1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing dwarf debug info into asm files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "DwarfDebug.h"
14 #include "ByteStreamer.h"
15 #include "DIEHash.h"
16 #include "DwarfCompileUnit.h"
17 #include "DwarfExpression.h"
18 #include "DwarfUnit.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/CodeGen/AsmPrinter.h"
24 #include "llvm/CodeGen/DIE.h"
25 #include "llvm/CodeGen/LexicalScopes.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/TargetInstrInfo.h"
31 #include "llvm/CodeGen/TargetLowering.h"
32 #include "llvm/CodeGen/TargetRegisterInfo.h"
33 #include "llvm/CodeGen/TargetSubtargetInfo.h"
34 #include "llvm/DebugInfo/DWARF/DWARFExpression.h"
35 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/MC/MCAsmInfo.h"
41 #include "llvm/MC/MCContext.h"
42 #include "llvm/MC/MCSection.h"
43 #include "llvm/MC/MCStreamer.h"
44 #include "llvm/MC/MCSymbol.h"
45 #include "llvm/MC/MCTargetOptions.h"
46 #include "llvm/MC/MachineLocation.h"
47 #include "llvm/MC/SectionKind.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/MD5.h"
54 #include "llvm/Support/MathExtras.h"
55 #include "llvm/Support/Timer.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Target/TargetLoweringObjectFile.h"
58 #include "llvm/Target/TargetMachine.h"
59 #include <algorithm>
60 #include <cstddef>
61 #include <iterator>
62 #include <string>
63 
64 using namespace llvm;
65 
66 #define DEBUG_TYPE "dwarfdebug"
67 
68 STATISTIC(NumCSParams, "Number of dbg call site params created");
69 
70 static cl::opt<bool>
71 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden,
72                          cl::desc("Disable debug info printing"));
73 
74 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier(
75     "use-dwarf-ranges-base-address-specifier", cl::Hidden,
76     cl::desc("Use base address specifiers in debug_ranges"), cl::init(false));
77 
78 static cl::opt<bool> GenerateARangeSection("generate-arange-section",
79                                            cl::Hidden,
80                                            cl::desc("Generate dwarf aranges"),
81                                            cl::init(false));
82 
83 static cl::opt<bool>
84     GenerateDwarfTypeUnits("generate-type-units", cl::Hidden,
85                            cl::desc("Generate DWARF4 type units."),
86                            cl::init(false));
87 
88 static cl::opt<bool> SplitDwarfCrossCuReferences(
89     "split-dwarf-cross-cu-references", cl::Hidden,
90     cl::desc("Enable cross-cu references in DWO files"), cl::init(false));
91 
92 enum DefaultOnOff { Default, Enable, Disable };
93 
94 static cl::opt<DefaultOnOff> UnknownLocations(
95     "use-unknown-locations", cl::Hidden,
96     cl::desc("Make an absence of debug location information explicit."),
97     cl::values(clEnumVal(Default, "At top of block or after label"),
98                clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")),
99     cl::init(Default));
100 
101 static cl::opt<AccelTableKind> AccelTables(
102     "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."),
103     cl::values(clEnumValN(AccelTableKind::Default, "Default",
104                           "Default for platform"),
105                clEnumValN(AccelTableKind::None, "Disable", "Disabled."),
106                clEnumValN(AccelTableKind::Apple, "Apple", "Apple"),
107                clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")),
108     cl::init(AccelTableKind::Default));
109 
110 static cl::opt<DefaultOnOff>
111 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden,
112                  cl::desc("Use inlined strings rather than string section."),
113                  cl::values(clEnumVal(Default, "Default for platform"),
114                             clEnumVal(Enable, "Enabled"),
115                             clEnumVal(Disable, "Disabled")),
116                  cl::init(Default));
117 
118 static cl::opt<bool>
119     NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden,
120                          cl::desc("Disable emission .debug_ranges section."),
121                          cl::init(false));
122 
123 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences(
124     "dwarf-sections-as-references", cl::Hidden,
125     cl::desc("Use sections+offset as references rather than labels."),
126     cl::values(clEnumVal(Default, "Default for platform"),
127                clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
128     cl::init(Default));
129 
130 static cl::opt<bool>
131     UseGNUDebugMacro("use-gnu-debug-macro", cl::Hidden,
132                      cl::desc("Emit the GNU .debug_macro format with DWARF <5"),
133                      cl::init(false));
134 
135 enum LinkageNameOption {
136   DefaultLinkageNames,
137   AllLinkageNames,
138   AbstractLinkageNames
139 };
140 
141 static cl::opt<LinkageNameOption>
142     DwarfLinkageNames("dwarf-linkage-names", cl::Hidden,
143                       cl::desc("Which DWARF linkage-name attributes to emit."),
144                       cl::values(clEnumValN(DefaultLinkageNames, "Default",
145                                             "Default for platform"),
146                                  clEnumValN(AllLinkageNames, "All", "All"),
147                                  clEnumValN(AbstractLinkageNames, "Abstract",
148                                             "Abstract subprograms")),
149                       cl::init(DefaultLinkageNames));
150 
151 static const char *const DWARFGroupName = "dwarf";
152 static const char *const DWARFGroupDescription = "DWARF Emission";
153 static const char *const DbgTimerName = "writer";
154 static const char *const DbgTimerDescription = "DWARF Debug Writer";
155 static constexpr unsigned ULEB128PadSize = 4;
156 
157 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) {
158   getActiveStreamer().EmitInt8(
159       Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op)
160                   : dwarf::OperationEncodingString(Op));
161 }
162 
163 void DebugLocDwarfExpression::emitSigned(int64_t Value) {
164   getActiveStreamer().emitSLEB128(Value, Twine(Value));
165 }
166 
167 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) {
168   getActiveStreamer().emitULEB128(Value, Twine(Value));
169 }
170 
171 void DebugLocDwarfExpression::emitData1(uint8_t Value) {
172   getActiveStreamer().EmitInt8(Value, Twine(Value));
173 }
174 
175 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) {
176   assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit");
177   getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize);
178 }
179 
180 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI,
181                                               unsigned MachineReg) {
182   // This information is not available while emitting .debug_loc entries.
183   return false;
184 }
185 
186 void DebugLocDwarfExpression::enableTemporaryBuffer() {
187   assert(!IsBuffering && "Already buffering?");
188   if (!TmpBuf)
189     TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments);
190   IsBuffering = true;
191 }
192 
193 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; }
194 
195 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() {
196   return TmpBuf ? TmpBuf->Bytes.size() : 0;
197 }
198 
199 void DebugLocDwarfExpression::commitTemporaryBuffer() {
200   if (!TmpBuf)
201     return;
202   for (auto Byte : enumerate(TmpBuf->Bytes)) {
203     const char *Comment = (Byte.index() < TmpBuf->Comments.size())
204                               ? TmpBuf->Comments[Byte.index()].c_str()
205                               : "";
206     OutBS.EmitInt8(Byte.value(), Comment);
207   }
208   TmpBuf->Bytes.clear();
209   TmpBuf->Comments.clear();
210 }
211 
212 const DIType *DbgVariable::getType() const {
213   return getVariable()->getType();
214 }
215 
216 /// Get .debug_loc entry for the instruction range starting at MI.
217 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) {
218   const DIExpression *Expr = MI->getDebugExpression();
219   assert(MI->getNumOperands() == 4);
220   if (MI->getDebugOperand(0).isReg()) {
221     auto RegOp = MI->getDebugOperand(0);
222     auto Op1 = MI->getDebugOffset();
223     // If the second operand is an immediate, this is a
224     // register-indirect address.
225     assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset");
226     MachineLocation MLoc(RegOp.getReg(), Op1.isImm());
227     return DbgValueLoc(Expr, MLoc);
228   }
229   if (MI->getDebugOperand(0).isTargetIndex()) {
230     auto Op = MI->getDebugOperand(0);
231     return DbgValueLoc(Expr,
232                        TargetIndexLocation(Op.getIndex(), Op.getOffset()));
233   }
234   if (MI->getDebugOperand(0).isImm())
235     return DbgValueLoc(Expr, MI->getDebugOperand(0).getImm());
236   if (MI->getDebugOperand(0).isFPImm())
237     return DbgValueLoc(Expr, MI->getDebugOperand(0).getFPImm());
238   if (MI->getDebugOperand(0).isCImm())
239     return DbgValueLoc(Expr, MI->getDebugOperand(0).getCImm());
240 
241   llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!");
242 }
243 
244 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) {
245   assert(FrameIndexExprs.empty() && "Already initialized?");
246   assert(!ValueLoc.get() && "Already initialized?");
247 
248   assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable");
249   assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() &&
250          "Wrong inlined-at");
251 
252   ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue));
253   if (auto *E = DbgValue->getDebugExpression())
254     if (E->getNumElements())
255       FrameIndexExprs.push_back({0, E});
256 }
257 
258 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const {
259   if (FrameIndexExprs.size() == 1)
260     return FrameIndexExprs;
261 
262   assert(llvm::all_of(FrameIndexExprs,
263                       [](const FrameIndexExpr &A) {
264                         return A.Expr->isFragment();
265                       }) &&
266          "multiple FI expressions without DW_OP_LLVM_fragment");
267   llvm::sort(FrameIndexExprs,
268              [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool {
269                return A.Expr->getFragmentInfo()->OffsetInBits <
270                       B.Expr->getFragmentInfo()->OffsetInBits;
271              });
272 
273   return FrameIndexExprs;
274 }
275 
276 void DbgVariable::addMMIEntry(const DbgVariable &V) {
277   assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry");
278   assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry");
279   assert(V.getVariable() == getVariable() && "conflicting variable");
280   assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location");
281 
282   assert(!FrameIndexExprs.empty() && "Expected an MMI entry");
283   assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry");
284 
285   // FIXME: This logic should not be necessary anymore, as we now have proper
286   // deduplication. However, without it, we currently run into the assertion
287   // below, which means that we are likely dealing with broken input, i.e. two
288   // non-fragment entries for the same variable at different frame indices.
289   if (FrameIndexExprs.size()) {
290     auto *Expr = FrameIndexExprs.back().Expr;
291     if (!Expr || !Expr->isFragment())
292       return;
293   }
294 
295   for (const auto &FIE : V.FrameIndexExprs)
296     // Ignore duplicate entries.
297     if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) {
298           return FIE.FI == Other.FI && FIE.Expr == Other.Expr;
299         }))
300       FrameIndexExprs.push_back(FIE);
301 
302   assert((FrameIndexExprs.size() == 1 ||
303           llvm::all_of(FrameIndexExprs,
304                        [](FrameIndexExpr &FIE) {
305                          return FIE.Expr && FIE.Expr->isFragment();
306                        })) &&
307          "conflicting locations for variable");
308 }
309 
310 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion,
311                                             bool GenerateTypeUnits,
312                                             DebuggerKind Tuning,
313                                             const Triple &TT) {
314   // Honor an explicit request.
315   if (AccelTables != AccelTableKind::Default)
316     return AccelTables;
317 
318   // Accelerator tables with type units are currently not supported.
319   if (GenerateTypeUnits)
320     return AccelTableKind::None;
321 
322   // Accelerator tables get emitted if targetting DWARF v5 or LLDB.  DWARF v5
323   // always implies debug_names. For lower standard versions we use apple
324   // accelerator tables on apple platforms and debug_names elsewhere.
325   if (DwarfVersion >= 5)
326     return AccelTableKind::Dwarf;
327   if (Tuning == DebuggerKind::LLDB)
328     return TT.isOSBinFormatMachO() ? AccelTableKind::Apple
329                                    : AccelTableKind::Dwarf;
330   return AccelTableKind::None;
331 }
332 
333 DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M)
334     : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()),
335       InfoHolder(A, "info_string", DIEValueAllocator),
336       SkeletonHolder(A, "skel_string", DIEValueAllocator),
337       IsDarwin(A->TM.getTargetTriple().isOSDarwin()) {
338   const Triple &TT = Asm->TM.getTargetTriple();
339 
340   // Make sure we know our "debugger tuning".  The target option takes
341   // precedence; fall back to triple-based defaults.
342   if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default)
343     DebuggerTuning = Asm->TM.Options.DebuggerTuning;
344   else if (IsDarwin)
345     DebuggerTuning = DebuggerKind::LLDB;
346   else if (TT.isPS4CPU())
347     DebuggerTuning = DebuggerKind::SCE;
348   else
349     DebuggerTuning = DebuggerKind::GDB;
350 
351   if (DwarfInlinedStrings == Default)
352     UseInlineStrings = TT.isNVPTX();
353   else
354     UseInlineStrings = DwarfInlinedStrings == Enable;
355 
356   UseLocSection = !TT.isNVPTX();
357 
358   HasAppleExtensionAttributes = tuneForLLDB();
359 
360   // Handle split DWARF.
361   HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty();
362 
363   // SCE defaults to linkage names only for abstract subprograms.
364   if (DwarfLinkageNames == DefaultLinkageNames)
365     UseAllLinkageNames = !tuneForSCE();
366   else
367     UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames;
368 
369   unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion;
370   unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber
371                                     : MMI->getModule()->getDwarfVersion();
372   // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2.
373   DwarfVersion =
374       TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION);
375 
376   UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX();
377 
378   // Use sections as references. Force for NVPTX.
379   if (DwarfSectionsAsReferences == Default)
380     UseSectionsAsReferences = TT.isNVPTX();
381   else
382     UseSectionsAsReferences = DwarfSectionsAsReferences == Enable;
383 
384   // Don't generate type units for unsupported object file formats.
385   GenerateTypeUnits =
386       A->TM.getTargetTriple().isOSBinFormatELF() && GenerateDwarfTypeUnits;
387 
388   TheAccelTableKind = computeAccelTableKind(
389       DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple());
390 
391   // Work around a GDB bug. GDB doesn't support the standard opcode;
392   // SCE doesn't support GNU's; LLDB prefers the standard opcode, which
393   // is defined as of DWARF 3.
394   // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented
395   // https://sourceware.org/bugzilla/show_bug.cgi?id=11616
396   UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3;
397 
398   // GDB does not fully support the DWARF 4 representation for bitfields.
399   UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB();
400 
401   // The DWARF v5 string offsets table has - possibly shared - contributions
402   // from each compile and type unit each preceded by a header. The string
403   // offsets table used by the pre-DWARF v5 split-DWARF implementation uses
404   // a monolithic string offsets table without any header.
405   UseSegmentedStringOffsetsTable = DwarfVersion >= 5;
406 
407   // Emit call-site-param debug info for GDB and LLDB, if the target supports
408   // the debug entry values feature. It can also be enabled explicitly.
409   EmitDebugEntryValues = Asm->TM.Options.ShouldEmitDebugEntryValues();
410 
411   // It is unclear if the GCC .debug_macro extension is well-specified
412   // for split DWARF. For now, do not allow LLVM to emit it.
413   UseDebugMacroSection =
414       DwarfVersion >= 5 || (UseGNUDebugMacro && !useSplitDwarf());
415 
416   Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion);
417 }
418 
419 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h.
420 DwarfDebug::~DwarfDebug() = default;
421 
422 static bool isObjCClass(StringRef Name) {
423   return Name.startswith("+") || Name.startswith("-");
424 }
425 
426 static bool hasObjCCategory(StringRef Name) {
427   if (!isObjCClass(Name))
428     return false;
429 
430   return Name.find(") ") != StringRef::npos;
431 }
432 
433 static void getObjCClassCategory(StringRef In, StringRef &Class,
434                                  StringRef &Category) {
435   if (!hasObjCCategory(In)) {
436     Class = In.slice(In.find('[') + 1, In.find(' '));
437     Category = "";
438     return;
439   }
440 
441   Class = In.slice(In.find('[') + 1, In.find('('));
442   Category = In.slice(In.find('[') + 1, In.find(' '));
443 }
444 
445 static StringRef getObjCMethodName(StringRef In) {
446   return In.slice(In.find(' ') + 1, In.find(']'));
447 }
448 
449 // Add the various names to the Dwarf accelerator table names.
450 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU,
451                                     const DISubprogram *SP, DIE &Die) {
452   if (getAccelTableKind() != AccelTableKind::Apple &&
453       CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None)
454     return;
455 
456   if (!SP->isDefinition())
457     return;
458 
459   if (SP->getName() != "")
460     addAccelName(CU, SP->getName(), Die);
461 
462   // If the linkage name is different than the name, go ahead and output that as
463   // well into the name table. Only do that if we are going to actually emit
464   // that name.
465   if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() &&
466       (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP)))
467     addAccelName(CU, SP->getLinkageName(), Die);
468 
469   // If this is an Objective-C selector name add it to the ObjC accelerator
470   // too.
471   if (isObjCClass(SP->getName())) {
472     StringRef Class, Category;
473     getObjCClassCategory(SP->getName(), Class, Category);
474     addAccelObjC(CU, Class, Die);
475     if (Category != "")
476       addAccelObjC(CU, Category, Die);
477     // Also add the base method name to the name table.
478     addAccelName(CU, getObjCMethodName(SP->getName()), Die);
479   }
480 }
481 
482 /// Check whether we should create a DIE for the given Scope, return true
483 /// if we don't create a DIE (the corresponding DIE is null).
484 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) {
485   if (Scope->isAbstractScope())
486     return false;
487 
488   // We don't create a DIE if there is no Range.
489   const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges();
490   if (Ranges.empty())
491     return true;
492 
493   if (Ranges.size() > 1)
494     return false;
495 
496   // We don't create a DIE if we have a single Range and the end label
497   // is null.
498   return !getLabelAfterInsn(Ranges.front().second);
499 }
500 
501 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) {
502   F(CU);
503   if (auto *SkelCU = CU.getSkeleton())
504     if (CU.getCUNode()->getSplitDebugInlining())
505       F(*SkelCU);
506 }
507 
508 bool DwarfDebug::shareAcrossDWOCUs() const {
509   return SplitDwarfCrossCuReferences;
510 }
511 
512 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU,
513                                                      LexicalScope *Scope) {
514   assert(Scope && Scope->getScopeNode());
515   assert(Scope->isAbstractScope());
516   assert(!Scope->getInlinedAt());
517 
518   auto *SP = cast<DISubprogram>(Scope->getScopeNode());
519 
520   // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
521   // was inlined from another compile unit.
522   if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining())
523     // Avoid building the original CU if it won't be used
524     SrcCU.constructAbstractSubprogramScopeDIE(Scope);
525   else {
526     auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
527     if (auto *SkelCU = CU.getSkeleton()) {
528       (shareAcrossDWOCUs() ? CU : SrcCU)
529           .constructAbstractSubprogramScopeDIE(Scope);
530       if (CU.getCUNode()->getSplitDebugInlining())
531         SkelCU->constructAbstractSubprogramScopeDIE(Scope);
532     } else
533       CU.constructAbstractSubprogramScopeDIE(Scope);
534   }
535 }
536 
537 DIE &DwarfDebug::constructSubprogramDefinitionDIE(const DISubprogram *SP) {
538   DICompileUnit *Unit = SP->getUnit();
539   assert(SP->isDefinition() && "Subprogram not a definition");
540   assert(Unit && "Subprogram definition without parent unit");
541   auto &CU = getOrCreateDwarfCompileUnit(Unit);
542   return *CU.getOrCreateSubprogramDIE(SP);
543 }
544 
545 /// Represents a parameter whose call site value can be described by applying a
546 /// debug expression to a register in the forwarded register worklist.
547 struct FwdRegParamInfo {
548   /// The described parameter register.
549   unsigned ParamReg;
550 
551   /// Debug expression that has been built up when walking through the
552   /// instruction chain that produces the parameter's value.
553   const DIExpression *Expr;
554 };
555 
556 /// Register worklist for finding call site values.
557 using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>;
558 
559 /// Append the expression \p Addition to \p Original and return the result.
560 static const DIExpression *combineDIExpressions(const DIExpression *Original,
561                                                 const DIExpression *Addition) {
562   std::vector<uint64_t> Elts = Addition->getElements().vec();
563   // Avoid multiple DW_OP_stack_values.
564   if (Original->isImplicit() && Addition->isImplicit())
565     erase_if(Elts, [](uint64_t Op) { return Op == dwarf::DW_OP_stack_value; });
566   const DIExpression *CombinedExpr =
567       (Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original;
568   return CombinedExpr;
569 }
570 
571 /// Emit call site parameter entries that are described by the given value and
572 /// debug expression.
573 template <typename ValT>
574 static void finishCallSiteParams(ValT Val, const DIExpression *Expr,
575                                  ArrayRef<FwdRegParamInfo> DescribedParams,
576                                  ParamSet &Params) {
577   for (auto Param : DescribedParams) {
578     bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0;
579 
580     // TODO: Entry value operations can currently not be combined with any
581     // other expressions, so we can't emit call site entries in those cases.
582     if (ShouldCombineExpressions && Expr->isEntryValue())
583       continue;
584 
585     // If a parameter's call site value is produced by a chain of
586     // instructions we may have already created an expression for the
587     // parameter when walking through the instructions. Append that to the
588     // base expression.
589     const DIExpression *CombinedExpr =
590         ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr)
591                                  : Expr;
592     assert((!CombinedExpr || CombinedExpr->isValid()) &&
593            "Combined debug expression is invalid");
594 
595     DbgValueLoc DbgLocVal(CombinedExpr, Val);
596     DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal);
597     Params.push_back(CSParm);
598     ++NumCSParams;
599   }
600 }
601 
602 /// Add \p Reg to the worklist, if it's not already present, and mark that the
603 /// given parameter registers' values can (potentially) be described using
604 /// that register and an debug expression.
605 static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg,
606                                 const DIExpression *Expr,
607                                 ArrayRef<FwdRegParamInfo> ParamsToAdd) {
608   auto I = Worklist.insert({Reg, {}});
609   auto &ParamsForFwdReg = I.first->second;
610   for (auto Param : ParamsToAdd) {
611     assert(none_of(ParamsForFwdReg,
612                    [Param](const FwdRegParamInfo &D) {
613                      return D.ParamReg == Param.ParamReg;
614                    }) &&
615            "Same parameter described twice by forwarding reg");
616 
617     // If a parameter's call site value is produced by a chain of
618     // instructions we may have already created an expression for the
619     // parameter when walking through the instructions. Append that to the
620     // new expression.
621     const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr);
622     ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr});
623   }
624 }
625 
626 /// Interpret values loaded into registers by \p CurMI.
627 static void interpretValues(const MachineInstr *CurMI,
628                             FwdRegWorklist &ForwardedRegWorklist,
629                             ParamSet &Params) {
630 
631   const MachineFunction *MF = CurMI->getMF();
632   const DIExpression *EmptyExpr =
633       DIExpression::get(MF->getFunction().getContext(), {});
634   const auto &TRI = *MF->getSubtarget().getRegisterInfo();
635   const auto &TII = *MF->getSubtarget().getInstrInfo();
636   const auto &TLI = *MF->getSubtarget().getTargetLowering();
637 
638   // If an instruction defines more than one item in the worklist, we may run
639   // into situations where a worklist register's value is (potentially)
640   // described by the previous value of another register that is also defined
641   // by that instruction.
642   //
643   // This can for example occur in cases like this:
644   //
645   //   $r1 = mov 123
646   //   $r0, $r1 = mvrr $r1, 456
647   //   call @foo, $r0, $r1
648   //
649   // When describing $r1's value for the mvrr instruction, we need to make sure
650   // that we don't finalize an entry value for $r0, as that is dependent on the
651   // previous value of $r1 (123 rather than 456).
652   //
653   // In order to not have to distinguish between those cases when finalizing
654   // entry values, we simply postpone adding new parameter registers to the
655   // worklist, by first keeping them in this temporary container until the
656   // instruction has been handled.
657   FwdRegWorklist TmpWorklistItems;
658 
659   // If the MI is an instruction defining one or more parameters' forwarding
660   // registers, add those defines.
661   auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI,
662                                           SmallSetVector<unsigned, 4> &Defs) {
663     if (MI.isDebugInstr())
664       return;
665 
666     for (const MachineOperand &MO : MI.operands()) {
667       if (MO.isReg() && MO.isDef() &&
668           Register::isPhysicalRegister(MO.getReg())) {
669         for (auto FwdReg : ForwardedRegWorklist)
670           if (TRI.regsOverlap(FwdReg.first, MO.getReg()))
671             Defs.insert(FwdReg.first);
672       }
673     }
674   };
675 
676   // Set of worklist registers that are defined by this instruction.
677   SmallSetVector<unsigned, 4> FwdRegDefs;
678 
679   getForwardingRegsDefinedByMI(*CurMI, FwdRegDefs);
680   if (FwdRegDefs.empty())
681     return;
682 
683   for (auto ParamFwdReg : FwdRegDefs) {
684     if (auto ParamValue = TII.describeLoadedValue(*CurMI, ParamFwdReg)) {
685       if (ParamValue->first.isImm()) {
686         int64_t Val = ParamValue->first.getImm();
687         finishCallSiteParams(Val, ParamValue->second,
688                              ForwardedRegWorklist[ParamFwdReg], Params);
689       } else if (ParamValue->first.isReg()) {
690         Register RegLoc = ParamValue->first.getReg();
691         unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
692         Register FP = TRI.getFrameRegister(*MF);
693         bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP);
694         if (TRI.isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) {
695           MachineLocation MLoc(RegLoc, /*IsIndirect=*/IsSPorFP);
696           finishCallSiteParams(MLoc, ParamValue->second,
697                                ForwardedRegWorklist[ParamFwdReg], Params);
698         } else {
699           // ParamFwdReg was described by the non-callee saved register
700           // RegLoc. Mark that the call site values for the parameters are
701           // dependent on that register instead of ParamFwdReg. Since RegLoc
702           // may be a register that will be handled in this iteration, we
703           // postpone adding the items to the worklist, and instead keep them
704           // in a temporary container.
705           addToFwdRegWorklist(TmpWorklistItems, RegLoc, ParamValue->second,
706                               ForwardedRegWorklist[ParamFwdReg]);
707         }
708       }
709     }
710   }
711 
712   // Remove all registers that this instruction defines from the worklist.
713   for (auto ParamFwdReg : FwdRegDefs)
714     ForwardedRegWorklist.erase(ParamFwdReg);
715 
716   // Now that we are done handling this instruction, add items from the
717   // temporary worklist to the real one.
718   for (auto New : TmpWorklistItems)
719     addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, New.second);
720   TmpWorklistItems.clear();
721 }
722 
723 static bool interpretNextInstr(const MachineInstr *CurMI,
724                                FwdRegWorklist &ForwardedRegWorklist,
725                                ParamSet &Params) {
726   // Skip bundle headers.
727   if (CurMI->isBundle())
728     return true;
729 
730   // If the next instruction is a call we can not interpret parameter's
731   // forwarding registers or we finished the interpretation of all
732   // parameters.
733   if (CurMI->isCall())
734     return false;
735 
736   if (ForwardedRegWorklist.empty())
737     return false;
738 
739   // Avoid NOP description.
740   if (CurMI->getNumOperands() == 0)
741     return true;
742 
743   interpretValues(CurMI, ForwardedRegWorklist, Params);
744 
745   return true;
746 }
747 
748 /// Try to interpret values loaded into registers that forward parameters
749 /// for \p CallMI. Store parameters with interpreted value into \p Params.
750 static void collectCallSiteParameters(const MachineInstr *CallMI,
751                                       ParamSet &Params) {
752   const MachineFunction *MF = CallMI->getMF();
753   auto CalleesMap = MF->getCallSitesInfo();
754   auto CallFwdRegsInfo = CalleesMap.find(CallMI);
755 
756   // There is no information for the call instruction.
757   if (CallFwdRegsInfo == CalleesMap.end())
758     return;
759 
760   const MachineBasicBlock *MBB = CallMI->getParent();
761 
762   // Skip the call instruction.
763   auto I = std::next(CallMI->getReverseIterator());
764 
765   FwdRegWorklist ForwardedRegWorklist;
766 
767   const DIExpression *EmptyExpr =
768       DIExpression::get(MF->getFunction().getContext(), {});
769 
770   // Add all the forwarding registers into the ForwardedRegWorklist.
771   for (auto ArgReg : CallFwdRegsInfo->second) {
772     bool InsertedReg =
773         ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}})
774             .second;
775     assert(InsertedReg && "Single register used to forward two arguments?");
776     (void)InsertedReg;
777   }
778 
779   // We erase, from the ForwardedRegWorklist, those forwarding registers for
780   // which we successfully describe a loaded value (by using
781   // the describeLoadedValue()). For those remaining arguments in the working
782   // list, for which we do not describe a loaded value by
783   // the describeLoadedValue(), we try to generate an entry value expression
784   // for their call site value description, if the call is within the entry MBB.
785   // TODO: Handle situations when call site parameter value can be described
786   // as the entry value within basic blocks other than the first one.
787   bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin();
788 
789   // Search for a loading value in forwarding registers inside call delay slot.
790   if (CallMI->hasDelaySlot()) {
791     auto Suc = std::next(CallMI->getIterator());
792     // Only one-instruction delay slot is supported.
793     auto BundleEnd = llvm::getBundleEnd(CallMI->getIterator());
794     (void)BundleEnd;
795     assert(std::next(Suc) == BundleEnd &&
796            "More than one instruction in call delay slot");
797     // Try to interpret value loaded by instruction.
798     if (!interpretNextInstr(&*Suc, ForwardedRegWorklist, Params))
799       return;
800   }
801 
802   // Search for a loading value in forwarding registers.
803   for (; I != MBB->rend(); ++I) {
804     // Try to interpret values loaded by instruction.
805     if (!interpretNextInstr(&*I, ForwardedRegWorklist, Params))
806       return;
807   }
808 
809   // Emit the call site parameter's value as an entry value.
810   if (ShouldTryEmitEntryVals) {
811     // Create an expression where the register's entry value is used.
812     DIExpression *EntryExpr = DIExpression::get(
813         MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1});
814     for (auto RegEntry : ForwardedRegWorklist) {
815       MachineLocation MLoc(RegEntry.first);
816       finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params);
817     }
818   }
819 }
820 
821 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP,
822                                             DwarfCompileUnit &CU, DIE &ScopeDIE,
823                                             const MachineFunction &MF) {
824   // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if
825   // the subprogram is required to have one.
826   if (!SP.areAllCallsDescribed() || !SP.isDefinition())
827     return;
828 
829   // Use DW_AT_call_all_calls to express that call site entries are present
830   // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls
831   // because one of its requirements is not met: call site entries for
832   // optimized-out calls are elided.
833   CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls));
834 
835   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
836   assert(TII && "TargetInstrInfo not found: cannot label tail calls");
837 
838   // Delay slot support check.
839   auto delaySlotSupported = [&](const MachineInstr &MI) {
840     if (!MI.isBundledWithSucc())
841       return false;
842     auto Suc = std::next(MI.getIterator());
843     auto CallInstrBundle = getBundleStart(MI.getIterator());
844     (void)CallInstrBundle;
845     auto DelaySlotBundle = getBundleStart(Suc);
846     (void)DelaySlotBundle;
847     // Ensure that label after call is following delay slot instruction.
848     // Ex. CALL_INSTRUCTION {
849     //       DELAY_SLOT_INSTRUCTION }
850     //      LABEL_AFTER_CALL
851     assert(getLabelAfterInsn(&*CallInstrBundle) ==
852                getLabelAfterInsn(&*DelaySlotBundle) &&
853            "Call and its successor instruction don't have same label after.");
854     return true;
855   };
856 
857   // Emit call site entries for each call or tail call in the function.
858   for (const MachineBasicBlock &MBB : MF) {
859     for (const MachineInstr &MI : MBB.instrs()) {
860       // Bundles with call in them will pass the isCall() test below but do not
861       // have callee operand information so skip them here. Iterator will
862       // eventually reach the call MI.
863       if (MI.isBundle())
864         continue;
865 
866       // Skip instructions which aren't calls. Both calls and tail-calling jump
867       // instructions (e.g TAILJMPd64) are classified correctly here.
868       if (!MI.isCandidateForCallSiteEntry())
869         continue;
870 
871       // Skip instructions marked as frame setup, as they are not interesting to
872       // the user.
873       if (MI.getFlag(MachineInstr::FrameSetup))
874         continue;
875 
876       // Check if delay slot support is enabled.
877       if (MI.hasDelaySlot() && !delaySlotSupported(*&MI))
878         return;
879 
880       // If this is a direct call, find the callee's subprogram.
881       // In the case of an indirect call find the register that holds
882       // the callee.
883       const MachineOperand &CalleeOp = MI.getOperand(0);
884       if (!CalleeOp.isGlobal() && !CalleeOp.isReg())
885         continue;
886 
887       unsigned CallReg = 0;
888       DIE *CalleeDIE = nullptr;
889       const Function *CalleeDecl = nullptr;
890       if (CalleeOp.isReg()) {
891         CallReg = CalleeOp.getReg();
892         if (!CallReg)
893           continue;
894       } else {
895         CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal());
896         if (!CalleeDecl || !CalleeDecl->getSubprogram())
897           continue;
898         const DISubprogram *CalleeSP = CalleeDecl->getSubprogram();
899 
900         if (CalleeSP->isDefinition()) {
901           // Ensure that a subprogram DIE for the callee is available in the
902           // appropriate CU.
903           CalleeDIE = &constructSubprogramDefinitionDIE(CalleeSP);
904         } else {
905           // Create the declaration DIE if it is missing. This is required to
906           // support compilation of old bitcode with an incomplete list of
907           // retained metadata.
908           CalleeDIE = CU.getOrCreateSubprogramDIE(CalleeSP);
909         }
910         assert(CalleeDIE && "Must have a DIE for the callee");
911       }
912 
913       // TODO: Omit call site entries for runtime calls (objc_msgSend, etc).
914 
915       bool IsTail = TII->isTailCall(MI);
916 
917       // If MI is in a bundle, the label was created after the bundle since
918       // EmitFunctionBody iterates over top-level MIs. Get that top-level MI
919       // to search for that label below.
920       const MachineInstr *TopLevelCallMI =
921           MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI;
922 
923       // For non-tail calls, the return PC is needed to disambiguate paths in
924       // the call graph which could lead to some target function. For tail
925       // calls, no return PC information is needed, unless tuning for GDB in
926       // DWARF4 mode in which case we fake a return PC for compatibility.
927       const MCSymbol *PCAddr =
928           (!IsTail || CU.useGNUAnalogForDwarf5Feature())
929               ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI))
930               : nullptr;
931 
932       // For tail calls, it's necessary to record the address of the branch
933       // instruction so that the debugger can show where the tail call occurred.
934       const MCSymbol *CallAddr =
935           IsTail ? getLabelBeforeInsn(TopLevelCallMI) : nullptr;
936 
937       assert((IsTail || PCAddr) && "Non-tail call without return PC");
938 
939       LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> "
940                         << (CalleeDecl ? CalleeDecl->getName()
941                                        : StringRef(MF.getSubtarget()
942                                                        .getRegisterInfo()
943                                                        ->getName(CallReg)))
944                         << (IsTail ? " [IsTail]" : "") << "\n");
945 
946       DIE &CallSiteDIE = CU.constructCallSiteEntryDIE(
947           ScopeDIE, CalleeDIE, IsTail, PCAddr, CallAddr, CallReg);
948 
949       // Optionally emit call-site-param debug info.
950       if (emitDebugEntryValues()) {
951         ParamSet Params;
952         // Try to interpret values of call site parameters.
953         collectCallSiteParameters(&MI, Params);
954         CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params);
955       }
956     }
957   }
958 }
959 
960 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const {
961   if (!U.hasDwarfPubSections())
962     return;
963 
964   U.addFlag(D, dwarf::DW_AT_GNU_pubnames);
965 }
966 
967 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit,
968                                       DwarfCompileUnit &NewCU) {
969   DIE &Die = NewCU.getUnitDie();
970   StringRef FN = DIUnit->getFilename();
971 
972   StringRef Producer = DIUnit->getProducer();
973   StringRef Flags = DIUnit->getFlags();
974   if (!Flags.empty() && !useAppleExtensionAttributes()) {
975     std::string ProducerWithFlags = Producer.str() + " " + Flags.str();
976     NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags);
977   } else
978     NewCU.addString(Die, dwarf::DW_AT_producer, Producer);
979 
980   NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
981                 DIUnit->getSourceLanguage());
982   NewCU.addString(Die, dwarf::DW_AT_name, FN);
983   StringRef SysRoot = DIUnit->getSysRoot();
984   if (!SysRoot.empty())
985     NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot);
986   StringRef SDK = DIUnit->getSDK();
987   if (!SDK.empty())
988     NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK);
989 
990   // Add DW_str_offsets_base to the unit DIE, except for split units.
991   if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
992     NewCU.addStringOffsetsStart();
993 
994   if (!useSplitDwarf()) {
995     NewCU.initStmtList();
996 
997     // If we're using split dwarf the compilation dir is going to be in the
998     // skeleton CU and so we don't need to duplicate it here.
999     if (!CompilationDir.empty())
1000       NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
1001     addGnuPubAttributes(NewCU, Die);
1002   }
1003 
1004   if (useAppleExtensionAttributes()) {
1005     if (DIUnit->isOptimized())
1006       NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized);
1007 
1008     StringRef Flags = DIUnit->getFlags();
1009     if (!Flags.empty())
1010       NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags);
1011 
1012     if (unsigned RVer = DIUnit->getRuntimeVersion())
1013       NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers,
1014                     dwarf::DW_FORM_data1, RVer);
1015   }
1016 
1017   if (DIUnit->getDWOId()) {
1018     // This CU is either a clang module DWO or a skeleton CU.
1019     NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8,
1020                   DIUnit->getDWOId());
1021     if (!DIUnit->getSplitDebugFilename().empty()) {
1022       // This is a prefabricated skeleton CU.
1023       dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
1024                                          ? dwarf::DW_AT_dwo_name
1025                                          : dwarf::DW_AT_GNU_dwo_name;
1026       NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename());
1027     }
1028   }
1029 }
1030 // Create new DwarfCompileUnit for the given metadata node with tag
1031 // DW_TAG_compile_unit.
1032 DwarfCompileUnit &
1033 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) {
1034   if (auto *CU = CUMap.lookup(DIUnit))
1035     return *CU;
1036 
1037   CompilationDir = DIUnit->getDirectory();
1038 
1039   auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
1040       InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder);
1041   DwarfCompileUnit &NewCU = *OwnedUnit;
1042   InfoHolder.addUnit(std::move(OwnedUnit));
1043 
1044   for (auto *IE : DIUnit->getImportedEntities())
1045     NewCU.addImportedEntity(IE);
1046 
1047   // LTO with assembly output shares a single line table amongst multiple CUs.
1048   // To avoid the compilation directory being ambiguous, let the line table
1049   // explicitly describe the directory of all files, never relying on the
1050   // compilation directory.
1051   if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU)
1052     Asm->OutStreamer->emitDwarfFile0Directive(
1053         CompilationDir, DIUnit->getFilename(), getMD5AsBytes(DIUnit->getFile()),
1054         DIUnit->getSource(), NewCU.getUniqueID());
1055 
1056   if (useSplitDwarf()) {
1057     NewCU.setSkeleton(constructSkeletonCU(NewCU));
1058     NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection());
1059   } else {
1060     finishUnitAttributes(DIUnit, NewCU);
1061     NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
1062   }
1063 
1064   CUMap.insert({DIUnit, &NewCU});
1065   CUDieMap.insert({&NewCU.getUnitDie(), &NewCU});
1066   return NewCU;
1067 }
1068 
1069 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU,
1070                                                   const DIImportedEntity *N) {
1071   if (isa<DILocalScope>(N->getScope()))
1072     return;
1073   if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope()))
1074     D->addChild(TheCU.constructImportedEntityDIE(N));
1075 }
1076 
1077 /// Sort and unique GVEs by comparing their fragment offset.
1078 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &
1079 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) {
1080   llvm::sort(
1081       GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) {
1082         // Sort order: first null exprs, then exprs without fragment
1083         // info, then sort by fragment offset in bits.
1084         // FIXME: Come up with a more comprehensive comparator so
1085         // the sorting isn't non-deterministic, and so the following
1086         // std::unique call works correctly.
1087         if (!A.Expr || !B.Expr)
1088           return !!B.Expr;
1089         auto FragmentA = A.Expr->getFragmentInfo();
1090         auto FragmentB = B.Expr->getFragmentInfo();
1091         if (!FragmentA || !FragmentB)
1092           return !!FragmentB;
1093         return FragmentA->OffsetInBits < FragmentB->OffsetInBits;
1094       });
1095   GVEs.erase(std::unique(GVEs.begin(), GVEs.end(),
1096                          [](DwarfCompileUnit::GlobalExpr A,
1097                             DwarfCompileUnit::GlobalExpr B) {
1098                            return A.Expr == B.Expr;
1099                          }),
1100              GVEs.end());
1101   return GVEs;
1102 }
1103 
1104 // Emit all Dwarf sections that should come prior to the content. Create
1105 // global DIEs and emit initial debug info sections. This is invoked by
1106 // the target AsmPrinter.
1107 void DwarfDebug::beginModule() {
1108   NamedRegionTimer T(DbgTimerName, DbgTimerDescription, DWARFGroupName,
1109                      DWARFGroupDescription, TimePassesIsEnabled);
1110   if (DisableDebugInfoPrinting) {
1111     MMI->setDebugInfoAvailability(false);
1112     return;
1113   }
1114 
1115   const Module *M = MMI->getModule();
1116 
1117   unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(),
1118                                        M->debug_compile_units_end());
1119   // Tell MMI whether we have debug info.
1120   assert(MMI->hasDebugInfo() == (NumDebugCUs > 0) &&
1121          "DebugInfoAvailabilty initialized unexpectedly");
1122   SingleCU = NumDebugCUs == 1;
1123   DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>>
1124       GVMap;
1125   for (const GlobalVariable &Global : M->globals()) {
1126     SmallVector<DIGlobalVariableExpression *, 1> GVs;
1127     Global.getDebugInfo(GVs);
1128     for (auto *GVE : GVs)
1129       GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()});
1130   }
1131 
1132   // Create the symbol that designates the start of the unit's contribution
1133   // to the string offsets table. In a split DWARF scenario, only the skeleton
1134   // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol).
1135   if (useSegmentedStringOffsetsTable())
1136     (useSplitDwarf() ? SkeletonHolder : InfoHolder)
1137         .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base"));
1138 
1139 
1140   // Create the symbols that designates the start of the DWARF v5 range list
1141   // and locations list tables. They are located past the table headers.
1142   if (getDwarfVersion() >= 5) {
1143     DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1144     Holder.setRnglistsTableBaseSym(
1145         Asm->createTempSymbol("rnglists_table_base"));
1146 
1147     if (useSplitDwarf())
1148       InfoHolder.setRnglistsTableBaseSym(
1149           Asm->createTempSymbol("rnglists_dwo_table_base"));
1150   }
1151 
1152   // Create the symbol that points to the first entry following the debug
1153   // address table (.debug_addr) header.
1154   AddrPool.setLabel(Asm->createTempSymbol("addr_table_base"));
1155   DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base"));
1156 
1157   for (DICompileUnit *CUNode : M->debug_compile_units()) {
1158     // FIXME: Move local imported entities into a list attached to the
1159     // subprogram, then this search won't be needed and a
1160     // getImportedEntities().empty() test should go below with the rest.
1161     bool HasNonLocalImportedEntities = llvm::any_of(
1162         CUNode->getImportedEntities(), [](const DIImportedEntity *IE) {
1163           return !isa<DILocalScope>(IE->getScope());
1164         });
1165 
1166     if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() &&
1167         CUNode->getRetainedTypes().empty() &&
1168         CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty())
1169       continue;
1170 
1171     DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode);
1172 
1173     // Global Variables.
1174     for (auto *GVE : CUNode->getGlobalVariables()) {
1175       // Don't bother adding DIGlobalVariableExpressions listed in the CU if we
1176       // already know about the variable and it isn't adding a constant
1177       // expression.
1178       auto &GVMapEntry = GVMap[GVE->getVariable()];
1179       auto *Expr = GVE->getExpression();
1180       if (!GVMapEntry.size() || (Expr && Expr->isConstant()))
1181         GVMapEntry.push_back({nullptr, Expr});
1182     }
1183     DenseSet<DIGlobalVariable *> Processed;
1184     for (auto *GVE : CUNode->getGlobalVariables()) {
1185       DIGlobalVariable *GV = GVE->getVariable();
1186       if (Processed.insert(GV).second)
1187         CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV]));
1188     }
1189 
1190     for (auto *Ty : CUNode->getEnumTypes()) {
1191       // The enum types array by design contains pointers to
1192       // MDNodes rather than DIRefs. Unique them here.
1193       CU.getOrCreateTypeDIE(cast<DIType>(Ty));
1194     }
1195     for (auto *Ty : CUNode->getRetainedTypes()) {
1196       // The retained types array by design contains pointers to
1197       // MDNodes rather than DIRefs. Unique them here.
1198       if (DIType *RT = dyn_cast<DIType>(Ty))
1199           // There is no point in force-emitting a forward declaration.
1200           CU.getOrCreateTypeDIE(RT);
1201     }
1202     // Emit imported_modules last so that the relevant context is already
1203     // available.
1204     for (auto *IE : CUNode->getImportedEntities())
1205       constructAndAddImportedEntityDIE(CU, IE);
1206   }
1207 }
1208 
1209 void DwarfDebug::finishEntityDefinitions() {
1210   for (const auto &Entity : ConcreteEntities) {
1211     DIE *Die = Entity->getDIE();
1212     assert(Die);
1213     // FIXME: Consider the time-space tradeoff of just storing the unit pointer
1214     // in the ConcreteEntities list, rather than looking it up again here.
1215     // DIE::getUnit isn't simple - it walks parent pointers, etc.
1216     DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie());
1217     assert(Unit);
1218     Unit->finishEntityDefinition(Entity.get());
1219   }
1220 }
1221 
1222 void DwarfDebug::finishSubprogramDefinitions() {
1223   for (const DISubprogram *SP : ProcessedSPNodes) {
1224     assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug);
1225     forBothCUs(
1226         getOrCreateDwarfCompileUnit(SP->getUnit()),
1227         [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); });
1228   }
1229 }
1230 
1231 void DwarfDebug::finalizeModuleInfo() {
1232   const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
1233 
1234   finishSubprogramDefinitions();
1235 
1236   finishEntityDefinitions();
1237 
1238   // Include the DWO file name in the hash if there's more than one CU.
1239   // This handles ThinLTO's situation where imported CUs may very easily be
1240   // duplicate with the same CU partially imported into another ThinLTO unit.
1241   StringRef DWOName;
1242   if (CUMap.size() > 1)
1243     DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile;
1244 
1245   // Handle anything that needs to be done on a per-unit basis after
1246   // all other generation.
1247   for (const auto &P : CUMap) {
1248     auto &TheCU = *P.second;
1249     if (TheCU.getCUNode()->isDebugDirectivesOnly())
1250       continue;
1251     // Emit DW_AT_containing_type attribute to connect types with their
1252     // vtable holding type.
1253     TheCU.constructContainingTypeDIEs();
1254 
1255     // Add CU specific attributes if we need to add any.
1256     // If we're splitting the dwarf out now that we've got the entire
1257     // CU then add the dwo id to it.
1258     auto *SkCU = TheCU.getSkeleton();
1259 
1260     bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty();
1261 
1262     if (HasSplitUnit) {
1263       dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
1264                                          ? dwarf::DW_AT_dwo_name
1265                                          : dwarf::DW_AT_GNU_dwo_name;
1266       finishUnitAttributes(TheCU.getCUNode(), TheCU);
1267       TheCU.addString(TheCU.getUnitDie(), attrDWOName,
1268                       Asm->TM.Options.MCOptions.SplitDwarfFile);
1269       SkCU->addString(SkCU->getUnitDie(), attrDWOName,
1270                       Asm->TM.Options.MCOptions.SplitDwarfFile);
1271       // Emit a unique identifier for this CU.
1272       uint64_t ID =
1273           DIEHash(Asm).computeCUSignature(DWOName, TheCU.getUnitDie());
1274       if (getDwarfVersion() >= 5) {
1275         TheCU.setDWOId(ID);
1276         SkCU->setDWOId(ID);
1277       } else {
1278         TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1279                       dwarf::DW_FORM_data8, ID);
1280         SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1281                       dwarf::DW_FORM_data8, ID);
1282       }
1283 
1284       if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) {
1285         const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol();
1286         SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base,
1287                               Sym, Sym);
1288       }
1289     } else if (SkCU) {
1290       finishUnitAttributes(SkCU->getCUNode(), *SkCU);
1291     }
1292 
1293     // If we have code split among multiple sections or non-contiguous
1294     // ranges of code then emit a DW_AT_ranges attribute on the unit that will
1295     // remain in the .o file, otherwise add a DW_AT_low_pc.
1296     // FIXME: We should use ranges allow reordering of code ala
1297     // .subsections_via_symbols in mach-o. This would mean turning on
1298     // ranges for all subprogram DIEs for mach-o.
1299     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
1300 
1301     if (unsigned NumRanges = TheCU.getRanges().size()) {
1302       if (NumRanges > 1 && useRangesSection())
1303         // A DW_AT_low_pc attribute may also be specified in combination with
1304         // DW_AT_ranges to specify the default base address for use in
1305         // location lists (see Section 2.6.2) and range lists (see Section
1306         // 2.17.3).
1307         U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0);
1308       else
1309         U.setBaseAddress(TheCU.getRanges().front().Begin);
1310       U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges());
1311     }
1312 
1313     // We don't keep track of which addresses are used in which CU so this
1314     // is a bit pessimistic under LTO.
1315     if ((HasSplitUnit || getDwarfVersion() >= 5) && !AddrPool.isEmpty())
1316       U.addAddrTableBase();
1317 
1318     if (getDwarfVersion() >= 5) {
1319       if (U.hasRangeLists())
1320         U.addRnglistsBase();
1321 
1322       if (!DebugLocs.getLists().empty()) {
1323         if (!useSplitDwarf())
1324           U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base,
1325                             DebugLocs.getSym(),
1326                             TLOF.getDwarfLoclistsSection()->getBeginSymbol());
1327       }
1328     }
1329 
1330     auto *CUNode = cast<DICompileUnit>(P.first);
1331     // If compile Unit has macros, emit "DW_AT_macro_info/DW_AT_macros"
1332     // attribute.
1333     if (CUNode->getMacros()) {
1334       if (UseDebugMacroSection) {
1335         if (useSplitDwarf())
1336           TheCU.addSectionDelta(
1337               TheCU.getUnitDie(), dwarf::DW_AT_macros, U.getMacroLabelBegin(),
1338               TLOF.getDwarfMacroDWOSection()->getBeginSymbol());
1339         else {
1340           dwarf::Attribute MacrosAttr = getDwarfVersion() >= 5
1341                                             ? dwarf::DW_AT_macros
1342                                             : dwarf::DW_AT_GNU_macros;
1343           U.addSectionLabel(U.getUnitDie(), MacrosAttr, U.getMacroLabelBegin(),
1344                             TLOF.getDwarfMacroSection()->getBeginSymbol());
1345         }
1346       } else {
1347         if (useSplitDwarf())
1348           TheCU.addSectionDelta(
1349               TheCU.getUnitDie(), dwarf::DW_AT_macro_info,
1350               U.getMacroLabelBegin(),
1351               TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol());
1352         else
1353           U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info,
1354                             U.getMacroLabelBegin(),
1355                             TLOF.getDwarfMacinfoSection()->getBeginSymbol());
1356       }
1357     }
1358     }
1359 
1360   // Emit all frontend-produced Skeleton CUs, i.e., Clang modules.
1361   for (auto *CUNode : MMI->getModule()->debug_compile_units())
1362     if (CUNode->getDWOId())
1363       getOrCreateDwarfCompileUnit(CUNode);
1364 
1365   // Compute DIE offsets and sizes.
1366   InfoHolder.computeSizeAndOffsets();
1367   if (useSplitDwarf())
1368     SkeletonHolder.computeSizeAndOffsets();
1369 }
1370 
1371 // Emit all Dwarf sections that should come after the content.
1372 void DwarfDebug::endModule() {
1373   assert(CurFn == nullptr);
1374   assert(CurMI == nullptr);
1375 
1376   for (const auto &P : CUMap) {
1377     auto &CU = *P.second;
1378     CU.createBaseTypeDIEs();
1379   }
1380 
1381   // If we aren't actually generating debug info (check beginModule -
1382   // conditionalized on !DisableDebugInfoPrinting and the presence of the
1383   // llvm.dbg.cu metadata node)
1384   if (!MMI->hasDebugInfo())
1385     return;
1386 
1387   // Finalize the debug info for the module.
1388   finalizeModuleInfo();
1389 
1390   if (useSplitDwarf())
1391     // Emit debug_loc.dwo/debug_loclists.dwo section.
1392     emitDebugLocDWO();
1393   else
1394     // Emit debug_loc/debug_loclists section.
1395     emitDebugLoc();
1396 
1397   // Corresponding abbreviations into a abbrev section.
1398   emitAbbreviations();
1399 
1400   // Emit all the DIEs into a debug info section.
1401   emitDebugInfo();
1402 
1403   // Emit info into a debug aranges section.
1404   if (GenerateARangeSection)
1405     emitDebugARanges();
1406 
1407   // Emit info into a debug ranges section.
1408   emitDebugRanges();
1409 
1410   if (useSplitDwarf())
1411   // Emit info into a debug macinfo.dwo section.
1412     emitDebugMacinfoDWO();
1413   else
1414     // Emit info into a debug macinfo/macro section.
1415     emitDebugMacinfo();
1416 
1417   emitDebugStr();
1418 
1419   if (useSplitDwarf()) {
1420     emitDebugStrDWO();
1421     emitDebugInfoDWO();
1422     emitDebugAbbrevDWO();
1423     emitDebugLineDWO();
1424     emitDebugRangesDWO();
1425   }
1426 
1427   emitDebugAddr();
1428 
1429   // Emit info into the dwarf accelerator table sections.
1430   switch (getAccelTableKind()) {
1431   case AccelTableKind::Apple:
1432     emitAccelNames();
1433     emitAccelObjC();
1434     emitAccelNamespaces();
1435     emitAccelTypes();
1436     break;
1437   case AccelTableKind::Dwarf:
1438     emitAccelDebugNames();
1439     break;
1440   case AccelTableKind::None:
1441     break;
1442   case AccelTableKind::Default:
1443     llvm_unreachable("Default should have already been resolved.");
1444   }
1445 
1446   // Emit the pubnames and pubtypes sections if requested.
1447   emitDebugPubSections();
1448 
1449   // clean up.
1450   // FIXME: AbstractVariables.clear();
1451 }
1452 
1453 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU,
1454                                                const DINode *Node,
1455                                                const MDNode *ScopeNode) {
1456   if (CU.getExistingAbstractEntity(Node))
1457     return;
1458 
1459   CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope(
1460                                        cast<DILocalScope>(ScopeNode)));
1461 }
1462 
1463 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU,
1464     const DINode *Node, const MDNode *ScopeNode) {
1465   if (CU.getExistingAbstractEntity(Node))
1466     return;
1467 
1468   if (LexicalScope *Scope =
1469           LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode)))
1470     CU.createAbstractEntity(Node, Scope);
1471 }
1472 
1473 // Collect variable information from side table maintained by MF.
1474 void DwarfDebug::collectVariableInfoFromMFTable(
1475     DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) {
1476   SmallDenseMap<InlinedEntity, DbgVariable *> MFVars;
1477   LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n");
1478   for (const auto &VI : Asm->MF->getVariableDbgInfo()) {
1479     if (!VI.Var)
1480       continue;
1481     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1482            "Expected inlined-at fields to agree");
1483 
1484     InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt());
1485     Processed.insert(Var);
1486     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1487 
1488     // If variable scope is not found then skip this variable.
1489     if (!Scope) {
1490       LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName()
1491                         << ", no variable scope found\n");
1492       continue;
1493     }
1494 
1495     ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode());
1496     auto RegVar = std::make_unique<DbgVariable>(
1497                     cast<DILocalVariable>(Var.first), Var.second);
1498     RegVar->initializeMMI(VI.Expr, VI.Slot);
1499     LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName()
1500                       << "\n");
1501     if (DbgVariable *DbgVar = MFVars.lookup(Var))
1502       DbgVar->addMMIEntry(*RegVar);
1503     else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) {
1504       MFVars.insert({Var, RegVar.get()});
1505       ConcreteEntities.push_back(std::move(RegVar));
1506     }
1507   }
1508 }
1509 
1510 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its
1511 /// enclosing lexical scope. The check ensures there are no other instructions
1512 /// in the same lexical scope preceding the DBG_VALUE and that its range is
1513 /// either open or otherwise rolls off the end of the scope.
1514 static bool validThroughout(LexicalScopes &LScopes,
1515                             const MachineInstr *DbgValue,
1516                             const MachineInstr *RangeEnd,
1517                             const InstructionOrdering &Ordering) {
1518   assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location");
1519   auto MBB = DbgValue->getParent();
1520   auto DL = DbgValue->getDebugLoc();
1521   auto *LScope = LScopes.findLexicalScope(DL);
1522   // Scope doesn't exist; this is a dead DBG_VALUE.
1523   if (!LScope)
1524     return false;
1525   auto &LSRange = LScope->getRanges();
1526   if (LSRange.size() == 0)
1527     return false;
1528 
1529   const MachineInstr *LScopeBegin = LSRange.front().first;
1530   // If the scope starts before the DBG_VALUE then we may have a negative
1531   // result. Otherwise the location is live coming into the scope and we
1532   // can skip the following checks.
1533   if (!Ordering.isBefore(DbgValue, LScopeBegin)) {
1534     // Exit if the lexical scope begins outside of the current block.
1535     if (LScopeBegin->getParent() != MBB)
1536       return false;
1537 
1538     MachineBasicBlock::const_reverse_iterator Pred(DbgValue);
1539     for (++Pred; Pred != MBB->rend(); ++Pred) {
1540       if (Pred->getFlag(MachineInstr::FrameSetup))
1541         break;
1542       auto PredDL = Pred->getDebugLoc();
1543       if (!PredDL || Pred->isMetaInstruction())
1544         continue;
1545       // Check whether the instruction preceding the DBG_VALUE is in the same
1546       // (sub)scope as the DBG_VALUE.
1547       if (DL->getScope() == PredDL->getScope())
1548         return false;
1549       auto *PredScope = LScopes.findLexicalScope(PredDL);
1550       if (!PredScope || LScope->dominates(PredScope))
1551         return false;
1552     }
1553   }
1554 
1555   // If the range of the DBG_VALUE is open-ended, report success.
1556   if (!RangeEnd)
1557     return true;
1558 
1559   // Single, constant DBG_VALUEs in the prologue are promoted to be live
1560   // throughout the function. This is a hack, presumably for DWARF v2 and not
1561   // necessarily correct. It would be much better to use a dbg.declare instead
1562   // if we know the constant is live throughout the scope.
1563   if (DbgValue->getDebugOperand(0).isImm() && MBB->pred_empty())
1564     return true;
1565 
1566   // Test if the location terminates before the end of the scope.
1567   const MachineInstr *LScopeEnd = LSRange.back().second;
1568   if (Ordering.isBefore(RangeEnd, LScopeEnd))
1569     return false;
1570 
1571   // There's a single location which starts at the scope start, and ends at or
1572   // after the scope end.
1573   return true;
1574 }
1575 
1576 /// Build the location list for all DBG_VALUEs in the function that
1577 /// describe the same variable. The resulting DebugLocEntries will have
1578 /// strict monotonically increasing begin addresses and will never
1579 /// overlap. If the resulting list has only one entry that is valid
1580 /// throughout variable's scope return true.
1581 //
1582 // See the definition of DbgValueHistoryMap::Entry for an explanation of the
1583 // different kinds of history map entries. One thing to be aware of is that if
1584 // a debug value is ended by another entry (rather than being valid until the
1585 // end of the function), that entry's instruction may or may not be included in
1586 // the range, depending on if the entry is a clobbering entry (it has an
1587 // instruction that clobbers one or more preceding locations), or if it is an
1588 // (overlapping) debug value entry. This distinction can be seen in the example
1589 // below. The first debug value is ended by the clobbering entry 2, and the
1590 // second and third debug values are ended by the overlapping debug value entry
1591 // 4.
1592 //
1593 // Input:
1594 //
1595 //   History map entries [type, end index, mi]
1596 //
1597 // 0 |      [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)]
1598 // 1 | |    [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)]
1599 // 2 | |    [Clobber, $reg0 = [...], -, -]
1600 // 3   | |  [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)]
1601 // 4        [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)]
1602 //
1603 // Output [start, end) [Value...]:
1604 //
1605 // [0-1)    [(reg0, fragment 0, 32)]
1606 // [1-3)    [(reg0, fragment 0, 32), (reg1, fragment 32, 32)]
1607 // [3-4)    [(reg1, fragment 32, 32), (123, fragment 64, 32)]
1608 // [4-)     [(@g, fragment 0, 96)]
1609 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc,
1610                                    const DbgValueHistoryMap::Entries &Entries) {
1611   using OpenRange =
1612       std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>;
1613   SmallVector<OpenRange, 4> OpenRanges;
1614   bool isSafeForSingleLocation = true;
1615   const MachineInstr *StartDebugMI = nullptr;
1616   const MachineInstr *EndMI = nullptr;
1617 
1618   for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) {
1619     const MachineInstr *Instr = EI->getInstr();
1620 
1621     // Remove all values that are no longer live.
1622     size_t Index = std::distance(EB, EI);
1623     auto Last =
1624         remove_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; });
1625     OpenRanges.erase(Last, OpenRanges.end());
1626 
1627     // If we are dealing with a clobbering entry, this iteration will result in
1628     // a location list entry starting after the clobbering instruction.
1629     const MCSymbol *StartLabel =
1630         EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr);
1631     assert(StartLabel &&
1632            "Forgot label before/after instruction starting a range!");
1633 
1634     const MCSymbol *EndLabel;
1635     if (std::next(EI) == Entries.end()) {
1636       const MachineBasicBlock &EndMBB = Asm->MF->back();
1637       EndLabel = Asm->MBBSectionRanges[EndMBB.getSectionIDNum()].EndLabel;
1638       if (EI->isClobber())
1639         EndMI = EI->getInstr();
1640     }
1641     else if (std::next(EI)->isClobber())
1642       EndLabel = getLabelAfterInsn(std::next(EI)->getInstr());
1643     else
1644       EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr());
1645     assert(EndLabel && "Forgot label after instruction ending a range!");
1646 
1647     if (EI->isDbgValue())
1648       LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n");
1649 
1650     // If this history map entry has a debug value, add that to the list of
1651     // open ranges and check if its location is valid for a single value
1652     // location.
1653     if (EI->isDbgValue()) {
1654       // Do not add undef debug values, as they are redundant information in
1655       // the location list entries. An undef debug results in an empty location
1656       // description. If there are any non-undef fragments then padding pieces
1657       // with empty location descriptions will automatically be inserted, and if
1658       // all fragments are undef then the whole location list entry is
1659       // redundant.
1660       if (!Instr->isUndefDebugValue()) {
1661         auto Value = getDebugLocValue(Instr);
1662         OpenRanges.emplace_back(EI->getEndIndex(), Value);
1663 
1664         // TODO: Add support for single value fragment locations.
1665         if (Instr->getDebugExpression()->isFragment())
1666           isSafeForSingleLocation = false;
1667 
1668         if (!StartDebugMI)
1669           StartDebugMI = Instr;
1670       } else {
1671         isSafeForSingleLocation = false;
1672       }
1673     }
1674 
1675     // Location list entries with empty location descriptions are redundant
1676     // information in DWARF, so do not emit those.
1677     if (OpenRanges.empty())
1678       continue;
1679 
1680     // Omit entries with empty ranges as they do not have any effect in DWARF.
1681     if (StartLabel == EndLabel) {
1682       LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n");
1683       continue;
1684     }
1685 
1686     SmallVector<DbgValueLoc, 4> Values;
1687     for (auto &R : OpenRanges)
1688       Values.push_back(R.second);
1689     DebugLoc.emplace_back(StartLabel, EndLabel, Values);
1690 
1691     // Attempt to coalesce the ranges of two otherwise identical
1692     // DebugLocEntries.
1693     auto CurEntry = DebugLoc.rbegin();
1694     LLVM_DEBUG({
1695       dbgs() << CurEntry->getValues().size() << " Values:\n";
1696       for (auto &Value : CurEntry->getValues())
1697         Value.dump();
1698       dbgs() << "-----\n";
1699     });
1700 
1701     auto PrevEntry = std::next(CurEntry);
1702     if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry))
1703       DebugLoc.pop_back();
1704   }
1705 
1706   return DebugLoc.size() == 1 && isSafeForSingleLocation &&
1707          validThroughout(LScopes, StartDebugMI, EndMI, getInstOrdering());
1708 }
1709 
1710 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU,
1711                                             LexicalScope &Scope,
1712                                             const DINode *Node,
1713                                             const DILocation *Location,
1714                                             const MCSymbol *Sym) {
1715   ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode());
1716   if (isa<const DILocalVariable>(Node)) {
1717     ConcreteEntities.push_back(
1718         std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node),
1719                                        Location));
1720     InfoHolder.addScopeVariable(&Scope,
1721         cast<DbgVariable>(ConcreteEntities.back().get()));
1722   } else if (isa<const DILabel>(Node)) {
1723     ConcreteEntities.push_back(
1724         std::make_unique<DbgLabel>(cast<const DILabel>(Node),
1725                                     Location, Sym));
1726     InfoHolder.addScopeLabel(&Scope,
1727         cast<DbgLabel>(ConcreteEntities.back().get()));
1728   }
1729   return ConcreteEntities.back().get();
1730 }
1731 
1732 // Find variables for each lexical scope.
1733 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU,
1734                                    const DISubprogram *SP,
1735                                    DenseSet<InlinedEntity> &Processed) {
1736   // Grab the variable info that was squirreled away in the MMI side-table.
1737   collectVariableInfoFromMFTable(TheCU, Processed);
1738 
1739   for (const auto &I : DbgValues) {
1740     InlinedEntity IV = I.first;
1741     if (Processed.count(IV))
1742       continue;
1743 
1744     // Instruction ranges, specifying where IV is accessible.
1745     const auto &HistoryMapEntries = I.second;
1746     if (HistoryMapEntries.empty())
1747       continue;
1748 
1749     LexicalScope *Scope = nullptr;
1750     const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first);
1751     if (const DILocation *IA = IV.second)
1752       Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA);
1753     else
1754       Scope = LScopes.findLexicalScope(LocalVar->getScope());
1755     // If variable scope is not found then skip this variable.
1756     if (!Scope)
1757       continue;
1758 
1759     Processed.insert(IV);
1760     DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU,
1761                                             *Scope, LocalVar, IV.second));
1762 
1763     const MachineInstr *MInsn = HistoryMapEntries.front().getInstr();
1764     assert(MInsn->isDebugValue() && "History must begin with debug value");
1765 
1766     // Check if there is a single DBG_VALUE, valid throughout the var's scope.
1767     // If the history map contains a single debug value, there may be an
1768     // additional entry which clobbers the debug value.
1769     size_t HistSize = HistoryMapEntries.size();
1770     bool SingleValueWithClobber =
1771         HistSize == 2 && HistoryMapEntries[1].isClobber();
1772     if (HistSize == 1 || SingleValueWithClobber) {
1773       const auto *End =
1774           SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr;
1775       if (validThroughout(LScopes, MInsn, End, getInstOrdering())) {
1776         RegVar->initializeDbgValue(MInsn);
1777         continue;
1778       }
1779     }
1780 
1781     // Do not emit location lists if .debug_loc secton is disabled.
1782     if (!useLocSection())
1783       continue;
1784 
1785     // Handle multiple DBG_VALUE instructions describing one variable.
1786     DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn);
1787 
1788     // Build the location list for this variable.
1789     SmallVector<DebugLocEntry, 8> Entries;
1790     bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries);
1791 
1792     // Check whether buildLocationList managed to merge all locations to one
1793     // that is valid throughout the variable's scope. If so, produce single
1794     // value location.
1795     if (isValidSingleLocation) {
1796       RegVar->initializeDbgValue(Entries[0].getValues()[0]);
1797       continue;
1798     }
1799 
1800     // If the variable has a DIBasicType, extract it.  Basic types cannot have
1801     // unique identifiers, so don't bother resolving the type with the
1802     // identifier map.
1803     const DIBasicType *BT = dyn_cast<DIBasicType>(
1804         static_cast<const Metadata *>(LocalVar->getType()));
1805 
1806     // Finalize the entry by lowering it into a DWARF bytestream.
1807     for (auto &Entry : Entries)
1808       Entry.finalize(*Asm, List, BT, TheCU);
1809   }
1810 
1811   // For each InlinedEntity collected from DBG_LABEL instructions, convert to
1812   // DWARF-related DbgLabel.
1813   for (const auto &I : DbgLabels) {
1814     InlinedEntity IL = I.first;
1815     const MachineInstr *MI = I.second;
1816     if (MI == nullptr)
1817       continue;
1818 
1819     LexicalScope *Scope = nullptr;
1820     const DILabel *Label = cast<DILabel>(IL.first);
1821     // The scope could have an extra lexical block file.
1822     const DILocalScope *LocalScope =
1823         Label->getScope()->getNonLexicalBlockFileScope();
1824     // Get inlined DILocation if it is inlined label.
1825     if (const DILocation *IA = IL.second)
1826       Scope = LScopes.findInlinedScope(LocalScope, IA);
1827     else
1828       Scope = LScopes.findLexicalScope(LocalScope);
1829     // If label scope is not found then skip this label.
1830     if (!Scope)
1831       continue;
1832 
1833     Processed.insert(IL);
1834     /// At this point, the temporary label is created.
1835     /// Save the temporary label to DbgLabel entity to get the
1836     /// actually address when generating Dwarf DIE.
1837     MCSymbol *Sym = getLabelBeforeInsn(MI);
1838     createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym);
1839   }
1840 
1841   // Collect info for variables/labels that were optimized out.
1842   for (const DINode *DN : SP->getRetainedNodes()) {
1843     if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
1844       continue;
1845     LexicalScope *Scope = nullptr;
1846     if (auto *DV = dyn_cast<DILocalVariable>(DN)) {
1847       Scope = LScopes.findLexicalScope(DV->getScope());
1848     } else if (auto *DL = dyn_cast<DILabel>(DN)) {
1849       Scope = LScopes.findLexicalScope(DL->getScope());
1850     }
1851 
1852     if (Scope)
1853       createConcreteEntity(TheCU, *Scope, DN, nullptr);
1854   }
1855 }
1856 
1857 // Process beginning of an instruction.
1858 void DwarfDebug::beginInstruction(const MachineInstr *MI) {
1859   const MachineFunction &MF = *MI->getMF();
1860   const auto *SP = MF.getFunction().getSubprogram();
1861   bool NoDebug =
1862       !SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug;
1863 
1864   // Delay slot support check.
1865   auto delaySlotSupported = [](const MachineInstr &MI) {
1866     if (!MI.isBundledWithSucc())
1867       return false;
1868     auto Suc = std::next(MI.getIterator());
1869     (void)Suc;
1870     // Ensure that delay slot instruction is successor of the call instruction.
1871     // Ex. CALL_INSTRUCTION {
1872     //        DELAY_SLOT_INSTRUCTION }
1873     assert(Suc->isBundledWithPred() &&
1874            "Call bundle instructions are out of order");
1875     return true;
1876   };
1877 
1878   // When describing calls, we need a label for the call instruction.
1879   if (!NoDebug && SP->areAllCallsDescribed() &&
1880       MI->isCandidateForCallSiteEntry(MachineInstr::AnyInBundle) &&
1881       (!MI->hasDelaySlot() || delaySlotSupported(*MI))) {
1882     const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1883     bool IsTail = TII->isTailCall(*MI);
1884     // For tail calls, we need the address of the branch instruction for
1885     // DW_AT_call_pc.
1886     if (IsTail)
1887       requestLabelBeforeInsn(MI);
1888     // For non-tail calls, we need the return address for the call for
1889     // DW_AT_call_return_pc. Under GDB tuning, this information is needed for
1890     // tail calls as well.
1891     requestLabelAfterInsn(MI);
1892   }
1893 
1894   DebugHandlerBase::beginInstruction(MI);
1895   assert(CurMI);
1896 
1897   if (NoDebug)
1898     return;
1899 
1900   // Check if source location changes, but ignore DBG_VALUE and CFI locations.
1901   // If the instruction is part of the function frame setup code, do not emit
1902   // any line record, as there is no correspondence with any user code.
1903   if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup))
1904     return;
1905   const DebugLoc &DL = MI->getDebugLoc();
1906   // When we emit a line-0 record, we don't update PrevInstLoc; so look at
1907   // the last line number actually emitted, to see if it was line 0.
1908   unsigned LastAsmLine =
1909       Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine();
1910 
1911   if (DL == PrevInstLoc) {
1912     // If we have an ongoing unspecified location, nothing to do here.
1913     if (!DL)
1914       return;
1915     // We have an explicit location, same as the previous location.
1916     // But we might be coming back to it after a line 0 record.
1917     if (LastAsmLine == 0 && DL.getLine() != 0) {
1918       // Reinstate the source location but not marked as a statement.
1919       const MDNode *Scope = DL.getScope();
1920       recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0);
1921     }
1922     return;
1923   }
1924 
1925   if (!DL) {
1926     // We have an unspecified location, which might want to be line 0.
1927     // If we have already emitted a line-0 record, don't repeat it.
1928     if (LastAsmLine == 0)
1929       return;
1930     // If user said Don't Do That, don't do that.
1931     if (UnknownLocations == Disable)
1932       return;
1933     // See if we have a reason to emit a line-0 record now.
1934     // Reasons to emit a line-0 record include:
1935     // - User asked for it (UnknownLocations).
1936     // - Instruction has a label, so it's referenced from somewhere else,
1937     //   possibly debug information; we want it to have a source location.
1938     // - Instruction is at the top of a block; we don't want to inherit the
1939     //   location from the physically previous (maybe unrelated) block.
1940     if (UnknownLocations == Enable || PrevLabel ||
1941         (PrevInstBB && PrevInstBB != MI->getParent())) {
1942       // Preserve the file and column numbers, if we can, to save space in
1943       // the encoded line table.
1944       // Do not update PrevInstLoc, it remembers the last non-0 line.
1945       const MDNode *Scope = nullptr;
1946       unsigned Column = 0;
1947       if (PrevInstLoc) {
1948         Scope = PrevInstLoc.getScope();
1949         Column = PrevInstLoc.getCol();
1950       }
1951       recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0);
1952     }
1953     return;
1954   }
1955 
1956   // We have an explicit location, different from the previous location.
1957   // Don't repeat a line-0 record, but otherwise emit the new location.
1958   // (The new location might be an explicit line 0, which we do emit.)
1959   if (DL.getLine() == 0 && LastAsmLine == 0)
1960     return;
1961   unsigned Flags = 0;
1962   if (DL == PrologEndLoc) {
1963     Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT;
1964     PrologEndLoc = DebugLoc();
1965   }
1966   // If the line changed, we call that a new statement; unless we went to
1967   // line 0 and came back, in which case it is not a new statement.
1968   unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine;
1969   if (DL.getLine() && DL.getLine() != OldLine)
1970     Flags |= DWARF2_FLAG_IS_STMT;
1971 
1972   const MDNode *Scope = DL.getScope();
1973   recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
1974 
1975   // If we're not at line 0, remember this location.
1976   if (DL.getLine())
1977     PrevInstLoc = DL;
1978 }
1979 
1980 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) {
1981   // First known non-DBG_VALUE and non-frame setup location marks
1982   // the beginning of the function body.
1983   for (const auto &MBB : *MF)
1984     for (const auto &MI : MBB)
1985       if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
1986           MI.getDebugLoc())
1987         return MI.getDebugLoc();
1988   return DebugLoc();
1989 }
1990 
1991 /// Register a source line with debug info. Returns the  unique label that was
1992 /// emitted and which provides correspondence to the source line list.
1993 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col,
1994                              const MDNode *S, unsigned Flags, unsigned CUID,
1995                              uint16_t DwarfVersion,
1996                              ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) {
1997   StringRef Fn;
1998   unsigned FileNo = 1;
1999   unsigned Discriminator = 0;
2000   if (auto *Scope = cast_or_null<DIScope>(S)) {
2001     Fn = Scope->getFilename();
2002     if (Line != 0 && DwarfVersion >= 4)
2003       if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope))
2004         Discriminator = LBF->getDiscriminator();
2005 
2006     FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID])
2007                  .getOrCreateSourceID(Scope->getFile());
2008   }
2009   Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0,
2010                                          Discriminator, Fn);
2011 }
2012 
2013 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF,
2014                                              unsigned CUID) {
2015   // Get beginning of function.
2016   if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) {
2017     // Ensure the compile unit is created if the function is called before
2018     // beginFunction().
2019     (void)getOrCreateDwarfCompileUnit(
2020         MF.getFunction().getSubprogram()->getUnit());
2021     // We'd like to list the prologue as "not statements" but GDB behaves
2022     // poorly if we do that. Revisit this with caution/GDB (7.5+) testing.
2023     const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram();
2024     ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT,
2025                        CUID, getDwarfVersion(), getUnits());
2026     return PrologEndLoc;
2027   }
2028   return DebugLoc();
2029 }
2030 
2031 // Gather pre-function debug information.  Assumes being called immediately
2032 // after the function entry point has been emitted.
2033 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) {
2034   CurFn = MF;
2035 
2036   auto *SP = MF->getFunction().getSubprogram();
2037   assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode());
2038   if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
2039     return;
2040 
2041   DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
2042 
2043   // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function
2044   // belongs to so that we add to the correct per-cu line table in the
2045   // non-asm case.
2046   if (Asm->OutStreamer->hasRawTextSupport())
2047     // Use a single line table if we are generating assembly.
2048     Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
2049   else
2050     Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID());
2051 
2052   // Record beginning of function.
2053   PrologEndLoc = emitInitialLocDirective(
2054       *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID());
2055 }
2056 
2057 void DwarfDebug::skippedNonDebugFunction() {
2058   // If we don't have a subprogram for this function then there will be a hole
2059   // in the range information. Keep note of this by setting the previously used
2060   // section to nullptr.
2061   PrevCU = nullptr;
2062   CurFn = nullptr;
2063 }
2064 
2065 // Gather and emit post-function debug information.
2066 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) {
2067   const DISubprogram *SP = MF->getFunction().getSubprogram();
2068 
2069   assert(CurFn == MF &&
2070       "endFunction should be called with the same function as beginFunction");
2071 
2072   // Set DwarfDwarfCompileUnitID in MCContext to default value.
2073   Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
2074 
2075   LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
2076   assert(!FnScope || SP == FnScope->getScopeNode());
2077   DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit());
2078   if (TheCU.getCUNode()->isDebugDirectivesOnly()) {
2079     PrevLabel = nullptr;
2080     CurFn = nullptr;
2081     return;
2082   }
2083 
2084   DenseSet<InlinedEntity> Processed;
2085   collectEntityInfo(TheCU, SP, Processed);
2086 
2087   // Add the range of this function to the list of ranges for the CU.
2088   // With basic block sections, add ranges for all basic block sections.
2089   for (const auto &R : Asm->MBBSectionRanges)
2090     TheCU.addRange({R.second.BeginLabel, R.second.EndLabel});
2091 
2092   // Under -gmlt, skip building the subprogram if there are no inlined
2093   // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram
2094   // is still needed as we need its source location.
2095   if (!TheCU.getCUNode()->getDebugInfoForProfiling() &&
2096       TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly &&
2097       LScopes.getAbstractScopesList().empty() && !IsDarwin) {
2098     assert(InfoHolder.getScopeVariables().empty());
2099     PrevLabel = nullptr;
2100     CurFn = nullptr;
2101     return;
2102   }
2103 
2104 #ifndef NDEBUG
2105   size_t NumAbstractScopes = LScopes.getAbstractScopesList().size();
2106 #endif
2107   // Construct abstract scopes.
2108   for (LexicalScope *AScope : LScopes.getAbstractScopesList()) {
2109     auto *SP = cast<DISubprogram>(AScope->getScopeNode());
2110     for (const DINode *DN : SP->getRetainedNodes()) {
2111       if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
2112         continue;
2113 
2114       const MDNode *Scope = nullptr;
2115       if (auto *DV = dyn_cast<DILocalVariable>(DN))
2116         Scope = DV->getScope();
2117       else if (auto *DL = dyn_cast<DILabel>(DN))
2118         Scope = DL->getScope();
2119       else
2120         llvm_unreachable("Unexpected DI type!");
2121 
2122       // Collect info for variables/labels that were optimized out.
2123       ensureAbstractEntityIsCreated(TheCU, DN, Scope);
2124       assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes
2125              && "ensureAbstractEntityIsCreated inserted abstract scopes");
2126     }
2127     constructAbstractSubprogramScopeDIE(TheCU, AScope);
2128   }
2129 
2130   ProcessedSPNodes.insert(SP);
2131   DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope);
2132   if (auto *SkelCU = TheCU.getSkeleton())
2133     if (!LScopes.getAbstractScopesList().empty() &&
2134         TheCU.getCUNode()->getSplitDebugInlining())
2135       SkelCU->constructSubprogramScopeDIE(SP, FnScope);
2136 
2137   // Construct call site entries.
2138   constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF);
2139 
2140   // Clear debug info
2141   // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the
2142   // DbgVariables except those that are also in AbstractVariables (since they
2143   // can be used cross-function)
2144   InfoHolder.getScopeVariables().clear();
2145   InfoHolder.getScopeLabels().clear();
2146   PrevLabel = nullptr;
2147   CurFn = nullptr;
2148 }
2149 
2150 // Register a source line with debug info. Returns the  unique label that was
2151 // emitted and which provides correspondence to the source line list.
2152 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S,
2153                                   unsigned Flags) {
2154   ::recordSourceLine(*Asm, Line, Col, S, Flags,
2155                      Asm->OutStreamer->getContext().getDwarfCompileUnitID(),
2156                      getDwarfVersion(), getUnits());
2157 }
2158 
2159 //===----------------------------------------------------------------------===//
2160 // Emit Methods
2161 //===----------------------------------------------------------------------===//
2162 
2163 // Emit the debug info section.
2164 void DwarfDebug::emitDebugInfo() {
2165   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2166   Holder.emitUnits(/* UseOffsets */ false);
2167 }
2168 
2169 // Emit the abbreviation section.
2170 void DwarfDebug::emitAbbreviations() {
2171   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2172 
2173   Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection());
2174 }
2175 
2176 void DwarfDebug::emitStringOffsetsTableHeader() {
2177   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2178   Holder.getStringPool().emitStringOffsetsTableHeader(
2179       *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(),
2180       Holder.getStringOffsetsStartSym());
2181 }
2182 
2183 template <typename AccelTableT>
2184 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section,
2185                            StringRef TableName) {
2186   Asm->OutStreamer->SwitchSection(Section);
2187 
2188   // Emit the full data.
2189   emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol());
2190 }
2191 
2192 void DwarfDebug::emitAccelDebugNames() {
2193   // Don't emit anything if we have no compilation units to index.
2194   if (getUnits().empty())
2195     return;
2196 
2197   emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits());
2198 }
2199 
2200 // Emit visible names into a hashed accelerator table section.
2201 void DwarfDebug::emitAccelNames() {
2202   emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(),
2203             "Names");
2204 }
2205 
2206 // Emit objective C classes and categories into a hashed accelerator table
2207 // section.
2208 void DwarfDebug::emitAccelObjC() {
2209   emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(),
2210             "ObjC");
2211 }
2212 
2213 // Emit namespace dies into a hashed accelerator table.
2214 void DwarfDebug::emitAccelNamespaces() {
2215   emitAccel(AccelNamespace,
2216             Asm->getObjFileLowering().getDwarfAccelNamespaceSection(),
2217             "namespac");
2218 }
2219 
2220 // Emit type dies into a hashed accelerator table.
2221 void DwarfDebug::emitAccelTypes() {
2222   emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(),
2223             "types");
2224 }
2225 
2226 // Public name handling.
2227 // The format for the various pubnames:
2228 //
2229 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU
2230 // for the DIE that is named.
2231 //
2232 // gnu pubnames - offset/index value/name tuples where the offset is the offset
2233 // into the CU and the index value is computed according to the type of value
2234 // for the DIE that is named.
2235 //
2236 // For type units the offset is the offset of the skeleton DIE. For split dwarf
2237 // it's the offset within the debug_info/debug_types dwo section, however, the
2238 // reference in the pubname header doesn't change.
2239 
2240 /// computeIndexValue - Compute the gdb index value for the DIE and CU.
2241 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU,
2242                                                         const DIE *Die) {
2243   // Entities that ended up only in a Type Unit reference the CU instead (since
2244   // the pub entry has offsets within the CU there's no real offset that can be
2245   // provided anyway). As it happens all such entities (namespaces and types,
2246   // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out
2247   // not to be true it would be necessary to persist this information from the
2248   // point at which the entry is added to the index data structure - since by
2249   // the time the index is built from that, the original type/namespace DIE in a
2250   // type unit has already been destroyed so it can't be queried for properties
2251   // like tag, etc.
2252   if (Die->getTag() == dwarf::DW_TAG_compile_unit)
2253     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE,
2254                                           dwarf::GIEL_EXTERNAL);
2255   dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC;
2256 
2257   // We could have a specification DIE that has our most of our knowledge,
2258   // look for that now.
2259   if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) {
2260     DIE &SpecDIE = SpecVal.getDIEEntry().getEntry();
2261     if (SpecDIE.findAttribute(dwarf::DW_AT_external))
2262       Linkage = dwarf::GIEL_EXTERNAL;
2263   } else if (Die->findAttribute(dwarf::DW_AT_external))
2264     Linkage = dwarf::GIEL_EXTERNAL;
2265 
2266   switch (Die->getTag()) {
2267   case dwarf::DW_TAG_class_type:
2268   case dwarf::DW_TAG_structure_type:
2269   case dwarf::DW_TAG_union_type:
2270   case dwarf::DW_TAG_enumeration_type:
2271     return dwarf::PubIndexEntryDescriptor(
2272         dwarf::GIEK_TYPE,
2273         dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage())
2274             ? dwarf::GIEL_EXTERNAL
2275             : dwarf::GIEL_STATIC);
2276   case dwarf::DW_TAG_typedef:
2277   case dwarf::DW_TAG_base_type:
2278   case dwarf::DW_TAG_subrange_type:
2279     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC);
2280   case dwarf::DW_TAG_namespace:
2281     return dwarf::GIEK_TYPE;
2282   case dwarf::DW_TAG_subprogram:
2283     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage);
2284   case dwarf::DW_TAG_variable:
2285     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage);
2286   case dwarf::DW_TAG_enumerator:
2287     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE,
2288                                           dwarf::GIEL_STATIC);
2289   default:
2290     return dwarf::GIEK_NONE;
2291   }
2292 }
2293 
2294 /// emitDebugPubSections - Emit visible names and types into debug pubnames and
2295 /// pubtypes sections.
2296 void DwarfDebug::emitDebugPubSections() {
2297   for (const auto &NU : CUMap) {
2298     DwarfCompileUnit *TheU = NU.second;
2299     if (!TheU->hasDwarfPubSections())
2300       continue;
2301 
2302     bool GnuStyle = TheU->getCUNode()->getNameTableKind() ==
2303                     DICompileUnit::DebugNameTableKind::GNU;
2304 
2305     Asm->OutStreamer->SwitchSection(
2306         GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection()
2307                  : Asm->getObjFileLowering().getDwarfPubNamesSection());
2308     emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames());
2309 
2310     Asm->OutStreamer->SwitchSection(
2311         GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection()
2312                  : Asm->getObjFileLowering().getDwarfPubTypesSection());
2313     emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes());
2314   }
2315 }
2316 
2317 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) {
2318   if (useSectionsAsReferences())
2319     Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(),
2320                          CU.getDebugSectionOffset());
2321   else
2322     Asm->emitDwarfSymbolReference(CU.getLabelBegin());
2323 }
2324 
2325 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name,
2326                                      DwarfCompileUnit *TheU,
2327                                      const StringMap<const DIE *> &Globals) {
2328   if (auto *Skeleton = TheU->getSkeleton())
2329     TheU = Skeleton;
2330 
2331   // Emit the header.
2332   Asm->OutStreamer->AddComment("Length of Public " + Name + " Info");
2333   MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin");
2334   MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end");
2335   Asm->emitLabelDifference(EndLabel, BeginLabel, 4);
2336 
2337   Asm->OutStreamer->emitLabel(BeginLabel);
2338 
2339   Asm->OutStreamer->AddComment("DWARF Version");
2340   Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION);
2341 
2342   Asm->OutStreamer->AddComment("Offset of Compilation Unit Info");
2343   emitSectionReference(*TheU);
2344 
2345   Asm->OutStreamer->AddComment("Compilation Unit Length");
2346   Asm->emitInt32(TheU->getLength());
2347 
2348   // Emit the pubnames for this compilation unit.
2349   for (const auto &GI : Globals) {
2350     const char *Name = GI.getKeyData();
2351     const DIE *Entity = GI.second;
2352 
2353     Asm->OutStreamer->AddComment("DIE offset");
2354     Asm->emitInt32(Entity->getOffset());
2355 
2356     if (GnuStyle) {
2357       dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity);
2358       Asm->OutStreamer->AddComment(
2359           Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) +
2360           ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage));
2361       Asm->emitInt8(Desc.toBits());
2362     }
2363 
2364     Asm->OutStreamer->AddComment("External Name");
2365     Asm->OutStreamer->emitBytes(StringRef(Name, GI.getKeyLength() + 1));
2366   }
2367 
2368   Asm->OutStreamer->AddComment("End Mark");
2369   Asm->emitInt32(0);
2370   Asm->OutStreamer->emitLabel(EndLabel);
2371 }
2372 
2373 /// Emit null-terminated strings into a debug str section.
2374 void DwarfDebug::emitDebugStr() {
2375   MCSection *StringOffsetsSection = nullptr;
2376   if (useSegmentedStringOffsetsTable()) {
2377     emitStringOffsetsTableHeader();
2378     StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection();
2379   }
2380   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2381   Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(),
2382                      StringOffsetsSection, /* UseRelativeOffsets = */ true);
2383 }
2384 
2385 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer,
2386                                    const DebugLocStream::Entry &Entry,
2387                                    const DwarfCompileUnit *CU) {
2388   auto &&Comments = DebugLocs.getComments(Entry);
2389   auto Comment = Comments.begin();
2390   auto End = Comments.end();
2391 
2392   // The expressions are inserted into a byte stream rather early (see
2393   // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that
2394   // need to reference a base_type DIE the offset of that DIE is not yet known.
2395   // To deal with this we instead insert a placeholder early and then extract
2396   // it here and replace it with the real reference.
2397   unsigned PtrSize = Asm->MAI->getCodePointerSize();
2398   DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(),
2399                                     DebugLocs.getBytes(Entry).size()),
2400                           Asm->getDataLayout().isLittleEndian(), PtrSize);
2401   DWARFExpression Expr(Data, PtrSize, Asm->OutContext.getDwarfFormat());
2402 
2403   using Encoding = DWARFExpression::Operation::Encoding;
2404   uint64_t Offset = 0;
2405   for (auto &Op : Expr) {
2406     assert(Op.getCode() != dwarf::DW_OP_const_type &&
2407            "3 operand ops not yet supported");
2408     Streamer.EmitInt8(Op.getCode(), Comment != End ? *(Comment++) : "");
2409     Offset++;
2410     for (unsigned I = 0; I < 2; ++I) {
2411       if (Op.getDescription().Op[I] == Encoding::SizeNA)
2412         continue;
2413       if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) {
2414         uint64_t Offset =
2415             CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset();
2416         assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit");
2417         Streamer.emitULEB128(Offset, "", ULEB128PadSize);
2418         // Make sure comments stay aligned.
2419         for (unsigned J = 0; J < ULEB128PadSize; ++J)
2420           if (Comment != End)
2421             Comment++;
2422       } else {
2423         for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J)
2424           Streamer.EmitInt8(Data.getData()[J], Comment != End ? *(Comment++) : "");
2425       }
2426       Offset = Op.getOperandEndOffset(I);
2427     }
2428     assert(Offset == Op.getEndOffset());
2429   }
2430 }
2431 
2432 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT,
2433                                    const DbgValueLoc &Value,
2434                                    DwarfExpression &DwarfExpr) {
2435   auto *DIExpr = Value.getExpression();
2436   DIExpressionCursor ExprCursor(DIExpr);
2437   DwarfExpr.addFragmentOffset(DIExpr);
2438   // Regular entry.
2439   if (Value.isInt()) {
2440     if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed ||
2441                BT->getEncoding() == dwarf::DW_ATE_signed_char))
2442       DwarfExpr.addSignedConstant(Value.getInt());
2443     else
2444       DwarfExpr.addUnsignedConstant(Value.getInt());
2445   } else if (Value.isLocation()) {
2446     MachineLocation Location = Value.getLoc();
2447     DwarfExpr.setLocation(Location, DIExpr);
2448     DIExpressionCursor Cursor(DIExpr);
2449 
2450     if (DIExpr->isEntryValue())
2451       DwarfExpr.beginEntryValueExpression(Cursor);
2452 
2453     const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
2454     if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg()))
2455       return;
2456     return DwarfExpr.addExpression(std::move(Cursor));
2457   } else if (Value.isTargetIndexLocation()) {
2458     TargetIndexLocation Loc = Value.getTargetIndexLocation();
2459     // TODO TargetIndexLocation is a target-independent. Currently only the WebAssembly-specific
2460     // encoding is supported.
2461     DwarfExpr.addWasmLocation(Loc.Index, static_cast<uint64_t>(Loc.Offset));
2462       DwarfExpr.addExpression(std::move(ExprCursor));
2463       return;
2464   } else if (Value.isConstantFP()) {
2465     if (AP.getDwarfVersion() >= 4 && AP.getDwarfDebug()->tuneForGDB()) {
2466       DwarfExpr.addConstantFP(Value.getConstantFP()->getValueAPF(), AP);
2467       return;
2468     } else if (Value.getConstantFP()
2469                    ->getValueAPF()
2470                    .bitcastToAPInt()
2471                    .getBitWidth() <= 64 /*bits*/)
2472       DwarfExpr.addUnsignedConstant(
2473           Value.getConstantFP()->getValueAPF().bitcastToAPInt());
2474     else
2475       LLVM_DEBUG(
2476           dbgs()
2477           << "Skipped DwarfExpression creation for ConstantFP of size"
2478           << Value.getConstantFP()->getValueAPF().bitcastToAPInt().getBitWidth()
2479           << " bits\n");
2480   }
2481   DwarfExpr.addExpression(std::move(ExprCursor));
2482 }
2483 
2484 void DebugLocEntry::finalize(const AsmPrinter &AP,
2485                              DebugLocStream::ListBuilder &List,
2486                              const DIBasicType *BT,
2487                              DwarfCompileUnit &TheCU) {
2488   assert(!Values.empty() &&
2489          "location list entries without values are redundant");
2490   assert(Begin != End && "unexpected location list entry with empty range");
2491   DebugLocStream::EntryBuilder Entry(List, Begin, End);
2492   BufferByteStreamer Streamer = Entry.getStreamer();
2493   DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU);
2494   const DbgValueLoc &Value = Values[0];
2495   if (Value.isFragment()) {
2496     // Emit all fragments that belong to the same variable and range.
2497     assert(llvm::all_of(Values, [](DbgValueLoc P) {
2498           return P.isFragment();
2499         }) && "all values are expected to be fragments");
2500     assert(llvm::is_sorted(Values) && "fragments are expected to be sorted");
2501 
2502     for (auto Fragment : Values)
2503       DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr);
2504 
2505   } else {
2506     assert(Values.size() == 1 && "only fragments may have >1 value");
2507     DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr);
2508   }
2509   DwarfExpr.finalize();
2510   if (DwarfExpr.TagOffset)
2511     List.setTagOffset(*DwarfExpr.TagOffset);
2512 }
2513 
2514 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry,
2515                                            const DwarfCompileUnit *CU) {
2516   // Emit the size.
2517   Asm->OutStreamer->AddComment("Loc expr size");
2518   if (getDwarfVersion() >= 5)
2519     Asm->emitULEB128(DebugLocs.getBytes(Entry).size());
2520   else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max())
2521     Asm->emitInt16(DebugLocs.getBytes(Entry).size());
2522   else {
2523     // The entry is too big to fit into 16 bit, drop it as there is nothing we
2524     // can do.
2525     Asm->emitInt16(0);
2526     return;
2527   }
2528   // Emit the entry.
2529   APByteStreamer Streamer(*Asm);
2530   emitDebugLocEntry(Streamer, Entry, CU);
2531 }
2532 
2533 // Emit the header of a DWARF 5 range list table list table. Returns the symbol
2534 // that designates the end of the table for the caller to emit when the table is
2535 // complete.
2536 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm,
2537                                          const DwarfFile &Holder) {
2538   MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer);
2539 
2540   Asm->OutStreamer->AddComment("Offset entry count");
2541   Asm->emitInt32(Holder.getRangeLists().size());
2542   Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym());
2543 
2544   for (const RangeSpanList &List : Holder.getRangeLists())
2545     Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(), 4);
2546 
2547   return TableEnd;
2548 }
2549 
2550 // Emit the header of a DWARF 5 locations list table. Returns the symbol that
2551 // designates the end of the table for the caller to emit when the table is
2552 // complete.
2553 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm,
2554                                          const DwarfDebug &DD) {
2555   MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer);
2556 
2557   const auto &DebugLocs = DD.getDebugLocs();
2558 
2559   Asm->OutStreamer->AddComment("Offset entry count");
2560   Asm->emitInt32(DebugLocs.getLists().size());
2561   Asm->OutStreamer->emitLabel(DebugLocs.getSym());
2562 
2563   for (const auto &List : DebugLocs.getLists())
2564     Asm->emitLabelDifference(List.Label, DebugLocs.getSym(), 4);
2565 
2566   return TableEnd;
2567 }
2568 
2569 template <typename Ranges, typename PayloadEmitter>
2570 static void emitRangeList(
2571     DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R,
2572     const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair,
2573     unsigned StartxLength, unsigned EndOfList,
2574     StringRef (*StringifyEnum)(unsigned),
2575     bool ShouldUseBaseAddress,
2576     PayloadEmitter EmitPayload) {
2577 
2578   auto Size = Asm->MAI->getCodePointerSize();
2579   bool UseDwarf5 = DD.getDwarfVersion() >= 5;
2580 
2581   // Emit our symbol so we can find the beginning of the range.
2582   Asm->OutStreamer->emitLabel(Sym);
2583 
2584   // Gather all the ranges that apply to the same section so they can share
2585   // a base address entry.
2586   MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges;
2587 
2588   for (const auto &Range : R)
2589     SectionRanges[&Range.Begin->getSection()].push_back(&Range);
2590 
2591   const MCSymbol *CUBase = CU.getBaseAddress();
2592   bool BaseIsSet = false;
2593   for (const auto &P : SectionRanges) {
2594     auto *Base = CUBase;
2595     if (!Base && ShouldUseBaseAddress) {
2596       const MCSymbol *Begin = P.second.front()->Begin;
2597       const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection());
2598       if (!UseDwarf5) {
2599         Base = NewBase;
2600         BaseIsSet = true;
2601         Asm->OutStreamer->emitIntValue(-1, Size);
2602         Asm->OutStreamer->AddComment("  base address");
2603         Asm->OutStreamer->emitSymbolValue(Base, Size);
2604       } else if (NewBase != Begin || P.second.size() > 1) {
2605         // Only use a base address if
2606         //  * the existing pool address doesn't match (NewBase != Begin)
2607         //  * or, there's more than one entry to share the base address
2608         Base = NewBase;
2609         BaseIsSet = true;
2610         Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx));
2611         Asm->emitInt8(BaseAddressx);
2612         Asm->OutStreamer->AddComment("  base address index");
2613         Asm->emitULEB128(DD.getAddressPool().getIndex(Base));
2614       }
2615     } else if (BaseIsSet && !UseDwarf5) {
2616       BaseIsSet = false;
2617       assert(!Base);
2618       Asm->OutStreamer->emitIntValue(-1, Size);
2619       Asm->OutStreamer->emitIntValue(0, Size);
2620     }
2621 
2622     for (const auto *RS : P.second) {
2623       const MCSymbol *Begin = RS->Begin;
2624       const MCSymbol *End = RS->End;
2625       assert(Begin && "Range without a begin symbol?");
2626       assert(End && "Range without an end symbol?");
2627       if (Base) {
2628         if (UseDwarf5) {
2629           // Emit offset_pair when we have a base.
2630           Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair));
2631           Asm->emitInt8(OffsetPair);
2632           Asm->OutStreamer->AddComment("  starting offset");
2633           Asm->emitLabelDifferenceAsULEB128(Begin, Base);
2634           Asm->OutStreamer->AddComment("  ending offset");
2635           Asm->emitLabelDifferenceAsULEB128(End, Base);
2636         } else {
2637           Asm->emitLabelDifference(Begin, Base, Size);
2638           Asm->emitLabelDifference(End, Base, Size);
2639         }
2640       } else if (UseDwarf5) {
2641         Asm->OutStreamer->AddComment(StringifyEnum(StartxLength));
2642         Asm->emitInt8(StartxLength);
2643         Asm->OutStreamer->AddComment("  start index");
2644         Asm->emitULEB128(DD.getAddressPool().getIndex(Begin));
2645         Asm->OutStreamer->AddComment("  length");
2646         Asm->emitLabelDifferenceAsULEB128(End, Begin);
2647       } else {
2648         Asm->OutStreamer->emitSymbolValue(Begin, Size);
2649         Asm->OutStreamer->emitSymbolValue(End, Size);
2650       }
2651       EmitPayload(*RS);
2652     }
2653   }
2654 
2655   if (UseDwarf5) {
2656     Asm->OutStreamer->AddComment(StringifyEnum(EndOfList));
2657     Asm->emitInt8(EndOfList);
2658   } else {
2659     // Terminate the list with two 0 values.
2660     Asm->OutStreamer->emitIntValue(0, Size);
2661     Asm->OutStreamer->emitIntValue(0, Size);
2662   }
2663 }
2664 
2665 // Handles emission of both debug_loclist / debug_loclist.dwo
2666 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) {
2667   emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List),
2668                 *List.CU, dwarf::DW_LLE_base_addressx,
2669                 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length,
2670                 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString,
2671                 /* ShouldUseBaseAddress */ true,
2672                 [&](const DebugLocStream::Entry &E) {
2673                   DD.emitDebugLocEntryLocation(E, List.CU);
2674                 });
2675 }
2676 
2677 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) {
2678   if (DebugLocs.getLists().empty())
2679     return;
2680 
2681   Asm->OutStreamer->SwitchSection(Sec);
2682 
2683   MCSymbol *TableEnd = nullptr;
2684   if (getDwarfVersion() >= 5)
2685     TableEnd = emitLoclistsTableHeader(Asm, *this);
2686 
2687   for (const auto &List : DebugLocs.getLists())
2688     emitLocList(*this, Asm, List);
2689 
2690   if (TableEnd)
2691     Asm->OutStreamer->emitLabel(TableEnd);
2692 }
2693 
2694 // Emit locations into the .debug_loc/.debug_loclists section.
2695 void DwarfDebug::emitDebugLoc() {
2696   emitDebugLocImpl(
2697       getDwarfVersion() >= 5
2698           ? Asm->getObjFileLowering().getDwarfLoclistsSection()
2699           : Asm->getObjFileLowering().getDwarfLocSection());
2700 }
2701 
2702 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section.
2703 void DwarfDebug::emitDebugLocDWO() {
2704   if (getDwarfVersion() >= 5) {
2705     emitDebugLocImpl(
2706         Asm->getObjFileLowering().getDwarfLoclistsDWOSection());
2707 
2708     return;
2709   }
2710 
2711   for (const auto &List : DebugLocs.getLists()) {
2712     Asm->OutStreamer->SwitchSection(
2713         Asm->getObjFileLowering().getDwarfLocDWOSection());
2714     Asm->OutStreamer->emitLabel(List.Label);
2715 
2716     for (const auto &Entry : DebugLocs.getEntries(List)) {
2717       // GDB only supports startx_length in pre-standard split-DWARF.
2718       // (in v5 standard loclists, it currently* /only/ supports base_address +
2719       // offset_pair, so the implementations can't really share much since they
2720       // need to use different representations)
2721       // * as of October 2018, at least
2722       //
2723       // In v5 (see emitLocList), this uses SectionLabels to reuse existing
2724       // addresses in the address pool to minimize object size/relocations.
2725       Asm->emitInt8(dwarf::DW_LLE_startx_length);
2726       unsigned idx = AddrPool.getIndex(Entry.Begin);
2727       Asm->emitULEB128(idx);
2728       // Also the pre-standard encoding is slightly different, emitting this as
2729       // an address-length entry here, but its a ULEB128 in DWARFv5 loclists.
2730       Asm->emitLabelDifference(Entry.End, Entry.Begin, 4);
2731       emitDebugLocEntryLocation(Entry, List.CU);
2732     }
2733     Asm->emitInt8(dwarf::DW_LLE_end_of_list);
2734   }
2735 }
2736 
2737 struct ArangeSpan {
2738   const MCSymbol *Start, *End;
2739 };
2740 
2741 // Emit a debug aranges section, containing a CU lookup for any
2742 // address we can tie back to a CU.
2743 void DwarfDebug::emitDebugARanges() {
2744   // Provides a unique id per text section.
2745   MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap;
2746 
2747   // Filter labels by section.
2748   for (const SymbolCU &SCU : ArangeLabels) {
2749     if (SCU.Sym->isInSection()) {
2750       // Make a note of this symbol and it's section.
2751       MCSection *Section = &SCU.Sym->getSection();
2752       if (!Section->getKind().isMetadata())
2753         SectionMap[Section].push_back(SCU);
2754     } else {
2755       // Some symbols (e.g. common/bss on mach-o) can have no section but still
2756       // appear in the output. This sucks as we rely on sections to build
2757       // arange spans. We can do it without, but it's icky.
2758       SectionMap[nullptr].push_back(SCU);
2759     }
2760   }
2761 
2762   DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans;
2763 
2764   for (auto &I : SectionMap) {
2765     MCSection *Section = I.first;
2766     SmallVector<SymbolCU, 8> &List = I.second;
2767     if (List.size() < 1)
2768       continue;
2769 
2770     // If we have no section (e.g. common), just write out
2771     // individual spans for each symbol.
2772     if (!Section) {
2773       for (const SymbolCU &Cur : List) {
2774         ArangeSpan Span;
2775         Span.Start = Cur.Sym;
2776         Span.End = nullptr;
2777         assert(Cur.CU);
2778         Spans[Cur.CU].push_back(Span);
2779       }
2780       continue;
2781     }
2782 
2783     // Sort the symbols by offset within the section.
2784     llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) {
2785       unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0;
2786       unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0;
2787 
2788       // Symbols with no order assigned should be placed at the end.
2789       // (e.g. section end labels)
2790       if (IA == 0)
2791         return false;
2792       if (IB == 0)
2793         return true;
2794       return IA < IB;
2795     });
2796 
2797     // Insert a final terminator.
2798     List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section)));
2799 
2800     // Build spans between each label.
2801     const MCSymbol *StartSym = List[0].Sym;
2802     for (size_t n = 1, e = List.size(); n < e; n++) {
2803       const SymbolCU &Prev = List[n - 1];
2804       const SymbolCU &Cur = List[n];
2805 
2806       // Try and build the longest span we can within the same CU.
2807       if (Cur.CU != Prev.CU) {
2808         ArangeSpan Span;
2809         Span.Start = StartSym;
2810         Span.End = Cur.Sym;
2811         assert(Prev.CU);
2812         Spans[Prev.CU].push_back(Span);
2813         StartSym = Cur.Sym;
2814       }
2815     }
2816   }
2817 
2818   // Start the dwarf aranges section.
2819   Asm->OutStreamer->SwitchSection(
2820       Asm->getObjFileLowering().getDwarfARangesSection());
2821 
2822   unsigned PtrSize = Asm->MAI->getCodePointerSize();
2823 
2824   // Build a list of CUs used.
2825   std::vector<DwarfCompileUnit *> CUs;
2826   for (const auto &it : Spans) {
2827     DwarfCompileUnit *CU = it.first;
2828     CUs.push_back(CU);
2829   }
2830 
2831   // Sort the CU list (again, to ensure consistent output order).
2832   llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) {
2833     return A->getUniqueID() < B->getUniqueID();
2834   });
2835 
2836   // Emit an arange table for each CU we used.
2837   for (DwarfCompileUnit *CU : CUs) {
2838     std::vector<ArangeSpan> &List = Spans[CU];
2839 
2840     // Describe the skeleton CU's offset and length, not the dwo file's.
2841     if (auto *Skel = CU->getSkeleton())
2842       CU = Skel;
2843 
2844     // Emit size of content not including length itself.
2845     unsigned ContentSize =
2846         sizeof(int16_t) + // DWARF ARange version number
2847         sizeof(int32_t) + // Offset of CU in the .debug_info section
2848         sizeof(int8_t) +  // Pointer Size (in bytes)
2849         sizeof(int8_t);   // Segment Size (in bytes)
2850 
2851     unsigned TupleSize = PtrSize * 2;
2852 
2853     // 7.20 in the Dwarf specs requires the table to be aligned to a tuple.
2854     unsigned Padding =
2855         offsetToAlignment(sizeof(int32_t) + ContentSize, Align(TupleSize));
2856 
2857     ContentSize += Padding;
2858     ContentSize += (List.size() + 1) * TupleSize;
2859 
2860     // For each compile unit, write the list of spans it covers.
2861     Asm->OutStreamer->AddComment("Length of ARange Set");
2862     Asm->emitInt32(ContentSize);
2863     Asm->OutStreamer->AddComment("DWARF Arange version number");
2864     Asm->emitInt16(dwarf::DW_ARANGES_VERSION);
2865     Asm->OutStreamer->AddComment("Offset Into Debug Info Section");
2866     emitSectionReference(*CU);
2867     Asm->OutStreamer->AddComment("Address Size (in bytes)");
2868     Asm->emitInt8(PtrSize);
2869     Asm->OutStreamer->AddComment("Segment Size (in bytes)");
2870     Asm->emitInt8(0);
2871 
2872     Asm->OutStreamer->emitFill(Padding, 0xff);
2873 
2874     for (const ArangeSpan &Span : List) {
2875       Asm->emitLabelReference(Span.Start, PtrSize);
2876 
2877       // Calculate the size as being from the span start to it's end.
2878       if (Span.End) {
2879         Asm->emitLabelDifference(Span.End, Span.Start, PtrSize);
2880       } else {
2881         // For symbols without an end marker (e.g. common), we
2882         // write a single arange entry containing just that one symbol.
2883         uint64_t Size = SymSize[Span.Start];
2884         if (Size == 0)
2885           Size = 1;
2886 
2887         Asm->OutStreamer->emitIntValue(Size, PtrSize);
2888       }
2889     }
2890 
2891     Asm->OutStreamer->AddComment("ARange terminator");
2892     Asm->OutStreamer->emitIntValue(0, PtrSize);
2893     Asm->OutStreamer->emitIntValue(0, PtrSize);
2894   }
2895 }
2896 
2897 /// Emit a single range list. We handle both DWARF v5 and earlier.
2898 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm,
2899                           const RangeSpanList &List) {
2900   emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU,
2901                 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair,
2902                 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list,
2903                 llvm::dwarf::RangeListEncodingString,
2904                 List.CU->getCUNode()->getRangesBaseAddress() ||
2905                     DD.getDwarfVersion() >= 5,
2906                 [](auto) {});
2907 }
2908 
2909 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) {
2910   if (Holder.getRangeLists().empty())
2911     return;
2912 
2913   assert(useRangesSection());
2914   assert(!CUMap.empty());
2915   assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) {
2916     return !Pair.second->getCUNode()->isDebugDirectivesOnly();
2917   }));
2918 
2919   Asm->OutStreamer->SwitchSection(Section);
2920 
2921   MCSymbol *TableEnd = nullptr;
2922   if (getDwarfVersion() >= 5)
2923     TableEnd = emitRnglistsTableHeader(Asm, Holder);
2924 
2925   for (const RangeSpanList &List : Holder.getRangeLists())
2926     emitRangeList(*this, Asm, List);
2927 
2928   if (TableEnd)
2929     Asm->OutStreamer->emitLabel(TableEnd);
2930 }
2931 
2932 /// Emit address ranges into the .debug_ranges section or into the DWARF v5
2933 /// .debug_rnglists section.
2934 void DwarfDebug::emitDebugRanges() {
2935   const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2936 
2937   emitDebugRangesImpl(Holder,
2938                       getDwarfVersion() >= 5
2939                           ? Asm->getObjFileLowering().getDwarfRnglistsSection()
2940                           : Asm->getObjFileLowering().getDwarfRangesSection());
2941 }
2942 
2943 void DwarfDebug::emitDebugRangesDWO() {
2944   emitDebugRangesImpl(InfoHolder,
2945                       Asm->getObjFileLowering().getDwarfRnglistsDWOSection());
2946 }
2947 
2948 /// Emit the header of a DWARF 5 macro section, or the GNU extension for
2949 /// DWARF 4.
2950 static void emitMacroHeader(AsmPrinter *Asm, const DwarfDebug &DD,
2951                             const DwarfCompileUnit &CU, uint16_t DwarfVersion) {
2952   enum HeaderFlagMask {
2953 #define HANDLE_MACRO_FLAG(ID, NAME) MACRO_FLAG_##NAME = ID,
2954 #include "llvm/BinaryFormat/Dwarf.def"
2955   };
2956   uint8_t Flags = 0;
2957   Asm->OutStreamer->AddComment("Macro information version");
2958   Asm->emitInt16(DwarfVersion >= 5 ? DwarfVersion : 4);
2959   // We are setting Offset and line offset flags unconditionally here,
2960   // since we're only supporting DWARF32 and line offset should be mostly
2961   // present.
2962   // FIXME: Add support for DWARF64.
2963   Flags |= MACRO_FLAG_DEBUG_LINE_OFFSET;
2964   Asm->OutStreamer->AddComment("Flags: 32 bit, debug_line_offset present");
2965   Asm->emitInt8(Flags);
2966   Asm->OutStreamer->AddComment("debug_line_offset");
2967   if (DD.useSplitDwarf())
2968     Asm->OutStreamer->emitIntValue(0, /*Size=*/4);
2969   else
2970     Asm->OutStreamer->emitSymbolValue(CU.getLineTableStartSym(), /*Size=*/4);
2971 }
2972 
2973 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) {
2974   for (auto *MN : Nodes) {
2975     if (auto *M = dyn_cast<DIMacro>(MN))
2976       emitMacro(*M);
2977     else if (auto *F = dyn_cast<DIMacroFile>(MN))
2978       emitMacroFile(*F, U);
2979     else
2980       llvm_unreachable("Unexpected DI type!");
2981   }
2982 }
2983 
2984 void DwarfDebug::emitMacro(DIMacro &M) {
2985   StringRef Name = M.getName();
2986   StringRef Value = M.getValue();
2987 
2988   // There should be one space between the macro name and the macro value in
2989   // define entries. In undef entries, only the macro name is emitted.
2990   std::string Str = Value.empty() ? Name.str() : (Name + " " + Value).str();
2991 
2992   if (UseDebugMacroSection) {
2993     if (getDwarfVersion() >= 5) {
2994       unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define
2995                           ? dwarf::DW_MACRO_define_strx
2996                           : dwarf::DW_MACRO_undef_strx;
2997       Asm->OutStreamer->AddComment(dwarf::MacroString(Type));
2998       Asm->emitULEB128(Type);
2999       Asm->OutStreamer->AddComment("Line Number");
3000       Asm->emitULEB128(M.getLine());
3001       Asm->OutStreamer->AddComment("Macro String");
3002       Asm->emitULEB128(
3003           InfoHolder.getStringPool().getIndexedEntry(*Asm, Str).getIndex());
3004     } else {
3005       unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define
3006                           ? dwarf::DW_MACRO_GNU_define_indirect
3007                           : dwarf::DW_MACRO_GNU_undef_indirect;
3008       Asm->OutStreamer->AddComment(dwarf::GnuMacroString(Type));
3009       Asm->emitULEB128(Type);
3010       Asm->OutStreamer->AddComment("Line Number");
3011       Asm->emitULEB128(M.getLine());
3012       Asm->OutStreamer->AddComment("Macro String");
3013       // FIXME: Add support for DWARF64.
3014       Asm->OutStreamer->emitSymbolValue(
3015           InfoHolder.getStringPool().getEntry(*Asm, Str).getSymbol(),
3016           /*Size=*/4);
3017     }
3018   } else {
3019     Asm->OutStreamer->AddComment(dwarf::MacinfoString(M.getMacinfoType()));
3020     Asm->emitULEB128(M.getMacinfoType());
3021     Asm->OutStreamer->AddComment("Line Number");
3022     Asm->emitULEB128(M.getLine());
3023     Asm->OutStreamer->AddComment("Macro String");
3024     Asm->OutStreamer->emitBytes(Str);
3025     Asm->emitInt8('\0');
3026   }
3027 }
3028 
3029 void DwarfDebug::emitMacroFileImpl(
3030     DIMacroFile &MF, DwarfCompileUnit &U, unsigned StartFile, unsigned EndFile,
3031     StringRef (*MacroFormToString)(unsigned Form)) {
3032 
3033   Asm->OutStreamer->AddComment(MacroFormToString(StartFile));
3034   Asm->emitULEB128(StartFile);
3035   Asm->OutStreamer->AddComment("Line Number");
3036   Asm->emitULEB128(MF.getLine());
3037   Asm->OutStreamer->AddComment("File Number");
3038   DIFile &F = *MF.getFile();
3039   if (useSplitDwarf())
3040     Asm->emitULEB128(getDwoLineTable(U)->getFile(
3041         F.getDirectory(), F.getFilename(), getMD5AsBytes(&F),
3042         Asm->OutContext.getDwarfVersion(), F.getSource()));
3043   else
3044     Asm->emitULEB128(U.getOrCreateSourceID(&F));
3045   handleMacroNodes(MF.getElements(), U);
3046   Asm->OutStreamer->AddComment(MacroFormToString(EndFile));
3047   Asm->emitULEB128(EndFile);
3048 }
3049 
3050 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) {
3051   // DWARFv5 macro and DWARFv4 macinfo share some common encodings,
3052   // so for readibility/uniformity, We are explicitly emitting those.
3053   assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file);
3054   if (UseDebugMacroSection)
3055     emitMacroFileImpl(
3056         F, U, dwarf::DW_MACRO_start_file, dwarf::DW_MACRO_end_file,
3057         (getDwarfVersion() >= 5) ? dwarf::MacroString : dwarf::GnuMacroString);
3058   else
3059     emitMacroFileImpl(F, U, dwarf::DW_MACINFO_start_file,
3060                       dwarf::DW_MACINFO_end_file, dwarf::MacinfoString);
3061 }
3062 
3063 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) {
3064   for (const auto &P : CUMap) {
3065     auto &TheCU = *P.second;
3066     auto *SkCU = TheCU.getSkeleton();
3067     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
3068     auto *CUNode = cast<DICompileUnit>(P.first);
3069     DIMacroNodeArray Macros = CUNode->getMacros();
3070     if (Macros.empty())
3071       continue;
3072     Asm->OutStreamer->SwitchSection(Section);
3073     Asm->OutStreamer->emitLabel(U.getMacroLabelBegin());
3074     if (UseDebugMacroSection)
3075       emitMacroHeader(Asm, *this, U, getDwarfVersion());
3076     handleMacroNodes(Macros, U);
3077     Asm->OutStreamer->AddComment("End Of Macro List Mark");
3078     Asm->emitInt8(0);
3079   }
3080 }
3081 
3082 /// Emit macros into a debug macinfo/macro section.
3083 void DwarfDebug::emitDebugMacinfo() {
3084   auto &ObjLower = Asm->getObjFileLowering();
3085   emitDebugMacinfoImpl(UseDebugMacroSection
3086                            ? ObjLower.getDwarfMacroSection()
3087                            : ObjLower.getDwarfMacinfoSection());
3088 }
3089 
3090 void DwarfDebug::emitDebugMacinfoDWO() {
3091   auto &ObjLower = Asm->getObjFileLowering();
3092   emitDebugMacinfoImpl(UseDebugMacroSection
3093                            ? ObjLower.getDwarfMacroDWOSection()
3094                            : ObjLower.getDwarfMacinfoDWOSection());
3095 }
3096 
3097 // DWARF5 Experimental Separate Dwarf emitters.
3098 
3099 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die,
3100                                   std::unique_ptr<DwarfCompileUnit> NewU) {
3101 
3102   if (!CompilationDir.empty())
3103     NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
3104   addGnuPubAttributes(*NewU, Die);
3105 
3106   SkeletonHolder.addUnit(std::move(NewU));
3107 }
3108 
3109 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) {
3110 
3111   auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
3112       CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder,
3113       UnitKind::Skeleton);
3114   DwarfCompileUnit &NewCU = *OwnedUnit;
3115   NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
3116 
3117   NewCU.initStmtList();
3118 
3119   if (useSegmentedStringOffsetsTable())
3120     NewCU.addStringOffsetsStart();
3121 
3122   initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit));
3123 
3124   return NewCU;
3125 }
3126 
3127 // Emit the .debug_info.dwo section for separated dwarf. This contains the
3128 // compile units that would normally be in debug_info.
3129 void DwarfDebug::emitDebugInfoDWO() {
3130   assert(useSplitDwarf() && "No split dwarf debug info?");
3131   // Don't emit relocations into the dwo file.
3132   InfoHolder.emitUnits(/* UseOffsets */ true);
3133 }
3134 
3135 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the
3136 // abbreviations for the .debug_info.dwo section.
3137 void DwarfDebug::emitDebugAbbrevDWO() {
3138   assert(useSplitDwarf() && "No split dwarf?");
3139   InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection());
3140 }
3141 
3142 void DwarfDebug::emitDebugLineDWO() {
3143   assert(useSplitDwarf() && "No split dwarf?");
3144   SplitTypeUnitFileTable.Emit(
3145       *Asm->OutStreamer, MCDwarfLineTableParams(),
3146       Asm->getObjFileLowering().getDwarfLineDWOSection());
3147 }
3148 
3149 void DwarfDebug::emitStringOffsetsTableHeaderDWO() {
3150   assert(useSplitDwarf() && "No split dwarf?");
3151   InfoHolder.getStringPool().emitStringOffsetsTableHeader(
3152       *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(),
3153       InfoHolder.getStringOffsetsStartSym());
3154 }
3155 
3156 // Emit the .debug_str.dwo section for separated dwarf. This contains the
3157 // string section and is identical in format to traditional .debug_str
3158 // sections.
3159 void DwarfDebug::emitDebugStrDWO() {
3160   if (useSegmentedStringOffsetsTable())
3161     emitStringOffsetsTableHeaderDWO();
3162   assert(useSplitDwarf() && "No split dwarf?");
3163   MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection();
3164   InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(),
3165                          OffSec, /* UseRelativeOffsets = */ false);
3166 }
3167 
3168 // Emit address pool.
3169 void DwarfDebug::emitDebugAddr() {
3170   AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection());
3171 }
3172 
3173 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) {
3174   if (!useSplitDwarf())
3175     return nullptr;
3176   const DICompileUnit *DIUnit = CU.getCUNode();
3177   SplitTypeUnitFileTable.maybeSetRootFile(
3178       DIUnit->getDirectory(), DIUnit->getFilename(),
3179       getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource());
3180   return &SplitTypeUnitFileTable;
3181 }
3182 
3183 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) {
3184   MD5 Hash;
3185   Hash.update(Identifier);
3186   // ... take the least significant 8 bytes and return those. Our MD5
3187   // implementation always returns its results in little endian, so we actually
3188   // need the "high" word.
3189   MD5::MD5Result Result;
3190   Hash.final(Result);
3191   return Result.high();
3192 }
3193 
3194 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
3195                                       StringRef Identifier, DIE &RefDie,
3196                                       const DICompositeType *CTy) {
3197   // Fast path if we're building some type units and one has already used the
3198   // address pool we know we're going to throw away all this work anyway, so
3199   // don't bother building dependent types.
3200   if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed())
3201     return;
3202 
3203   auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0));
3204   if (!Ins.second) {
3205     CU.addDIETypeSignature(RefDie, Ins.first->second);
3206     return;
3207   }
3208 
3209   bool TopLevelType = TypeUnitsUnderConstruction.empty();
3210   AddrPool.resetUsedFlag();
3211 
3212   auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder,
3213                                                     getDwoLineTable(CU));
3214   DwarfTypeUnit &NewTU = *OwnedUnit;
3215   DIE &UnitDie = NewTU.getUnitDie();
3216   TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy);
3217 
3218   NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
3219                 CU.getLanguage());
3220 
3221   uint64_t Signature = makeTypeSignature(Identifier);
3222   NewTU.setTypeSignature(Signature);
3223   Ins.first->second = Signature;
3224 
3225   if (useSplitDwarf()) {
3226     MCSection *Section =
3227         getDwarfVersion() <= 4
3228             ? Asm->getObjFileLowering().getDwarfTypesDWOSection()
3229             : Asm->getObjFileLowering().getDwarfInfoDWOSection();
3230     NewTU.setSection(Section);
3231   } else {
3232     MCSection *Section =
3233         getDwarfVersion() <= 4
3234             ? Asm->getObjFileLowering().getDwarfTypesSection(Signature)
3235             : Asm->getObjFileLowering().getDwarfInfoSection(Signature);
3236     NewTU.setSection(Section);
3237     // Non-split type units reuse the compile unit's line table.
3238     CU.applyStmtList(UnitDie);
3239   }
3240 
3241   // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type
3242   // units.
3243   if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
3244     NewTU.addStringOffsetsStart();
3245 
3246   NewTU.setType(NewTU.createTypeDIE(CTy));
3247 
3248   if (TopLevelType) {
3249     auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction);
3250     TypeUnitsUnderConstruction.clear();
3251 
3252     // Types referencing entries in the address table cannot be placed in type
3253     // units.
3254     if (AddrPool.hasBeenUsed()) {
3255 
3256       // Remove all the types built while building this type.
3257       // This is pessimistic as some of these types might not be dependent on
3258       // the type that used an address.
3259       for (const auto &TU : TypeUnitsToAdd)
3260         TypeSignatures.erase(TU.second);
3261 
3262       // Construct this type in the CU directly.
3263       // This is inefficient because all the dependent types will be rebuilt
3264       // from scratch, including building them in type units, discovering that
3265       // they depend on addresses, throwing them out and rebuilding them.
3266       CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy));
3267       return;
3268     }
3269 
3270     // If the type wasn't dependent on fission addresses, finish adding the type
3271     // and all its dependent types.
3272     for (auto &TU : TypeUnitsToAdd) {
3273       InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get());
3274       InfoHolder.emitUnit(TU.first.get(), useSplitDwarf());
3275     }
3276   }
3277   CU.addDIETypeSignature(RefDie, Signature);
3278 }
3279 
3280 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD)
3281     : DD(DD),
3282       TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)), AddrPoolUsed(DD->AddrPool.hasBeenUsed()) {
3283   DD->TypeUnitsUnderConstruction.clear();
3284   DD->AddrPool.resetUsedFlag();
3285 }
3286 
3287 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() {
3288   DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction);
3289   DD->AddrPool.resetUsedFlag(AddrPoolUsed);
3290 }
3291 
3292 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() {
3293   return NonTypeUnitContext(this);
3294 }
3295 
3296 // Add the Name along with its companion DIE to the appropriate accelerator
3297 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for
3298 // AccelTableKind::Apple, we use the table we got as an argument). If
3299 // accelerator tables are disabled, this function does nothing.
3300 template <typename DataT>
3301 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU,
3302                                   AccelTable<DataT> &AppleAccel, StringRef Name,
3303                                   const DIE &Die) {
3304   if (getAccelTableKind() == AccelTableKind::None)
3305     return;
3306 
3307   if (getAccelTableKind() != AccelTableKind::Apple &&
3308       CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default)
3309     return;
3310 
3311   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
3312   DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name);
3313 
3314   switch (getAccelTableKind()) {
3315   case AccelTableKind::Apple:
3316     AppleAccel.addName(Ref, Die);
3317     break;
3318   case AccelTableKind::Dwarf:
3319     AccelDebugNames.addName(Ref, Die);
3320     break;
3321   case AccelTableKind::Default:
3322     llvm_unreachable("Default should have already been resolved.");
3323   case AccelTableKind::None:
3324     llvm_unreachable("None handled above");
3325   }
3326 }
3327 
3328 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name,
3329                               const DIE &Die) {
3330   addAccelNameImpl(CU, AccelNames, Name, Die);
3331 }
3332 
3333 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name,
3334                               const DIE &Die) {
3335   // ObjC names go only into the Apple accelerator tables.
3336   if (getAccelTableKind() == AccelTableKind::Apple)
3337     addAccelNameImpl(CU, AccelObjC, Name, Die);
3338 }
3339 
3340 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name,
3341                                    const DIE &Die) {
3342   addAccelNameImpl(CU, AccelNamespace, Name, Die);
3343 }
3344 
3345 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name,
3346                               const DIE &Die, char Flags) {
3347   addAccelNameImpl(CU, AccelTypes, Name, Die);
3348 }
3349 
3350 uint16_t DwarfDebug::getDwarfVersion() const {
3351   return Asm->OutStreamer->getContext().getDwarfVersion();
3352 }
3353 
3354 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) {
3355   return SectionLabels.find(S)->second;
3356 }
3357 void DwarfDebug::insertSectionLabel(const MCSymbol *S) {
3358   if (SectionLabels.insert(std::make_pair(&S->getSection(), S)).second)
3359     if (useSplitDwarf() || getDwarfVersion() >= 5)
3360       AddrPool.getIndex(S);
3361 }
3362 
3363 Optional<MD5::MD5Result> DwarfDebug::getMD5AsBytes(const DIFile *File) const {
3364   assert(File);
3365   if (getDwarfVersion() < 5)
3366     return None;
3367   Optional<DIFile::ChecksumInfo<StringRef>> Checksum = File->getChecksum();
3368   if (!Checksum || Checksum->Kind != DIFile::CSK_MD5)
3369     return None;
3370 
3371   // Convert the string checksum to an MD5Result for the streamer.
3372   // The verifier validates the checksum so we assume it's okay.
3373   // An MD5 checksum is 16 bytes.
3374   std::string ChecksumString = fromHex(Checksum->Value);
3375   MD5::MD5Result CKMem;
3376   std::copy(ChecksumString.begin(), ChecksumString.end(), CKMem.Bytes.data());
3377   return CKMem;
3378 }
3379