1 //===-- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing dwarf debug info into asm files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "DwarfDebug.h" 15 #include "ByteStreamer.h" 16 #include "DIEHash.h" 17 #include "DwarfCompileUnit.h" 18 #include "DwarfExpression.h" 19 #include "DwarfUnit.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/ADT/Triple.h" 24 #include "llvm/CodeGen/DIE.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DIBuilder.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DebugInfo.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/Module.h" 33 #include "llvm/IR/ValueHandle.h" 34 #include "llvm/MC/MCAsmInfo.h" 35 #include "llvm/MC/MCSection.h" 36 #include "llvm/MC/MCStreamer.h" 37 #include "llvm/MC/MCSymbol.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/Dwarf.h" 41 #include "llvm/Support/Endian.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/FormattedStream.h" 44 #include "llvm/Support/LEB128.h" 45 #include "llvm/Support/MD5.h" 46 #include "llvm/Support/Path.h" 47 #include "llvm/Support/Timer.h" 48 #include "llvm/Target/TargetFrameLowering.h" 49 #include "llvm/Target/TargetLoweringObjectFile.h" 50 #include "llvm/Target/TargetMachine.h" 51 #include "llvm/Target/TargetOptions.h" 52 #include "llvm/Target/TargetRegisterInfo.h" 53 #include "llvm/Target/TargetSubtargetInfo.h" 54 using namespace llvm; 55 56 #define DEBUG_TYPE "dwarfdebug" 57 58 static cl::opt<bool> 59 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, 60 cl::desc("Disable debug info printing")); 61 62 static cl::opt<bool> UnknownLocations( 63 "use-unknown-locations", cl::Hidden, 64 cl::desc("Make an absence of debug location information explicit."), 65 cl::init(false)); 66 67 static cl::opt<bool> 68 GenerateGnuPubSections("generate-gnu-dwarf-pub-sections", cl::Hidden, 69 cl::desc("Generate GNU-style pubnames and pubtypes"), 70 cl::init(false)); 71 72 static cl::opt<bool> GenerateARangeSection("generate-arange-section", 73 cl::Hidden, 74 cl::desc("Generate dwarf aranges"), 75 cl::init(false)); 76 77 namespace { 78 enum DefaultOnOff { Default, Enable, Disable }; 79 } 80 81 static cl::opt<DefaultOnOff> 82 DwarfAccelTables("dwarf-accel-tables", cl::Hidden, 83 cl::desc("Output prototype dwarf accelerator tables."), 84 cl::values(clEnumVal(Default, "Default for platform"), 85 clEnumVal(Enable, "Enabled"), 86 clEnumVal(Disable, "Disabled"), clEnumValEnd), 87 cl::init(Default)); 88 89 static cl::opt<DefaultOnOff> 90 SplitDwarf("split-dwarf", cl::Hidden, 91 cl::desc("Output DWARF5 split debug info."), 92 cl::values(clEnumVal(Default, "Default for platform"), 93 clEnumVal(Enable, "Enabled"), 94 clEnumVal(Disable, "Disabled"), clEnumValEnd), 95 cl::init(Default)); 96 97 static cl::opt<DefaultOnOff> 98 DwarfPubSections("generate-dwarf-pub-sections", cl::Hidden, 99 cl::desc("Generate DWARF pubnames and pubtypes sections"), 100 cl::values(clEnumVal(Default, "Default for platform"), 101 clEnumVal(Enable, "Enabled"), 102 clEnumVal(Disable, "Disabled"), clEnumValEnd), 103 cl::init(Default)); 104 105 static const char *const DWARFGroupName = "DWARF Emission"; 106 static const char *const DbgTimerName = "DWARF Debug Writer"; 107 108 //===----------------------------------------------------------------------===// 109 110 /// resolve - Look in the DwarfDebug map for the MDNode that 111 /// corresponds to the reference. 112 template <typename T> T DbgVariable::resolve(DIRef<T> Ref) const { 113 return DD->resolve(Ref); 114 } 115 116 bool DbgVariable::isBlockByrefVariable() const { 117 assert(Var.isVariable() && "Invalid complex DbgVariable!"); 118 return Var.isBlockByrefVariable(DD->getTypeIdentifierMap()); 119 } 120 121 DIType DbgVariable::getType() const { 122 DIType Ty = Var.getType().resolve(DD->getTypeIdentifierMap()); 123 // FIXME: isBlockByrefVariable should be reformulated in terms of complex 124 // addresses instead. 125 if (Var.isBlockByrefVariable(DD->getTypeIdentifierMap())) { 126 /* Byref variables, in Blocks, are declared by the programmer as 127 "SomeType VarName;", but the compiler creates a 128 __Block_byref_x_VarName struct, and gives the variable VarName 129 either the struct, or a pointer to the struct, as its type. This 130 is necessary for various behind-the-scenes things the compiler 131 needs to do with by-reference variables in blocks. 132 133 However, as far as the original *programmer* is concerned, the 134 variable should still have type 'SomeType', as originally declared. 135 136 The following function dives into the __Block_byref_x_VarName 137 struct to find the original type of the variable. This will be 138 passed back to the code generating the type for the Debug 139 Information Entry for the variable 'VarName'. 'VarName' will then 140 have the original type 'SomeType' in its debug information. 141 142 The original type 'SomeType' will be the type of the field named 143 'VarName' inside the __Block_byref_x_VarName struct. 144 145 NOTE: In order for this to not completely fail on the debugger 146 side, the Debug Information Entry for the variable VarName needs to 147 have a DW_AT_location that tells the debugger how to unwind through 148 the pointers and __Block_byref_x_VarName struct to find the actual 149 value of the variable. The function addBlockByrefType does this. */ 150 DIType subType = Ty; 151 uint16_t tag = Ty.getTag(); 152 153 if (tag == dwarf::DW_TAG_pointer_type) 154 subType = resolve(DIDerivedType(Ty).getTypeDerivedFrom()); 155 156 DIArray Elements = DICompositeType(subType).getElements(); 157 for (unsigned i = 0, N = Elements.getNumElements(); i < N; ++i) { 158 DIDerivedType DT(Elements.getElement(i)); 159 if (getName() == DT.getName()) 160 return (resolve(DT.getTypeDerivedFrom())); 161 } 162 } 163 return Ty; 164 } 165 166 static LLVM_CONSTEXPR DwarfAccelTable::Atom TypeAtoms[] = { 167 DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset, dwarf::DW_FORM_data4), 168 DwarfAccelTable::Atom(dwarf::DW_ATOM_die_tag, dwarf::DW_FORM_data2), 169 DwarfAccelTable::Atom(dwarf::DW_ATOM_type_flags, dwarf::DW_FORM_data1)}; 170 171 DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M) 172 : Asm(A), MMI(Asm->MMI), PrevLabel(nullptr), GlobalRangeCount(0), 173 InfoHolder(A, *this, "info_string", DIEValueAllocator), 174 UsedNonDefaultText(false), 175 SkeletonHolder(A, *this, "skel_string", DIEValueAllocator), 176 IsDarwin(Triple(A->getTargetTriple()).isOSDarwin()), 177 AccelNames(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset, 178 dwarf::DW_FORM_data4)), 179 AccelObjC(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset, 180 dwarf::DW_FORM_data4)), 181 AccelNamespace(DwarfAccelTable::Atom(dwarf::DW_ATOM_die_offset, 182 dwarf::DW_FORM_data4)), 183 AccelTypes(TypeAtoms) { 184 185 DwarfInfoSectionSym = DwarfAbbrevSectionSym = DwarfStrSectionSym = nullptr; 186 DwarfDebugRangeSectionSym = DwarfDebugLocSectionSym = nullptr; 187 DwarfLineSectionSym = nullptr; 188 DwarfAddrSectionSym = nullptr; 189 DwarfAbbrevDWOSectionSym = DwarfStrDWOSectionSym = nullptr; 190 FunctionBeginSym = FunctionEndSym = nullptr; 191 CurFn = nullptr; 192 CurMI = nullptr; 193 194 // Turn on accelerator tables for Darwin by default, pubnames by 195 // default for non-Darwin, and handle split dwarf. 196 if (DwarfAccelTables == Default) 197 HasDwarfAccelTables = IsDarwin; 198 else 199 HasDwarfAccelTables = DwarfAccelTables == Enable; 200 201 if (SplitDwarf == Default) 202 HasSplitDwarf = false; 203 else 204 HasSplitDwarf = SplitDwarf == Enable; 205 206 if (DwarfPubSections == Default) 207 HasDwarfPubSections = !IsDarwin; 208 else 209 HasDwarfPubSections = DwarfPubSections == Enable; 210 211 unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion; 212 DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber 213 : MMI->getModule()->getDwarfVersion(); 214 215 Asm->OutStreamer.getContext().setDwarfVersion(DwarfVersion); 216 217 { 218 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 219 beginModule(); 220 } 221 } 222 223 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h. 224 DwarfDebug::~DwarfDebug() { } 225 226 // Switch to the specified MCSection and emit an assembler 227 // temporary label to it if SymbolStem is specified. 228 static MCSymbol *emitSectionSym(AsmPrinter *Asm, const MCSection *Section, 229 const char *SymbolStem = nullptr) { 230 Asm->OutStreamer.SwitchSection(Section); 231 if (!SymbolStem) 232 return nullptr; 233 234 MCSymbol *TmpSym = Asm->GetTempSymbol(SymbolStem); 235 Asm->OutStreamer.EmitLabel(TmpSym); 236 return TmpSym; 237 } 238 239 static bool isObjCClass(StringRef Name) { 240 return Name.startswith("+") || Name.startswith("-"); 241 } 242 243 static bool hasObjCCategory(StringRef Name) { 244 if (!isObjCClass(Name)) 245 return false; 246 247 return Name.find(") ") != StringRef::npos; 248 } 249 250 static void getObjCClassCategory(StringRef In, StringRef &Class, 251 StringRef &Category) { 252 if (!hasObjCCategory(In)) { 253 Class = In.slice(In.find('[') + 1, In.find(' ')); 254 Category = ""; 255 return; 256 } 257 258 Class = In.slice(In.find('[') + 1, In.find('(')); 259 Category = In.slice(In.find('[') + 1, In.find(' ')); 260 return; 261 } 262 263 static StringRef getObjCMethodName(StringRef In) { 264 return In.slice(In.find(' ') + 1, In.find(']')); 265 } 266 267 // Helper for sorting sections into a stable output order. 268 static bool SectionSort(const MCSection *A, const MCSection *B) { 269 std::string LA = (A ? A->getLabelBeginName() : ""); 270 std::string LB = (B ? B->getLabelBeginName() : ""); 271 return LA < LB; 272 } 273 274 // Add the various names to the Dwarf accelerator table names. 275 // TODO: Determine whether or not we should add names for programs 276 // that do not have a DW_AT_name or DW_AT_linkage_name field - this 277 // is only slightly different than the lookup of non-standard ObjC names. 278 void DwarfDebug::addSubprogramNames(DISubprogram SP, DIE &Die) { 279 if (!SP.isDefinition()) 280 return; 281 addAccelName(SP.getName(), Die); 282 283 // If the linkage name is different than the name, go ahead and output 284 // that as well into the name table. 285 if (SP.getLinkageName() != "" && SP.getName() != SP.getLinkageName()) 286 addAccelName(SP.getLinkageName(), Die); 287 288 // If this is an Objective-C selector name add it to the ObjC accelerator 289 // too. 290 if (isObjCClass(SP.getName())) { 291 StringRef Class, Category; 292 getObjCClassCategory(SP.getName(), Class, Category); 293 addAccelObjC(Class, Die); 294 if (Category != "") 295 addAccelObjC(Category, Die); 296 // Also add the base method name to the name table. 297 addAccelName(getObjCMethodName(SP.getName()), Die); 298 } 299 } 300 301 /// isSubprogramContext - Return true if Context is either a subprogram 302 /// or another context nested inside a subprogram. 303 bool DwarfDebug::isSubprogramContext(const MDNode *Context) { 304 if (!Context) 305 return false; 306 DIDescriptor D(Context); 307 if (D.isSubprogram()) 308 return true; 309 if (D.isType()) 310 return isSubprogramContext(resolve(DIType(Context).getContext())); 311 return false; 312 } 313 314 /// Check whether we should create a DIE for the given Scope, return true 315 /// if we don't create a DIE (the corresponding DIE is null). 316 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) { 317 if (Scope->isAbstractScope()) 318 return false; 319 320 // We don't create a DIE if there is no Range. 321 const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges(); 322 if (Ranges.empty()) 323 return true; 324 325 if (Ranges.size() > 1) 326 return false; 327 328 // We don't create a DIE if we have a single Range and the end label 329 // is null. 330 return !getLabelAfterInsn(Ranges.front().second); 331 } 332 333 template <typename Func> void forBothCUs(DwarfCompileUnit &CU, Func F) { 334 F(CU); 335 if (auto *SkelCU = CU.getSkeleton()) 336 F(*SkelCU); 337 } 338 339 void DwarfDebug::constructAbstractSubprogramScopeDIE(LexicalScope *Scope) { 340 assert(Scope && Scope->getScopeNode()); 341 assert(Scope->isAbstractScope()); 342 assert(!Scope->getInlinedAt()); 343 344 const MDNode *SP = Scope->getScopeNode(); 345 346 ProcessedSPNodes.insert(SP); 347 348 // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram 349 // was inlined from another compile unit. 350 auto &CU = SPMap[SP]; 351 forBothCUs(*CU, [&](DwarfCompileUnit &CU) { 352 CU.constructAbstractSubprogramScopeDIE(Scope); 353 }); 354 } 355 356 void DwarfDebug::addGnuPubAttributes(DwarfUnit &U, DIE &D) const { 357 if (!GenerateGnuPubSections) 358 return; 359 360 U.addFlag(D, dwarf::DW_AT_GNU_pubnames); 361 } 362 363 // Create new DwarfCompileUnit for the given metadata node with tag 364 // DW_TAG_compile_unit. 365 DwarfCompileUnit &DwarfDebug::constructDwarfCompileUnit(DICompileUnit DIUnit) { 366 StringRef FN = DIUnit.getFilename(); 367 CompilationDir = DIUnit.getDirectory(); 368 369 auto OwnedUnit = make_unique<DwarfCompileUnit>( 370 InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder); 371 DwarfCompileUnit &NewCU = *OwnedUnit; 372 DIE &Die = NewCU.getUnitDie(); 373 InfoHolder.addUnit(std::move(OwnedUnit)); 374 if (useSplitDwarf()) 375 NewCU.setSkeleton(constructSkeletonCU(NewCU)); 376 377 // LTO with assembly output shares a single line table amongst multiple CUs. 378 // To avoid the compilation directory being ambiguous, let the line table 379 // explicitly describe the directory of all files, never relying on the 380 // compilation directory. 381 if (!Asm->OutStreamer.hasRawTextSupport() || SingleCU) 382 Asm->OutStreamer.getContext().setMCLineTableCompilationDir( 383 NewCU.getUniqueID(), CompilationDir); 384 385 NewCU.addString(Die, dwarf::DW_AT_producer, DIUnit.getProducer()); 386 NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 387 DIUnit.getLanguage()); 388 NewCU.addString(Die, dwarf::DW_AT_name, FN); 389 390 if (!useSplitDwarf()) { 391 NewCU.initStmtList(DwarfLineSectionSym); 392 393 // If we're using split dwarf the compilation dir is going to be in the 394 // skeleton CU and so we don't need to duplicate it here. 395 if (!CompilationDir.empty()) 396 NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 397 398 addGnuPubAttributes(NewCU, Die); 399 } 400 401 if (DIUnit.isOptimized()) 402 NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized); 403 404 StringRef Flags = DIUnit.getFlags(); 405 if (!Flags.empty()) 406 NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags); 407 408 if (unsigned RVer = DIUnit.getRunTimeVersion()) 409 NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers, 410 dwarf::DW_FORM_data1, RVer); 411 412 if (useSplitDwarf()) 413 NewCU.initSection(Asm->getObjFileLowering().getDwarfInfoDWOSection(), 414 DwarfInfoDWOSectionSym); 415 else 416 NewCU.initSection(Asm->getObjFileLowering().getDwarfInfoSection(), 417 DwarfInfoSectionSym); 418 419 CUMap.insert(std::make_pair(DIUnit, &NewCU)); 420 CUDieMap.insert(std::make_pair(&Die, &NewCU)); 421 return NewCU; 422 } 423 424 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU, 425 const MDNode *N) { 426 DIImportedEntity Module(N); 427 assert(Module.Verify()); 428 if (DIE *D = TheCU.getOrCreateContextDIE(Module.getContext())) 429 D->addChild(TheCU.constructImportedEntityDIE(Module)); 430 } 431 432 // Emit all Dwarf sections that should come prior to the content. Create 433 // global DIEs and emit initial debug info sections. This is invoked by 434 // the target AsmPrinter. 435 void DwarfDebug::beginModule() { 436 if (DisableDebugInfoPrinting) 437 return; 438 439 const Module *M = MMI->getModule(); 440 441 FunctionDIs = makeSubprogramMap(*M); 442 443 NamedMDNode *CU_Nodes = M->getNamedMetadata("llvm.dbg.cu"); 444 if (!CU_Nodes) 445 return; 446 TypeIdentifierMap = generateDITypeIdentifierMap(CU_Nodes); 447 448 // Emit initial sections so we can reference labels later. 449 emitSectionLabels(); 450 451 SingleCU = CU_Nodes->getNumOperands() == 1; 452 453 for (MDNode *N : CU_Nodes->operands()) { 454 DICompileUnit CUNode(N); 455 DwarfCompileUnit &CU = constructDwarfCompileUnit(CUNode); 456 DIArray ImportedEntities = CUNode.getImportedEntities(); 457 for (unsigned i = 0, e = ImportedEntities.getNumElements(); i != e; ++i) 458 ScopesWithImportedEntities.push_back(std::make_pair( 459 DIImportedEntity(ImportedEntities.getElement(i)).getContext(), 460 ImportedEntities.getElement(i))); 461 std::sort(ScopesWithImportedEntities.begin(), 462 ScopesWithImportedEntities.end(), less_first()); 463 DIArray GVs = CUNode.getGlobalVariables(); 464 for (unsigned i = 0, e = GVs.getNumElements(); i != e; ++i) 465 CU.getOrCreateGlobalVariableDIE(DIGlobalVariable(GVs.getElement(i))); 466 DIArray SPs = CUNode.getSubprograms(); 467 for (unsigned i = 0, e = SPs.getNumElements(); i != e; ++i) 468 SPMap.insert(std::make_pair(SPs.getElement(i), &CU)); 469 DIArray EnumTypes = CUNode.getEnumTypes(); 470 for (unsigned i = 0, e = EnumTypes.getNumElements(); i != e; ++i) { 471 DIType Ty(EnumTypes.getElement(i)); 472 // The enum types array by design contains pointers to 473 // MDNodes rather than DIRefs. Unique them here. 474 DIType UniqueTy(resolve(Ty.getRef())); 475 CU.getOrCreateTypeDIE(UniqueTy); 476 } 477 DIArray RetainedTypes = CUNode.getRetainedTypes(); 478 for (unsigned i = 0, e = RetainedTypes.getNumElements(); i != e; ++i) { 479 DIType Ty(RetainedTypes.getElement(i)); 480 // The retained types array by design contains pointers to 481 // MDNodes rather than DIRefs. Unique them here. 482 DIType UniqueTy(resolve(Ty.getRef())); 483 CU.getOrCreateTypeDIE(UniqueTy); 484 } 485 // Emit imported_modules last so that the relevant context is already 486 // available. 487 for (unsigned i = 0, e = ImportedEntities.getNumElements(); i != e; ++i) 488 constructAndAddImportedEntityDIE(CU, ImportedEntities.getElement(i)); 489 } 490 491 // Tell MMI that we have debug info. 492 MMI->setDebugInfoAvailability(true); 493 494 // Prime section data. 495 SectionMap[Asm->getObjFileLowering().getTextSection()]; 496 } 497 498 void DwarfDebug::finishVariableDefinitions() { 499 for (const auto &Var : ConcreteVariables) { 500 DIE *VariableDie = Var->getDIE(); 501 assert(VariableDie); 502 // FIXME: Consider the time-space tradeoff of just storing the unit pointer 503 // in the ConcreteVariables list, rather than looking it up again here. 504 // DIE::getUnit isn't simple - it walks parent pointers, etc. 505 DwarfCompileUnit *Unit = lookupUnit(VariableDie->getUnit()); 506 assert(Unit); 507 DbgVariable *AbsVar = getExistingAbstractVariable(Var->getVariable()); 508 if (AbsVar && AbsVar->getDIE()) { 509 Unit->addDIEEntry(*VariableDie, dwarf::DW_AT_abstract_origin, 510 *AbsVar->getDIE()); 511 } else 512 Unit->applyVariableAttributes(*Var, *VariableDie); 513 } 514 } 515 516 void DwarfDebug::finishSubprogramDefinitions() { 517 for (const auto &P : SPMap) 518 forBothCUs(*P.second, [&](DwarfCompileUnit &CU) { 519 CU.finishSubprogramDefinition(DISubprogram(P.first)); 520 }); 521 } 522 523 524 // Collect info for variables that were optimized out. 525 void DwarfDebug::collectDeadVariables() { 526 const Module *M = MMI->getModule(); 527 528 if (NamedMDNode *CU_Nodes = M->getNamedMetadata("llvm.dbg.cu")) { 529 for (MDNode *N : CU_Nodes->operands()) { 530 DICompileUnit TheCU(N); 531 // Construct subprogram DIE and add variables DIEs. 532 DwarfCompileUnit *SPCU = 533 static_cast<DwarfCompileUnit *>(CUMap.lookup(TheCU)); 534 assert(SPCU && "Unable to find Compile Unit!"); 535 DIArray Subprograms = TheCU.getSubprograms(); 536 for (unsigned i = 0, e = Subprograms.getNumElements(); i != e; ++i) { 537 DISubprogram SP(Subprograms.getElement(i)); 538 if (ProcessedSPNodes.count(SP) != 0) 539 continue; 540 SPCU->collectDeadVariables(SP); 541 } 542 } 543 } 544 } 545 546 void DwarfDebug::finalizeModuleInfo() { 547 finishSubprogramDefinitions(); 548 549 finishVariableDefinitions(); 550 551 // Collect info for variables that were optimized out. 552 collectDeadVariables(); 553 554 // Handle anything that needs to be done on a per-unit basis after 555 // all other generation. 556 for (const auto &P : CUMap) { 557 auto &TheCU = *P.second; 558 // Emit DW_AT_containing_type attribute to connect types with their 559 // vtable holding type. 560 TheCU.constructContainingTypeDIEs(); 561 562 // Add CU specific attributes if we need to add any. 563 // If we're splitting the dwarf out now that we've got the entire 564 // CU then add the dwo id to it. 565 auto *SkCU = TheCU.getSkeleton(); 566 if (useSplitDwarf()) { 567 // Emit a unique identifier for this CU. 568 uint64_t ID = DIEHash(Asm).computeCUSignature(TheCU.getUnitDie()); 569 TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 570 dwarf::DW_FORM_data8, ID); 571 SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id, 572 dwarf::DW_FORM_data8, ID); 573 574 // We don't keep track of which addresses are used in which CU so this 575 // is a bit pessimistic under LTO. 576 if (!AddrPool.isEmpty()) 577 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_addr_base, 578 DwarfAddrSectionSym, DwarfAddrSectionSym); 579 if (!SkCU->getRangeLists().empty()) 580 SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base, 581 DwarfDebugRangeSectionSym, 582 DwarfDebugRangeSectionSym); 583 } 584 585 // If we have code split among multiple sections or non-contiguous 586 // ranges of code then emit a DW_AT_ranges attribute on the unit that will 587 // remain in the .o file, otherwise add a DW_AT_low_pc. 588 // FIXME: We should use ranges allow reordering of code ala 589 // .subsections_via_symbols in mach-o. This would mean turning on 590 // ranges for all subprogram DIEs for mach-o. 591 DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; 592 if (unsigned NumRanges = TheCU.getRanges().size()) { 593 if (NumRanges > 1) 594 // A DW_AT_low_pc attribute may also be specified in combination with 595 // DW_AT_ranges to specify the default base address for use in 596 // location lists (see Section 2.6.2) and range lists (see Section 597 // 2.17.3). 598 U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0); 599 else 600 TheCU.setBaseAddress(TheCU.getRanges().front().getStart()); 601 U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges()); 602 } 603 } 604 605 // Compute DIE offsets and sizes. 606 InfoHolder.computeSizeAndOffsets(); 607 if (useSplitDwarf()) 608 SkeletonHolder.computeSizeAndOffsets(); 609 } 610 611 void DwarfDebug::endSections() { 612 // Filter labels by section. 613 for (const SymbolCU &SCU : ArangeLabels) { 614 if (SCU.Sym->isInSection()) { 615 // Make a note of this symbol and it's section. 616 const MCSection *Section = &SCU.Sym->getSection(); 617 if (!Section->getKind().isMetadata()) 618 SectionMap[Section].push_back(SCU); 619 } else { 620 // Some symbols (e.g. common/bss on mach-o) can have no section but still 621 // appear in the output. This sucks as we rely on sections to build 622 // arange spans. We can do it without, but it's icky. 623 SectionMap[nullptr].push_back(SCU); 624 } 625 } 626 627 // Build a list of sections used. 628 std::vector<const MCSection *> Sections; 629 for (const auto &it : SectionMap) { 630 const MCSection *Section = it.first; 631 Sections.push_back(Section); 632 } 633 634 // Sort the sections into order. 635 // This is only done to ensure consistent output order across different runs. 636 std::sort(Sections.begin(), Sections.end(), SectionSort); 637 638 // Add terminating symbols for each section. 639 for (unsigned ID = 0, E = Sections.size(); ID != E; ID++) { 640 const MCSection *Section = Sections[ID]; 641 MCSymbol *Sym = nullptr; 642 643 if (Section) { 644 // We can't call MCSection::getLabelEndName, as it's only safe to do so 645 // if we know the section name up-front. For user-created sections, the 646 // resulting label may not be valid to use as a label. (section names can 647 // use a greater set of characters on some systems) 648 Sym = Asm->GetTempSymbol("debug_end", ID); 649 Asm->OutStreamer.SwitchSection(Section); 650 Asm->OutStreamer.EmitLabel(Sym); 651 } 652 653 // Insert a final terminator. 654 SectionMap[Section].push_back(SymbolCU(nullptr, Sym)); 655 } 656 } 657 658 // Emit all Dwarf sections that should come after the content. 659 void DwarfDebug::endModule() { 660 assert(CurFn == nullptr); 661 assert(CurMI == nullptr); 662 663 // If we aren't actually generating debug info (check beginModule - 664 // conditionalized on !DisableDebugInfoPrinting and the presence of the 665 // llvm.dbg.cu metadata node) 666 if (!DwarfInfoSectionSym) 667 return; 668 669 // End any existing sections. 670 // TODO: Does this need to happen? 671 endSections(); 672 673 // Finalize the debug info for the module. 674 finalizeModuleInfo(); 675 676 emitDebugStr(); 677 678 // Emit all the DIEs into a debug info section. 679 emitDebugInfo(); 680 681 // Corresponding abbreviations into a abbrev section. 682 emitAbbreviations(); 683 684 // Emit info into a debug aranges section. 685 if (GenerateARangeSection) 686 emitDebugARanges(); 687 688 // Emit info into a debug ranges section. 689 emitDebugRanges(); 690 691 if (useSplitDwarf()) { 692 emitDebugStrDWO(); 693 emitDebugInfoDWO(); 694 emitDebugAbbrevDWO(); 695 emitDebugLineDWO(); 696 emitDebugLocDWO(); 697 // Emit DWO addresses. 698 AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection()); 699 } else 700 // Emit info into a debug loc section. 701 emitDebugLoc(); 702 703 // Emit info into the dwarf accelerator table sections. 704 if (useDwarfAccelTables()) { 705 emitAccelNames(); 706 emitAccelObjC(); 707 emitAccelNamespaces(); 708 emitAccelTypes(); 709 } 710 711 // Emit the pubnames and pubtypes sections if requested. 712 if (HasDwarfPubSections) { 713 emitDebugPubNames(GenerateGnuPubSections); 714 emitDebugPubTypes(GenerateGnuPubSections); 715 } 716 717 // clean up. 718 SPMap.clear(); 719 AbstractVariables.clear(); 720 } 721 722 // Find abstract variable, if any, associated with Var. 723 DbgVariable *DwarfDebug::getExistingAbstractVariable(const DIVariable &DV, 724 DIVariable &Cleansed) { 725 LLVMContext &Ctx = DV->getContext(); 726 // More then one inlined variable corresponds to one abstract variable. 727 // FIXME: This duplication of variables when inlining should probably be 728 // removed. It's done to allow each DIVariable to describe its location 729 // because the DebugLoc on the dbg.value/declare isn't accurate. We should 730 // make it accurate then remove this duplication/cleansing stuff. 731 Cleansed = cleanseInlinedVariable(DV, Ctx); 732 auto I = AbstractVariables.find(Cleansed); 733 if (I != AbstractVariables.end()) 734 return I->second.get(); 735 return nullptr; 736 } 737 738 DbgVariable *DwarfDebug::getExistingAbstractVariable(const DIVariable &DV) { 739 DIVariable Cleansed; 740 return getExistingAbstractVariable(DV, Cleansed); 741 } 742 743 void DwarfDebug::createAbstractVariable(const DIVariable &Var, 744 LexicalScope *Scope) { 745 auto AbsDbgVariable = make_unique<DbgVariable>(Var, DIExpression(), this); 746 InfoHolder.addScopeVariable(Scope, AbsDbgVariable.get()); 747 AbstractVariables[Var] = std::move(AbsDbgVariable); 748 } 749 750 void DwarfDebug::ensureAbstractVariableIsCreated(const DIVariable &DV, 751 const MDNode *ScopeNode) { 752 DIVariable Cleansed = DV; 753 if (getExistingAbstractVariable(DV, Cleansed)) 754 return; 755 756 createAbstractVariable(Cleansed, LScopes.getOrCreateAbstractScope(ScopeNode)); 757 } 758 759 void 760 DwarfDebug::ensureAbstractVariableIsCreatedIfScoped(const DIVariable &DV, 761 const MDNode *ScopeNode) { 762 DIVariable Cleansed = DV; 763 if (getExistingAbstractVariable(DV, Cleansed)) 764 return; 765 766 if (LexicalScope *Scope = LScopes.findAbstractScope(ScopeNode)) 767 createAbstractVariable(Cleansed, Scope); 768 } 769 770 // Collect variable information from side table maintained by MMI. 771 void DwarfDebug::collectVariableInfoFromMMITable( 772 SmallPtrSetImpl<const MDNode *> &Processed) { 773 for (const auto &VI : MMI->getVariableDbgInfo()) { 774 if (!VI.Var) 775 continue; 776 Processed.insert(VI.Var); 777 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 778 779 // If variable scope is not found then skip this variable. 780 if (!Scope) 781 continue; 782 783 DIVariable DV(VI.Var); 784 DIExpression Expr(VI.Expr); 785 ensureAbstractVariableIsCreatedIfScoped(DV, Scope->getScopeNode()); 786 ConcreteVariables.push_back(make_unique<DbgVariable>(DV, Expr, this)); 787 DbgVariable *RegVar = ConcreteVariables.back().get(); 788 RegVar->setFrameIndex(VI.Slot); 789 InfoHolder.addScopeVariable(Scope, RegVar); 790 } 791 } 792 793 // Get .debug_loc entry for the instruction range starting at MI. 794 static DebugLocEntry::Value getDebugLocValue(const MachineInstr *MI) { 795 const MDNode *Expr = MI->getDebugExpression(); 796 const MDNode *Var = MI->getDebugVariable(); 797 798 assert(MI->getNumOperands() == 4); 799 if (MI->getOperand(0).isReg()) { 800 MachineLocation MLoc; 801 // If the second operand is an immediate, this is a 802 // register-indirect address. 803 if (!MI->getOperand(1).isImm()) 804 MLoc.set(MI->getOperand(0).getReg()); 805 else 806 MLoc.set(MI->getOperand(0).getReg(), MI->getOperand(1).getImm()); 807 return DebugLocEntry::Value(Var, Expr, MLoc); 808 } 809 if (MI->getOperand(0).isImm()) 810 return DebugLocEntry::Value(Var, Expr, MI->getOperand(0).getImm()); 811 if (MI->getOperand(0).isFPImm()) 812 return DebugLocEntry::Value(Var, Expr, MI->getOperand(0).getFPImm()); 813 if (MI->getOperand(0).isCImm()) 814 return DebugLocEntry::Value(Var, Expr, MI->getOperand(0).getCImm()); 815 816 llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!"); 817 } 818 819 /// Determine whether two variable pieces overlap. 820 static bool piecesOverlap(DIExpression P1, DIExpression P2) { 821 if (!P1.isBitPiece() || !P2.isBitPiece()) 822 return true; 823 unsigned l1 = P1.getBitPieceOffset(); 824 unsigned l2 = P2.getBitPieceOffset(); 825 unsigned r1 = l1 + P1.getBitPieceSize(); 826 unsigned r2 = l2 + P2.getBitPieceSize(); 827 // True where [l1,r1[ and [r1,r2[ overlap. 828 return (l1 < r2) && (l2 < r1); 829 } 830 831 /// Build the location list for all DBG_VALUEs in the function that 832 /// describe the same variable. If the ranges of several independent 833 /// pieces of the same variable overlap partially, split them up and 834 /// combine the ranges. The resulting DebugLocEntries are will have 835 /// strict monotonically increasing begin addresses and will never 836 /// overlap. 837 // 838 // Input: 839 // 840 // Ranges History [var, loc, piece ofs size] 841 // 0 | [x, (reg0, piece 0, 32)] 842 // 1 | | [x, (reg1, piece 32, 32)] <- IsPieceOfPrevEntry 843 // 2 | | ... 844 // 3 | [clobber reg0] 845 // 4 [x, (mem, piece 0, 64)] <- overlapping with both previous pieces of x. 846 // 847 // Output: 848 // 849 // [0-1] [x, (reg0, piece 0, 32)] 850 // [1-3] [x, (reg0, piece 0, 32), (reg1, piece 32, 32)] 851 // [3-4] [x, (reg1, piece 32, 32)] 852 // [4- ] [x, (mem, piece 0, 64)] 853 void 854 DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc, 855 const DbgValueHistoryMap::InstrRanges &Ranges) { 856 SmallVector<DebugLocEntry::Value, 4> OpenRanges; 857 858 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 859 const MachineInstr *Begin = I->first; 860 const MachineInstr *End = I->second; 861 assert(Begin->isDebugValue() && "Invalid History entry"); 862 863 // Check if a variable is inaccessible in this range. 864 if (Begin->getNumOperands() > 1 && 865 Begin->getOperand(0).isReg() && !Begin->getOperand(0).getReg()) { 866 OpenRanges.clear(); 867 continue; 868 } 869 870 // If this piece overlaps with any open ranges, truncate them. 871 DIExpression DIExpr = Begin->getDebugExpression(); 872 auto Last = std::remove_if(OpenRanges.begin(), OpenRanges.end(), 873 [&](DebugLocEntry::Value R) { 874 return piecesOverlap(DIExpr, R.getExpression()); 875 }); 876 OpenRanges.erase(Last, OpenRanges.end()); 877 878 const MCSymbol *StartLabel = getLabelBeforeInsn(Begin); 879 assert(StartLabel && "Forgot label before DBG_VALUE starting a range!"); 880 881 const MCSymbol *EndLabel; 882 if (End != nullptr) 883 EndLabel = getLabelAfterInsn(End); 884 else if (std::next(I) == Ranges.end()) 885 EndLabel = FunctionEndSym; 886 else 887 EndLabel = getLabelBeforeInsn(std::next(I)->first); 888 assert(EndLabel && "Forgot label after instruction ending a range!"); 889 890 DEBUG(dbgs() << "DotDebugLoc: " << *Begin << "\n"); 891 892 auto Value = getDebugLocValue(Begin); 893 DebugLocEntry Loc(StartLabel, EndLabel, Value); 894 bool couldMerge = false; 895 896 // If this is a piece, it may belong to the current DebugLocEntry. 897 if (DIExpr.isBitPiece()) { 898 // Add this value to the list of open ranges. 899 OpenRanges.push_back(Value); 900 901 // Attempt to add the piece to the last entry. 902 if (!DebugLoc.empty()) 903 if (DebugLoc.back().MergeValues(Loc)) 904 couldMerge = true; 905 } 906 907 if (!couldMerge) { 908 // Need to add a new DebugLocEntry. Add all values from still 909 // valid non-overlapping pieces. 910 if (OpenRanges.size()) 911 Loc.addValues(OpenRanges); 912 913 DebugLoc.push_back(std::move(Loc)); 914 } 915 916 // Attempt to coalesce the ranges of two otherwise identical 917 // DebugLocEntries. 918 auto CurEntry = DebugLoc.rbegin(); 919 auto PrevEntry = std::next(CurEntry); 920 if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry)) 921 DebugLoc.pop_back(); 922 923 DEBUG({ 924 dbgs() << CurEntry->getValues().size() << " Values:\n"; 925 for (auto Value : CurEntry->getValues()) { 926 Value.getVariable()->dump(); 927 Value.getExpression()->dump(); 928 } 929 dbgs() << "-----\n"; 930 }); 931 } 932 } 933 934 935 // Find variables for each lexical scope. 936 void 937 DwarfDebug::collectVariableInfo(DwarfCompileUnit &TheCU, DISubprogram SP, 938 SmallPtrSetImpl<const MDNode *> &Processed) { 939 // Grab the variable info that was squirreled away in the MMI side-table. 940 collectVariableInfoFromMMITable(Processed); 941 942 for (const auto &I : DbgValues) { 943 DIVariable DV(I.first); 944 if (Processed.count(DV)) 945 continue; 946 947 // Instruction ranges, specifying where DV is accessible. 948 const auto &Ranges = I.second; 949 if (Ranges.empty()) 950 continue; 951 952 LexicalScope *Scope = nullptr; 953 if (MDNode *IA = DV.getInlinedAt()) { 954 DebugLoc DL = DebugLoc::getFromDILocation(IA); 955 Scope = LScopes.findInlinedScope(DebugLoc::get( 956 DL.getLine(), DL.getCol(), DV.getContext(), IA)); 957 } else 958 Scope = LScopes.findLexicalScope(DV.getContext()); 959 // If variable scope is not found then skip this variable. 960 if (!Scope) 961 continue; 962 963 Processed.insert(DV); 964 const MachineInstr *MInsn = Ranges.front().first; 965 assert(MInsn->isDebugValue() && "History must begin with debug value"); 966 ensureAbstractVariableIsCreatedIfScoped(DV, Scope->getScopeNode()); 967 ConcreteVariables.push_back(make_unique<DbgVariable>(MInsn, this)); 968 DbgVariable *RegVar = ConcreteVariables.back().get(); 969 InfoHolder.addScopeVariable(Scope, RegVar); 970 971 // Check if the first DBG_VALUE is valid for the rest of the function. 972 if (Ranges.size() == 1 && Ranges.front().second == nullptr) 973 continue; 974 975 // Handle multiple DBG_VALUE instructions describing one variable. 976 RegVar->setDotDebugLocOffset(DotDebugLocEntries.size()); 977 978 DotDebugLocEntries.resize(DotDebugLocEntries.size() + 1); 979 DebugLocList &LocList = DotDebugLocEntries.back(); 980 LocList.CU = &TheCU; 981 LocList.Label = 982 Asm->GetTempSymbol("debug_loc", DotDebugLocEntries.size() - 1); 983 984 // Build the location list for this variable. 985 buildLocationList(LocList.List, Ranges); 986 } 987 988 // Collect info for variables that were optimized out. 989 DIArray Variables = SP.getVariables(); 990 for (unsigned i = 0, e = Variables.getNumElements(); i != e; ++i) { 991 DIVariable DV(Variables.getElement(i)); 992 assert(DV.isVariable()); 993 if (!Processed.insert(DV).second) 994 continue; 995 if (LexicalScope *Scope = LScopes.findLexicalScope(DV.getContext())) { 996 ensureAbstractVariableIsCreatedIfScoped(DV, Scope->getScopeNode()); 997 DIExpression NoExpr; 998 ConcreteVariables.push_back(make_unique<DbgVariable>(DV, NoExpr, this)); 999 InfoHolder.addScopeVariable(Scope, ConcreteVariables.back().get()); 1000 } 1001 } 1002 } 1003 1004 // Return Label preceding the instruction. 1005 MCSymbol *DwarfDebug::getLabelBeforeInsn(const MachineInstr *MI) { 1006 MCSymbol *Label = LabelsBeforeInsn.lookup(MI); 1007 assert(Label && "Didn't insert label before instruction"); 1008 return Label; 1009 } 1010 1011 // Return Label immediately following the instruction. 1012 MCSymbol *DwarfDebug::getLabelAfterInsn(const MachineInstr *MI) { 1013 return LabelsAfterInsn.lookup(MI); 1014 } 1015 1016 // Process beginning of an instruction. 1017 void DwarfDebug::beginInstruction(const MachineInstr *MI) { 1018 assert(CurMI == nullptr); 1019 CurMI = MI; 1020 // Check if source location changes, but ignore DBG_VALUE locations. 1021 if (!MI->isDebugValue()) { 1022 DebugLoc DL = MI->getDebugLoc(); 1023 if (DL != PrevInstLoc && (!DL.isUnknown() || UnknownLocations)) { 1024 unsigned Flags = 0; 1025 PrevInstLoc = DL; 1026 if (DL == PrologEndLoc) { 1027 Flags |= DWARF2_FLAG_PROLOGUE_END; 1028 PrologEndLoc = DebugLoc(); 1029 Flags |= DWARF2_FLAG_IS_STMT; 1030 } 1031 if (DL.getLine() != 1032 Asm->OutStreamer.getContext().getCurrentDwarfLoc().getLine()) 1033 Flags |= DWARF2_FLAG_IS_STMT; 1034 1035 if (!DL.isUnknown()) { 1036 const MDNode *Scope = DL.getScope(Asm->MF->getFunction()->getContext()); 1037 recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags); 1038 } else 1039 recordSourceLine(0, 0, nullptr, 0); 1040 } 1041 } 1042 1043 // Insert labels where requested. 1044 DenseMap<const MachineInstr *, MCSymbol *>::iterator I = 1045 LabelsBeforeInsn.find(MI); 1046 1047 // No label needed. 1048 if (I == LabelsBeforeInsn.end()) 1049 return; 1050 1051 // Label already assigned. 1052 if (I->second) 1053 return; 1054 1055 if (!PrevLabel) { 1056 PrevLabel = MMI->getContext().CreateTempSymbol(); 1057 Asm->OutStreamer.EmitLabel(PrevLabel); 1058 } 1059 I->second = PrevLabel; 1060 } 1061 1062 // Process end of an instruction. 1063 void DwarfDebug::endInstruction() { 1064 assert(CurMI != nullptr); 1065 // Don't create a new label after DBG_VALUE instructions. 1066 // They don't generate code. 1067 if (!CurMI->isDebugValue()) 1068 PrevLabel = nullptr; 1069 1070 DenseMap<const MachineInstr *, MCSymbol *>::iterator I = 1071 LabelsAfterInsn.find(CurMI); 1072 CurMI = nullptr; 1073 1074 // No label needed. 1075 if (I == LabelsAfterInsn.end()) 1076 return; 1077 1078 // Label already assigned. 1079 if (I->second) 1080 return; 1081 1082 // We need a label after this instruction. 1083 if (!PrevLabel) { 1084 PrevLabel = MMI->getContext().CreateTempSymbol(); 1085 Asm->OutStreamer.EmitLabel(PrevLabel); 1086 } 1087 I->second = PrevLabel; 1088 } 1089 1090 // Each LexicalScope has first instruction and last instruction to mark 1091 // beginning and end of a scope respectively. Create an inverse map that list 1092 // scopes starts (and ends) with an instruction. One instruction may start (or 1093 // end) multiple scopes. Ignore scopes that are not reachable. 1094 void DwarfDebug::identifyScopeMarkers() { 1095 SmallVector<LexicalScope *, 4> WorkList; 1096 WorkList.push_back(LScopes.getCurrentFunctionScope()); 1097 while (!WorkList.empty()) { 1098 LexicalScope *S = WorkList.pop_back_val(); 1099 1100 const SmallVectorImpl<LexicalScope *> &Children = S->getChildren(); 1101 if (!Children.empty()) 1102 WorkList.append(Children.begin(), Children.end()); 1103 1104 if (S->isAbstractScope()) 1105 continue; 1106 1107 for (const InsnRange &R : S->getRanges()) { 1108 assert(R.first && "InsnRange does not have first instruction!"); 1109 assert(R.second && "InsnRange does not have second instruction!"); 1110 requestLabelBeforeInsn(R.first); 1111 requestLabelAfterInsn(R.second); 1112 } 1113 } 1114 } 1115 1116 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) { 1117 // First known non-DBG_VALUE and non-frame setup location marks 1118 // the beginning of the function body. 1119 for (const auto &MBB : *MF) 1120 for (const auto &MI : MBB) 1121 if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) && 1122 !MI.getDebugLoc().isUnknown()) { 1123 // Did the target forget to set the FrameSetup flag for CFI insns? 1124 assert(!MI.isCFIInstruction() && 1125 "First non-frame-setup instruction is a CFI instruction."); 1126 return MI.getDebugLoc(); 1127 } 1128 return DebugLoc(); 1129 } 1130 1131 // Gather pre-function debug information. Assumes being called immediately 1132 // after the function entry point has been emitted. 1133 void DwarfDebug::beginFunction(const MachineFunction *MF) { 1134 CurFn = MF; 1135 1136 // If there's no debug info for the function we're not going to do anything. 1137 if (!MMI->hasDebugInfo()) 1138 return; 1139 1140 auto DI = FunctionDIs.find(MF->getFunction()); 1141 if (DI == FunctionDIs.end()) 1142 return; 1143 1144 // Grab the lexical scopes for the function, if we don't have any of those 1145 // then we're not going to be able to do anything. 1146 LScopes.initialize(*MF); 1147 if (LScopes.empty()) 1148 return; 1149 1150 assert(DbgValues.empty() && "DbgValues map wasn't cleaned!"); 1151 1152 // Make sure that each lexical scope will have a begin/end label. 1153 identifyScopeMarkers(); 1154 1155 // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function 1156 // belongs to so that we add to the correct per-cu line table in the 1157 // non-asm case. 1158 LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); 1159 // FnScope->getScopeNode() and DI->second should represent the same function, 1160 // though they may not be the same MDNode due to inline functions merged in 1161 // LTO where the debug info metadata still differs (either due to distinct 1162 // written differences - two versions of a linkonce_odr function 1163 // written/copied into two separate files, or some sub-optimal metadata that 1164 // isn't structurally identical (see: file path/name info from clang, which 1165 // includes the directory of the cpp file being built, even when the file name 1166 // is absolute (such as an <> lookup header))) 1167 DwarfCompileUnit *TheCU = SPMap.lookup(FnScope->getScopeNode()); 1168 assert(TheCU && "Unable to find compile unit!"); 1169 if (Asm->OutStreamer.hasRawTextSupport()) 1170 // Use a single line table if we are generating assembly. 1171 Asm->OutStreamer.getContext().setDwarfCompileUnitID(0); 1172 else 1173 Asm->OutStreamer.getContext().setDwarfCompileUnitID(TheCU->getUniqueID()); 1174 1175 // Emit a label for the function so that we have a beginning address. 1176 FunctionBeginSym = Asm->GetTempSymbol("func_begin", Asm->getFunctionNumber()); 1177 // Assumes in correct section after the entry point. 1178 Asm->OutStreamer.EmitLabel(FunctionBeginSym); 1179 1180 // Calculate history for local variables. 1181 calculateDbgValueHistory(MF, Asm->TM.getSubtargetImpl()->getRegisterInfo(), 1182 DbgValues); 1183 1184 // Request labels for the full history. 1185 for (const auto &I : DbgValues) { 1186 const auto &Ranges = I.second; 1187 if (Ranges.empty()) 1188 continue; 1189 1190 // The first mention of a function argument gets the FunctionBeginSym 1191 // label, so arguments are visible when breaking at function entry. 1192 DIVariable DIVar(Ranges.front().first->getDebugVariable()); 1193 if (DIVar.isVariable() && DIVar.getTag() == dwarf::DW_TAG_arg_variable && 1194 getDISubprogram(DIVar.getContext()).describes(MF->getFunction())) { 1195 LabelsBeforeInsn[Ranges.front().first] = FunctionBeginSym; 1196 if (Ranges.front().first->getDebugExpression().isBitPiece()) { 1197 // Mark all non-overlapping initial pieces. 1198 for (auto I = Ranges.begin(); I != Ranges.end(); ++I) { 1199 DIExpression Piece = I->first->getDebugExpression(); 1200 if (std::all_of(Ranges.begin(), I, 1201 [&](DbgValueHistoryMap::InstrRange Pred) { 1202 return !piecesOverlap(Piece, Pred.first->getDebugExpression()); 1203 })) 1204 LabelsBeforeInsn[I->first] = FunctionBeginSym; 1205 else 1206 break; 1207 } 1208 } 1209 } 1210 1211 for (const auto &Range : Ranges) { 1212 requestLabelBeforeInsn(Range.first); 1213 if (Range.second) 1214 requestLabelAfterInsn(Range.second); 1215 } 1216 } 1217 1218 PrevInstLoc = DebugLoc(); 1219 PrevLabel = FunctionBeginSym; 1220 1221 // Record beginning of function. 1222 PrologEndLoc = findPrologueEndLoc(MF); 1223 if (!PrologEndLoc.isUnknown()) { 1224 DebugLoc FnStartDL = 1225 PrologEndLoc.getFnDebugLoc(MF->getFunction()->getContext()); 1226 1227 // We'd like to list the prologue as "not statements" but GDB behaves 1228 // poorly if we do that. Revisit this with caution/GDB (7.5+) testing. 1229 recordSourceLine(FnStartDL.getLine(), FnStartDL.getCol(), 1230 FnStartDL.getScope(MF->getFunction()->getContext()), 1231 DWARF2_FLAG_IS_STMT); 1232 } 1233 } 1234 1235 // Gather and emit post-function debug information. 1236 void DwarfDebug::endFunction(const MachineFunction *MF) { 1237 assert(CurFn == MF && 1238 "endFunction should be called with the same function as beginFunction"); 1239 1240 if (!MMI->hasDebugInfo() || LScopes.empty() || 1241 !FunctionDIs.count(MF->getFunction())) { 1242 // If we don't have a lexical scope for this function then there will 1243 // be a hole in the range information. Keep note of this by setting the 1244 // previously used section to nullptr. 1245 PrevCU = nullptr; 1246 CurFn = nullptr; 1247 return; 1248 } 1249 1250 // Define end label for subprogram. 1251 FunctionEndSym = Asm->GetTempSymbol("func_end", Asm->getFunctionNumber()); 1252 // Assumes in correct section after the entry point. 1253 Asm->OutStreamer.EmitLabel(FunctionEndSym); 1254 1255 // Set DwarfDwarfCompileUnitID in MCContext to default value. 1256 Asm->OutStreamer.getContext().setDwarfCompileUnitID(0); 1257 1258 LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); 1259 DISubprogram SP(FnScope->getScopeNode()); 1260 DwarfCompileUnit &TheCU = *SPMap.lookup(SP); 1261 1262 SmallPtrSet<const MDNode *, 16> ProcessedVars; 1263 collectVariableInfo(TheCU, SP, ProcessedVars); 1264 1265 // Add the range of this function to the list of ranges for the CU. 1266 TheCU.addRange(RangeSpan(FunctionBeginSym, FunctionEndSym)); 1267 1268 // Under -gmlt, skip building the subprogram if there are no inlined 1269 // subroutines inside it. 1270 if (TheCU.getCUNode().getEmissionKind() == DIBuilder::LineTablesOnly && 1271 LScopes.getAbstractScopesList().empty() && !IsDarwin) { 1272 assert(InfoHolder.getScopeVariables().empty()); 1273 assert(DbgValues.empty()); 1274 // FIXME: This wouldn't be true in LTO with a -g (with inlining) CU followed 1275 // by a -gmlt CU. Add a test and remove this assertion. 1276 assert(AbstractVariables.empty()); 1277 LabelsBeforeInsn.clear(); 1278 LabelsAfterInsn.clear(); 1279 PrevLabel = nullptr; 1280 CurFn = nullptr; 1281 return; 1282 } 1283 1284 #ifndef NDEBUG 1285 size_t NumAbstractScopes = LScopes.getAbstractScopesList().size(); 1286 #endif 1287 // Construct abstract scopes. 1288 for (LexicalScope *AScope : LScopes.getAbstractScopesList()) { 1289 DISubprogram SP(AScope->getScopeNode()); 1290 assert(SP.isSubprogram()); 1291 // Collect info for variables that were optimized out. 1292 DIArray Variables = SP.getVariables(); 1293 for (unsigned i = 0, e = Variables.getNumElements(); i != e; ++i) { 1294 DIVariable DV(Variables.getElement(i)); 1295 assert(DV && DV.isVariable()); 1296 if (!ProcessedVars.insert(DV).second) 1297 continue; 1298 ensureAbstractVariableIsCreated(DV, DV.getContext()); 1299 assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes 1300 && "ensureAbstractVariableIsCreated inserted abstract scopes"); 1301 } 1302 constructAbstractSubprogramScopeDIE(AScope); 1303 } 1304 1305 TheCU.constructSubprogramScopeDIE(FnScope); 1306 if (auto *SkelCU = TheCU.getSkeleton()) 1307 if (!LScopes.getAbstractScopesList().empty()) 1308 SkelCU->constructSubprogramScopeDIE(FnScope); 1309 1310 // Clear debug info 1311 // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the 1312 // DbgVariables except those that are also in AbstractVariables (since they 1313 // can be used cross-function) 1314 InfoHolder.getScopeVariables().clear(); 1315 DbgValues.clear(); 1316 LabelsBeforeInsn.clear(); 1317 LabelsAfterInsn.clear(); 1318 PrevLabel = nullptr; 1319 CurFn = nullptr; 1320 } 1321 1322 // Register a source line with debug info. Returns the unique label that was 1323 // emitted and which provides correspondence to the source line list. 1324 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S, 1325 unsigned Flags) { 1326 StringRef Fn; 1327 StringRef Dir; 1328 unsigned Src = 1; 1329 unsigned Discriminator = 0; 1330 if (DIScope Scope = DIScope(S)) { 1331 assert(Scope.isScope()); 1332 Fn = Scope.getFilename(); 1333 Dir = Scope.getDirectory(); 1334 if (Scope.isLexicalBlockFile()) 1335 Discriminator = DILexicalBlockFile(S).getDiscriminator(); 1336 1337 unsigned CUID = Asm->OutStreamer.getContext().getDwarfCompileUnitID(); 1338 Src = static_cast<DwarfCompileUnit &>(*InfoHolder.getUnits()[CUID]) 1339 .getOrCreateSourceID(Fn, Dir); 1340 } 1341 Asm->OutStreamer.EmitDwarfLocDirective(Src, Line, Col, Flags, 0, 1342 Discriminator, Fn); 1343 } 1344 1345 //===----------------------------------------------------------------------===// 1346 // Emit Methods 1347 //===----------------------------------------------------------------------===// 1348 1349 // Emit initial Dwarf sections with a label at the start of each one. 1350 void DwarfDebug::emitSectionLabels() { 1351 const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); 1352 1353 // Dwarf sections base addresses. 1354 DwarfInfoSectionSym = 1355 emitSectionSym(Asm, TLOF.getDwarfInfoSection(), "section_info"); 1356 if (useSplitDwarf()) { 1357 DwarfInfoDWOSectionSym = 1358 emitSectionSym(Asm, TLOF.getDwarfInfoDWOSection(), "section_info_dwo"); 1359 DwarfTypesDWOSectionSym = 1360 emitSectionSym(Asm, TLOF.getDwarfTypesDWOSection(), "section_types_dwo"); 1361 } 1362 DwarfAbbrevSectionSym = 1363 emitSectionSym(Asm, TLOF.getDwarfAbbrevSection(), "section_abbrev"); 1364 if (useSplitDwarf()) 1365 DwarfAbbrevDWOSectionSym = emitSectionSym( 1366 Asm, TLOF.getDwarfAbbrevDWOSection(), "section_abbrev_dwo"); 1367 if (GenerateARangeSection) 1368 emitSectionSym(Asm, TLOF.getDwarfARangesSection()); 1369 1370 DwarfLineSectionSym = 1371 emitSectionSym(Asm, TLOF.getDwarfLineSection(), "section_line"); 1372 if (GenerateGnuPubSections) { 1373 DwarfGnuPubNamesSectionSym = 1374 emitSectionSym(Asm, TLOF.getDwarfGnuPubNamesSection()); 1375 DwarfGnuPubTypesSectionSym = 1376 emitSectionSym(Asm, TLOF.getDwarfGnuPubTypesSection()); 1377 } else if (HasDwarfPubSections) { 1378 emitSectionSym(Asm, TLOF.getDwarfPubNamesSection()); 1379 emitSectionSym(Asm, TLOF.getDwarfPubTypesSection()); 1380 } 1381 1382 DwarfStrSectionSym = 1383 emitSectionSym(Asm, TLOF.getDwarfStrSection(), "info_string"); 1384 if (useSplitDwarf()) { 1385 DwarfStrDWOSectionSym = 1386 emitSectionSym(Asm, TLOF.getDwarfStrDWOSection(), "skel_string"); 1387 DwarfAddrSectionSym = 1388 emitSectionSym(Asm, TLOF.getDwarfAddrSection(), "addr_sec"); 1389 DwarfDebugLocSectionSym = 1390 emitSectionSym(Asm, TLOF.getDwarfLocDWOSection(), "skel_loc"); 1391 } else 1392 DwarfDebugLocSectionSym = 1393 emitSectionSym(Asm, TLOF.getDwarfLocSection(), "section_debug_loc"); 1394 DwarfDebugRangeSectionSym = 1395 emitSectionSym(Asm, TLOF.getDwarfRangesSection(), "debug_range"); 1396 } 1397 1398 // Recursively emits a debug information entry. 1399 void DwarfDebug::emitDIE(DIE &Die) { 1400 // Get the abbreviation for this DIE. 1401 const DIEAbbrev &Abbrev = Die.getAbbrev(); 1402 1403 // Emit the code (index) for the abbreviation. 1404 if (Asm->isVerbose()) 1405 Asm->OutStreamer.AddComment("Abbrev [" + Twine(Abbrev.getNumber()) + 1406 "] 0x" + Twine::utohexstr(Die.getOffset()) + 1407 ":0x" + Twine::utohexstr(Die.getSize()) + " " + 1408 dwarf::TagString(Abbrev.getTag())); 1409 Asm->EmitULEB128(Abbrev.getNumber()); 1410 1411 const SmallVectorImpl<DIEValue *> &Values = Die.getValues(); 1412 const SmallVectorImpl<DIEAbbrevData> &AbbrevData = Abbrev.getData(); 1413 1414 // Emit the DIE attribute values. 1415 for (unsigned i = 0, N = Values.size(); i < N; ++i) { 1416 dwarf::Attribute Attr = AbbrevData[i].getAttribute(); 1417 dwarf::Form Form = AbbrevData[i].getForm(); 1418 assert(Form && "Too many attributes for DIE (check abbreviation)"); 1419 1420 if (Asm->isVerbose()) { 1421 Asm->OutStreamer.AddComment(dwarf::AttributeString(Attr)); 1422 if (Attr == dwarf::DW_AT_accessibility) 1423 Asm->OutStreamer.AddComment(dwarf::AccessibilityString( 1424 cast<DIEInteger>(Values[i])->getValue())); 1425 } 1426 1427 // Emit an attribute using the defined form. 1428 Values[i]->EmitValue(Asm, Form); 1429 } 1430 1431 // Emit the DIE children if any. 1432 if (Abbrev.hasChildren()) { 1433 for (auto &Child : Die.getChildren()) 1434 emitDIE(*Child); 1435 1436 Asm->OutStreamer.AddComment("End Of Children Mark"); 1437 Asm->EmitInt8(0); 1438 } 1439 } 1440 1441 // Emit the debug info section. 1442 void DwarfDebug::emitDebugInfo() { 1443 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1444 1445 Holder.emitUnits(DwarfAbbrevSectionSym); 1446 } 1447 1448 // Emit the abbreviation section. 1449 void DwarfDebug::emitAbbreviations() { 1450 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1451 1452 Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection()); 1453 } 1454 1455 // Emit the last address of the section and the end of the line matrix. 1456 void DwarfDebug::emitEndOfLineMatrix(unsigned SectionEnd) { 1457 // Define last address of section. 1458 Asm->OutStreamer.AddComment("Extended Op"); 1459 Asm->EmitInt8(0); 1460 1461 Asm->OutStreamer.AddComment("Op size"); 1462 Asm->EmitInt8(Asm->getDataLayout().getPointerSize() + 1); 1463 Asm->OutStreamer.AddComment("DW_LNE_set_address"); 1464 Asm->EmitInt8(dwarf::DW_LNE_set_address); 1465 1466 Asm->OutStreamer.AddComment("Section end label"); 1467 1468 Asm->OutStreamer.EmitSymbolValue( 1469 Asm->GetTempSymbol("section_end", SectionEnd), 1470 Asm->getDataLayout().getPointerSize()); 1471 1472 // Mark end of matrix. 1473 Asm->OutStreamer.AddComment("DW_LNE_end_sequence"); 1474 Asm->EmitInt8(0); 1475 Asm->EmitInt8(1); 1476 Asm->EmitInt8(1); 1477 } 1478 1479 void DwarfDebug::emitAccel(DwarfAccelTable &Accel, const MCSection *Section, 1480 StringRef TableName, StringRef SymName) { 1481 Accel.FinalizeTable(Asm, TableName); 1482 Asm->OutStreamer.SwitchSection(Section); 1483 auto *SectionBegin = Asm->GetTempSymbol(SymName); 1484 Asm->OutStreamer.EmitLabel(SectionBegin); 1485 1486 // Emit the full data. 1487 Accel.Emit(Asm, SectionBegin, this, DwarfStrSectionSym); 1488 } 1489 1490 // Emit visible names into a hashed accelerator table section. 1491 void DwarfDebug::emitAccelNames() { 1492 emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(), 1493 "Names", "names_begin"); 1494 } 1495 1496 // Emit objective C classes and categories into a hashed accelerator table 1497 // section. 1498 void DwarfDebug::emitAccelObjC() { 1499 emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(), 1500 "ObjC", "objc_begin"); 1501 } 1502 1503 // Emit namespace dies into a hashed accelerator table. 1504 void DwarfDebug::emitAccelNamespaces() { 1505 emitAccel(AccelNamespace, 1506 Asm->getObjFileLowering().getDwarfAccelNamespaceSection(), 1507 "namespac", "namespac_begin"); 1508 } 1509 1510 // Emit type dies into a hashed accelerator table. 1511 void DwarfDebug::emitAccelTypes() { 1512 emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(), 1513 "types", "types_begin"); 1514 } 1515 1516 // Public name handling. 1517 // The format for the various pubnames: 1518 // 1519 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU 1520 // for the DIE that is named. 1521 // 1522 // gnu pubnames - offset/index value/name tuples where the offset is the offset 1523 // into the CU and the index value is computed according to the type of value 1524 // for the DIE that is named. 1525 // 1526 // For type units the offset is the offset of the skeleton DIE. For split dwarf 1527 // it's the offset within the debug_info/debug_types dwo section, however, the 1528 // reference in the pubname header doesn't change. 1529 1530 /// computeIndexValue - Compute the gdb index value for the DIE and CU. 1531 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU, 1532 const DIE *Die) { 1533 dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC; 1534 1535 // We could have a specification DIE that has our most of our knowledge, 1536 // look for that now. 1537 DIEValue *SpecVal = Die->findAttribute(dwarf::DW_AT_specification); 1538 if (SpecVal) { 1539 DIE &SpecDIE = cast<DIEEntry>(SpecVal)->getEntry(); 1540 if (SpecDIE.findAttribute(dwarf::DW_AT_external)) 1541 Linkage = dwarf::GIEL_EXTERNAL; 1542 } else if (Die->findAttribute(dwarf::DW_AT_external)) 1543 Linkage = dwarf::GIEL_EXTERNAL; 1544 1545 switch (Die->getTag()) { 1546 case dwarf::DW_TAG_class_type: 1547 case dwarf::DW_TAG_structure_type: 1548 case dwarf::DW_TAG_union_type: 1549 case dwarf::DW_TAG_enumeration_type: 1550 return dwarf::PubIndexEntryDescriptor( 1551 dwarf::GIEK_TYPE, CU->getLanguage() != dwarf::DW_LANG_C_plus_plus 1552 ? dwarf::GIEL_STATIC 1553 : dwarf::GIEL_EXTERNAL); 1554 case dwarf::DW_TAG_typedef: 1555 case dwarf::DW_TAG_base_type: 1556 case dwarf::DW_TAG_subrange_type: 1557 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC); 1558 case dwarf::DW_TAG_namespace: 1559 return dwarf::GIEK_TYPE; 1560 case dwarf::DW_TAG_subprogram: 1561 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage); 1562 case dwarf::DW_TAG_variable: 1563 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage); 1564 case dwarf::DW_TAG_enumerator: 1565 return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, 1566 dwarf::GIEL_STATIC); 1567 default: 1568 return dwarf::GIEK_NONE; 1569 } 1570 } 1571 1572 /// emitDebugPubNames - Emit visible names into a debug pubnames section. 1573 /// 1574 void DwarfDebug::emitDebugPubNames(bool GnuStyle) { 1575 const MCSection *PSec = 1576 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection() 1577 : Asm->getObjFileLowering().getDwarfPubNamesSection(); 1578 1579 emitDebugPubSection(GnuStyle, PSec, "Names", 1580 &DwarfCompileUnit::getGlobalNames); 1581 } 1582 1583 void DwarfDebug::emitDebugPubSection( 1584 bool GnuStyle, const MCSection *PSec, StringRef Name, 1585 const StringMap<const DIE *> &(DwarfCompileUnit::*Accessor)() const) { 1586 for (const auto &NU : CUMap) { 1587 DwarfCompileUnit *TheU = NU.second; 1588 1589 const auto &Globals = (TheU->*Accessor)(); 1590 1591 if (Globals.empty()) 1592 continue; 1593 1594 if (auto *Skeleton = TheU->getSkeleton()) 1595 TheU = Skeleton; 1596 unsigned ID = TheU->getUniqueID(); 1597 1598 // Start the dwarf pubnames section. 1599 Asm->OutStreamer.SwitchSection(PSec); 1600 1601 // Emit the header. 1602 Asm->OutStreamer.AddComment("Length of Public " + Name + " Info"); 1603 MCSymbol *BeginLabel = Asm->GetTempSymbol("pub" + Name + "_begin", ID); 1604 MCSymbol *EndLabel = Asm->GetTempSymbol("pub" + Name + "_end", ID); 1605 Asm->EmitLabelDifference(EndLabel, BeginLabel, 4); 1606 1607 Asm->OutStreamer.EmitLabel(BeginLabel); 1608 1609 Asm->OutStreamer.AddComment("DWARF Version"); 1610 Asm->EmitInt16(dwarf::DW_PUBNAMES_VERSION); 1611 1612 Asm->OutStreamer.AddComment("Offset of Compilation Unit Info"); 1613 Asm->EmitSectionOffset(TheU->getLabelBegin(), TheU->getSectionSym()); 1614 1615 Asm->OutStreamer.AddComment("Compilation Unit Length"); 1616 Asm->EmitInt32(TheU->getLength()); 1617 1618 // Emit the pubnames for this compilation unit. 1619 for (const auto &GI : Globals) { 1620 const char *Name = GI.getKeyData(); 1621 const DIE *Entity = GI.second; 1622 1623 Asm->OutStreamer.AddComment("DIE offset"); 1624 Asm->EmitInt32(Entity->getOffset()); 1625 1626 if (GnuStyle) { 1627 dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity); 1628 Asm->OutStreamer.AddComment( 1629 Twine("Kind: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + ", " + 1630 dwarf::GDBIndexEntryLinkageString(Desc.Linkage)); 1631 Asm->EmitInt8(Desc.toBits()); 1632 } 1633 1634 Asm->OutStreamer.AddComment("External Name"); 1635 Asm->OutStreamer.EmitBytes(StringRef(Name, GI.getKeyLength() + 1)); 1636 } 1637 1638 Asm->OutStreamer.AddComment("End Mark"); 1639 Asm->EmitInt32(0); 1640 Asm->OutStreamer.EmitLabel(EndLabel); 1641 } 1642 } 1643 1644 void DwarfDebug::emitDebugPubTypes(bool GnuStyle) { 1645 const MCSection *PSec = 1646 GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection() 1647 : Asm->getObjFileLowering().getDwarfPubTypesSection(); 1648 1649 emitDebugPubSection(GnuStyle, PSec, "Types", 1650 &DwarfCompileUnit::getGlobalTypes); 1651 } 1652 1653 // Emit visible names into a debug str section. 1654 void DwarfDebug::emitDebugStr() { 1655 DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; 1656 Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection()); 1657 } 1658 1659 /// Emits an optimal (=sorted) sequence of DW_OP_pieces. 1660 void DwarfDebug::emitLocPieces(ByteStreamer &Streamer, 1661 const DITypeIdentifierMap &Map, 1662 ArrayRef<DebugLocEntry::Value> Values) { 1663 assert(std::all_of(Values.begin(), Values.end(), [](DebugLocEntry::Value P) { 1664 return P.isBitPiece(); 1665 }) && "all values are expected to be pieces"); 1666 assert(std::is_sorted(Values.begin(), Values.end()) && 1667 "pieces are expected to be sorted"); 1668 1669 unsigned Offset = 0; 1670 for (auto Piece : Values) { 1671 DIExpression Expr = Piece.getExpression(); 1672 unsigned PieceOffset = Expr.getBitPieceOffset(); 1673 unsigned PieceSize = Expr.getBitPieceSize(); 1674 assert(Offset <= PieceOffset && "overlapping or duplicate pieces"); 1675 if (Offset < PieceOffset) { 1676 // The DWARF spec seriously mandates pieces with no locations for gaps. 1677 Asm->EmitDwarfOpPiece(Streamer, PieceOffset-Offset); 1678 Offset += PieceOffset-Offset; 1679 } 1680 Offset += PieceSize; 1681 1682 #ifndef NDEBUG 1683 DIVariable Var = Piece.getVariable(); 1684 unsigned VarSize = Var.getSizeInBits(Map); 1685 assert(PieceSize+PieceOffset <= VarSize 1686 && "piece is larger than or outside of variable"); 1687 assert(PieceSize != VarSize 1688 && "piece covers entire variable"); 1689 #endif 1690 emitDebugLocValue(Streamer, Piece, PieceOffset); 1691 } 1692 } 1693 1694 1695 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer, 1696 const DebugLocEntry &Entry) { 1697 const DebugLocEntry::Value Value = Entry.getValues()[0]; 1698 if (Value.isBitPiece()) 1699 // Emit all pieces that belong to the same variable and range. 1700 return emitLocPieces(Streamer, TypeIdentifierMap, Entry.getValues()); 1701 1702 assert(Entry.getValues().size() == 1 && "only pieces may have >1 value"); 1703 emitDebugLocValue(Streamer, Value); 1704 } 1705 1706 void DwarfDebug::emitDebugLocValue(ByteStreamer &Streamer, 1707 const DebugLocEntry::Value &Value, 1708 unsigned PieceOffsetInBits) { 1709 DIVariable DV = Value.getVariable(); 1710 DebugLocDwarfExpression DwarfExpr(*Asm, Streamer); 1711 1712 // Regular entry. 1713 if (Value.isInt()) { 1714 DIBasicType BTy(resolve(DV.getType())); 1715 if (BTy.Verify() && (BTy.getEncoding() == dwarf::DW_ATE_signed || 1716 BTy.getEncoding() == dwarf::DW_ATE_signed_char)) 1717 DwarfExpr.AddSignedConstant(Value.getInt()); 1718 else 1719 DwarfExpr.AddUnsignedConstant(Value.getInt()); 1720 } else if (Value.isLocation()) { 1721 MachineLocation Loc = Value.getLoc(); 1722 DIExpression Expr = Value.getExpression(); 1723 if (!Expr || (Expr.getNumElements() == 0)) 1724 // Regular entry. 1725 Asm->EmitDwarfRegOp(Streamer, Loc); 1726 else { 1727 // Complex address entry. 1728 if (Loc.getOffset()) { 1729 DwarfExpr.AddMachineRegIndirect(Loc.getReg(), Loc.getOffset()); 1730 DwarfExpr.AddExpression(Expr, PieceOffsetInBits); 1731 } else 1732 DwarfExpr.AddMachineRegExpression(Expr, Loc.getReg(), 1733 PieceOffsetInBits); 1734 } 1735 } 1736 // else ... ignore constant fp. There is not any good way to 1737 // to represent them here in dwarf. 1738 // FIXME: ^ 1739 } 1740 1741 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocEntry &Entry) { 1742 Asm->OutStreamer.AddComment("Loc expr size"); 1743 MCSymbol *begin = Asm->OutStreamer.getContext().CreateTempSymbol(); 1744 MCSymbol *end = Asm->OutStreamer.getContext().CreateTempSymbol(); 1745 Asm->EmitLabelDifference(end, begin, 2); 1746 Asm->OutStreamer.EmitLabel(begin); 1747 // Emit the entry. 1748 APByteStreamer Streamer(*Asm); 1749 emitDebugLocEntry(Streamer, Entry); 1750 // Close the range. 1751 Asm->OutStreamer.EmitLabel(end); 1752 } 1753 1754 // Emit locations into the debug loc section. 1755 void DwarfDebug::emitDebugLoc() { 1756 // Start the dwarf loc section. 1757 Asm->OutStreamer.SwitchSection( 1758 Asm->getObjFileLowering().getDwarfLocSection()); 1759 unsigned char Size = Asm->getDataLayout().getPointerSize(); 1760 for (const auto &DebugLoc : DotDebugLocEntries) { 1761 Asm->OutStreamer.EmitLabel(DebugLoc.Label); 1762 const DwarfCompileUnit *CU = DebugLoc.CU; 1763 for (const auto &Entry : DebugLoc.List) { 1764 // Set up the range. This range is relative to the entry point of the 1765 // compile unit. This is a hard coded 0 for low_pc when we're emitting 1766 // ranges, or the DW_AT_low_pc on the compile unit otherwise. 1767 if (auto *Base = CU->getBaseAddress()) { 1768 Asm->EmitLabelDifference(Entry.getBeginSym(), Base, Size); 1769 Asm->EmitLabelDifference(Entry.getEndSym(), Base, Size); 1770 } else { 1771 Asm->OutStreamer.EmitSymbolValue(Entry.getBeginSym(), Size); 1772 Asm->OutStreamer.EmitSymbolValue(Entry.getEndSym(), Size); 1773 } 1774 1775 emitDebugLocEntryLocation(Entry); 1776 } 1777 Asm->OutStreamer.EmitIntValue(0, Size); 1778 Asm->OutStreamer.EmitIntValue(0, Size); 1779 } 1780 } 1781 1782 void DwarfDebug::emitDebugLocDWO() { 1783 Asm->OutStreamer.SwitchSection( 1784 Asm->getObjFileLowering().getDwarfLocDWOSection()); 1785 for (const auto &DebugLoc : DotDebugLocEntries) { 1786 Asm->OutStreamer.EmitLabel(DebugLoc.Label); 1787 for (const auto &Entry : DebugLoc.List) { 1788 // Just always use start_length for now - at least that's one address 1789 // rather than two. We could get fancier and try to, say, reuse an 1790 // address we know we've emitted elsewhere (the start of the function? 1791 // The start of the CU or CU subrange that encloses this range?) 1792 Asm->EmitInt8(dwarf::DW_LLE_start_length_entry); 1793 unsigned idx = AddrPool.getIndex(Entry.getBeginSym()); 1794 Asm->EmitULEB128(idx); 1795 Asm->EmitLabelDifference(Entry.getEndSym(), Entry.getBeginSym(), 4); 1796 1797 emitDebugLocEntryLocation(Entry); 1798 } 1799 Asm->EmitInt8(dwarf::DW_LLE_end_of_list_entry); 1800 } 1801 } 1802 1803 struct ArangeSpan { 1804 const MCSymbol *Start, *End; 1805 }; 1806 1807 // Emit a debug aranges section, containing a CU lookup for any 1808 // address we can tie back to a CU. 1809 void DwarfDebug::emitDebugARanges() { 1810 // Start the dwarf aranges section. 1811 Asm->OutStreamer.SwitchSection( 1812 Asm->getObjFileLowering().getDwarfARangesSection()); 1813 1814 typedef DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> SpansType; 1815 1816 SpansType Spans; 1817 1818 // Build a list of sections used. 1819 std::vector<const MCSection *> Sections; 1820 for (const auto &it : SectionMap) { 1821 const MCSection *Section = it.first; 1822 Sections.push_back(Section); 1823 } 1824 1825 // Sort the sections into order. 1826 // This is only done to ensure consistent output order across different runs. 1827 std::sort(Sections.begin(), Sections.end(), SectionSort); 1828 1829 // Build a set of address spans, sorted by CU. 1830 for (const MCSection *Section : Sections) { 1831 SmallVector<SymbolCU, 8> &List = SectionMap[Section]; 1832 if (List.size() < 2) 1833 continue; 1834 1835 // If we have no section (e.g. common), just write out 1836 // individual spans for each symbol. 1837 if (!Section) { 1838 for (const SymbolCU &Cur : List) { 1839 ArangeSpan Span; 1840 Span.Start = Cur.Sym; 1841 Span.End = nullptr; 1842 if (Cur.CU) 1843 Spans[Cur.CU].push_back(Span); 1844 } 1845 continue; 1846 } 1847 1848 // Sort the symbols by offset within the section. 1849 std::sort(List.begin(), List.end(), 1850 [&](const SymbolCU &A, const SymbolCU &B) { 1851 unsigned IA = A.Sym ? Asm->OutStreamer.GetSymbolOrder(A.Sym) : 0; 1852 unsigned IB = B.Sym ? Asm->OutStreamer.GetSymbolOrder(B.Sym) : 0; 1853 1854 // Symbols with no order assigned should be placed at the end. 1855 // (e.g. section end labels) 1856 if (IA == 0) 1857 return false; 1858 if (IB == 0) 1859 return true; 1860 return IA < IB; 1861 }); 1862 1863 // Build spans between each label. 1864 const MCSymbol *StartSym = List[0].Sym; 1865 for (size_t n = 1, e = List.size(); n < e; n++) { 1866 const SymbolCU &Prev = List[n - 1]; 1867 const SymbolCU &Cur = List[n]; 1868 1869 // Try and build the longest span we can within the same CU. 1870 if (Cur.CU != Prev.CU) { 1871 ArangeSpan Span; 1872 Span.Start = StartSym; 1873 Span.End = Cur.Sym; 1874 Spans[Prev.CU].push_back(Span); 1875 StartSym = Cur.Sym; 1876 } 1877 } 1878 } 1879 1880 unsigned PtrSize = Asm->getDataLayout().getPointerSize(); 1881 1882 // Build a list of CUs used. 1883 std::vector<DwarfCompileUnit *> CUs; 1884 for (const auto &it : Spans) { 1885 DwarfCompileUnit *CU = it.first; 1886 CUs.push_back(CU); 1887 } 1888 1889 // Sort the CU list (again, to ensure consistent output order). 1890 std::sort(CUs.begin(), CUs.end(), [](const DwarfUnit *A, const DwarfUnit *B) { 1891 return A->getUniqueID() < B->getUniqueID(); 1892 }); 1893 1894 // Emit an arange table for each CU we used. 1895 for (DwarfCompileUnit *CU : CUs) { 1896 std::vector<ArangeSpan> &List = Spans[CU]; 1897 1898 // Describe the skeleton CU's offset and length, not the dwo file's. 1899 if (auto *Skel = CU->getSkeleton()) 1900 CU = Skel; 1901 1902 // Emit size of content not including length itself. 1903 unsigned ContentSize = 1904 sizeof(int16_t) + // DWARF ARange version number 1905 sizeof(int32_t) + // Offset of CU in the .debug_info section 1906 sizeof(int8_t) + // Pointer Size (in bytes) 1907 sizeof(int8_t); // Segment Size (in bytes) 1908 1909 unsigned TupleSize = PtrSize * 2; 1910 1911 // 7.20 in the Dwarf specs requires the table to be aligned to a tuple. 1912 unsigned Padding = 1913 OffsetToAlignment(sizeof(int32_t) + ContentSize, TupleSize); 1914 1915 ContentSize += Padding; 1916 ContentSize += (List.size() + 1) * TupleSize; 1917 1918 // For each compile unit, write the list of spans it covers. 1919 Asm->OutStreamer.AddComment("Length of ARange Set"); 1920 Asm->EmitInt32(ContentSize); 1921 Asm->OutStreamer.AddComment("DWARF Arange version number"); 1922 Asm->EmitInt16(dwarf::DW_ARANGES_VERSION); 1923 Asm->OutStreamer.AddComment("Offset Into Debug Info Section"); 1924 Asm->EmitSectionOffset(CU->getLabelBegin(), CU->getSectionSym()); 1925 Asm->OutStreamer.AddComment("Address Size (in bytes)"); 1926 Asm->EmitInt8(PtrSize); 1927 Asm->OutStreamer.AddComment("Segment Size (in bytes)"); 1928 Asm->EmitInt8(0); 1929 1930 Asm->OutStreamer.EmitFill(Padding, 0xff); 1931 1932 for (const ArangeSpan &Span : List) { 1933 Asm->EmitLabelReference(Span.Start, PtrSize); 1934 1935 // Calculate the size as being from the span start to it's end. 1936 if (Span.End) { 1937 Asm->EmitLabelDifference(Span.End, Span.Start, PtrSize); 1938 } else { 1939 // For symbols without an end marker (e.g. common), we 1940 // write a single arange entry containing just that one symbol. 1941 uint64_t Size = SymSize[Span.Start]; 1942 if (Size == 0) 1943 Size = 1; 1944 1945 Asm->OutStreamer.EmitIntValue(Size, PtrSize); 1946 } 1947 } 1948 1949 Asm->OutStreamer.AddComment("ARange terminator"); 1950 Asm->OutStreamer.EmitIntValue(0, PtrSize); 1951 Asm->OutStreamer.EmitIntValue(0, PtrSize); 1952 } 1953 } 1954 1955 // Emit visible names into a debug ranges section. 1956 void DwarfDebug::emitDebugRanges() { 1957 // Start the dwarf ranges section. 1958 Asm->OutStreamer.SwitchSection( 1959 Asm->getObjFileLowering().getDwarfRangesSection()); 1960 1961 // Size for our labels. 1962 unsigned char Size = Asm->getDataLayout().getPointerSize(); 1963 1964 // Grab the specific ranges for the compile units in the module. 1965 for (const auto &I : CUMap) { 1966 DwarfCompileUnit *TheCU = I.second; 1967 1968 if (auto *Skel = TheCU->getSkeleton()) 1969 TheCU = Skel; 1970 1971 // Iterate over the misc ranges for the compile units in the module. 1972 for (const RangeSpanList &List : TheCU->getRangeLists()) { 1973 // Emit our symbol so we can find the beginning of the range. 1974 Asm->OutStreamer.EmitLabel(List.getSym()); 1975 1976 for (const RangeSpan &Range : List.getRanges()) { 1977 const MCSymbol *Begin = Range.getStart(); 1978 const MCSymbol *End = Range.getEnd(); 1979 assert(Begin && "Range without a begin symbol?"); 1980 assert(End && "Range without an end symbol?"); 1981 if (auto *Base = TheCU->getBaseAddress()) { 1982 Asm->EmitLabelDifference(Begin, Base, Size); 1983 Asm->EmitLabelDifference(End, Base, Size); 1984 } else { 1985 Asm->OutStreamer.EmitSymbolValue(Begin, Size); 1986 Asm->OutStreamer.EmitSymbolValue(End, Size); 1987 } 1988 } 1989 1990 // And terminate the list with two 0 values. 1991 Asm->OutStreamer.EmitIntValue(0, Size); 1992 Asm->OutStreamer.EmitIntValue(0, Size); 1993 } 1994 } 1995 } 1996 1997 // DWARF5 Experimental Separate Dwarf emitters. 1998 1999 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die, 2000 std::unique_ptr<DwarfUnit> NewU) { 2001 NewU->addString(Die, dwarf::DW_AT_GNU_dwo_name, 2002 U.getCUNode().getSplitDebugFilename()); 2003 2004 if (!CompilationDir.empty()) 2005 NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); 2006 2007 addGnuPubAttributes(*NewU, Die); 2008 2009 SkeletonHolder.addUnit(std::move(NewU)); 2010 } 2011 2012 // This DIE has the following attributes: DW_AT_comp_dir, DW_AT_stmt_list, 2013 // DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges, DW_AT_dwo_name, DW_AT_dwo_id, 2014 // DW_AT_addr_base, DW_AT_ranges_base. 2015 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) { 2016 2017 auto OwnedUnit = make_unique<DwarfCompileUnit>( 2018 CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder); 2019 DwarfCompileUnit &NewCU = *OwnedUnit; 2020 NewCU.initSection(Asm->getObjFileLowering().getDwarfInfoSection(), 2021 DwarfInfoSectionSym); 2022 2023 NewCU.initStmtList(DwarfLineSectionSym); 2024 2025 initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit)); 2026 2027 return NewCU; 2028 } 2029 2030 // Emit the .debug_info.dwo section for separated dwarf. This contains the 2031 // compile units that would normally be in debug_info. 2032 void DwarfDebug::emitDebugInfoDWO() { 2033 assert(useSplitDwarf() && "No split dwarf debug info?"); 2034 // Don't pass an abbrev symbol, using a constant zero instead so as not to 2035 // emit relocations into the dwo file. 2036 InfoHolder.emitUnits(/* AbbrevSymbol */ nullptr); 2037 } 2038 2039 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the 2040 // abbreviations for the .debug_info.dwo section. 2041 void DwarfDebug::emitDebugAbbrevDWO() { 2042 assert(useSplitDwarf() && "No split dwarf?"); 2043 InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection()); 2044 } 2045 2046 void DwarfDebug::emitDebugLineDWO() { 2047 assert(useSplitDwarf() && "No split dwarf?"); 2048 Asm->OutStreamer.SwitchSection( 2049 Asm->getObjFileLowering().getDwarfLineDWOSection()); 2050 SplitTypeUnitFileTable.Emit(Asm->OutStreamer); 2051 } 2052 2053 // Emit the .debug_str.dwo section for separated dwarf. This contains the 2054 // string section and is identical in format to traditional .debug_str 2055 // sections. 2056 void DwarfDebug::emitDebugStrDWO() { 2057 assert(useSplitDwarf() && "No split dwarf?"); 2058 const MCSection *OffSec = 2059 Asm->getObjFileLowering().getDwarfStrOffDWOSection(); 2060 InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(), 2061 OffSec); 2062 } 2063 2064 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) { 2065 if (!useSplitDwarf()) 2066 return nullptr; 2067 if (SingleCU) 2068 SplitTypeUnitFileTable.setCompilationDir(CU.getCUNode().getDirectory()); 2069 return &SplitTypeUnitFileTable; 2070 } 2071 2072 static uint64_t makeTypeSignature(StringRef Identifier) { 2073 MD5 Hash; 2074 Hash.update(Identifier); 2075 // ... take the least significant 8 bytes and return those. Our MD5 2076 // implementation always returns its results in little endian, swap bytes 2077 // appropriately. 2078 MD5::MD5Result Result; 2079 Hash.final(Result); 2080 return *reinterpret_cast<support::ulittle64_t *>(Result + 8); 2081 } 2082 2083 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU, 2084 StringRef Identifier, DIE &RefDie, 2085 DICompositeType CTy) { 2086 // Fast path if we're building some type units and one has already used the 2087 // address pool we know we're going to throw away all this work anyway, so 2088 // don't bother building dependent types. 2089 if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed()) 2090 return; 2091 2092 const DwarfTypeUnit *&TU = DwarfTypeUnits[CTy]; 2093 if (TU) { 2094 CU.addDIETypeSignature(RefDie, *TU); 2095 return; 2096 } 2097 2098 bool TopLevelType = TypeUnitsUnderConstruction.empty(); 2099 AddrPool.resetUsedFlag(); 2100 2101 auto OwnedUnit = make_unique<DwarfTypeUnit>( 2102 InfoHolder.getUnits().size() + TypeUnitsUnderConstruction.size(), CU, Asm, 2103 this, &InfoHolder, getDwoLineTable(CU)); 2104 DwarfTypeUnit &NewTU = *OwnedUnit; 2105 DIE &UnitDie = NewTU.getUnitDie(); 2106 TU = &NewTU; 2107 TypeUnitsUnderConstruction.push_back( 2108 std::make_pair(std::move(OwnedUnit), CTy)); 2109 2110 NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2, 2111 CU.getLanguage()); 2112 2113 uint64_t Signature = makeTypeSignature(Identifier); 2114 NewTU.setTypeSignature(Signature); 2115 2116 if (useSplitDwarf()) 2117 NewTU.initSection(Asm->getObjFileLowering().getDwarfTypesDWOSection()); 2118 else { 2119 CU.applyStmtList(UnitDie); 2120 NewTU.initSection( 2121 Asm->getObjFileLowering().getDwarfTypesSection(Signature)); 2122 } 2123 2124 NewTU.setType(NewTU.createTypeDIE(CTy)); 2125 2126 if (TopLevelType) { 2127 auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction); 2128 TypeUnitsUnderConstruction.clear(); 2129 2130 // Types referencing entries in the address table cannot be placed in type 2131 // units. 2132 if (AddrPool.hasBeenUsed()) { 2133 2134 // Remove all the types built while building this type. 2135 // This is pessimistic as some of these types might not be dependent on 2136 // the type that used an address. 2137 for (const auto &TU : TypeUnitsToAdd) 2138 DwarfTypeUnits.erase(TU.second); 2139 2140 // Construct this type in the CU directly. 2141 // This is inefficient because all the dependent types will be rebuilt 2142 // from scratch, including building them in type units, discovering that 2143 // they depend on addresses, throwing them out and rebuilding them. 2144 CU.constructTypeDIE(RefDie, CTy); 2145 return; 2146 } 2147 2148 // If the type wasn't dependent on fission addresses, finish adding the type 2149 // and all its dependent types. 2150 for (auto &TU : TypeUnitsToAdd) 2151 InfoHolder.addUnit(std::move(TU.first)); 2152 } 2153 CU.addDIETypeSignature(RefDie, NewTU); 2154 } 2155 2156 // Accelerator table mutators - add each name along with its companion 2157 // DIE to the proper table while ensuring that the name that we're going 2158 // to reference is in the string table. We do this since the names we 2159 // add may not only be identical to the names in the DIE. 2160 void DwarfDebug::addAccelName(StringRef Name, const DIE &Die) { 2161 if (!useDwarfAccelTables()) 2162 return; 2163 AccelNames.AddName(Name, InfoHolder.getStringPool().getSymbol(*Asm, Name), 2164 &Die); 2165 } 2166 2167 void DwarfDebug::addAccelObjC(StringRef Name, const DIE &Die) { 2168 if (!useDwarfAccelTables()) 2169 return; 2170 AccelObjC.AddName(Name, InfoHolder.getStringPool().getSymbol(*Asm, Name), 2171 &Die); 2172 } 2173 2174 void DwarfDebug::addAccelNamespace(StringRef Name, const DIE &Die) { 2175 if (!useDwarfAccelTables()) 2176 return; 2177 AccelNamespace.AddName(Name, InfoHolder.getStringPool().getSymbol(*Asm, Name), 2178 &Die); 2179 } 2180 2181 void DwarfDebug::addAccelType(StringRef Name, const DIE &Die, char Flags) { 2182 if (!useDwarfAccelTables()) 2183 return; 2184 AccelTypes.AddName(Name, InfoHolder.getStringPool().getSymbol(*Asm, Name), 2185 &Die); 2186 } 2187