1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing dwarf debug info into asm files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "DwarfDebug.h"
14 #include "ByteStreamer.h"
15 #include "DIEHash.h"
16 #include "DwarfCompileUnit.h"
17 #include "DwarfExpression.h"
18 #include "DwarfUnit.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/CodeGen/AsmPrinter.h"
24 #include "llvm/CodeGen/DIE.h"
25 #include "llvm/CodeGen/LexicalScopes.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/TargetInstrInfo.h"
31 #include "llvm/CodeGen/TargetLowering.h"
32 #include "llvm/CodeGen/TargetRegisterInfo.h"
33 #include "llvm/CodeGen/TargetSubtargetInfo.h"
34 #include "llvm/DebugInfo/DWARF/DWARFExpression.h"
35 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/MC/MCAsmInfo.h"
41 #include "llvm/MC/MCContext.h"
42 #include "llvm/MC/MCSection.h"
43 #include "llvm/MC/MCStreamer.h"
44 #include "llvm/MC/MCSymbol.h"
45 #include "llvm/MC/MCTargetOptions.h"
46 #include "llvm/MC/MachineLocation.h"
47 #include "llvm/MC/SectionKind.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/MD5.h"
54 #include "llvm/Support/MathExtras.h"
55 #include "llvm/Support/Timer.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Target/TargetLoweringObjectFile.h"
58 #include "llvm/Target/TargetMachine.h"
59 #include <algorithm>
60 #include <cstddef>
61 #include <iterator>
62 #include <string>
63 
64 using namespace llvm;
65 
66 #define DEBUG_TYPE "dwarfdebug"
67 
68 STATISTIC(NumCSParams, "Number of dbg call site params created");
69 
70 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier(
71     "use-dwarf-ranges-base-address-specifier", cl::Hidden,
72     cl::desc("Use base address specifiers in debug_ranges"), cl::init(false));
73 
74 static cl::opt<bool> GenerateARangeSection("generate-arange-section",
75                                            cl::Hidden,
76                                            cl::desc("Generate dwarf aranges"),
77                                            cl::init(false));
78 
79 static cl::opt<bool>
80     GenerateDwarfTypeUnits("generate-type-units", cl::Hidden,
81                            cl::desc("Generate DWARF4 type units."),
82                            cl::init(false));
83 
84 static cl::opt<bool> SplitDwarfCrossCuReferences(
85     "split-dwarf-cross-cu-references", cl::Hidden,
86     cl::desc("Enable cross-cu references in DWO files"), cl::init(false));
87 
88 enum DefaultOnOff { Default, Enable, Disable };
89 
90 static cl::opt<DefaultOnOff> UnknownLocations(
91     "use-unknown-locations", cl::Hidden,
92     cl::desc("Make an absence of debug location information explicit."),
93     cl::values(clEnumVal(Default, "At top of block or after label"),
94                clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")),
95     cl::init(Default));
96 
97 static cl::opt<AccelTableKind> AccelTables(
98     "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."),
99     cl::values(clEnumValN(AccelTableKind::Default, "Default",
100                           "Default for platform"),
101                clEnumValN(AccelTableKind::None, "Disable", "Disabled."),
102                clEnumValN(AccelTableKind::Apple, "Apple", "Apple"),
103                clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")),
104     cl::init(AccelTableKind::Default));
105 
106 static cl::opt<DefaultOnOff>
107 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden,
108                  cl::desc("Use inlined strings rather than string section."),
109                  cl::values(clEnumVal(Default, "Default for platform"),
110                             clEnumVal(Enable, "Enabled"),
111                             clEnumVal(Disable, "Disabled")),
112                  cl::init(Default));
113 
114 static cl::opt<bool>
115     NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden,
116                          cl::desc("Disable emission .debug_ranges section."),
117                          cl::init(false));
118 
119 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences(
120     "dwarf-sections-as-references", cl::Hidden,
121     cl::desc("Use sections+offset as references rather than labels."),
122     cl::values(clEnumVal(Default, "Default for platform"),
123                clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
124     cl::init(Default));
125 
126 static cl::opt<bool>
127     UseGNUDebugMacro("use-gnu-debug-macro", cl::Hidden,
128                      cl::desc("Emit the GNU .debug_macro format with DWARF <5"),
129                      cl::init(false));
130 
131 static cl::opt<DefaultOnOff> DwarfOpConvert(
132     "dwarf-op-convert", cl::Hidden,
133     cl::desc("Enable use of the DWARFv5 DW_OP_convert operator"),
134     cl::values(clEnumVal(Default, "Default for platform"),
135                clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
136     cl::init(Default));
137 
138 enum LinkageNameOption {
139   DefaultLinkageNames,
140   AllLinkageNames,
141   AbstractLinkageNames
142 };
143 
144 static cl::opt<LinkageNameOption>
145     DwarfLinkageNames("dwarf-linkage-names", cl::Hidden,
146                       cl::desc("Which DWARF linkage-name attributes to emit."),
147                       cl::values(clEnumValN(DefaultLinkageNames, "Default",
148                                             "Default for platform"),
149                                  clEnumValN(AllLinkageNames, "All", "All"),
150                                  clEnumValN(AbstractLinkageNames, "Abstract",
151                                             "Abstract subprograms")),
152                       cl::init(DefaultLinkageNames));
153 
154 static constexpr unsigned ULEB128PadSize = 4;
155 
156 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) {
157   getActiveStreamer().emitInt8(
158       Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op)
159                   : dwarf::OperationEncodingString(Op));
160 }
161 
162 void DebugLocDwarfExpression::emitSigned(int64_t Value) {
163   getActiveStreamer().emitSLEB128(Value, Twine(Value));
164 }
165 
166 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) {
167   getActiveStreamer().emitULEB128(Value, Twine(Value));
168 }
169 
170 void DebugLocDwarfExpression::emitData1(uint8_t Value) {
171   getActiveStreamer().emitInt8(Value, Twine(Value));
172 }
173 
174 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) {
175   assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit");
176   getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize);
177 }
178 
179 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI,
180                                               llvm::Register MachineReg) {
181   // This information is not available while emitting .debug_loc entries.
182   return false;
183 }
184 
185 void DebugLocDwarfExpression::enableTemporaryBuffer() {
186   assert(!IsBuffering && "Already buffering?");
187   if (!TmpBuf)
188     TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments);
189   IsBuffering = true;
190 }
191 
192 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; }
193 
194 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() {
195   return TmpBuf ? TmpBuf->Bytes.size() : 0;
196 }
197 
198 void DebugLocDwarfExpression::commitTemporaryBuffer() {
199   if (!TmpBuf)
200     return;
201   for (auto Byte : enumerate(TmpBuf->Bytes)) {
202     const char *Comment = (Byte.index() < TmpBuf->Comments.size())
203                               ? TmpBuf->Comments[Byte.index()].c_str()
204                               : "";
205     OutBS.emitInt8(Byte.value(), Comment);
206   }
207   TmpBuf->Bytes.clear();
208   TmpBuf->Comments.clear();
209 }
210 
211 const DIType *DbgVariable::getType() const {
212   return getVariable()->getType();
213 }
214 
215 /// Get .debug_loc entry for the instruction range starting at MI.
216 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) {
217   const DIExpression *Expr = MI->getDebugExpression();
218   assert(MI->getNumOperands() == 4);
219   if (MI->getDebugOperand(0).isReg()) {
220     const auto &RegOp = MI->getDebugOperand(0);
221     const auto &Op1 = MI->getDebugOffset();
222     // If the second operand is an immediate, this is a
223     // register-indirect address.
224     assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset");
225     MachineLocation MLoc(RegOp.getReg(), Op1.isImm());
226     return DbgValueLoc(Expr, MLoc);
227   }
228   if (MI->getDebugOperand(0).isTargetIndex()) {
229     const auto &Op = MI->getDebugOperand(0);
230     return DbgValueLoc(Expr,
231                        TargetIndexLocation(Op.getIndex(), Op.getOffset()));
232   }
233   if (MI->getDebugOperand(0).isImm())
234     return DbgValueLoc(Expr, MI->getDebugOperand(0).getImm());
235   if (MI->getDebugOperand(0).isFPImm())
236     return DbgValueLoc(Expr, MI->getDebugOperand(0).getFPImm());
237   if (MI->getDebugOperand(0).isCImm())
238     return DbgValueLoc(Expr, MI->getDebugOperand(0).getCImm());
239 
240   llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!");
241 }
242 
243 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) {
244   assert(FrameIndexExprs.empty() && "Already initialized?");
245   assert(!ValueLoc.get() && "Already initialized?");
246 
247   assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable");
248   assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() &&
249          "Wrong inlined-at");
250 
251   ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue));
252   if (auto *E = DbgValue->getDebugExpression())
253     if (E->getNumElements())
254       FrameIndexExprs.push_back({0, E});
255 }
256 
257 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const {
258   if (FrameIndexExprs.size() == 1)
259     return FrameIndexExprs;
260 
261   assert(llvm::all_of(FrameIndexExprs,
262                       [](const FrameIndexExpr &A) {
263                         return A.Expr->isFragment();
264                       }) &&
265          "multiple FI expressions without DW_OP_LLVM_fragment");
266   llvm::sort(FrameIndexExprs,
267              [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool {
268                return A.Expr->getFragmentInfo()->OffsetInBits <
269                       B.Expr->getFragmentInfo()->OffsetInBits;
270              });
271 
272   return FrameIndexExprs;
273 }
274 
275 void DbgVariable::addMMIEntry(const DbgVariable &V) {
276   assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry");
277   assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry");
278   assert(V.getVariable() == getVariable() && "conflicting variable");
279   assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location");
280 
281   assert(!FrameIndexExprs.empty() && "Expected an MMI entry");
282   assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry");
283 
284   // FIXME: This logic should not be necessary anymore, as we now have proper
285   // deduplication. However, without it, we currently run into the assertion
286   // below, which means that we are likely dealing with broken input, i.e. two
287   // non-fragment entries for the same variable at different frame indices.
288   if (FrameIndexExprs.size()) {
289     auto *Expr = FrameIndexExprs.back().Expr;
290     if (!Expr || !Expr->isFragment())
291       return;
292   }
293 
294   for (const auto &FIE : V.FrameIndexExprs)
295     // Ignore duplicate entries.
296     if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) {
297           return FIE.FI == Other.FI && FIE.Expr == Other.Expr;
298         }))
299       FrameIndexExprs.push_back(FIE);
300 
301   assert((FrameIndexExprs.size() == 1 ||
302           llvm::all_of(FrameIndexExprs,
303                        [](FrameIndexExpr &FIE) {
304                          return FIE.Expr && FIE.Expr->isFragment();
305                        })) &&
306          "conflicting locations for variable");
307 }
308 
309 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion,
310                                             bool GenerateTypeUnits,
311                                             DebuggerKind Tuning,
312                                             const Triple &TT) {
313   // Honor an explicit request.
314   if (AccelTables != AccelTableKind::Default)
315     return AccelTables;
316 
317   // Accelerator tables with type units are currently not supported.
318   if (GenerateTypeUnits)
319     return AccelTableKind::None;
320 
321   // Accelerator tables get emitted if targetting DWARF v5 or LLDB.  DWARF v5
322   // always implies debug_names. For lower standard versions we use apple
323   // accelerator tables on apple platforms and debug_names elsewhere.
324   if (DwarfVersion >= 5)
325     return AccelTableKind::Dwarf;
326   if (Tuning == DebuggerKind::LLDB)
327     return TT.isOSBinFormatMachO() ? AccelTableKind::Apple
328                                    : AccelTableKind::Dwarf;
329   return AccelTableKind::None;
330 }
331 
332 DwarfDebug::DwarfDebug(AsmPrinter *A)
333     : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()),
334       InfoHolder(A, "info_string", DIEValueAllocator),
335       SkeletonHolder(A, "skel_string", DIEValueAllocator),
336       IsDarwin(A->TM.getTargetTriple().isOSDarwin()) {
337   const Triple &TT = Asm->TM.getTargetTriple();
338 
339   // Make sure we know our "debugger tuning".  The target option takes
340   // precedence; fall back to triple-based defaults.
341   if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default)
342     DebuggerTuning = Asm->TM.Options.DebuggerTuning;
343   else if (IsDarwin)
344     DebuggerTuning = DebuggerKind::LLDB;
345   else if (TT.isPS4CPU())
346     DebuggerTuning = DebuggerKind::SCE;
347   else
348     DebuggerTuning = DebuggerKind::GDB;
349 
350   if (DwarfInlinedStrings == Default)
351     UseInlineStrings = TT.isNVPTX();
352   else
353     UseInlineStrings = DwarfInlinedStrings == Enable;
354 
355   UseLocSection = !TT.isNVPTX();
356 
357   HasAppleExtensionAttributes = tuneForLLDB();
358 
359   // Handle split DWARF.
360   HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty();
361 
362   // SCE defaults to linkage names only for abstract subprograms.
363   if (DwarfLinkageNames == DefaultLinkageNames)
364     UseAllLinkageNames = !tuneForSCE();
365   else
366     UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames;
367 
368   unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion;
369   unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber
370                                     : MMI->getModule()->getDwarfVersion();
371   // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2.
372   DwarfVersion =
373       TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION);
374 
375   bool Dwarf64 = Asm->TM.Options.MCOptions.Dwarf64 &&
376                  DwarfVersion >= 3 &&   // DWARF64 was introduced in DWARFv3.
377                  TT.isArch64Bit() &&    // DWARF64 requires 64-bit relocations.
378                  TT.isOSBinFormatELF(); // Support only ELF for now.
379 
380   UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX();
381 
382   // Use sections as references. Force for NVPTX.
383   if (DwarfSectionsAsReferences == Default)
384     UseSectionsAsReferences = TT.isNVPTX();
385   else
386     UseSectionsAsReferences = DwarfSectionsAsReferences == Enable;
387 
388   // Don't generate type units for unsupported object file formats.
389   GenerateTypeUnits = (A->TM.getTargetTriple().isOSBinFormatELF() ||
390                        A->TM.getTargetTriple().isOSBinFormatWasm()) &&
391                       GenerateDwarfTypeUnits;
392 
393   TheAccelTableKind = computeAccelTableKind(
394       DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple());
395 
396   // Work around a GDB bug. GDB doesn't support the standard opcode;
397   // SCE doesn't support GNU's; LLDB prefers the standard opcode, which
398   // is defined as of DWARF 3.
399   // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented
400   // https://sourceware.org/bugzilla/show_bug.cgi?id=11616
401   UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3;
402 
403   // GDB does not fully support the DWARF 4 representation for bitfields.
404   UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB();
405 
406   // The DWARF v5 string offsets table has - possibly shared - contributions
407   // from each compile and type unit each preceded by a header. The string
408   // offsets table used by the pre-DWARF v5 split-DWARF implementation uses
409   // a monolithic string offsets table without any header.
410   UseSegmentedStringOffsetsTable = DwarfVersion >= 5;
411 
412   // Emit call-site-param debug info for GDB and LLDB, if the target supports
413   // the debug entry values feature. It can also be enabled explicitly.
414   EmitDebugEntryValues = Asm->TM.Options.ShouldEmitDebugEntryValues();
415 
416   // It is unclear if the GCC .debug_macro extension is well-specified
417   // for split DWARF. For now, do not allow LLVM to emit it.
418   UseDebugMacroSection =
419       DwarfVersion >= 5 || (UseGNUDebugMacro && !useSplitDwarf());
420   if (DwarfOpConvert == Default)
421     EnableOpConvert = !((tuneForGDB() && useSplitDwarf()) || (tuneForLLDB() && !TT.isOSBinFormatMachO()));
422   else
423     EnableOpConvert = (DwarfOpConvert == Enable);
424 
425   Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion);
426   Asm->OutStreamer->getContext().setDwarfFormat(Dwarf64 ? dwarf::DWARF64
427                                                         : dwarf::DWARF32);
428 }
429 
430 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h.
431 DwarfDebug::~DwarfDebug() = default;
432 
433 static bool isObjCClass(StringRef Name) {
434   return Name.startswith("+") || Name.startswith("-");
435 }
436 
437 static bool hasObjCCategory(StringRef Name) {
438   if (!isObjCClass(Name))
439     return false;
440 
441   return Name.find(") ") != StringRef::npos;
442 }
443 
444 static void getObjCClassCategory(StringRef In, StringRef &Class,
445                                  StringRef &Category) {
446   if (!hasObjCCategory(In)) {
447     Class = In.slice(In.find('[') + 1, In.find(' '));
448     Category = "";
449     return;
450   }
451 
452   Class = In.slice(In.find('[') + 1, In.find('('));
453   Category = In.slice(In.find('[') + 1, In.find(' '));
454 }
455 
456 static StringRef getObjCMethodName(StringRef In) {
457   return In.slice(In.find(' ') + 1, In.find(']'));
458 }
459 
460 // Add the various names to the Dwarf accelerator table names.
461 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU,
462                                     const DISubprogram *SP, DIE &Die) {
463   if (getAccelTableKind() != AccelTableKind::Apple &&
464       CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None)
465     return;
466 
467   if (!SP->isDefinition())
468     return;
469 
470   if (SP->getName() != "")
471     addAccelName(CU, SP->getName(), Die);
472 
473   // If the linkage name is different than the name, go ahead and output that as
474   // well into the name table. Only do that if we are going to actually emit
475   // that name.
476   if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() &&
477       (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP)))
478     addAccelName(CU, SP->getLinkageName(), Die);
479 
480   // If this is an Objective-C selector name add it to the ObjC accelerator
481   // too.
482   if (isObjCClass(SP->getName())) {
483     StringRef Class, Category;
484     getObjCClassCategory(SP->getName(), Class, Category);
485     addAccelObjC(CU, Class, Die);
486     if (Category != "")
487       addAccelObjC(CU, Category, Die);
488     // Also add the base method name to the name table.
489     addAccelName(CU, getObjCMethodName(SP->getName()), Die);
490   }
491 }
492 
493 /// Check whether we should create a DIE for the given Scope, return true
494 /// if we don't create a DIE (the corresponding DIE is null).
495 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) {
496   if (Scope->isAbstractScope())
497     return false;
498 
499   // We don't create a DIE if there is no Range.
500   const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges();
501   if (Ranges.empty())
502     return true;
503 
504   if (Ranges.size() > 1)
505     return false;
506 
507   // We don't create a DIE if we have a single Range and the end label
508   // is null.
509   return !getLabelAfterInsn(Ranges.front().second);
510 }
511 
512 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) {
513   F(CU);
514   if (auto *SkelCU = CU.getSkeleton())
515     if (CU.getCUNode()->getSplitDebugInlining())
516       F(*SkelCU);
517 }
518 
519 bool DwarfDebug::shareAcrossDWOCUs() const {
520   return SplitDwarfCrossCuReferences;
521 }
522 
523 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU,
524                                                      LexicalScope *Scope) {
525   assert(Scope && Scope->getScopeNode());
526   assert(Scope->isAbstractScope());
527   assert(!Scope->getInlinedAt());
528 
529   auto *SP = cast<DISubprogram>(Scope->getScopeNode());
530 
531   // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
532   // was inlined from another compile unit.
533   if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining())
534     // Avoid building the original CU if it won't be used
535     SrcCU.constructAbstractSubprogramScopeDIE(Scope);
536   else {
537     auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
538     if (auto *SkelCU = CU.getSkeleton()) {
539       (shareAcrossDWOCUs() ? CU : SrcCU)
540           .constructAbstractSubprogramScopeDIE(Scope);
541       if (CU.getCUNode()->getSplitDebugInlining())
542         SkelCU->constructAbstractSubprogramScopeDIE(Scope);
543     } else
544       CU.constructAbstractSubprogramScopeDIE(Scope);
545   }
546 }
547 
548 DIE &DwarfDebug::constructSubprogramDefinitionDIE(const DISubprogram *SP) {
549   DICompileUnit *Unit = SP->getUnit();
550   assert(SP->isDefinition() && "Subprogram not a definition");
551   assert(Unit && "Subprogram definition without parent unit");
552   auto &CU = getOrCreateDwarfCompileUnit(Unit);
553   return *CU.getOrCreateSubprogramDIE(SP);
554 }
555 
556 /// Represents a parameter whose call site value can be described by applying a
557 /// debug expression to a register in the forwarded register worklist.
558 struct FwdRegParamInfo {
559   /// The described parameter register.
560   unsigned ParamReg;
561 
562   /// Debug expression that has been built up when walking through the
563   /// instruction chain that produces the parameter's value.
564   const DIExpression *Expr;
565 };
566 
567 /// Register worklist for finding call site values.
568 using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>;
569 
570 /// Append the expression \p Addition to \p Original and return the result.
571 static const DIExpression *combineDIExpressions(const DIExpression *Original,
572                                                 const DIExpression *Addition) {
573   std::vector<uint64_t> Elts = Addition->getElements().vec();
574   // Avoid multiple DW_OP_stack_values.
575   if (Original->isImplicit() && Addition->isImplicit())
576     erase_value(Elts, dwarf::DW_OP_stack_value);
577   const DIExpression *CombinedExpr =
578       (Elts.size() > 0) ? DIExpression::append(Original, Elts) : Original;
579   return CombinedExpr;
580 }
581 
582 /// Emit call site parameter entries that are described by the given value and
583 /// debug expression.
584 template <typename ValT>
585 static void finishCallSiteParams(ValT Val, const DIExpression *Expr,
586                                  ArrayRef<FwdRegParamInfo> DescribedParams,
587                                  ParamSet &Params) {
588   for (auto Param : DescribedParams) {
589     bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0;
590 
591     // TODO: Entry value operations can currently not be combined with any
592     // other expressions, so we can't emit call site entries in those cases.
593     if (ShouldCombineExpressions && Expr->isEntryValue())
594       continue;
595 
596     // If a parameter's call site value is produced by a chain of
597     // instructions we may have already created an expression for the
598     // parameter when walking through the instructions. Append that to the
599     // base expression.
600     const DIExpression *CombinedExpr =
601         ShouldCombineExpressions ? combineDIExpressions(Expr, Param.Expr)
602                                  : Expr;
603     assert((!CombinedExpr || CombinedExpr->isValid()) &&
604            "Combined debug expression is invalid");
605 
606     DbgValueLoc DbgLocVal(CombinedExpr, Val);
607     DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal);
608     Params.push_back(CSParm);
609     ++NumCSParams;
610   }
611 }
612 
613 /// Add \p Reg to the worklist, if it's not already present, and mark that the
614 /// given parameter registers' values can (potentially) be described using
615 /// that register and an debug expression.
616 static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg,
617                                 const DIExpression *Expr,
618                                 ArrayRef<FwdRegParamInfo> ParamsToAdd) {
619   auto I = Worklist.insert({Reg, {}});
620   auto &ParamsForFwdReg = I.first->second;
621   for (auto Param : ParamsToAdd) {
622     assert(none_of(ParamsForFwdReg,
623                    [Param](const FwdRegParamInfo &D) {
624                      return D.ParamReg == Param.ParamReg;
625                    }) &&
626            "Same parameter described twice by forwarding reg");
627 
628     // If a parameter's call site value is produced by a chain of
629     // instructions we may have already created an expression for the
630     // parameter when walking through the instructions. Append that to the
631     // new expression.
632     const DIExpression *CombinedExpr = combineDIExpressions(Expr, Param.Expr);
633     ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr});
634   }
635 }
636 
637 /// Interpret values loaded into registers by \p CurMI.
638 static void interpretValues(const MachineInstr *CurMI,
639                             FwdRegWorklist &ForwardedRegWorklist,
640                             ParamSet &Params) {
641 
642   const MachineFunction *MF = CurMI->getMF();
643   const DIExpression *EmptyExpr =
644       DIExpression::get(MF->getFunction().getContext(), {});
645   const auto &TRI = *MF->getSubtarget().getRegisterInfo();
646   const auto &TII = *MF->getSubtarget().getInstrInfo();
647   const auto &TLI = *MF->getSubtarget().getTargetLowering();
648 
649   // If an instruction defines more than one item in the worklist, we may run
650   // into situations where a worklist register's value is (potentially)
651   // described by the previous value of another register that is also defined
652   // by that instruction.
653   //
654   // This can for example occur in cases like this:
655   //
656   //   $r1 = mov 123
657   //   $r0, $r1 = mvrr $r1, 456
658   //   call @foo, $r0, $r1
659   //
660   // When describing $r1's value for the mvrr instruction, we need to make sure
661   // that we don't finalize an entry value for $r0, as that is dependent on the
662   // previous value of $r1 (123 rather than 456).
663   //
664   // In order to not have to distinguish between those cases when finalizing
665   // entry values, we simply postpone adding new parameter registers to the
666   // worklist, by first keeping them in this temporary container until the
667   // instruction has been handled.
668   FwdRegWorklist TmpWorklistItems;
669 
670   // If the MI is an instruction defining one or more parameters' forwarding
671   // registers, add those defines.
672   auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI,
673                                           SmallSetVector<unsigned, 4> &Defs) {
674     if (MI.isDebugInstr())
675       return;
676 
677     for (const MachineOperand &MO : MI.operands()) {
678       if (MO.isReg() && MO.isDef() &&
679           Register::isPhysicalRegister(MO.getReg())) {
680         for (auto FwdReg : ForwardedRegWorklist)
681           if (TRI.regsOverlap(FwdReg.first, MO.getReg()))
682             Defs.insert(FwdReg.first);
683       }
684     }
685   };
686 
687   // Set of worklist registers that are defined by this instruction.
688   SmallSetVector<unsigned, 4> FwdRegDefs;
689 
690   getForwardingRegsDefinedByMI(*CurMI, FwdRegDefs);
691   if (FwdRegDefs.empty())
692     return;
693 
694   for (auto ParamFwdReg : FwdRegDefs) {
695     if (auto ParamValue = TII.describeLoadedValue(*CurMI, ParamFwdReg)) {
696       if (ParamValue->first.isImm()) {
697         int64_t Val = ParamValue->first.getImm();
698         finishCallSiteParams(Val, ParamValue->second,
699                              ForwardedRegWorklist[ParamFwdReg], Params);
700       } else if (ParamValue->first.isReg()) {
701         Register RegLoc = ParamValue->first.getReg();
702         Register SP = TLI.getStackPointerRegisterToSaveRestore();
703         Register FP = TRI.getFrameRegister(*MF);
704         bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP);
705         if (TRI.isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) {
706           MachineLocation MLoc(RegLoc, /*Indirect=*/IsSPorFP);
707           finishCallSiteParams(MLoc, ParamValue->second,
708                                ForwardedRegWorklist[ParamFwdReg], Params);
709         } else {
710           // ParamFwdReg was described by the non-callee saved register
711           // RegLoc. Mark that the call site values for the parameters are
712           // dependent on that register instead of ParamFwdReg. Since RegLoc
713           // may be a register that will be handled in this iteration, we
714           // postpone adding the items to the worklist, and instead keep them
715           // in a temporary container.
716           addToFwdRegWorklist(TmpWorklistItems, RegLoc, ParamValue->second,
717                               ForwardedRegWorklist[ParamFwdReg]);
718         }
719       }
720     }
721   }
722 
723   // Remove all registers that this instruction defines from the worklist.
724   for (auto ParamFwdReg : FwdRegDefs)
725     ForwardedRegWorklist.erase(ParamFwdReg);
726 
727   // Now that we are done handling this instruction, add items from the
728   // temporary worklist to the real one.
729   for (auto New : TmpWorklistItems)
730     addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr, New.second);
731   TmpWorklistItems.clear();
732 }
733 
734 static bool interpretNextInstr(const MachineInstr *CurMI,
735                                FwdRegWorklist &ForwardedRegWorklist,
736                                ParamSet &Params) {
737   // Skip bundle headers.
738   if (CurMI->isBundle())
739     return true;
740 
741   // If the next instruction is a call we can not interpret parameter's
742   // forwarding registers or we finished the interpretation of all
743   // parameters.
744   if (CurMI->isCall())
745     return false;
746 
747   if (ForwardedRegWorklist.empty())
748     return false;
749 
750   // Avoid NOP description.
751   if (CurMI->getNumOperands() == 0)
752     return true;
753 
754   interpretValues(CurMI, ForwardedRegWorklist, Params);
755 
756   return true;
757 }
758 
759 /// Try to interpret values loaded into registers that forward parameters
760 /// for \p CallMI. Store parameters with interpreted value into \p Params.
761 static void collectCallSiteParameters(const MachineInstr *CallMI,
762                                       ParamSet &Params) {
763   const MachineFunction *MF = CallMI->getMF();
764   auto CalleesMap = MF->getCallSitesInfo();
765   auto CallFwdRegsInfo = CalleesMap.find(CallMI);
766 
767   // There is no information for the call instruction.
768   if (CallFwdRegsInfo == CalleesMap.end())
769     return;
770 
771   const MachineBasicBlock *MBB = CallMI->getParent();
772 
773   // Skip the call instruction.
774   auto I = std::next(CallMI->getReverseIterator());
775 
776   FwdRegWorklist ForwardedRegWorklist;
777 
778   const DIExpression *EmptyExpr =
779       DIExpression::get(MF->getFunction().getContext(), {});
780 
781   // Add all the forwarding registers into the ForwardedRegWorklist.
782   for (auto ArgReg : CallFwdRegsInfo->second) {
783     bool InsertedReg =
784         ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}})
785             .second;
786     assert(InsertedReg && "Single register used to forward two arguments?");
787     (void)InsertedReg;
788   }
789 
790   // Do not emit CSInfo for undef forwarding registers.
791   for (auto &MO : CallMI->uses()) {
792     if (!MO.isReg() || !MO.isUndef())
793       continue;
794     auto It = ForwardedRegWorklist.find(MO.getReg());
795     if (It == ForwardedRegWorklist.end())
796       continue;
797     ForwardedRegWorklist.erase(It);
798   }
799 
800   // We erase, from the ForwardedRegWorklist, those forwarding registers for
801   // which we successfully describe a loaded value (by using
802   // the describeLoadedValue()). For those remaining arguments in the working
803   // list, for which we do not describe a loaded value by
804   // the describeLoadedValue(), we try to generate an entry value expression
805   // for their call site value description, if the call is within the entry MBB.
806   // TODO: Handle situations when call site parameter value can be described
807   // as the entry value within basic blocks other than the first one.
808   bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin();
809 
810   // Search for a loading value in forwarding registers inside call delay slot.
811   if (CallMI->hasDelaySlot()) {
812     auto Suc = std::next(CallMI->getIterator());
813     // Only one-instruction delay slot is supported.
814     auto BundleEnd = llvm::getBundleEnd(CallMI->getIterator());
815     (void)BundleEnd;
816     assert(std::next(Suc) == BundleEnd &&
817            "More than one instruction in call delay slot");
818     // Try to interpret value loaded by instruction.
819     if (!interpretNextInstr(&*Suc, ForwardedRegWorklist, Params))
820       return;
821   }
822 
823   // Search for a loading value in forwarding registers.
824   for (; I != MBB->rend(); ++I) {
825     // Try to interpret values loaded by instruction.
826     if (!interpretNextInstr(&*I, ForwardedRegWorklist, Params))
827       return;
828   }
829 
830   // Emit the call site parameter's value as an entry value.
831   if (ShouldTryEmitEntryVals) {
832     // Create an expression where the register's entry value is used.
833     DIExpression *EntryExpr = DIExpression::get(
834         MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1});
835     for (auto RegEntry : ForwardedRegWorklist) {
836       MachineLocation MLoc(RegEntry.first);
837       finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params);
838     }
839   }
840 }
841 
842 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP,
843                                             DwarfCompileUnit &CU, DIE &ScopeDIE,
844                                             const MachineFunction &MF) {
845   // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if
846   // the subprogram is required to have one.
847   if (!SP.areAllCallsDescribed() || !SP.isDefinition())
848     return;
849 
850   // Use DW_AT_call_all_calls to express that call site entries are present
851   // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls
852   // because one of its requirements is not met: call site entries for
853   // optimized-out calls are elided.
854   CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls));
855 
856   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
857   assert(TII && "TargetInstrInfo not found: cannot label tail calls");
858 
859   // Delay slot support check.
860   auto delaySlotSupported = [&](const MachineInstr &MI) {
861     if (!MI.isBundledWithSucc())
862       return false;
863     auto Suc = std::next(MI.getIterator());
864     auto CallInstrBundle = getBundleStart(MI.getIterator());
865     (void)CallInstrBundle;
866     auto DelaySlotBundle = getBundleStart(Suc);
867     (void)DelaySlotBundle;
868     // Ensure that label after call is following delay slot instruction.
869     // Ex. CALL_INSTRUCTION {
870     //       DELAY_SLOT_INSTRUCTION }
871     //      LABEL_AFTER_CALL
872     assert(getLabelAfterInsn(&*CallInstrBundle) ==
873                getLabelAfterInsn(&*DelaySlotBundle) &&
874            "Call and its successor instruction don't have same label after.");
875     return true;
876   };
877 
878   // Emit call site entries for each call or tail call in the function.
879   for (const MachineBasicBlock &MBB : MF) {
880     for (const MachineInstr &MI : MBB.instrs()) {
881       // Bundles with call in them will pass the isCall() test below but do not
882       // have callee operand information so skip them here. Iterator will
883       // eventually reach the call MI.
884       if (MI.isBundle())
885         continue;
886 
887       // Skip instructions which aren't calls. Both calls and tail-calling jump
888       // instructions (e.g TAILJMPd64) are classified correctly here.
889       if (!MI.isCandidateForCallSiteEntry())
890         continue;
891 
892       // Skip instructions marked as frame setup, as they are not interesting to
893       // the user.
894       if (MI.getFlag(MachineInstr::FrameSetup))
895         continue;
896 
897       // Check if delay slot support is enabled.
898       if (MI.hasDelaySlot() && !delaySlotSupported(*&MI))
899         return;
900 
901       // If this is a direct call, find the callee's subprogram.
902       // In the case of an indirect call find the register that holds
903       // the callee.
904       const MachineOperand &CalleeOp = MI.getOperand(0);
905       if (!CalleeOp.isGlobal() && !CalleeOp.isReg())
906         continue;
907 
908       unsigned CallReg = 0;
909       DIE *CalleeDIE = nullptr;
910       const Function *CalleeDecl = nullptr;
911       if (CalleeOp.isReg()) {
912         CallReg = CalleeOp.getReg();
913         if (!CallReg)
914           continue;
915       } else {
916         CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal());
917         if (!CalleeDecl || !CalleeDecl->getSubprogram())
918           continue;
919         const DISubprogram *CalleeSP = CalleeDecl->getSubprogram();
920 
921         if (CalleeSP->isDefinition()) {
922           // Ensure that a subprogram DIE for the callee is available in the
923           // appropriate CU.
924           CalleeDIE = &constructSubprogramDefinitionDIE(CalleeSP);
925         } else {
926           // Create the declaration DIE if it is missing. This is required to
927           // support compilation of old bitcode with an incomplete list of
928           // retained metadata.
929           CalleeDIE = CU.getOrCreateSubprogramDIE(CalleeSP);
930         }
931         assert(CalleeDIE && "Must have a DIE for the callee");
932       }
933 
934       // TODO: Omit call site entries for runtime calls (objc_msgSend, etc).
935 
936       bool IsTail = TII->isTailCall(MI);
937 
938       // If MI is in a bundle, the label was created after the bundle since
939       // EmitFunctionBody iterates over top-level MIs. Get that top-level MI
940       // to search for that label below.
941       const MachineInstr *TopLevelCallMI =
942           MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI;
943 
944       // For non-tail calls, the return PC is needed to disambiguate paths in
945       // the call graph which could lead to some target function. For tail
946       // calls, no return PC information is needed, unless tuning for GDB in
947       // DWARF4 mode in which case we fake a return PC for compatibility.
948       const MCSymbol *PCAddr =
949           (!IsTail || CU.useGNUAnalogForDwarf5Feature())
950               ? const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI))
951               : nullptr;
952 
953       // For tail calls, it's necessary to record the address of the branch
954       // instruction so that the debugger can show where the tail call occurred.
955       const MCSymbol *CallAddr =
956           IsTail ? getLabelBeforeInsn(TopLevelCallMI) : nullptr;
957 
958       assert((IsTail || PCAddr) && "Non-tail call without return PC");
959 
960       LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> "
961                         << (CalleeDecl ? CalleeDecl->getName()
962                                        : StringRef(MF.getSubtarget()
963                                                        .getRegisterInfo()
964                                                        ->getName(CallReg)))
965                         << (IsTail ? " [IsTail]" : "") << "\n");
966 
967       DIE &CallSiteDIE = CU.constructCallSiteEntryDIE(
968           ScopeDIE, CalleeDIE, IsTail, PCAddr, CallAddr, CallReg);
969 
970       // Optionally emit call-site-param debug info.
971       if (emitDebugEntryValues()) {
972         ParamSet Params;
973         // Try to interpret values of call site parameters.
974         collectCallSiteParameters(&MI, Params);
975         CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params);
976       }
977     }
978   }
979 }
980 
981 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const {
982   if (!U.hasDwarfPubSections())
983     return;
984 
985   U.addFlag(D, dwarf::DW_AT_GNU_pubnames);
986 }
987 
988 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit,
989                                       DwarfCompileUnit &NewCU) {
990   DIE &Die = NewCU.getUnitDie();
991   StringRef FN = DIUnit->getFilename();
992 
993   StringRef Producer = DIUnit->getProducer();
994   StringRef Flags = DIUnit->getFlags();
995   if (!Flags.empty() && !useAppleExtensionAttributes()) {
996     std::string ProducerWithFlags = Producer.str() + " " + Flags.str();
997     NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags);
998   } else
999     NewCU.addString(Die, dwarf::DW_AT_producer, Producer);
1000 
1001   NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
1002                 DIUnit->getSourceLanguage());
1003   NewCU.addString(Die, dwarf::DW_AT_name, FN);
1004   StringRef SysRoot = DIUnit->getSysRoot();
1005   if (!SysRoot.empty())
1006     NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot);
1007   StringRef SDK = DIUnit->getSDK();
1008   if (!SDK.empty())
1009     NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK);
1010 
1011   // Add DW_str_offsets_base to the unit DIE, except for split units.
1012   if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
1013     NewCU.addStringOffsetsStart();
1014 
1015   if (!useSplitDwarf()) {
1016     NewCU.initStmtList();
1017 
1018     // If we're using split dwarf the compilation dir is going to be in the
1019     // skeleton CU and so we don't need to duplicate it here.
1020     if (!CompilationDir.empty())
1021       NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
1022     addGnuPubAttributes(NewCU, Die);
1023   }
1024 
1025   if (useAppleExtensionAttributes()) {
1026     if (DIUnit->isOptimized())
1027       NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized);
1028 
1029     StringRef Flags = DIUnit->getFlags();
1030     if (!Flags.empty())
1031       NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags);
1032 
1033     if (unsigned RVer = DIUnit->getRuntimeVersion())
1034       NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers,
1035                     dwarf::DW_FORM_data1, RVer);
1036   }
1037 
1038   if (DIUnit->getDWOId()) {
1039     // This CU is either a clang module DWO or a skeleton CU.
1040     NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8,
1041                   DIUnit->getDWOId());
1042     if (!DIUnit->getSplitDebugFilename().empty()) {
1043       // This is a prefabricated skeleton CU.
1044       dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
1045                                          ? dwarf::DW_AT_dwo_name
1046                                          : dwarf::DW_AT_GNU_dwo_name;
1047       NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename());
1048     }
1049   }
1050 }
1051 // Create new DwarfCompileUnit for the given metadata node with tag
1052 // DW_TAG_compile_unit.
1053 DwarfCompileUnit &
1054 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) {
1055   if (auto *CU = CUMap.lookup(DIUnit))
1056     return *CU;
1057 
1058   CompilationDir = DIUnit->getDirectory();
1059 
1060   auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
1061       InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder);
1062   DwarfCompileUnit &NewCU = *OwnedUnit;
1063   InfoHolder.addUnit(std::move(OwnedUnit));
1064 
1065   for (auto *IE : DIUnit->getImportedEntities())
1066     NewCU.addImportedEntity(IE);
1067 
1068   // LTO with assembly output shares a single line table amongst multiple CUs.
1069   // To avoid the compilation directory being ambiguous, let the line table
1070   // explicitly describe the directory of all files, never relying on the
1071   // compilation directory.
1072   if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU)
1073     Asm->OutStreamer->emitDwarfFile0Directive(
1074         CompilationDir, DIUnit->getFilename(), getMD5AsBytes(DIUnit->getFile()),
1075         DIUnit->getSource(), NewCU.getUniqueID());
1076 
1077   if (useSplitDwarf()) {
1078     NewCU.setSkeleton(constructSkeletonCU(NewCU));
1079     NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection());
1080   } else {
1081     finishUnitAttributes(DIUnit, NewCU);
1082     NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
1083   }
1084 
1085   CUMap.insert({DIUnit, &NewCU});
1086   CUDieMap.insert({&NewCU.getUnitDie(), &NewCU});
1087   return NewCU;
1088 }
1089 
1090 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU,
1091                                                   const DIImportedEntity *N) {
1092   if (isa<DILocalScope>(N->getScope()))
1093     return;
1094   if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope()))
1095     D->addChild(TheCU.constructImportedEntityDIE(N));
1096 }
1097 
1098 /// Sort and unique GVEs by comparing their fragment offset.
1099 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &
1100 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) {
1101   llvm::sort(
1102       GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) {
1103         // Sort order: first null exprs, then exprs without fragment
1104         // info, then sort by fragment offset in bits.
1105         // FIXME: Come up with a more comprehensive comparator so
1106         // the sorting isn't non-deterministic, and so the following
1107         // std::unique call works correctly.
1108         if (!A.Expr || !B.Expr)
1109           return !!B.Expr;
1110         auto FragmentA = A.Expr->getFragmentInfo();
1111         auto FragmentB = B.Expr->getFragmentInfo();
1112         if (!FragmentA || !FragmentB)
1113           return !!FragmentB;
1114         return FragmentA->OffsetInBits < FragmentB->OffsetInBits;
1115       });
1116   GVEs.erase(std::unique(GVEs.begin(), GVEs.end(),
1117                          [](DwarfCompileUnit::GlobalExpr A,
1118                             DwarfCompileUnit::GlobalExpr B) {
1119                            return A.Expr == B.Expr;
1120                          }),
1121              GVEs.end());
1122   return GVEs;
1123 }
1124 
1125 // Emit all Dwarf sections that should come prior to the content. Create
1126 // global DIEs and emit initial debug info sections. This is invoked by
1127 // the target AsmPrinter.
1128 void DwarfDebug::beginModule(Module *M) {
1129   DebugHandlerBase::beginModule(M);
1130 
1131   if (!Asm || !MMI->hasDebugInfo())
1132     return;
1133 
1134   unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(),
1135                                        M->debug_compile_units_end());
1136   assert(NumDebugCUs > 0 && "Asm unexpectedly initialized");
1137   assert(MMI->hasDebugInfo() &&
1138          "DebugInfoAvailabilty unexpectedly not initialized");
1139   SingleCU = NumDebugCUs == 1;
1140   DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>>
1141       GVMap;
1142   for (const GlobalVariable &Global : M->globals()) {
1143     SmallVector<DIGlobalVariableExpression *, 1> GVs;
1144     Global.getDebugInfo(GVs);
1145     for (auto *GVE : GVs)
1146       GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()});
1147   }
1148 
1149   // Create the symbol that designates the start of the unit's contribution
1150   // to the string offsets table. In a split DWARF scenario, only the skeleton
1151   // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol).
1152   if (useSegmentedStringOffsetsTable())
1153     (useSplitDwarf() ? SkeletonHolder : InfoHolder)
1154         .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base"));
1155 
1156 
1157   // Create the symbols that designates the start of the DWARF v5 range list
1158   // and locations list tables. They are located past the table headers.
1159   if (getDwarfVersion() >= 5) {
1160     DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1161     Holder.setRnglistsTableBaseSym(
1162         Asm->createTempSymbol("rnglists_table_base"));
1163 
1164     if (useSplitDwarf())
1165       InfoHolder.setRnglistsTableBaseSym(
1166           Asm->createTempSymbol("rnglists_dwo_table_base"));
1167   }
1168 
1169   // Create the symbol that points to the first entry following the debug
1170   // address table (.debug_addr) header.
1171   AddrPool.setLabel(Asm->createTempSymbol("addr_table_base"));
1172   DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base"));
1173 
1174   for (DICompileUnit *CUNode : M->debug_compile_units()) {
1175     // FIXME: Move local imported entities into a list attached to the
1176     // subprogram, then this search won't be needed and a
1177     // getImportedEntities().empty() test should go below with the rest.
1178     bool HasNonLocalImportedEntities = llvm::any_of(
1179         CUNode->getImportedEntities(), [](const DIImportedEntity *IE) {
1180           return !isa<DILocalScope>(IE->getScope());
1181         });
1182 
1183     if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() &&
1184         CUNode->getRetainedTypes().empty() &&
1185         CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty())
1186       continue;
1187 
1188     DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode);
1189 
1190     // Global Variables.
1191     for (auto *GVE : CUNode->getGlobalVariables()) {
1192       // Don't bother adding DIGlobalVariableExpressions listed in the CU if we
1193       // already know about the variable and it isn't adding a constant
1194       // expression.
1195       auto &GVMapEntry = GVMap[GVE->getVariable()];
1196       auto *Expr = GVE->getExpression();
1197       if (!GVMapEntry.size() || (Expr && Expr->isConstant()))
1198         GVMapEntry.push_back({nullptr, Expr});
1199     }
1200     DenseSet<DIGlobalVariable *> Processed;
1201     for (auto *GVE : CUNode->getGlobalVariables()) {
1202       DIGlobalVariable *GV = GVE->getVariable();
1203       if (Processed.insert(GV).second)
1204         CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV]));
1205     }
1206 
1207     for (auto *Ty : CUNode->getEnumTypes()) {
1208       // The enum types array by design contains pointers to
1209       // MDNodes rather than DIRefs. Unique them here.
1210       CU.getOrCreateTypeDIE(cast<DIType>(Ty));
1211     }
1212     for (auto *Ty : CUNode->getRetainedTypes()) {
1213       // The retained types array by design contains pointers to
1214       // MDNodes rather than DIRefs. Unique them here.
1215       if (DIType *RT = dyn_cast<DIType>(Ty))
1216           // There is no point in force-emitting a forward declaration.
1217           CU.getOrCreateTypeDIE(RT);
1218     }
1219     // Emit imported_modules last so that the relevant context is already
1220     // available.
1221     for (auto *IE : CUNode->getImportedEntities())
1222       constructAndAddImportedEntityDIE(CU, IE);
1223   }
1224 }
1225 
1226 void DwarfDebug::finishEntityDefinitions() {
1227   for (const auto &Entity : ConcreteEntities) {
1228     DIE *Die = Entity->getDIE();
1229     assert(Die);
1230     // FIXME: Consider the time-space tradeoff of just storing the unit pointer
1231     // in the ConcreteEntities list, rather than looking it up again here.
1232     // DIE::getUnit isn't simple - it walks parent pointers, etc.
1233     DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie());
1234     assert(Unit);
1235     Unit->finishEntityDefinition(Entity.get());
1236   }
1237 }
1238 
1239 void DwarfDebug::finishSubprogramDefinitions() {
1240   for (const DISubprogram *SP : ProcessedSPNodes) {
1241     assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug);
1242     forBothCUs(
1243         getOrCreateDwarfCompileUnit(SP->getUnit()),
1244         [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); });
1245   }
1246 }
1247 
1248 void DwarfDebug::finalizeModuleInfo() {
1249   const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
1250 
1251   finishSubprogramDefinitions();
1252 
1253   finishEntityDefinitions();
1254 
1255   // Include the DWO file name in the hash if there's more than one CU.
1256   // This handles ThinLTO's situation where imported CUs may very easily be
1257   // duplicate with the same CU partially imported into another ThinLTO unit.
1258   StringRef DWOName;
1259   if (CUMap.size() > 1)
1260     DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile;
1261 
1262   // Handle anything that needs to be done on a per-unit basis after
1263   // all other generation.
1264   for (const auto &P : CUMap) {
1265     auto &TheCU = *P.second;
1266     if (TheCU.getCUNode()->isDebugDirectivesOnly())
1267       continue;
1268     // Emit DW_AT_containing_type attribute to connect types with their
1269     // vtable holding type.
1270     TheCU.constructContainingTypeDIEs();
1271 
1272     // Add CU specific attributes if we need to add any.
1273     // If we're splitting the dwarf out now that we've got the entire
1274     // CU then add the dwo id to it.
1275     auto *SkCU = TheCU.getSkeleton();
1276 
1277     bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty();
1278 
1279     if (HasSplitUnit) {
1280       dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
1281                                          ? dwarf::DW_AT_dwo_name
1282                                          : dwarf::DW_AT_GNU_dwo_name;
1283       finishUnitAttributes(TheCU.getCUNode(), TheCU);
1284       TheCU.addString(TheCU.getUnitDie(), attrDWOName,
1285                       Asm->TM.Options.MCOptions.SplitDwarfFile);
1286       SkCU->addString(SkCU->getUnitDie(), attrDWOName,
1287                       Asm->TM.Options.MCOptions.SplitDwarfFile);
1288       // Emit a unique identifier for this CU.
1289       uint64_t ID =
1290           DIEHash(Asm, &TheCU).computeCUSignature(DWOName, TheCU.getUnitDie());
1291       if (getDwarfVersion() >= 5) {
1292         TheCU.setDWOId(ID);
1293         SkCU->setDWOId(ID);
1294       } else {
1295         TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1296                       dwarf::DW_FORM_data8, ID);
1297         SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1298                       dwarf::DW_FORM_data8, ID);
1299       }
1300 
1301       if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) {
1302         const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol();
1303         SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base,
1304                               Sym, Sym);
1305       }
1306     } else if (SkCU) {
1307       finishUnitAttributes(SkCU->getCUNode(), *SkCU);
1308     }
1309 
1310     // If we have code split among multiple sections or non-contiguous
1311     // ranges of code then emit a DW_AT_ranges attribute on the unit that will
1312     // remain in the .o file, otherwise add a DW_AT_low_pc.
1313     // FIXME: We should use ranges allow reordering of code ala
1314     // .subsections_via_symbols in mach-o. This would mean turning on
1315     // ranges for all subprogram DIEs for mach-o.
1316     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
1317 
1318     if (unsigned NumRanges = TheCU.getRanges().size()) {
1319       if (NumRanges > 1 && useRangesSection())
1320         // A DW_AT_low_pc attribute may also be specified in combination with
1321         // DW_AT_ranges to specify the default base address for use in
1322         // location lists (see Section 2.6.2) and range lists (see Section
1323         // 2.17.3).
1324         U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0);
1325       else
1326         U.setBaseAddress(TheCU.getRanges().front().Begin);
1327       U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges());
1328     }
1329 
1330     // We don't keep track of which addresses are used in which CU so this
1331     // is a bit pessimistic under LTO.
1332     if ((HasSplitUnit || getDwarfVersion() >= 5) && !AddrPool.isEmpty())
1333       U.addAddrTableBase();
1334 
1335     if (getDwarfVersion() >= 5) {
1336       if (U.hasRangeLists())
1337         U.addRnglistsBase();
1338 
1339       if (!DebugLocs.getLists().empty()) {
1340         if (!useSplitDwarf())
1341           U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base,
1342                             DebugLocs.getSym(),
1343                             TLOF.getDwarfLoclistsSection()->getBeginSymbol());
1344       }
1345     }
1346 
1347     auto *CUNode = cast<DICompileUnit>(P.first);
1348     // If compile Unit has macros, emit "DW_AT_macro_info/DW_AT_macros"
1349     // attribute.
1350     if (CUNode->getMacros()) {
1351       if (UseDebugMacroSection) {
1352         if (useSplitDwarf())
1353           TheCU.addSectionDelta(
1354               TheCU.getUnitDie(), dwarf::DW_AT_macros, U.getMacroLabelBegin(),
1355               TLOF.getDwarfMacroDWOSection()->getBeginSymbol());
1356         else {
1357           dwarf::Attribute MacrosAttr = getDwarfVersion() >= 5
1358                                             ? dwarf::DW_AT_macros
1359                                             : dwarf::DW_AT_GNU_macros;
1360           U.addSectionLabel(U.getUnitDie(), MacrosAttr, U.getMacroLabelBegin(),
1361                             TLOF.getDwarfMacroSection()->getBeginSymbol());
1362         }
1363       } else {
1364         if (useSplitDwarf())
1365           TheCU.addSectionDelta(
1366               TheCU.getUnitDie(), dwarf::DW_AT_macro_info,
1367               U.getMacroLabelBegin(),
1368               TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol());
1369         else
1370           U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info,
1371                             U.getMacroLabelBegin(),
1372                             TLOF.getDwarfMacinfoSection()->getBeginSymbol());
1373       }
1374     }
1375     }
1376 
1377   // Emit all frontend-produced Skeleton CUs, i.e., Clang modules.
1378   for (auto *CUNode : MMI->getModule()->debug_compile_units())
1379     if (CUNode->getDWOId())
1380       getOrCreateDwarfCompileUnit(CUNode);
1381 
1382   // Compute DIE offsets and sizes.
1383   InfoHolder.computeSizeAndOffsets();
1384   if (useSplitDwarf())
1385     SkeletonHolder.computeSizeAndOffsets();
1386 }
1387 
1388 // Emit all Dwarf sections that should come after the content.
1389 void DwarfDebug::endModule() {
1390   assert(CurFn == nullptr);
1391   assert(CurMI == nullptr);
1392 
1393   for (const auto &P : CUMap) {
1394     auto &CU = *P.second;
1395     CU.createBaseTypeDIEs();
1396   }
1397 
1398   // If we aren't actually generating debug info (check beginModule -
1399   // conditionalized on the presence of the llvm.dbg.cu metadata node)
1400   if (!Asm || !MMI->hasDebugInfo())
1401     return;
1402 
1403   // Finalize the debug info for the module.
1404   finalizeModuleInfo();
1405 
1406   if (useSplitDwarf())
1407     // Emit debug_loc.dwo/debug_loclists.dwo section.
1408     emitDebugLocDWO();
1409   else
1410     // Emit debug_loc/debug_loclists section.
1411     emitDebugLoc();
1412 
1413   // Corresponding abbreviations into a abbrev section.
1414   emitAbbreviations();
1415 
1416   // Emit all the DIEs into a debug info section.
1417   emitDebugInfo();
1418 
1419   // Emit info into a debug aranges section.
1420   if (GenerateARangeSection)
1421     emitDebugARanges();
1422 
1423   // Emit info into a debug ranges section.
1424   emitDebugRanges();
1425 
1426   if (useSplitDwarf())
1427   // Emit info into a debug macinfo.dwo section.
1428     emitDebugMacinfoDWO();
1429   else
1430     // Emit info into a debug macinfo/macro section.
1431     emitDebugMacinfo();
1432 
1433   emitDebugStr();
1434 
1435   if (useSplitDwarf()) {
1436     emitDebugStrDWO();
1437     emitDebugInfoDWO();
1438     emitDebugAbbrevDWO();
1439     emitDebugLineDWO();
1440     emitDebugRangesDWO();
1441   }
1442 
1443   emitDebugAddr();
1444 
1445   // Emit info into the dwarf accelerator table sections.
1446   switch (getAccelTableKind()) {
1447   case AccelTableKind::Apple:
1448     emitAccelNames();
1449     emitAccelObjC();
1450     emitAccelNamespaces();
1451     emitAccelTypes();
1452     break;
1453   case AccelTableKind::Dwarf:
1454     emitAccelDebugNames();
1455     break;
1456   case AccelTableKind::None:
1457     break;
1458   case AccelTableKind::Default:
1459     llvm_unreachable("Default should have already been resolved.");
1460   }
1461 
1462   // Emit the pubnames and pubtypes sections if requested.
1463   emitDebugPubSections();
1464 
1465   // clean up.
1466   // FIXME: AbstractVariables.clear();
1467 }
1468 
1469 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU,
1470                                                const DINode *Node,
1471                                                const MDNode *ScopeNode) {
1472   if (CU.getExistingAbstractEntity(Node))
1473     return;
1474 
1475   CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope(
1476                                        cast<DILocalScope>(ScopeNode)));
1477 }
1478 
1479 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU,
1480     const DINode *Node, const MDNode *ScopeNode) {
1481   if (CU.getExistingAbstractEntity(Node))
1482     return;
1483 
1484   if (LexicalScope *Scope =
1485           LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode)))
1486     CU.createAbstractEntity(Node, Scope);
1487 }
1488 
1489 // Collect variable information from side table maintained by MF.
1490 void DwarfDebug::collectVariableInfoFromMFTable(
1491     DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) {
1492   SmallDenseMap<InlinedEntity, DbgVariable *> MFVars;
1493   LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n");
1494   for (const auto &VI : Asm->MF->getVariableDbgInfo()) {
1495     if (!VI.Var)
1496       continue;
1497     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1498            "Expected inlined-at fields to agree");
1499 
1500     InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt());
1501     Processed.insert(Var);
1502     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1503 
1504     // If variable scope is not found then skip this variable.
1505     if (!Scope) {
1506       LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName()
1507                         << ", no variable scope found\n");
1508       continue;
1509     }
1510 
1511     ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode());
1512     auto RegVar = std::make_unique<DbgVariable>(
1513                     cast<DILocalVariable>(Var.first), Var.second);
1514     RegVar->initializeMMI(VI.Expr, VI.Slot);
1515     LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName()
1516                       << "\n");
1517     if (DbgVariable *DbgVar = MFVars.lookup(Var))
1518       DbgVar->addMMIEntry(*RegVar);
1519     else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) {
1520       MFVars.insert({Var, RegVar.get()});
1521       ConcreteEntities.push_back(std::move(RegVar));
1522     }
1523   }
1524 }
1525 
1526 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its
1527 /// enclosing lexical scope. The check ensures there are no other instructions
1528 /// in the same lexical scope preceding the DBG_VALUE and that its range is
1529 /// either open or otherwise rolls off the end of the scope.
1530 static bool validThroughout(LexicalScopes &LScopes,
1531                             const MachineInstr *DbgValue,
1532                             const MachineInstr *RangeEnd,
1533                             const InstructionOrdering &Ordering) {
1534   assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location");
1535   auto MBB = DbgValue->getParent();
1536   auto DL = DbgValue->getDebugLoc();
1537   auto *LScope = LScopes.findLexicalScope(DL);
1538   // Scope doesn't exist; this is a dead DBG_VALUE.
1539   if (!LScope)
1540     return false;
1541   auto &LSRange = LScope->getRanges();
1542   if (LSRange.size() == 0)
1543     return false;
1544 
1545   const MachineInstr *LScopeBegin = LSRange.front().first;
1546   // If the scope starts before the DBG_VALUE then we may have a negative
1547   // result. Otherwise the location is live coming into the scope and we
1548   // can skip the following checks.
1549   if (!Ordering.isBefore(DbgValue, LScopeBegin)) {
1550     // Exit if the lexical scope begins outside of the current block.
1551     if (LScopeBegin->getParent() != MBB)
1552       return false;
1553 
1554     MachineBasicBlock::const_reverse_iterator Pred(DbgValue);
1555     for (++Pred; Pred != MBB->rend(); ++Pred) {
1556       if (Pred->getFlag(MachineInstr::FrameSetup))
1557         break;
1558       auto PredDL = Pred->getDebugLoc();
1559       if (!PredDL || Pred->isMetaInstruction())
1560         continue;
1561       // Check whether the instruction preceding the DBG_VALUE is in the same
1562       // (sub)scope as the DBG_VALUE.
1563       if (DL->getScope() == PredDL->getScope())
1564         return false;
1565       auto *PredScope = LScopes.findLexicalScope(PredDL);
1566       if (!PredScope || LScope->dominates(PredScope))
1567         return false;
1568     }
1569   }
1570 
1571   // If the range of the DBG_VALUE is open-ended, report success.
1572   if (!RangeEnd)
1573     return true;
1574 
1575   // Single, constant DBG_VALUEs in the prologue are promoted to be live
1576   // throughout the function. This is a hack, presumably for DWARF v2 and not
1577   // necessarily correct. It would be much better to use a dbg.declare instead
1578   // if we know the constant is live throughout the scope.
1579   if (DbgValue->getDebugOperand(0).isImm() && MBB->pred_empty())
1580     return true;
1581 
1582   // Test if the location terminates before the end of the scope.
1583   const MachineInstr *LScopeEnd = LSRange.back().second;
1584   if (Ordering.isBefore(RangeEnd, LScopeEnd))
1585     return false;
1586 
1587   // There's a single location which starts at the scope start, and ends at or
1588   // after the scope end.
1589   return true;
1590 }
1591 
1592 /// Build the location list for all DBG_VALUEs in the function that
1593 /// describe the same variable. The resulting DebugLocEntries will have
1594 /// strict monotonically increasing begin addresses and will never
1595 /// overlap. If the resulting list has only one entry that is valid
1596 /// throughout variable's scope return true.
1597 //
1598 // See the definition of DbgValueHistoryMap::Entry for an explanation of the
1599 // different kinds of history map entries. One thing to be aware of is that if
1600 // a debug value is ended by another entry (rather than being valid until the
1601 // end of the function), that entry's instruction may or may not be included in
1602 // the range, depending on if the entry is a clobbering entry (it has an
1603 // instruction that clobbers one or more preceding locations), or if it is an
1604 // (overlapping) debug value entry. This distinction can be seen in the example
1605 // below. The first debug value is ended by the clobbering entry 2, and the
1606 // second and third debug values are ended by the overlapping debug value entry
1607 // 4.
1608 //
1609 // Input:
1610 //
1611 //   History map entries [type, end index, mi]
1612 //
1613 // 0 |      [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)]
1614 // 1 | |    [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)]
1615 // 2 | |    [Clobber, $reg0 = [...], -, -]
1616 // 3   | |  [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)]
1617 // 4        [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)]
1618 //
1619 // Output [start, end) [Value...]:
1620 //
1621 // [0-1)    [(reg0, fragment 0, 32)]
1622 // [1-3)    [(reg0, fragment 0, 32), (reg1, fragment 32, 32)]
1623 // [3-4)    [(reg1, fragment 32, 32), (123, fragment 64, 32)]
1624 // [4-)     [(@g, fragment 0, 96)]
1625 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc,
1626                                    const DbgValueHistoryMap::Entries &Entries) {
1627   using OpenRange =
1628       std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>;
1629   SmallVector<OpenRange, 4> OpenRanges;
1630   bool isSafeForSingleLocation = true;
1631   const MachineInstr *StartDebugMI = nullptr;
1632   const MachineInstr *EndMI = nullptr;
1633 
1634   for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) {
1635     const MachineInstr *Instr = EI->getInstr();
1636 
1637     // Remove all values that are no longer live.
1638     size_t Index = std::distance(EB, EI);
1639     erase_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; });
1640 
1641     // If we are dealing with a clobbering entry, this iteration will result in
1642     // a location list entry starting after the clobbering instruction.
1643     const MCSymbol *StartLabel =
1644         EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr);
1645     assert(StartLabel &&
1646            "Forgot label before/after instruction starting a range!");
1647 
1648     const MCSymbol *EndLabel;
1649     if (std::next(EI) == Entries.end()) {
1650       const MachineBasicBlock &EndMBB = Asm->MF->back();
1651       EndLabel = Asm->MBBSectionRanges[EndMBB.getSectionIDNum()].EndLabel;
1652       if (EI->isClobber())
1653         EndMI = EI->getInstr();
1654     }
1655     else if (std::next(EI)->isClobber())
1656       EndLabel = getLabelAfterInsn(std::next(EI)->getInstr());
1657     else
1658       EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr());
1659     assert(EndLabel && "Forgot label after instruction ending a range!");
1660 
1661     if (EI->isDbgValue())
1662       LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n");
1663 
1664     // If this history map entry has a debug value, add that to the list of
1665     // open ranges and check if its location is valid for a single value
1666     // location.
1667     if (EI->isDbgValue()) {
1668       // Do not add undef debug values, as they are redundant information in
1669       // the location list entries. An undef debug results in an empty location
1670       // description. If there are any non-undef fragments then padding pieces
1671       // with empty location descriptions will automatically be inserted, and if
1672       // all fragments are undef then the whole location list entry is
1673       // redundant.
1674       if (!Instr->isUndefDebugValue()) {
1675         auto Value = getDebugLocValue(Instr);
1676         OpenRanges.emplace_back(EI->getEndIndex(), Value);
1677 
1678         // TODO: Add support for single value fragment locations.
1679         if (Instr->getDebugExpression()->isFragment())
1680           isSafeForSingleLocation = false;
1681 
1682         if (!StartDebugMI)
1683           StartDebugMI = Instr;
1684       } else {
1685         isSafeForSingleLocation = false;
1686       }
1687     }
1688 
1689     // Location list entries with empty location descriptions are redundant
1690     // information in DWARF, so do not emit those.
1691     if (OpenRanges.empty())
1692       continue;
1693 
1694     // Omit entries with empty ranges as they do not have any effect in DWARF.
1695     if (StartLabel == EndLabel) {
1696       LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n");
1697       continue;
1698     }
1699 
1700     SmallVector<DbgValueLoc, 4> Values;
1701     for (auto &R : OpenRanges)
1702       Values.push_back(R.second);
1703     DebugLoc.emplace_back(StartLabel, EndLabel, Values);
1704 
1705     // Attempt to coalesce the ranges of two otherwise identical
1706     // DebugLocEntries.
1707     auto CurEntry = DebugLoc.rbegin();
1708     LLVM_DEBUG({
1709       dbgs() << CurEntry->getValues().size() << " Values:\n";
1710       for (auto &Value : CurEntry->getValues())
1711         Value.dump();
1712       dbgs() << "-----\n";
1713     });
1714 
1715     auto PrevEntry = std::next(CurEntry);
1716     if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry))
1717       DebugLoc.pop_back();
1718   }
1719 
1720   return DebugLoc.size() == 1 && isSafeForSingleLocation &&
1721          validThroughout(LScopes, StartDebugMI, EndMI, getInstOrdering());
1722 }
1723 
1724 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU,
1725                                             LexicalScope &Scope,
1726                                             const DINode *Node,
1727                                             const DILocation *Location,
1728                                             const MCSymbol *Sym) {
1729   ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode());
1730   if (isa<const DILocalVariable>(Node)) {
1731     ConcreteEntities.push_back(
1732         std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node),
1733                                        Location));
1734     InfoHolder.addScopeVariable(&Scope,
1735         cast<DbgVariable>(ConcreteEntities.back().get()));
1736   } else if (isa<const DILabel>(Node)) {
1737     ConcreteEntities.push_back(
1738         std::make_unique<DbgLabel>(cast<const DILabel>(Node),
1739                                     Location, Sym));
1740     InfoHolder.addScopeLabel(&Scope,
1741         cast<DbgLabel>(ConcreteEntities.back().get()));
1742   }
1743   return ConcreteEntities.back().get();
1744 }
1745 
1746 // Find variables for each lexical scope.
1747 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU,
1748                                    const DISubprogram *SP,
1749                                    DenseSet<InlinedEntity> &Processed) {
1750   // Grab the variable info that was squirreled away in the MMI side-table.
1751   collectVariableInfoFromMFTable(TheCU, Processed);
1752 
1753   for (const auto &I : DbgValues) {
1754     InlinedEntity IV = I.first;
1755     if (Processed.count(IV))
1756       continue;
1757 
1758     // Instruction ranges, specifying where IV is accessible.
1759     const auto &HistoryMapEntries = I.second;
1760     if (HistoryMapEntries.empty())
1761       continue;
1762 
1763     LexicalScope *Scope = nullptr;
1764     const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first);
1765     if (const DILocation *IA = IV.second)
1766       Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA);
1767     else
1768       Scope = LScopes.findLexicalScope(LocalVar->getScope());
1769     // If variable scope is not found then skip this variable.
1770     if (!Scope)
1771       continue;
1772 
1773     Processed.insert(IV);
1774     DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU,
1775                                             *Scope, LocalVar, IV.second));
1776 
1777     const MachineInstr *MInsn = HistoryMapEntries.front().getInstr();
1778     assert(MInsn->isDebugValue() && "History must begin with debug value");
1779 
1780     // Check if there is a single DBG_VALUE, valid throughout the var's scope.
1781     // If the history map contains a single debug value, there may be an
1782     // additional entry which clobbers the debug value.
1783     size_t HistSize = HistoryMapEntries.size();
1784     bool SingleValueWithClobber =
1785         HistSize == 2 && HistoryMapEntries[1].isClobber();
1786     if (HistSize == 1 || SingleValueWithClobber) {
1787       const auto *End =
1788           SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr;
1789       if (validThroughout(LScopes, MInsn, End, getInstOrdering())) {
1790         RegVar->initializeDbgValue(MInsn);
1791         continue;
1792       }
1793     }
1794 
1795     // Do not emit location lists if .debug_loc secton is disabled.
1796     if (!useLocSection())
1797       continue;
1798 
1799     // Handle multiple DBG_VALUE instructions describing one variable.
1800     DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn);
1801 
1802     // Build the location list for this variable.
1803     SmallVector<DebugLocEntry, 8> Entries;
1804     bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries);
1805 
1806     // Check whether buildLocationList managed to merge all locations to one
1807     // that is valid throughout the variable's scope. If so, produce single
1808     // value location.
1809     if (isValidSingleLocation) {
1810       RegVar->initializeDbgValue(Entries[0].getValues()[0]);
1811       continue;
1812     }
1813 
1814     // If the variable has a DIBasicType, extract it.  Basic types cannot have
1815     // unique identifiers, so don't bother resolving the type with the
1816     // identifier map.
1817     const DIBasicType *BT = dyn_cast<DIBasicType>(
1818         static_cast<const Metadata *>(LocalVar->getType()));
1819 
1820     // Finalize the entry by lowering it into a DWARF bytestream.
1821     for (auto &Entry : Entries)
1822       Entry.finalize(*Asm, List, BT, TheCU);
1823   }
1824 
1825   // For each InlinedEntity collected from DBG_LABEL instructions, convert to
1826   // DWARF-related DbgLabel.
1827   for (const auto &I : DbgLabels) {
1828     InlinedEntity IL = I.first;
1829     const MachineInstr *MI = I.second;
1830     if (MI == nullptr)
1831       continue;
1832 
1833     LexicalScope *Scope = nullptr;
1834     const DILabel *Label = cast<DILabel>(IL.first);
1835     // The scope could have an extra lexical block file.
1836     const DILocalScope *LocalScope =
1837         Label->getScope()->getNonLexicalBlockFileScope();
1838     // Get inlined DILocation if it is inlined label.
1839     if (const DILocation *IA = IL.second)
1840       Scope = LScopes.findInlinedScope(LocalScope, IA);
1841     else
1842       Scope = LScopes.findLexicalScope(LocalScope);
1843     // If label scope is not found then skip this label.
1844     if (!Scope)
1845       continue;
1846 
1847     Processed.insert(IL);
1848     /// At this point, the temporary label is created.
1849     /// Save the temporary label to DbgLabel entity to get the
1850     /// actually address when generating Dwarf DIE.
1851     MCSymbol *Sym = getLabelBeforeInsn(MI);
1852     createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym);
1853   }
1854 
1855   // Collect info for variables/labels that were optimized out.
1856   for (const DINode *DN : SP->getRetainedNodes()) {
1857     if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
1858       continue;
1859     LexicalScope *Scope = nullptr;
1860     if (auto *DV = dyn_cast<DILocalVariable>(DN)) {
1861       Scope = LScopes.findLexicalScope(DV->getScope());
1862     } else if (auto *DL = dyn_cast<DILabel>(DN)) {
1863       Scope = LScopes.findLexicalScope(DL->getScope());
1864     }
1865 
1866     if (Scope)
1867       createConcreteEntity(TheCU, *Scope, DN, nullptr);
1868   }
1869 }
1870 
1871 // Process beginning of an instruction.
1872 void DwarfDebug::beginInstruction(const MachineInstr *MI) {
1873   const MachineFunction &MF = *MI->getMF();
1874   const auto *SP = MF.getFunction().getSubprogram();
1875   bool NoDebug =
1876       !SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug;
1877 
1878   // Delay slot support check.
1879   auto delaySlotSupported = [](const MachineInstr &MI) {
1880     if (!MI.isBundledWithSucc())
1881       return false;
1882     auto Suc = std::next(MI.getIterator());
1883     (void)Suc;
1884     // Ensure that delay slot instruction is successor of the call instruction.
1885     // Ex. CALL_INSTRUCTION {
1886     //        DELAY_SLOT_INSTRUCTION }
1887     assert(Suc->isBundledWithPred() &&
1888            "Call bundle instructions are out of order");
1889     return true;
1890   };
1891 
1892   // When describing calls, we need a label for the call instruction.
1893   if (!NoDebug && SP->areAllCallsDescribed() &&
1894       MI->isCandidateForCallSiteEntry(MachineInstr::AnyInBundle) &&
1895       (!MI->hasDelaySlot() || delaySlotSupported(*MI))) {
1896     const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1897     bool IsTail = TII->isTailCall(*MI);
1898     // For tail calls, we need the address of the branch instruction for
1899     // DW_AT_call_pc.
1900     if (IsTail)
1901       requestLabelBeforeInsn(MI);
1902     // For non-tail calls, we need the return address for the call for
1903     // DW_AT_call_return_pc. Under GDB tuning, this information is needed for
1904     // tail calls as well.
1905     requestLabelAfterInsn(MI);
1906   }
1907 
1908   DebugHandlerBase::beginInstruction(MI);
1909   if (!CurMI)
1910     return;
1911 
1912   if (NoDebug)
1913     return;
1914 
1915   // Check if source location changes, but ignore DBG_VALUE and CFI locations.
1916   // If the instruction is part of the function frame setup code, do not emit
1917   // any line record, as there is no correspondence with any user code.
1918   if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup))
1919     return;
1920   const DebugLoc &DL = MI->getDebugLoc();
1921   // When we emit a line-0 record, we don't update PrevInstLoc; so look at
1922   // the last line number actually emitted, to see if it was line 0.
1923   unsigned LastAsmLine =
1924       Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine();
1925 
1926   if (DL == PrevInstLoc) {
1927     // If we have an ongoing unspecified location, nothing to do here.
1928     if (!DL)
1929       return;
1930     // We have an explicit location, same as the previous location.
1931     // But we might be coming back to it after a line 0 record.
1932     if (LastAsmLine == 0 && DL.getLine() != 0) {
1933       // Reinstate the source location but not marked as a statement.
1934       const MDNode *Scope = DL.getScope();
1935       recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0);
1936     }
1937     return;
1938   }
1939 
1940   if (!DL) {
1941     // We have an unspecified location, which might want to be line 0.
1942     // If we have already emitted a line-0 record, don't repeat it.
1943     if (LastAsmLine == 0)
1944       return;
1945     // If user said Don't Do That, don't do that.
1946     if (UnknownLocations == Disable)
1947       return;
1948     // See if we have a reason to emit a line-0 record now.
1949     // Reasons to emit a line-0 record include:
1950     // - User asked for it (UnknownLocations).
1951     // - Instruction has a label, so it's referenced from somewhere else,
1952     //   possibly debug information; we want it to have a source location.
1953     // - Instruction is at the top of a block; we don't want to inherit the
1954     //   location from the physically previous (maybe unrelated) block.
1955     if (UnknownLocations == Enable || PrevLabel ||
1956         (PrevInstBB && PrevInstBB != MI->getParent())) {
1957       // Preserve the file and column numbers, if we can, to save space in
1958       // the encoded line table.
1959       // Do not update PrevInstLoc, it remembers the last non-0 line.
1960       const MDNode *Scope = nullptr;
1961       unsigned Column = 0;
1962       if (PrevInstLoc) {
1963         Scope = PrevInstLoc.getScope();
1964         Column = PrevInstLoc.getCol();
1965       }
1966       recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0);
1967     }
1968     return;
1969   }
1970 
1971   // We have an explicit location, different from the previous location.
1972   // Don't repeat a line-0 record, but otherwise emit the new location.
1973   // (The new location might be an explicit line 0, which we do emit.)
1974   if (DL.getLine() == 0 && LastAsmLine == 0)
1975     return;
1976   unsigned Flags = 0;
1977   if (DL == PrologEndLoc) {
1978     Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT;
1979     PrologEndLoc = DebugLoc();
1980   }
1981   // If the line changed, we call that a new statement; unless we went to
1982   // line 0 and came back, in which case it is not a new statement.
1983   unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine;
1984   if (DL.getLine() && DL.getLine() != OldLine)
1985     Flags |= DWARF2_FLAG_IS_STMT;
1986 
1987   const MDNode *Scope = DL.getScope();
1988   recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
1989 
1990   // If we're not at line 0, remember this location.
1991   if (DL.getLine())
1992     PrevInstLoc = DL;
1993 }
1994 
1995 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) {
1996   // First known non-DBG_VALUE and non-frame setup location marks
1997   // the beginning of the function body.
1998   for (const auto &MBB : *MF)
1999     for (const auto &MI : MBB)
2000       if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
2001           MI.getDebugLoc())
2002         return MI.getDebugLoc();
2003   return DebugLoc();
2004 }
2005 
2006 /// Register a source line with debug info. Returns the  unique label that was
2007 /// emitted and which provides correspondence to the source line list.
2008 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col,
2009                              const MDNode *S, unsigned Flags, unsigned CUID,
2010                              uint16_t DwarfVersion,
2011                              ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) {
2012   StringRef Fn;
2013   unsigned FileNo = 1;
2014   unsigned Discriminator = 0;
2015   if (auto *Scope = cast_or_null<DIScope>(S)) {
2016     Fn = Scope->getFilename();
2017     if (Line != 0 && DwarfVersion >= 4)
2018       if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope))
2019         Discriminator = LBF->getDiscriminator();
2020 
2021     FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID])
2022                  .getOrCreateSourceID(Scope->getFile());
2023   }
2024   Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0,
2025                                          Discriminator, Fn);
2026 }
2027 
2028 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF,
2029                                              unsigned CUID) {
2030   // Get beginning of function.
2031   if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) {
2032     // Ensure the compile unit is created if the function is called before
2033     // beginFunction().
2034     (void)getOrCreateDwarfCompileUnit(
2035         MF.getFunction().getSubprogram()->getUnit());
2036     // We'd like to list the prologue as "not statements" but GDB behaves
2037     // poorly if we do that. Revisit this with caution/GDB (7.5+) testing.
2038     const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram();
2039     ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT,
2040                        CUID, getDwarfVersion(), getUnits());
2041     return PrologEndLoc;
2042   }
2043   return DebugLoc();
2044 }
2045 
2046 // Gather pre-function debug information.  Assumes being called immediately
2047 // after the function entry point has been emitted.
2048 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) {
2049   CurFn = MF;
2050 
2051   auto *SP = MF->getFunction().getSubprogram();
2052   assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode());
2053   if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
2054     return;
2055 
2056   DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
2057 
2058   // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function
2059   // belongs to so that we add to the correct per-cu line table in the
2060   // non-asm case.
2061   if (Asm->OutStreamer->hasRawTextSupport())
2062     // Use a single line table if we are generating assembly.
2063     Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
2064   else
2065     Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID());
2066 
2067   // Record beginning of function.
2068   PrologEndLoc = emitInitialLocDirective(
2069       *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID());
2070 }
2071 
2072 void DwarfDebug::skippedNonDebugFunction() {
2073   // If we don't have a subprogram for this function then there will be a hole
2074   // in the range information. Keep note of this by setting the previously used
2075   // section to nullptr.
2076   PrevCU = nullptr;
2077   CurFn = nullptr;
2078 }
2079 
2080 // Gather and emit post-function debug information.
2081 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) {
2082   const DISubprogram *SP = MF->getFunction().getSubprogram();
2083 
2084   assert(CurFn == MF &&
2085       "endFunction should be called with the same function as beginFunction");
2086 
2087   // Set DwarfDwarfCompileUnitID in MCContext to default value.
2088   Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
2089 
2090   LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
2091   assert(!FnScope || SP == FnScope->getScopeNode());
2092   DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit());
2093   if (TheCU.getCUNode()->isDebugDirectivesOnly()) {
2094     PrevLabel = nullptr;
2095     CurFn = nullptr;
2096     return;
2097   }
2098 
2099   DenseSet<InlinedEntity> Processed;
2100   collectEntityInfo(TheCU, SP, Processed);
2101 
2102   // Add the range of this function to the list of ranges for the CU.
2103   // With basic block sections, add ranges for all basic block sections.
2104   for (const auto &R : Asm->MBBSectionRanges)
2105     TheCU.addRange({R.second.BeginLabel, R.second.EndLabel});
2106 
2107   // Under -gmlt, skip building the subprogram if there are no inlined
2108   // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram
2109   // is still needed as we need its source location.
2110   if (!TheCU.getCUNode()->getDebugInfoForProfiling() &&
2111       TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly &&
2112       LScopes.getAbstractScopesList().empty() && !IsDarwin) {
2113     assert(InfoHolder.getScopeVariables().empty());
2114     PrevLabel = nullptr;
2115     CurFn = nullptr;
2116     return;
2117   }
2118 
2119 #ifndef NDEBUG
2120   size_t NumAbstractScopes = LScopes.getAbstractScopesList().size();
2121 #endif
2122   // Construct abstract scopes.
2123   for (LexicalScope *AScope : LScopes.getAbstractScopesList()) {
2124     auto *SP = cast<DISubprogram>(AScope->getScopeNode());
2125     for (const DINode *DN : SP->getRetainedNodes()) {
2126       if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
2127         continue;
2128 
2129       const MDNode *Scope = nullptr;
2130       if (auto *DV = dyn_cast<DILocalVariable>(DN))
2131         Scope = DV->getScope();
2132       else if (auto *DL = dyn_cast<DILabel>(DN))
2133         Scope = DL->getScope();
2134       else
2135         llvm_unreachable("Unexpected DI type!");
2136 
2137       // Collect info for variables/labels that were optimized out.
2138       ensureAbstractEntityIsCreated(TheCU, DN, Scope);
2139       assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes
2140              && "ensureAbstractEntityIsCreated inserted abstract scopes");
2141     }
2142     constructAbstractSubprogramScopeDIE(TheCU, AScope);
2143   }
2144 
2145   ProcessedSPNodes.insert(SP);
2146   DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope);
2147   if (auto *SkelCU = TheCU.getSkeleton())
2148     if (!LScopes.getAbstractScopesList().empty() &&
2149         TheCU.getCUNode()->getSplitDebugInlining())
2150       SkelCU->constructSubprogramScopeDIE(SP, FnScope);
2151 
2152   // Construct call site entries.
2153   constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF);
2154 
2155   // Clear debug info
2156   // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the
2157   // DbgVariables except those that are also in AbstractVariables (since they
2158   // can be used cross-function)
2159   InfoHolder.getScopeVariables().clear();
2160   InfoHolder.getScopeLabels().clear();
2161   PrevLabel = nullptr;
2162   CurFn = nullptr;
2163 }
2164 
2165 // Register a source line with debug info. Returns the  unique label that was
2166 // emitted and which provides correspondence to the source line list.
2167 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S,
2168                                   unsigned Flags) {
2169   ::recordSourceLine(*Asm, Line, Col, S, Flags,
2170                      Asm->OutStreamer->getContext().getDwarfCompileUnitID(),
2171                      getDwarfVersion(), getUnits());
2172 }
2173 
2174 //===----------------------------------------------------------------------===//
2175 // Emit Methods
2176 //===----------------------------------------------------------------------===//
2177 
2178 // Emit the debug info section.
2179 void DwarfDebug::emitDebugInfo() {
2180   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2181   Holder.emitUnits(/* UseOffsets */ false);
2182 }
2183 
2184 // Emit the abbreviation section.
2185 void DwarfDebug::emitAbbreviations() {
2186   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2187 
2188   Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection());
2189 }
2190 
2191 void DwarfDebug::emitStringOffsetsTableHeader() {
2192   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2193   Holder.getStringPool().emitStringOffsetsTableHeader(
2194       *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(),
2195       Holder.getStringOffsetsStartSym());
2196 }
2197 
2198 template <typename AccelTableT>
2199 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section,
2200                            StringRef TableName) {
2201   Asm->OutStreamer->SwitchSection(Section);
2202 
2203   // Emit the full data.
2204   emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol());
2205 }
2206 
2207 void DwarfDebug::emitAccelDebugNames() {
2208   // Don't emit anything if we have no compilation units to index.
2209   if (getUnits().empty())
2210     return;
2211 
2212   emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits());
2213 }
2214 
2215 // Emit visible names into a hashed accelerator table section.
2216 void DwarfDebug::emitAccelNames() {
2217   emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(),
2218             "Names");
2219 }
2220 
2221 // Emit objective C classes and categories into a hashed accelerator table
2222 // section.
2223 void DwarfDebug::emitAccelObjC() {
2224   emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(),
2225             "ObjC");
2226 }
2227 
2228 // Emit namespace dies into a hashed accelerator table.
2229 void DwarfDebug::emitAccelNamespaces() {
2230   emitAccel(AccelNamespace,
2231             Asm->getObjFileLowering().getDwarfAccelNamespaceSection(),
2232             "namespac");
2233 }
2234 
2235 // Emit type dies into a hashed accelerator table.
2236 void DwarfDebug::emitAccelTypes() {
2237   emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(),
2238             "types");
2239 }
2240 
2241 // Public name handling.
2242 // The format for the various pubnames:
2243 //
2244 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU
2245 // for the DIE that is named.
2246 //
2247 // gnu pubnames - offset/index value/name tuples where the offset is the offset
2248 // into the CU and the index value is computed according to the type of value
2249 // for the DIE that is named.
2250 //
2251 // For type units the offset is the offset of the skeleton DIE. For split dwarf
2252 // it's the offset within the debug_info/debug_types dwo section, however, the
2253 // reference in the pubname header doesn't change.
2254 
2255 /// computeIndexValue - Compute the gdb index value for the DIE and CU.
2256 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU,
2257                                                         const DIE *Die) {
2258   // Entities that ended up only in a Type Unit reference the CU instead (since
2259   // the pub entry has offsets within the CU there's no real offset that can be
2260   // provided anyway). As it happens all such entities (namespaces and types,
2261   // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out
2262   // not to be true it would be necessary to persist this information from the
2263   // point at which the entry is added to the index data structure - since by
2264   // the time the index is built from that, the original type/namespace DIE in a
2265   // type unit has already been destroyed so it can't be queried for properties
2266   // like tag, etc.
2267   if (Die->getTag() == dwarf::DW_TAG_compile_unit)
2268     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE,
2269                                           dwarf::GIEL_EXTERNAL);
2270   dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC;
2271 
2272   // We could have a specification DIE that has our most of our knowledge,
2273   // look for that now.
2274   if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) {
2275     DIE &SpecDIE = SpecVal.getDIEEntry().getEntry();
2276     if (SpecDIE.findAttribute(dwarf::DW_AT_external))
2277       Linkage = dwarf::GIEL_EXTERNAL;
2278   } else if (Die->findAttribute(dwarf::DW_AT_external))
2279     Linkage = dwarf::GIEL_EXTERNAL;
2280 
2281   switch (Die->getTag()) {
2282   case dwarf::DW_TAG_class_type:
2283   case dwarf::DW_TAG_structure_type:
2284   case dwarf::DW_TAG_union_type:
2285   case dwarf::DW_TAG_enumeration_type:
2286     return dwarf::PubIndexEntryDescriptor(
2287         dwarf::GIEK_TYPE,
2288         dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage())
2289             ? dwarf::GIEL_EXTERNAL
2290             : dwarf::GIEL_STATIC);
2291   case dwarf::DW_TAG_typedef:
2292   case dwarf::DW_TAG_base_type:
2293   case dwarf::DW_TAG_subrange_type:
2294     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC);
2295   case dwarf::DW_TAG_namespace:
2296     return dwarf::GIEK_TYPE;
2297   case dwarf::DW_TAG_subprogram:
2298     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage);
2299   case dwarf::DW_TAG_variable:
2300     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage);
2301   case dwarf::DW_TAG_enumerator:
2302     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE,
2303                                           dwarf::GIEL_STATIC);
2304   default:
2305     return dwarf::GIEK_NONE;
2306   }
2307 }
2308 
2309 /// emitDebugPubSections - Emit visible names and types into debug pubnames and
2310 /// pubtypes sections.
2311 void DwarfDebug::emitDebugPubSections() {
2312   for (const auto &NU : CUMap) {
2313     DwarfCompileUnit *TheU = NU.second;
2314     if (!TheU->hasDwarfPubSections())
2315       continue;
2316 
2317     bool GnuStyle = TheU->getCUNode()->getNameTableKind() ==
2318                     DICompileUnit::DebugNameTableKind::GNU;
2319 
2320     Asm->OutStreamer->SwitchSection(
2321         GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection()
2322                  : Asm->getObjFileLowering().getDwarfPubNamesSection());
2323     emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames());
2324 
2325     Asm->OutStreamer->SwitchSection(
2326         GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection()
2327                  : Asm->getObjFileLowering().getDwarfPubTypesSection());
2328     emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes());
2329   }
2330 }
2331 
2332 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) {
2333   if (useSectionsAsReferences())
2334     Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(),
2335                          CU.getDebugSectionOffset());
2336   else
2337     Asm->emitDwarfSymbolReference(CU.getLabelBegin());
2338 }
2339 
2340 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name,
2341                                      DwarfCompileUnit *TheU,
2342                                      const StringMap<const DIE *> &Globals) {
2343   if (auto *Skeleton = TheU->getSkeleton())
2344     TheU = Skeleton;
2345 
2346   // Emit the header.
2347   MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin");
2348   MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end");
2349   Asm->emitDwarfUnitLength(EndLabel, BeginLabel,
2350                            "Length of Public " + Name + " Info");
2351 
2352   Asm->OutStreamer->emitLabel(BeginLabel);
2353 
2354   Asm->OutStreamer->AddComment("DWARF Version");
2355   Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION);
2356 
2357   Asm->OutStreamer->AddComment("Offset of Compilation Unit Info");
2358   emitSectionReference(*TheU);
2359 
2360   Asm->OutStreamer->AddComment("Compilation Unit Length");
2361   Asm->emitDwarfLengthOrOffset(TheU->getLength());
2362 
2363   // Emit the pubnames for this compilation unit.
2364   for (const auto &GI : Globals) {
2365     const char *Name = GI.getKeyData();
2366     const DIE *Entity = GI.second;
2367 
2368     Asm->OutStreamer->AddComment("DIE offset");
2369     Asm->emitDwarfLengthOrOffset(Entity->getOffset());
2370 
2371     if (GnuStyle) {
2372       dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity);
2373       Asm->OutStreamer->AddComment(
2374           Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) +
2375           ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage));
2376       Asm->emitInt8(Desc.toBits());
2377     }
2378 
2379     Asm->OutStreamer->AddComment("External Name");
2380     Asm->OutStreamer->emitBytes(StringRef(Name, GI.getKeyLength() + 1));
2381   }
2382 
2383   Asm->OutStreamer->AddComment("End Mark");
2384   Asm->emitDwarfLengthOrOffset(0);
2385   Asm->OutStreamer->emitLabel(EndLabel);
2386 }
2387 
2388 /// Emit null-terminated strings into a debug str section.
2389 void DwarfDebug::emitDebugStr() {
2390   MCSection *StringOffsetsSection = nullptr;
2391   if (useSegmentedStringOffsetsTable()) {
2392     emitStringOffsetsTableHeader();
2393     StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection();
2394   }
2395   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2396   Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(),
2397                      StringOffsetsSection, /* UseRelativeOffsets = */ true);
2398 }
2399 
2400 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer,
2401                                    const DebugLocStream::Entry &Entry,
2402                                    const DwarfCompileUnit *CU) {
2403   auto &&Comments = DebugLocs.getComments(Entry);
2404   auto Comment = Comments.begin();
2405   auto End = Comments.end();
2406 
2407   // The expressions are inserted into a byte stream rather early (see
2408   // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that
2409   // need to reference a base_type DIE the offset of that DIE is not yet known.
2410   // To deal with this we instead insert a placeholder early and then extract
2411   // it here and replace it with the real reference.
2412   unsigned PtrSize = Asm->MAI->getCodePointerSize();
2413   DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(),
2414                                     DebugLocs.getBytes(Entry).size()),
2415                           Asm->getDataLayout().isLittleEndian(), PtrSize);
2416   DWARFExpression Expr(Data, PtrSize, Asm->OutContext.getDwarfFormat());
2417 
2418   using Encoding = DWARFExpression::Operation::Encoding;
2419   uint64_t Offset = 0;
2420   for (auto &Op : Expr) {
2421     assert(Op.getCode() != dwarf::DW_OP_const_type &&
2422            "3 operand ops not yet supported");
2423     Streamer.emitInt8(Op.getCode(), Comment != End ? *(Comment++) : "");
2424     Offset++;
2425     for (unsigned I = 0; I < 2; ++I) {
2426       if (Op.getDescription().Op[I] == Encoding::SizeNA)
2427         continue;
2428       if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) {
2429         uint64_t Offset =
2430             CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset();
2431         assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit");
2432         Streamer.emitULEB128(Offset, "", ULEB128PadSize);
2433         // Make sure comments stay aligned.
2434         for (unsigned J = 0; J < ULEB128PadSize; ++J)
2435           if (Comment != End)
2436             Comment++;
2437       } else {
2438         for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J)
2439           Streamer.emitInt8(Data.getData()[J], Comment != End ? *(Comment++) : "");
2440       }
2441       Offset = Op.getOperandEndOffset(I);
2442     }
2443     assert(Offset == Op.getEndOffset());
2444   }
2445 }
2446 
2447 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT,
2448                                    const DbgValueLoc &Value,
2449                                    DwarfExpression &DwarfExpr) {
2450   auto *DIExpr = Value.getExpression();
2451   DIExpressionCursor ExprCursor(DIExpr);
2452   DwarfExpr.addFragmentOffset(DIExpr);
2453   // Regular entry.
2454   if (Value.isInt()) {
2455     if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed ||
2456                BT->getEncoding() == dwarf::DW_ATE_signed_char))
2457       DwarfExpr.addSignedConstant(Value.getInt());
2458     else
2459       DwarfExpr.addUnsignedConstant(Value.getInt());
2460   } else if (Value.isLocation()) {
2461     MachineLocation Location = Value.getLoc();
2462     DwarfExpr.setLocation(Location, DIExpr);
2463     DIExpressionCursor Cursor(DIExpr);
2464 
2465     if (DIExpr->isEntryValue())
2466       DwarfExpr.beginEntryValueExpression(Cursor);
2467 
2468     const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
2469     if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg()))
2470       return;
2471     return DwarfExpr.addExpression(std::move(Cursor));
2472   } else if (Value.isTargetIndexLocation()) {
2473     TargetIndexLocation Loc = Value.getTargetIndexLocation();
2474     // TODO TargetIndexLocation is a target-independent. Currently only the WebAssembly-specific
2475     // encoding is supported.
2476     DwarfExpr.addWasmLocation(Loc.Index, static_cast<uint64_t>(Loc.Offset));
2477       DwarfExpr.addExpression(std::move(ExprCursor));
2478       return;
2479   } else if (Value.isConstantFP()) {
2480     if (AP.getDwarfVersion() >= 4 && !AP.getDwarfDebug()->tuneForSCE() &&
2481         !ExprCursor) {
2482       DwarfExpr.addConstantFP(Value.getConstantFP()->getValueAPF(), AP);
2483       return;
2484     }
2485     if (Value.getConstantFP()->getValueAPF().bitcastToAPInt().getBitWidth() <=
2486         64 /*bits*/)
2487       DwarfExpr.addUnsignedConstant(
2488           Value.getConstantFP()->getValueAPF().bitcastToAPInt());
2489     else
2490       LLVM_DEBUG(
2491           dbgs()
2492           << "Skipped DwarfExpression creation for ConstantFP of size"
2493           << Value.getConstantFP()->getValueAPF().bitcastToAPInt().getBitWidth()
2494           << " bits\n");
2495   }
2496   DwarfExpr.addExpression(std::move(ExprCursor));
2497 }
2498 
2499 void DebugLocEntry::finalize(const AsmPrinter &AP,
2500                              DebugLocStream::ListBuilder &List,
2501                              const DIBasicType *BT,
2502                              DwarfCompileUnit &TheCU) {
2503   assert(!Values.empty() &&
2504          "location list entries without values are redundant");
2505   assert(Begin != End && "unexpected location list entry with empty range");
2506   DebugLocStream::EntryBuilder Entry(List, Begin, End);
2507   BufferByteStreamer Streamer = Entry.getStreamer();
2508   DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU);
2509   const DbgValueLoc &Value = Values[0];
2510   if (Value.isFragment()) {
2511     // Emit all fragments that belong to the same variable and range.
2512     assert(llvm::all_of(Values, [](DbgValueLoc P) {
2513           return P.isFragment();
2514         }) && "all values are expected to be fragments");
2515     assert(llvm::is_sorted(Values) && "fragments are expected to be sorted");
2516 
2517     for (const auto &Fragment : Values)
2518       DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr);
2519 
2520   } else {
2521     assert(Values.size() == 1 && "only fragments may have >1 value");
2522     DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr);
2523   }
2524   DwarfExpr.finalize();
2525   if (DwarfExpr.TagOffset)
2526     List.setTagOffset(*DwarfExpr.TagOffset);
2527 }
2528 
2529 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry,
2530                                            const DwarfCompileUnit *CU) {
2531   // Emit the size.
2532   Asm->OutStreamer->AddComment("Loc expr size");
2533   if (getDwarfVersion() >= 5)
2534     Asm->emitULEB128(DebugLocs.getBytes(Entry).size());
2535   else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max())
2536     Asm->emitInt16(DebugLocs.getBytes(Entry).size());
2537   else {
2538     // The entry is too big to fit into 16 bit, drop it as there is nothing we
2539     // can do.
2540     Asm->emitInt16(0);
2541     return;
2542   }
2543   // Emit the entry.
2544   APByteStreamer Streamer(*Asm);
2545   emitDebugLocEntry(Streamer, Entry, CU);
2546 }
2547 
2548 // Emit the header of a DWARF 5 range list table list table. Returns the symbol
2549 // that designates the end of the table for the caller to emit when the table is
2550 // complete.
2551 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm,
2552                                          const DwarfFile &Holder) {
2553   MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer);
2554 
2555   Asm->OutStreamer->AddComment("Offset entry count");
2556   Asm->emitInt32(Holder.getRangeLists().size());
2557   Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym());
2558 
2559   for (const RangeSpanList &List : Holder.getRangeLists())
2560     Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(),
2561                              Asm->getDwarfOffsetByteSize());
2562 
2563   return TableEnd;
2564 }
2565 
2566 // Emit the header of a DWARF 5 locations list table. Returns the symbol that
2567 // designates the end of the table for the caller to emit when the table is
2568 // complete.
2569 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm,
2570                                          const DwarfDebug &DD) {
2571   MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer);
2572 
2573   const auto &DebugLocs = DD.getDebugLocs();
2574 
2575   Asm->OutStreamer->AddComment("Offset entry count");
2576   Asm->emitInt32(DebugLocs.getLists().size());
2577   Asm->OutStreamer->emitLabel(DebugLocs.getSym());
2578 
2579   for (const auto &List : DebugLocs.getLists())
2580     Asm->emitLabelDifference(List.Label, DebugLocs.getSym(),
2581                              Asm->getDwarfOffsetByteSize());
2582 
2583   return TableEnd;
2584 }
2585 
2586 template <typename Ranges, typename PayloadEmitter>
2587 static void emitRangeList(
2588     DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R,
2589     const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair,
2590     unsigned StartxLength, unsigned EndOfList,
2591     StringRef (*StringifyEnum)(unsigned),
2592     bool ShouldUseBaseAddress,
2593     PayloadEmitter EmitPayload) {
2594 
2595   auto Size = Asm->MAI->getCodePointerSize();
2596   bool UseDwarf5 = DD.getDwarfVersion() >= 5;
2597 
2598   // Emit our symbol so we can find the beginning of the range.
2599   Asm->OutStreamer->emitLabel(Sym);
2600 
2601   // Gather all the ranges that apply to the same section so they can share
2602   // a base address entry.
2603   MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges;
2604 
2605   for (const auto &Range : R)
2606     SectionRanges[&Range.Begin->getSection()].push_back(&Range);
2607 
2608   const MCSymbol *CUBase = CU.getBaseAddress();
2609   bool BaseIsSet = false;
2610   for (const auto &P : SectionRanges) {
2611     auto *Base = CUBase;
2612     if (!Base && ShouldUseBaseAddress) {
2613       const MCSymbol *Begin = P.second.front()->Begin;
2614       const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection());
2615       if (!UseDwarf5) {
2616         Base = NewBase;
2617         BaseIsSet = true;
2618         Asm->OutStreamer->emitIntValue(-1, Size);
2619         Asm->OutStreamer->AddComment("  base address");
2620         Asm->OutStreamer->emitSymbolValue(Base, Size);
2621       } else if (NewBase != Begin || P.second.size() > 1) {
2622         // Only use a base address if
2623         //  * the existing pool address doesn't match (NewBase != Begin)
2624         //  * or, there's more than one entry to share the base address
2625         Base = NewBase;
2626         BaseIsSet = true;
2627         Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx));
2628         Asm->emitInt8(BaseAddressx);
2629         Asm->OutStreamer->AddComment("  base address index");
2630         Asm->emitULEB128(DD.getAddressPool().getIndex(Base));
2631       }
2632     } else if (BaseIsSet && !UseDwarf5) {
2633       BaseIsSet = false;
2634       assert(!Base);
2635       Asm->OutStreamer->emitIntValue(-1, Size);
2636       Asm->OutStreamer->emitIntValue(0, Size);
2637     }
2638 
2639     for (const auto *RS : P.second) {
2640       const MCSymbol *Begin = RS->Begin;
2641       const MCSymbol *End = RS->End;
2642       assert(Begin && "Range without a begin symbol?");
2643       assert(End && "Range without an end symbol?");
2644       if (Base) {
2645         if (UseDwarf5) {
2646           // Emit offset_pair when we have a base.
2647           Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair));
2648           Asm->emitInt8(OffsetPair);
2649           Asm->OutStreamer->AddComment("  starting offset");
2650           Asm->emitLabelDifferenceAsULEB128(Begin, Base);
2651           Asm->OutStreamer->AddComment("  ending offset");
2652           Asm->emitLabelDifferenceAsULEB128(End, Base);
2653         } else {
2654           Asm->emitLabelDifference(Begin, Base, Size);
2655           Asm->emitLabelDifference(End, Base, Size);
2656         }
2657       } else if (UseDwarf5) {
2658         Asm->OutStreamer->AddComment(StringifyEnum(StartxLength));
2659         Asm->emitInt8(StartxLength);
2660         Asm->OutStreamer->AddComment("  start index");
2661         Asm->emitULEB128(DD.getAddressPool().getIndex(Begin));
2662         Asm->OutStreamer->AddComment("  length");
2663         Asm->emitLabelDifferenceAsULEB128(End, Begin);
2664       } else {
2665         Asm->OutStreamer->emitSymbolValue(Begin, Size);
2666         Asm->OutStreamer->emitSymbolValue(End, Size);
2667       }
2668       EmitPayload(*RS);
2669     }
2670   }
2671 
2672   if (UseDwarf5) {
2673     Asm->OutStreamer->AddComment(StringifyEnum(EndOfList));
2674     Asm->emitInt8(EndOfList);
2675   } else {
2676     // Terminate the list with two 0 values.
2677     Asm->OutStreamer->emitIntValue(0, Size);
2678     Asm->OutStreamer->emitIntValue(0, Size);
2679   }
2680 }
2681 
2682 // Handles emission of both debug_loclist / debug_loclist.dwo
2683 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) {
2684   emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List),
2685                 *List.CU, dwarf::DW_LLE_base_addressx,
2686                 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length,
2687                 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString,
2688                 /* ShouldUseBaseAddress */ true,
2689                 [&](const DebugLocStream::Entry &E) {
2690                   DD.emitDebugLocEntryLocation(E, List.CU);
2691                 });
2692 }
2693 
2694 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) {
2695   if (DebugLocs.getLists().empty())
2696     return;
2697 
2698   Asm->OutStreamer->SwitchSection(Sec);
2699 
2700   MCSymbol *TableEnd = nullptr;
2701   if (getDwarfVersion() >= 5)
2702     TableEnd = emitLoclistsTableHeader(Asm, *this);
2703 
2704   for (const auto &List : DebugLocs.getLists())
2705     emitLocList(*this, Asm, List);
2706 
2707   if (TableEnd)
2708     Asm->OutStreamer->emitLabel(TableEnd);
2709 }
2710 
2711 // Emit locations into the .debug_loc/.debug_loclists section.
2712 void DwarfDebug::emitDebugLoc() {
2713   emitDebugLocImpl(
2714       getDwarfVersion() >= 5
2715           ? Asm->getObjFileLowering().getDwarfLoclistsSection()
2716           : Asm->getObjFileLowering().getDwarfLocSection());
2717 }
2718 
2719 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section.
2720 void DwarfDebug::emitDebugLocDWO() {
2721   if (getDwarfVersion() >= 5) {
2722     emitDebugLocImpl(
2723         Asm->getObjFileLowering().getDwarfLoclistsDWOSection());
2724 
2725     return;
2726   }
2727 
2728   for (const auto &List : DebugLocs.getLists()) {
2729     Asm->OutStreamer->SwitchSection(
2730         Asm->getObjFileLowering().getDwarfLocDWOSection());
2731     Asm->OutStreamer->emitLabel(List.Label);
2732 
2733     for (const auto &Entry : DebugLocs.getEntries(List)) {
2734       // GDB only supports startx_length in pre-standard split-DWARF.
2735       // (in v5 standard loclists, it currently* /only/ supports base_address +
2736       // offset_pair, so the implementations can't really share much since they
2737       // need to use different representations)
2738       // * as of October 2018, at least
2739       //
2740       // In v5 (see emitLocList), this uses SectionLabels to reuse existing
2741       // addresses in the address pool to minimize object size/relocations.
2742       Asm->emitInt8(dwarf::DW_LLE_startx_length);
2743       unsigned idx = AddrPool.getIndex(Entry.Begin);
2744       Asm->emitULEB128(idx);
2745       // Also the pre-standard encoding is slightly different, emitting this as
2746       // an address-length entry here, but its a ULEB128 in DWARFv5 loclists.
2747       Asm->emitLabelDifference(Entry.End, Entry.Begin, 4);
2748       emitDebugLocEntryLocation(Entry, List.CU);
2749     }
2750     Asm->emitInt8(dwarf::DW_LLE_end_of_list);
2751   }
2752 }
2753 
2754 struct ArangeSpan {
2755   const MCSymbol *Start, *End;
2756 };
2757 
2758 // Emit a debug aranges section, containing a CU lookup for any
2759 // address we can tie back to a CU.
2760 void DwarfDebug::emitDebugARanges() {
2761   // Provides a unique id per text section.
2762   MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap;
2763 
2764   // Filter labels by section.
2765   for (const SymbolCU &SCU : ArangeLabels) {
2766     if (SCU.Sym->isInSection()) {
2767       // Make a note of this symbol and it's section.
2768       MCSection *Section = &SCU.Sym->getSection();
2769       if (!Section->getKind().isMetadata())
2770         SectionMap[Section].push_back(SCU);
2771     } else {
2772       // Some symbols (e.g. common/bss on mach-o) can have no section but still
2773       // appear in the output. This sucks as we rely on sections to build
2774       // arange spans. We can do it without, but it's icky.
2775       SectionMap[nullptr].push_back(SCU);
2776     }
2777   }
2778 
2779   DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans;
2780 
2781   for (auto &I : SectionMap) {
2782     MCSection *Section = I.first;
2783     SmallVector<SymbolCU, 8> &List = I.second;
2784     if (List.size() < 1)
2785       continue;
2786 
2787     // If we have no section (e.g. common), just write out
2788     // individual spans for each symbol.
2789     if (!Section) {
2790       for (const SymbolCU &Cur : List) {
2791         ArangeSpan Span;
2792         Span.Start = Cur.Sym;
2793         Span.End = nullptr;
2794         assert(Cur.CU);
2795         Spans[Cur.CU].push_back(Span);
2796       }
2797       continue;
2798     }
2799 
2800     // Sort the symbols by offset within the section.
2801     llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) {
2802       unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0;
2803       unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0;
2804 
2805       // Symbols with no order assigned should be placed at the end.
2806       // (e.g. section end labels)
2807       if (IA == 0)
2808         return false;
2809       if (IB == 0)
2810         return true;
2811       return IA < IB;
2812     });
2813 
2814     // Insert a final terminator.
2815     List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section)));
2816 
2817     // Build spans between each label.
2818     const MCSymbol *StartSym = List[0].Sym;
2819     for (size_t n = 1, e = List.size(); n < e; n++) {
2820       const SymbolCU &Prev = List[n - 1];
2821       const SymbolCU &Cur = List[n];
2822 
2823       // Try and build the longest span we can within the same CU.
2824       if (Cur.CU != Prev.CU) {
2825         ArangeSpan Span;
2826         Span.Start = StartSym;
2827         Span.End = Cur.Sym;
2828         assert(Prev.CU);
2829         Spans[Prev.CU].push_back(Span);
2830         StartSym = Cur.Sym;
2831       }
2832     }
2833   }
2834 
2835   // Start the dwarf aranges section.
2836   Asm->OutStreamer->SwitchSection(
2837       Asm->getObjFileLowering().getDwarfARangesSection());
2838 
2839   unsigned PtrSize = Asm->MAI->getCodePointerSize();
2840 
2841   // Build a list of CUs used.
2842   std::vector<DwarfCompileUnit *> CUs;
2843   for (const auto &it : Spans) {
2844     DwarfCompileUnit *CU = it.first;
2845     CUs.push_back(CU);
2846   }
2847 
2848   // Sort the CU list (again, to ensure consistent output order).
2849   llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) {
2850     return A->getUniqueID() < B->getUniqueID();
2851   });
2852 
2853   // Emit an arange table for each CU we used.
2854   for (DwarfCompileUnit *CU : CUs) {
2855     std::vector<ArangeSpan> &List = Spans[CU];
2856 
2857     // Describe the skeleton CU's offset and length, not the dwo file's.
2858     if (auto *Skel = CU->getSkeleton())
2859       CU = Skel;
2860 
2861     // Emit size of content not including length itself.
2862     unsigned ContentSize =
2863         sizeof(int16_t) +               // DWARF ARange version number
2864         Asm->getDwarfOffsetByteSize() + // Offset of CU in the .debug_info
2865                                         // section
2866         sizeof(int8_t) +                // Pointer Size (in bytes)
2867         sizeof(int8_t);                 // Segment Size (in bytes)
2868 
2869     unsigned TupleSize = PtrSize * 2;
2870 
2871     // 7.20 in the Dwarf specs requires the table to be aligned to a tuple.
2872     unsigned Padding = offsetToAlignment(
2873         Asm->getUnitLengthFieldByteSize() + ContentSize, Align(TupleSize));
2874 
2875     ContentSize += Padding;
2876     ContentSize += (List.size() + 1) * TupleSize;
2877 
2878     // For each compile unit, write the list of spans it covers.
2879     Asm->emitDwarfUnitLength(ContentSize, "Length of ARange Set");
2880     Asm->OutStreamer->AddComment("DWARF Arange version number");
2881     Asm->emitInt16(dwarf::DW_ARANGES_VERSION);
2882     Asm->OutStreamer->AddComment("Offset Into Debug Info Section");
2883     emitSectionReference(*CU);
2884     Asm->OutStreamer->AddComment("Address Size (in bytes)");
2885     Asm->emitInt8(PtrSize);
2886     Asm->OutStreamer->AddComment("Segment Size (in bytes)");
2887     Asm->emitInt8(0);
2888 
2889     Asm->OutStreamer->emitFill(Padding, 0xff);
2890 
2891     for (const ArangeSpan &Span : List) {
2892       Asm->emitLabelReference(Span.Start, PtrSize);
2893 
2894       // Calculate the size as being from the span start to it's end.
2895       if (Span.End) {
2896         Asm->emitLabelDifference(Span.End, Span.Start, PtrSize);
2897       } else {
2898         // For symbols without an end marker (e.g. common), we
2899         // write a single arange entry containing just that one symbol.
2900         uint64_t Size = SymSize[Span.Start];
2901         if (Size == 0)
2902           Size = 1;
2903 
2904         Asm->OutStreamer->emitIntValue(Size, PtrSize);
2905       }
2906     }
2907 
2908     Asm->OutStreamer->AddComment("ARange terminator");
2909     Asm->OutStreamer->emitIntValue(0, PtrSize);
2910     Asm->OutStreamer->emitIntValue(0, PtrSize);
2911   }
2912 }
2913 
2914 /// Emit a single range list. We handle both DWARF v5 and earlier.
2915 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm,
2916                           const RangeSpanList &List) {
2917   emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU,
2918                 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair,
2919                 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list,
2920                 llvm::dwarf::RangeListEncodingString,
2921                 List.CU->getCUNode()->getRangesBaseAddress() ||
2922                     DD.getDwarfVersion() >= 5,
2923                 [](auto) {});
2924 }
2925 
2926 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) {
2927   if (Holder.getRangeLists().empty())
2928     return;
2929 
2930   assert(useRangesSection());
2931   assert(!CUMap.empty());
2932   assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) {
2933     return !Pair.second->getCUNode()->isDebugDirectivesOnly();
2934   }));
2935 
2936   Asm->OutStreamer->SwitchSection(Section);
2937 
2938   MCSymbol *TableEnd = nullptr;
2939   if (getDwarfVersion() >= 5)
2940     TableEnd = emitRnglistsTableHeader(Asm, Holder);
2941 
2942   for (const RangeSpanList &List : Holder.getRangeLists())
2943     emitRangeList(*this, Asm, List);
2944 
2945   if (TableEnd)
2946     Asm->OutStreamer->emitLabel(TableEnd);
2947 }
2948 
2949 /// Emit address ranges into the .debug_ranges section or into the DWARF v5
2950 /// .debug_rnglists section.
2951 void DwarfDebug::emitDebugRanges() {
2952   const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2953 
2954   emitDebugRangesImpl(Holder,
2955                       getDwarfVersion() >= 5
2956                           ? Asm->getObjFileLowering().getDwarfRnglistsSection()
2957                           : Asm->getObjFileLowering().getDwarfRangesSection());
2958 }
2959 
2960 void DwarfDebug::emitDebugRangesDWO() {
2961   emitDebugRangesImpl(InfoHolder,
2962                       Asm->getObjFileLowering().getDwarfRnglistsDWOSection());
2963 }
2964 
2965 /// Emit the header of a DWARF 5 macro section, or the GNU extension for
2966 /// DWARF 4.
2967 static void emitMacroHeader(AsmPrinter *Asm, const DwarfDebug &DD,
2968                             const DwarfCompileUnit &CU, uint16_t DwarfVersion) {
2969   enum HeaderFlagMask {
2970 #define HANDLE_MACRO_FLAG(ID, NAME) MACRO_FLAG_##NAME = ID,
2971 #include "llvm/BinaryFormat/Dwarf.def"
2972   };
2973   Asm->OutStreamer->AddComment("Macro information version");
2974   Asm->emitInt16(DwarfVersion >= 5 ? DwarfVersion : 4);
2975   // We emit the line offset flag unconditionally here, since line offset should
2976   // be mostly present.
2977   if (Asm->isDwarf64()) {
2978     Asm->OutStreamer->AddComment("Flags: 64 bit, debug_line_offset present");
2979     Asm->emitInt8(MACRO_FLAG_OFFSET_SIZE | MACRO_FLAG_DEBUG_LINE_OFFSET);
2980   } else {
2981     Asm->OutStreamer->AddComment("Flags: 32 bit, debug_line_offset present");
2982     Asm->emitInt8(MACRO_FLAG_DEBUG_LINE_OFFSET);
2983   }
2984   Asm->OutStreamer->AddComment("debug_line_offset");
2985   if (DD.useSplitDwarf())
2986     Asm->emitDwarfLengthOrOffset(0);
2987   else
2988     Asm->emitDwarfSymbolReference(CU.getLineTableStartSym());
2989 }
2990 
2991 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) {
2992   for (auto *MN : Nodes) {
2993     if (auto *M = dyn_cast<DIMacro>(MN))
2994       emitMacro(*M);
2995     else if (auto *F = dyn_cast<DIMacroFile>(MN))
2996       emitMacroFile(*F, U);
2997     else
2998       llvm_unreachable("Unexpected DI type!");
2999   }
3000 }
3001 
3002 void DwarfDebug::emitMacro(DIMacro &M) {
3003   StringRef Name = M.getName();
3004   StringRef Value = M.getValue();
3005 
3006   // There should be one space between the macro name and the macro value in
3007   // define entries. In undef entries, only the macro name is emitted.
3008   std::string Str = Value.empty() ? Name.str() : (Name + " " + Value).str();
3009 
3010   if (UseDebugMacroSection) {
3011     if (getDwarfVersion() >= 5) {
3012       unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define
3013                           ? dwarf::DW_MACRO_define_strx
3014                           : dwarf::DW_MACRO_undef_strx;
3015       Asm->OutStreamer->AddComment(dwarf::MacroString(Type));
3016       Asm->emitULEB128(Type);
3017       Asm->OutStreamer->AddComment("Line Number");
3018       Asm->emitULEB128(M.getLine());
3019       Asm->OutStreamer->AddComment("Macro String");
3020       Asm->emitULEB128(
3021           InfoHolder.getStringPool().getIndexedEntry(*Asm, Str).getIndex());
3022     } else {
3023       unsigned Type = M.getMacinfoType() == dwarf::DW_MACINFO_define
3024                           ? dwarf::DW_MACRO_GNU_define_indirect
3025                           : dwarf::DW_MACRO_GNU_undef_indirect;
3026       Asm->OutStreamer->AddComment(dwarf::GnuMacroString(Type));
3027       Asm->emitULEB128(Type);
3028       Asm->OutStreamer->AddComment("Line Number");
3029       Asm->emitULEB128(M.getLine());
3030       Asm->OutStreamer->AddComment("Macro String");
3031       Asm->emitDwarfSymbolReference(
3032           InfoHolder.getStringPool().getEntry(*Asm, Str).getSymbol());
3033     }
3034   } else {
3035     Asm->OutStreamer->AddComment(dwarf::MacinfoString(M.getMacinfoType()));
3036     Asm->emitULEB128(M.getMacinfoType());
3037     Asm->OutStreamer->AddComment("Line Number");
3038     Asm->emitULEB128(M.getLine());
3039     Asm->OutStreamer->AddComment("Macro String");
3040     Asm->OutStreamer->emitBytes(Str);
3041     Asm->emitInt8('\0');
3042   }
3043 }
3044 
3045 void DwarfDebug::emitMacroFileImpl(
3046     DIMacroFile &MF, DwarfCompileUnit &U, unsigned StartFile, unsigned EndFile,
3047     StringRef (*MacroFormToString)(unsigned Form)) {
3048 
3049   Asm->OutStreamer->AddComment(MacroFormToString(StartFile));
3050   Asm->emitULEB128(StartFile);
3051   Asm->OutStreamer->AddComment("Line Number");
3052   Asm->emitULEB128(MF.getLine());
3053   Asm->OutStreamer->AddComment("File Number");
3054   DIFile &F = *MF.getFile();
3055   if (useSplitDwarf())
3056     Asm->emitULEB128(getDwoLineTable(U)->getFile(
3057         F.getDirectory(), F.getFilename(), getMD5AsBytes(&F),
3058         Asm->OutContext.getDwarfVersion(), F.getSource()));
3059   else
3060     Asm->emitULEB128(U.getOrCreateSourceID(&F));
3061   handleMacroNodes(MF.getElements(), U);
3062   Asm->OutStreamer->AddComment(MacroFormToString(EndFile));
3063   Asm->emitULEB128(EndFile);
3064 }
3065 
3066 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) {
3067   // DWARFv5 macro and DWARFv4 macinfo share some common encodings,
3068   // so for readibility/uniformity, We are explicitly emitting those.
3069   assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file);
3070   if (UseDebugMacroSection)
3071     emitMacroFileImpl(
3072         F, U, dwarf::DW_MACRO_start_file, dwarf::DW_MACRO_end_file,
3073         (getDwarfVersion() >= 5) ? dwarf::MacroString : dwarf::GnuMacroString);
3074   else
3075     emitMacroFileImpl(F, U, dwarf::DW_MACINFO_start_file,
3076                       dwarf::DW_MACINFO_end_file, dwarf::MacinfoString);
3077 }
3078 
3079 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) {
3080   for (const auto &P : CUMap) {
3081     auto &TheCU = *P.second;
3082     auto *SkCU = TheCU.getSkeleton();
3083     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
3084     auto *CUNode = cast<DICompileUnit>(P.first);
3085     DIMacroNodeArray Macros = CUNode->getMacros();
3086     if (Macros.empty())
3087       continue;
3088     Asm->OutStreamer->SwitchSection(Section);
3089     Asm->OutStreamer->emitLabel(U.getMacroLabelBegin());
3090     if (UseDebugMacroSection)
3091       emitMacroHeader(Asm, *this, U, getDwarfVersion());
3092     handleMacroNodes(Macros, U);
3093     Asm->OutStreamer->AddComment("End Of Macro List Mark");
3094     Asm->emitInt8(0);
3095   }
3096 }
3097 
3098 /// Emit macros into a debug macinfo/macro section.
3099 void DwarfDebug::emitDebugMacinfo() {
3100   auto &ObjLower = Asm->getObjFileLowering();
3101   emitDebugMacinfoImpl(UseDebugMacroSection
3102                            ? ObjLower.getDwarfMacroSection()
3103                            : ObjLower.getDwarfMacinfoSection());
3104 }
3105 
3106 void DwarfDebug::emitDebugMacinfoDWO() {
3107   auto &ObjLower = Asm->getObjFileLowering();
3108   emitDebugMacinfoImpl(UseDebugMacroSection
3109                            ? ObjLower.getDwarfMacroDWOSection()
3110                            : ObjLower.getDwarfMacinfoDWOSection());
3111 }
3112 
3113 // DWARF5 Experimental Separate Dwarf emitters.
3114 
3115 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die,
3116                                   std::unique_ptr<DwarfCompileUnit> NewU) {
3117 
3118   if (!CompilationDir.empty())
3119     NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
3120   addGnuPubAttributes(*NewU, Die);
3121 
3122   SkeletonHolder.addUnit(std::move(NewU));
3123 }
3124 
3125 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) {
3126 
3127   auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
3128       CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder,
3129       UnitKind::Skeleton);
3130   DwarfCompileUnit &NewCU = *OwnedUnit;
3131   NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
3132 
3133   NewCU.initStmtList();
3134 
3135   if (useSegmentedStringOffsetsTable())
3136     NewCU.addStringOffsetsStart();
3137 
3138   initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit));
3139 
3140   return NewCU;
3141 }
3142 
3143 // Emit the .debug_info.dwo section for separated dwarf. This contains the
3144 // compile units that would normally be in debug_info.
3145 void DwarfDebug::emitDebugInfoDWO() {
3146   assert(useSplitDwarf() && "No split dwarf debug info?");
3147   // Don't emit relocations into the dwo file.
3148   InfoHolder.emitUnits(/* UseOffsets */ true);
3149 }
3150 
3151 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the
3152 // abbreviations for the .debug_info.dwo section.
3153 void DwarfDebug::emitDebugAbbrevDWO() {
3154   assert(useSplitDwarf() && "No split dwarf?");
3155   InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection());
3156 }
3157 
3158 void DwarfDebug::emitDebugLineDWO() {
3159   assert(useSplitDwarf() && "No split dwarf?");
3160   SplitTypeUnitFileTable.Emit(
3161       *Asm->OutStreamer, MCDwarfLineTableParams(),
3162       Asm->getObjFileLowering().getDwarfLineDWOSection());
3163 }
3164 
3165 void DwarfDebug::emitStringOffsetsTableHeaderDWO() {
3166   assert(useSplitDwarf() && "No split dwarf?");
3167   InfoHolder.getStringPool().emitStringOffsetsTableHeader(
3168       *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(),
3169       InfoHolder.getStringOffsetsStartSym());
3170 }
3171 
3172 // Emit the .debug_str.dwo section for separated dwarf. This contains the
3173 // string section and is identical in format to traditional .debug_str
3174 // sections.
3175 void DwarfDebug::emitDebugStrDWO() {
3176   if (useSegmentedStringOffsetsTable())
3177     emitStringOffsetsTableHeaderDWO();
3178   assert(useSplitDwarf() && "No split dwarf?");
3179   MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection();
3180   InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(),
3181                          OffSec, /* UseRelativeOffsets = */ false);
3182 }
3183 
3184 // Emit address pool.
3185 void DwarfDebug::emitDebugAddr() {
3186   AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection());
3187 }
3188 
3189 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) {
3190   if (!useSplitDwarf())
3191     return nullptr;
3192   const DICompileUnit *DIUnit = CU.getCUNode();
3193   SplitTypeUnitFileTable.maybeSetRootFile(
3194       DIUnit->getDirectory(), DIUnit->getFilename(),
3195       getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource());
3196   return &SplitTypeUnitFileTable;
3197 }
3198 
3199 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) {
3200   MD5 Hash;
3201   Hash.update(Identifier);
3202   // ... take the least significant 8 bytes and return those. Our MD5
3203   // implementation always returns its results in little endian, so we actually
3204   // need the "high" word.
3205   MD5::MD5Result Result;
3206   Hash.final(Result);
3207   return Result.high();
3208 }
3209 
3210 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
3211                                       StringRef Identifier, DIE &RefDie,
3212                                       const DICompositeType *CTy) {
3213   // Fast path if we're building some type units and one has already used the
3214   // address pool we know we're going to throw away all this work anyway, so
3215   // don't bother building dependent types.
3216   if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed())
3217     return;
3218 
3219   auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0));
3220   if (!Ins.second) {
3221     CU.addDIETypeSignature(RefDie, Ins.first->second);
3222     return;
3223   }
3224 
3225   bool TopLevelType = TypeUnitsUnderConstruction.empty();
3226   AddrPool.resetUsedFlag();
3227 
3228   auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder,
3229                                                     getDwoLineTable(CU));
3230   DwarfTypeUnit &NewTU = *OwnedUnit;
3231   DIE &UnitDie = NewTU.getUnitDie();
3232   TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy);
3233 
3234   NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
3235                 CU.getLanguage());
3236 
3237   uint64_t Signature = makeTypeSignature(Identifier);
3238   NewTU.setTypeSignature(Signature);
3239   Ins.first->second = Signature;
3240 
3241   if (useSplitDwarf()) {
3242     MCSection *Section =
3243         getDwarfVersion() <= 4
3244             ? Asm->getObjFileLowering().getDwarfTypesDWOSection()
3245             : Asm->getObjFileLowering().getDwarfInfoDWOSection();
3246     NewTU.setSection(Section);
3247   } else {
3248     MCSection *Section =
3249         getDwarfVersion() <= 4
3250             ? Asm->getObjFileLowering().getDwarfTypesSection(Signature)
3251             : Asm->getObjFileLowering().getDwarfInfoSection(Signature);
3252     NewTU.setSection(Section);
3253     // Non-split type units reuse the compile unit's line table.
3254     CU.applyStmtList(UnitDie);
3255   }
3256 
3257   // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type
3258   // units.
3259   if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
3260     NewTU.addStringOffsetsStart();
3261 
3262   NewTU.setType(NewTU.createTypeDIE(CTy));
3263 
3264   if (TopLevelType) {
3265     auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction);
3266     TypeUnitsUnderConstruction.clear();
3267 
3268     // Types referencing entries in the address table cannot be placed in type
3269     // units.
3270     if (AddrPool.hasBeenUsed()) {
3271 
3272       // Remove all the types built while building this type.
3273       // This is pessimistic as some of these types might not be dependent on
3274       // the type that used an address.
3275       for (const auto &TU : TypeUnitsToAdd)
3276         TypeSignatures.erase(TU.second);
3277 
3278       // Construct this type in the CU directly.
3279       // This is inefficient because all the dependent types will be rebuilt
3280       // from scratch, including building them in type units, discovering that
3281       // they depend on addresses, throwing them out and rebuilding them.
3282       CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy));
3283       return;
3284     }
3285 
3286     // If the type wasn't dependent on fission addresses, finish adding the type
3287     // and all its dependent types.
3288     for (auto &TU : TypeUnitsToAdd) {
3289       InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get());
3290       InfoHolder.emitUnit(TU.first.get(), useSplitDwarf());
3291     }
3292   }
3293   CU.addDIETypeSignature(RefDie, Signature);
3294 }
3295 
3296 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD)
3297     : DD(DD),
3298       TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)), AddrPoolUsed(DD->AddrPool.hasBeenUsed()) {
3299   DD->TypeUnitsUnderConstruction.clear();
3300   DD->AddrPool.resetUsedFlag();
3301 }
3302 
3303 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() {
3304   DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction);
3305   DD->AddrPool.resetUsedFlag(AddrPoolUsed);
3306 }
3307 
3308 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() {
3309   return NonTypeUnitContext(this);
3310 }
3311 
3312 // Add the Name along with its companion DIE to the appropriate accelerator
3313 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for
3314 // AccelTableKind::Apple, we use the table we got as an argument). If
3315 // accelerator tables are disabled, this function does nothing.
3316 template <typename DataT>
3317 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU,
3318                                   AccelTable<DataT> &AppleAccel, StringRef Name,
3319                                   const DIE &Die) {
3320   if (getAccelTableKind() == AccelTableKind::None)
3321     return;
3322 
3323   if (getAccelTableKind() != AccelTableKind::Apple &&
3324       CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default)
3325     return;
3326 
3327   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
3328   DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name);
3329 
3330   switch (getAccelTableKind()) {
3331   case AccelTableKind::Apple:
3332     AppleAccel.addName(Ref, Die);
3333     break;
3334   case AccelTableKind::Dwarf:
3335     AccelDebugNames.addName(Ref, Die);
3336     break;
3337   case AccelTableKind::Default:
3338     llvm_unreachable("Default should have already been resolved.");
3339   case AccelTableKind::None:
3340     llvm_unreachable("None handled above");
3341   }
3342 }
3343 
3344 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name,
3345                               const DIE &Die) {
3346   addAccelNameImpl(CU, AccelNames, Name, Die);
3347 }
3348 
3349 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name,
3350                               const DIE &Die) {
3351   // ObjC names go only into the Apple accelerator tables.
3352   if (getAccelTableKind() == AccelTableKind::Apple)
3353     addAccelNameImpl(CU, AccelObjC, Name, Die);
3354 }
3355 
3356 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name,
3357                                    const DIE &Die) {
3358   addAccelNameImpl(CU, AccelNamespace, Name, Die);
3359 }
3360 
3361 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name,
3362                               const DIE &Die, char Flags) {
3363   addAccelNameImpl(CU, AccelTypes, Name, Die);
3364 }
3365 
3366 uint16_t DwarfDebug::getDwarfVersion() const {
3367   return Asm->OutStreamer->getContext().getDwarfVersion();
3368 }
3369 
3370 dwarf::Form DwarfDebug::getDwarfSectionOffsetForm() const {
3371   if (Asm->getDwarfVersion() >= 4)
3372     return dwarf::Form::DW_FORM_sec_offset;
3373   assert((!Asm->isDwarf64() || (Asm->getDwarfVersion() == 3)) &&
3374          "DWARF64 is not defined prior DWARFv3");
3375   return Asm->isDwarf64() ? dwarf::Form::DW_FORM_data8
3376                           : dwarf::Form::DW_FORM_data4;
3377 }
3378 
3379 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) {
3380   return SectionLabels.find(S)->second;
3381 }
3382 void DwarfDebug::insertSectionLabel(const MCSymbol *S) {
3383   if (SectionLabels.insert(std::make_pair(&S->getSection(), S)).second)
3384     if (useSplitDwarf() || getDwarfVersion() >= 5)
3385       AddrPool.getIndex(S);
3386 }
3387 
3388 Optional<MD5::MD5Result> DwarfDebug::getMD5AsBytes(const DIFile *File) const {
3389   assert(File);
3390   if (getDwarfVersion() < 5)
3391     return None;
3392   Optional<DIFile::ChecksumInfo<StringRef>> Checksum = File->getChecksum();
3393   if (!Checksum || Checksum->Kind != DIFile::CSK_MD5)
3394     return None;
3395 
3396   // Convert the string checksum to an MD5Result for the streamer.
3397   // The verifier validates the checksum so we assume it's okay.
3398   // An MD5 checksum is 16 bytes.
3399   std::string ChecksumString = fromHex(Checksum->Value);
3400   MD5::MD5Result CKMem;
3401   std::copy(ChecksumString.begin(), ChecksumString.end(), CKMem.Bytes.data());
3402   return CKMem;
3403 }
3404