1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing dwarf debug info into asm files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "DwarfDebug.h"
14 #include "ByteStreamer.h"
15 #include "DIEHash.h"
16 #include "DwarfCompileUnit.h"
17 #include "DwarfExpression.h"
18 #include "DwarfUnit.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/CodeGen/AsmPrinter.h"
24 #include "llvm/CodeGen/DIE.h"
25 #include "llvm/CodeGen/LexicalScopes.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/TargetInstrInfo.h"
31 #include "llvm/CodeGen/TargetLowering.h"
32 #include "llvm/CodeGen/TargetRegisterInfo.h"
33 #include "llvm/CodeGen/TargetSubtargetInfo.h"
34 #include "llvm/DebugInfo/DWARF/DWARFExpression.h"
35 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/MC/MCAsmInfo.h"
41 #include "llvm/MC/MCContext.h"
42 #include "llvm/MC/MCSection.h"
43 #include "llvm/MC/MCStreamer.h"
44 #include "llvm/MC/MCSymbol.h"
45 #include "llvm/MC/MCTargetOptions.h"
46 #include "llvm/MC/MachineLocation.h"
47 #include "llvm/MC/SectionKind.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/MD5.h"
54 #include "llvm/Support/MathExtras.h"
55 #include "llvm/Support/Timer.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Target/TargetLoweringObjectFile.h"
58 #include "llvm/Target/TargetMachine.h"
59 #include <algorithm>
60 #include <cstddef>
61 #include <iterator>
62 #include <string>
63 
64 using namespace llvm;
65 
66 #define DEBUG_TYPE "dwarfdebug"
67 
68 STATISTIC(NumCSParams, "Number of dbg call site params created");
69 
70 static cl::opt<bool>
71 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden,
72                          cl::desc("Disable debug info printing"));
73 
74 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier(
75     "use-dwarf-ranges-base-address-specifier", cl::Hidden,
76     cl::desc("Use base address specifiers in debug_ranges"), cl::init(false));
77 
78 static cl::opt<bool> GenerateARangeSection("generate-arange-section",
79                                            cl::Hidden,
80                                            cl::desc("Generate dwarf aranges"),
81                                            cl::init(false));
82 
83 static cl::opt<bool>
84     GenerateDwarfTypeUnits("generate-type-units", cl::Hidden,
85                            cl::desc("Generate DWARF4 type units."),
86                            cl::init(false));
87 
88 static cl::opt<bool> SplitDwarfCrossCuReferences(
89     "split-dwarf-cross-cu-references", cl::Hidden,
90     cl::desc("Enable cross-cu references in DWO files"), cl::init(false));
91 
92 enum DefaultOnOff { Default, Enable, Disable };
93 
94 static cl::opt<DefaultOnOff> UnknownLocations(
95     "use-unknown-locations", cl::Hidden,
96     cl::desc("Make an absence of debug location information explicit."),
97     cl::values(clEnumVal(Default, "At top of block or after label"),
98                clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")),
99     cl::init(Default));
100 
101 static cl::opt<AccelTableKind> AccelTables(
102     "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."),
103     cl::values(clEnumValN(AccelTableKind::Default, "Default",
104                           "Default for platform"),
105                clEnumValN(AccelTableKind::None, "Disable", "Disabled."),
106                clEnumValN(AccelTableKind::Apple, "Apple", "Apple"),
107                clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")),
108     cl::init(AccelTableKind::Default));
109 
110 static cl::opt<DefaultOnOff>
111 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden,
112                  cl::desc("Use inlined strings rather than string section."),
113                  cl::values(clEnumVal(Default, "Default for platform"),
114                             clEnumVal(Enable, "Enabled"),
115                             clEnumVal(Disable, "Disabled")),
116                  cl::init(Default));
117 
118 static cl::opt<bool>
119     NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden,
120                          cl::desc("Disable emission .debug_ranges section."),
121                          cl::init(false));
122 
123 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences(
124     "dwarf-sections-as-references", cl::Hidden,
125     cl::desc("Use sections+offset as references rather than labels."),
126     cl::values(clEnumVal(Default, "Default for platform"),
127                clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
128     cl::init(Default));
129 
130 static cl::opt<bool>
131     UseGNUDebugMacro("use-gnu-debug-macro", cl::Hidden,
132                      cl::desc("Emit the GNU .debug_macro format with DWARF <5"),
133                      cl::init(false));
134 
135 enum LinkageNameOption {
136   DefaultLinkageNames,
137   AllLinkageNames,
138   AbstractLinkageNames
139 };
140 
141 static cl::opt<LinkageNameOption>
142     DwarfLinkageNames("dwarf-linkage-names", cl::Hidden,
143                       cl::desc("Which DWARF linkage-name attributes to emit."),
144                       cl::values(clEnumValN(DefaultLinkageNames, "Default",
145                                             "Default for platform"),
146                                  clEnumValN(AllLinkageNames, "All", "All"),
147                                  clEnumValN(AbstractLinkageNames, "Abstract",
148                                             "Abstract subprograms")),
149                       cl::init(DefaultLinkageNames));
150 
151 static cl::opt<unsigned> LocationAnalysisSizeLimit(
152     "singlevarlocation-input-bb-limit",
153     cl::desc("Maximum block size to analyze for single-location variables"),
154     cl::init(30000), cl::Hidden);
155 
156 static const char *const DWARFGroupName = "dwarf";
157 static const char *const DWARFGroupDescription = "DWARF Emission";
158 static const char *const DbgTimerName = "writer";
159 static const char *const DbgTimerDescription = "DWARF Debug Writer";
160 static constexpr unsigned ULEB128PadSize = 4;
161 
162 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) {
163   getActiveStreamer().EmitInt8(
164       Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op)
165                   : dwarf::OperationEncodingString(Op));
166 }
167 
168 void DebugLocDwarfExpression::emitSigned(int64_t Value) {
169   getActiveStreamer().emitSLEB128(Value, Twine(Value));
170 }
171 
172 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) {
173   getActiveStreamer().emitULEB128(Value, Twine(Value));
174 }
175 
176 void DebugLocDwarfExpression::emitData1(uint8_t Value) {
177   getActiveStreamer().EmitInt8(Value, Twine(Value));
178 }
179 
180 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) {
181   assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit");
182   getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize);
183 }
184 
185 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI,
186                                               unsigned MachineReg) {
187   // This information is not available while emitting .debug_loc entries.
188   return false;
189 }
190 
191 void DebugLocDwarfExpression::enableTemporaryBuffer() {
192   assert(!IsBuffering && "Already buffering?");
193   if (!TmpBuf)
194     TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments);
195   IsBuffering = true;
196 }
197 
198 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; }
199 
200 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() {
201   return TmpBuf ? TmpBuf->Bytes.size() : 0;
202 }
203 
204 void DebugLocDwarfExpression::commitTemporaryBuffer() {
205   if (!TmpBuf)
206     return;
207   for (auto Byte : enumerate(TmpBuf->Bytes)) {
208     const char *Comment = (Byte.index() < TmpBuf->Comments.size())
209                               ? TmpBuf->Comments[Byte.index()].c_str()
210                               : "";
211     OutBS.EmitInt8(Byte.value(), Comment);
212   }
213   TmpBuf->Bytes.clear();
214   TmpBuf->Comments.clear();
215 }
216 
217 const DIType *DbgVariable::getType() const {
218   return getVariable()->getType();
219 }
220 
221 /// Get .debug_loc entry for the instruction range starting at MI.
222 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) {
223   const DIExpression *Expr = MI->getDebugExpression();
224   assert(MI->getNumOperands() == 4);
225   if (MI->getDebugOperand(0).isReg()) {
226     auto RegOp = MI->getDebugOperand(0);
227     auto Op1 = MI->getDebugOffset();
228     // If the second operand is an immediate, this is a
229     // register-indirect address.
230     assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset");
231     MachineLocation MLoc(RegOp.getReg(), Op1.isImm());
232     return DbgValueLoc(Expr, MLoc);
233   }
234   if (MI->getDebugOperand(0).isTargetIndex()) {
235     auto Op = MI->getDebugOperand(0);
236     return DbgValueLoc(Expr,
237                        TargetIndexLocation(Op.getIndex(), Op.getOffset()));
238   }
239   if (MI->getDebugOperand(0).isImm())
240     return DbgValueLoc(Expr, MI->getDebugOperand(0).getImm());
241   if (MI->getDebugOperand(0).isFPImm())
242     return DbgValueLoc(Expr, MI->getDebugOperand(0).getFPImm());
243   if (MI->getDebugOperand(0).isCImm())
244     return DbgValueLoc(Expr, MI->getDebugOperand(0).getCImm());
245 
246   llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!");
247 }
248 
249 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) {
250   assert(FrameIndexExprs.empty() && "Already initialized?");
251   assert(!ValueLoc.get() && "Already initialized?");
252 
253   assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable");
254   assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() &&
255          "Wrong inlined-at");
256 
257   ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue));
258   if (auto *E = DbgValue->getDebugExpression())
259     if (E->getNumElements())
260       FrameIndexExprs.push_back({0, E});
261 }
262 
263 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const {
264   if (FrameIndexExprs.size() == 1)
265     return FrameIndexExprs;
266 
267   assert(llvm::all_of(FrameIndexExprs,
268                       [](const FrameIndexExpr &A) {
269                         return A.Expr->isFragment();
270                       }) &&
271          "multiple FI expressions without DW_OP_LLVM_fragment");
272   llvm::sort(FrameIndexExprs,
273              [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool {
274                return A.Expr->getFragmentInfo()->OffsetInBits <
275                       B.Expr->getFragmentInfo()->OffsetInBits;
276              });
277 
278   return FrameIndexExprs;
279 }
280 
281 void DbgVariable::addMMIEntry(const DbgVariable &V) {
282   assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry");
283   assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry");
284   assert(V.getVariable() == getVariable() && "conflicting variable");
285   assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location");
286 
287   assert(!FrameIndexExprs.empty() && "Expected an MMI entry");
288   assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry");
289 
290   // FIXME: This logic should not be necessary anymore, as we now have proper
291   // deduplication. However, without it, we currently run into the assertion
292   // below, which means that we are likely dealing with broken input, i.e. two
293   // non-fragment entries for the same variable at different frame indices.
294   if (FrameIndexExprs.size()) {
295     auto *Expr = FrameIndexExprs.back().Expr;
296     if (!Expr || !Expr->isFragment())
297       return;
298   }
299 
300   for (const auto &FIE : V.FrameIndexExprs)
301     // Ignore duplicate entries.
302     if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) {
303           return FIE.FI == Other.FI && FIE.Expr == Other.Expr;
304         }))
305       FrameIndexExprs.push_back(FIE);
306 
307   assert((FrameIndexExprs.size() == 1 ||
308           llvm::all_of(FrameIndexExprs,
309                        [](FrameIndexExpr &FIE) {
310                          return FIE.Expr && FIE.Expr->isFragment();
311                        })) &&
312          "conflicting locations for variable");
313 }
314 
315 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion,
316                                             bool GenerateTypeUnits,
317                                             DebuggerKind Tuning,
318                                             const Triple &TT) {
319   // Honor an explicit request.
320   if (AccelTables != AccelTableKind::Default)
321     return AccelTables;
322 
323   // Accelerator tables with type units are currently not supported.
324   if (GenerateTypeUnits)
325     return AccelTableKind::None;
326 
327   // Accelerator tables get emitted if targetting DWARF v5 or LLDB.  DWARF v5
328   // always implies debug_names. For lower standard versions we use apple
329   // accelerator tables on apple platforms and debug_names elsewhere.
330   if (DwarfVersion >= 5)
331     return AccelTableKind::Dwarf;
332   if (Tuning == DebuggerKind::LLDB)
333     return TT.isOSBinFormatMachO() ? AccelTableKind::Apple
334                                    : AccelTableKind::Dwarf;
335   return AccelTableKind::None;
336 }
337 
338 DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M)
339     : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()),
340       InfoHolder(A, "info_string", DIEValueAllocator),
341       SkeletonHolder(A, "skel_string", DIEValueAllocator),
342       IsDarwin(A->TM.getTargetTriple().isOSDarwin()) {
343   const Triple &TT = Asm->TM.getTargetTriple();
344 
345   // Make sure we know our "debugger tuning".  The target option takes
346   // precedence; fall back to triple-based defaults.
347   if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default)
348     DebuggerTuning = Asm->TM.Options.DebuggerTuning;
349   else if (IsDarwin)
350     DebuggerTuning = DebuggerKind::LLDB;
351   else if (TT.isPS4CPU())
352     DebuggerTuning = DebuggerKind::SCE;
353   else
354     DebuggerTuning = DebuggerKind::GDB;
355 
356   if (DwarfInlinedStrings == Default)
357     UseInlineStrings = TT.isNVPTX();
358   else
359     UseInlineStrings = DwarfInlinedStrings == Enable;
360 
361   UseLocSection = !TT.isNVPTX();
362 
363   HasAppleExtensionAttributes = tuneForLLDB();
364 
365   // Handle split DWARF.
366   HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty();
367 
368   // SCE defaults to linkage names only for abstract subprograms.
369   if (DwarfLinkageNames == DefaultLinkageNames)
370     UseAllLinkageNames = !tuneForSCE();
371   else
372     UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames;
373 
374   unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion;
375   unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber
376                                     : MMI->getModule()->getDwarfVersion();
377   // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2.
378   DwarfVersion =
379       TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION);
380 
381   UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX();
382 
383   // Use sections as references. Force for NVPTX.
384   if (DwarfSectionsAsReferences == Default)
385     UseSectionsAsReferences = TT.isNVPTX();
386   else
387     UseSectionsAsReferences = DwarfSectionsAsReferences == Enable;
388 
389   // Don't generate type units for unsupported object file formats.
390   GenerateTypeUnits =
391       A->TM.getTargetTriple().isOSBinFormatELF() && GenerateDwarfTypeUnits;
392 
393   TheAccelTableKind = computeAccelTableKind(
394       DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple());
395 
396   // Work around a GDB bug. GDB doesn't support the standard opcode;
397   // SCE doesn't support GNU's; LLDB prefers the standard opcode, which
398   // is defined as of DWARF 3.
399   // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented
400   // https://sourceware.org/bugzilla/show_bug.cgi?id=11616
401   UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3;
402 
403   // GDB does not fully support the DWARF 4 representation for bitfields.
404   UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB();
405 
406   // The DWARF v5 string offsets table has - possibly shared - contributions
407   // from each compile and type unit each preceded by a header. The string
408   // offsets table used by the pre-DWARF v5 split-DWARF implementation uses
409   // a monolithic string offsets table without any header.
410   UseSegmentedStringOffsetsTable = DwarfVersion >= 5;
411 
412   // Emit call-site-param debug info for GDB and LLDB, if the target supports
413   // the debug entry values feature. It can also be enabled explicitly.
414   EmitDebugEntryValues = Asm->TM.Options.ShouldEmitDebugEntryValues();
415 
416   // It is unclear if the GCC .debug_macro extension is well-specified
417   // for split DWARF. For now, do not allow LLVM to emit it.
418   UseDebugMacroSection =
419       DwarfVersion >= 5 || (UseGNUDebugMacro && !useSplitDwarf());
420 
421   Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion);
422 }
423 
424 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h.
425 DwarfDebug::~DwarfDebug() = default;
426 
427 static bool isObjCClass(StringRef Name) {
428   return Name.startswith("+") || Name.startswith("-");
429 }
430 
431 static bool hasObjCCategory(StringRef Name) {
432   if (!isObjCClass(Name))
433     return false;
434 
435   return Name.find(") ") != StringRef::npos;
436 }
437 
438 static void getObjCClassCategory(StringRef In, StringRef &Class,
439                                  StringRef &Category) {
440   if (!hasObjCCategory(In)) {
441     Class = In.slice(In.find('[') + 1, In.find(' '));
442     Category = "";
443     return;
444   }
445 
446   Class = In.slice(In.find('[') + 1, In.find('('));
447   Category = In.slice(In.find('[') + 1, In.find(' '));
448 }
449 
450 static StringRef getObjCMethodName(StringRef In) {
451   return In.slice(In.find(' ') + 1, In.find(']'));
452 }
453 
454 // Add the various names to the Dwarf accelerator table names.
455 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU,
456                                     const DISubprogram *SP, DIE &Die) {
457   if (getAccelTableKind() != AccelTableKind::Apple &&
458       CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None)
459     return;
460 
461   if (!SP->isDefinition())
462     return;
463 
464   if (SP->getName() != "")
465     addAccelName(CU, SP->getName(), Die);
466 
467   // If the linkage name is different than the name, go ahead and output that as
468   // well into the name table. Only do that if we are going to actually emit
469   // that name.
470   if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() &&
471       (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP)))
472     addAccelName(CU, SP->getLinkageName(), Die);
473 
474   // If this is an Objective-C selector name add it to the ObjC accelerator
475   // too.
476   if (isObjCClass(SP->getName())) {
477     StringRef Class, Category;
478     getObjCClassCategory(SP->getName(), Class, Category);
479     addAccelObjC(CU, Class, Die);
480     if (Category != "")
481       addAccelObjC(CU, Category, Die);
482     // Also add the base method name to the name table.
483     addAccelName(CU, getObjCMethodName(SP->getName()), Die);
484   }
485 }
486 
487 /// Check whether we should create a DIE for the given Scope, return true
488 /// if we don't create a DIE (the corresponding DIE is null).
489 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) {
490   if (Scope->isAbstractScope())
491     return false;
492 
493   // We don't create a DIE if there is no Range.
494   const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges();
495   if (Ranges.empty())
496     return true;
497 
498   if (Ranges.size() > 1)
499     return false;
500 
501   // We don't create a DIE if we have a single Range and the end label
502   // is null.
503   return !getLabelAfterInsn(Ranges.front().second);
504 }
505 
506 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) {
507   F(CU);
508   if (auto *SkelCU = CU.getSkeleton())
509     if (CU.getCUNode()->getSplitDebugInlining())
510       F(*SkelCU);
511 }
512 
513 bool DwarfDebug::shareAcrossDWOCUs() const {
514   return SplitDwarfCrossCuReferences;
515 }
516 
517 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU,
518                                                      LexicalScope *Scope) {
519   assert(Scope && Scope->getScopeNode());
520   assert(Scope->isAbstractScope());
521   assert(!Scope->getInlinedAt());
522 
523   auto *SP = cast<DISubprogram>(Scope->getScopeNode());
524 
525   // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
526   // was inlined from another compile unit.
527   if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining())
528     // Avoid building the original CU if it won't be used
529     SrcCU.constructAbstractSubprogramScopeDIE(Scope);
530   else {
531     auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
532     if (auto *SkelCU = CU.getSkeleton()) {
533       (shareAcrossDWOCUs() ? CU : SrcCU)
534           .constructAbstractSubprogramScopeDIE(Scope);
535       if (CU.getCUNode()->getSplitDebugInlining())
536         SkelCU->constructAbstractSubprogramScopeDIE(Scope);
537     } else
538       CU.constructAbstractSubprogramScopeDIE(Scope);
539   }
540 }
541 
542 DIE &DwarfDebug::constructSubprogramDefinitionDIE(const DISubprogram *SP) {
543   DICompileUnit *Unit = SP->getUnit();
544   assert(SP->isDefinition() && "Subprogram not a definition");
545   assert(Unit && "Subprogram definition without parent unit");
546   auto &CU = getOrCreateDwarfCompileUnit(Unit);
547   return *CU.getOrCreateSubprogramDIE(SP);
548 }
549 
550 /// Represents a parameter whose call site value can be described by applying a
551 /// debug expression to a register in the forwarded register worklist.
552 struct FwdRegParamInfo {
553   /// The described parameter register.
554   unsigned ParamReg;
555 
556   /// Debug expression that has been built up when walking through the
557   /// instruction chain that produces the parameter's value.
558   const DIExpression *Expr;
559 };
560 
561 /// Register worklist for finding call site values.
562 using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>;
563 
564 /// Append the expression \p Addition to \p Original and return the result.
565 static const DIExpression *combineDIExpressions(const DIExpression *Original,
566                                                 const DIExpression *Addition) {
567   std::vector<uint64_t> Elts = Addition->getElements().vec();
568   // Avoid multiple DW_OP_stack_values.
569   if (Original->isImplicit() && Addition->isImplicit())
570     erase_if(Elts, [](uint64_t Op) { return Op == dwarf::DW_OP_stack_value; });
571   const DIExpression *CombinedExpr =
572       (Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original;
573   return CombinedExpr;
574 }
575 
576 /// Emit call site parameter entries that are described by the given value and
577 /// debug expression.
578 template <typename ValT>
579 static void finishCallSiteParams(ValT Val, const DIExpression *Expr,
580                                  ArrayRef<FwdRegParamInfo> DescribedParams,
581                                  ParamSet &Params) {
582   for (auto Param : DescribedParams) {
583     bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0;
584 
585     // TODO: Entry value operations can currently not be combined with any
586     // other expressions, so we can't emit call site entries in those cases.
587     if (ShouldCombineExpressions && Expr->isEntryValue())
588       continue;
589 
590     // If a parameter's call site value is produced by a chain of
591     // instructions we may have already created an expression for the
592     // parameter when walking through the instructions. Append that to the
593     // base expression.
594     const DIExpression *CombinedExpr =
595         ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr)
596                                  : Expr;
597     assert((!CombinedExpr || CombinedExpr->isValid()) &&
598            "Combined debug expression is invalid");
599 
600     DbgValueLoc DbgLocVal(CombinedExpr, Val);
601     DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal);
602     Params.push_back(CSParm);
603     ++NumCSParams;
604   }
605 }
606 
607 /// Add \p Reg to the worklist, if it's not already present, and mark that the
608 /// given parameter registers' values can (potentially) be described using
609 /// that register and an debug expression.
610 static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg,
611                                 const DIExpression *Expr,
612                                 ArrayRef<FwdRegParamInfo> ParamsToAdd) {
613   auto I = Worklist.insert({Reg, {}});
614   auto &ParamsForFwdReg = I.first->second;
615   for (auto Param : ParamsToAdd) {
616     assert(none_of(ParamsForFwdReg,
617                    [Param](const FwdRegParamInfo &D) {
618                      return D.ParamReg == Param.ParamReg;
619                    }) &&
620            "Same parameter described twice by forwarding reg");
621 
622     // If a parameter's call site value is produced by a chain of
623     // instructions we may have already created an expression for the
624     // parameter when walking through the instructions. Append that to the
625     // new expression.
626     const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr);
627     ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr});
628   }
629 }
630 
631 /// Interpret values loaded into registers by \p CurMI.
632 static void interpretValues(const MachineInstr *CurMI,
633                             FwdRegWorklist &ForwardedRegWorklist,
634                             ParamSet &Params) {
635 
636   const MachineFunction *MF = CurMI->getMF();
637   const DIExpression *EmptyExpr =
638       DIExpression::get(MF->getFunction().getContext(), {});
639   const auto &TRI = *MF->getSubtarget().getRegisterInfo();
640   const auto &TII = *MF->getSubtarget().getInstrInfo();
641   const auto &TLI = *MF->getSubtarget().getTargetLowering();
642 
643   // If an instruction defines more than one item in the worklist, we may run
644   // into situations where a worklist register's value is (potentially)
645   // described by the previous value of another register that is also defined
646   // by that instruction.
647   //
648   // This can for example occur in cases like this:
649   //
650   //   $r1 = mov 123
651   //   $r0, $r1 = mvrr $r1, 456
652   //   call @foo, $r0, $r1
653   //
654   // When describing $r1's value for the mvrr instruction, we need to make sure
655   // that we don't finalize an entry value for $r0, as that is dependent on the
656   // previous value of $r1 (123 rather than 456).
657   //
658   // In order to not have to distinguish between those cases when finalizing
659   // entry values, we simply postpone adding new parameter registers to the
660   // worklist, by first keeping them in this temporary container until the
661   // instruction has been handled.
662   FwdRegWorklist TmpWorklistItems;
663 
664   // If the MI is an instruction defining one or more parameters' forwarding
665   // registers, add those defines.
666   auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI,
667                                           SmallSetVector<unsigned, 4> &Defs) {
668     if (MI.isDebugInstr())
669       return;
670 
671     for (const MachineOperand &MO : MI.operands()) {
672       if (MO.isReg() && MO.isDef() &&
673           Register::isPhysicalRegister(MO.getReg())) {
674         for (auto FwdReg : ForwardedRegWorklist)
675           if (TRI.regsOverlap(FwdReg.first, MO.getReg()))
676             Defs.insert(FwdReg.first);
677       }
678     }
679   };
680 
681   // Set of worklist registers that are defined by this instruction.
682   SmallSetVector<unsigned, 4> FwdRegDefs;
683 
684   getForwardingRegsDefinedByMI(*CurMI, FwdRegDefs);
685   if (FwdRegDefs.empty())
686     return;
687 
688   for (auto ParamFwdReg : FwdRegDefs) {
689     if (auto ParamValue = TII.describeLoadedValue(*CurMI, ParamFwdReg)) {
690       if (ParamValue->first.isImm()) {
691         int64_t Val = ParamValue->first.getImm();
692         finishCallSiteParams(Val, ParamValue->second,
693                              ForwardedRegWorklist[ParamFwdReg], Params);
694       } else if (ParamValue->first.isReg()) {
695         Register RegLoc = ParamValue->first.getReg();
696         unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
697         Register FP = TRI.getFrameRegister(*MF);
698         bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP);
699         if (TRI.isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) {
700           MachineLocation MLoc(RegLoc, /*IsIndirect=*/IsSPorFP);
701           finishCallSiteParams(MLoc, ParamValue->second,
702                                ForwardedRegWorklist[ParamFwdReg], Params);
703         } else {
704           // ParamFwdReg was described by the non-callee saved register
705           // RegLoc. Mark that the call site values for the parameters are
706           // dependent on that register instead of ParamFwdReg. Since RegLoc
707           // may be a register that will be handled in this iteration, we
708           // postpone adding the items to the worklist, and instead keep them
709           // in a temporary container.
710           addToFwdRegWorklist(TmpWorklistItems, RegLoc, ParamValue->second,
711                               ForwardedRegWorklist[ParamFwdReg]);
712         }
713       }
714     }
715   }
716 
717   // Remove all registers that this instruction defines from the worklist.
718   for (auto ParamFwdReg : FwdRegDefs)
719     ForwardedRegWorklist.erase(ParamFwdReg);
720 
721   // Now that we are done handling this instruction, add items from the
722   // temporary worklist to the real one.
723   for (auto New : TmpWorklistItems)
724     addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, New.second);
725   TmpWorklistItems.clear();
726 }
727 
728 static bool interpretNextInstr(const MachineInstr *CurMI,
729                                FwdRegWorklist &ForwardedRegWorklist,
730                                ParamSet &Params) {
731   // Skip bundle headers.
732   if (CurMI->isBundle())
733     return true;
734 
735   // If the next instruction is a call we can not interpret parameter's
736   // forwarding registers or we finished the interpretation of all
737   // parameters.
738   if (CurMI->isCall())
739     return false;
740 
741   if (ForwardedRegWorklist.empty())
742     return false;
743 
744   // Avoid NOP description.
745   if (CurMI->getNumOperands() == 0)
746     return true;
747 
748   interpretValues(CurMI, ForwardedRegWorklist, Params);
749 
750   return true;
751 }
752 
753 /// Try to interpret values loaded into registers that forward parameters
754 /// for \p CallMI. Store parameters with interpreted value into \p Params.
755 static void collectCallSiteParameters(const MachineInstr *CallMI,
756                                       ParamSet &Params) {
757   const MachineFunction *MF = CallMI->getMF();
758   auto CalleesMap = MF->getCallSitesInfo();
759   auto CallFwdRegsInfo = CalleesMap.find(CallMI);
760 
761   // There is no information for the call instruction.
762   if (CallFwdRegsInfo == CalleesMap.end())
763     return;
764 
765   const MachineBasicBlock *MBB = CallMI->getParent();
766 
767   // Skip the call instruction.
768   auto I = std::next(CallMI->getReverseIterator());
769 
770   FwdRegWorklist ForwardedRegWorklist;
771 
772   const DIExpression *EmptyExpr =
773       DIExpression::get(MF->getFunction().getContext(), {});
774 
775   // Add all the forwarding registers into the ForwardedRegWorklist.
776   for (auto ArgReg : CallFwdRegsInfo->second) {
777     bool InsertedReg =
778         ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}})
779             .second;
780     assert(InsertedReg && "Single register used to forward two arguments?");
781     (void)InsertedReg;
782   }
783 
784   // We erase, from the ForwardedRegWorklist, those forwarding registers for
785   // which we successfully describe a loaded value (by using
786   // the describeLoadedValue()). For those remaining arguments in the working
787   // list, for which we do not describe a loaded value by
788   // the describeLoadedValue(), we try to generate an entry value expression
789   // for their call site value description, if the call is within the entry MBB.
790   // TODO: Handle situations when call site parameter value can be described
791   // as the entry value within basic blocks other than the first one.
792   bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin();
793 
794   // Search for a loading value in forwarding registers inside call delay slot.
795   if (CallMI->hasDelaySlot()) {
796     auto Suc = std::next(CallMI->getIterator());
797     // Only one-instruction delay slot is supported.
798     auto BundleEnd = llvm::getBundleEnd(CallMI->getIterator());
799     (void)BundleEnd;
800     assert(std::next(Suc) == BundleEnd &&
801            "More than one instruction in call delay slot");
802     // Try to interpret value loaded by instruction.
803     if (!interpretNextInstr(&*Suc, ForwardedRegWorklist, Params))
804       return;
805   }
806 
807   // Search for a loading value in forwarding registers.
808   for (; I != MBB->rend(); ++I) {
809     // Try to interpret values loaded by instruction.
810     if (!interpretNextInstr(&*I, ForwardedRegWorklist, Params))
811       return;
812   }
813 
814   // Emit the call site parameter's value as an entry value.
815   if (ShouldTryEmitEntryVals) {
816     // Create an expression where the register's entry value is used.
817     DIExpression *EntryExpr = DIExpression::get(
818         MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1});
819     for (auto RegEntry : ForwardedRegWorklist) {
820       MachineLocation MLoc(RegEntry.first);
821       finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params);
822     }
823   }
824 }
825 
826 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP,
827                                             DwarfCompileUnit &CU, DIE &ScopeDIE,
828                                             const MachineFunction &MF) {
829   // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if
830   // the subprogram is required to have one.
831   if (!SP.areAllCallsDescribed() || !SP.isDefinition())
832     return;
833 
834   // Use DW_AT_call_all_calls to express that call site entries are present
835   // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls
836   // because one of its requirements is not met: call site entries for
837   // optimized-out calls are elided.
838   CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls));
839 
840   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
841   assert(TII && "TargetInstrInfo not found: cannot label tail calls");
842 
843   // Delay slot support check.
844   auto delaySlotSupported = [&](const MachineInstr &MI) {
845     if (!MI.isBundledWithSucc())
846       return false;
847     auto Suc = std::next(MI.getIterator());
848     auto CallInstrBundle = getBundleStart(MI.getIterator());
849     (void)CallInstrBundle;
850     auto DelaySlotBundle = getBundleStart(Suc);
851     (void)DelaySlotBundle;
852     // Ensure that label after call is following delay slot instruction.
853     // Ex. CALL_INSTRUCTION {
854     //       DELAY_SLOT_INSTRUCTION }
855     //      LABEL_AFTER_CALL
856     assert(getLabelAfterInsn(&*CallInstrBundle) ==
857                getLabelAfterInsn(&*DelaySlotBundle) &&
858            "Call and its successor instruction don't have same label after.");
859     return true;
860   };
861 
862   // Emit call site entries for each call or tail call in the function.
863   for (const MachineBasicBlock &MBB : MF) {
864     for (const MachineInstr &MI : MBB.instrs()) {
865       // Bundles with call in them will pass the isCall() test below but do not
866       // have callee operand information so skip them here. Iterator will
867       // eventually reach the call MI.
868       if (MI.isBundle())
869         continue;
870 
871       // Skip instructions which aren't calls. Both calls and tail-calling jump
872       // instructions (e.g TAILJMPd64) are classified correctly here.
873       if (!MI.isCandidateForCallSiteEntry())
874         continue;
875 
876       // Skip instructions marked as frame setup, as they are not interesting to
877       // the user.
878       if (MI.getFlag(MachineInstr::FrameSetup))
879         continue;
880 
881       // Check if delay slot support is enabled.
882       if (MI.hasDelaySlot() && !delaySlotSupported(*&MI))
883         return;
884 
885       // If this is a direct call, find the callee's subprogram.
886       // In the case of an indirect call find the register that holds
887       // the callee.
888       const MachineOperand &CalleeOp = MI.getOperand(0);
889       if (!CalleeOp.isGlobal() && !CalleeOp.isReg())
890         continue;
891 
892       unsigned CallReg = 0;
893       DIE *CalleeDIE = nullptr;
894       const Function *CalleeDecl = nullptr;
895       if (CalleeOp.isReg()) {
896         CallReg = CalleeOp.getReg();
897         if (!CallReg)
898           continue;
899       } else {
900         CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal());
901         if (!CalleeDecl || !CalleeDecl->getSubprogram())
902           continue;
903         const DISubprogram *CalleeSP = CalleeDecl->getSubprogram();
904 
905         if (CalleeSP->isDefinition()) {
906           // Ensure that a subprogram DIE for the callee is available in the
907           // appropriate CU.
908           CalleeDIE = &constructSubprogramDefinitionDIE(CalleeSP);
909         } else {
910           // Create the declaration DIE if it is missing. This is required to
911           // support compilation of old bitcode with an incomplete list of
912           // retained metadata.
913           CalleeDIE = CU.getOrCreateSubprogramDIE(CalleeSP);
914         }
915         assert(CalleeDIE && "Must have a DIE for the callee");
916       }
917 
918       // TODO: Omit call site entries for runtime calls (objc_msgSend, etc).
919 
920       bool IsTail = TII->isTailCall(MI);
921 
922       // If MI is in a bundle, the label was created after the bundle since
923       // EmitFunctionBody iterates over top-level MIs. Get that top-level MI
924       // to search for that label below.
925       const MachineInstr *TopLevelCallMI =
926           MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI;
927 
928       // For non-tail calls, the return PC is needed to disambiguate paths in
929       // the call graph which could lead to some target function. For tail
930       // calls, no return PC information is needed, unless tuning for GDB in
931       // DWARF4 mode in which case we fake a return PC for compatibility.
932       const MCSymbol *PCAddr =
933           (!IsTail || CU.useGNUAnalogForDwarf5Feature())
934               ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI))
935               : nullptr;
936 
937       // For tail calls, it's necessary to record the address of the branch
938       // instruction so that the debugger can show where the tail call occurred.
939       const MCSymbol *CallAddr =
940           IsTail ? getLabelBeforeInsn(TopLevelCallMI) : nullptr;
941 
942       assert((IsTail || PCAddr) && "Non-tail call without return PC");
943 
944       LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> "
945                         << (CalleeDecl ? CalleeDecl->getName()
946                                        : StringRef(MF.getSubtarget()
947                                                        .getRegisterInfo()
948                                                        ->getName(CallReg)))
949                         << (IsTail ? " [IsTail]" : "") << "\n");
950 
951       DIE &CallSiteDIE = CU.constructCallSiteEntryDIE(
952           ScopeDIE, CalleeDIE, IsTail, PCAddr, CallAddr, CallReg);
953 
954       // Optionally emit call-site-param debug info.
955       if (emitDebugEntryValues()) {
956         ParamSet Params;
957         // Try to interpret values of call site parameters.
958         collectCallSiteParameters(&MI, Params);
959         CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params);
960       }
961     }
962   }
963 }
964 
965 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const {
966   if (!U.hasDwarfPubSections())
967     return;
968 
969   U.addFlag(D, dwarf::DW_AT_GNU_pubnames);
970 }
971 
972 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit,
973                                       DwarfCompileUnit &NewCU) {
974   DIE &Die = NewCU.getUnitDie();
975   StringRef FN = DIUnit->getFilename();
976 
977   StringRef Producer = DIUnit->getProducer();
978   StringRef Flags = DIUnit->getFlags();
979   if (!Flags.empty() && !useAppleExtensionAttributes()) {
980     std::string ProducerWithFlags = Producer.str() + " " + Flags.str();
981     NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags);
982   } else
983     NewCU.addString(Die, dwarf::DW_AT_producer, Producer);
984 
985   NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
986                 DIUnit->getSourceLanguage());
987   NewCU.addString(Die, dwarf::DW_AT_name, FN);
988   StringRef SysRoot = DIUnit->getSysRoot();
989   if (!SysRoot.empty())
990     NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot);
991   StringRef SDK = DIUnit->getSDK();
992   if (!SDK.empty())
993     NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK);
994 
995   // Add DW_str_offsets_base to the unit DIE, except for split units.
996   if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
997     NewCU.addStringOffsetsStart();
998 
999   if (!useSplitDwarf()) {
1000     NewCU.initStmtList();
1001 
1002     // If we're using split dwarf the compilation dir is going to be in the
1003     // skeleton CU and so we don't need to duplicate it here.
1004     if (!CompilationDir.empty())
1005       NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
1006     addGnuPubAttributes(NewCU, Die);
1007   }
1008 
1009   if (useAppleExtensionAttributes()) {
1010     if (DIUnit->isOptimized())
1011       NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized);
1012 
1013     StringRef Flags = DIUnit->getFlags();
1014     if (!Flags.empty())
1015       NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags);
1016 
1017     if (unsigned RVer = DIUnit->getRuntimeVersion())
1018       NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers,
1019                     dwarf::DW_FORM_data1, RVer);
1020   }
1021 
1022   if (DIUnit->getDWOId()) {
1023     // This CU is either a clang module DWO or a skeleton CU.
1024     NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8,
1025                   DIUnit->getDWOId());
1026     if (!DIUnit->getSplitDebugFilename().empty()) {
1027       // This is a prefabricated skeleton CU.
1028       dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
1029                                          ? dwarf::DW_AT_dwo_name
1030                                          : dwarf::DW_AT_GNU_dwo_name;
1031       NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename());
1032     }
1033   }
1034 }
1035 // Create new DwarfCompileUnit for the given metadata node with tag
1036 // DW_TAG_compile_unit.
1037 DwarfCompileUnit &
1038 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) {
1039   if (auto *CU = CUMap.lookup(DIUnit))
1040     return *CU;
1041 
1042   CompilationDir = DIUnit->getDirectory();
1043 
1044   auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
1045       InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder);
1046   DwarfCompileUnit &NewCU = *OwnedUnit;
1047   InfoHolder.addUnit(std::move(OwnedUnit));
1048 
1049   for (auto *IE : DIUnit->getImportedEntities())
1050     NewCU.addImportedEntity(IE);
1051 
1052   // LTO with assembly output shares a single line table amongst multiple CUs.
1053   // To avoid the compilation directory being ambiguous, let the line table
1054   // explicitly describe the directory of all files, never relying on the
1055   // compilation directory.
1056   if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU)
1057     Asm->OutStreamer->emitDwarfFile0Directive(
1058         CompilationDir, DIUnit->getFilename(), getMD5AsBytes(DIUnit->getFile()),
1059         DIUnit->getSource(), NewCU.getUniqueID());
1060 
1061   if (useSplitDwarf()) {
1062     NewCU.setSkeleton(constructSkeletonCU(NewCU));
1063     NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection());
1064   } else {
1065     finishUnitAttributes(DIUnit, NewCU);
1066     NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
1067   }
1068 
1069   CUMap.insert({DIUnit, &NewCU});
1070   CUDieMap.insert({&NewCU.getUnitDie(), &NewCU});
1071   return NewCU;
1072 }
1073 
1074 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU,
1075                                                   const DIImportedEntity *N) {
1076   if (isa<DILocalScope>(N->getScope()))
1077     return;
1078   if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope()))
1079     D->addChild(TheCU.constructImportedEntityDIE(N));
1080 }
1081 
1082 /// Sort and unique GVEs by comparing their fragment offset.
1083 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &
1084 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) {
1085   llvm::sort(
1086       GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) {
1087         // Sort order: first null exprs, then exprs without fragment
1088         // info, then sort by fragment offset in bits.
1089         // FIXME: Come up with a more comprehensive comparator so
1090         // the sorting isn't non-deterministic, and so the following
1091         // std::unique call works correctly.
1092         if (!A.Expr || !B.Expr)
1093           return !!B.Expr;
1094         auto FragmentA = A.Expr->getFragmentInfo();
1095         auto FragmentB = B.Expr->getFragmentInfo();
1096         if (!FragmentA || !FragmentB)
1097           return !!FragmentB;
1098         return FragmentA->OffsetInBits < FragmentB->OffsetInBits;
1099       });
1100   GVEs.erase(std::unique(GVEs.begin(), GVEs.end(),
1101                          [](DwarfCompileUnit::GlobalExpr A,
1102                             DwarfCompileUnit::GlobalExpr B) {
1103                            return A.Expr == B.Expr;
1104                          }),
1105              GVEs.end());
1106   return GVEs;
1107 }
1108 
1109 // Emit all Dwarf sections that should come prior to the content. Create
1110 // global DIEs and emit initial debug info sections. This is invoked by
1111 // the target AsmPrinter.
1112 void DwarfDebug::beginModule() {
1113   NamedRegionTimer T(DbgTimerName, DbgTimerDescription, DWARFGroupName,
1114                      DWARFGroupDescription, TimePassesIsEnabled);
1115   if (DisableDebugInfoPrinting) {
1116     MMI->setDebugInfoAvailability(false);
1117     return;
1118   }
1119 
1120   const Module *M = MMI->getModule();
1121 
1122   unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(),
1123                                        M->debug_compile_units_end());
1124   // Tell MMI whether we have debug info.
1125   assert(MMI->hasDebugInfo() == (NumDebugCUs > 0) &&
1126          "DebugInfoAvailabilty initialized unexpectedly");
1127   SingleCU = NumDebugCUs == 1;
1128   DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>>
1129       GVMap;
1130   for (const GlobalVariable &Global : M->globals()) {
1131     SmallVector<DIGlobalVariableExpression *, 1> GVs;
1132     Global.getDebugInfo(GVs);
1133     for (auto *GVE : GVs)
1134       GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()});
1135   }
1136 
1137   // Create the symbol that designates the start of the unit's contribution
1138   // to the string offsets table. In a split DWARF scenario, only the skeleton
1139   // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol).
1140   if (useSegmentedStringOffsetsTable())
1141     (useSplitDwarf() ? SkeletonHolder : InfoHolder)
1142         .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base"));
1143 
1144 
1145   // Create the symbols that designates the start of the DWARF v5 range list
1146   // and locations list tables. They are located past the table headers.
1147   if (getDwarfVersion() >= 5) {
1148     DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1149     Holder.setRnglistsTableBaseSym(
1150         Asm->createTempSymbol("rnglists_table_base"));
1151 
1152     if (useSplitDwarf())
1153       InfoHolder.setRnglistsTableBaseSym(
1154           Asm->createTempSymbol("rnglists_dwo_table_base"));
1155   }
1156 
1157   // Create the symbol that points to the first entry following the debug
1158   // address table (.debug_addr) header.
1159   AddrPool.setLabel(Asm->createTempSymbol("addr_table_base"));
1160   DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base"));
1161 
1162   for (DICompileUnit *CUNode : M->debug_compile_units()) {
1163     // FIXME: Move local imported entities into a list attached to the
1164     // subprogram, then this search won't be needed and a
1165     // getImportedEntities().empty() test should go below with the rest.
1166     bool HasNonLocalImportedEntities = llvm::any_of(
1167         CUNode->getImportedEntities(), [](const DIImportedEntity *IE) {
1168           return !isa<DILocalScope>(IE->getScope());
1169         });
1170 
1171     if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() &&
1172         CUNode->getRetainedTypes().empty() &&
1173         CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty())
1174       continue;
1175 
1176     DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode);
1177 
1178     // Global Variables.
1179     for (auto *GVE : CUNode->getGlobalVariables()) {
1180       // Don't bother adding DIGlobalVariableExpressions listed in the CU if we
1181       // already know about the variable and it isn't adding a constant
1182       // expression.
1183       auto &GVMapEntry = GVMap[GVE->getVariable()];
1184       auto *Expr = GVE->getExpression();
1185       if (!GVMapEntry.size() || (Expr && Expr->isConstant()))
1186         GVMapEntry.push_back({nullptr, Expr});
1187     }
1188     DenseSet<DIGlobalVariable *> Processed;
1189     for (auto *GVE : CUNode->getGlobalVariables()) {
1190       DIGlobalVariable *GV = GVE->getVariable();
1191       if (Processed.insert(GV).second)
1192         CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV]));
1193     }
1194 
1195     for (auto *Ty : CUNode->getEnumTypes()) {
1196       // The enum types array by design contains pointers to
1197       // MDNodes rather than DIRefs. Unique them here.
1198       CU.getOrCreateTypeDIE(cast<DIType>(Ty));
1199     }
1200     for (auto *Ty : CUNode->getRetainedTypes()) {
1201       // The retained types array by design contains pointers to
1202       // MDNodes rather than DIRefs. Unique them here.
1203       if (DIType *RT = dyn_cast<DIType>(Ty))
1204           // There is no point in force-emitting a forward declaration.
1205           CU.getOrCreateTypeDIE(RT);
1206     }
1207     // Emit imported_modules last so that the relevant context is already
1208     // available.
1209     for (auto *IE : CUNode->getImportedEntities())
1210       constructAndAddImportedEntityDIE(CU, IE);
1211   }
1212 }
1213 
1214 void DwarfDebug::finishEntityDefinitions() {
1215   for (const auto &Entity : ConcreteEntities) {
1216     DIE *Die = Entity->getDIE();
1217     assert(Die);
1218     // FIXME: Consider the time-space tradeoff of just storing the unit pointer
1219     // in the ConcreteEntities list, rather than looking it up again here.
1220     // DIE::getUnit isn't simple - it walks parent pointers, etc.
1221     DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie());
1222     assert(Unit);
1223     Unit->finishEntityDefinition(Entity.get());
1224   }
1225 }
1226 
1227 void DwarfDebug::finishSubprogramDefinitions() {
1228   for (const DISubprogram *SP : ProcessedSPNodes) {
1229     assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug);
1230     forBothCUs(
1231         getOrCreateDwarfCompileUnit(SP->getUnit()),
1232         [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); });
1233   }
1234 }
1235 
1236 void DwarfDebug::finalizeModuleInfo() {
1237   const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
1238 
1239   finishSubprogramDefinitions();
1240 
1241   finishEntityDefinitions();
1242 
1243   // Include the DWO file name in the hash if there's more than one CU.
1244   // This handles ThinLTO's situation where imported CUs may very easily be
1245   // duplicate with the same CU partially imported into another ThinLTO unit.
1246   StringRef DWOName;
1247   if (CUMap.size() > 1)
1248     DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile;
1249 
1250   // Handle anything that needs to be done on a per-unit basis after
1251   // all other generation.
1252   for (const auto &P : CUMap) {
1253     auto &TheCU = *P.second;
1254     if (TheCU.getCUNode()->isDebugDirectivesOnly())
1255       continue;
1256     // Emit DW_AT_containing_type attribute to connect types with their
1257     // vtable holding type.
1258     TheCU.constructContainingTypeDIEs();
1259 
1260     // Add CU specific attributes if we need to add any.
1261     // If we're splitting the dwarf out now that we've got the entire
1262     // CU then add the dwo id to it.
1263     auto *SkCU = TheCU.getSkeleton();
1264 
1265     bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty();
1266 
1267     if (HasSplitUnit) {
1268       dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
1269                                          ? dwarf::DW_AT_dwo_name
1270                                          : dwarf::DW_AT_GNU_dwo_name;
1271       finishUnitAttributes(TheCU.getCUNode(), TheCU);
1272       TheCU.addString(TheCU.getUnitDie(), attrDWOName,
1273                       Asm->TM.Options.MCOptions.SplitDwarfFile);
1274       SkCU->addString(SkCU->getUnitDie(), attrDWOName,
1275                       Asm->TM.Options.MCOptions.SplitDwarfFile);
1276       // Emit a unique identifier for this CU.
1277       uint64_t ID =
1278           DIEHash(Asm).computeCUSignature(DWOName, TheCU.getUnitDie());
1279       if (getDwarfVersion() >= 5) {
1280         TheCU.setDWOId(ID);
1281         SkCU->setDWOId(ID);
1282       } else {
1283         TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1284                       dwarf::DW_FORM_data8, ID);
1285         SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1286                       dwarf::DW_FORM_data8, ID);
1287       }
1288 
1289       if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) {
1290         const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol();
1291         SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base,
1292                               Sym, Sym);
1293       }
1294     } else if (SkCU) {
1295       finishUnitAttributes(SkCU->getCUNode(), *SkCU);
1296     }
1297 
1298     // If we have code split among multiple sections or non-contiguous
1299     // ranges of code then emit a DW_AT_ranges attribute on the unit that will
1300     // remain in the .o file, otherwise add a DW_AT_low_pc.
1301     // FIXME: We should use ranges allow reordering of code ala
1302     // .subsections_via_symbols in mach-o. This would mean turning on
1303     // ranges for all subprogram DIEs for mach-o.
1304     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
1305 
1306     if (unsigned NumRanges = TheCU.getRanges().size()) {
1307       if (NumRanges > 1 && useRangesSection())
1308         // A DW_AT_low_pc attribute may also be specified in combination with
1309         // DW_AT_ranges to specify the default base address for use in
1310         // location lists (see Section 2.6.2) and range lists (see Section
1311         // 2.17.3).
1312         U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0);
1313       else
1314         U.setBaseAddress(TheCU.getRanges().front().Begin);
1315       U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges());
1316     }
1317 
1318     // We don't keep track of which addresses are used in which CU so this
1319     // is a bit pessimistic under LTO.
1320     if ((HasSplitUnit || getDwarfVersion() >= 5) && !AddrPool.isEmpty())
1321       U.addAddrTableBase();
1322 
1323     if (getDwarfVersion() >= 5) {
1324       if (U.hasRangeLists())
1325         U.addRnglistsBase();
1326 
1327       if (!DebugLocs.getLists().empty()) {
1328         if (!useSplitDwarf())
1329           U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base,
1330                             DebugLocs.getSym(),
1331                             TLOF.getDwarfLoclistsSection()->getBeginSymbol());
1332       }
1333     }
1334 
1335     auto *CUNode = cast<DICompileUnit>(P.first);
1336     // If compile Unit has macros, emit "DW_AT_macro_info/DW_AT_macros"
1337     // attribute.
1338     if (CUNode->getMacros()) {
1339       if (UseDebugMacroSection) {
1340         if (useSplitDwarf())
1341           TheCU.addSectionDelta(
1342               TheCU.getUnitDie(), dwarf::DW_AT_macros, U.getMacroLabelBegin(),
1343               TLOF.getDwarfMacroDWOSection()->getBeginSymbol());
1344         else {
1345           dwarf::Attribute MacrosAttr = getDwarfVersion() >= 5
1346                                             ? dwarf::DW_AT_macros
1347                                             : dwarf::DW_AT_GNU_macros;
1348           U.addSectionLabel(U.getUnitDie(), MacrosAttr, U.getMacroLabelBegin(),
1349                             TLOF.getDwarfMacroSection()->getBeginSymbol());
1350         }
1351       } else {
1352         if (useSplitDwarf())
1353           TheCU.addSectionDelta(
1354               TheCU.getUnitDie(), dwarf::DW_AT_macro_info,
1355               U.getMacroLabelBegin(),
1356               TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol());
1357         else
1358           U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info,
1359                             U.getMacroLabelBegin(),
1360                             TLOF.getDwarfMacinfoSection()->getBeginSymbol());
1361       }
1362     }
1363     }
1364 
1365   // Emit all frontend-produced Skeleton CUs, i.e., Clang modules.
1366   for (auto *CUNode : MMI->getModule()->debug_compile_units())
1367     if (CUNode->getDWOId())
1368       getOrCreateDwarfCompileUnit(CUNode);
1369 
1370   // Compute DIE offsets and sizes.
1371   InfoHolder.computeSizeAndOffsets();
1372   if (useSplitDwarf())
1373     SkeletonHolder.computeSizeAndOffsets();
1374 }
1375 
1376 // Emit all Dwarf sections that should come after the content.
1377 void DwarfDebug::endModule() {
1378   assert(CurFn == nullptr);
1379   assert(CurMI == nullptr);
1380 
1381   for (const auto &P : CUMap) {
1382     auto &CU = *P.second;
1383     CU.createBaseTypeDIEs();
1384   }
1385 
1386   // If we aren't actually generating debug info (check beginModule -
1387   // conditionalized on !DisableDebugInfoPrinting and the presence of the
1388   // llvm.dbg.cu metadata node)
1389   if (!MMI->hasDebugInfo())
1390     return;
1391 
1392   // Finalize the debug info for the module.
1393   finalizeModuleInfo();
1394 
1395   if (useSplitDwarf())
1396     // Emit debug_loc.dwo/debug_loclists.dwo section.
1397     emitDebugLocDWO();
1398   else
1399     // Emit debug_loc/debug_loclists section.
1400     emitDebugLoc();
1401 
1402   // Corresponding abbreviations into a abbrev section.
1403   emitAbbreviations();
1404 
1405   // Emit all the DIEs into a debug info section.
1406   emitDebugInfo();
1407 
1408   // Emit info into a debug aranges section.
1409   if (GenerateARangeSection)
1410     emitDebugARanges();
1411 
1412   // Emit info into a debug ranges section.
1413   emitDebugRanges();
1414 
1415   if (useSplitDwarf())
1416   // Emit info into a debug macinfo.dwo section.
1417     emitDebugMacinfoDWO();
1418   else
1419     // Emit info into a debug macinfo/macro section.
1420     emitDebugMacinfo();
1421 
1422   emitDebugStr();
1423 
1424   if (useSplitDwarf()) {
1425     emitDebugStrDWO();
1426     emitDebugInfoDWO();
1427     emitDebugAbbrevDWO();
1428     emitDebugLineDWO();
1429     emitDebugRangesDWO();
1430   }
1431 
1432   emitDebugAddr();
1433 
1434   // Emit info into the dwarf accelerator table sections.
1435   switch (getAccelTableKind()) {
1436   case AccelTableKind::Apple:
1437     emitAccelNames();
1438     emitAccelObjC();
1439     emitAccelNamespaces();
1440     emitAccelTypes();
1441     break;
1442   case AccelTableKind::Dwarf:
1443     emitAccelDebugNames();
1444     break;
1445   case AccelTableKind::None:
1446     break;
1447   case AccelTableKind::Default:
1448     llvm_unreachable("Default should have already been resolved.");
1449   }
1450 
1451   // Emit the pubnames and pubtypes sections if requested.
1452   emitDebugPubSections();
1453 
1454   // clean up.
1455   // FIXME: AbstractVariables.clear();
1456 }
1457 
1458 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU,
1459                                                const DINode *Node,
1460                                                const MDNode *ScopeNode) {
1461   if (CU.getExistingAbstractEntity(Node))
1462     return;
1463 
1464   CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope(
1465                                        cast<DILocalScope>(ScopeNode)));
1466 }
1467 
1468 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU,
1469     const DINode *Node, const MDNode *ScopeNode) {
1470   if (CU.getExistingAbstractEntity(Node))
1471     return;
1472 
1473   if (LexicalScope *Scope =
1474           LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode)))
1475     CU.createAbstractEntity(Node, Scope);
1476 }
1477 
1478 // Collect variable information from side table maintained by MF.
1479 void DwarfDebug::collectVariableInfoFromMFTable(
1480     DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) {
1481   SmallDenseMap<InlinedEntity, DbgVariable *> MFVars;
1482   LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n");
1483   for (const auto &VI : Asm->MF->getVariableDbgInfo()) {
1484     if (!VI.Var)
1485       continue;
1486     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1487            "Expected inlined-at fields to agree");
1488 
1489     InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt());
1490     Processed.insert(Var);
1491     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1492 
1493     // If variable scope is not found then skip this variable.
1494     if (!Scope) {
1495       LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName()
1496                         << ", no variable scope found\n");
1497       continue;
1498     }
1499 
1500     ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode());
1501     auto RegVar = std::make_unique<DbgVariable>(
1502                     cast<DILocalVariable>(Var.first), Var.second);
1503     RegVar->initializeMMI(VI.Expr, VI.Slot);
1504     LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName()
1505                       << "\n");
1506     if (DbgVariable *DbgVar = MFVars.lookup(Var))
1507       DbgVar->addMMIEntry(*RegVar);
1508     else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) {
1509       MFVars.insert({Var, RegVar.get()});
1510       ConcreteEntities.push_back(std::move(RegVar));
1511     }
1512   }
1513 }
1514 
1515 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its
1516 /// enclosing lexical scope. The check ensures there are no other instructions
1517 /// in the same lexical scope preceding the DBG_VALUE and that its range is
1518 /// either open or otherwise rolls off the end of the scope.
1519 static bool validThroughout(LexicalScopes &LScopes,
1520                             const MachineInstr *DbgValue,
1521                             const MachineInstr *RangeEnd) {
1522   assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location");
1523   auto MBB = DbgValue->getParent();
1524   auto DL = DbgValue->getDebugLoc();
1525   auto *LScope = LScopes.findLexicalScope(DL);
1526   // Scope doesn't exist; this is a dead DBG_VALUE.
1527   if (!LScope)
1528     return false;
1529   auto &LSRange = LScope->getRanges();
1530   if (LSRange.size() == 0)
1531     return false;
1532 
1533 
1534   // Determine if the DBG_VALUE is valid at the beginning of its lexical block.
1535   const MachineInstr *LScopeBegin = LSRange.front().first;
1536   // Early exit if the lexical scope begins outside of the current block.
1537   if (LScopeBegin->getParent() != MBB)
1538     return false;
1539 
1540   // If there are instructions belonging to our scope in another block, and
1541   // we're not a constant (see DWARF2 comment below), then we can't be
1542   // validThroughout.
1543   const MachineInstr *LScopeEnd = LSRange.back().second;
1544   if (RangeEnd && LScopeEnd->getParent() != MBB)
1545     return false;
1546 
1547   MachineBasicBlock::const_reverse_iterator Pred(DbgValue);
1548   for (++Pred; Pred != MBB->rend(); ++Pred) {
1549     if (Pred->getFlag(MachineInstr::FrameSetup))
1550       break;
1551     auto PredDL = Pred->getDebugLoc();
1552     if (!PredDL || Pred->isMetaInstruction())
1553       continue;
1554     // Check whether the instruction preceding the DBG_VALUE is in the same
1555     // (sub)scope as the DBG_VALUE.
1556     if (DL->getScope() == PredDL->getScope())
1557       return false;
1558     auto *PredScope = LScopes.findLexicalScope(PredDL);
1559     if (!PredScope || LScope->dominates(PredScope))
1560       return false;
1561   }
1562 
1563   // If the range of the DBG_VALUE is open-ended, report success.
1564   if (!RangeEnd)
1565     return true;
1566 
1567   // Single, constant DBG_VALUEs in the prologue are promoted to be live
1568   // throughout the function. This is a hack, presumably for DWARF v2 and not
1569   // necessarily correct. It would be much better to use a dbg.declare instead
1570   // if we know the constant is live throughout the scope.
1571   if (DbgValue->getDebugOperand(0).isImm() && MBB->pred_empty())
1572     return true;
1573 
1574   // Now check for situations where an "open-ended" DBG_VALUE isn't enough to
1575   // determine eligibility for a single location, e.g. nested scopes, inlined
1576   // functions.
1577   // FIXME: For now we just handle a simple (but common) case where the scope
1578   // is contained in MBB. We could be smarter here.
1579   //
1580   // At this point we know that our scope ends in MBB. So, if RangeEnd exists
1581   // outside of the block we can ignore it; the location is just leaking outside
1582   // its scope.
1583   assert(LScopeEnd->getParent() == MBB && "Scope ends outside MBB");
1584   if (RangeEnd->getParent() != DbgValue->getParent())
1585     return true;
1586 
1587   // The location range and variable's enclosing scope are both contained within
1588   // MBB, test if location terminates before end of scope.
1589   for (auto I = RangeEnd->getIterator(); I != MBB->end(); ++I)
1590     if (&*I == LScopeEnd)
1591       return false;
1592 
1593   // There's a single location which starts at the scope start, and ends at or
1594   // after the scope end.
1595   return true;
1596 }
1597 
1598 /// Build the location list for all DBG_VALUEs in the function that
1599 /// describe the same variable. The resulting DebugLocEntries will have
1600 /// strict monotonically increasing begin addresses and will never
1601 /// overlap. If the resulting list has only one entry that is valid
1602 /// throughout variable's scope return true.
1603 //
1604 // See the definition of DbgValueHistoryMap::Entry for an explanation of the
1605 // different kinds of history map entries. One thing to be aware of is that if
1606 // a debug value is ended by another entry (rather than being valid until the
1607 // end of the function), that entry's instruction may or may not be included in
1608 // the range, depending on if the entry is a clobbering entry (it has an
1609 // instruction that clobbers one or more preceding locations), or if it is an
1610 // (overlapping) debug value entry. This distinction can be seen in the example
1611 // below. The first debug value is ended by the clobbering entry 2, and the
1612 // second and third debug values are ended by the overlapping debug value entry
1613 // 4.
1614 //
1615 // Input:
1616 //
1617 //   History map entries [type, end index, mi]
1618 //
1619 // 0 |      [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)]
1620 // 1 | |    [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)]
1621 // 2 | |    [Clobber, $reg0 = [...], -, -]
1622 // 3   | |  [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)]
1623 // 4        [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)]
1624 //
1625 // Output [start, end) [Value...]:
1626 //
1627 // [0-1)    [(reg0, fragment 0, 32)]
1628 // [1-3)    [(reg0, fragment 0, 32), (reg1, fragment 32, 32)]
1629 // [3-4)    [(reg1, fragment 32, 32), (123, fragment 64, 32)]
1630 // [4-)     [(@g, fragment 0, 96)]
1631 bool DwarfDebug::buildLocationList(
1632     SmallVectorImpl<DebugLocEntry> &DebugLoc,
1633     const DbgValueHistoryMap::Entries &Entries,
1634     DenseSet<const MachineBasicBlock *> &VeryLargeBlocks) {
1635   using OpenRange =
1636       std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>;
1637   SmallVector<OpenRange, 4> OpenRanges;
1638   bool isSafeForSingleLocation = true;
1639   const MachineInstr *StartDebugMI = nullptr;
1640   const MachineInstr *EndMI = nullptr;
1641 
1642   for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) {
1643     const MachineInstr *Instr = EI->getInstr();
1644 
1645     // Remove all values that are no longer live.
1646     size_t Index = std::distance(EB, EI);
1647     auto Last =
1648         remove_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; });
1649     OpenRanges.erase(Last, OpenRanges.end());
1650 
1651     // If we are dealing with a clobbering entry, this iteration will result in
1652     // a location list entry starting after the clobbering instruction.
1653     const MCSymbol *StartLabel =
1654         EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr);
1655     assert(StartLabel &&
1656            "Forgot label before/after instruction starting a range!");
1657 
1658     const MCSymbol *EndLabel;
1659     if (std::next(EI) == Entries.end()) {
1660       const MachineBasicBlock &EndMBB = Asm->MF->back();
1661       EndLabel = Asm->MBBSectionRanges[EndMBB.getSectionIDNum()].EndLabel;
1662       if (EI->isClobber())
1663         EndMI = EI->getInstr();
1664     }
1665     else if (std::next(EI)->isClobber())
1666       EndLabel = getLabelAfterInsn(std::next(EI)->getInstr());
1667     else
1668       EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr());
1669     assert(EndLabel && "Forgot label after instruction ending a range!");
1670 
1671     if (EI->isDbgValue())
1672       LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n");
1673 
1674     // If this history map entry has a debug value, add that to the list of
1675     // open ranges and check if its location is valid for a single value
1676     // location.
1677     if (EI->isDbgValue()) {
1678       // Do not add undef debug values, as they are redundant information in
1679       // the location list entries. An undef debug results in an empty location
1680       // description. If there are any non-undef fragments then padding pieces
1681       // with empty location descriptions will automatically be inserted, and if
1682       // all fragments are undef then the whole location list entry is
1683       // redundant.
1684       if (!Instr->isUndefDebugValue()) {
1685         auto Value = getDebugLocValue(Instr);
1686         OpenRanges.emplace_back(EI->getEndIndex(), Value);
1687 
1688         // TODO: Add support for single value fragment locations.
1689         if (Instr->getDebugExpression()->isFragment())
1690           isSafeForSingleLocation = false;
1691 
1692         if (!StartDebugMI)
1693           StartDebugMI = Instr;
1694       } else {
1695         isSafeForSingleLocation = false;
1696       }
1697     }
1698 
1699     // Location list entries with empty location descriptions are redundant
1700     // information in DWARF, so do not emit those.
1701     if (OpenRanges.empty())
1702       continue;
1703 
1704     // Omit entries with empty ranges as they do not have any effect in DWARF.
1705     if (StartLabel == EndLabel) {
1706       LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n");
1707       continue;
1708     }
1709 
1710     SmallVector<DbgValueLoc, 4> Values;
1711     for (auto &R : OpenRanges)
1712       Values.push_back(R.second);
1713     DebugLoc.emplace_back(StartLabel, EndLabel, Values);
1714 
1715     // Attempt to coalesce the ranges of two otherwise identical
1716     // DebugLocEntries.
1717     auto CurEntry = DebugLoc.rbegin();
1718     LLVM_DEBUG({
1719       dbgs() << CurEntry->getValues().size() << " Values:\n";
1720       for (auto &Value : CurEntry->getValues())
1721         Value.dump();
1722       dbgs() << "-----\n";
1723     });
1724 
1725     auto PrevEntry = std::next(CurEntry);
1726     if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry))
1727       DebugLoc.pop_back();
1728   }
1729 
1730   // If there's a single entry, safe for a single location, and not part of
1731   // an over-sized basic block, then ask validThroughout whether this
1732   // location can be represented as a single variable location.
1733   if (DebugLoc.size() != 1 || !isSafeForSingleLocation)
1734     return false;
1735   if (VeryLargeBlocks.count(StartDebugMI->getParent()))
1736     return false;
1737   return validThroughout(LScopes, StartDebugMI, EndMI);
1738 }
1739 
1740 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU,
1741                                             LexicalScope &Scope,
1742                                             const DINode *Node,
1743                                             const DILocation *Location,
1744                                             const MCSymbol *Sym) {
1745   ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode());
1746   if (isa<const DILocalVariable>(Node)) {
1747     ConcreteEntities.push_back(
1748         std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node),
1749                                        Location));
1750     InfoHolder.addScopeVariable(&Scope,
1751         cast<DbgVariable>(ConcreteEntities.back().get()));
1752   } else if (isa<const DILabel>(Node)) {
1753     ConcreteEntities.push_back(
1754         std::make_unique<DbgLabel>(cast<const DILabel>(Node),
1755                                     Location, Sym));
1756     InfoHolder.addScopeLabel(&Scope,
1757         cast<DbgLabel>(ConcreteEntities.back().get()));
1758   }
1759   return ConcreteEntities.back().get();
1760 }
1761 
1762 // Find variables for each lexical scope.
1763 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU,
1764                                    const DISubprogram *SP,
1765                                    DenseSet<InlinedEntity> &Processed) {
1766   // Grab the variable info that was squirreled away in the MMI side-table.
1767   collectVariableInfoFromMFTable(TheCU, Processed);
1768 
1769   // Identify blocks that are unreasonably sized, so that we can later
1770   // skip lexical scope analysis over them.
1771   DenseSet<const MachineBasicBlock *> VeryLargeBlocks;
1772   for (const auto &MBB : *CurFn)
1773     if (MBB.size() > LocationAnalysisSizeLimit)
1774       VeryLargeBlocks.insert(&MBB);
1775 
1776   for (const auto &I : DbgValues) {
1777     InlinedEntity IV = I.first;
1778     if (Processed.count(IV))
1779       continue;
1780 
1781     // Instruction ranges, specifying where IV is accessible.
1782     const auto &HistoryMapEntries = I.second;
1783     if (HistoryMapEntries.empty())
1784       continue;
1785 
1786     LexicalScope *Scope = nullptr;
1787     const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first);
1788     if (const DILocation *IA = IV.second)
1789       Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA);
1790     else
1791       Scope = LScopes.findLexicalScope(LocalVar->getScope());
1792     // If variable scope is not found then skip this variable.
1793     if (!Scope)
1794       continue;
1795 
1796     Processed.insert(IV);
1797     DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU,
1798                                             *Scope, LocalVar, IV.second));
1799 
1800     const MachineInstr *MInsn = HistoryMapEntries.front().getInstr();
1801     assert(MInsn->isDebugValue() && "History must begin with debug value");
1802 
1803     // Check if there is a single DBG_VALUE, valid throughout the var's scope.
1804     // If the history map contains a single debug value, there may be an
1805     // additional entry which clobbers the debug value.
1806     size_t HistSize = HistoryMapEntries.size();
1807     bool SingleValueWithClobber =
1808         HistSize == 2 && HistoryMapEntries[1].isClobber();
1809     if (HistSize == 1 || SingleValueWithClobber) {
1810       const auto *End =
1811           SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr;
1812       if (VeryLargeBlocks.count(MInsn->getParent()) == 0 &&
1813           validThroughout(LScopes, MInsn, End)) {
1814         RegVar->initializeDbgValue(MInsn);
1815         continue;
1816       }
1817     }
1818 
1819     // Do not emit location lists if .debug_loc secton is disabled.
1820     if (!useLocSection())
1821       continue;
1822 
1823     // Handle multiple DBG_VALUE instructions describing one variable.
1824     DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn);
1825 
1826     // Build the location list for this variable.
1827     SmallVector<DebugLocEntry, 8> Entries;
1828     bool isValidSingleLocation =
1829         buildLocationList(Entries, HistoryMapEntries, VeryLargeBlocks);
1830 
1831     // Check whether buildLocationList managed to merge all locations to one
1832     // that is valid throughout the variable's scope. If so, produce single
1833     // value location.
1834     if (isValidSingleLocation) {
1835       RegVar->initializeDbgValue(Entries[0].getValues()[0]);
1836       continue;
1837     }
1838 
1839     // If the variable has a DIBasicType, extract it.  Basic types cannot have
1840     // unique identifiers, so don't bother resolving the type with the
1841     // identifier map.
1842     const DIBasicType *BT = dyn_cast<DIBasicType>(
1843         static_cast<const Metadata *>(LocalVar->getType()));
1844 
1845     // Finalize the entry by lowering it into a DWARF bytestream.
1846     for (auto &Entry : Entries)
1847       Entry.finalize(*Asm, List, BT, TheCU);
1848   }
1849 
1850   // For each InlinedEntity collected from DBG_LABEL instructions, convert to
1851   // DWARF-related DbgLabel.
1852   for (const auto &I : DbgLabels) {
1853     InlinedEntity IL = I.first;
1854     const MachineInstr *MI = I.second;
1855     if (MI == nullptr)
1856       continue;
1857 
1858     LexicalScope *Scope = nullptr;
1859     const DILabel *Label = cast<DILabel>(IL.first);
1860     // The scope could have an extra lexical block file.
1861     const DILocalScope *LocalScope =
1862         Label->getScope()->getNonLexicalBlockFileScope();
1863     // Get inlined DILocation if it is inlined label.
1864     if (const DILocation *IA = IL.second)
1865       Scope = LScopes.findInlinedScope(LocalScope, IA);
1866     else
1867       Scope = LScopes.findLexicalScope(LocalScope);
1868     // If label scope is not found then skip this label.
1869     if (!Scope)
1870       continue;
1871 
1872     Processed.insert(IL);
1873     /// At this point, the temporary label is created.
1874     /// Save the temporary label to DbgLabel entity to get the
1875     /// actually address when generating Dwarf DIE.
1876     MCSymbol *Sym = getLabelBeforeInsn(MI);
1877     createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym);
1878   }
1879 
1880   // Collect info for variables/labels that were optimized out.
1881   for (const DINode *DN : SP->getRetainedNodes()) {
1882     if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
1883       continue;
1884     LexicalScope *Scope = nullptr;
1885     if (auto *DV = dyn_cast<DILocalVariable>(DN)) {
1886       Scope = LScopes.findLexicalScope(DV->getScope());
1887     } else if (auto *DL = dyn_cast<DILabel>(DN)) {
1888       Scope = LScopes.findLexicalScope(DL->getScope());
1889     }
1890 
1891     if (Scope)
1892       createConcreteEntity(TheCU, *Scope, DN, nullptr);
1893   }
1894 }
1895 
1896 // Process beginning of an instruction.
1897 void DwarfDebug::beginInstruction(const MachineInstr *MI) {
1898   const MachineFunction &MF = *MI->getMF();
1899   const auto *SP = MF.getFunction().getSubprogram();
1900   bool NoDebug =
1901       !SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug;
1902 
1903   // Delay slot support check.
1904   auto delaySlotSupported = [](const MachineInstr &MI) {
1905     if (!MI.isBundledWithSucc())
1906       return false;
1907     auto Suc = std::next(MI.getIterator());
1908     (void)Suc;
1909     // Ensure that delay slot instruction is successor of the call instruction.
1910     // Ex. CALL_INSTRUCTION {
1911     //        DELAY_SLOT_INSTRUCTION }
1912     assert(Suc->isBundledWithPred() &&
1913            "Call bundle instructions are out of order");
1914     return true;
1915   };
1916 
1917   // When describing calls, we need a label for the call instruction.
1918   if (!NoDebug && SP->areAllCallsDescribed() &&
1919       MI->isCandidateForCallSiteEntry(MachineInstr::AnyInBundle) &&
1920       (!MI->hasDelaySlot() || delaySlotSupported(*MI))) {
1921     const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1922     bool IsTail = TII->isTailCall(*MI);
1923     // For tail calls, we need the address of the branch instruction for
1924     // DW_AT_call_pc.
1925     if (IsTail)
1926       requestLabelBeforeInsn(MI);
1927     // For non-tail calls, we need the return address for the call for
1928     // DW_AT_call_return_pc. Under GDB tuning, this information is needed for
1929     // tail calls as well.
1930     requestLabelAfterInsn(MI);
1931   }
1932 
1933   DebugHandlerBase::beginInstruction(MI);
1934   assert(CurMI);
1935 
1936   if (NoDebug)
1937     return;
1938 
1939   // Check if source location changes, but ignore DBG_VALUE and CFI locations.
1940   // If the instruction is part of the function frame setup code, do not emit
1941   // any line record, as there is no correspondence with any user code.
1942   if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup))
1943     return;
1944   const DebugLoc &DL = MI->getDebugLoc();
1945   // When we emit a line-0 record, we don't update PrevInstLoc; so look at
1946   // the last line number actually emitted, to see if it was line 0.
1947   unsigned LastAsmLine =
1948       Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine();
1949 
1950   if (DL == PrevInstLoc) {
1951     // If we have an ongoing unspecified location, nothing to do here.
1952     if (!DL)
1953       return;
1954     // We have an explicit location, same as the previous location.
1955     // But we might be coming back to it after a line 0 record.
1956     if (LastAsmLine == 0 && DL.getLine() != 0) {
1957       // Reinstate the source location but not marked as a statement.
1958       const MDNode *Scope = DL.getScope();
1959       recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0);
1960     }
1961     return;
1962   }
1963 
1964   if (!DL) {
1965     // We have an unspecified location, which might want to be line 0.
1966     // If we have already emitted a line-0 record, don't repeat it.
1967     if (LastAsmLine == 0)
1968       return;
1969     // If user said Don't Do That, don't do that.
1970     if (UnknownLocations == Disable)
1971       return;
1972     // See if we have a reason to emit a line-0 record now.
1973     // Reasons to emit a line-0 record include:
1974     // - User asked for it (UnknownLocations).
1975     // - Instruction has a label, so it's referenced from somewhere else,
1976     //   possibly debug information; we want it to have a source location.
1977     // - Instruction is at the top of a block; we don't want to inherit the
1978     //   location from the physically previous (maybe unrelated) block.
1979     if (UnknownLocations == Enable || PrevLabel ||
1980         (PrevInstBB && PrevInstBB != MI->getParent())) {
1981       // Preserve the file and column numbers, if we can, to save space in
1982       // the encoded line table.
1983       // Do not update PrevInstLoc, it remembers the last non-0 line.
1984       const MDNode *Scope = nullptr;
1985       unsigned Column = 0;
1986       if (PrevInstLoc) {
1987         Scope = PrevInstLoc.getScope();
1988         Column = PrevInstLoc.getCol();
1989       }
1990       recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0);
1991     }
1992     return;
1993   }
1994 
1995   // We have an explicit location, different from the previous location.
1996   // Don't repeat a line-0 record, but otherwise emit the new location.
1997   // (The new location might be an explicit line 0, which we do emit.)
1998   if (DL.getLine() == 0 && LastAsmLine == 0)
1999     return;
2000   unsigned Flags = 0;
2001   if (DL == PrologEndLoc) {
2002     Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT;
2003     PrologEndLoc = DebugLoc();
2004   }
2005   // If the line changed, we call that a new statement; unless we went to
2006   // line 0 and came back, in which case it is not a new statement.
2007   unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine;
2008   if (DL.getLine() && DL.getLine() != OldLine)
2009     Flags |= DWARF2_FLAG_IS_STMT;
2010 
2011   const MDNode *Scope = DL.getScope();
2012   recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
2013 
2014   // If we're not at line 0, remember this location.
2015   if (DL.getLine())
2016     PrevInstLoc = DL;
2017 }
2018 
2019 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) {
2020   // First known non-DBG_VALUE and non-frame setup location marks
2021   // the beginning of the function body.
2022   for (const auto &MBB : *MF)
2023     for (const auto &MI : MBB)
2024       if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
2025           MI.getDebugLoc())
2026         return MI.getDebugLoc();
2027   return DebugLoc();
2028 }
2029 
2030 /// Register a source line with debug info. Returns the  unique label that was
2031 /// emitted and which provides correspondence to the source line list.
2032 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col,
2033                              const MDNode *S, unsigned Flags, unsigned CUID,
2034                              uint16_t DwarfVersion,
2035                              ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) {
2036   StringRef Fn;
2037   unsigned FileNo = 1;
2038   unsigned Discriminator = 0;
2039   if (auto *Scope = cast_or_null<DIScope>(S)) {
2040     Fn = Scope->getFilename();
2041     if (Line != 0 && DwarfVersion >= 4)
2042       if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope))
2043         Discriminator = LBF->getDiscriminator();
2044 
2045     FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID])
2046                  .getOrCreateSourceID(Scope->getFile());
2047   }
2048   Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0,
2049                                          Discriminator, Fn);
2050 }
2051 
2052 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF,
2053                                              unsigned CUID) {
2054   // Get beginning of function.
2055   if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) {
2056     // Ensure the compile unit is created if the function is called before
2057     // beginFunction().
2058     (void)getOrCreateDwarfCompileUnit(
2059         MF.getFunction().getSubprogram()->getUnit());
2060     // We'd like to list the prologue as "not statements" but GDB behaves
2061     // poorly if we do that. Revisit this with caution/GDB (7.5+) testing.
2062     const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram();
2063     ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT,
2064                        CUID, getDwarfVersion(), getUnits());
2065     return PrologEndLoc;
2066   }
2067   return DebugLoc();
2068 }
2069 
2070 // Gather pre-function debug information.  Assumes being called immediately
2071 // after the function entry point has been emitted.
2072 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) {
2073   CurFn = MF;
2074 
2075   auto *SP = MF->getFunction().getSubprogram();
2076   assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode());
2077   if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
2078     return;
2079 
2080   DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
2081 
2082   // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function
2083   // belongs to so that we add to the correct per-cu line table in the
2084   // non-asm case.
2085   if (Asm->OutStreamer->hasRawTextSupport())
2086     // Use a single line table if we are generating assembly.
2087     Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
2088   else
2089     Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID());
2090 
2091   // Record beginning of function.
2092   PrologEndLoc = emitInitialLocDirective(
2093       *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID());
2094 }
2095 
2096 void DwarfDebug::skippedNonDebugFunction() {
2097   // If we don't have a subprogram for this function then there will be a hole
2098   // in the range information. Keep note of this by setting the previously used
2099   // section to nullptr.
2100   PrevCU = nullptr;
2101   CurFn = nullptr;
2102 }
2103 
2104 // Gather and emit post-function debug information.
2105 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) {
2106   const DISubprogram *SP = MF->getFunction().getSubprogram();
2107 
2108   assert(CurFn == MF &&
2109       "endFunction should be called with the same function as beginFunction");
2110 
2111   // Set DwarfDwarfCompileUnitID in MCContext to default value.
2112   Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
2113 
2114   LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
2115   assert(!FnScope || SP == FnScope->getScopeNode());
2116   DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit());
2117   if (TheCU.getCUNode()->isDebugDirectivesOnly()) {
2118     PrevLabel = nullptr;
2119     CurFn = nullptr;
2120     return;
2121   }
2122 
2123   DenseSet<InlinedEntity> Processed;
2124   collectEntityInfo(TheCU, SP, Processed);
2125 
2126   // Add the range of this function to the list of ranges for the CU.
2127   // With basic block sections, add ranges for all basic block sections.
2128   for (const auto &R : Asm->MBBSectionRanges)
2129     TheCU.addRange({R.second.BeginLabel, R.second.EndLabel});
2130 
2131   // Under -gmlt, skip building the subprogram if there are no inlined
2132   // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram
2133   // is still needed as we need its source location.
2134   if (!TheCU.getCUNode()->getDebugInfoForProfiling() &&
2135       TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly &&
2136       LScopes.getAbstractScopesList().empty() && !IsDarwin) {
2137     assert(InfoHolder.getScopeVariables().empty());
2138     PrevLabel = nullptr;
2139     CurFn = nullptr;
2140     return;
2141   }
2142 
2143 #ifndef NDEBUG
2144   size_t NumAbstractScopes = LScopes.getAbstractScopesList().size();
2145 #endif
2146   // Construct abstract scopes.
2147   for (LexicalScope *AScope : LScopes.getAbstractScopesList()) {
2148     auto *SP = cast<DISubprogram>(AScope->getScopeNode());
2149     for (const DINode *DN : SP->getRetainedNodes()) {
2150       if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
2151         continue;
2152 
2153       const MDNode *Scope = nullptr;
2154       if (auto *DV = dyn_cast<DILocalVariable>(DN))
2155         Scope = DV->getScope();
2156       else if (auto *DL = dyn_cast<DILabel>(DN))
2157         Scope = DL->getScope();
2158       else
2159         llvm_unreachable("Unexpected DI type!");
2160 
2161       // Collect info for variables/labels that were optimized out.
2162       ensureAbstractEntityIsCreated(TheCU, DN, Scope);
2163       assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes
2164              && "ensureAbstractEntityIsCreated inserted abstract scopes");
2165     }
2166     constructAbstractSubprogramScopeDIE(TheCU, AScope);
2167   }
2168 
2169   ProcessedSPNodes.insert(SP);
2170   DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope);
2171   if (auto *SkelCU = TheCU.getSkeleton())
2172     if (!LScopes.getAbstractScopesList().empty() &&
2173         TheCU.getCUNode()->getSplitDebugInlining())
2174       SkelCU->constructSubprogramScopeDIE(SP, FnScope);
2175 
2176   // Construct call site entries.
2177   constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF);
2178 
2179   // Clear debug info
2180   // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the
2181   // DbgVariables except those that are also in AbstractVariables (since they
2182   // can be used cross-function)
2183   InfoHolder.getScopeVariables().clear();
2184   InfoHolder.getScopeLabels().clear();
2185   PrevLabel = nullptr;
2186   CurFn = nullptr;
2187 }
2188 
2189 // Register a source line with debug info. Returns the  unique label that was
2190 // emitted and which provides correspondence to the source line list.
2191 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S,
2192                                   unsigned Flags) {
2193   ::recordSourceLine(*Asm, Line, Col, S, Flags,
2194                      Asm->OutStreamer->getContext().getDwarfCompileUnitID(),
2195                      getDwarfVersion(), getUnits());
2196 }
2197 
2198 //===----------------------------------------------------------------------===//
2199 // Emit Methods
2200 //===----------------------------------------------------------------------===//
2201 
2202 // Emit the debug info section.
2203 void DwarfDebug::emitDebugInfo() {
2204   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2205   Holder.emitUnits(/* UseOffsets */ false);
2206 }
2207 
2208 // Emit the abbreviation section.
2209 void DwarfDebug::emitAbbreviations() {
2210   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2211 
2212   Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection());
2213 }
2214 
2215 void DwarfDebug::emitStringOffsetsTableHeader() {
2216   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2217   Holder.getStringPool().emitStringOffsetsTableHeader(
2218       *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(),
2219       Holder.getStringOffsetsStartSym());
2220 }
2221 
2222 template <typename AccelTableT>
2223 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section,
2224                            StringRef TableName) {
2225   Asm->OutStreamer->SwitchSection(Section);
2226 
2227   // Emit the full data.
2228   emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol());
2229 }
2230 
2231 void DwarfDebug::emitAccelDebugNames() {
2232   // Don't emit anything if we have no compilation units to index.
2233   if (getUnits().empty())
2234     return;
2235 
2236   emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits());
2237 }
2238 
2239 // Emit visible names into a hashed accelerator table section.
2240 void DwarfDebug::emitAccelNames() {
2241   emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(),
2242             "Names");
2243 }
2244 
2245 // Emit objective C classes and categories into a hashed accelerator table
2246 // section.
2247 void DwarfDebug::emitAccelObjC() {
2248   emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(),
2249             "ObjC");
2250 }
2251 
2252 // Emit namespace dies into a hashed accelerator table.
2253 void DwarfDebug::emitAccelNamespaces() {
2254   emitAccel(AccelNamespace,
2255             Asm->getObjFileLowering().getDwarfAccelNamespaceSection(),
2256             "namespac");
2257 }
2258 
2259 // Emit type dies into a hashed accelerator table.
2260 void DwarfDebug::emitAccelTypes() {
2261   emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(),
2262             "types");
2263 }
2264 
2265 // Public name handling.
2266 // The format for the various pubnames:
2267 //
2268 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU
2269 // for the DIE that is named.
2270 //
2271 // gnu pubnames - offset/index value/name tuples where the offset is the offset
2272 // into the CU and the index value is computed according to the type of value
2273 // for the DIE that is named.
2274 //
2275 // For type units the offset is the offset of the skeleton DIE. For split dwarf
2276 // it's the offset within the debug_info/debug_types dwo section, however, the
2277 // reference in the pubname header doesn't change.
2278 
2279 /// computeIndexValue - Compute the gdb index value for the DIE and CU.
2280 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU,
2281                                                         const DIE *Die) {
2282   // Entities that ended up only in a Type Unit reference the CU instead (since
2283   // the pub entry has offsets within the CU there's no real offset that can be
2284   // provided anyway). As it happens all such entities (namespaces and types,
2285   // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out
2286   // not to be true it would be necessary to persist this information from the
2287   // point at which the entry is added to the index data structure - since by
2288   // the time the index is built from that, the original type/namespace DIE in a
2289   // type unit has already been destroyed so it can't be queried for properties
2290   // like tag, etc.
2291   if (Die->getTag() == dwarf::DW_TAG_compile_unit)
2292     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE,
2293                                           dwarf::GIEL_EXTERNAL);
2294   dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC;
2295 
2296   // We could have a specification DIE that has our most of our knowledge,
2297   // look for that now.
2298   if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) {
2299     DIE &SpecDIE = SpecVal.getDIEEntry().getEntry();
2300     if (SpecDIE.findAttribute(dwarf::DW_AT_external))
2301       Linkage = dwarf::GIEL_EXTERNAL;
2302   } else if (Die->findAttribute(dwarf::DW_AT_external))
2303     Linkage = dwarf::GIEL_EXTERNAL;
2304 
2305   switch (Die->getTag()) {
2306   case dwarf::DW_TAG_class_type:
2307   case dwarf::DW_TAG_structure_type:
2308   case dwarf::DW_TAG_union_type:
2309   case dwarf::DW_TAG_enumeration_type:
2310     return dwarf::PubIndexEntryDescriptor(
2311         dwarf::GIEK_TYPE,
2312         dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage())
2313             ? dwarf::GIEL_EXTERNAL
2314             : dwarf::GIEL_STATIC);
2315   case dwarf::DW_TAG_typedef:
2316   case dwarf::DW_TAG_base_type:
2317   case dwarf::DW_TAG_subrange_type:
2318     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC);
2319   case dwarf::DW_TAG_namespace:
2320     return dwarf::GIEK_TYPE;
2321   case dwarf::DW_TAG_subprogram:
2322     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage);
2323   case dwarf::DW_TAG_variable:
2324     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage);
2325   case dwarf::DW_TAG_enumerator:
2326     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE,
2327                                           dwarf::GIEL_STATIC);
2328   default:
2329     return dwarf::GIEK_NONE;
2330   }
2331 }
2332 
2333 /// emitDebugPubSections - Emit visible names and types into debug pubnames and
2334 /// pubtypes sections.
2335 void DwarfDebug::emitDebugPubSections() {
2336   for (const auto &NU : CUMap) {
2337     DwarfCompileUnit *TheU = NU.second;
2338     if (!TheU->hasDwarfPubSections())
2339       continue;
2340 
2341     bool GnuStyle = TheU->getCUNode()->getNameTableKind() ==
2342                     DICompileUnit::DebugNameTableKind::GNU;
2343 
2344     Asm->OutStreamer->SwitchSection(
2345         GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection()
2346                  : Asm->getObjFileLowering().getDwarfPubNamesSection());
2347     emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames());
2348 
2349     Asm->OutStreamer->SwitchSection(
2350         GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection()
2351                  : Asm->getObjFileLowering().getDwarfPubTypesSection());
2352     emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes());
2353   }
2354 }
2355 
2356 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) {
2357   if (useSectionsAsReferences())
2358     Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(),
2359                          CU.getDebugSectionOffset());
2360   else
2361     Asm->emitDwarfSymbolReference(CU.getLabelBegin());
2362 }
2363 
2364 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name,
2365                                      DwarfCompileUnit *TheU,
2366                                      const StringMap<const DIE *> &Globals) {
2367   if (auto *Skeleton = TheU->getSkeleton())
2368     TheU = Skeleton;
2369 
2370   // Emit the header.
2371   Asm->OutStreamer->AddComment("Length of Public " + Name + " Info");
2372   MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin");
2373   MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end");
2374   Asm->emitLabelDifference(EndLabel, BeginLabel, 4);
2375 
2376   Asm->OutStreamer->emitLabel(BeginLabel);
2377 
2378   Asm->OutStreamer->AddComment("DWARF Version");
2379   Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION);
2380 
2381   Asm->OutStreamer->AddComment("Offset of Compilation Unit Info");
2382   emitSectionReference(*TheU);
2383 
2384   Asm->OutStreamer->AddComment("Compilation Unit Length");
2385   Asm->emitInt32(TheU->getLength());
2386 
2387   // Emit the pubnames for this compilation unit.
2388   for (const auto &GI : Globals) {
2389     const char *Name = GI.getKeyData();
2390     const DIE *Entity = GI.second;
2391 
2392     Asm->OutStreamer->AddComment("DIE offset");
2393     Asm->emitInt32(Entity->getOffset());
2394 
2395     if (GnuStyle) {
2396       dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity);
2397       Asm->OutStreamer->AddComment(
2398           Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) +
2399           ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage));
2400       Asm->emitInt8(Desc.toBits());
2401     }
2402 
2403     Asm->OutStreamer->AddComment("External Name");
2404     Asm->OutStreamer->emitBytes(StringRef(Name, GI.getKeyLength() + 1));
2405   }
2406 
2407   Asm->OutStreamer->AddComment("End Mark");
2408   Asm->emitInt32(0);
2409   Asm->OutStreamer->emitLabel(EndLabel);
2410 }
2411 
2412 /// Emit null-terminated strings into a debug str section.
2413 void DwarfDebug::emitDebugStr() {
2414   MCSection *StringOffsetsSection = nullptr;
2415   if (useSegmentedStringOffsetsTable()) {
2416     emitStringOffsetsTableHeader();
2417     StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection();
2418   }
2419   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2420   Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(),
2421                      StringOffsetsSection, /* UseRelativeOffsets = */ true);
2422 }
2423 
2424 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer,
2425                                    const DebugLocStream::Entry &Entry,
2426                                    const DwarfCompileUnit *CU) {
2427   auto &&Comments = DebugLocs.getComments(Entry);
2428   auto Comment = Comments.begin();
2429   auto End = Comments.end();
2430 
2431   // The expressions are inserted into a byte stream rather early (see
2432   // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that
2433   // need to reference a base_type DIE the offset of that DIE is not yet known.
2434   // To deal with this we instead insert a placeholder early and then extract
2435   // it here and replace it with the real reference.
2436   unsigned PtrSize = Asm->MAI->getCodePointerSize();
2437   DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(),
2438                                     DebugLocs.getBytes(Entry).size()),
2439                           Asm->getDataLayout().isLittleEndian(), PtrSize);
2440   DWARFExpression Expr(Data, PtrSize, Asm->OutContext.getDwarfFormat());
2441 
2442   using Encoding = DWARFExpression::Operation::Encoding;
2443   uint64_t Offset = 0;
2444   for (auto &Op : Expr) {
2445     assert(Op.getCode() != dwarf::DW_OP_const_type &&
2446            "3 operand ops not yet supported");
2447     Streamer.EmitInt8(Op.getCode(), Comment != End ? *(Comment++) : "");
2448     Offset++;
2449     for (unsigned I = 0; I < 2; ++I) {
2450       if (Op.getDescription().Op[I] == Encoding::SizeNA)
2451         continue;
2452       if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) {
2453         uint64_t Offset =
2454             CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset();
2455         assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit");
2456         Streamer.emitULEB128(Offset, "", ULEB128PadSize);
2457         // Make sure comments stay aligned.
2458         for (unsigned J = 0; J < ULEB128PadSize; ++J)
2459           if (Comment != End)
2460             Comment++;
2461       } else {
2462         for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J)
2463           Streamer.EmitInt8(Data.getData()[J], Comment != End ? *(Comment++) : "");
2464       }
2465       Offset = Op.getOperandEndOffset(I);
2466     }
2467     assert(Offset == Op.getEndOffset());
2468   }
2469 }
2470 
2471 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT,
2472                                    const DbgValueLoc &Value,
2473                                    DwarfExpression &DwarfExpr) {
2474   auto *DIExpr = Value.getExpression();
2475   DIExpressionCursor ExprCursor(DIExpr);
2476   DwarfExpr.addFragmentOffset(DIExpr);
2477   // Regular entry.
2478   if (Value.isInt()) {
2479     if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed ||
2480                BT->getEncoding() == dwarf::DW_ATE_signed_char))
2481       DwarfExpr.addSignedConstant(Value.getInt());
2482     else
2483       DwarfExpr.addUnsignedConstant(Value.getInt());
2484   } else if (Value.isLocation()) {
2485     MachineLocation Location = Value.getLoc();
2486     DwarfExpr.setLocation(Location, DIExpr);
2487     DIExpressionCursor Cursor(DIExpr);
2488 
2489     if (DIExpr->isEntryValue())
2490       DwarfExpr.beginEntryValueExpression(Cursor);
2491 
2492     const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
2493     if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg()))
2494       return;
2495     return DwarfExpr.addExpression(std::move(Cursor));
2496   } else if (Value.isTargetIndexLocation()) {
2497     TargetIndexLocation Loc = Value.getTargetIndexLocation();
2498     // TODO TargetIndexLocation is a target-independent. Currently only the WebAssembly-specific
2499     // encoding is supported.
2500     DwarfExpr.addWasmLocation(Loc.Index, static_cast<uint64_t>(Loc.Offset));
2501       DwarfExpr.addExpression(std::move(ExprCursor));
2502       return;
2503   } else if (Value.isConstantFP()) {
2504     APInt RawBytes = Value.getConstantFP()->getValueAPF().bitcastToAPInt();
2505     DwarfExpr.addUnsignedConstant(RawBytes);
2506   }
2507   DwarfExpr.addExpression(std::move(ExprCursor));
2508 }
2509 
2510 void DebugLocEntry::finalize(const AsmPrinter &AP,
2511                              DebugLocStream::ListBuilder &List,
2512                              const DIBasicType *BT,
2513                              DwarfCompileUnit &TheCU) {
2514   assert(!Values.empty() &&
2515          "location list entries without values are redundant");
2516   assert(Begin != End && "unexpected location list entry with empty range");
2517   DebugLocStream::EntryBuilder Entry(List, Begin, End);
2518   BufferByteStreamer Streamer = Entry.getStreamer();
2519   DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU);
2520   const DbgValueLoc &Value = Values[0];
2521   if (Value.isFragment()) {
2522     // Emit all fragments that belong to the same variable and range.
2523     assert(llvm::all_of(Values, [](DbgValueLoc P) {
2524           return P.isFragment();
2525         }) && "all values are expected to be fragments");
2526     assert(llvm::is_sorted(Values) && "fragments are expected to be sorted");
2527 
2528     for (auto Fragment : Values)
2529       DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr);
2530 
2531   } else {
2532     assert(Values.size() == 1 && "only fragments may have >1 value");
2533     DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr);
2534   }
2535   DwarfExpr.finalize();
2536   if (DwarfExpr.TagOffset)
2537     List.setTagOffset(*DwarfExpr.TagOffset);
2538 }
2539 
2540 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry,
2541                                            const DwarfCompileUnit *CU) {
2542   // Emit the size.
2543   Asm->OutStreamer->AddComment("Loc expr size");
2544   if (getDwarfVersion() >= 5)
2545     Asm->emitULEB128(DebugLocs.getBytes(Entry).size());
2546   else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max())
2547     Asm->emitInt16(DebugLocs.getBytes(Entry).size());
2548   else {
2549     // The entry is too big to fit into 16 bit, drop it as there is nothing we
2550     // can do.
2551     Asm->emitInt16(0);
2552     return;
2553   }
2554   // Emit the entry.
2555   APByteStreamer Streamer(*Asm);
2556   emitDebugLocEntry(Streamer, Entry, CU);
2557 }
2558 
2559 // Emit the header of a DWARF 5 range list table list table. Returns the symbol
2560 // that designates the end of the table for the caller to emit when the table is
2561 // complete.
2562 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm,
2563                                          const DwarfFile &Holder) {
2564   MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer);
2565 
2566   Asm->OutStreamer->AddComment("Offset entry count");
2567   Asm->emitInt32(Holder.getRangeLists().size());
2568   Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym());
2569 
2570   for (const RangeSpanList &List : Holder.getRangeLists())
2571     Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(), 4);
2572 
2573   return TableEnd;
2574 }
2575 
2576 // Emit the header of a DWARF 5 locations list table. Returns the symbol that
2577 // designates the end of the table for the caller to emit when the table is
2578 // complete.
2579 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm,
2580                                          const DwarfDebug &DD) {
2581   MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer);
2582 
2583   const auto &DebugLocs = DD.getDebugLocs();
2584 
2585   Asm->OutStreamer->AddComment("Offset entry count");
2586   Asm->emitInt32(DebugLocs.getLists().size());
2587   Asm->OutStreamer->emitLabel(DebugLocs.getSym());
2588 
2589   for (const auto &List : DebugLocs.getLists())
2590     Asm->emitLabelDifference(List.Label, DebugLocs.getSym(), 4);
2591 
2592   return TableEnd;
2593 }
2594 
2595 template <typename Ranges, typename PayloadEmitter>
2596 static void emitRangeList(
2597     DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R,
2598     const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair,
2599     unsigned StartxLength, unsigned EndOfList,
2600     StringRef (*StringifyEnum)(unsigned),
2601     bool ShouldUseBaseAddress,
2602     PayloadEmitter EmitPayload) {
2603 
2604   auto Size = Asm->MAI->getCodePointerSize();
2605   bool UseDwarf5 = DD.getDwarfVersion() >= 5;
2606 
2607   // Emit our symbol so we can find the beginning of the range.
2608   Asm->OutStreamer->emitLabel(Sym);
2609 
2610   // Gather all the ranges that apply to the same section so they can share
2611   // a base address entry.
2612   MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges;
2613 
2614   for (const auto &Range : R)
2615     SectionRanges[&Range.Begin->getSection()].push_back(&Range);
2616 
2617   const MCSymbol *CUBase = CU.getBaseAddress();
2618   bool BaseIsSet = false;
2619   for (const auto &P : SectionRanges) {
2620     auto *Base = CUBase;
2621     if (!Base && ShouldUseBaseAddress) {
2622       const MCSymbol *Begin = P.second.front()->Begin;
2623       const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection());
2624       if (!UseDwarf5) {
2625         Base = NewBase;
2626         BaseIsSet = true;
2627         Asm->OutStreamer->emitIntValue(-1, Size);
2628         Asm->OutStreamer->AddComment("  base address");
2629         Asm->OutStreamer->emitSymbolValue(Base, Size);
2630       } else if (NewBase != Begin || P.second.size() > 1) {
2631         // Only use a base address if
2632         //  * the existing pool address doesn't match (NewBase != Begin)
2633         //  * or, there's more than one entry to share the base address
2634         Base = NewBase;
2635         BaseIsSet = true;
2636         Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx));
2637         Asm->emitInt8(BaseAddressx);
2638         Asm->OutStreamer->AddComment("  base address index");
2639         Asm->emitULEB128(DD.getAddressPool().getIndex(Base));
2640       }
2641     } else if (BaseIsSet && !UseDwarf5) {
2642       BaseIsSet = false;
2643       assert(!Base);
2644       Asm->OutStreamer->emitIntValue(-1, Size);
2645       Asm->OutStreamer->emitIntValue(0, Size);
2646     }
2647 
2648     for (const auto *RS : P.second) {
2649       const MCSymbol *Begin = RS->Begin;
2650       const MCSymbol *End = RS->End;
2651       assert(Begin && "Range without a begin symbol?");
2652       assert(End && "Range without an end symbol?");
2653       if (Base) {
2654         if (UseDwarf5) {
2655           // Emit offset_pair when we have a base.
2656           Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair));
2657           Asm->emitInt8(OffsetPair);
2658           Asm->OutStreamer->AddComment("  starting offset");
2659           Asm->emitLabelDifferenceAsULEB128(Begin, Base);
2660           Asm->OutStreamer->AddComment("  ending offset");
2661           Asm->emitLabelDifferenceAsULEB128(End, Base);
2662         } else {
2663           Asm->emitLabelDifference(Begin, Base, Size);
2664           Asm->emitLabelDifference(End, Base, Size);
2665         }
2666       } else if (UseDwarf5) {
2667         Asm->OutStreamer->AddComment(StringifyEnum(StartxLength));
2668         Asm->emitInt8(StartxLength);
2669         Asm->OutStreamer->AddComment("  start index");
2670         Asm->emitULEB128(DD.getAddressPool().getIndex(Begin));
2671         Asm->OutStreamer->AddComment("  length");
2672         Asm->emitLabelDifferenceAsULEB128(End, Begin);
2673       } else {
2674         Asm->OutStreamer->emitSymbolValue(Begin, Size);
2675         Asm->OutStreamer->emitSymbolValue(End, Size);
2676       }
2677       EmitPayload(*RS);
2678     }
2679   }
2680 
2681   if (UseDwarf5) {
2682     Asm->OutStreamer->AddComment(StringifyEnum(EndOfList));
2683     Asm->emitInt8(EndOfList);
2684   } else {
2685     // Terminate the list with two 0 values.
2686     Asm->OutStreamer->emitIntValue(0, Size);
2687     Asm->OutStreamer->emitIntValue(0, Size);
2688   }
2689 }
2690 
2691 // Handles emission of both debug_loclist / debug_loclist.dwo
2692 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) {
2693   emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List),
2694                 *List.CU, dwarf::DW_LLE_base_addressx,
2695                 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length,
2696                 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString,
2697                 /* ShouldUseBaseAddress */ true,
2698                 [&](const DebugLocStream::Entry &E) {
2699                   DD.emitDebugLocEntryLocation(E, List.CU);
2700                 });
2701 }
2702 
2703 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) {
2704   if (DebugLocs.getLists().empty())
2705     return;
2706 
2707   Asm->OutStreamer->SwitchSection(Sec);
2708 
2709   MCSymbol *TableEnd = nullptr;
2710   if (getDwarfVersion() >= 5)
2711     TableEnd = emitLoclistsTableHeader(Asm, *this);
2712 
2713   for (const auto &List : DebugLocs.getLists())
2714     emitLocList(*this, Asm, List);
2715 
2716   if (TableEnd)
2717     Asm->OutStreamer->emitLabel(TableEnd);
2718 }
2719 
2720 // Emit locations into the .debug_loc/.debug_loclists section.
2721 void DwarfDebug::emitDebugLoc() {
2722   emitDebugLocImpl(
2723       getDwarfVersion() >= 5
2724           ? Asm->getObjFileLowering().getDwarfLoclistsSection()
2725           : Asm->getObjFileLowering().getDwarfLocSection());
2726 }
2727 
2728 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section.
2729 void DwarfDebug::emitDebugLocDWO() {
2730   if (getDwarfVersion() >= 5) {
2731     emitDebugLocImpl(
2732         Asm->getObjFileLowering().getDwarfLoclistsDWOSection());
2733 
2734     return;
2735   }
2736 
2737   for (const auto &List : DebugLocs.getLists()) {
2738     Asm->OutStreamer->SwitchSection(
2739         Asm->getObjFileLowering().getDwarfLocDWOSection());
2740     Asm->OutStreamer->emitLabel(List.Label);
2741 
2742     for (const auto &Entry : DebugLocs.getEntries(List)) {
2743       // GDB only supports startx_length in pre-standard split-DWARF.
2744       // (in v5 standard loclists, it currently* /only/ supports base_address +
2745       // offset_pair, so the implementations can't really share much since they
2746       // need to use different representations)
2747       // * as of October 2018, at least
2748       //
2749       // In v5 (see emitLocList), this uses SectionLabels to reuse existing
2750       // addresses in the address pool to minimize object size/relocations.
2751       Asm->emitInt8(dwarf::DW_LLE_startx_length);
2752       unsigned idx = AddrPool.getIndex(Entry.Begin);
2753       Asm->emitULEB128(idx);
2754       // Also the pre-standard encoding is slightly different, emitting this as
2755       // an address-length entry here, but its a ULEB128 in DWARFv5 loclists.
2756       Asm->emitLabelDifference(Entry.End, Entry.Begin, 4);
2757       emitDebugLocEntryLocation(Entry, List.CU);
2758     }
2759     Asm->emitInt8(dwarf::DW_LLE_end_of_list);
2760   }
2761 }
2762 
2763 struct ArangeSpan {
2764   const MCSymbol *Start, *End;
2765 };
2766 
2767 // Emit a debug aranges section, containing a CU lookup for any
2768 // address we can tie back to a CU.
2769 void DwarfDebug::emitDebugARanges() {
2770   // Provides a unique id per text section.
2771   MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap;
2772 
2773   // Filter labels by section.
2774   for (const SymbolCU &SCU : ArangeLabels) {
2775     if (SCU.Sym->isInSection()) {
2776       // Make a note of this symbol and it's section.
2777       MCSection *Section = &SCU.Sym->getSection();
2778       if (!Section->getKind().isMetadata())
2779         SectionMap[Section].push_back(SCU);
2780     } else {
2781       // Some symbols (e.g. common/bss on mach-o) can have no section but still
2782       // appear in the output. This sucks as we rely on sections to build
2783       // arange spans. We can do it without, but it's icky.
2784       SectionMap[nullptr].push_back(SCU);
2785     }
2786   }
2787 
2788   DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans;
2789 
2790   for (auto &I : SectionMap) {
2791     MCSection *Section = I.first;
2792     SmallVector<SymbolCU, 8> &List = I.second;
2793     if (List.size() < 1)
2794       continue;
2795 
2796     // If we have no section (e.g. common), just write out
2797     // individual spans for each symbol.
2798     if (!Section) {
2799       for (const SymbolCU &Cur : List) {
2800         ArangeSpan Span;
2801         Span.Start = Cur.Sym;
2802         Span.End = nullptr;
2803         assert(Cur.CU);
2804         Spans[Cur.CU].push_back(Span);
2805       }
2806       continue;
2807     }
2808 
2809     // Sort the symbols by offset within the section.
2810     llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) {
2811       unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0;
2812       unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0;
2813 
2814       // Symbols with no order assigned should be placed at the end.
2815       // (e.g. section end labels)
2816       if (IA == 0)
2817         return false;
2818       if (IB == 0)
2819         return true;
2820       return IA < IB;
2821     });
2822 
2823     // Insert a final terminator.
2824     List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section)));
2825 
2826     // Build spans between each label.
2827     const MCSymbol *StartSym = List[0].Sym;
2828     for (size_t n = 1, e = List.size(); n < e; n++) {
2829       const SymbolCU &Prev = List[n - 1];
2830       const SymbolCU &Cur = List[n];
2831 
2832       // Try and build the longest span we can within the same CU.
2833       if (Cur.CU != Prev.CU) {
2834         ArangeSpan Span;
2835         Span.Start = StartSym;
2836         Span.End = Cur.Sym;
2837         assert(Prev.CU);
2838         Spans[Prev.CU].push_back(Span);
2839         StartSym = Cur.Sym;
2840       }
2841     }
2842   }
2843 
2844   // Start the dwarf aranges section.
2845   Asm->OutStreamer->SwitchSection(
2846       Asm->getObjFileLowering().getDwarfARangesSection());
2847 
2848   unsigned PtrSize = Asm->MAI->getCodePointerSize();
2849 
2850   // Build a list of CUs used.
2851   std::vector<DwarfCompileUnit *> CUs;
2852   for (const auto &it : Spans) {
2853     DwarfCompileUnit *CU = it.first;
2854     CUs.push_back(CU);
2855   }
2856 
2857   // Sort the CU list (again, to ensure consistent output order).
2858   llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) {
2859     return A->getUniqueID() < B->getUniqueID();
2860   });
2861 
2862   // Emit an arange table for each CU we used.
2863   for (DwarfCompileUnit *CU : CUs) {
2864     std::vector<ArangeSpan> &List = Spans[CU];
2865 
2866     // Describe the skeleton CU's offset and length, not the dwo file's.
2867     if (auto *Skel = CU->getSkeleton())
2868       CU = Skel;
2869 
2870     // Emit size of content not including length itself.
2871     unsigned ContentSize =
2872         sizeof(int16_t) + // DWARF ARange version number
2873         sizeof(int32_t) + // Offset of CU in the .debug_info section
2874         sizeof(int8_t) +  // Pointer Size (in bytes)
2875         sizeof(int8_t);   // Segment Size (in bytes)
2876 
2877     unsigned TupleSize = PtrSize * 2;
2878 
2879     // 7.20 in the Dwarf specs requires the table to be aligned to a tuple.
2880     unsigned Padding =
2881         offsetToAlignment(sizeof(int32_t) + ContentSize, Align(TupleSize));
2882 
2883     ContentSize += Padding;
2884     ContentSize += (List.size() + 1) * TupleSize;
2885 
2886     // For each compile unit, write the list of spans it covers.
2887     Asm->OutStreamer->AddComment("Length of ARange Set");
2888     Asm->emitInt32(ContentSize);
2889     Asm->OutStreamer->AddComment("DWARF Arange version number");
2890     Asm->emitInt16(dwarf::DW_ARANGES_VERSION);
2891     Asm->OutStreamer->AddComment("Offset Into Debug Info Section");
2892     emitSectionReference(*CU);
2893     Asm->OutStreamer->AddComment("Address Size (in bytes)");
2894     Asm->emitInt8(PtrSize);
2895     Asm->OutStreamer->AddComment("Segment Size (in bytes)");
2896     Asm->emitInt8(0);
2897 
2898     Asm->OutStreamer->emitFill(Padding, 0xff);
2899 
2900     for (const ArangeSpan &Span : List) {
2901       Asm->emitLabelReference(Span.Start, PtrSize);
2902 
2903       // Calculate the size as being from the span start to it's end.
2904       if (Span.End) {
2905         Asm->emitLabelDifference(Span.End, Span.Start, PtrSize);
2906       } else {
2907         // For symbols without an end marker (e.g. common), we
2908         // write a single arange entry containing just that one symbol.
2909         uint64_t Size = SymSize[Span.Start];
2910         if (Size == 0)
2911           Size = 1;
2912 
2913         Asm->OutStreamer->emitIntValue(Size, PtrSize);
2914       }
2915     }
2916 
2917     Asm->OutStreamer->AddComment("ARange terminator");
2918     Asm->OutStreamer->emitIntValue(0, PtrSize);
2919     Asm->OutStreamer->emitIntValue(0, PtrSize);
2920   }
2921 }
2922 
2923 /// Emit a single range list. We handle both DWARF v5 and earlier.
2924 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm,
2925                           const RangeSpanList &List) {
2926   emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU,
2927                 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair,
2928                 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list,
2929                 llvm::dwarf::RangeListEncodingString,
2930                 List.CU->getCUNode()->getRangesBaseAddress() ||
2931                     DD.getDwarfVersion() >= 5,
2932                 [](auto) {});
2933 }
2934 
2935 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) {
2936   if (Holder.getRangeLists().empty())
2937     return;
2938 
2939   assert(useRangesSection());
2940   assert(!CUMap.empty());
2941   assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) {
2942     return !Pair.second->getCUNode()->isDebugDirectivesOnly();
2943   }));
2944 
2945   Asm->OutStreamer->SwitchSection(Section);
2946 
2947   MCSymbol *TableEnd = nullptr;
2948   if (getDwarfVersion() >= 5)
2949     TableEnd = emitRnglistsTableHeader(Asm, Holder);
2950 
2951   for (const RangeSpanList &List : Holder.getRangeLists())
2952     emitRangeList(*this, Asm, List);
2953 
2954   if (TableEnd)
2955     Asm->OutStreamer->emitLabel(TableEnd);
2956 }
2957 
2958 /// Emit address ranges into the .debug_ranges section or into the DWARF v5
2959 /// .debug_rnglists section.
2960 void DwarfDebug::emitDebugRanges() {
2961   const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2962 
2963   emitDebugRangesImpl(Holder,
2964                       getDwarfVersion() >= 5
2965                           ? Asm->getObjFileLowering().getDwarfRnglistsSection()
2966                           : Asm->getObjFileLowering().getDwarfRangesSection());
2967 }
2968 
2969 void DwarfDebug::emitDebugRangesDWO() {
2970   emitDebugRangesImpl(InfoHolder,
2971                       Asm->getObjFileLowering().getDwarfRnglistsDWOSection());
2972 }
2973 
2974 /// Emit the header of a DWARF 5 macro section, or the GNU extension for
2975 /// DWARF 4.
2976 static void emitMacroHeader(AsmPrinter *Asm, const DwarfDebug &DD,
2977                             const DwarfCompileUnit &CU, uint16_t DwarfVersion) {
2978   enum HeaderFlagMask {
2979 #define HANDLE_MACRO_FLAG(ID, NAME) MACRO_FLAG_##NAME = ID,
2980 #include "llvm/BinaryFormat/Dwarf.def"
2981   };
2982   uint8_t Flags = 0;
2983   Asm->OutStreamer->AddComment("Macro information version");
2984   Asm->emitInt16(DwarfVersion >= 5 ? DwarfVersion : 4);
2985   // We are setting Offset and line offset flags unconditionally here,
2986   // since we're only supporting DWARF32 and line offset should be mostly
2987   // present.
2988   // FIXME: Add support for DWARF64.
2989   Flags |= MACRO_FLAG_DEBUG_LINE_OFFSET;
2990   Asm->OutStreamer->AddComment("Flags: 32 bit, debug_line_offset present");
2991   Asm->emitInt8(Flags);
2992   Asm->OutStreamer->AddComment("debug_line_offset");
2993   if (DD.useSplitDwarf())
2994     Asm->OutStreamer->emitIntValue(0, /*Size=*/4);
2995   else
2996     Asm->OutStreamer->emitSymbolValue(CU.getLineTableStartSym(), /*Size=*/4);
2997 }
2998 
2999 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) {
3000   for (auto *MN : Nodes) {
3001     if (auto *M = dyn_cast<DIMacro>(MN))
3002       emitMacro(*M);
3003     else if (auto *F = dyn_cast<DIMacroFile>(MN))
3004       emitMacroFile(*F, U);
3005     else
3006       llvm_unreachable("Unexpected DI type!");
3007   }
3008 }
3009 
3010 void DwarfDebug::emitMacro(DIMacro &M) {
3011   StringRef Name = M.getName();
3012   StringRef Value = M.getValue();
3013 
3014   // There should be one space between the macro name and the macro value in
3015   // define entries. In undef entries, only the macro name is emitted.
3016   std::string Str = Value.empty() ? Name.str() : (Name + " " + Value).str();
3017 
3018   if (UseDebugMacroSection) {
3019     if (getDwarfVersion() >= 5) {
3020       unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define
3021                           ? dwarf::DW_MACRO_define_strx
3022                           : dwarf::DW_MACRO_undef_strx;
3023       Asm->OutStreamer->AddComment(dwarf::MacroString(Type));
3024       Asm->emitULEB128(Type);
3025       Asm->OutStreamer->AddComment("Line Number");
3026       Asm->emitULEB128(M.getLine());
3027       Asm->OutStreamer->AddComment("Macro String");
3028       Asm->emitULEB128(
3029           InfoHolder.getStringPool().getIndexedEntry(*Asm, Str).getIndex());
3030     } else {
3031       unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define
3032                           ? dwarf::DW_MACRO_GNU_define_indirect
3033                           : dwarf::DW_MACRO_GNU_undef_indirect;
3034       Asm->OutStreamer->AddComment(dwarf::GnuMacroString(Type));
3035       Asm->emitULEB128(Type);
3036       Asm->OutStreamer->AddComment("Line Number");
3037       Asm->emitULEB128(M.getLine());
3038       Asm->OutStreamer->AddComment("Macro String");
3039       // FIXME: Add support for DWARF64.
3040       Asm->OutStreamer->emitSymbolValue(
3041           InfoHolder.getStringPool().getEntry(*Asm, Str).getSymbol(),
3042           /*Size=*/4);
3043     }
3044   } else {
3045     Asm->OutStreamer->AddComment(dwarf::MacinfoString(M.getMacinfoType()));
3046     Asm->emitULEB128(M.getMacinfoType());
3047     Asm->OutStreamer->AddComment("Line Number");
3048     Asm->emitULEB128(M.getLine());
3049     Asm->OutStreamer->AddComment("Macro String");
3050     Asm->OutStreamer->emitBytes(Str);
3051     Asm->emitInt8('\0');
3052   }
3053 }
3054 
3055 void DwarfDebug::emitMacroFileImpl(
3056     DIMacroFile &MF, DwarfCompileUnit &U, unsigned StartFile, unsigned EndFile,
3057     StringRef (*MacroFormToString)(unsigned Form)) {
3058 
3059   Asm->OutStreamer->AddComment(MacroFormToString(StartFile));
3060   Asm->emitULEB128(StartFile);
3061   Asm->OutStreamer->AddComment("Line Number");
3062   Asm->emitULEB128(MF.getLine());
3063   Asm->OutStreamer->AddComment("File Number");
3064   DIFile &F = *MF.getFile();
3065   if (useSplitDwarf())
3066     Asm->emitULEB128(getDwoLineTable(U)->getFile(
3067         F.getDirectory(), F.getFilename(), getMD5AsBytes(&F),
3068         Asm->OutContext.getDwarfVersion(), F.getSource()));
3069   else
3070     Asm->emitULEB128(U.getOrCreateSourceID(&F));
3071   handleMacroNodes(MF.getElements(), U);
3072   Asm->OutStreamer->AddComment(MacroFormToString(EndFile));
3073   Asm->emitULEB128(EndFile);
3074 }
3075 
3076 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) {
3077   // DWARFv5 macro and DWARFv4 macinfo share some common encodings,
3078   // so for readibility/uniformity, We are explicitly emitting those.
3079   assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file);
3080   if (UseDebugMacroSection)
3081     emitMacroFileImpl(
3082         F, U, dwarf::DW_MACRO_start_file, dwarf::DW_MACRO_end_file,
3083         (getDwarfVersion() >= 5) ? dwarf::MacroString : dwarf::GnuMacroString);
3084   else
3085     emitMacroFileImpl(F, U, dwarf::DW_MACINFO_start_file,
3086                       dwarf::DW_MACINFO_end_file, dwarf::MacinfoString);
3087 }
3088 
3089 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) {
3090   for (const auto &P : CUMap) {
3091     auto &TheCU = *P.second;
3092     auto *SkCU = TheCU.getSkeleton();
3093     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
3094     auto *CUNode = cast<DICompileUnit>(P.first);
3095     DIMacroNodeArray Macros = CUNode->getMacros();
3096     if (Macros.empty())
3097       continue;
3098     Asm->OutStreamer->SwitchSection(Section);
3099     Asm->OutStreamer->emitLabel(U.getMacroLabelBegin());
3100     if (UseDebugMacroSection)
3101       emitMacroHeader(Asm, *this, U, getDwarfVersion());
3102     handleMacroNodes(Macros, U);
3103     Asm->OutStreamer->AddComment("End Of Macro List Mark");
3104     Asm->emitInt8(0);
3105   }
3106 }
3107 
3108 /// Emit macros into a debug macinfo/macro section.
3109 void DwarfDebug::emitDebugMacinfo() {
3110   auto &ObjLower = Asm->getObjFileLowering();
3111   emitDebugMacinfoImpl(UseDebugMacroSection
3112                            ? ObjLower.getDwarfMacroSection()
3113                            : ObjLower.getDwarfMacinfoSection());
3114 }
3115 
3116 void DwarfDebug::emitDebugMacinfoDWO() {
3117   auto &ObjLower = Asm->getObjFileLowering();
3118   emitDebugMacinfoImpl(UseDebugMacroSection
3119                            ? ObjLower.getDwarfMacroDWOSection()
3120                            : ObjLower.getDwarfMacinfoDWOSection());
3121 }
3122 
3123 // DWARF5 Experimental Separate Dwarf emitters.
3124 
3125 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die,
3126                                   std::unique_ptr<DwarfCompileUnit> NewU) {
3127 
3128   if (!CompilationDir.empty())
3129     NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
3130   addGnuPubAttributes(*NewU, Die);
3131 
3132   SkeletonHolder.addUnit(std::move(NewU));
3133 }
3134 
3135 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) {
3136 
3137   auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
3138       CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder,
3139       UnitKind::Skeleton);
3140   DwarfCompileUnit &NewCU = *OwnedUnit;
3141   NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
3142 
3143   NewCU.initStmtList();
3144 
3145   if (useSegmentedStringOffsetsTable())
3146     NewCU.addStringOffsetsStart();
3147 
3148   initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit));
3149 
3150   return NewCU;
3151 }
3152 
3153 // Emit the .debug_info.dwo section for separated dwarf. This contains the
3154 // compile units that would normally be in debug_info.
3155 void DwarfDebug::emitDebugInfoDWO() {
3156   assert(useSplitDwarf() && "No split dwarf debug info?");
3157   // Don't emit relocations into the dwo file.
3158   InfoHolder.emitUnits(/* UseOffsets */ true);
3159 }
3160 
3161 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the
3162 // abbreviations for the .debug_info.dwo section.
3163 void DwarfDebug::emitDebugAbbrevDWO() {
3164   assert(useSplitDwarf() && "No split dwarf?");
3165   InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection());
3166 }
3167 
3168 void DwarfDebug::emitDebugLineDWO() {
3169   assert(useSplitDwarf() && "No split dwarf?");
3170   SplitTypeUnitFileTable.Emit(
3171       *Asm->OutStreamer, MCDwarfLineTableParams(),
3172       Asm->getObjFileLowering().getDwarfLineDWOSection());
3173 }
3174 
3175 void DwarfDebug::emitStringOffsetsTableHeaderDWO() {
3176   assert(useSplitDwarf() && "No split dwarf?");
3177   InfoHolder.getStringPool().emitStringOffsetsTableHeader(
3178       *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(),
3179       InfoHolder.getStringOffsetsStartSym());
3180 }
3181 
3182 // Emit the .debug_str.dwo section for separated dwarf. This contains the
3183 // string section and is identical in format to traditional .debug_str
3184 // sections.
3185 void DwarfDebug::emitDebugStrDWO() {
3186   if (useSegmentedStringOffsetsTable())
3187     emitStringOffsetsTableHeaderDWO();
3188   assert(useSplitDwarf() && "No split dwarf?");
3189   MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection();
3190   InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(),
3191                          OffSec, /* UseRelativeOffsets = */ false);
3192 }
3193 
3194 // Emit address pool.
3195 void DwarfDebug::emitDebugAddr() {
3196   AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection());
3197 }
3198 
3199 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) {
3200   if (!useSplitDwarf())
3201     return nullptr;
3202   const DICompileUnit *DIUnit = CU.getCUNode();
3203   SplitTypeUnitFileTable.maybeSetRootFile(
3204       DIUnit->getDirectory(), DIUnit->getFilename(),
3205       getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource());
3206   return &SplitTypeUnitFileTable;
3207 }
3208 
3209 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) {
3210   MD5 Hash;
3211   Hash.update(Identifier);
3212   // ... take the least significant 8 bytes and return those. Our MD5
3213   // implementation always returns its results in little endian, so we actually
3214   // need the "high" word.
3215   MD5::MD5Result Result;
3216   Hash.final(Result);
3217   return Result.high();
3218 }
3219 
3220 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
3221                                       StringRef Identifier, DIE &RefDie,
3222                                       const DICompositeType *CTy) {
3223   // Fast path if we're building some type units and one has already used the
3224   // address pool we know we're going to throw away all this work anyway, so
3225   // don't bother building dependent types.
3226   if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed())
3227     return;
3228 
3229   auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0));
3230   if (!Ins.second) {
3231     CU.addDIETypeSignature(RefDie, Ins.first->second);
3232     return;
3233   }
3234 
3235   bool TopLevelType = TypeUnitsUnderConstruction.empty();
3236   AddrPool.resetUsedFlag();
3237 
3238   auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder,
3239                                                     getDwoLineTable(CU));
3240   DwarfTypeUnit &NewTU = *OwnedUnit;
3241   DIE &UnitDie = NewTU.getUnitDie();
3242   TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy);
3243 
3244   NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
3245                 CU.getLanguage());
3246 
3247   uint64_t Signature = makeTypeSignature(Identifier);
3248   NewTU.setTypeSignature(Signature);
3249   Ins.first->second = Signature;
3250 
3251   if (useSplitDwarf()) {
3252     MCSection *Section =
3253         getDwarfVersion() <= 4
3254             ? Asm->getObjFileLowering().getDwarfTypesDWOSection()
3255             : Asm->getObjFileLowering().getDwarfInfoDWOSection();
3256     NewTU.setSection(Section);
3257   } else {
3258     MCSection *Section =
3259         getDwarfVersion() <= 4
3260             ? Asm->getObjFileLowering().getDwarfTypesSection(Signature)
3261             : Asm->getObjFileLowering().getDwarfInfoSection(Signature);
3262     NewTU.setSection(Section);
3263     // Non-split type units reuse the compile unit's line table.
3264     CU.applyStmtList(UnitDie);
3265   }
3266 
3267   // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type
3268   // units.
3269   if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
3270     NewTU.addStringOffsetsStart();
3271 
3272   NewTU.setType(NewTU.createTypeDIE(CTy));
3273 
3274   if (TopLevelType) {
3275     auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction);
3276     TypeUnitsUnderConstruction.clear();
3277 
3278     // Types referencing entries in the address table cannot be placed in type
3279     // units.
3280     if (AddrPool.hasBeenUsed()) {
3281 
3282       // Remove all the types built while building this type.
3283       // This is pessimistic as some of these types might not be dependent on
3284       // the type that used an address.
3285       for (const auto &TU : TypeUnitsToAdd)
3286         TypeSignatures.erase(TU.second);
3287 
3288       // Construct this type in the CU directly.
3289       // This is inefficient because all the dependent types will be rebuilt
3290       // from scratch, including building them in type units, discovering that
3291       // they depend on addresses, throwing them out and rebuilding them.
3292       CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy));
3293       return;
3294     }
3295 
3296     // If the type wasn't dependent on fission addresses, finish adding the type
3297     // and all its dependent types.
3298     for (auto &TU : TypeUnitsToAdd) {
3299       InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get());
3300       InfoHolder.emitUnit(TU.first.get(), useSplitDwarf());
3301     }
3302   }
3303   CU.addDIETypeSignature(RefDie, Signature);
3304 }
3305 
3306 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD)
3307     : DD(DD),
3308       TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)) {
3309   DD->TypeUnitsUnderConstruction.clear();
3310   assert(TypeUnitsUnderConstruction.empty() || !DD->AddrPool.hasBeenUsed());
3311 }
3312 
3313 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() {
3314   DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction);
3315   DD->AddrPool.resetUsedFlag();
3316 }
3317 
3318 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() {
3319   return NonTypeUnitContext(this);
3320 }
3321 
3322 // Add the Name along with its companion DIE to the appropriate accelerator
3323 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for
3324 // AccelTableKind::Apple, we use the table we got as an argument). If
3325 // accelerator tables are disabled, this function does nothing.
3326 template <typename DataT>
3327 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU,
3328                                   AccelTable<DataT> &AppleAccel, StringRef Name,
3329                                   const DIE &Die) {
3330   if (getAccelTableKind() == AccelTableKind::None)
3331     return;
3332 
3333   if (getAccelTableKind() != AccelTableKind::Apple &&
3334       CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default)
3335     return;
3336 
3337   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
3338   DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name);
3339 
3340   switch (getAccelTableKind()) {
3341   case AccelTableKind::Apple:
3342     AppleAccel.addName(Ref, Die);
3343     break;
3344   case AccelTableKind::Dwarf:
3345     AccelDebugNames.addName(Ref, Die);
3346     break;
3347   case AccelTableKind::Default:
3348     llvm_unreachable("Default should have already been resolved.");
3349   case AccelTableKind::None:
3350     llvm_unreachable("None handled above");
3351   }
3352 }
3353 
3354 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name,
3355                               const DIE &Die) {
3356   addAccelNameImpl(CU, AccelNames, Name, Die);
3357 }
3358 
3359 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name,
3360                               const DIE &Die) {
3361   // ObjC names go only into the Apple accelerator tables.
3362   if (getAccelTableKind() == AccelTableKind::Apple)
3363     addAccelNameImpl(CU, AccelObjC, Name, Die);
3364 }
3365 
3366 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name,
3367                                    const DIE &Die) {
3368   addAccelNameImpl(CU, AccelNamespace, Name, Die);
3369 }
3370 
3371 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name,
3372                               const DIE &Die, char Flags) {
3373   addAccelNameImpl(CU, AccelTypes, Name, Die);
3374 }
3375 
3376 uint16_t DwarfDebug::getDwarfVersion() const {
3377   return Asm->OutStreamer->getContext().getDwarfVersion();
3378 }
3379 
3380 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) {
3381   return SectionLabels.find(S)->second;
3382 }
3383 void DwarfDebug::insertSectionLabel(const MCSymbol *S) {
3384   if (SectionLabels.insert(std::make_pair(&S->getSection(), S)).second)
3385     if (useSplitDwarf() || getDwarfVersion() >= 5)
3386       AddrPool.getIndex(S);
3387 }
3388 
3389 Optional<MD5::MD5Result> DwarfDebug::getMD5AsBytes(const DIFile *File) const {
3390   assert(File);
3391   if (getDwarfVersion() < 5)
3392     return None;
3393   Optional<DIFile::ChecksumInfo<StringRef>> Checksum = File->getChecksum();
3394   if (!Checksum || Checksum->Kind != DIFile::CSK_MD5)
3395     return None;
3396 
3397   // Convert the string checksum to an MD5Result for the streamer.
3398   // The verifier validates the checksum so we assume it's okay.
3399   // An MD5 checksum is 16 bytes.
3400   std::string ChecksumString = fromHex(Checksum->Value);
3401   MD5::MD5Result CKMem;
3402   std::copy(ChecksumString.begin(), ChecksumString.end(), CKMem.Bytes.data());
3403   return CKMem;
3404 }
3405