1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing dwarf debug info into asm files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "DwarfDebug.h" 14 #include "ByteStreamer.h" 15 #include "DIEHash.h" 16 #include "DebugLocEntry.h" 17 #include "DebugLocStream.h" 18 #include "DwarfCompileUnit.h" 19 #include "DwarfExpression.h" 20 #include "DwarfFile.h" 21 #include "DwarfUnit.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/DenseSet.h" 25 #include "llvm/ADT/MapVector.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/BinaryFormat/Dwarf.h" 33 #include "llvm/CodeGen/AccelTable.h" 34 #include "llvm/CodeGen/AsmPrinter.h" 35 #include "llvm/CodeGen/DIE.h" 36 #include "llvm/CodeGen/LexicalScopes.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineInstr.h" 40 #include "llvm/CodeGen/MachineModuleInfo.h" 41 #include "llvm/CodeGen/MachineOperand.h" 42 #include "llvm/CodeGen/TargetInstrInfo.h" 43 #include "llvm/CodeGen/TargetLowering.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/DebugInfo/DWARF/DWARFExpression.h" 47 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/DebugLoc.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GlobalVariable.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/MC/MCAsmInfo.h" 55 #include "llvm/MC/MCContext.h" 56 #include "llvm/MC/MCDwarf.h" 57 #include "llvm/MC/MCSection.h" 58 #include "llvm/MC/MCStreamer.h" 59 #include "llvm/MC/MCSymbol.h" 60 #include "llvm/MC/MCTargetOptions.h" 61 #include "llvm/MC/MachineLocation.h" 62 #include "llvm/MC/SectionKind.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MD5.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/Timer.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/Target/TargetLoweringObjectFile.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include "llvm/Target/TargetOptions.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <iterator> 80 #include <string> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 #define DEBUG_TYPE "dwarfdebug" 87 88 STATISTIC(NumCSParams, "Number of dbg call site params created"); 89 90 static cl::opt<bool> 91 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, 92 cl::desc("Disable debug info printing")); 93 94 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier( 95 "use-dwarf-ranges-base-address-specifier", cl::Hidden, 96 cl::desc("Use base address specifiers in debug_ranges"), cl::init(false)); 97 98 static cl::opt<bool> EmitDwarfDebugEntryValues( 99 "emit-debug-entry-values", cl::Hidden, 100 cl::desc("Emit the debug entry values"), cl::init(false)); 101 102 static cl::opt<bool> GenerateARangeSection("generate-arange-section", 103 cl::Hidden, 104 cl::desc("Generate dwarf aranges"), 105 cl::init(false)); 106 107 static cl::opt<bool> 108 GenerateDwarfTypeUnits("generate-type-units", cl::Hidden, 109 cl::desc("Generate DWARF4 type units."), 110 cl::init(false)); 111 112 static cl::opt<bool> SplitDwarfCrossCuReferences( 113 "split-dwarf-cross-cu-references", cl::Hidden, 114 cl::desc("Enable cross-cu references in DWO files"), cl::init(false)); 115 116 enum DefaultOnOff { Default, Enable, Disable }; 117 118 static cl::opt<DefaultOnOff> UnknownLocations( 119 "use-unknown-locations", cl::Hidden, 120 cl::desc("Make an absence of debug location information explicit."), 121 cl::values(clEnumVal(Default, "At top of block or after label"), 122 clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")), 123 cl::init(Default)); 124 125 static cl::opt<AccelTableKind> AccelTables( 126 "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."), 127 cl::values(clEnumValN(AccelTableKind::Default, "Default", 128 "Default for platform"), 129 clEnumValN(AccelTableKind::None, "Disable", "Disabled."), 130 clEnumValN(AccelTableKind::Apple, "Apple", "Apple"), 131 clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")), 132 cl::init(AccelTableKind::Default)); 133 134 static cl::opt<DefaultOnOff> 135 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden, 136 cl::desc("Use inlined strings rather than string section."), 137 cl::values(clEnumVal(Default, "Default for platform"), 138 clEnumVal(Enable, "Enabled"), 139 clEnumVal(Disable, "Disabled")), 140 cl::init(Default)); 141 142 static cl::opt<bool> 143 NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden, 144 cl::desc("Disable emission .debug_ranges section."), 145 cl::init(false)); 146 147 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences( 148 "dwarf-sections-as-references", cl::Hidden, 149 cl::desc("Use sections+offset as references rather than labels."), 150 cl::values(clEnumVal(Default, "Default for platform"), 151 clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), 152 cl::init(Default)); 153 154 enum LinkageNameOption { 155 DefaultLinkageNames, 156 AllLinkageNames, 157 AbstractLinkageNames 158 }; 159 160 static cl::opt<LinkageNameOption> 161 DwarfLinkageNames("dwarf-linkage-names", cl::Hidden, 162 cl::desc("Which DWARF linkage-name attributes to emit."), 163 cl::values(clEnumValN(DefaultLinkageNames, "Default", 164 "Default for platform"), 165 clEnumValN(AllLinkageNames, "All", "All"), 166 clEnumValN(AbstractLinkageNames, "Abstract", 167 "Abstract subprograms")), 168 cl::init(DefaultLinkageNames)); 169 170 static const char *const DWARFGroupName = "dwarf"; 171 static const char *const DWARFGroupDescription = "DWARF Emission"; 172 static const char *const DbgTimerName = "writer"; 173 static const char *const DbgTimerDescription = "DWARF Debug Writer"; 174 static constexpr unsigned ULEB128PadSize = 4; 175 176 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) { 177 getActiveStreamer().EmitInt8( 178 Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op) 179 : dwarf::OperationEncodingString(Op)); 180 } 181 182 void DebugLocDwarfExpression::emitSigned(int64_t Value) { 183 getActiveStreamer().EmitSLEB128(Value, Twine(Value)); 184 } 185 186 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) { 187 getActiveStreamer().EmitULEB128(Value, Twine(Value)); 188 } 189 190 void DebugLocDwarfExpression::emitData1(uint8_t Value) { 191 getActiveStreamer().EmitInt8(Value, Twine(Value)); 192 } 193 194 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) { 195 assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit"); 196 getActiveStreamer().EmitULEB128(Idx, Twine(Idx), ULEB128PadSize); 197 } 198 199 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI, 200 unsigned MachineReg) { 201 // This information is not available while emitting .debug_loc entries. 202 return false; 203 } 204 205 void DebugLocDwarfExpression::enableTemporaryBuffer() { 206 assert(!IsBuffering && "Already buffering?"); 207 if (!TmpBuf) 208 TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments); 209 IsBuffering = true; 210 } 211 212 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; } 213 214 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() { 215 return TmpBuf ? TmpBuf->Bytes.size() : 0; 216 } 217 218 void DebugLocDwarfExpression::commitTemporaryBuffer() { 219 if (!TmpBuf) 220 return; 221 for (auto Byte : enumerate(TmpBuf->Bytes)) { 222 const char *Comment = (Byte.index() < TmpBuf->Comments.size()) 223 ? TmpBuf->Comments[Byte.index()].c_str() 224 : ""; 225 OutBS.EmitInt8(Byte.value(), Comment); 226 } 227 TmpBuf->Bytes.clear(); 228 TmpBuf->Comments.clear(); 229 } 230 231 const DIType *DbgVariable::getType() const { 232 return getVariable()->getType(); 233 } 234 235 /// Get .debug_loc entry for the instruction range starting at MI. 236 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) { 237 const DIExpression *Expr = MI->getDebugExpression(); 238 assert(MI->getNumOperands() == 4); 239 if (MI->getOperand(0).isReg()) { 240 auto RegOp = MI->getOperand(0); 241 auto Op1 = MI->getOperand(1); 242 // If the second operand is an immediate, this is a 243 // register-indirect address. 244 assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset"); 245 MachineLocation MLoc(RegOp.getReg(), Op1.isImm()); 246 return DbgValueLoc(Expr, MLoc); 247 } 248 if (MI->getOperand(0).isTargetIndex()) { 249 auto Op = MI->getOperand(0); 250 return DbgValueLoc(Expr, 251 TargetIndexLocation(Op.getIndex(), Op.getOffset())); 252 } 253 if (MI->getOperand(0).isImm()) 254 return DbgValueLoc(Expr, MI->getOperand(0).getImm()); 255 if (MI->getOperand(0).isFPImm()) 256 return DbgValueLoc(Expr, MI->getOperand(0).getFPImm()); 257 if (MI->getOperand(0).isCImm()) 258 return DbgValueLoc(Expr, MI->getOperand(0).getCImm()); 259 260 llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!"); 261 } 262 263 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) { 264 assert(FrameIndexExprs.empty() && "Already initialized?"); 265 assert(!ValueLoc.get() && "Already initialized?"); 266 267 assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable"); 268 assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() && 269 "Wrong inlined-at"); 270 271 ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue)); 272 if (auto *E = DbgValue->getDebugExpression()) 273 if (E->getNumElements()) 274 FrameIndexExprs.push_back({0, E}); 275 } 276 277 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const { 278 if (FrameIndexExprs.size() == 1) 279 return FrameIndexExprs; 280 281 assert(llvm::all_of(FrameIndexExprs, 282 [](const FrameIndexExpr &A) { 283 return A.Expr->isFragment(); 284 }) && 285 "multiple FI expressions without DW_OP_LLVM_fragment"); 286 llvm::sort(FrameIndexExprs, 287 [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool { 288 return A.Expr->getFragmentInfo()->OffsetInBits < 289 B.Expr->getFragmentInfo()->OffsetInBits; 290 }); 291 292 return FrameIndexExprs; 293 } 294 295 void DbgVariable::addMMIEntry(const DbgVariable &V) { 296 assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry"); 297 assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry"); 298 assert(V.getVariable() == getVariable() && "conflicting variable"); 299 assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location"); 300 301 assert(!FrameIndexExprs.empty() && "Expected an MMI entry"); 302 assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry"); 303 304 // FIXME: This logic should not be necessary anymore, as we now have proper 305 // deduplication. However, without it, we currently run into the assertion 306 // below, which means that we are likely dealing with broken input, i.e. two 307 // non-fragment entries for the same variable at different frame indices. 308 if (FrameIndexExprs.size()) { 309 auto *Expr = FrameIndexExprs.back().Expr; 310 if (!Expr || !Expr->isFragment()) 311 return; 312 } 313 314 for (const auto &FIE : V.FrameIndexExprs) 315 // Ignore duplicate entries. 316 if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) { 317 return FIE.FI == Other.FI && FIE.Expr == Other.Expr; 318 })) 319 FrameIndexExprs.push_back(FIE); 320 321 assert((FrameIndexExprs.size() == 1 || 322 llvm::all_of(FrameIndexExprs, 323 [](FrameIndexExpr &FIE) { 324 return FIE.Expr && FIE.Expr->isFragment(); 325 })) && 326 "conflicting locations for variable"); 327 } 328 329 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion, 330 bool GenerateTypeUnits, 331 DebuggerKind Tuning, 332 const Triple &TT) { 333 // Honor an explicit request. 334 if (AccelTables != AccelTableKind::Default) 335 return AccelTables; 336 337 // Accelerator tables with type units are currently not supported. 338 if (GenerateTypeUnits) 339 return AccelTableKind::None; 340 341 // Accelerator tables get emitted if targetting DWARF v5 or LLDB. DWARF v5 342 // always implies debug_names. For lower standard versions we use apple 343 // accelerator tables on apple platforms and debug_names elsewhere. 344 if (DwarfVersion >= 5) 345 return AccelTableKind::Dwarf; 346 if (Tuning == DebuggerKind::LLDB) 347 return TT.isOSBinFormatMachO() ? AccelTableKind::Apple 348 : AccelTableKind::Dwarf; 349 return AccelTableKind::None; 350 } 351 352 DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M) 353 : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()), 354 InfoHolder(A, "info_string", DIEValueAllocator), 355 SkeletonHolder(A, "skel_string", DIEValueAllocator), 356 IsDarwin(A->TM.getTargetTriple().isOSDarwin()) { 357 const Triple &TT = Asm->TM.getTargetTriple(); 358 359 // Make sure we know our "debugger tuning". The target option takes 360 // precedence; fall back to triple-based defaults. 361 if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default) 362 DebuggerTuning = Asm->TM.Options.DebuggerTuning; 363 else if (IsDarwin) 364 DebuggerTuning = DebuggerKind::LLDB; 365 else if (TT.isPS4CPU()) 366 DebuggerTuning = DebuggerKind::SCE; 367 else 368 DebuggerTuning = DebuggerKind::GDB; 369 370 if (DwarfInlinedStrings == Default) 371 UseInlineStrings = TT.isNVPTX(); 372 else 373 UseInlineStrings = DwarfInlinedStrings == Enable; 374 375 UseLocSection = !TT.isNVPTX(); 376 377 HasAppleExtensionAttributes = tuneForLLDB(); 378 379 // Handle split DWARF. 380 HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty(); 381 382 // SCE defaults to linkage names only for abstract subprograms. 383 if (DwarfLinkageNames == DefaultLinkageNames) 384 UseAllLinkageNames = !tuneForSCE(); 385 else 386 UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames; 387 388 unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion; 389 unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber 390 : MMI->getModule()->getDwarfVersion(); 391 // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2. 392 DwarfVersion = 393 TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION); 394 395 UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX(); 396 397 // Use sections as references. Force for NVPTX. 398 if (DwarfSectionsAsReferences == Default) 399 UseSectionsAsReferences = TT.isNVPTX(); 400 else 401 UseSectionsAsReferences = DwarfSectionsAsReferences == Enable; 402 403 // Don't generate type units for unsupported object file formats. 404 GenerateTypeUnits = 405 A->TM.getTargetTriple().isOSBinFormatELF() && GenerateDwarfTypeUnits; 406 407 TheAccelTableKind = computeAccelTableKind( 408 DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple()); 409 410 // Work around a GDB bug. GDB doesn't support the standard opcode; 411 // SCE doesn't support GNU's; LLDB prefers the standard opcode, which 412 // is defined as of DWARF 3. 413 // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented 414 // https://sourceware.org/bugzilla/show_bug.cgi?id=11616 415 UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3; 416 417 // GDB does not fully support the DWARF 4 representation for bitfields. 418 UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB(); 419 420 // The DWARF v5 string offsets table has - possibly shared - contributions 421 // from each compile and type unit each preceded by a header. The string 422 // offsets table used by the pre-DWARF v5 split-DWARF implementation uses 423 // a monolithic string offsets table without any header. 424 UseSegmentedStringOffsetsTable = DwarfVersion >= 5; 425 426 // Emit call-site-param debug info for GDB and LLDB, if the target supports 427 // the debug entry values feature. It can also be enabled explicitly. 428 EmitDebugEntryValues = (Asm->TM.Options.ShouldEmitDebugEntryValues() && 429 (tuneForGDB() || tuneForLLDB())) || 430 EmitDwarfDebugEntryValues; 431 432 Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion); 433 } 434 435 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h. 436 DwarfDebug::~DwarfDebug() = default; 437 438 static bool isObjCClass(StringRef Name) { 439 return Name.startswith("+") || Name.startswith("-"); 440 } 441 442 static bool hasObjCCategory(StringRef Name) { 443 if (!isObjCClass(Name)) 444 return false; 445 446 return Name.find(") ") != StringRef::npos; 447 } 448 449 static void getObjCClassCategory(StringRef In, StringRef &Class, 450 StringRef &Category) { 451 if (!hasObjCCategory(In)) { 452 Class = In.slice(In.find('[') + 1, In.find(' ')); 453 Category = ""; 454 return; 455 } 456 457 Class = In.slice(In.find('[') + 1, In.find('(')); 458 Category = In.slice(In.find('[') + 1, In.find(' ')); 459 } 460 461 static StringRef getObjCMethodName(StringRef In) { 462 return In.slice(In.find(' ') + 1, In.find(']')); 463 } 464 465 // Add the various names to the Dwarf accelerator table names. 466 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU, 467 const DISubprogram *SP, DIE &Die) { 468 if (getAccelTableKind() != AccelTableKind::Apple && 469 CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None) 470 return; 471 472 if (!SP->isDefinition()) 473 return; 474 475 if (SP->getName() != "") 476 addAccelName(CU, SP->getName(), Die); 477 478 // If the linkage name is different than the name, go ahead and output that as 479 // well into the name table. Only do that if we are going to actually emit 480 // that name. 481 if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() && 482 (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP))) 483 addAccelName(CU, SP->getLinkageName(), Die); 484 485 // If this is an Objective-C selector name add it to the ObjC accelerator 486 // too. 487 if (isObjCClass(SP->getName())) { 488 StringRef Class, Category; 489 getObjCClassCategory(SP->getName(), Class, Category); 490 addAccelObjC(CU, Class, Die); 491 if (Category != "") 492 addAccelObjC(CU, Category, Die); 493 // Also add the base method name to the name table. 494 addAccelName(CU, getObjCMethodName(SP->getName()), Die); 495 } 496 } 497 498 /// Check whether we should create a DIE for the given Scope, return true 499 /// if we don't create a DIE (the corresponding DIE is null). 500 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) { 501 if (Scope->isAbstractScope()) 502 return false; 503 504 // We don't create a DIE if there is no Range. 505 const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges(); 506 if (Ranges.empty()) 507 return true; 508 509 if (Ranges.size() > 1) 510 return false; 511 512 // We don't create a DIE if we have a single Range and the end label 513 // is null. 514 return !getLabelAfterInsn(Ranges.front().second); 515 } 516 517 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) { 518 F(CU); 519 if (auto *SkelCU = CU.getSkeleton()) 520 if (CU.getCUNode()->getSplitDebugInlining()) 521 F(*SkelCU); 522 } 523 524 bool DwarfDebug::shareAcrossDWOCUs() const { 525 return SplitDwarfCrossCuReferences; 526 } 527 528 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU, 529 LexicalScope *Scope) { 530 assert(Scope && Scope->getScopeNode()); 531 assert(Scope->isAbstractScope()); 532 assert(!Scope->getInlinedAt()); 533 534 auto *SP = cast<DISubprogram>(Scope->getScopeNode()); 535 536 // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram 537 // was inlined from another compile unit. 538 if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining()) 539 // Avoid building the original CU if it won't be used 540 SrcCU.constructAbstractSubprogramScopeDIE(Scope); 541 else { 542 auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 543 if (auto *SkelCU = CU.getSkeleton()) { 544 (shareAcrossDWOCUs() ? CU : SrcCU) 545 .constructAbstractSubprogramScopeDIE(Scope); 546 if (CU.getCUNode()->getSplitDebugInlining()) 547 SkelCU->constructAbstractSubprogramScopeDIE(Scope); 548 } else 549 CU.constructAbstractSubprogramScopeDIE(Scope); 550 } 551 } 552 553 DIE &DwarfDebug::constructSubprogramDefinitionDIE(const DISubprogram *SP) { 554 DICompileUnit *Unit = SP->getUnit(); 555 assert(SP->isDefinition() && "Subprogram not a definition"); 556 assert(Unit && "Subprogram definition without parent unit"); 557 auto &CU = getOrCreateDwarfCompileUnit(Unit); 558 return *CU.getOrCreateSubprogramDIE(SP); 559 } 560 561 /// Try to interpret values loaded into registers that forward parameters 562 /// for \p CallMI. Store parameters with interpreted value into \p Params. 563 static void collectCallSiteParameters(const MachineInstr *CallMI, 564 ParamSet &Params) { 565 auto *MF = CallMI->getMF(); 566 auto CalleesMap = MF->getCallSitesInfo(); 567 auto CallFwdRegsInfo = CalleesMap.find(CallMI); 568 569 // There is no information for the call instruction. 570 if (CallFwdRegsInfo == CalleesMap.end()) 571 return; 572 573 auto *MBB = CallMI->getParent(); 574 const auto &TRI = MF->getSubtarget().getRegisterInfo(); 575 const auto &TII = MF->getSubtarget().getInstrInfo(); 576 const auto &TLI = MF->getSubtarget().getTargetLowering(); 577 578 // Skip the call instruction. 579 auto I = std::next(CallMI->getReverseIterator()); 580 581 // Register worklist. Each register has an associated list of parameter 582 // registers whose call site values potentially can be described using that 583 // register. 584 using FwdRegWorklist = MapVector<unsigned, SmallVector<unsigned, 2>>; 585 586 FwdRegWorklist ForwardedRegWorklist; 587 588 // If an instruction defines more than one item in the worklist, we may run 589 // into situations where a worklist register's value is (potentially) 590 // described by the previous value of another register that is also defined 591 // by that instruction. 592 // 593 // This can for example occur in cases like this: 594 // 595 // $r1 = mov 123 596 // $r0, $r1 = mvrr $r1, 456 597 // call @foo, $r0, $r1 598 // 599 // When describing $r1's value for the mvrr instruction, we need to make sure 600 // that we don't finalize an entry value for $r0, as that is dependent on the 601 // previous value of $r1 (123 rather than 456). 602 // 603 // In order to not have to distinguish between those cases when finalizing 604 // entry values, we simply postpone adding new parameter registers to the 605 // worklist, by first keeping them in this temporary container until the 606 // instruction has been handled. 607 FwdRegWorklist NewWorklistItems; 608 609 // Add all the forwarding registers into the ForwardedRegWorklist. 610 for (auto ArgReg : CallFwdRegsInfo->second) { 611 bool InsertedReg = 612 ForwardedRegWorklist.insert({ArgReg.Reg, {ArgReg.Reg}}).second; 613 assert(InsertedReg && "Single register used to forward two arguments?"); 614 (void)InsertedReg; 615 } 616 617 // We erase, from the ForwardedRegWorklist, those forwarding registers for 618 // which we successfully describe a loaded value (by using 619 // the describeLoadedValue()). For those remaining arguments in the working 620 // list, for which we do not describe a loaded value by 621 // the describeLoadedValue(), we try to generate an entry value expression 622 // for their call site value description, if the call is within the entry MBB. 623 // TODO: Handle situations when call site parameter value can be described 624 // as the entry value within basic blocks other than the first one. 625 bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin(); 626 627 // If the MI is an instruction defining one or more parameters' forwarding 628 // registers, add those defines. 629 auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI, 630 SmallSetVector<unsigned, 4> &Defs) { 631 if (MI.isDebugInstr()) 632 return; 633 634 for (const MachineOperand &MO : MI.operands()) { 635 if (MO.isReg() && MO.isDef() && 636 Register::isPhysicalRegister(MO.getReg())) { 637 for (auto FwdReg : ForwardedRegWorklist) 638 if (TRI->regsOverlap(FwdReg.first, MO.getReg())) 639 Defs.insert(FwdReg.first); 640 } 641 } 642 }; 643 644 auto finishCallSiteParams = [&](DbgValueLoc DbgLocVal, 645 ArrayRef<unsigned> ParamRegs) { 646 for (auto FwdReg : ParamRegs) { 647 DbgCallSiteParam CSParm(FwdReg, DbgLocVal); 648 Params.push_back(CSParm); 649 ++NumCSParams; 650 } 651 }; 652 653 // Add Reg to the worklist, if it's not already present, and mark that the 654 // given parameter registers' values can (potentially) be described using 655 // that register. 656 auto addToWorklist = [](FwdRegWorklist &Worklist, unsigned Reg, 657 ArrayRef<unsigned> ParamRegs) { 658 auto I = Worklist.insert({Reg, {}}); 659 for (auto ParamReg : ParamRegs) { 660 assert(!is_contained(I.first->second, ParamReg) && 661 "Same parameter described twice by forwarding reg"); 662 I.first->second.push_back(ParamReg); 663 } 664 }; 665 666 // Search for a loading value in forwarding registers. 667 for (; I != MBB->rend(); ++I) { 668 // Skip bundle headers. 669 if (I->isBundle()) 670 continue; 671 672 // If the next instruction is a call we can not interpret parameter's 673 // forwarding registers or we finished the interpretation of all parameters. 674 if (I->isCall()) 675 return; 676 677 if (ForwardedRegWorklist.empty()) 678 return; 679 680 // Set of worklist registers that are defined by this instruction. 681 SmallSetVector<unsigned, 4> FwdRegDefs; 682 683 getForwardingRegsDefinedByMI(*I, FwdRegDefs); 684 if (FwdRegDefs.empty()) 685 continue; 686 687 for (auto ParamFwdReg : FwdRegDefs) { 688 if (auto ParamValue = TII->describeLoadedValue(*I, ParamFwdReg)) { 689 if (ParamValue->first.isImm()) { 690 int64_t Val = ParamValue->first.getImm(); 691 DbgValueLoc DbgLocVal(ParamValue->second, Val); 692 finishCallSiteParams(DbgLocVal, ForwardedRegWorklist[ParamFwdReg]); 693 } else if (ParamValue->first.isReg()) { 694 Register RegLoc = ParamValue->first.getReg(); 695 // TODO: For now, there is no use of describing the value loaded into the 696 // register that is also the source registers (e.g. $r0 = add $r0, x). 697 if (ParamFwdReg == RegLoc) 698 continue; 699 700 unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); 701 Register FP = TRI->getFrameRegister(*MF); 702 bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP); 703 if (TRI->isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) { 704 DbgValueLoc DbgLocVal(ParamValue->second, 705 MachineLocation(RegLoc, 706 /*IsIndirect=*/IsSPorFP)); 707 finishCallSiteParams(DbgLocVal, ForwardedRegWorklist[ParamFwdReg]); 708 // TODO: Add support for entry value plus an expression. 709 } else if (ShouldTryEmitEntryVals && 710 ParamValue->second->getNumElements() == 0) { 711 assert(RegLoc != ParamFwdReg && 712 "Can't handle a register that is described by itself"); 713 // ParamFwdReg was described by the non-callee saved register 714 // RegLoc. Mark that the call site values for the parameters are 715 // dependent on that register instead of ParamFwdReg. Since RegLoc 716 // may be a register that will be handled in this iteration, we 717 // postpone adding the items to the worklist, and instead keep them 718 // in a temporary container. 719 addToWorklist(NewWorklistItems, RegLoc, 720 ForwardedRegWorklist[ParamFwdReg]); 721 } 722 } 723 } 724 } 725 726 // Remove all registers that this instruction defines from the worklist. 727 for (auto ParamFwdReg : FwdRegDefs) 728 ForwardedRegWorklist.erase(ParamFwdReg); 729 730 // Now that we are done handling this instruction, add items from the 731 // temporary worklist to the real one. 732 for (auto New : NewWorklistItems) 733 addToWorklist(ForwardedRegWorklist, New.first, New.second); 734 NewWorklistItems.clear(); 735 } 736 737 // Emit the call site parameter's value as an entry value. 738 if (ShouldTryEmitEntryVals) { 739 // Create an expression where the register's entry value is used. 740 DIExpression *EntryExpr = DIExpression::get( 741 MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1}); 742 for (auto RegEntry : ForwardedRegWorklist) { 743 DbgValueLoc DbgLocVal(EntryExpr, MachineLocation(RegEntry.first)); 744 finishCallSiteParams(DbgLocVal, RegEntry.second); 745 } 746 } 747 } 748 749 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP, 750 DwarfCompileUnit &CU, DIE &ScopeDIE, 751 const MachineFunction &MF) { 752 // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if 753 // the subprogram is required to have one. 754 if (!SP.areAllCallsDescribed() || !SP.isDefinition()) 755 return; 756 757 // Use DW_AT_call_all_calls to express that call site entries are present 758 // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls 759 // because one of its requirements is not met: call site entries for 760 // optimized-out calls are elided. 761 CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls)); 762 763 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 764 assert(TII && "TargetInstrInfo not found: cannot label tail calls"); 765 766 // Emit call site entries for each call or tail call in the function. 767 for (const MachineBasicBlock &MBB : MF) { 768 for (const MachineInstr &MI : MBB.instrs()) { 769 // Bundles with call in them will pass the isCall() test below but do not 770 // have callee operand information so skip them here. Iterator will 771 // eventually reach the call MI. 772 if (MI.isBundle()) 773 continue; 774 775 // Skip instructions which aren't calls. Both calls and tail-calling jump 776 // instructions (e.g TAILJMPd64) are classified correctly here. 777 if (!MI.isCandidateForCallSiteEntry()) 778 continue; 779 780 // Skip instructions marked as frame setup, as they are not interesting to 781 // the user. 782 if (MI.getFlag(MachineInstr::FrameSetup)) 783 continue; 784 785 // TODO: Add support for targets with delay slots (see: beginInstruction). 786 if (MI.hasDelaySlot()) 787 return; 788 789 // If this is a direct call, find the callee's subprogram. 790 // In the case of an indirect call find the register that holds 791 // the callee. 792 const MachineOperand &CalleeOp = MI.getOperand(0); 793 if (!CalleeOp.isGlobal() && !CalleeOp.isReg()) 794 continue; 795 796 unsigned CallReg = 0; 797 DIE *CalleeDIE = nullptr; 798 const Function *CalleeDecl = nullptr; 799 if (CalleeOp.isReg()) { 800 CallReg = CalleeOp.getReg(); 801 if (!CallReg) 802 continue; 803 } else { 804 CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal()); 805 if (!CalleeDecl || !CalleeDecl->getSubprogram()) 806 continue; 807 const DISubprogram *CalleeSP = CalleeDecl->getSubprogram(); 808 809 if (CalleeSP->isDefinition()) { 810 // Ensure that a subprogram DIE for the callee is available in the 811 // appropriate CU. 812 CalleeDIE = &constructSubprogramDefinitionDIE(CalleeSP); 813 } else { 814 // Create the declaration DIE if it is missing. This is required to 815 // support compilation of old bitcode with an incomplete list of 816 // retained metadata. 817 CalleeDIE = CU.getOrCreateSubprogramDIE(CalleeSP); 818 } 819 assert(CalleeDIE && "Must have a DIE for the callee"); 820 } 821 822 // TODO: Omit call site entries for runtime calls (objc_msgSend, etc). 823 824 bool IsTail = TII->isTailCall(MI); 825 826 // If MI is in a bundle, the label was created after the bundle since 827 // EmitFunctionBody iterates over top-level MIs. Get that top-level MI 828 // to search for that label below. 829 const MachineInstr *TopLevelCallMI = 830 MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI; 831 832 // For tail calls, no return PC information is needed. 833 // For regular calls (and tail calls in GDB tuning), the return PC 834 // is needed to disambiguate paths in the call graph which could lead to 835 // some target function. 836 const MCSymbol *PCAddr = 837 (IsTail && !tuneForGDB()) 838 ? nullptr 839 : const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI)); 840 841 assert((IsTail || PCAddr) && "Call without return PC information"); 842 843 LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> " 844 << (CalleeDecl ? CalleeDecl->getName() 845 : StringRef(MF.getSubtarget() 846 .getRegisterInfo() 847 ->getName(CallReg))) 848 << (IsTail ? " [IsTail]" : "") << "\n"); 849 850 DIE &CallSiteDIE = CU.constructCallSiteEntryDIE(ScopeDIE, CalleeDIE, 851 IsTail, PCAddr, CallReg); 852 853 // Optionally emit call-site-param debug info. 854 if (emitDebugEntryValues()) { 855 ParamSet Params; 856 // Try to interpret values of call site parameters. 857 collectCallSiteParameters(&MI, Params); 858 CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params); 859 } 860 } 861 } 862 } 863 864 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const { 865 if (!U.hasDwarfPubSections()) 866 return; 867 868 U.addFlag(D, dwarf::DW_AT_GNU_pubnames); 869 } 870 871 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit, 872 DwarfCompileUnit &NewCU) { 873 DIE &Die = NewCU.getUnitDie(); 874 StringRef FN = DIUnit->getFilename(); 875 876 StringRef Producer = DIUnit->getProducer(); 877 StringRef Flags = DIUnit->getFlags(); 878 if (!Flags.empty() && !useAppleExtensionAttributes()) { 879 std::string ProducerWithFlags = Producer.str() + " " + Flags.str(); 880 NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags); 881 } else 882 NewCU.addString(Die, dwarf::DW_AT_producer, Producer); 883 884 NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 885 DIUnit->getSourceLanguage()); 886 NewCU.addString(Die, dwarf::DW_AT_name, FN); 887 StringRef SysRoot = DIUnit->getSysRoot(); 888 if (!SysRoot.empty()) 889 NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot); 890 891 // Add DW_str_offsets_base to the unit DIE, except for split units. 892 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 893 NewCU.addStringOffsetsStart(); 894 895 if (!useSplitDwarf()) { 896 NewCU.initStmtList(); 897 898 // If we're using split dwarf the compilation dir is going to be in the 899 // skeleton CU and so we don't need to duplicate it here. 900 if (!CompilationDir.empty()) 901 NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 902 addGnuPubAttributes(NewCU, Die); 903 } 904 905 if (useAppleExtensionAttributes()) { 906 if (DIUnit->isOptimized()) 907 NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized); 908 909 StringRef Flags = DIUnit->getFlags(); 910 if (!Flags.empty()) 911 NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags); 912 913 if (unsigned RVer = DIUnit->getRuntimeVersion()) 914 NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers, 915 dwarf::DW_FORM_data1, RVer); 916 } 917 918 if (DIUnit->getDWOId()) { 919 // This CU is either a clang module DWO or a skeleton CU. 920 NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, 921 DIUnit->getDWOId()); 922 if (!DIUnit->getSplitDebugFilename().empty()) { 923 // This is a prefabricated skeleton CU. 924 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 925 ? dwarf::DW_AT_dwo_name 926 : dwarf::DW_AT_GNU_dwo_name; 927 NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename()); 928 } 929 } 930 } 931 // Create new DwarfCompileUnit for the given metadata node with tag 932 // DW_TAG_compile_unit. 933 DwarfCompileUnit & 934 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) { 935 if (auto *CU = CUMap.lookup(DIUnit)) 936 return *CU; 937 938 CompilationDir = DIUnit->getDirectory(); 939 940 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 941 InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder); 942 DwarfCompileUnit &NewCU = *OwnedUnit; 943 InfoHolder.addUnit(std::move(OwnedUnit)); 944 945 for (auto *IE : DIUnit->getImportedEntities()) 946 NewCU.addImportedEntity(IE); 947 948 // LTO with assembly output shares a single line table amongst multiple CUs. 949 // To avoid the compilation directory being ambiguous, let the line table 950 // explicitly describe the directory of all files, never relying on the 951 // compilation directory. 952 if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU) 953 Asm->OutStreamer->emitDwarfFile0Directive( 954 CompilationDir, DIUnit->getFilename(), 955 NewCU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource(), 956 NewCU.getUniqueID()); 957 958 if (useSplitDwarf()) { 959 NewCU.setSkeleton(constructSkeletonCU(NewCU)); 960 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection()); 961 } else { 962 finishUnitAttributes(DIUnit, NewCU); 963 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 964 } 965 966 CUMap.insert({DIUnit, &NewCU}); 967 CUDieMap.insert({&NewCU.getUnitDie(), &NewCU}); 968 return NewCU; 969 } 970 971 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU, 972 const DIImportedEntity *N) { 973 if (isa<DILocalScope>(N->getScope())) 974 return; 975 if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope())) 976 D->addChild(TheCU.constructImportedEntityDIE(N)); 977 } 978 979 /// Sort and unique GVEs by comparing their fragment offset. 980 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> & 981 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) { 982 llvm::sort( 983 GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) { 984 // Sort order: first null exprs, then exprs without fragment 985 // info, then sort by fragment offset in bits. 986 // FIXME: Come up with a more comprehensive comparator so 987 // the sorting isn't non-deterministic, and so the following 988 // std::unique call works correctly. 989 if (!A.Expr || !B.Expr) 990 return !!B.Expr; 991 auto FragmentA = A.Expr->getFragmentInfo(); 992 auto FragmentB = B.Expr->getFragmentInfo(); 993 if (!FragmentA || !FragmentB) 994 return !!FragmentB; 995 return FragmentA->OffsetInBits < FragmentB->OffsetInBits; 996 }); 997 GVEs.erase(std::unique(GVEs.begin(), GVEs.end(), 998 [](DwarfCompileUnit::GlobalExpr A, 999 DwarfCompileUnit::GlobalExpr B) { 1000 return A.Expr == B.Expr; 1001 }), 1002 GVEs.end()); 1003 return GVEs; 1004 } 1005 1006 // Emit all Dwarf sections that should come prior to the content. Create 1007 // global DIEs and emit initial debug info sections. This is invoked by 1008 // the target AsmPrinter. 1009 void DwarfDebug::beginModule() { 1010 NamedRegionTimer T(DbgTimerName, DbgTimerDescription, DWARFGroupName, 1011 DWARFGroupDescription, TimePassesIsEnabled); 1012 if (DisableDebugInfoPrinting) { 1013 MMI->setDebugInfoAvailability(false); 1014 return; 1015 } 1016 1017 const Module *M = MMI->getModule(); 1018 1019 unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(), 1020 M->debug_compile_units_end()); 1021 // Tell MMI whether we have debug info. 1022 assert(MMI->hasDebugInfo() == (NumDebugCUs > 0) && 1023 "DebugInfoAvailabilty initialized unexpectedly"); 1024 SingleCU = NumDebugCUs == 1; 1025 DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>> 1026 GVMap; 1027 for (const GlobalVariable &Global : M->globals()) { 1028 SmallVector<DIGlobalVariableExpression *, 1> GVs; 1029 Global.getDebugInfo(GVs); 1030 for (auto *GVE : GVs) 1031 GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()}); 1032 } 1033 1034 // Create the symbol that designates the start of the unit's contribution 1035 // to the string offsets table. In a split DWARF scenario, only the skeleton 1036 // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol). 1037 if (useSegmentedStringOffsetsTable()) 1038 (useSplitDwarf() ? SkeletonHolder : InfoHolder) 1039 .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base")); 1040 1041 1042 // Create the symbols that designates the start of the DWARF v5 range list 1043 // and locations list tables. They are located past the table headers. 1044 if (getDwarfVersion() >= 5) { 1045 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1046 Holder.setRnglistsTableBaseSym( 1047 Asm->createTempSymbol("rnglists_table_base")); 1048 1049 if (useSplitDwarf()) 1050 InfoHolder.setRnglistsTableBaseSym( 1051 Asm->createTempSymbol("rnglists_dwo_table_base")); 1052 } 1053 1054 // Create the symbol that points to the first entry following the debug 1055 // address table (.debug_addr) header. 1056 AddrPool.setLabel(Asm->createTempSymbol("addr_table_base")); 1057 DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base")); 1058 1059 for (DICompileUnit *CUNode : M->debug_compile_units()) { 1060 // FIXME: Move local imported entities into a list attached to the 1061 // subprogram, then this search won't be needed and a 1062 // getImportedEntities().empty() test should go below with the rest. 1063 bool HasNonLocalImportedEntities = llvm::any_of( 1064 CUNode->getImportedEntities(), [](const DIImportedEntity *IE) { 1065 return !isa<DILocalScope>(IE->getScope()); 1066 }); 1067 1068 if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() && 1069 CUNode->getRetainedTypes().empty() && 1070 CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty()) 1071 continue; 1072 1073 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode); 1074 1075 // Global Variables. 1076 for (auto *GVE : CUNode->getGlobalVariables()) { 1077 // Don't bother adding DIGlobalVariableExpressions listed in the CU if we 1078 // already know about the variable and it isn't adding a constant 1079 // expression. 1080 auto &GVMapEntry = GVMap[GVE->getVariable()]; 1081 auto *Expr = GVE->getExpression(); 1082 if (!GVMapEntry.size() || (Expr && Expr->isConstant())) 1083 GVMapEntry.push_back({nullptr, Expr}); 1084 } 1085 DenseSet<DIGlobalVariable *> Processed; 1086 for (auto *GVE : CUNode->getGlobalVariables()) { 1087 DIGlobalVariable *GV = GVE->getVariable(); 1088 if (Processed.insert(GV).second) 1089 CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV])); 1090 } 1091 1092 for (auto *Ty : CUNode->getEnumTypes()) { 1093 // The enum types array by design contains pointers to 1094 // MDNodes rather than DIRefs. Unique them here. 1095 CU.getOrCreateTypeDIE(cast<DIType>(Ty)); 1096 } 1097 for (auto *Ty : CUNode->getRetainedTypes()) { 1098 // The retained types array by design contains pointers to 1099 // MDNodes rather than DIRefs. Unique them here. 1100 if (DIType *RT = dyn_cast<DIType>(Ty)) 1101 // There is no point in force-emitting a forward declaration. 1102 CU.getOrCreateTypeDIE(RT); 1103 } 1104 // Emit imported_modules last so that the relevant context is already 1105 // available. 1106 for (auto *IE : CUNode->getImportedEntities()) 1107 constructAndAddImportedEntityDIE(CU, IE); 1108 } 1109 } 1110 1111 void DwarfDebug::finishEntityDefinitions() { 1112 for (const auto &Entity : ConcreteEntities) { 1113 DIE *Die = Entity->getDIE(); 1114 assert(Die); 1115 // FIXME: Consider the time-space tradeoff of just storing the unit pointer 1116 // in the ConcreteEntities list, rather than looking it up again here. 1117 // DIE::getUnit isn't simple - it walks parent pointers, etc. 1118 DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie()); 1119 assert(Unit); 1120 Unit->finishEntityDefinition(Entity.get()); 1121 } 1122 } 1123 1124 void DwarfDebug::finishSubprogramDefinitions() { 1125 for (const DISubprogram *SP : ProcessedSPNodes) { 1126 assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug); 1127 forBothCUs( 1128 getOrCreateDwarfCompileUnit(SP->getUnit()), 1129 [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); }); 1130 } 1131 } 1132 1133 void DwarfDebug::finalizeModuleInfo() { 1134 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); 1135 1136 finishSubprogramDefinitions(); 1137 1138 finishEntityDefinitions(); 1139 1140 // Include the DWO file name in the hash if there's more than one CU. 1141 // This handles ThinLTO's situation where imported CUs may very easily be 1142 // duplicate with the same CU partially imported into another ThinLTO unit. 1143 StringRef DWOName; 1144 if (CUMap.size() > 1) 1145 DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile; 1146 1147 // Handle anything that needs to be done on a per-unit basis after 1148 // all other generation. 1149 for (const auto &P : CUMap) { 1150 auto &TheCU = *P.second; 1151 if (TheCU.getCUNode()->isDebugDirectivesOnly()) 1152 continue; 1153 // Emit DW_AT_containing_type attribute to connect types with their 1154 // vtable holding type. 1155 TheCU.constructContainingTypeDIEs(); 1156 1157 // Add CU specific attributes if we need to add any. 1158 // If we're splitting the dwarf out now that we've got the entire 1159 // CU then add the dwo id to it. 1160 auto *SkCU = TheCU.getSkeleton(); 1161 1162 bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty(); 1163 1164 if (HasSplitUnit) { 1165 dwarf::Attribute attrDWOName = getDwarfVersion() >= 5 1166 ? dwarf::DW_AT_dwo_name 1167 : dwarf::DW_AT_GNU_dwo_name; 1168 finishUnitAttributes(TheCU.getCUNode(), TheCU); 1169 TheCU.addString(TheCU.getUnitDie(), attrDWOName, 1170 Asm->TM.Options.MCOptions.SplitDwarfFile); 1171 SkCU->addString(SkCU->getUnitDie(), attrDWOName, 1172 Asm->TM.Options.MCOptions.SplitDwarfFile); 1173 // Emit a unique identifier for this CU. 1174 uint64_t ID = 1175 DIEHash(Asm).computeCUSignature(DWOName, TheCU.getUnitDie()); 1176 if (getDwarfVersion() >= 5) { 1177 TheCU.setDWOId(ID); 1178 SkCU->setDWOId(ID); 1179 } else { 1180 TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1181 dwarf::DW_FORM_data8, ID); 1182 SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 1183 dwarf::DW_FORM_data8, ID); 1184 } 1185 1186 if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) { 1187 const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol(); 1188 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base, 1189 Sym, Sym); 1190 } 1191 } else if (SkCU) { 1192 finishUnitAttributes(SkCU->getCUNode(), *SkCU); 1193 } 1194 1195 // If we have code split among multiple sections or non-contiguous 1196 // ranges of code then emit a DW_AT_ranges attribute on the unit that will 1197 // remain in the .o file, otherwise add a DW_AT_low_pc. 1198 // FIXME: We should use ranges allow reordering of code ala 1199 // .subsections_via_symbols in mach-o. This would mean turning on 1200 // ranges for all subprogram DIEs for mach-o. 1201 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 1202 1203 if (unsigned NumRanges = TheCU.getRanges().size()) { 1204 if (NumRanges > 1 && useRangesSection()) 1205 // A DW_AT_low_pc attribute may also be specified in combination with 1206 // DW_AT_ranges to specify the default base address for use in 1207 // location lists (see Section 2.6.2) and range lists (see Section 1208 // 2.17.3). 1209 U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0); 1210 else 1211 U.setBaseAddress(TheCU.getRanges().front().Begin); 1212 U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges()); 1213 } 1214 1215 // We don't keep track of which addresses are used in which CU so this 1216 // is a bit pessimistic under LTO. 1217 if ((!AddrPool.isEmpty() || TheCU.hasRangeLists()) && 1218 (getDwarfVersion() >= 5 || HasSplitUnit)) 1219 U.addAddrTableBase(); 1220 1221 if (getDwarfVersion() >= 5) { 1222 if (U.hasRangeLists()) 1223 U.addRnglistsBase(); 1224 1225 if (!DebugLocs.getLists().empty()) { 1226 if (!useSplitDwarf()) 1227 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base, 1228 DebugLocs.getSym(), 1229 TLOF.getDwarfLoclistsSection()->getBeginSymbol()); 1230 } 1231 } 1232 1233 auto *CUNode = cast<DICompileUnit>(P.first); 1234 // If compile Unit has macros, emit "DW_AT_macro_info" attribute. 1235 if (CUNode->getMacros()) { 1236 if (useSplitDwarf()) 1237 TheCU.addSectionDelta(TheCU.getUnitDie(), dwarf::DW_AT_macro_info, 1238 U.getMacroLabelBegin(), 1239 TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol()); 1240 else 1241 U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info, 1242 U.getMacroLabelBegin(), 1243 TLOF.getDwarfMacinfoSection()->getBeginSymbol()); 1244 } 1245 } 1246 1247 // Emit all frontend-produced Skeleton CUs, i.e., Clang modules. 1248 for (auto *CUNode : MMI->getModule()->debug_compile_units()) 1249 if (CUNode->getDWOId()) 1250 getOrCreateDwarfCompileUnit(CUNode); 1251 1252 // Compute DIE offsets and sizes. 1253 InfoHolder.computeSizeAndOffsets(); 1254 if (useSplitDwarf()) 1255 SkeletonHolder.computeSizeAndOffsets(); 1256 } 1257 1258 // Emit all Dwarf sections that should come after the content. 1259 void DwarfDebug::endModule() { 1260 assert(CurFn == nullptr); 1261 assert(CurMI == nullptr); 1262 1263 for (const auto &P : CUMap) { 1264 auto &CU = *P.second; 1265 CU.createBaseTypeDIEs(); 1266 } 1267 1268 // If we aren't actually generating debug info (check beginModule - 1269 // conditionalized on !DisableDebugInfoPrinting and the presence of the 1270 // llvm.dbg.cu metadata node) 1271 if (!MMI->hasDebugInfo()) 1272 return; 1273 1274 // Finalize the debug info for the module. 1275 finalizeModuleInfo(); 1276 1277 if (useSplitDwarf()) 1278 // Emit debug_loc.dwo/debug_loclists.dwo section. 1279 emitDebugLocDWO(); 1280 else 1281 // Emit debug_loc/debug_loclists section. 1282 emitDebugLoc(); 1283 1284 // Corresponding abbreviations into a abbrev section. 1285 emitAbbreviations(); 1286 1287 // Emit all the DIEs into a debug info section. 1288 emitDebugInfo(); 1289 1290 // Emit info into a debug aranges section. 1291 if (GenerateARangeSection) 1292 emitDebugARanges(); 1293 1294 // Emit info into a debug ranges section. 1295 emitDebugRanges(); 1296 1297 if (useSplitDwarf()) 1298 // Emit info into a debug macinfo.dwo section. 1299 emitDebugMacinfoDWO(); 1300 else 1301 // Emit info into a debug macinfo section. 1302 emitDebugMacinfo(); 1303 1304 emitDebugStr(); 1305 1306 if (useSplitDwarf()) { 1307 emitDebugStrDWO(); 1308 emitDebugInfoDWO(); 1309 emitDebugAbbrevDWO(); 1310 emitDebugLineDWO(); 1311 emitDebugRangesDWO(); 1312 } 1313 1314 emitDebugAddr(); 1315 1316 // Emit info into the dwarf accelerator table sections. 1317 switch (getAccelTableKind()) { 1318 case AccelTableKind::Apple: 1319 emitAccelNames(); 1320 emitAccelObjC(); 1321 emitAccelNamespaces(); 1322 emitAccelTypes(); 1323 break; 1324 case AccelTableKind::Dwarf: 1325 emitAccelDebugNames(); 1326 break; 1327 case AccelTableKind::None: 1328 break; 1329 case AccelTableKind::Default: 1330 llvm_unreachable("Default should have already been resolved."); 1331 } 1332 1333 // Emit the pubnames and pubtypes sections if requested. 1334 emitDebugPubSections(); 1335 1336 // clean up. 1337 // FIXME: AbstractVariables.clear(); 1338 } 1339 1340 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU, 1341 const DINode *Node, 1342 const MDNode *ScopeNode) { 1343 if (CU.getExistingAbstractEntity(Node)) 1344 return; 1345 1346 CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope( 1347 cast<DILocalScope>(ScopeNode))); 1348 } 1349 1350 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU, 1351 const DINode *Node, const MDNode *ScopeNode) { 1352 if (CU.getExistingAbstractEntity(Node)) 1353 return; 1354 1355 if (LexicalScope *Scope = 1356 LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode))) 1357 CU.createAbstractEntity(Node, Scope); 1358 } 1359 1360 // Collect variable information from side table maintained by MF. 1361 void DwarfDebug::collectVariableInfoFromMFTable( 1362 DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) { 1363 SmallDenseMap<InlinedEntity, DbgVariable *> MFVars; 1364 for (const auto &VI : Asm->MF->getVariableDbgInfo()) { 1365 if (!VI.Var) 1366 continue; 1367 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1368 "Expected inlined-at fields to agree"); 1369 1370 InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt()); 1371 Processed.insert(Var); 1372 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1373 1374 // If variable scope is not found then skip this variable. 1375 if (!Scope) 1376 continue; 1377 1378 ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode()); 1379 auto RegVar = std::make_unique<DbgVariable>( 1380 cast<DILocalVariable>(Var.first), Var.second); 1381 RegVar->initializeMMI(VI.Expr, VI.Slot); 1382 if (DbgVariable *DbgVar = MFVars.lookup(Var)) 1383 DbgVar->addMMIEntry(*RegVar); 1384 else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) { 1385 MFVars.insert({Var, RegVar.get()}); 1386 ConcreteEntities.push_back(std::move(RegVar)); 1387 } 1388 } 1389 } 1390 1391 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its 1392 /// enclosing lexical scope. The check ensures there are no other instructions 1393 /// in the same lexical scope preceding the DBG_VALUE and that its range is 1394 /// either open or otherwise rolls off the end of the scope. 1395 static bool validThroughout(LexicalScopes &LScopes, 1396 const MachineInstr *DbgValue, 1397 const MachineInstr *RangeEnd) { 1398 assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location"); 1399 auto MBB = DbgValue->getParent(); 1400 auto DL = DbgValue->getDebugLoc(); 1401 auto *LScope = LScopes.findLexicalScope(DL); 1402 // Scope doesn't exist; this is a dead DBG_VALUE. 1403 if (!LScope) 1404 return false; 1405 auto &LSRange = LScope->getRanges(); 1406 if (LSRange.size() == 0) 1407 return false; 1408 1409 // Determine if the DBG_VALUE is valid at the beginning of its lexical block. 1410 const MachineInstr *LScopeBegin = LSRange.front().first; 1411 // Early exit if the lexical scope begins outside of the current block. 1412 if (LScopeBegin->getParent() != MBB) 1413 return false; 1414 MachineBasicBlock::const_reverse_iterator Pred(DbgValue); 1415 for (++Pred; Pred != MBB->rend(); ++Pred) { 1416 if (Pred->getFlag(MachineInstr::FrameSetup)) 1417 break; 1418 auto PredDL = Pred->getDebugLoc(); 1419 if (!PredDL || Pred->isMetaInstruction()) 1420 continue; 1421 // Check whether the instruction preceding the DBG_VALUE is in the same 1422 // (sub)scope as the DBG_VALUE. 1423 if (DL->getScope() == PredDL->getScope()) 1424 return false; 1425 auto *PredScope = LScopes.findLexicalScope(PredDL); 1426 if (!PredScope || LScope->dominates(PredScope)) 1427 return false; 1428 } 1429 1430 // If the range of the DBG_VALUE is open-ended, report success. 1431 if (!RangeEnd) 1432 return true; 1433 1434 // Fail if there are instructions belonging to our scope in another block. 1435 const MachineInstr *LScopeEnd = LSRange.back().second; 1436 if (LScopeEnd->getParent() != MBB) 1437 return false; 1438 1439 // Single, constant DBG_VALUEs in the prologue are promoted to be live 1440 // throughout the function. This is a hack, presumably for DWARF v2 and not 1441 // necessarily correct. It would be much better to use a dbg.declare instead 1442 // if we know the constant is live throughout the scope. 1443 if (DbgValue->getOperand(0).isImm() && MBB->pred_empty()) 1444 return true; 1445 1446 return false; 1447 } 1448 1449 /// Build the location list for all DBG_VALUEs in the function that 1450 /// describe the same variable. The resulting DebugLocEntries will have 1451 /// strict monotonically increasing begin addresses and will never 1452 /// overlap. If the resulting list has only one entry that is valid 1453 /// throughout variable's scope return true. 1454 // 1455 // See the definition of DbgValueHistoryMap::Entry for an explanation of the 1456 // different kinds of history map entries. One thing to be aware of is that if 1457 // a debug value is ended by another entry (rather than being valid until the 1458 // end of the function), that entry's instruction may or may not be included in 1459 // the range, depending on if the entry is a clobbering entry (it has an 1460 // instruction that clobbers one or more preceding locations), or if it is an 1461 // (overlapping) debug value entry. This distinction can be seen in the example 1462 // below. The first debug value is ended by the clobbering entry 2, and the 1463 // second and third debug values are ended by the overlapping debug value entry 1464 // 4. 1465 // 1466 // Input: 1467 // 1468 // History map entries [type, end index, mi] 1469 // 1470 // 0 | [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)] 1471 // 1 | | [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)] 1472 // 2 | | [Clobber, $reg0 = [...], -, -] 1473 // 3 | | [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)] 1474 // 4 [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)] 1475 // 1476 // Output [start, end) [Value...]: 1477 // 1478 // [0-1) [(reg0, fragment 0, 32)] 1479 // [1-3) [(reg0, fragment 0, 32), (reg1, fragment 32, 32)] 1480 // [3-4) [(reg1, fragment 32, 32), (123, fragment 64, 32)] 1481 // [4-) [(@g, fragment 0, 96)] 1482 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc, 1483 const DbgValueHistoryMap::Entries &Entries) { 1484 using OpenRange = 1485 std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>; 1486 SmallVector<OpenRange, 4> OpenRanges; 1487 bool isSafeForSingleLocation = true; 1488 const MachineInstr *StartDebugMI = nullptr; 1489 const MachineInstr *EndMI = nullptr; 1490 1491 for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) { 1492 const MachineInstr *Instr = EI->getInstr(); 1493 1494 // Remove all values that are no longer live. 1495 size_t Index = std::distance(EB, EI); 1496 auto Last = 1497 remove_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; }); 1498 OpenRanges.erase(Last, OpenRanges.end()); 1499 1500 // If we are dealing with a clobbering entry, this iteration will result in 1501 // a location list entry starting after the clobbering instruction. 1502 const MCSymbol *StartLabel = 1503 EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr); 1504 assert(StartLabel && 1505 "Forgot label before/after instruction starting a range!"); 1506 1507 const MCSymbol *EndLabel; 1508 if (std::next(EI) == Entries.end()) { 1509 EndLabel = Asm->getFunctionEnd(); 1510 if (EI->isClobber()) 1511 EndMI = EI->getInstr(); 1512 } 1513 else if (std::next(EI)->isClobber()) 1514 EndLabel = getLabelAfterInsn(std::next(EI)->getInstr()); 1515 else 1516 EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr()); 1517 assert(EndLabel && "Forgot label after instruction ending a range!"); 1518 1519 if (EI->isDbgValue()) 1520 LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n"); 1521 1522 // If this history map entry has a debug value, add that to the list of 1523 // open ranges and check if its location is valid for a single value 1524 // location. 1525 if (EI->isDbgValue()) { 1526 // Do not add undef debug values, as they are redundant information in 1527 // the location list entries. An undef debug results in an empty location 1528 // description. If there are any non-undef fragments then padding pieces 1529 // with empty location descriptions will automatically be inserted, and if 1530 // all fragments are undef then the whole location list entry is 1531 // redundant. 1532 if (!Instr->isUndefDebugValue()) { 1533 auto Value = getDebugLocValue(Instr); 1534 OpenRanges.emplace_back(EI->getEndIndex(), Value); 1535 1536 // TODO: Add support for single value fragment locations. 1537 if (Instr->getDebugExpression()->isFragment()) 1538 isSafeForSingleLocation = false; 1539 1540 if (!StartDebugMI) 1541 StartDebugMI = Instr; 1542 } else { 1543 isSafeForSingleLocation = false; 1544 } 1545 } 1546 1547 // Location list entries with empty location descriptions are redundant 1548 // information in DWARF, so do not emit those. 1549 if (OpenRanges.empty()) 1550 continue; 1551 1552 // Omit entries with empty ranges as they do not have any effect in DWARF. 1553 if (StartLabel == EndLabel) { 1554 LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n"); 1555 continue; 1556 } 1557 1558 SmallVector<DbgValueLoc, 4> Values; 1559 for (auto &R : OpenRanges) 1560 Values.push_back(R.second); 1561 DebugLoc.emplace_back(StartLabel, EndLabel, Values); 1562 1563 // Attempt to coalesce the ranges of two otherwise identical 1564 // DebugLocEntries. 1565 auto CurEntry = DebugLoc.rbegin(); 1566 LLVM_DEBUG({ 1567 dbgs() << CurEntry->getValues().size() << " Values:\n"; 1568 for (auto &Value : CurEntry->getValues()) 1569 Value.dump(); 1570 dbgs() << "-----\n"; 1571 }); 1572 1573 auto PrevEntry = std::next(CurEntry); 1574 if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry)) 1575 DebugLoc.pop_back(); 1576 } 1577 1578 return DebugLoc.size() == 1 && isSafeForSingleLocation && 1579 validThroughout(LScopes, StartDebugMI, EndMI); 1580 } 1581 1582 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU, 1583 LexicalScope &Scope, 1584 const DINode *Node, 1585 const DILocation *Location, 1586 const MCSymbol *Sym) { 1587 ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode()); 1588 if (isa<const DILocalVariable>(Node)) { 1589 ConcreteEntities.push_back( 1590 std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node), 1591 Location)); 1592 InfoHolder.addScopeVariable(&Scope, 1593 cast<DbgVariable>(ConcreteEntities.back().get())); 1594 } else if (isa<const DILabel>(Node)) { 1595 ConcreteEntities.push_back( 1596 std::make_unique<DbgLabel>(cast<const DILabel>(Node), 1597 Location, Sym)); 1598 InfoHolder.addScopeLabel(&Scope, 1599 cast<DbgLabel>(ConcreteEntities.back().get())); 1600 } 1601 return ConcreteEntities.back().get(); 1602 } 1603 1604 // Find variables for each lexical scope. 1605 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU, 1606 const DISubprogram *SP, 1607 DenseSet<InlinedEntity> &Processed) { 1608 // Grab the variable info that was squirreled away in the MMI side-table. 1609 collectVariableInfoFromMFTable(TheCU, Processed); 1610 1611 for (const auto &I : DbgValues) { 1612 InlinedEntity IV = I.first; 1613 if (Processed.count(IV)) 1614 continue; 1615 1616 // Instruction ranges, specifying where IV is accessible. 1617 const auto &HistoryMapEntries = I.second; 1618 if (HistoryMapEntries.empty()) 1619 continue; 1620 1621 LexicalScope *Scope = nullptr; 1622 const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first); 1623 if (const DILocation *IA = IV.second) 1624 Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA); 1625 else 1626 Scope = LScopes.findLexicalScope(LocalVar->getScope()); 1627 // If variable scope is not found then skip this variable. 1628 if (!Scope) 1629 continue; 1630 1631 Processed.insert(IV); 1632 DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU, 1633 *Scope, LocalVar, IV.second)); 1634 1635 const MachineInstr *MInsn = HistoryMapEntries.front().getInstr(); 1636 assert(MInsn->isDebugValue() && "History must begin with debug value"); 1637 1638 // Check if there is a single DBG_VALUE, valid throughout the var's scope. 1639 // If the history map contains a single debug value, there may be an 1640 // additional entry which clobbers the debug value. 1641 size_t HistSize = HistoryMapEntries.size(); 1642 bool SingleValueWithClobber = 1643 HistSize == 2 && HistoryMapEntries[1].isClobber(); 1644 if (HistSize == 1 || SingleValueWithClobber) { 1645 const auto *End = 1646 SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr; 1647 if (validThroughout(LScopes, MInsn, End)) { 1648 RegVar->initializeDbgValue(MInsn); 1649 continue; 1650 } 1651 } 1652 1653 // Do not emit location lists if .debug_loc secton is disabled. 1654 if (!useLocSection()) 1655 continue; 1656 1657 // Handle multiple DBG_VALUE instructions describing one variable. 1658 DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn); 1659 1660 // Build the location list for this variable. 1661 SmallVector<DebugLocEntry, 8> Entries; 1662 bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries); 1663 1664 // Check whether buildLocationList managed to merge all locations to one 1665 // that is valid throughout the variable's scope. If so, produce single 1666 // value location. 1667 if (isValidSingleLocation) { 1668 RegVar->initializeDbgValue(Entries[0].getValues()[0]); 1669 continue; 1670 } 1671 1672 // If the variable has a DIBasicType, extract it. Basic types cannot have 1673 // unique identifiers, so don't bother resolving the type with the 1674 // identifier map. 1675 const DIBasicType *BT = dyn_cast<DIBasicType>( 1676 static_cast<const Metadata *>(LocalVar->getType())); 1677 1678 // Finalize the entry by lowering it into a DWARF bytestream. 1679 for (auto &Entry : Entries) 1680 Entry.finalize(*Asm, List, BT, TheCU); 1681 } 1682 1683 // For each InlinedEntity collected from DBG_LABEL instructions, convert to 1684 // DWARF-related DbgLabel. 1685 for (const auto &I : DbgLabels) { 1686 InlinedEntity IL = I.first; 1687 const MachineInstr *MI = I.second; 1688 if (MI == nullptr) 1689 continue; 1690 1691 LexicalScope *Scope = nullptr; 1692 const DILabel *Label = cast<DILabel>(IL.first); 1693 // The scope could have an extra lexical block file. 1694 const DILocalScope *LocalScope = 1695 Label->getScope()->getNonLexicalBlockFileScope(); 1696 // Get inlined DILocation if it is inlined label. 1697 if (const DILocation *IA = IL.second) 1698 Scope = LScopes.findInlinedScope(LocalScope, IA); 1699 else 1700 Scope = LScopes.findLexicalScope(LocalScope); 1701 // If label scope is not found then skip this label. 1702 if (!Scope) 1703 continue; 1704 1705 Processed.insert(IL); 1706 /// At this point, the temporary label is created. 1707 /// Save the temporary label to DbgLabel entity to get the 1708 /// actually address when generating Dwarf DIE. 1709 MCSymbol *Sym = getLabelBeforeInsn(MI); 1710 createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym); 1711 } 1712 1713 // Collect info for variables/labels that were optimized out. 1714 for (const DINode *DN : SP->getRetainedNodes()) { 1715 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 1716 continue; 1717 LexicalScope *Scope = nullptr; 1718 if (auto *DV = dyn_cast<DILocalVariable>(DN)) { 1719 Scope = LScopes.findLexicalScope(DV->getScope()); 1720 } else if (auto *DL = dyn_cast<DILabel>(DN)) { 1721 Scope = LScopes.findLexicalScope(DL->getScope()); 1722 } 1723 1724 if (Scope) 1725 createConcreteEntity(TheCU, *Scope, DN, nullptr); 1726 } 1727 } 1728 1729 // Process beginning of an instruction. 1730 void DwarfDebug::beginInstruction(const MachineInstr *MI) { 1731 DebugHandlerBase::beginInstruction(MI); 1732 assert(CurMI); 1733 1734 const auto *SP = MI->getMF()->getFunction().getSubprogram(); 1735 if (!SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) 1736 return; 1737 1738 // Check if source location changes, but ignore DBG_VALUE and CFI locations. 1739 // If the instruction is part of the function frame setup code, do not emit 1740 // any line record, as there is no correspondence with any user code. 1741 if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup)) 1742 return; 1743 const DebugLoc &DL = MI->getDebugLoc(); 1744 // When we emit a line-0 record, we don't update PrevInstLoc; so look at 1745 // the last line number actually emitted, to see if it was line 0. 1746 unsigned LastAsmLine = 1747 Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine(); 1748 1749 // Request a label after the call in order to emit AT_return_pc information 1750 // in call site entries. TODO: Add support for targets with delay slots. 1751 if (SP->areAllCallsDescribed() && MI->isCall() && !MI->hasDelaySlot()) 1752 requestLabelAfterInsn(MI); 1753 1754 if (DL == PrevInstLoc) { 1755 // If we have an ongoing unspecified location, nothing to do here. 1756 if (!DL) 1757 return; 1758 // We have an explicit location, same as the previous location. 1759 // But we might be coming back to it after a line 0 record. 1760 if (LastAsmLine == 0 && DL.getLine() != 0) { 1761 // Reinstate the source location but not marked as a statement. 1762 const MDNode *Scope = DL.getScope(); 1763 recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0); 1764 } 1765 return; 1766 } 1767 1768 if (!DL) { 1769 // We have an unspecified location, which might want to be line 0. 1770 // If we have already emitted a line-0 record, don't repeat it. 1771 if (LastAsmLine == 0) 1772 return; 1773 // If user said Don't Do That, don't do that. 1774 if (UnknownLocations == Disable) 1775 return; 1776 // See if we have a reason to emit a line-0 record now. 1777 // Reasons to emit a line-0 record include: 1778 // - User asked for it (UnknownLocations). 1779 // - Instruction has a label, so it's referenced from somewhere else, 1780 // possibly debug information; we want it to have a source location. 1781 // - Instruction is at the top of a block; we don't want to inherit the 1782 // location from the physically previous (maybe unrelated) block. 1783 if (UnknownLocations == Enable || PrevLabel || 1784 (PrevInstBB && PrevInstBB != MI->getParent())) { 1785 // Preserve the file and column numbers, if we can, to save space in 1786 // the encoded line table. 1787 // Do not update PrevInstLoc, it remembers the last non-0 line. 1788 const MDNode *Scope = nullptr; 1789 unsigned Column = 0; 1790 if (PrevInstLoc) { 1791 Scope = PrevInstLoc.getScope(); 1792 Column = PrevInstLoc.getCol(); 1793 } 1794 recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0); 1795 } 1796 return; 1797 } 1798 1799 // We have an explicit location, different from the previous location. 1800 // Don't repeat a line-0 record, but otherwise emit the new location. 1801 // (The new location might be an explicit line 0, which we do emit.) 1802 if (DL.getLine() == 0 && LastAsmLine == 0) 1803 return; 1804 unsigned Flags = 0; 1805 if (DL == PrologEndLoc) { 1806 Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT; 1807 PrologEndLoc = DebugLoc(); 1808 } 1809 // If the line changed, we call that a new statement; unless we went to 1810 // line 0 and came back, in which case it is not a new statement. 1811 unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine; 1812 if (DL.getLine() && DL.getLine() != OldLine) 1813 Flags |= DWARF2_FLAG_IS_STMT; 1814 1815 const MDNode *Scope = DL.getScope(); 1816 recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags); 1817 1818 // If we're not at line 0, remember this location. 1819 if (DL.getLine()) 1820 PrevInstLoc = DL; 1821 } 1822 1823 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) { 1824 // First known non-DBG_VALUE and non-frame setup location marks 1825 // the beginning of the function body. 1826 for (const auto &MBB : *MF) 1827 for (const auto &MI : MBB) 1828 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1829 MI.getDebugLoc()) 1830 return MI.getDebugLoc(); 1831 return DebugLoc(); 1832 } 1833 1834 /// Register a source line with debug info. Returns the unique label that was 1835 /// emitted and which provides correspondence to the source line list. 1836 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col, 1837 const MDNode *S, unsigned Flags, unsigned CUID, 1838 uint16_t DwarfVersion, 1839 ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) { 1840 StringRef Fn; 1841 unsigned FileNo = 1; 1842 unsigned Discriminator = 0; 1843 if (auto *Scope = cast_or_null<DIScope>(S)) { 1844 Fn = Scope->getFilename(); 1845 if (Line != 0 && DwarfVersion >= 4) 1846 if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope)) 1847 Discriminator = LBF->getDiscriminator(); 1848 1849 FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID]) 1850 .getOrCreateSourceID(Scope->getFile()); 1851 } 1852 Asm.OutStreamer->EmitDwarfLocDirective(FileNo, Line, Col, Flags, 0, 1853 Discriminator, Fn); 1854 } 1855 1856 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF, 1857 unsigned CUID) { 1858 // Get beginning of function. 1859 if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) { 1860 // Ensure the compile unit is created if the function is called before 1861 // beginFunction(). 1862 (void)getOrCreateDwarfCompileUnit( 1863 MF.getFunction().getSubprogram()->getUnit()); 1864 // We'd like to list the prologue as "not statements" but GDB behaves 1865 // poorly if we do that. Revisit this with caution/GDB (7.5+) testing. 1866 const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram(); 1867 ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT, 1868 CUID, getDwarfVersion(), getUnits()); 1869 return PrologEndLoc; 1870 } 1871 return DebugLoc(); 1872 } 1873 1874 // Gather pre-function debug information. Assumes being called immediately 1875 // after the function entry point has been emitted. 1876 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) { 1877 CurFn = MF; 1878 1879 auto *SP = MF->getFunction().getSubprogram(); 1880 assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode()); 1881 if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) 1882 return; 1883 1884 DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); 1885 1886 // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function 1887 // belongs to so that we add to the correct per-cu line table in the 1888 // non-asm case. 1889 if (Asm->OutStreamer->hasRawTextSupport()) 1890 // Use a single line table if we are generating assembly. 1891 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 1892 else 1893 Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID()); 1894 1895 // Record beginning of function. 1896 PrologEndLoc = emitInitialLocDirective( 1897 *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID()); 1898 } 1899 1900 void DwarfDebug::skippedNonDebugFunction() { 1901 // If we don't have a subprogram for this function then there will be a hole 1902 // in the range information. Keep note of this by setting the previously used 1903 // section to nullptr. 1904 PrevCU = nullptr; 1905 CurFn = nullptr; 1906 } 1907 1908 // Gather and emit post-function debug information. 1909 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) { 1910 const DISubprogram *SP = MF->getFunction().getSubprogram(); 1911 1912 assert(CurFn == MF && 1913 "endFunction should be called with the same function as beginFunction"); 1914 1915 // Set DwarfDwarfCompileUnitID in MCContext to default value. 1916 Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); 1917 1918 LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); 1919 assert(!FnScope || SP == FnScope->getScopeNode()); 1920 DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit()); 1921 if (TheCU.getCUNode()->isDebugDirectivesOnly()) { 1922 PrevLabel = nullptr; 1923 CurFn = nullptr; 1924 return; 1925 } 1926 1927 DenseSet<InlinedEntity> Processed; 1928 collectEntityInfo(TheCU, SP, Processed); 1929 1930 // Add the range of this function to the list of ranges for the CU. 1931 TheCU.addRange({Asm->getFunctionBegin(), Asm->getFunctionEnd()}); 1932 1933 // Under -gmlt, skip building the subprogram if there are no inlined 1934 // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram 1935 // is still needed as we need its source location. 1936 if (!TheCU.getCUNode()->getDebugInfoForProfiling() && 1937 TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly && 1938 LScopes.getAbstractScopesList().empty() && !IsDarwin) { 1939 assert(InfoHolder.getScopeVariables().empty()); 1940 PrevLabel = nullptr; 1941 CurFn = nullptr; 1942 return; 1943 } 1944 1945 #ifndef NDEBUG 1946 size_t NumAbstractScopes = LScopes.getAbstractScopesList().size(); 1947 #endif 1948 // Construct abstract scopes. 1949 for (LexicalScope *AScope : LScopes.getAbstractScopesList()) { 1950 auto *SP = cast<DISubprogram>(AScope->getScopeNode()); 1951 for (const DINode *DN : SP->getRetainedNodes()) { 1952 if (!Processed.insert(InlinedEntity(DN, nullptr)).second) 1953 continue; 1954 1955 const MDNode *Scope = nullptr; 1956 if (auto *DV = dyn_cast<DILocalVariable>(DN)) 1957 Scope = DV->getScope(); 1958 else if (auto *DL = dyn_cast<DILabel>(DN)) 1959 Scope = DL->getScope(); 1960 else 1961 llvm_unreachable("Unexpected DI type!"); 1962 1963 // Collect info for variables/labels that were optimized out. 1964 ensureAbstractEntityIsCreated(TheCU, DN, Scope); 1965 assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes 1966 && "ensureAbstractEntityIsCreated inserted abstract scopes"); 1967 } 1968 constructAbstractSubprogramScopeDIE(TheCU, AScope); 1969 } 1970 1971 ProcessedSPNodes.insert(SP); 1972 DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope); 1973 if (auto *SkelCU = TheCU.getSkeleton()) 1974 if (!LScopes.getAbstractScopesList().empty() && 1975 TheCU.getCUNode()->getSplitDebugInlining()) 1976 SkelCU->constructSubprogramScopeDIE(SP, FnScope); 1977 1978 // Construct call site entries. 1979 constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF); 1980 1981 // Clear debug info 1982 // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the 1983 // DbgVariables except those that are also in AbstractVariables (since they 1984 // can be used cross-function) 1985 InfoHolder.getScopeVariables().clear(); 1986 InfoHolder.getScopeLabels().clear(); 1987 PrevLabel = nullptr; 1988 CurFn = nullptr; 1989 } 1990 1991 // Register a source line with debug info. Returns the unique label that was 1992 // emitted and which provides correspondence to the source line list. 1993 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S, 1994 unsigned Flags) { 1995 ::recordSourceLine(*Asm, Line, Col, S, Flags, 1996 Asm->OutStreamer->getContext().getDwarfCompileUnitID(), 1997 getDwarfVersion(), getUnits()); 1998 } 1999 2000 //===----------------------------------------------------------------------===// 2001 // Emit Methods 2002 //===----------------------------------------------------------------------===// 2003 2004 // Emit the debug info section. 2005 void DwarfDebug::emitDebugInfo() { 2006 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2007 Holder.emitUnits(/* UseOffsets */ false); 2008 } 2009 2010 // Emit the abbreviation section. 2011 void DwarfDebug::emitAbbreviations() { 2012 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2013 2014 Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection()); 2015 } 2016 2017 void DwarfDebug::emitStringOffsetsTableHeader() { 2018 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2019 Holder.getStringPool().emitStringOffsetsTableHeader( 2020 *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(), 2021 Holder.getStringOffsetsStartSym()); 2022 } 2023 2024 template <typename AccelTableT> 2025 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section, 2026 StringRef TableName) { 2027 Asm->OutStreamer->SwitchSection(Section); 2028 2029 // Emit the full data. 2030 emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol()); 2031 } 2032 2033 void DwarfDebug::emitAccelDebugNames() { 2034 // Don't emit anything if we have no compilation units to index. 2035 if (getUnits().empty()) 2036 return; 2037 2038 emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits()); 2039 } 2040 2041 // Emit visible names into a hashed accelerator table section. 2042 void DwarfDebug::emitAccelNames() { 2043 emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(), 2044 "Names"); 2045 } 2046 2047 // Emit objective C classes and categories into a hashed accelerator table 2048 // section. 2049 void DwarfDebug::emitAccelObjC() { 2050 emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(), 2051 "ObjC"); 2052 } 2053 2054 // Emit namespace dies into a hashed accelerator table. 2055 void DwarfDebug::emitAccelNamespaces() { 2056 emitAccel(AccelNamespace, 2057 Asm->getObjFileLowering().getDwarfAccelNamespaceSection(), 2058 "namespac"); 2059 } 2060 2061 // Emit type dies into a hashed accelerator table. 2062 void DwarfDebug::emitAccelTypes() { 2063 emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(), 2064 "types"); 2065 } 2066 2067 // Public name handling. 2068 // The format for the various pubnames: 2069 // 2070 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU 2071 // for the DIE that is named. 2072 // 2073 // gnu pubnames - offset/index value/name tuples where the offset is the offset 2074 // into the CU and the index value is computed according to the type of value 2075 // for the DIE that is named. 2076 // 2077 // For type units the offset is the offset of the skeleton DIE. For split dwarf 2078 // it's the offset within the debug_info/debug_types dwo section, however, the 2079 // reference in the pubname header doesn't change. 2080 2081 /// computeIndexValue - Compute the gdb index value for the DIE and CU. 2082 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU, 2083 const DIE *Die) { 2084 // Entities that ended up only in a Type Unit reference the CU instead (since 2085 // the pub entry has offsets within the CU there's no real offset that can be 2086 // provided anyway). As it happens all such entities (namespaces and types, 2087 // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out 2088 // not to be true it would be necessary to persist this information from the 2089 // point at which the entry is added to the index data structure - since by 2090 // the time the index is built from that, the original type/namespace DIE in a 2091 // type unit has already been destroyed so it can't be queried for properties 2092 // like tag, etc. 2093 if (Die->getTag() == dwarf::DW_TAG_compile_unit) 2094 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, 2095 dwarf::GIEL_EXTERNAL); 2096 dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC; 2097 2098 // We could have a specification DIE that has our most of our knowledge, 2099 // look for that now. 2100 if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) { 2101 DIE &SpecDIE = SpecVal.getDIEEntry().getEntry(); 2102 if (SpecDIE.findAttribute(dwarf::DW_AT_external)) 2103 Linkage = dwarf::GIEL_EXTERNAL; 2104 } else if (Die->findAttribute(dwarf::DW_AT_external)) 2105 Linkage = dwarf::GIEL_EXTERNAL; 2106 2107 switch (Die->getTag()) { 2108 case dwarf::DW_TAG_class_type: 2109 case dwarf::DW_TAG_structure_type: 2110 case dwarf::DW_TAG_union_type: 2111 case dwarf::DW_TAG_enumeration_type: 2112 return dwarf::PubIndexEntryDescriptor( 2113 dwarf::GIEK_TYPE, 2114 dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage()) 2115 ? dwarf::GIEL_EXTERNAL 2116 : dwarf::GIEL_STATIC); 2117 case dwarf::DW_TAG_typedef: 2118 case dwarf::DW_TAG_base_type: 2119 case dwarf::DW_TAG_subrange_type: 2120 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC); 2121 case dwarf::DW_TAG_namespace: 2122 return dwarf::GIEK_TYPE; 2123 case dwarf::DW_TAG_subprogram: 2124 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage); 2125 case dwarf::DW_TAG_variable: 2126 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage); 2127 case dwarf::DW_TAG_enumerator: 2128 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, 2129 dwarf::GIEL_STATIC); 2130 default: 2131 return dwarf::GIEK_NONE; 2132 } 2133 } 2134 2135 /// emitDebugPubSections - Emit visible names and types into debug pubnames and 2136 /// pubtypes sections. 2137 void DwarfDebug::emitDebugPubSections() { 2138 for (const auto &NU : CUMap) { 2139 DwarfCompileUnit *TheU = NU.second; 2140 if (!TheU->hasDwarfPubSections()) 2141 continue; 2142 2143 bool GnuStyle = TheU->getCUNode()->getNameTableKind() == 2144 DICompileUnit::DebugNameTableKind::GNU; 2145 2146 Asm->OutStreamer->SwitchSection( 2147 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection() 2148 : Asm->getObjFileLowering().getDwarfPubNamesSection()); 2149 emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames()); 2150 2151 Asm->OutStreamer->SwitchSection( 2152 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection() 2153 : Asm->getObjFileLowering().getDwarfPubTypesSection()); 2154 emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes()); 2155 } 2156 } 2157 2158 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) { 2159 if (useSectionsAsReferences()) 2160 Asm->EmitDwarfOffset(CU.getSection()->getBeginSymbol(), 2161 CU.getDebugSectionOffset()); 2162 else 2163 Asm->emitDwarfSymbolReference(CU.getLabelBegin()); 2164 } 2165 2166 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name, 2167 DwarfCompileUnit *TheU, 2168 const StringMap<const DIE *> &Globals) { 2169 if (auto *Skeleton = TheU->getSkeleton()) 2170 TheU = Skeleton; 2171 2172 // Emit the header. 2173 Asm->OutStreamer->AddComment("Length of Public " + Name + " Info"); 2174 MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin"); 2175 MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end"); 2176 Asm->EmitLabelDifference(EndLabel, BeginLabel, 4); 2177 2178 Asm->OutStreamer->EmitLabel(BeginLabel); 2179 2180 Asm->OutStreamer->AddComment("DWARF Version"); 2181 Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION); 2182 2183 Asm->OutStreamer->AddComment("Offset of Compilation Unit Info"); 2184 emitSectionReference(*TheU); 2185 2186 Asm->OutStreamer->AddComment("Compilation Unit Length"); 2187 Asm->emitInt32(TheU->getLength()); 2188 2189 // Emit the pubnames for this compilation unit. 2190 for (const auto &GI : Globals) { 2191 const char *Name = GI.getKeyData(); 2192 const DIE *Entity = GI.second; 2193 2194 Asm->OutStreamer->AddComment("DIE offset"); 2195 Asm->emitInt32(Entity->getOffset()); 2196 2197 if (GnuStyle) { 2198 dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity); 2199 Asm->OutStreamer->AddComment( 2200 Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + 2201 ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage)); 2202 Asm->emitInt8(Desc.toBits()); 2203 } 2204 2205 Asm->OutStreamer->AddComment("External Name"); 2206 Asm->OutStreamer->EmitBytes(StringRef(Name, GI.getKeyLength() + 1)); 2207 } 2208 2209 Asm->OutStreamer->AddComment("End Mark"); 2210 Asm->emitInt32(0); 2211 Asm->OutStreamer->EmitLabel(EndLabel); 2212 } 2213 2214 /// Emit null-terminated strings into a debug str section. 2215 void DwarfDebug::emitDebugStr() { 2216 MCSection *StringOffsetsSection = nullptr; 2217 if (useSegmentedStringOffsetsTable()) { 2218 emitStringOffsetsTableHeader(); 2219 StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection(); 2220 } 2221 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2222 Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(), 2223 StringOffsetsSection, /* UseRelativeOffsets = */ true); 2224 } 2225 2226 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer, 2227 const DebugLocStream::Entry &Entry, 2228 const DwarfCompileUnit *CU) { 2229 auto &&Comments = DebugLocs.getComments(Entry); 2230 auto Comment = Comments.begin(); 2231 auto End = Comments.end(); 2232 2233 // The expressions are inserted into a byte stream rather early (see 2234 // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that 2235 // need to reference a base_type DIE the offset of that DIE is not yet known. 2236 // To deal with this we instead insert a placeholder early and then extract 2237 // it here and replace it with the real reference. 2238 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2239 DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(), 2240 DebugLocs.getBytes(Entry).size()), 2241 Asm->getDataLayout().isLittleEndian(), PtrSize); 2242 DWARFExpression Expr(Data, PtrSize); 2243 2244 using Encoding = DWARFExpression::Operation::Encoding; 2245 uint64_t Offset = 0; 2246 for (auto &Op : Expr) { 2247 assert(Op.getCode() != dwarf::DW_OP_const_type && 2248 "3 operand ops not yet supported"); 2249 Streamer.EmitInt8(Op.getCode(), Comment != End ? *(Comment++) : ""); 2250 Offset++; 2251 for (unsigned I = 0; I < 2; ++I) { 2252 if (Op.getDescription().Op[I] == Encoding::SizeNA) 2253 continue; 2254 if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) { 2255 uint64_t Offset = 2256 CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset(); 2257 assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit"); 2258 Streamer.EmitULEB128(Offset, "", ULEB128PadSize); 2259 // Make sure comments stay aligned. 2260 for (unsigned J = 0; J < ULEB128PadSize; ++J) 2261 if (Comment != End) 2262 Comment++; 2263 } else { 2264 for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J) 2265 Streamer.EmitInt8(Data.getData()[J], Comment != End ? *(Comment++) : ""); 2266 } 2267 Offset = Op.getOperandEndOffset(I); 2268 } 2269 assert(Offset == Op.getEndOffset()); 2270 } 2271 } 2272 2273 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT, 2274 const DbgValueLoc &Value, 2275 DwarfExpression &DwarfExpr) { 2276 auto *DIExpr = Value.getExpression(); 2277 DIExpressionCursor ExprCursor(DIExpr); 2278 DwarfExpr.addFragmentOffset(DIExpr); 2279 // Regular entry. 2280 if (Value.isInt()) { 2281 if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed || 2282 BT->getEncoding() == dwarf::DW_ATE_signed_char)) 2283 DwarfExpr.addSignedConstant(Value.getInt()); 2284 else 2285 DwarfExpr.addUnsignedConstant(Value.getInt()); 2286 } else if (Value.isLocation()) { 2287 MachineLocation Location = Value.getLoc(); 2288 if (Location.isIndirect()) 2289 DwarfExpr.setMemoryLocationKind(); 2290 DIExpressionCursor Cursor(DIExpr); 2291 2292 if (DIExpr->isEntryValue()) { 2293 DwarfExpr.setEntryValueFlag(); 2294 DwarfExpr.beginEntryValueExpression(Cursor); 2295 } 2296 2297 const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); 2298 if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg())) 2299 return; 2300 return DwarfExpr.addExpression(std::move(Cursor)); 2301 } else if (Value.isTargetIndexLocation()) { 2302 TargetIndexLocation Loc = Value.getTargetIndexLocation(); 2303 // TODO TargetIndexLocation is a target-independent. Currently only the WebAssembly-specific 2304 // encoding is supported. 2305 DwarfExpr.addWasmLocation(Loc.Index, Loc.Offset); 2306 } else if (Value.isConstantFP()) { 2307 APInt RawBytes = Value.getConstantFP()->getValueAPF().bitcastToAPInt(); 2308 DwarfExpr.addUnsignedConstant(RawBytes); 2309 } 2310 DwarfExpr.addExpression(std::move(ExprCursor)); 2311 } 2312 2313 void DebugLocEntry::finalize(const AsmPrinter &AP, 2314 DebugLocStream::ListBuilder &List, 2315 const DIBasicType *BT, 2316 DwarfCompileUnit &TheCU) { 2317 assert(!Values.empty() && 2318 "location list entries without values are redundant"); 2319 assert(Begin != End && "unexpected location list entry with empty range"); 2320 DebugLocStream::EntryBuilder Entry(List, Begin, End); 2321 BufferByteStreamer Streamer = Entry.getStreamer(); 2322 DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU); 2323 const DbgValueLoc &Value = Values[0]; 2324 if (Value.isFragment()) { 2325 // Emit all fragments that belong to the same variable and range. 2326 assert(llvm::all_of(Values, [](DbgValueLoc P) { 2327 return P.isFragment(); 2328 }) && "all values are expected to be fragments"); 2329 assert(std::is_sorted(Values.begin(), Values.end()) && 2330 "fragments are expected to be sorted"); 2331 2332 for (auto Fragment : Values) 2333 DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr); 2334 2335 } else { 2336 assert(Values.size() == 1 && "only fragments may have >1 value"); 2337 DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr); 2338 } 2339 DwarfExpr.finalize(); 2340 if (DwarfExpr.TagOffset) 2341 List.setTagOffset(*DwarfExpr.TagOffset); 2342 } 2343 2344 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry, 2345 const DwarfCompileUnit *CU) { 2346 // Emit the size. 2347 Asm->OutStreamer->AddComment("Loc expr size"); 2348 if (getDwarfVersion() >= 5) 2349 Asm->EmitULEB128(DebugLocs.getBytes(Entry).size()); 2350 else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max()) 2351 Asm->emitInt16(DebugLocs.getBytes(Entry).size()); 2352 else { 2353 // The entry is too big to fit into 16 bit, drop it as there is nothing we 2354 // can do. 2355 Asm->emitInt16(0); 2356 return; 2357 } 2358 // Emit the entry. 2359 APByteStreamer Streamer(*Asm); 2360 emitDebugLocEntry(Streamer, Entry, CU); 2361 } 2362 2363 // Emit the common part of the DWARF 5 range/locations list tables header. 2364 static void emitListsTableHeaderStart(AsmPrinter *Asm, 2365 MCSymbol *TableStart, 2366 MCSymbol *TableEnd) { 2367 // Build the table header, which starts with the length field. 2368 Asm->OutStreamer->AddComment("Length"); 2369 Asm->EmitLabelDifference(TableEnd, TableStart, 4); 2370 Asm->OutStreamer->EmitLabel(TableStart); 2371 // Version number (DWARF v5 and later). 2372 Asm->OutStreamer->AddComment("Version"); 2373 Asm->emitInt16(Asm->OutStreamer->getContext().getDwarfVersion()); 2374 // Address size. 2375 Asm->OutStreamer->AddComment("Address size"); 2376 Asm->emitInt8(Asm->MAI->getCodePointerSize()); 2377 // Segment selector size. 2378 Asm->OutStreamer->AddComment("Segment selector size"); 2379 Asm->emitInt8(0); 2380 } 2381 2382 // Emit the header of a DWARF 5 range list table list table. Returns the symbol 2383 // that designates the end of the table for the caller to emit when the table is 2384 // complete. 2385 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm, 2386 const DwarfFile &Holder) { 2387 MCSymbol *TableStart = Asm->createTempSymbol("debug_rnglist_table_start"); 2388 MCSymbol *TableEnd = Asm->createTempSymbol("debug_rnglist_table_end"); 2389 emitListsTableHeaderStart(Asm, TableStart, TableEnd); 2390 2391 Asm->OutStreamer->AddComment("Offset entry count"); 2392 Asm->emitInt32(Holder.getRangeLists().size()); 2393 Asm->OutStreamer->EmitLabel(Holder.getRnglistsTableBaseSym()); 2394 2395 for (const RangeSpanList &List : Holder.getRangeLists()) 2396 Asm->EmitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(), 2397 4); 2398 2399 return TableEnd; 2400 } 2401 2402 // Emit the header of a DWARF 5 locations list table. Returns the symbol that 2403 // designates the end of the table for the caller to emit when the table is 2404 // complete. 2405 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm, 2406 const DwarfDebug &DD) { 2407 MCSymbol *TableStart = Asm->createTempSymbol("debug_loclist_table_start"); 2408 MCSymbol *TableEnd = Asm->createTempSymbol("debug_loclist_table_end"); 2409 emitListsTableHeaderStart(Asm, TableStart, TableEnd); 2410 2411 const auto &DebugLocs = DD.getDebugLocs(); 2412 2413 Asm->OutStreamer->AddComment("Offset entry count"); 2414 Asm->emitInt32(DebugLocs.getLists().size()); 2415 Asm->OutStreamer->EmitLabel(DebugLocs.getSym()); 2416 2417 for (const auto &List : DebugLocs.getLists()) 2418 Asm->EmitLabelDifference(List.Label, DebugLocs.getSym(), 4); 2419 2420 return TableEnd; 2421 } 2422 2423 template <typename Ranges, typename PayloadEmitter> 2424 static void emitRangeList( 2425 DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R, 2426 const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair, 2427 unsigned StartxLength, unsigned EndOfList, 2428 StringRef (*StringifyEnum)(unsigned), 2429 bool ShouldUseBaseAddress, 2430 PayloadEmitter EmitPayload) { 2431 2432 auto Size = Asm->MAI->getCodePointerSize(); 2433 bool UseDwarf5 = DD.getDwarfVersion() >= 5; 2434 2435 // Emit our symbol so we can find the beginning of the range. 2436 Asm->OutStreamer->EmitLabel(Sym); 2437 2438 // Gather all the ranges that apply to the same section so they can share 2439 // a base address entry. 2440 MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges; 2441 2442 for (const auto &Range : R) 2443 SectionRanges[&Range.Begin->getSection()].push_back(&Range); 2444 2445 const MCSymbol *CUBase = CU.getBaseAddress(); 2446 bool BaseIsSet = false; 2447 for (const auto &P : SectionRanges) { 2448 auto *Base = CUBase; 2449 if (!Base && ShouldUseBaseAddress) { 2450 const MCSymbol *Begin = P.second.front()->Begin; 2451 const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection()); 2452 if (!UseDwarf5) { 2453 Base = NewBase; 2454 BaseIsSet = true; 2455 Asm->OutStreamer->EmitIntValue(-1, Size); 2456 Asm->OutStreamer->AddComment(" base address"); 2457 Asm->OutStreamer->EmitSymbolValue(Base, Size); 2458 } else if (NewBase != Begin || P.second.size() > 1) { 2459 // Only use a base address if 2460 // * the existing pool address doesn't match (NewBase != Begin) 2461 // * or, there's more than one entry to share the base address 2462 Base = NewBase; 2463 BaseIsSet = true; 2464 Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx)); 2465 Asm->emitInt8(BaseAddressx); 2466 Asm->OutStreamer->AddComment(" base address index"); 2467 Asm->EmitULEB128(DD.getAddressPool().getIndex(Base)); 2468 } 2469 } else if (BaseIsSet && !UseDwarf5) { 2470 BaseIsSet = false; 2471 assert(!Base); 2472 Asm->OutStreamer->EmitIntValue(-1, Size); 2473 Asm->OutStreamer->EmitIntValue(0, Size); 2474 } 2475 2476 for (const auto *RS : P.second) { 2477 const MCSymbol *Begin = RS->Begin; 2478 const MCSymbol *End = RS->End; 2479 assert(Begin && "Range without a begin symbol?"); 2480 assert(End && "Range without an end symbol?"); 2481 if (Base) { 2482 if (UseDwarf5) { 2483 // Emit offset_pair when we have a base. 2484 Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair)); 2485 Asm->emitInt8(OffsetPair); 2486 Asm->OutStreamer->AddComment(" starting offset"); 2487 Asm->EmitLabelDifferenceAsULEB128(Begin, Base); 2488 Asm->OutStreamer->AddComment(" ending offset"); 2489 Asm->EmitLabelDifferenceAsULEB128(End, Base); 2490 } else { 2491 Asm->EmitLabelDifference(Begin, Base, Size); 2492 Asm->EmitLabelDifference(End, Base, Size); 2493 } 2494 } else if (UseDwarf5) { 2495 Asm->OutStreamer->AddComment(StringifyEnum(StartxLength)); 2496 Asm->emitInt8(StartxLength); 2497 Asm->OutStreamer->AddComment(" start index"); 2498 Asm->EmitULEB128(DD.getAddressPool().getIndex(Begin)); 2499 Asm->OutStreamer->AddComment(" length"); 2500 Asm->EmitLabelDifferenceAsULEB128(End, Begin); 2501 } else { 2502 Asm->OutStreamer->EmitSymbolValue(Begin, Size); 2503 Asm->OutStreamer->EmitSymbolValue(End, Size); 2504 } 2505 EmitPayload(*RS); 2506 } 2507 } 2508 2509 if (UseDwarf5) { 2510 Asm->OutStreamer->AddComment(StringifyEnum(EndOfList)); 2511 Asm->emitInt8(EndOfList); 2512 } else { 2513 // Terminate the list with two 0 values. 2514 Asm->OutStreamer->EmitIntValue(0, Size); 2515 Asm->OutStreamer->EmitIntValue(0, Size); 2516 } 2517 } 2518 2519 // Handles emission of both debug_loclist / debug_loclist.dwo 2520 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) { 2521 emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List), 2522 *List.CU, dwarf::DW_LLE_base_addressx, 2523 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length, 2524 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString, 2525 /* ShouldUseBaseAddress */ true, 2526 [&](const DebugLocStream::Entry &E) { 2527 DD.emitDebugLocEntryLocation(E, List.CU); 2528 }); 2529 } 2530 2531 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) { 2532 if (DebugLocs.getLists().empty()) 2533 return; 2534 2535 Asm->OutStreamer->SwitchSection(Sec); 2536 2537 MCSymbol *TableEnd = nullptr; 2538 if (getDwarfVersion() >= 5) 2539 TableEnd = emitLoclistsTableHeader(Asm, *this); 2540 2541 for (const auto &List : DebugLocs.getLists()) 2542 emitLocList(*this, Asm, List); 2543 2544 if (TableEnd) 2545 Asm->OutStreamer->EmitLabel(TableEnd); 2546 } 2547 2548 // Emit locations into the .debug_loc/.debug_loclists section. 2549 void DwarfDebug::emitDebugLoc() { 2550 emitDebugLocImpl( 2551 getDwarfVersion() >= 5 2552 ? Asm->getObjFileLowering().getDwarfLoclistsSection() 2553 : Asm->getObjFileLowering().getDwarfLocSection()); 2554 } 2555 2556 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section. 2557 void DwarfDebug::emitDebugLocDWO() { 2558 if (getDwarfVersion() >= 5) { 2559 emitDebugLocImpl( 2560 Asm->getObjFileLowering().getDwarfLoclistsDWOSection()); 2561 2562 return; 2563 } 2564 2565 for (const auto &List : DebugLocs.getLists()) { 2566 Asm->OutStreamer->SwitchSection( 2567 Asm->getObjFileLowering().getDwarfLocDWOSection()); 2568 Asm->OutStreamer->EmitLabel(List.Label); 2569 2570 for (const auto &Entry : DebugLocs.getEntries(List)) { 2571 // GDB only supports startx_length in pre-standard split-DWARF. 2572 // (in v5 standard loclists, it currently* /only/ supports base_address + 2573 // offset_pair, so the implementations can't really share much since they 2574 // need to use different representations) 2575 // * as of October 2018, at least 2576 // 2577 // In v5 (see emitLocList), this uses SectionLabels to reuse existing 2578 // addresses in the address pool to minimize object size/relocations. 2579 Asm->emitInt8(dwarf::DW_LLE_startx_length); 2580 unsigned idx = AddrPool.getIndex(Entry.Begin); 2581 Asm->EmitULEB128(idx); 2582 // Also the pre-standard encoding is slightly different, emitting this as 2583 // an address-length entry here, but its a ULEB128 in DWARFv5 loclists. 2584 Asm->EmitLabelDifference(Entry.End, Entry.Begin, 4); 2585 emitDebugLocEntryLocation(Entry, List.CU); 2586 } 2587 Asm->emitInt8(dwarf::DW_LLE_end_of_list); 2588 } 2589 } 2590 2591 struct ArangeSpan { 2592 const MCSymbol *Start, *End; 2593 }; 2594 2595 // Emit a debug aranges section, containing a CU lookup for any 2596 // address we can tie back to a CU. 2597 void DwarfDebug::emitDebugARanges() { 2598 // Provides a unique id per text section. 2599 MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap; 2600 2601 // Filter labels by section. 2602 for (const SymbolCU &SCU : ArangeLabels) { 2603 if (SCU.Sym->isInSection()) { 2604 // Make a note of this symbol and it's section. 2605 MCSection *Section = &SCU.Sym->getSection(); 2606 if (!Section->getKind().isMetadata()) 2607 SectionMap[Section].push_back(SCU); 2608 } else { 2609 // Some symbols (e.g. common/bss on mach-o) can have no section but still 2610 // appear in the output. This sucks as we rely on sections to build 2611 // arange spans. We can do it without, but it's icky. 2612 SectionMap[nullptr].push_back(SCU); 2613 } 2614 } 2615 2616 DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans; 2617 2618 for (auto &I : SectionMap) { 2619 MCSection *Section = I.first; 2620 SmallVector<SymbolCU, 8> &List = I.second; 2621 if (List.size() < 1) 2622 continue; 2623 2624 // If we have no section (e.g. common), just write out 2625 // individual spans for each symbol. 2626 if (!Section) { 2627 for (const SymbolCU &Cur : List) { 2628 ArangeSpan Span; 2629 Span.Start = Cur.Sym; 2630 Span.End = nullptr; 2631 assert(Cur.CU); 2632 Spans[Cur.CU].push_back(Span); 2633 } 2634 continue; 2635 } 2636 2637 // Sort the symbols by offset within the section. 2638 llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) { 2639 unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0; 2640 unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0; 2641 2642 // Symbols with no order assigned should be placed at the end. 2643 // (e.g. section end labels) 2644 if (IA == 0) 2645 return false; 2646 if (IB == 0) 2647 return true; 2648 return IA < IB; 2649 }); 2650 2651 // Insert a final terminator. 2652 List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section))); 2653 2654 // Build spans between each label. 2655 const MCSymbol *StartSym = List[0].Sym; 2656 for (size_t n = 1, e = List.size(); n < e; n++) { 2657 const SymbolCU &Prev = List[n - 1]; 2658 const SymbolCU &Cur = List[n]; 2659 2660 // Try and build the longest span we can within the same CU. 2661 if (Cur.CU != Prev.CU) { 2662 ArangeSpan Span; 2663 Span.Start = StartSym; 2664 Span.End = Cur.Sym; 2665 assert(Prev.CU); 2666 Spans[Prev.CU].push_back(Span); 2667 StartSym = Cur.Sym; 2668 } 2669 } 2670 } 2671 2672 // Start the dwarf aranges section. 2673 Asm->OutStreamer->SwitchSection( 2674 Asm->getObjFileLowering().getDwarfARangesSection()); 2675 2676 unsigned PtrSize = Asm->MAI->getCodePointerSize(); 2677 2678 // Build a list of CUs used. 2679 std::vector<DwarfCompileUnit *> CUs; 2680 for (const auto &it : Spans) { 2681 DwarfCompileUnit *CU = it.first; 2682 CUs.push_back(CU); 2683 } 2684 2685 // Sort the CU list (again, to ensure consistent output order). 2686 llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) { 2687 return A->getUniqueID() < B->getUniqueID(); 2688 }); 2689 2690 // Emit an arange table for each CU we used. 2691 for (DwarfCompileUnit *CU : CUs) { 2692 std::vector<ArangeSpan> &List = Spans[CU]; 2693 2694 // Describe the skeleton CU's offset and length, not the dwo file's. 2695 if (auto *Skel = CU->getSkeleton()) 2696 CU = Skel; 2697 2698 // Emit size of content not including length itself. 2699 unsigned ContentSize = 2700 sizeof(int16_t) + // DWARF ARange version number 2701 sizeof(int32_t) + // Offset of CU in the .debug_info section 2702 sizeof(int8_t) + // Pointer Size (in bytes) 2703 sizeof(int8_t); // Segment Size (in bytes) 2704 2705 unsigned TupleSize = PtrSize * 2; 2706 2707 // 7.20 in the Dwarf specs requires the table to be aligned to a tuple. 2708 unsigned Padding = 2709 offsetToAlignment(sizeof(int32_t) + ContentSize, Align(TupleSize)); 2710 2711 ContentSize += Padding; 2712 ContentSize += (List.size() + 1) * TupleSize; 2713 2714 // For each compile unit, write the list of spans it covers. 2715 Asm->OutStreamer->AddComment("Length of ARange Set"); 2716 Asm->emitInt32(ContentSize); 2717 Asm->OutStreamer->AddComment("DWARF Arange version number"); 2718 Asm->emitInt16(dwarf::DW_ARANGES_VERSION); 2719 Asm->OutStreamer->AddComment("Offset Into Debug Info Section"); 2720 emitSectionReference(*CU); 2721 Asm->OutStreamer->AddComment("Address Size (in bytes)"); 2722 Asm->emitInt8(PtrSize); 2723 Asm->OutStreamer->AddComment("Segment Size (in bytes)"); 2724 Asm->emitInt8(0); 2725 2726 Asm->OutStreamer->emitFill(Padding, 0xff); 2727 2728 for (const ArangeSpan &Span : List) { 2729 Asm->EmitLabelReference(Span.Start, PtrSize); 2730 2731 // Calculate the size as being from the span start to it's end. 2732 if (Span.End) { 2733 Asm->EmitLabelDifference(Span.End, Span.Start, PtrSize); 2734 } else { 2735 // For symbols without an end marker (e.g. common), we 2736 // write a single arange entry containing just that one symbol. 2737 uint64_t Size = SymSize[Span.Start]; 2738 if (Size == 0) 2739 Size = 1; 2740 2741 Asm->OutStreamer->EmitIntValue(Size, PtrSize); 2742 } 2743 } 2744 2745 Asm->OutStreamer->AddComment("ARange terminator"); 2746 Asm->OutStreamer->EmitIntValue(0, PtrSize); 2747 Asm->OutStreamer->EmitIntValue(0, PtrSize); 2748 } 2749 } 2750 2751 /// Emit a single range list. We handle both DWARF v5 and earlier. 2752 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm, 2753 const RangeSpanList &List) { 2754 emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU, 2755 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair, 2756 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list, 2757 llvm::dwarf::RangeListEncodingString, 2758 List.CU->getCUNode()->getRangesBaseAddress() || 2759 DD.getDwarfVersion() >= 5, 2760 [](auto) {}); 2761 } 2762 2763 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) { 2764 if (Holder.getRangeLists().empty()) 2765 return; 2766 2767 assert(useRangesSection()); 2768 assert(!CUMap.empty()); 2769 assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) { 2770 return !Pair.second->getCUNode()->isDebugDirectivesOnly(); 2771 })); 2772 2773 Asm->OutStreamer->SwitchSection(Section); 2774 2775 MCSymbol *TableEnd = nullptr; 2776 if (getDwarfVersion() >= 5) 2777 TableEnd = emitRnglistsTableHeader(Asm, Holder); 2778 2779 for (const RangeSpanList &List : Holder.getRangeLists()) 2780 emitRangeList(*this, Asm, List); 2781 2782 if (TableEnd) 2783 Asm->OutStreamer->EmitLabel(TableEnd); 2784 } 2785 2786 /// Emit address ranges into the .debug_ranges section or into the DWARF v5 2787 /// .debug_rnglists section. 2788 void DwarfDebug::emitDebugRanges() { 2789 const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 2790 2791 emitDebugRangesImpl(Holder, 2792 getDwarfVersion() >= 5 2793 ? Asm->getObjFileLowering().getDwarfRnglistsSection() 2794 : Asm->getObjFileLowering().getDwarfRangesSection()); 2795 } 2796 2797 void DwarfDebug::emitDebugRangesDWO() { 2798 emitDebugRangesImpl(InfoHolder, 2799 Asm->getObjFileLowering().getDwarfRnglistsDWOSection()); 2800 } 2801 2802 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) { 2803 for (auto *MN : Nodes) { 2804 if (auto *M = dyn_cast<DIMacro>(MN)) 2805 emitMacro(*M); 2806 else if (auto *F = dyn_cast<DIMacroFile>(MN)) 2807 emitMacroFile(*F, U); 2808 else 2809 llvm_unreachable("Unexpected DI type!"); 2810 } 2811 } 2812 2813 void DwarfDebug::emitMacro(DIMacro &M) { 2814 Asm->EmitULEB128(M.getMacinfoType()); 2815 Asm->EmitULEB128(M.getLine()); 2816 StringRef Name = M.getName(); 2817 StringRef Value = M.getValue(); 2818 Asm->OutStreamer->EmitBytes(Name); 2819 if (!Value.empty()) { 2820 // There should be one space between macro name and macro value. 2821 Asm->emitInt8(' '); 2822 Asm->OutStreamer->EmitBytes(Value); 2823 } 2824 Asm->emitInt8('\0'); 2825 } 2826 2827 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) { 2828 assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file); 2829 Asm->EmitULEB128(dwarf::DW_MACINFO_start_file); 2830 Asm->EmitULEB128(F.getLine()); 2831 Asm->EmitULEB128(U.getOrCreateSourceID(F.getFile())); 2832 handleMacroNodes(F.getElements(), U); 2833 Asm->EmitULEB128(dwarf::DW_MACINFO_end_file); 2834 } 2835 2836 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) { 2837 for (const auto &P : CUMap) { 2838 auto &TheCU = *P.second; 2839 auto *SkCU = TheCU.getSkeleton(); 2840 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 2841 auto *CUNode = cast<DICompileUnit>(P.first); 2842 DIMacroNodeArray Macros = CUNode->getMacros(); 2843 if (Macros.empty()) 2844 continue; 2845 Asm->OutStreamer->SwitchSection(Section); 2846 Asm->OutStreamer->EmitLabel(U.getMacroLabelBegin()); 2847 handleMacroNodes(Macros, U); 2848 Asm->OutStreamer->AddComment("End Of Macro List Mark"); 2849 Asm->emitInt8(0); 2850 } 2851 } 2852 2853 /// Emit macros into a debug macinfo section. 2854 void DwarfDebug::emitDebugMacinfo() { 2855 emitDebugMacinfoImpl(Asm->getObjFileLowering().getDwarfMacinfoSection()); 2856 } 2857 2858 void DwarfDebug::emitDebugMacinfoDWO() { 2859 emitDebugMacinfoImpl(Asm->getObjFileLowering().getDwarfMacinfoDWOSection()); 2860 } 2861 2862 // DWARF5 Experimental Separate Dwarf emitters. 2863 2864 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die, 2865 std::unique_ptr<DwarfCompileUnit> NewU) { 2866 2867 if (!CompilationDir.empty()) 2868 NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 2869 addGnuPubAttributes(*NewU, Die); 2870 2871 SkeletonHolder.addUnit(std::move(NewU)); 2872 } 2873 2874 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) { 2875 2876 auto OwnedUnit = std::make_unique<DwarfCompileUnit>( 2877 CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder, 2878 UnitKind::Skeleton); 2879 DwarfCompileUnit &NewCU = *OwnedUnit; 2880 NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); 2881 2882 NewCU.initStmtList(); 2883 2884 if (useSegmentedStringOffsetsTable()) 2885 NewCU.addStringOffsetsStart(); 2886 2887 initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit)); 2888 2889 return NewCU; 2890 } 2891 2892 // Emit the .debug_info.dwo section for separated dwarf. This contains the 2893 // compile units that would normally be in debug_info. 2894 void DwarfDebug::emitDebugInfoDWO() { 2895 assert(useSplitDwarf() && "No split dwarf debug info?"); 2896 // Don't emit relocations into the dwo file. 2897 InfoHolder.emitUnits(/* UseOffsets */ true); 2898 } 2899 2900 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the 2901 // abbreviations for the .debug_info.dwo section. 2902 void DwarfDebug::emitDebugAbbrevDWO() { 2903 assert(useSplitDwarf() && "No split dwarf?"); 2904 InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection()); 2905 } 2906 2907 void DwarfDebug::emitDebugLineDWO() { 2908 assert(useSplitDwarf() && "No split dwarf?"); 2909 SplitTypeUnitFileTable.Emit( 2910 *Asm->OutStreamer, MCDwarfLineTableParams(), 2911 Asm->getObjFileLowering().getDwarfLineDWOSection()); 2912 } 2913 2914 void DwarfDebug::emitStringOffsetsTableHeaderDWO() { 2915 assert(useSplitDwarf() && "No split dwarf?"); 2916 InfoHolder.getStringPool().emitStringOffsetsTableHeader( 2917 *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(), 2918 InfoHolder.getStringOffsetsStartSym()); 2919 } 2920 2921 // Emit the .debug_str.dwo section for separated dwarf. This contains the 2922 // string section and is identical in format to traditional .debug_str 2923 // sections. 2924 void DwarfDebug::emitDebugStrDWO() { 2925 if (useSegmentedStringOffsetsTable()) 2926 emitStringOffsetsTableHeaderDWO(); 2927 assert(useSplitDwarf() && "No split dwarf?"); 2928 MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection(); 2929 InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(), 2930 OffSec, /* UseRelativeOffsets = */ false); 2931 } 2932 2933 // Emit address pool. 2934 void DwarfDebug::emitDebugAddr() { 2935 AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection()); 2936 } 2937 2938 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) { 2939 if (!useSplitDwarf()) 2940 return nullptr; 2941 const DICompileUnit *DIUnit = CU.getCUNode(); 2942 SplitTypeUnitFileTable.maybeSetRootFile( 2943 DIUnit->getDirectory(), DIUnit->getFilename(), 2944 CU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource()); 2945 return &SplitTypeUnitFileTable; 2946 } 2947 2948 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) { 2949 MD5 Hash; 2950 Hash.update(Identifier); 2951 // ... take the least significant 8 bytes and return those. Our MD5 2952 // implementation always returns its results in little endian, so we actually 2953 // need the "high" word. 2954 MD5::MD5Result Result; 2955 Hash.final(Result); 2956 return Result.high(); 2957 } 2958 2959 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU, 2960 StringRef Identifier, DIE &RefDie, 2961 const DICompositeType *CTy) { 2962 // Fast path if we're building some type units and one has already used the 2963 // address pool we know we're going to throw away all this work anyway, so 2964 // don't bother building dependent types. 2965 if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed()) 2966 return; 2967 2968 auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0)); 2969 if (!Ins.second) { 2970 CU.addDIETypeSignature(RefDie, Ins.first->second); 2971 return; 2972 } 2973 2974 bool TopLevelType = TypeUnitsUnderConstruction.empty(); 2975 AddrPool.resetUsedFlag(); 2976 2977 auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder, 2978 getDwoLineTable(CU)); 2979 DwarfTypeUnit &NewTU = *OwnedUnit; 2980 DIE &UnitDie = NewTU.getUnitDie(); 2981 TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy); 2982 2983 NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 2984 CU.getLanguage()); 2985 2986 uint64_t Signature = makeTypeSignature(Identifier); 2987 NewTU.setTypeSignature(Signature); 2988 Ins.first->second = Signature; 2989 2990 if (useSplitDwarf()) { 2991 MCSection *Section = 2992 getDwarfVersion() <= 4 2993 ? Asm->getObjFileLowering().getDwarfTypesDWOSection() 2994 : Asm->getObjFileLowering().getDwarfInfoDWOSection(); 2995 NewTU.setSection(Section); 2996 } else { 2997 MCSection *Section = 2998 getDwarfVersion() <= 4 2999 ? Asm->getObjFileLowering().getDwarfTypesSection(Signature) 3000 : Asm->getObjFileLowering().getDwarfInfoSection(Signature); 3001 NewTU.setSection(Section); 3002 // Non-split type units reuse the compile unit's line table. 3003 CU.applyStmtList(UnitDie); 3004 } 3005 3006 // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type 3007 // units. 3008 if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) 3009 NewTU.addStringOffsetsStart(); 3010 3011 NewTU.setType(NewTU.createTypeDIE(CTy)); 3012 3013 if (TopLevelType) { 3014 auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction); 3015 TypeUnitsUnderConstruction.clear(); 3016 3017 // Types referencing entries in the address table cannot be placed in type 3018 // units. 3019 if (AddrPool.hasBeenUsed()) { 3020 3021 // Remove all the types built while building this type. 3022 // This is pessimistic as some of these types might not be dependent on 3023 // the type that used an address. 3024 for (const auto &TU : TypeUnitsToAdd) 3025 TypeSignatures.erase(TU.second); 3026 3027 // Construct this type in the CU directly. 3028 // This is inefficient because all the dependent types will be rebuilt 3029 // from scratch, including building them in type units, discovering that 3030 // they depend on addresses, throwing them out and rebuilding them. 3031 CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy)); 3032 return; 3033 } 3034 3035 // If the type wasn't dependent on fission addresses, finish adding the type 3036 // and all its dependent types. 3037 for (auto &TU : TypeUnitsToAdd) { 3038 InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get()); 3039 InfoHolder.emitUnit(TU.first.get(), useSplitDwarf()); 3040 } 3041 } 3042 CU.addDIETypeSignature(RefDie, Signature); 3043 } 3044 3045 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD) 3046 : DD(DD), 3047 TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)) { 3048 DD->TypeUnitsUnderConstruction.clear(); 3049 assert(TypeUnitsUnderConstruction.empty() || !DD->AddrPool.hasBeenUsed()); 3050 } 3051 3052 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() { 3053 DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction); 3054 DD->AddrPool.resetUsedFlag(); 3055 } 3056 3057 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() { 3058 return NonTypeUnitContext(this); 3059 } 3060 3061 // Add the Name along with its companion DIE to the appropriate accelerator 3062 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for 3063 // AccelTableKind::Apple, we use the table we got as an argument). If 3064 // accelerator tables are disabled, this function does nothing. 3065 template <typename DataT> 3066 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU, 3067 AccelTable<DataT> &AppleAccel, StringRef Name, 3068 const DIE &Die) { 3069 if (getAccelTableKind() == AccelTableKind::None) 3070 return; 3071 3072 if (getAccelTableKind() != AccelTableKind::Apple && 3073 CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default) 3074 return; 3075 3076 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 3077 DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name); 3078 3079 switch (getAccelTableKind()) { 3080 case AccelTableKind::Apple: 3081 AppleAccel.addName(Ref, Die); 3082 break; 3083 case AccelTableKind::Dwarf: 3084 AccelDebugNames.addName(Ref, Die); 3085 break; 3086 case AccelTableKind::Default: 3087 llvm_unreachable("Default should have already been resolved."); 3088 case AccelTableKind::None: 3089 llvm_unreachable("None handled above"); 3090 } 3091 } 3092 3093 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name, 3094 const DIE &Die) { 3095 addAccelNameImpl(CU, AccelNames, Name, Die); 3096 } 3097 3098 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name, 3099 const DIE &Die) { 3100 // ObjC names go only into the Apple accelerator tables. 3101 if (getAccelTableKind() == AccelTableKind::Apple) 3102 addAccelNameImpl(CU, AccelObjC, Name, Die); 3103 } 3104 3105 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name, 3106 const DIE &Die) { 3107 addAccelNameImpl(CU, AccelNamespace, Name, Die); 3108 } 3109 3110 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name, 3111 const DIE &Die, char Flags) { 3112 addAccelNameImpl(CU, AccelTypes, Name, Die); 3113 } 3114 3115 uint16_t DwarfDebug::getDwarfVersion() const { 3116 return Asm->OutStreamer->getContext().getDwarfVersion(); 3117 } 3118 3119 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) { 3120 return SectionLabels.find(S)->second; 3121 } 3122 void DwarfDebug::insertSectionLabel(const MCSymbol *S) { 3123 SectionLabels.insert(std::make_pair(&S->getSection(), S)); 3124 } 3125