
3298 }
3299 
3300 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD)
3301     : DD(DD),
3302       TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)), AddrPoolUsed(DD->AddrPool.hasBeenUsed()) {
3303   DD->TypeUnitsUnderConstruction.clear();
3304   DD->AddrPool.resetUsedFlag();
3305 }
3306 
3307 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() {
3308   DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction);
3309   DD->AddrPool.resetUsedFlag(AddrPoolUsed);
3310 }
3311 
3312 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() {
3313   return NonTypeUnitContext(this);
3314 }
3315 
3316 // Add the Name along with its companion DIE to the appropriate accelerator
3317 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for
3318 // AccelTableKind::Apple, we use the table we got as an argument). If
3319 // accelerator tables are disabled, this function does nothing.
3320 template <typename DataT>
3321 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU,
3322                                   AccelTable<DataT> &AppleAccel, StringRef Name,
3323                                   const DIE &Die) {
3324   if (getAccelTableKind() == AccelTableKind::None)
3325     return;
3326 
3327   if (getAccelTableKind() != AccelTableKind::Apple &&
3328       CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default)
3329     return;
3330 
3331   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
3332   DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name);
3333 
3334   switch (getAccelTableKind()) {
3335   case AccelTableKind::Apple:
3336     AppleAccel.addName(Ref, Die);
3337     break;
3338   case AccelTableKind::Dwarf:
3339     AccelDebugNames.addName(Ref, Die);
3340     break;
3341   case AccelTableKind::Default:
3342     llvm_unreachable("Default should have already been resolved.");
3343   case AccelTableKind::None:
3344     llvm_unreachable("None handled above");
3345   }
3346 }
3347 
3348 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name,
3349                               const DIE &Die) {
3350   addAccelNameImpl(CU, AccelNames, Name, Die);
3351 }
3352 
3353 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name,
3354                               const DIE &Die) {
3355   // ObjC names go only into the Apple accelerator tables.
3356   if (getAccelTableKind() == AccelTableKind::Apple)
3357     addAccelNameImpl(CU, AccelObjC, Name, Die);
3358 }
3359 
3360 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name,
3361                                    const DIE &Die) {
3362   addAccelNameImpl(CU, AccelNamespace, Name, Die);
3363 }
3364 
3365 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name,
3366                               const DIE &Die, char Flags) {
3367   addAccelNameImpl(CU, AccelTypes, Name, Die);
3368 }
3369 
3370 uint16_t DwarfDebug::getDwarfVersion() const {
3371   return Asm->OutStreamer->getContext().getDwarfVersion();
3372 }
3373 
3374 dwarf::Form DwarfDebug::getDwarfSectionOffsetForm() const {
3375   if (Asm->getDwarfVersion() >= 4)
3376     return dwarf::Form::DW_FORM_sec_offset;
3377   assert((!Asm->isDwarf64() || (Asm->getDwarfVersion() == 3)) &&
3378          "DWARF64 is not defined prior DWARFv3");
3379   return Asm->isDwarf64() ? dwarf::Form::DW_FORM_data8
3380                           : dwarf::Form::DW_FORM_data4;
3381 }
3382 
3383 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) {
3384   return SectionLabels.find(S)->second;
3385 }
3386 void DwarfDebug::insertSectionLabel(const MCSymbol *S) {
3387   if (SectionLabels.insert(std::make_pair(&S->getSection(), S)).second)
3388     if (useSplitDwarf() || getDwarfVersion() >= 5)
3389       AddrPool.getIndex(S);
3390 }
3391 
3392 Optional<MD5::MD5Result> DwarfDebug::getMD5AsBytes(const DIFile *File) const {
3393   assert(File);
3394   if (getDwarfVersion() < 5)
3395     return None;
3396   Optional<DIFile::ChecksumInfo<StringRef>> Checksum = File->getChecksum();
3397   if (!Checksum || Checksum->Kind != DIFile::CSK_MD5)
3398     return None;
3399 
3400   // Convert the string checksum to an MD5Result for the streamer.
3401   // The verifier validates the checksum so we assume it's okay.
3402   // An MD5 checksum is 16 bytes.
3403   std::string ChecksumString = fromHex(Checksum->Value);
3404   MD5::MD5Result CKMem;
3405   std::copy(ChecksumString.begin(), ChecksumString.end(), CKMem.Bytes.data());
3406   return CKMem;
3407 }
3408