1 //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing dwarf debug info into asm files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "DwarfDebug.h"
14 #include "ByteStreamer.h"
15 #include "DIEHash.h"
16 #include "DebugLocEntry.h"
17 #include "DebugLocStream.h"
18 #include "DwarfCompileUnit.h"
19 #include "DwarfExpression.h"
20 #include "DwarfFile.h"
21 #include "DwarfUnit.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/DenseSet.h"
25 #include "llvm/ADT/MapVector.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/BinaryFormat/Dwarf.h"
33 #include "llvm/CodeGen/AccelTable.h"
34 #include "llvm/CodeGen/AsmPrinter.h"
35 #include "llvm/CodeGen/DIE.h"
36 #include "llvm/CodeGen/LexicalScopes.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineInstr.h"
40 #include "llvm/CodeGen/MachineModuleInfo.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/TargetInstrInfo.h"
43 #include "llvm/CodeGen/TargetLowering.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/DebugInfo/DWARF/DWARFExpression.h"
47 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GlobalVariable.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/MC/MCAsmInfo.h"
55 #include "llvm/MC/MCContext.h"
56 #include "llvm/MC/MCDwarf.h"
57 #include "llvm/MC/MCSection.h"
58 #include "llvm/MC/MCStreamer.h"
59 #include "llvm/MC/MCSymbol.h"
60 #include "llvm/MC/MCTargetOptions.h"
61 #include "llvm/MC/MachineLocation.h"
62 #include "llvm/MC/SectionKind.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/MD5.h"
69 #include "llvm/Support/MathExtras.h"
70 #include "llvm/Support/Timer.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include "llvm/Target/TargetLoweringObjectFile.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include "llvm/Target/TargetOptions.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstddef>
78 #include <cstdint>
79 #include <iterator>
80 #include <string>
81 #include <utility>
82 #include <vector>
83 
84 using namespace llvm;
85 
86 #define DEBUG_TYPE "dwarfdebug"
87 
88 STATISTIC(NumCSParams, "Number of dbg call site params created");
89 
90 static cl::opt<bool>
91 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden,
92                          cl::desc("Disable debug info printing"));
93 
94 static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier(
95     "use-dwarf-ranges-base-address-specifier", cl::Hidden,
96     cl::desc("Use base address specifiers in debug_ranges"), cl::init(false));
97 
98 static cl::opt<bool> GenerateARangeSection("generate-arange-section",
99                                            cl::Hidden,
100                                            cl::desc("Generate dwarf aranges"),
101                                            cl::init(false));
102 
103 static cl::opt<bool>
104     GenerateDwarfTypeUnits("generate-type-units", cl::Hidden,
105                            cl::desc("Generate DWARF4 type units."),
106                            cl::init(false));
107 
108 static cl::opt<bool> SplitDwarfCrossCuReferences(
109     "split-dwarf-cross-cu-references", cl::Hidden,
110     cl::desc("Enable cross-cu references in DWO files"), cl::init(false));
111 
112 enum DefaultOnOff { Default, Enable, Disable };
113 
114 static cl::opt<DefaultOnOff> UnknownLocations(
115     "use-unknown-locations", cl::Hidden,
116     cl::desc("Make an absence of debug location information explicit."),
117     cl::values(clEnumVal(Default, "At top of block or after label"),
118                clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")),
119     cl::init(Default));
120 
121 static cl::opt<AccelTableKind> AccelTables(
122     "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."),
123     cl::values(clEnumValN(AccelTableKind::Default, "Default",
124                           "Default for platform"),
125                clEnumValN(AccelTableKind::None, "Disable", "Disabled."),
126                clEnumValN(AccelTableKind::Apple, "Apple", "Apple"),
127                clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")),
128     cl::init(AccelTableKind::Default));
129 
130 static cl::opt<DefaultOnOff>
131 DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden,
132                  cl::desc("Use inlined strings rather than string section."),
133                  cl::values(clEnumVal(Default, "Default for platform"),
134                             clEnumVal(Enable, "Enabled"),
135                             clEnumVal(Disable, "Disabled")),
136                  cl::init(Default));
137 
138 static cl::opt<bool>
139     NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden,
140                          cl::desc("Disable emission .debug_ranges section."),
141                          cl::init(false));
142 
143 static cl::opt<DefaultOnOff> DwarfSectionsAsReferences(
144     "dwarf-sections-as-references", cl::Hidden,
145     cl::desc("Use sections+offset as references rather than labels."),
146     cl::values(clEnumVal(Default, "Default for platform"),
147                clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")),
148     cl::init(Default));
149 
150 enum LinkageNameOption {
151   DefaultLinkageNames,
152   AllLinkageNames,
153   AbstractLinkageNames
154 };
155 
156 static cl::opt<LinkageNameOption>
157     DwarfLinkageNames("dwarf-linkage-names", cl::Hidden,
158                       cl::desc("Which DWARF linkage-name attributes to emit."),
159                       cl::values(clEnumValN(DefaultLinkageNames, "Default",
160                                             "Default for platform"),
161                                  clEnumValN(AllLinkageNames, "All", "All"),
162                                  clEnumValN(AbstractLinkageNames, "Abstract",
163                                             "Abstract subprograms")),
164                       cl::init(DefaultLinkageNames));
165 
166 static const char *const DWARFGroupName = "dwarf";
167 static const char *const DWARFGroupDescription = "DWARF Emission";
168 static const char *const DbgTimerName = "writer";
169 static const char *const DbgTimerDescription = "DWARF Debug Writer";
170 static constexpr unsigned ULEB128PadSize = 4;
171 
172 void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) {
173   getActiveStreamer().EmitInt8(
174       Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op)
175                   : dwarf::OperationEncodingString(Op));
176 }
177 
178 void DebugLocDwarfExpression::emitSigned(int64_t Value) {
179   getActiveStreamer().emitSLEB128(Value, Twine(Value));
180 }
181 
182 void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) {
183   getActiveStreamer().emitULEB128(Value, Twine(Value));
184 }
185 
186 void DebugLocDwarfExpression::emitData1(uint8_t Value) {
187   getActiveStreamer().EmitInt8(Value, Twine(Value));
188 }
189 
190 void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) {
191   assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit");
192   getActiveStreamer().emitULEB128(Idx, Twine(Idx), ULEB128PadSize);
193 }
194 
195 bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI,
196                                               unsigned MachineReg) {
197   // This information is not available while emitting .debug_loc entries.
198   return false;
199 }
200 
201 void DebugLocDwarfExpression::enableTemporaryBuffer() {
202   assert(!IsBuffering && "Already buffering?");
203   if (!TmpBuf)
204     TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments);
205   IsBuffering = true;
206 }
207 
208 void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; }
209 
210 unsigned DebugLocDwarfExpression::getTemporaryBufferSize() {
211   return TmpBuf ? TmpBuf->Bytes.size() : 0;
212 }
213 
214 void DebugLocDwarfExpression::commitTemporaryBuffer() {
215   if (!TmpBuf)
216     return;
217   for (auto Byte : enumerate(TmpBuf->Bytes)) {
218     const char *Comment = (Byte.index() < TmpBuf->Comments.size())
219                               ? TmpBuf->Comments[Byte.index()].c_str()
220                               : "";
221     OutBS.EmitInt8(Byte.value(), Comment);
222   }
223   TmpBuf->Bytes.clear();
224   TmpBuf->Comments.clear();
225 }
226 
227 const DIType *DbgVariable::getType() const {
228   return getVariable()->getType();
229 }
230 
231 /// Get .debug_loc entry for the instruction range starting at MI.
232 static DbgValueLoc getDebugLocValue(const MachineInstr *MI) {
233   const DIExpression *Expr = MI->getDebugExpression();
234   assert(MI->getNumOperands() == 4);
235   if (MI->getOperand(0).isReg()) {
236     auto RegOp = MI->getOperand(0);
237     auto Op1 = MI->getOperand(1);
238     // If the second operand is an immediate, this is a
239     // register-indirect address.
240     assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset");
241     MachineLocation MLoc(RegOp.getReg(), Op1.isImm());
242     return DbgValueLoc(Expr, MLoc);
243   }
244   if (MI->getOperand(0).isTargetIndex()) {
245     auto Op = MI->getOperand(0);
246     return DbgValueLoc(Expr,
247                        TargetIndexLocation(Op.getIndex(), Op.getOffset()));
248   }
249   if (MI->getOperand(0).isImm())
250     return DbgValueLoc(Expr, MI->getOperand(0).getImm());
251   if (MI->getOperand(0).isFPImm())
252     return DbgValueLoc(Expr, MI->getOperand(0).getFPImm());
253   if (MI->getOperand(0).isCImm())
254     return DbgValueLoc(Expr, MI->getOperand(0).getCImm());
255 
256   llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!");
257 }
258 
259 void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) {
260   assert(FrameIndexExprs.empty() && "Already initialized?");
261   assert(!ValueLoc.get() && "Already initialized?");
262 
263   assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable");
264   assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() &&
265          "Wrong inlined-at");
266 
267   ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue));
268   if (auto *E = DbgValue->getDebugExpression())
269     if (E->getNumElements())
270       FrameIndexExprs.push_back({0, E});
271 }
272 
273 ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const {
274   if (FrameIndexExprs.size() == 1)
275     return FrameIndexExprs;
276 
277   assert(llvm::all_of(FrameIndexExprs,
278                       [](const FrameIndexExpr &A) {
279                         return A.Expr->isFragment();
280                       }) &&
281          "multiple FI expressions without DW_OP_LLVM_fragment");
282   llvm::sort(FrameIndexExprs,
283              [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool {
284                return A.Expr->getFragmentInfo()->OffsetInBits <
285                       B.Expr->getFragmentInfo()->OffsetInBits;
286              });
287 
288   return FrameIndexExprs;
289 }
290 
291 void DbgVariable::addMMIEntry(const DbgVariable &V) {
292   assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry");
293   assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry");
294   assert(V.getVariable() == getVariable() && "conflicting variable");
295   assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location");
296 
297   assert(!FrameIndexExprs.empty() && "Expected an MMI entry");
298   assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry");
299 
300   // FIXME: This logic should not be necessary anymore, as we now have proper
301   // deduplication. However, without it, we currently run into the assertion
302   // below, which means that we are likely dealing with broken input, i.e. two
303   // non-fragment entries for the same variable at different frame indices.
304   if (FrameIndexExprs.size()) {
305     auto *Expr = FrameIndexExprs.back().Expr;
306     if (!Expr || !Expr->isFragment())
307       return;
308   }
309 
310   for (const auto &FIE : V.FrameIndexExprs)
311     // Ignore duplicate entries.
312     if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) {
313           return FIE.FI == Other.FI && FIE.Expr == Other.Expr;
314         }))
315       FrameIndexExprs.push_back(FIE);
316 
317   assert((FrameIndexExprs.size() == 1 ||
318           llvm::all_of(FrameIndexExprs,
319                        [](FrameIndexExpr &FIE) {
320                          return FIE.Expr && FIE.Expr->isFragment();
321                        })) &&
322          "conflicting locations for variable");
323 }
324 
325 static AccelTableKind computeAccelTableKind(unsigned DwarfVersion,
326                                             bool GenerateTypeUnits,
327                                             DebuggerKind Tuning,
328                                             const Triple &TT) {
329   // Honor an explicit request.
330   if (AccelTables != AccelTableKind::Default)
331     return AccelTables;
332 
333   // Accelerator tables with type units are currently not supported.
334   if (GenerateTypeUnits)
335     return AccelTableKind::None;
336 
337   // Accelerator tables get emitted if targetting DWARF v5 or LLDB.  DWARF v5
338   // always implies debug_names. For lower standard versions we use apple
339   // accelerator tables on apple platforms and debug_names elsewhere.
340   if (DwarfVersion >= 5)
341     return AccelTableKind::Dwarf;
342   if (Tuning == DebuggerKind::LLDB)
343     return TT.isOSBinFormatMachO() ? AccelTableKind::Apple
344                                    : AccelTableKind::Dwarf;
345   return AccelTableKind::None;
346 }
347 
348 DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M)
349     : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()),
350       InfoHolder(A, "info_string", DIEValueAllocator),
351       SkeletonHolder(A, "skel_string", DIEValueAllocator),
352       IsDarwin(A->TM.getTargetTriple().isOSDarwin()) {
353   const Triple &TT = Asm->TM.getTargetTriple();
354 
355   // Make sure we know our "debugger tuning".  The target option takes
356   // precedence; fall back to triple-based defaults.
357   if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default)
358     DebuggerTuning = Asm->TM.Options.DebuggerTuning;
359   else if (IsDarwin)
360     DebuggerTuning = DebuggerKind::LLDB;
361   else if (TT.isPS4CPU())
362     DebuggerTuning = DebuggerKind::SCE;
363   else
364     DebuggerTuning = DebuggerKind::GDB;
365 
366   if (DwarfInlinedStrings == Default)
367     UseInlineStrings = TT.isNVPTX();
368   else
369     UseInlineStrings = DwarfInlinedStrings == Enable;
370 
371   UseLocSection = !TT.isNVPTX();
372 
373   HasAppleExtensionAttributes = tuneForLLDB();
374 
375   // Handle split DWARF.
376   HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty();
377 
378   // SCE defaults to linkage names only for abstract subprograms.
379   if (DwarfLinkageNames == DefaultLinkageNames)
380     UseAllLinkageNames = !tuneForSCE();
381   else
382     UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames;
383 
384   unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion;
385   unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber
386                                     : MMI->getModule()->getDwarfVersion();
387   // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2.
388   DwarfVersion =
389       TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION);
390 
391   UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX();
392 
393   // Use sections as references. Force for NVPTX.
394   if (DwarfSectionsAsReferences == Default)
395     UseSectionsAsReferences = TT.isNVPTX();
396   else
397     UseSectionsAsReferences = DwarfSectionsAsReferences == Enable;
398 
399   // Don't generate type units for unsupported object file formats.
400   GenerateTypeUnits =
401       A->TM.getTargetTriple().isOSBinFormatELF() && GenerateDwarfTypeUnits;
402 
403   TheAccelTableKind = computeAccelTableKind(
404       DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple());
405 
406   // Work around a GDB bug. GDB doesn't support the standard opcode;
407   // SCE doesn't support GNU's; LLDB prefers the standard opcode, which
408   // is defined as of DWARF 3.
409   // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented
410   // https://sourceware.org/bugzilla/show_bug.cgi?id=11616
411   UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3;
412 
413   // GDB does not fully support the DWARF 4 representation for bitfields.
414   UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB();
415 
416   // The DWARF v5 string offsets table has - possibly shared - contributions
417   // from each compile and type unit each preceded by a header. The string
418   // offsets table used by the pre-DWARF v5 split-DWARF implementation uses
419   // a monolithic string offsets table without any header.
420   UseSegmentedStringOffsetsTable = DwarfVersion >= 5;
421 
422   Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion);
423 }
424 
425 // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h.
426 DwarfDebug::~DwarfDebug() = default;
427 
428 static bool isObjCClass(StringRef Name) {
429   return Name.startswith("+") || Name.startswith("-");
430 }
431 
432 static bool hasObjCCategory(StringRef Name) {
433   if (!isObjCClass(Name))
434     return false;
435 
436   return Name.find(") ") != StringRef::npos;
437 }
438 
439 static void getObjCClassCategory(StringRef In, StringRef &Class,
440                                  StringRef &Category) {
441   if (!hasObjCCategory(In)) {
442     Class = In.slice(In.find('[') + 1, In.find(' '));
443     Category = "";
444     return;
445   }
446 
447   Class = In.slice(In.find('[') + 1, In.find('('));
448   Category = In.slice(In.find('[') + 1, In.find(' '));
449 }
450 
451 static StringRef getObjCMethodName(StringRef In) {
452   return In.slice(In.find(' ') + 1, In.find(']'));
453 }
454 
455 // Add the various names to the Dwarf accelerator table names.
456 void DwarfDebug::addSubprogramNames(const DICompileUnit &CU,
457                                     const DISubprogram *SP, DIE &Die) {
458   if (getAccelTableKind() != AccelTableKind::Apple &&
459       CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None)
460     return;
461 
462   if (!SP->isDefinition())
463     return;
464 
465   if (SP->getName() != "")
466     addAccelName(CU, SP->getName(), Die);
467 
468   // If the linkage name is different than the name, go ahead and output that as
469   // well into the name table. Only do that if we are going to actually emit
470   // that name.
471   if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() &&
472       (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP)))
473     addAccelName(CU, SP->getLinkageName(), Die);
474 
475   // If this is an Objective-C selector name add it to the ObjC accelerator
476   // too.
477   if (isObjCClass(SP->getName())) {
478     StringRef Class, Category;
479     getObjCClassCategory(SP->getName(), Class, Category);
480     addAccelObjC(CU, Class, Die);
481     if (Category != "")
482       addAccelObjC(CU, Category, Die);
483     // Also add the base method name to the name table.
484     addAccelName(CU, getObjCMethodName(SP->getName()), Die);
485   }
486 }
487 
488 /// Check whether we should create a DIE for the given Scope, return true
489 /// if we don't create a DIE (the corresponding DIE is null).
490 bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) {
491   if (Scope->isAbstractScope())
492     return false;
493 
494   // We don't create a DIE if there is no Range.
495   const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges();
496   if (Ranges.empty())
497     return true;
498 
499   if (Ranges.size() > 1)
500     return false;
501 
502   // We don't create a DIE if we have a single Range and the end label
503   // is null.
504   return !getLabelAfterInsn(Ranges.front().second);
505 }
506 
507 template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) {
508   F(CU);
509   if (auto *SkelCU = CU.getSkeleton())
510     if (CU.getCUNode()->getSplitDebugInlining())
511       F(*SkelCU);
512 }
513 
514 bool DwarfDebug::shareAcrossDWOCUs() const {
515   return SplitDwarfCrossCuReferences;
516 }
517 
518 void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU,
519                                                      LexicalScope *Scope) {
520   assert(Scope && Scope->getScopeNode());
521   assert(Scope->isAbstractScope());
522   assert(!Scope->getInlinedAt());
523 
524   auto *SP = cast<DISubprogram>(Scope->getScopeNode());
525 
526   // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram
527   // was inlined from another compile unit.
528   if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining())
529     // Avoid building the original CU if it won't be used
530     SrcCU.constructAbstractSubprogramScopeDIE(Scope);
531   else {
532     auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
533     if (auto *SkelCU = CU.getSkeleton()) {
534       (shareAcrossDWOCUs() ? CU : SrcCU)
535           .constructAbstractSubprogramScopeDIE(Scope);
536       if (CU.getCUNode()->getSplitDebugInlining())
537         SkelCU->constructAbstractSubprogramScopeDIE(Scope);
538     } else
539       CU.constructAbstractSubprogramScopeDIE(Scope);
540   }
541 }
542 
543 DIE &DwarfDebug::constructSubprogramDefinitionDIE(const DISubprogram *SP) {
544   DICompileUnit *Unit = SP->getUnit();
545   assert(SP->isDefinition() && "Subprogram not a definition");
546   assert(Unit && "Subprogram definition without parent unit");
547   auto &CU = getOrCreateDwarfCompileUnit(Unit);
548   return *CU.getOrCreateSubprogramDIE(SP);
549 }
550 
551 /// Represents a parameter whose call site value can be described by applying a
552 /// debug expression to a register in the forwarded register worklist.
553 struct FwdRegParamInfo {
554   /// The described parameter register.
555   unsigned ParamReg;
556 
557   /// Debug expression that has been built up when walking through the
558   /// instruction chain that produces the parameter's value.
559   const DIExpression *Expr;
560 };
561 
562 /// Register worklist for finding call site values.
563 using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>;
564 
565 /// Emit call site parameter entries that are described by the given value and
566 /// debug expression.
567 template <typename ValT>
568 static void finishCallSiteParams(ValT Val, const DIExpression *Expr,
569                                  ArrayRef<FwdRegParamInfo> DescribedParams,
570                                  ParamSet &Params) {
571   for (auto Param : DescribedParams) {
572     bool ShouldCombineExpressions = Expr && Param.Expr->getNumElements() > 0;
573 
574     // TODO: Entry value operations can currently not be combined with any
575     // other expressions, so we can't emit call site entries in those cases.
576     if (ShouldCombineExpressions && Expr->isEntryValue())
577       continue;
578 
579     // If a parameter's call site value is produced by a chain of
580     // instructions we may have already created an expression for the
581     // parameter when walking through the instructions. Append that to the
582     // base expression.
583     const DIExpression *CombinedExpr =
584         ShouldCombineExpressions
585             ? DIExpression::append(Expr, Param.Expr->getElements())
586             : Expr;
587     assert((!CombinedExpr || CombinedExpr->isValid()) &&
588            "Combined debug expression is invalid");
589 
590     DbgValueLoc DbgLocVal(CombinedExpr, Val);
591     DbgCallSiteParam CSParm(Param.ParamReg, DbgLocVal);
592     Params.push_back(CSParm);
593     ++NumCSParams;
594   }
595 }
596 
597 /// Add \p Reg to the worklist, if it's not already present, and mark that the
598 /// given parameter registers' values can (potentially) be described using
599 /// that register and an debug expression.
600 static void addToFwdRegWorklist(FwdRegWorklist &Worklist, unsigned Reg,
601                                 const DIExpression *Expr,
602                                 ArrayRef<FwdRegParamInfo> ParamsToAdd) {
603   auto I = Worklist.insert({Reg, {}});
604   auto &ParamsForFwdReg = I.first->second;
605   for (auto Param : ParamsToAdd) {
606     assert(none_of(ParamsForFwdReg,
607                    [Param](const FwdRegParamInfo &D) {
608                      return D.ParamReg == Param.ParamReg;
609                    }) &&
610            "Same parameter described twice by forwarding reg");
611 
612     // If a parameter's call site value is produced by a chain of
613     // instructions we may have already created an expression for the
614     // parameter when walking through the instructions. Append that to the
615     // new expression.
616     std::vector<uint64_t> ParamElts = Param.Expr->getElements().vec();
617     // Avoid multiple DW_OP_stack_values.
618     if (Expr->isImplicit() && Param.Expr->isImplicit())
619       erase_if(ParamElts,
620                [](uint64_t Op) { return Op == dwarf::DW_OP_stack_value; });
621     const DIExpression *CombinedExpr =
622         (Param.Expr->getNumElements() > 0)
623             ? DIExpression::append(Expr, ParamElts)
624             : Expr;
625     ParamsForFwdReg.push_back({Param.ParamReg, CombinedExpr});
626   }
627 }
628 
629 /// Try to interpret values loaded into registers that forward parameters
630 /// for \p CallMI. Store parameters with interpreted value into \p Params.
631 static void collectCallSiteParameters(const MachineInstr *CallMI,
632                                       ParamSet &Params) {
633   auto *MF = CallMI->getMF();
634   auto CalleesMap = MF->getCallSitesInfo();
635   auto CallFwdRegsInfo = CalleesMap.find(CallMI);
636 
637   // There is no information for the call instruction.
638   if (CallFwdRegsInfo == CalleesMap.end())
639     return;
640 
641   auto *MBB = CallMI->getParent();
642   const auto &TRI = MF->getSubtarget().getRegisterInfo();
643   const auto &TII = MF->getSubtarget().getInstrInfo();
644   const auto &TLI = MF->getSubtarget().getTargetLowering();
645 
646   // Skip the call instruction.
647   auto I = std::next(CallMI->getReverseIterator());
648 
649   FwdRegWorklist ForwardedRegWorklist;
650 
651   // If an instruction defines more than one item in the worklist, we may run
652   // into situations where a worklist register's value is (potentially)
653   // described by the previous value of another register that is also defined
654   // by that instruction.
655   //
656   // This can for example occur in cases like this:
657   //
658   //   $r1 = mov 123
659   //   $r0, $r1 = mvrr $r1, 456
660   //   call @foo, $r0, $r1
661   //
662   // When describing $r1's value for the mvrr instruction, we need to make sure
663   // that we don't finalize an entry value for $r0, as that is dependent on the
664   // previous value of $r1 (123 rather than 456).
665   //
666   // In order to not have to distinguish between those cases when finalizing
667   // entry values, we simply postpone adding new parameter registers to the
668   // worklist, by first keeping them in this temporary container until the
669   // instruction has been handled.
670   FwdRegWorklist NewWorklistItems;
671 
672   const DIExpression *EmptyExpr =
673       DIExpression::get(MF->getFunction().getContext(), {});
674 
675   // Add all the forwarding registers into the ForwardedRegWorklist.
676   for (auto ArgReg : CallFwdRegsInfo->second) {
677     bool InsertedReg =
678         ForwardedRegWorklist.insert({ArgReg.Reg, {{ArgReg.Reg, EmptyExpr}}})
679             .second;
680     assert(InsertedReg && "Single register used to forward two arguments?");
681     (void)InsertedReg;
682   }
683 
684   // We erase, from the ForwardedRegWorklist, those forwarding registers for
685   // which we successfully describe a loaded value (by using
686   // the describeLoadedValue()). For those remaining arguments in the working
687   // list, for which we do not describe a loaded value by
688   // the describeLoadedValue(), we try to generate an entry value expression
689   // for their call site value description, if the call is within the entry MBB.
690   // TODO: Handle situations when call site parameter value can be described
691   // as the entry value within basic blocks other than the first one.
692   bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin();
693 
694   // If the MI is an instruction defining one or more parameters' forwarding
695   // registers, add those defines.
696   auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI,
697                                           SmallSetVector<unsigned, 4> &Defs) {
698     if (MI.isDebugInstr())
699       return;
700 
701     for (const MachineOperand &MO : MI.operands()) {
702       if (MO.isReg() && MO.isDef() &&
703           Register::isPhysicalRegister(MO.getReg())) {
704         for (auto FwdReg : ForwardedRegWorklist)
705           if (TRI->regsOverlap(FwdReg.first, MO.getReg()))
706             Defs.insert(FwdReg.first);
707       }
708     }
709   };
710 
711   // Search for a loading value in forwarding registers.
712   for (; I != MBB->rend(); ++I) {
713     // Skip bundle headers.
714     if (I->isBundle())
715       continue;
716 
717     // If the next instruction is a call we can not interpret parameter's
718     // forwarding registers or we finished the interpretation of all parameters.
719     if (I->isCall())
720       return;
721 
722     if (ForwardedRegWorklist.empty())
723       return;
724 
725     // Set of worklist registers that are defined by this instruction.
726     SmallSetVector<unsigned, 4> FwdRegDefs;
727 
728     getForwardingRegsDefinedByMI(*I, FwdRegDefs);
729     if (FwdRegDefs.empty())
730       continue;
731 
732     for (auto ParamFwdReg : FwdRegDefs) {
733       if (auto ParamValue = TII->describeLoadedValue(*I, ParamFwdReg)) {
734         if (ParamValue->first.isImm()) {
735           int64_t Val = ParamValue->first.getImm();
736           finishCallSiteParams(Val, ParamValue->second,
737                                ForwardedRegWorklist[ParamFwdReg], Params);
738         } else if (ParamValue->first.isReg()) {
739           Register RegLoc = ParamValue->first.getReg();
740           unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
741           Register FP = TRI->getFrameRegister(*MF);
742           bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP);
743           if (TRI->isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) {
744             MachineLocation MLoc(RegLoc, /*IsIndirect=*/IsSPorFP);
745             finishCallSiteParams(MLoc, ParamValue->second,
746                                  ForwardedRegWorklist[ParamFwdReg], Params);
747           } else {
748             // ParamFwdReg was described by the non-callee saved register
749             // RegLoc. Mark that the call site values for the parameters are
750             // dependent on that register instead of ParamFwdReg. Since RegLoc
751             // may be a register that will be handled in this iteration, we
752             // postpone adding the items to the worklist, and instead keep them
753             // in a temporary container.
754             addToFwdRegWorklist(NewWorklistItems, RegLoc, ParamValue->second,
755                                 ForwardedRegWorklist[ParamFwdReg]);
756           }
757         }
758       }
759     }
760 
761     // Remove all registers that this instruction defines from the worklist.
762     for (auto ParamFwdReg : FwdRegDefs)
763       ForwardedRegWorklist.erase(ParamFwdReg);
764 
765     // Now that we are done handling this instruction, add items from the
766     // temporary worklist to the real one.
767     for (auto New : NewWorklistItems)
768       addToFwdRegWorklist(ForwardedRegWorklist, New.first, EmptyExpr,
769                           New.second);
770     NewWorklistItems.clear();
771   }
772 
773   // Emit the call site parameter's value as an entry value.
774   if (ShouldTryEmitEntryVals) {
775     // Create an expression where the register's entry value is used.
776     DIExpression *EntryExpr = DIExpression::get(
777         MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1});
778     for (auto RegEntry : ForwardedRegWorklist) {
779       MachineLocation MLoc(RegEntry.first);
780       finishCallSiteParams(MLoc, EntryExpr, RegEntry.second, Params);
781     }
782   }
783 }
784 
785 void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP,
786                                             DwarfCompileUnit &CU, DIE &ScopeDIE,
787                                             const MachineFunction &MF) {
788   // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if
789   // the subprogram is required to have one.
790   if (!SP.areAllCallsDescribed() || !SP.isDefinition())
791     return;
792 
793   // Use DW_AT_call_all_calls to express that call site entries are present
794   // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls
795   // because one of its requirements is not met: call site entries for
796   // optimized-out calls are elided.
797   CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls));
798 
799   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
800   assert(TII && "TargetInstrInfo not found: cannot label tail calls");
801 
802   // Emit call site entries for each call or tail call in the function.
803   for (const MachineBasicBlock &MBB : MF) {
804     for (const MachineInstr &MI : MBB.instrs()) {
805       // Bundles with call in them will pass the isCall() test below but do not
806       // have callee operand information so skip them here. Iterator will
807       // eventually reach the call MI.
808       if (MI.isBundle())
809         continue;
810 
811       // Skip instructions which aren't calls. Both calls and tail-calling jump
812       // instructions (e.g TAILJMPd64) are classified correctly here.
813       if (!MI.isCandidateForCallSiteEntry())
814         continue;
815 
816       // Skip instructions marked as frame setup, as they are not interesting to
817       // the user.
818       if (MI.getFlag(MachineInstr::FrameSetup))
819         continue;
820 
821       // TODO: Add support for targets with delay slots (see: beginInstruction).
822       if (MI.hasDelaySlot())
823         return;
824 
825       // If this is a direct call, find the callee's subprogram.
826       // In the case of an indirect call find the register that holds
827       // the callee.
828       const MachineOperand &CalleeOp = MI.getOperand(0);
829       if (!CalleeOp.isGlobal() && !CalleeOp.isReg())
830         continue;
831 
832       unsigned CallReg = 0;
833       DIE *CalleeDIE = nullptr;
834       const Function *CalleeDecl = nullptr;
835       if (CalleeOp.isReg()) {
836         CallReg = CalleeOp.getReg();
837         if (!CallReg)
838           continue;
839       } else {
840         CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal());
841         if (!CalleeDecl || !CalleeDecl->getSubprogram())
842           continue;
843         const DISubprogram *CalleeSP = CalleeDecl->getSubprogram();
844 
845         if (CalleeSP->isDefinition()) {
846           // Ensure that a subprogram DIE for the callee is available in the
847           // appropriate CU.
848           CalleeDIE = &constructSubprogramDefinitionDIE(CalleeSP);
849         } else {
850           // Create the declaration DIE if it is missing. This is required to
851           // support compilation of old bitcode with an incomplete list of
852           // retained metadata.
853           CalleeDIE = CU.getOrCreateSubprogramDIE(CalleeSP);
854         }
855         assert(CalleeDIE && "Must have a DIE for the callee");
856       }
857 
858       // TODO: Omit call site entries for runtime calls (objc_msgSend, etc).
859 
860       bool IsTail = TII->isTailCall(MI);
861 
862       // If MI is in a bundle, the label was created after the bundle since
863       // EmitFunctionBody iterates over top-level MIs. Get that top-level MI
864       // to search for that label below.
865       const MachineInstr *TopLevelCallMI =
866           MI.isInsideBundle() ? &*getBundleStart(MI.getIterator()) : &MI;
867 
868       // For tail calls, no return PC information is needed.
869       // For regular calls (and tail calls in GDB tuning), the return PC
870       // is needed to disambiguate paths in the call graph which could lead to
871       // some target function.
872       const MCSymbol *PCAddr =
873           (IsTail && !tuneForGDB())
874               ? nullptr
875               : const_cast<MCSymbol *>(getLabelAfterInsn(TopLevelCallMI));
876 
877       assert((IsTail || PCAddr) && "Call without return PC information");
878 
879       LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> "
880                         << (CalleeDecl ? CalleeDecl->getName()
881                                        : StringRef(MF.getSubtarget()
882                                                        .getRegisterInfo()
883                                                        ->getName(CallReg)))
884                         << (IsTail ? " [IsTail]" : "") << "\n");
885 
886       DIE &CallSiteDIE = CU.constructCallSiteEntryDIE(ScopeDIE, CalleeDIE,
887                                                       IsTail, PCAddr, CallReg);
888 
889       // GDB and LLDB support call site parameter debug info.
890       if (Asm->TM.Options.EnableDebugEntryValues &&
891           (tuneForGDB() || tuneForLLDB())) {
892         ParamSet Params;
893         // Try to interpret values of call site parameters.
894         collectCallSiteParameters(&MI, Params);
895         CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params);
896       }
897     }
898   }
899 }
900 
901 void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const {
902   if (!U.hasDwarfPubSections())
903     return;
904 
905   U.addFlag(D, dwarf::DW_AT_GNU_pubnames);
906 }
907 
908 void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit,
909                                       DwarfCompileUnit &NewCU) {
910   DIE &Die = NewCU.getUnitDie();
911   StringRef FN = DIUnit->getFilename();
912 
913   StringRef Producer = DIUnit->getProducer();
914   StringRef Flags = DIUnit->getFlags();
915   if (!Flags.empty() && !useAppleExtensionAttributes()) {
916     std::string ProducerWithFlags = Producer.str() + " " + Flags.str();
917     NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags);
918   } else
919     NewCU.addString(Die, dwarf::DW_AT_producer, Producer);
920 
921   NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
922                 DIUnit->getSourceLanguage());
923   NewCU.addString(Die, dwarf::DW_AT_name, FN);
924   StringRef SysRoot = DIUnit->getSysRoot();
925   if (!SysRoot.empty())
926     NewCU.addString(Die, dwarf::DW_AT_LLVM_sysroot, SysRoot);
927   StringRef SDK = DIUnit->getSDK();
928   if (!SDK.empty())
929     NewCU.addString(Die, dwarf::DW_AT_APPLE_sdk, SDK);
930 
931   // Add DW_str_offsets_base to the unit DIE, except for split units.
932   if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
933     NewCU.addStringOffsetsStart();
934 
935   if (!useSplitDwarf()) {
936     NewCU.initStmtList();
937 
938     // If we're using split dwarf the compilation dir is going to be in the
939     // skeleton CU and so we don't need to duplicate it here.
940     if (!CompilationDir.empty())
941       NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
942     addGnuPubAttributes(NewCU, Die);
943   }
944 
945   if (useAppleExtensionAttributes()) {
946     if (DIUnit->isOptimized())
947       NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized);
948 
949     StringRef Flags = DIUnit->getFlags();
950     if (!Flags.empty())
951       NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags);
952 
953     if (unsigned RVer = DIUnit->getRuntimeVersion())
954       NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers,
955                     dwarf::DW_FORM_data1, RVer);
956   }
957 
958   if (DIUnit->getDWOId()) {
959     // This CU is either a clang module DWO or a skeleton CU.
960     NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8,
961                   DIUnit->getDWOId());
962     if (!DIUnit->getSplitDebugFilename().empty()) {
963       // This is a prefabricated skeleton CU.
964       dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
965                                          ? dwarf::DW_AT_dwo_name
966                                          : dwarf::DW_AT_GNU_dwo_name;
967       NewCU.addString(Die, attrDWOName, DIUnit->getSplitDebugFilename());
968     }
969   }
970 }
971 // Create new DwarfCompileUnit for the given metadata node with tag
972 // DW_TAG_compile_unit.
973 DwarfCompileUnit &
974 DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) {
975   if (auto *CU = CUMap.lookup(DIUnit))
976     return *CU;
977 
978   CompilationDir = DIUnit->getDirectory();
979 
980   auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
981       InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder);
982   DwarfCompileUnit &NewCU = *OwnedUnit;
983   InfoHolder.addUnit(std::move(OwnedUnit));
984 
985   for (auto *IE : DIUnit->getImportedEntities())
986     NewCU.addImportedEntity(IE);
987 
988   // LTO with assembly output shares a single line table amongst multiple CUs.
989   // To avoid the compilation directory being ambiguous, let the line table
990   // explicitly describe the directory of all files, never relying on the
991   // compilation directory.
992   if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU)
993     Asm->OutStreamer->emitDwarfFile0Directive(
994         CompilationDir, DIUnit->getFilename(),
995         NewCU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource(),
996         NewCU.getUniqueID());
997 
998   if (useSplitDwarf()) {
999     NewCU.setSkeleton(constructSkeletonCU(NewCU));
1000     NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection());
1001   } else {
1002     finishUnitAttributes(DIUnit, NewCU);
1003     NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
1004   }
1005 
1006   CUMap.insert({DIUnit, &NewCU});
1007   CUDieMap.insert({&NewCU.getUnitDie(), &NewCU});
1008   return NewCU;
1009 }
1010 
1011 void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU,
1012                                                   const DIImportedEntity *N) {
1013   if (isa<DILocalScope>(N->getScope()))
1014     return;
1015   if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope()))
1016     D->addChild(TheCU.constructImportedEntityDIE(N));
1017 }
1018 
1019 /// Sort and unique GVEs by comparing their fragment offset.
1020 static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &
1021 sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) {
1022   llvm::sort(
1023       GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) {
1024         // Sort order: first null exprs, then exprs without fragment
1025         // info, then sort by fragment offset in bits.
1026         // FIXME: Come up with a more comprehensive comparator so
1027         // the sorting isn't non-deterministic, and so the following
1028         // std::unique call works correctly.
1029         if (!A.Expr || !B.Expr)
1030           return !!B.Expr;
1031         auto FragmentA = A.Expr->getFragmentInfo();
1032         auto FragmentB = B.Expr->getFragmentInfo();
1033         if (!FragmentA || !FragmentB)
1034           return !!FragmentB;
1035         return FragmentA->OffsetInBits < FragmentB->OffsetInBits;
1036       });
1037   GVEs.erase(std::unique(GVEs.begin(), GVEs.end(),
1038                          [](DwarfCompileUnit::GlobalExpr A,
1039                             DwarfCompileUnit::GlobalExpr B) {
1040                            return A.Expr == B.Expr;
1041                          }),
1042              GVEs.end());
1043   return GVEs;
1044 }
1045 
1046 // Emit all Dwarf sections that should come prior to the content. Create
1047 // global DIEs and emit initial debug info sections. This is invoked by
1048 // the target AsmPrinter.
1049 void DwarfDebug::beginModule() {
1050   NamedRegionTimer T(DbgTimerName, DbgTimerDescription, DWARFGroupName,
1051                      DWARFGroupDescription, TimePassesIsEnabled);
1052   if (DisableDebugInfoPrinting) {
1053     MMI->setDebugInfoAvailability(false);
1054     return;
1055   }
1056 
1057   const Module *M = MMI->getModule();
1058 
1059   unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(),
1060                                        M->debug_compile_units_end());
1061   // Tell MMI whether we have debug info.
1062   assert(MMI->hasDebugInfo() == (NumDebugCUs > 0) &&
1063          "DebugInfoAvailabilty initialized unexpectedly");
1064   SingleCU = NumDebugCUs == 1;
1065   DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>>
1066       GVMap;
1067   for (const GlobalVariable &Global : M->globals()) {
1068     SmallVector<DIGlobalVariableExpression *, 1> GVs;
1069     Global.getDebugInfo(GVs);
1070     for (auto *GVE : GVs)
1071       GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()});
1072   }
1073 
1074   // Create the symbol that designates the start of the unit's contribution
1075   // to the string offsets table. In a split DWARF scenario, only the skeleton
1076   // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol).
1077   if (useSegmentedStringOffsetsTable())
1078     (useSplitDwarf() ? SkeletonHolder : InfoHolder)
1079         .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base"));
1080 
1081 
1082   // Create the symbols that designates the start of the DWARF v5 range list
1083   // and locations list tables. They are located past the table headers.
1084   if (getDwarfVersion() >= 5) {
1085     DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
1086     Holder.setRnglistsTableBaseSym(
1087         Asm->createTempSymbol("rnglists_table_base"));
1088 
1089     if (useSplitDwarf())
1090       InfoHolder.setRnglistsTableBaseSym(
1091           Asm->createTempSymbol("rnglists_dwo_table_base"));
1092   }
1093 
1094   // Create the symbol that points to the first entry following the debug
1095   // address table (.debug_addr) header.
1096   AddrPool.setLabel(Asm->createTempSymbol("addr_table_base"));
1097   DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base"));
1098 
1099   for (DICompileUnit *CUNode : M->debug_compile_units()) {
1100     // FIXME: Move local imported entities into a list attached to the
1101     // subprogram, then this search won't be needed and a
1102     // getImportedEntities().empty() test should go below with the rest.
1103     bool HasNonLocalImportedEntities = llvm::any_of(
1104         CUNode->getImportedEntities(), [](const DIImportedEntity *IE) {
1105           return !isa<DILocalScope>(IE->getScope());
1106         });
1107 
1108     if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() &&
1109         CUNode->getRetainedTypes().empty() &&
1110         CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty())
1111       continue;
1112 
1113     DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode);
1114 
1115     // Global Variables.
1116     for (auto *GVE : CUNode->getGlobalVariables()) {
1117       // Don't bother adding DIGlobalVariableExpressions listed in the CU if we
1118       // already know about the variable and it isn't adding a constant
1119       // expression.
1120       auto &GVMapEntry = GVMap[GVE->getVariable()];
1121       auto *Expr = GVE->getExpression();
1122       if (!GVMapEntry.size() || (Expr && Expr->isConstant()))
1123         GVMapEntry.push_back({nullptr, Expr});
1124     }
1125     DenseSet<DIGlobalVariable *> Processed;
1126     for (auto *GVE : CUNode->getGlobalVariables()) {
1127       DIGlobalVariable *GV = GVE->getVariable();
1128       if (Processed.insert(GV).second)
1129         CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV]));
1130     }
1131 
1132     for (auto *Ty : CUNode->getEnumTypes()) {
1133       // The enum types array by design contains pointers to
1134       // MDNodes rather than DIRefs. Unique them here.
1135       CU.getOrCreateTypeDIE(cast<DIType>(Ty));
1136     }
1137     for (auto *Ty : CUNode->getRetainedTypes()) {
1138       // The retained types array by design contains pointers to
1139       // MDNodes rather than DIRefs. Unique them here.
1140       if (DIType *RT = dyn_cast<DIType>(Ty))
1141           // There is no point in force-emitting a forward declaration.
1142           CU.getOrCreateTypeDIE(RT);
1143     }
1144     // Emit imported_modules last so that the relevant context is already
1145     // available.
1146     for (auto *IE : CUNode->getImportedEntities())
1147       constructAndAddImportedEntityDIE(CU, IE);
1148   }
1149 }
1150 
1151 void DwarfDebug::finishEntityDefinitions() {
1152   for (const auto &Entity : ConcreteEntities) {
1153     DIE *Die = Entity->getDIE();
1154     assert(Die);
1155     // FIXME: Consider the time-space tradeoff of just storing the unit pointer
1156     // in the ConcreteEntities list, rather than looking it up again here.
1157     // DIE::getUnit isn't simple - it walks parent pointers, etc.
1158     DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie());
1159     assert(Unit);
1160     Unit->finishEntityDefinition(Entity.get());
1161   }
1162 }
1163 
1164 void DwarfDebug::finishSubprogramDefinitions() {
1165   for (const DISubprogram *SP : ProcessedSPNodes) {
1166     assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug);
1167     forBothCUs(
1168         getOrCreateDwarfCompileUnit(SP->getUnit()),
1169         [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); });
1170   }
1171 }
1172 
1173 void DwarfDebug::finalizeModuleInfo() {
1174   const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering();
1175 
1176   finishSubprogramDefinitions();
1177 
1178   finishEntityDefinitions();
1179 
1180   // Include the DWO file name in the hash if there's more than one CU.
1181   // This handles ThinLTO's situation where imported CUs may very easily be
1182   // duplicate with the same CU partially imported into another ThinLTO unit.
1183   StringRef DWOName;
1184   if (CUMap.size() > 1)
1185     DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile;
1186 
1187   // Handle anything that needs to be done on a per-unit basis after
1188   // all other generation.
1189   for (const auto &P : CUMap) {
1190     auto &TheCU = *P.second;
1191     if (TheCU.getCUNode()->isDebugDirectivesOnly())
1192       continue;
1193     // Emit DW_AT_containing_type attribute to connect types with their
1194     // vtable holding type.
1195     TheCU.constructContainingTypeDIEs();
1196 
1197     // Add CU specific attributes if we need to add any.
1198     // If we're splitting the dwarf out now that we've got the entire
1199     // CU then add the dwo id to it.
1200     auto *SkCU = TheCU.getSkeleton();
1201 
1202     bool HasSplitUnit = SkCU && !TheCU.getUnitDie().children().empty();
1203 
1204     if (HasSplitUnit) {
1205       dwarf::Attribute attrDWOName = getDwarfVersion() >= 5
1206                                          ? dwarf::DW_AT_dwo_name
1207                                          : dwarf::DW_AT_GNU_dwo_name;
1208       finishUnitAttributes(TheCU.getCUNode(), TheCU);
1209       TheCU.addString(TheCU.getUnitDie(), attrDWOName,
1210                       Asm->TM.Options.MCOptions.SplitDwarfFile);
1211       SkCU->addString(SkCU->getUnitDie(), attrDWOName,
1212                       Asm->TM.Options.MCOptions.SplitDwarfFile);
1213       // Emit a unique identifier for this CU.
1214       uint64_t ID =
1215           DIEHash(Asm).computeCUSignature(DWOName, TheCU.getUnitDie());
1216       if (getDwarfVersion() >= 5) {
1217         TheCU.setDWOId(ID);
1218         SkCU->setDWOId(ID);
1219       } else {
1220         TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1221                       dwarf::DW_FORM_data8, ID);
1222         SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id,
1223                       dwarf::DW_FORM_data8, ID);
1224       }
1225 
1226       if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) {
1227         const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol();
1228         SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base,
1229                               Sym, Sym);
1230       }
1231     } else if (SkCU) {
1232       finishUnitAttributes(SkCU->getCUNode(), *SkCU);
1233     }
1234 
1235     // If we have code split among multiple sections or non-contiguous
1236     // ranges of code then emit a DW_AT_ranges attribute on the unit that will
1237     // remain in the .o file, otherwise add a DW_AT_low_pc.
1238     // FIXME: We should use ranges allow reordering of code ala
1239     // .subsections_via_symbols in mach-o. This would mean turning on
1240     // ranges for all subprogram DIEs for mach-o.
1241     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
1242 
1243     if (unsigned NumRanges = TheCU.getRanges().size()) {
1244       if (NumRanges > 1 && useRangesSection())
1245         // A DW_AT_low_pc attribute may also be specified in combination with
1246         // DW_AT_ranges to specify the default base address for use in
1247         // location lists (see Section 2.6.2) and range lists (see Section
1248         // 2.17.3).
1249         U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0);
1250       else
1251         U.setBaseAddress(TheCU.getRanges().front().Begin);
1252       U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges());
1253     }
1254 
1255     // We don't keep track of which addresses are used in which CU so this
1256     // is a bit pessimistic under LTO.
1257     if ((!AddrPool.isEmpty() || TheCU.hasRangeLists()) &&
1258         (getDwarfVersion() >= 5 || HasSplitUnit))
1259       U.addAddrTableBase();
1260 
1261     if (getDwarfVersion() >= 5) {
1262       if (U.hasRangeLists())
1263         U.addRnglistsBase();
1264 
1265       if (!DebugLocs.getLists().empty()) {
1266         if (!useSplitDwarf())
1267           U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base,
1268                             DebugLocs.getSym(),
1269                             TLOF.getDwarfLoclistsSection()->getBeginSymbol());
1270       }
1271     }
1272 
1273     auto *CUNode = cast<DICompileUnit>(P.first);
1274     // If compile Unit has macros, emit "DW_AT_macro_info" attribute.
1275     if (CUNode->getMacros()) {
1276       if (useSplitDwarf())
1277         TheCU.addSectionDelta(TheCU.getUnitDie(), dwarf::DW_AT_macro_info,
1278                             U.getMacroLabelBegin(),
1279                             TLOF.getDwarfMacinfoDWOSection()->getBeginSymbol());
1280       else
1281         U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info,
1282                           U.getMacroLabelBegin(),
1283                           TLOF.getDwarfMacinfoSection()->getBeginSymbol());
1284     }
1285   }
1286 
1287   // Emit all frontend-produced Skeleton CUs, i.e., Clang modules.
1288   for (auto *CUNode : MMI->getModule()->debug_compile_units())
1289     if (CUNode->getDWOId())
1290       getOrCreateDwarfCompileUnit(CUNode);
1291 
1292   // Compute DIE offsets and sizes.
1293   InfoHolder.computeSizeAndOffsets();
1294   if (useSplitDwarf())
1295     SkeletonHolder.computeSizeAndOffsets();
1296 }
1297 
1298 // Emit all Dwarf sections that should come after the content.
1299 void DwarfDebug::endModule() {
1300   assert(CurFn == nullptr);
1301   assert(CurMI == nullptr);
1302 
1303   for (const auto &P : CUMap) {
1304     auto &CU = *P.second;
1305     CU.createBaseTypeDIEs();
1306   }
1307 
1308   // If we aren't actually generating debug info (check beginModule -
1309   // conditionalized on !DisableDebugInfoPrinting and the presence of the
1310   // llvm.dbg.cu metadata node)
1311   if (!MMI->hasDebugInfo())
1312     return;
1313 
1314   // Finalize the debug info for the module.
1315   finalizeModuleInfo();
1316 
1317   if (useSplitDwarf())
1318     // Emit debug_loc.dwo/debug_loclists.dwo section.
1319     emitDebugLocDWO();
1320   else
1321     // Emit debug_loc/debug_loclists section.
1322     emitDebugLoc();
1323 
1324   // Corresponding abbreviations into a abbrev section.
1325   emitAbbreviations();
1326 
1327   // Emit all the DIEs into a debug info section.
1328   emitDebugInfo();
1329 
1330   // Emit info into a debug aranges section.
1331   if (GenerateARangeSection)
1332     emitDebugARanges();
1333 
1334   // Emit info into a debug ranges section.
1335   emitDebugRanges();
1336 
1337   if (useSplitDwarf())
1338   // Emit info into a debug macinfo.dwo section.
1339     emitDebugMacinfoDWO();
1340   else
1341   // Emit info into a debug macinfo section.
1342     emitDebugMacinfo();
1343 
1344   emitDebugStr();
1345 
1346   if (useSplitDwarf()) {
1347     emitDebugStrDWO();
1348     emitDebugInfoDWO();
1349     emitDebugAbbrevDWO();
1350     emitDebugLineDWO();
1351     emitDebugRangesDWO();
1352   }
1353 
1354   emitDebugAddr();
1355 
1356   // Emit info into the dwarf accelerator table sections.
1357   switch (getAccelTableKind()) {
1358   case AccelTableKind::Apple:
1359     emitAccelNames();
1360     emitAccelObjC();
1361     emitAccelNamespaces();
1362     emitAccelTypes();
1363     break;
1364   case AccelTableKind::Dwarf:
1365     emitAccelDebugNames();
1366     break;
1367   case AccelTableKind::None:
1368     break;
1369   case AccelTableKind::Default:
1370     llvm_unreachable("Default should have already been resolved.");
1371   }
1372 
1373   // Emit the pubnames and pubtypes sections if requested.
1374   emitDebugPubSections();
1375 
1376   // clean up.
1377   // FIXME: AbstractVariables.clear();
1378 }
1379 
1380 void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU,
1381                                                const DINode *Node,
1382                                                const MDNode *ScopeNode) {
1383   if (CU.getExistingAbstractEntity(Node))
1384     return;
1385 
1386   CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope(
1387                                        cast<DILocalScope>(ScopeNode)));
1388 }
1389 
1390 void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU,
1391     const DINode *Node, const MDNode *ScopeNode) {
1392   if (CU.getExistingAbstractEntity(Node))
1393     return;
1394 
1395   if (LexicalScope *Scope =
1396           LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode)))
1397     CU.createAbstractEntity(Node, Scope);
1398 }
1399 
1400 // Collect variable information from side table maintained by MF.
1401 void DwarfDebug::collectVariableInfoFromMFTable(
1402     DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) {
1403   SmallDenseMap<InlinedEntity, DbgVariable *> MFVars;
1404   LLVM_DEBUG(dbgs() << "DwarfDebug: collecting variables from MF side table\n");
1405   for (const auto &VI : Asm->MF->getVariableDbgInfo()) {
1406     if (!VI.Var)
1407       continue;
1408     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1409            "Expected inlined-at fields to agree");
1410 
1411     InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt());
1412     Processed.insert(Var);
1413     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1414 
1415     // If variable scope is not found then skip this variable.
1416     if (!Scope) {
1417       LLVM_DEBUG(dbgs() << "Dropping debug info for " << VI.Var->getName()
1418                         << ", no variable scope found\n");
1419       continue;
1420     }
1421 
1422     ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode());
1423     auto RegVar = std::make_unique<DbgVariable>(
1424                     cast<DILocalVariable>(Var.first), Var.second);
1425     RegVar->initializeMMI(VI.Expr, VI.Slot);
1426     LLVM_DEBUG(dbgs() << "Created DbgVariable for " << VI.Var->getName()
1427                       << "\n");
1428     if (DbgVariable *DbgVar = MFVars.lookup(Var))
1429       DbgVar->addMMIEntry(*RegVar);
1430     else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) {
1431       MFVars.insert({Var, RegVar.get()});
1432       ConcreteEntities.push_back(std::move(RegVar));
1433     }
1434   }
1435 }
1436 
1437 /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its
1438 /// enclosing lexical scope. The check ensures there are no other instructions
1439 /// in the same lexical scope preceding the DBG_VALUE and that its range is
1440 /// either open or otherwise rolls off the end of the scope.
1441 static bool validThroughout(LexicalScopes &LScopes,
1442                             const MachineInstr *DbgValue,
1443                             const MachineInstr *RangeEnd) {
1444   assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location");
1445   auto MBB = DbgValue->getParent();
1446   auto DL = DbgValue->getDebugLoc();
1447   auto *LScope = LScopes.findLexicalScope(DL);
1448   // Scope doesn't exist; this is a dead DBG_VALUE.
1449   if (!LScope)
1450     return false;
1451   auto &LSRange = LScope->getRanges();
1452   if (LSRange.size() == 0)
1453     return false;
1454 
1455   // Determine if the DBG_VALUE is valid at the beginning of its lexical block.
1456   const MachineInstr *LScopeBegin = LSRange.front().first;
1457   // Early exit if the lexical scope begins outside of the current block.
1458   if (LScopeBegin->getParent() != MBB)
1459     return false;
1460   MachineBasicBlock::const_reverse_iterator Pred(DbgValue);
1461   for (++Pred; Pred != MBB->rend(); ++Pred) {
1462     if (Pred->getFlag(MachineInstr::FrameSetup))
1463       break;
1464     auto PredDL = Pred->getDebugLoc();
1465     if (!PredDL || Pred->isMetaInstruction())
1466       continue;
1467     // Check whether the instruction preceding the DBG_VALUE is in the same
1468     // (sub)scope as the DBG_VALUE.
1469     if (DL->getScope() == PredDL->getScope())
1470       return false;
1471     auto *PredScope = LScopes.findLexicalScope(PredDL);
1472     if (!PredScope || LScope->dominates(PredScope))
1473       return false;
1474   }
1475 
1476   // If the range of the DBG_VALUE is open-ended, report success.
1477   if (!RangeEnd)
1478     return true;
1479 
1480   // Fail if there are instructions belonging to our scope in another block.
1481   const MachineInstr *LScopeEnd = LSRange.back().second;
1482   if (LScopeEnd->getParent() != MBB)
1483     return false;
1484 
1485   // Single, constant DBG_VALUEs in the prologue are promoted to be live
1486   // throughout the function. This is a hack, presumably for DWARF v2 and not
1487   // necessarily correct. It would be much better to use a dbg.declare instead
1488   // if we know the constant is live throughout the scope.
1489   if (DbgValue->getOperand(0).isImm() && MBB->pred_empty())
1490     return true;
1491 
1492   return false;
1493 }
1494 
1495 /// Build the location list for all DBG_VALUEs in the function that
1496 /// describe the same variable. The resulting DebugLocEntries will have
1497 /// strict monotonically increasing begin addresses and will never
1498 /// overlap. If the resulting list has only one entry that is valid
1499 /// throughout variable's scope return true.
1500 //
1501 // See the definition of DbgValueHistoryMap::Entry for an explanation of the
1502 // different kinds of history map entries. One thing to be aware of is that if
1503 // a debug value is ended by another entry (rather than being valid until the
1504 // end of the function), that entry's instruction may or may not be included in
1505 // the range, depending on if the entry is a clobbering entry (it has an
1506 // instruction that clobbers one or more preceding locations), or if it is an
1507 // (overlapping) debug value entry. This distinction can be seen in the example
1508 // below. The first debug value is ended by the clobbering entry 2, and the
1509 // second and third debug values are ended by the overlapping debug value entry
1510 // 4.
1511 //
1512 // Input:
1513 //
1514 //   History map entries [type, end index, mi]
1515 //
1516 // 0 |      [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)]
1517 // 1 | |    [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)]
1518 // 2 | |    [Clobber, $reg0 = [...], -, -]
1519 // 3   | |  [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)]
1520 // 4        [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)]
1521 //
1522 // Output [start, end) [Value...]:
1523 //
1524 // [0-1)    [(reg0, fragment 0, 32)]
1525 // [1-3)    [(reg0, fragment 0, 32), (reg1, fragment 32, 32)]
1526 // [3-4)    [(reg1, fragment 32, 32), (123, fragment 64, 32)]
1527 // [4-)     [(@g, fragment 0, 96)]
1528 bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc,
1529                                    const DbgValueHistoryMap::Entries &Entries) {
1530   using OpenRange =
1531       std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>;
1532   SmallVector<OpenRange, 4> OpenRanges;
1533   bool isSafeForSingleLocation = true;
1534   const MachineInstr *StartDebugMI = nullptr;
1535   const MachineInstr *EndMI = nullptr;
1536 
1537   for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) {
1538     const MachineInstr *Instr = EI->getInstr();
1539 
1540     // Remove all values that are no longer live.
1541     size_t Index = std::distance(EB, EI);
1542     auto Last =
1543         remove_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; });
1544     OpenRanges.erase(Last, OpenRanges.end());
1545 
1546     // If we are dealing with a clobbering entry, this iteration will result in
1547     // a location list entry starting after the clobbering instruction.
1548     const MCSymbol *StartLabel =
1549         EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr);
1550     assert(StartLabel &&
1551            "Forgot label before/after instruction starting a range!");
1552 
1553     const MCSymbol *EndLabel;
1554     if (std::next(EI) == Entries.end()) {
1555       EndLabel = Asm->getFunctionEnd();
1556       if (EI->isClobber())
1557         EndMI = EI->getInstr();
1558     }
1559     else if (std::next(EI)->isClobber())
1560       EndLabel = getLabelAfterInsn(std::next(EI)->getInstr());
1561     else
1562       EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr());
1563     assert(EndLabel && "Forgot label after instruction ending a range!");
1564 
1565     if (EI->isDbgValue())
1566       LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n");
1567 
1568     // If this history map entry has a debug value, add that to the list of
1569     // open ranges and check if its location is valid for a single value
1570     // location.
1571     if (EI->isDbgValue()) {
1572       // Do not add undef debug values, as they are redundant information in
1573       // the location list entries. An undef debug results in an empty location
1574       // description. If there are any non-undef fragments then padding pieces
1575       // with empty location descriptions will automatically be inserted, and if
1576       // all fragments are undef then the whole location list entry is
1577       // redundant.
1578       if (!Instr->isUndefDebugValue()) {
1579         auto Value = getDebugLocValue(Instr);
1580         OpenRanges.emplace_back(EI->getEndIndex(), Value);
1581 
1582         // TODO: Add support for single value fragment locations.
1583         if (Instr->getDebugExpression()->isFragment())
1584           isSafeForSingleLocation = false;
1585 
1586         if (!StartDebugMI)
1587           StartDebugMI = Instr;
1588       } else {
1589         isSafeForSingleLocation = false;
1590       }
1591     }
1592 
1593     // Location list entries with empty location descriptions are redundant
1594     // information in DWARF, so do not emit those.
1595     if (OpenRanges.empty())
1596       continue;
1597 
1598     // Omit entries with empty ranges as they do not have any effect in DWARF.
1599     if (StartLabel == EndLabel) {
1600       LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n");
1601       continue;
1602     }
1603 
1604     SmallVector<DbgValueLoc, 4> Values;
1605     for (auto &R : OpenRanges)
1606       Values.push_back(R.second);
1607     DebugLoc.emplace_back(StartLabel, EndLabel, Values);
1608 
1609     // Attempt to coalesce the ranges of two otherwise identical
1610     // DebugLocEntries.
1611     auto CurEntry = DebugLoc.rbegin();
1612     LLVM_DEBUG({
1613       dbgs() << CurEntry->getValues().size() << " Values:\n";
1614       for (auto &Value : CurEntry->getValues())
1615         Value.dump();
1616       dbgs() << "-----\n";
1617     });
1618 
1619     auto PrevEntry = std::next(CurEntry);
1620     if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry))
1621       DebugLoc.pop_back();
1622   }
1623 
1624   return DebugLoc.size() == 1 && isSafeForSingleLocation &&
1625          validThroughout(LScopes, StartDebugMI, EndMI);
1626 }
1627 
1628 DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU,
1629                                             LexicalScope &Scope,
1630                                             const DINode *Node,
1631                                             const DILocation *Location,
1632                                             const MCSymbol *Sym) {
1633   ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode());
1634   if (isa<const DILocalVariable>(Node)) {
1635     ConcreteEntities.push_back(
1636         std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node),
1637                                        Location));
1638     InfoHolder.addScopeVariable(&Scope,
1639         cast<DbgVariable>(ConcreteEntities.back().get()));
1640   } else if (isa<const DILabel>(Node)) {
1641     ConcreteEntities.push_back(
1642         std::make_unique<DbgLabel>(cast<const DILabel>(Node),
1643                                     Location, Sym));
1644     InfoHolder.addScopeLabel(&Scope,
1645         cast<DbgLabel>(ConcreteEntities.back().get()));
1646   }
1647   return ConcreteEntities.back().get();
1648 }
1649 
1650 // Find variables for each lexical scope.
1651 void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU,
1652                                    const DISubprogram *SP,
1653                                    DenseSet<InlinedEntity> &Processed) {
1654   // Grab the variable info that was squirreled away in the MMI side-table.
1655   collectVariableInfoFromMFTable(TheCU, Processed);
1656 
1657   for (const auto &I : DbgValues) {
1658     InlinedEntity IV = I.first;
1659     if (Processed.count(IV))
1660       continue;
1661 
1662     // Instruction ranges, specifying where IV is accessible.
1663     const auto &HistoryMapEntries = I.second;
1664     if (HistoryMapEntries.empty())
1665       continue;
1666 
1667     LexicalScope *Scope = nullptr;
1668     const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first);
1669     if (const DILocation *IA = IV.second)
1670       Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA);
1671     else
1672       Scope = LScopes.findLexicalScope(LocalVar->getScope());
1673     // If variable scope is not found then skip this variable.
1674     if (!Scope)
1675       continue;
1676 
1677     Processed.insert(IV);
1678     DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU,
1679                                             *Scope, LocalVar, IV.second));
1680 
1681     const MachineInstr *MInsn = HistoryMapEntries.front().getInstr();
1682     assert(MInsn->isDebugValue() && "History must begin with debug value");
1683 
1684     // Check if there is a single DBG_VALUE, valid throughout the var's scope.
1685     // If the history map contains a single debug value, there may be an
1686     // additional entry which clobbers the debug value.
1687     size_t HistSize = HistoryMapEntries.size();
1688     bool SingleValueWithClobber =
1689         HistSize == 2 && HistoryMapEntries[1].isClobber();
1690     if (HistSize == 1 || SingleValueWithClobber) {
1691       const auto *End =
1692           SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr;
1693       if (validThroughout(LScopes, MInsn, End)) {
1694         RegVar->initializeDbgValue(MInsn);
1695         continue;
1696       }
1697     }
1698 
1699     // Do not emit location lists if .debug_loc secton is disabled.
1700     if (!useLocSection())
1701       continue;
1702 
1703     // Handle multiple DBG_VALUE instructions describing one variable.
1704     DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn);
1705 
1706     // Build the location list for this variable.
1707     SmallVector<DebugLocEntry, 8> Entries;
1708     bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries);
1709 
1710     // Check whether buildLocationList managed to merge all locations to one
1711     // that is valid throughout the variable's scope. If so, produce single
1712     // value location.
1713     if (isValidSingleLocation) {
1714       RegVar->initializeDbgValue(Entries[0].getValues()[0]);
1715       continue;
1716     }
1717 
1718     // If the variable has a DIBasicType, extract it.  Basic types cannot have
1719     // unique identifiers, so don't bother resolving the type with the
1720     // identifier map.
1721     const DIBasicType *BT = dyn_cast<DIBasicType>(
1722         static_cast<const Metadata *>(LocalVar->getType()));
1723 
1724     // Finalize the entry by lowering it into a DWARF bytestream.
1725     for (auto &Entry : Entries)
1726       Entry.finalize(*Asm, List, BT, TheCU);
1727   }
1728 
1729   // For each InlinedEntity collected from DBG_LABEL instructions, convert to
1730   // DWARF-related DbgLabel.
1731   for (const auto &I : DbgLabels) {
1732     InlinedEntity IL = I.first;
1733     const MachineInstr *MI = I.second;
1734     if (MI == nullptr)
1735       continue;
1736 
1737     LexicalScope *Scope = nullptr;
1738     const DILabel *Label = cast<DILabel>(IL.first);
1739     // The scope could have an extra lexical block file.
1740     const DILocalScope *LocalScope =
1741         Label->getScope()->getNonLexicalBlockFileScope();
1742     // Get inlined DILocation if it is inlined label.
1743     if (const DILocation *IA = IL.second)
1744       Scope = LScopes.findInlinedScope(LocalScope, IA);
1745     else
1746       Scope = LScopes.findLexicalScope(LocalScope);
1747     // If label scope is not found then skip this label.
1748     if (!Scope)
1749       continue;
1750 
1751     Processed.insert(IL);
1752     /// At this point, the temporary label is created.
1753     /// Save the temporary label to DbgLabel entity to get the
1754     /// actually address when generating Dwarf DIE.
1755     MCSymbol *Sym = getLabelBeforeInsn(MI);
1756     createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym);
1757   }
1758 
1759   // Collect info for variables/labels that were optimized out.
1760   for (const DINode *DN : SP->getRetainedNodes()) {
1761     if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
1762       continue;
1763     LexicalScope *Scope = nullptr;
1764     if (auto *DV = dyn_cast<DILocalVariable>(DN)) {
1765       Scope = LScopes.findLexicalScope(DV->getScope());
1766     } else if (auto *DL = dyn_cast<DILabel>(DN)) {
1767       Scope = LScopes.findLexicalScope(DL->getScope());
1768     }
1769 
1770     if (Scope)
1771       createConcreteEntity(TheCU, *Scope, DN, nullptr);
1772   }
1773 }
1774 
1775 // Process beginning of an instruction.
1776 void DwarfDebug::beginInstruction(const MachineInstr *MI) {
1777   DebugHandlerBase::beginInstruction(MI);
1778   assert(CurMI);
1779 
1780   const auto *SP = MI->getMF()->getFunction().getSubprogram();
1781   if (!SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
1782     return;
1783 
1784   // Check if source location changes, but ignore DBG_VALUE and CFI locations.
1785   // If the instruction is part of the function frame setup code, do not emit
1786   // any line record, as there is no correspondence with any user code.
1787   if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup))
1788     return;
1789   const DebugLoc &DL = MI->getDebugLoc();
1790   // When we emit a line-0 record, we don't update PrevInstLoc; so look at
1791   // the last line number actually emitted, to see if it was line 0.
1792   unsigned LastAsmLine =
1793       Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine();
1794 
1795   // Request a label after the call in order to emit AT_return_pc information
1796   // in call site entries. TODO: Add support for targets with delay slots.
1797   if (SP->areAllCallsDescribed() && MI->isCall() && !MI->hasDelaySlot())
1798     requestLabelAfterInsn(MI);
1799 
1800   if (DL == PrevInstLoc) {
1801     // If we have an ongoing unspecified location, nothing to do here.
1802     if (!DL)
1803       return;
1804     // We have an explicit location, same as the previous location.
1805     // But we might be coming back to it after a line 0 record.
1806     if (LastAsmLine == 0 && DL.getLine() != 0) {
1807       // Reinstate the source location but not marked as a statement.
1808       const MDNode *Scope = DL.getScope();
1809       recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0);
1810     }
1811     return;
1812   }
1813 
1814   if (!DL) {
1815     // We have an unspecified location, which might want to be line 0.
1816     // If we have already emitted a line-0 record, don't repeat it.
1817     if (LastAsmLine == 0)
1818       return;
1819     // If user said Don't Do That, don't do that.
1820     if (UnknownLocations == Disable)
1821       return;
1822     // See if we have a reason to emit a line-0 record now.
1823     // Reasons to emit a line-0 record include:
1824     // - User asked for it (UnknownLocations).
1825     // - Instruction has a label, so it's referenced from somewhere else,
1826     //   possibly debug information; we want it to have a source location.
1827     // - Instruction is at the top of a block; we don't want to inherit the
1828     //   location from the physically previous (maybe unrelated) block.
1829     if (UnknownLocations == Enable || PrevLabel ||
1830         (PrevInstBB && PrevInstBB != MI->getParent())) {
1831       // Preserve the file and column numbers, if we can, to save space in
1832       // the encoded line table.
1833       // Do not update PrevInstLoc, it remembers the last non-0 line.
1834       const MDNode *Scope = nullptr;
1835       unsigned Column = 0;
1836       if (PrevInstLoc) {
1837         Scope = PrevInstLoc.getScope();
1838         Column = PrevInstLoc.getCol();
1839       }
1840       recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0);
1841     }
1842     return;
1843   }
1844 
1845   // We have an explicit location, different from the previous location.
1846   // Don't repeat a line-0 record, but otherwise emit the new location.
1847   // (The new location might be an explicit line 0, which we do emit.)
1848   if (DL.getLine() == 0 && LastAsmLine == 0)
1849     return;
1850   unsigned Flags = 0;
1851   if (DL == PrologEndLoc) {
1852     Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT;
1853     PrologEndLoc = DebugLoc();
1854   }
1855   // If the line changed, we call that a new statement; unless we went to
1856   // line 0 and came back, in which case it is not a new statement.
1857   unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine;
1858   if (DL.getLine() && DL.getLine() != OldLine)
1859     Flags |= DWARF2_FLAG_IS_STMT;
1860 
1861   const MDNode *Scope = DL.getScope();
1862   recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags);
1863 
1864   // If we're not at line 0, remember this location.
1865   if (DL.getLine())
1866     PrevInstLoc = DL;
1867 }
1868 
1869 static DebugLoc findPrologueEndLoc(const MachineFunction *MF) {
1870   // First known non-DBG_VALUE and non-frame setup location marks
1871   // the beginning of the function body.
1872   for (const auto &MBB : *MF)
1873     for (const auto &MI : MBB)
1874       if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
1875           MI.getDebugLoc())
1876         return MI.getDebugLoc();
1877   return DebugLoc();
1878 }
1879 
1880 /// Register a source line with debug info. Returns the  unique label that was
1881 /// emitted and which provides correspondence to the source line list.
1882 static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col,
1883                              const MDNode *S, unsigned Flags, unsigned CUID,
1884                              uint16_t DwarfVersion,
1885                              ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) {
1886   StringRef Fn;
1887   unsigned FileNo = 1;
1888   unsigned Discriminator = 0;
1889   if (auto *Scope = cast_or_null<DIScope>(S)) {
1890     Fn = Scope->getFilename();
1891     if (Line != 0 && DwarfVersion >= 4)
1892       if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope))
1893         Discriminator = LBF->getDiscriminator();
1894 
1895     FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID])
1896                  .getOrCreateSourceID(Scope->getFile());
1897   }
1898   Asm.OutStreamer->emitDwarfLocDirective(FileNo, Line, Col, Flags, 0,
1899                                          Discriminator, Fn);
1900 }
1901 
1902 DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF,
1903                                              unsigned CUID) {
1904   // Get beginning of function.
1905   if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) {
1906     // Ensure the compile unit is created if the function is called before
1907     // beginFunction().
1908     (void)getOrCreateDwarfCompileUnit(
1909         MF.getFunction().getSubprogram()->getUnit());
1910     // We'd like to list the prologue as "not statements" but GDB behaves
1911     // poorly if we do that. Revisit this with caution/GDB (7.5+) testing.
1912     const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram();
1913     ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT,
1914                        CUID, getDwarfVersion(), getUnits());
1915     return PrologEndLoc;
1916   }
1917   return DebugLoc();
1918 }
1919 
1920 // Gather pre-function debug information.  Assumes being called immediately
1921 // after the function entry point has been emitted.
1922 void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) {
1923   CurFn = MF;
1924 
1925   auto *SP = MF->getFunction().getSubprogram();
1926   assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode());
1927   if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug)
1928     return;
1929 
1930   DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit());
1931 
1932   // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function
1933   // belongs to so that we add to the correct per-cu line table in the
1934   // non-asm case.
1935   if (Asm->OutStreamer->hasRawTextSupport())
1936     // Use a single line table if we are generating assembly.
1937     Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
1938   else
1939     Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID());
1940 
1941   // Record beginning of function.
1942   PrologEndLoc = emitInitialLocDirective(
1943       *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID());
1944 }
1945 
1946 void DwarfDebug::skippedNonDebugFunction() {
1947   // If we don't have a subprogram for this function then there will be a hole
1948   // in the range information. Keep note of this by setting the previously used
1949   // section to nullptr.
1950   PrevCU = nullptr;
1951   CurFn = nullptr;
1952 }
1953 
1954 // Gather and emit post-function debug information.
1955 void DwarfDebug::endFunctionImpl(const MachineFunction *MF) {
1956   const DISubprogram *SP = MF->getFunction().getSubprogram();
1957 
1958   assert(CurFn == MF &&
1959       "endFunction should be called with the same function as beginFunction");
1960 
1961   // Set DwarfDwarfCompileUnitID in MCContext to default value.
1962   Asm->OutStreamer->getContext().setDwarfCompileUnitID(0);
1963 
1964   LexicalScope *FnScope = LScopes.getCurrentFunctionScope();
1965   assert(!FnScope || SP == FnScope->getScopeNode());
1966   DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit());
1967   if (TheCU.getCUNode()->isDebugDirectivesOnly()) {
1968     PrevLabel = nullptr;
1969     CurFn = nullptr;
1970     return;
1971   }
1972 
1973   DenseSet<InlinedEntity> Processed;
1974   collectEntityInfo(TheCU, SP, Processed);
1975 
1976   // Add the range of this function to the list of ranges for the CU.
1977   TheCU.addRange({Asm->getFunctionBegin(), Asm->getFunctionEnd()});
1978 
1979   // Under -gmlt, skip building the subprogram if there are no inlined
1980   // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram
1981   // is still needed as we need its source location.
1982   if (!TheCU.getCUNode()->getDebugInfoForProfiling() &&
1983       TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly &&
1984       LScopes.getAbstractScopesList().empty() && !IsDarwin) {
1985     assert(InfoHolder.getScopeVariables().empty());
1986     PrevLabel = nullptr;
1987     CurFn = nullptr;
1988     return;
1989   }
1990 
1991 #ifndef NDEBUG
1992   size_t NumAbstractScopes = LScopes.getAbstractScopesList().size();
1993 #endif
1994   // Construct abstract scopes.
1995   for (LexicalScope *AScope : LScopes.getAbstractScopesList()) {
1996     auto *SP = cast<DISubprogram>(AScope->getScopeNode());
1997     for (const DINode *DN : SP->getRetainedNodes()) {
1998       if (!Processed.insert(InlinedEntity(DN, nullptr)).second)
1999         continue;
2000 
2001       const MDNode *Scope = nullptr;
2002       if (auto *DV = dyn_cast<DILocalVariable>(DN))
2003         Scope = DV->getScope();
2004       else if (auto *DL = dyn_cast<DILabel>(DN))
2005         Scope = DL->getScope();
2006       else
2007         llvm_unreachable("Unexpected DI type!");
2008 
2009       // Collect info for variables/labels that were optimized out.
2010       ensureAbstractEntityIsCreated(TheCU, DN, Scope);
2011       assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes
2012              && "ensureAbstractEntityIsCreated inserted abstract scopes");
2013     }
2014     constructAbstractSubprogramScopeDIE(TheCU, AScope);
2015   }
2016 
2017   ProcessedSPNodes.insert(SP);
2018   DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope);
2019   if (auto *SkelCU = TheCU.getSkeleton())
2020     if (!LScopes.getAbstractScopesList().empty() &&
2021         TheCU.getCUNode()->getSplitDebugInlining())
2022       SkelCU->constructSubprogramScopeDIE(SP, FnScope);
2023 
2024   // Construct call site entries.
2025   constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF);
2026 
2027   // Clear debug info
2028   // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the
2029   // DbgVariables except those that are also in AbstractVariables (since they
2030   // can be used cross-function)
2031   InfoHolder.getScopeVariables().clear();
2032   InfoHolder.getScopeLabels().clear();
2033   PrevLabel = nullptr;
2034   CurFn = nullptr;
2035 }
2036 
2037 // Register a source line with debug info. Returns the  unique label that was
2038 // emitted and which provides correspondence to the source line list.
2039 void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S,
2040                                   unsigned Flags) {
2041   ::recordSourceLine(*Asm, Line, Col, S, Flags,
2042                      Asm->OutStreamer->getContext().getDwarfCompileUnitID(),
2043                      getDwarfVersion(), getUnits());
2044 }
2045 
2046 //===----------------------------------------------------------------------===//
2047 // Emit Methods
2048 //===----------------------------------------------------------------------===//
2049 
2050 // Emit the debug info section.
2051 void DwarfDebug::emitDebugInfo() {
2052   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2053   Holder.emitUnits(/* UseOffsets */ false);
2054 }
2055 
2056 // Emit the abbreviation section.
2057 void DwarfDebug::emitAbbreviations() {
2058   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2059 
2060   Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection());
2061 }
2062 
2063 void DwarfDebug::emitStringOffsetsTableHeader() {
2064   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2065   Holder.getStringPool().emitStringOffsetsTableHeader(
2066       *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(),
2067       Holder.getStringOffsetsStartSym());
2068 }
2069 
2070 template <typename AccelTableT>
2071 void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section,
2072                            StringRef TableName) {
2073   Asm->OutStreamer->SwitchSection(Section);
2074 
2075   // Emit the full data.
2076   emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol());
2077 }
2078 
2079 void DwarfDebug::emitAccelDebugNames() {
2080   // Don't emit anything if we have no compilation units to index.
2081   if (getUnits().empty())
2082     return;
2083 
2084   emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits());
2085 }
2086 
2087 // Emit visible names into a hashed accelerator table section.
2088 void DwarfDebug::emitAccelNames() {
2089   emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(),
2090             "Names");
2091 }
2092 
2093 // Emit objective C classes and categories into a hashed accelerator table
2094 // section.
2095 void DwarfDebug::emitAccelObjC() {
2096   emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(),
2097             "ObjC");
2098 }
2099 
2100 // Emit namespace dies into a hashed accelerator table.
2101 void DwarfDebug::emitAccelNamespaces() {
2102   emitAccel(AccelNamespace,
2103             Asm->getObjFileLowering().getDwarfAccelNamespaceSection(),
2104             "namespac");
2105 }
2106 
2107 // Emit type dies into a hashed accelerator table.
2108 void DwarfDebug::emitAccelTypes() {
2109   emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(),
2110             "types");
2111 }
2112 
2113 // Public name handling.
2114 // The format for the various pubnames:
2115 //
2116 // dwarf pubnames - offset/name pairs where the offset is the offset into the CU
2117 // for the DIE that is named.
2118 //
2119 // gnu pubnames - offset/index value/name tuples where the offset is the offset
2120 // into the CU and the index value is computed according to the type of value
2121 // for the DIE that is named.
2122 //
2123 // For type units the offset is the offset of the skeleton DIE. For split dwarf
2124 // it's the offset within the debug_info/debug_types dwo section, however, the
2125 // reference in the pubname header doesn't change.
2126 
2127 /// computeIndexValue - Compute the gdb index value for the DIE and CU.
2128 static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU,
2129                                                         const DIE *Die) {
2130   // Entities that ended up only in a Type Unit reference the CU instead (since
2131   // the pub entry has offsets within the CU there's no real offset that can be
2132   // provided anyway). As it happens all such entities (namespaces and types,
2133   // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out
2134   // not to be true it would be necessary to persist this information from the
2135   // point at which the entry is added to the index data structure - since by
2136   // the time the index is built from that, the original type/namespace DIE in a
2137   // type unit has already been destroyed so it can't be queried for properties
2138   // like tag, etc.
2139   if (Die->getTag() == dwarf::DW_TAG_compile_unit)
2140     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE,
2141                                           dwarf::GIEL_EXTERNAL);
2142   dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC;
2143 
2144   // We could have a specification DIE that has our most of our knowledge,
2145   // look for that now.
2146   if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) {
2147     DIE &SpecDIE = SpecVal.getDIEEntry().getEntry();
2148     if (SpecDIE.findAttribute(dwarf::DW_AT_external))
2149       Linkage = dwarf::GIEL_EXTERNAL;
2150   } else if (Die->findAttribute(dwarf::DW_AT_external))
2151     Linkage = dwarf::GIEL_EXTERNAL;
2152 
2153   switch (Die->getTag()) {
2154   case dwarf::DW_TAG_class_type:
2155   case dwarf::DW_TAG_structure_type:
2156   case dwarf::DW_TAG_union_type:
2157   case dwarf::DW_TAG_enumeration_type:
2158     return dwarf::PubIndexEntryDescriptor(
2159         dwarf::GIEK_TYPE,
2160         dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage())
2161             ? dwarf::GIEL_EXTERNAL
2162             : dwarf::GIEL_STATIC);
2163   case dwarf::DW_TAG_typedef:
2164   case dwarf::DW_TAG_base_type:
2165   case dwarf::DW_TAG_subrange_type:
2166     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC);
2167   case dwarf::DW_TAG_namespace:
2168     return dwarf::GIEK_TYPE;
2169   case dwarf::DW_TAG_subprogram:
2170     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage);
2171   case dwarf::DW_TAG_variable:
2172     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage);
2173   case dwarf::DW_TAG_enumerator:
2174     return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE,
2175                                           dwarf::GIEL_STATIC);
2176   default:
2177     return dwarf::GIEK_NONE;
2178   }
2179 }
2180 
2181 /// emitDebugPubSections - Emit visible names and types into debug pubnames and
2182 /// pubtypes sections.
2183 void DwarfDebug::emitDebugPubSections() {
2184   for (const auto &NU : CUMap) {
2185     DwarfCompileUnit *TheU = NU.second;
2186     if (!TheU->hasDwarfPubSections())
2187       continue;
2188 
2189     bool GnuStyle = TheU->getCUNode()->getNameTableKind() ==
2190                     DICompileUnit::DebugNameTableKind::GNU;
2191 
2192     Asm->OutStreamer->SwitchSection(
2193         GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection()
2194                  : Asm->getObjFileLowering().getDwarfPubNamesSection());
2195     emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames());
2196 
2197     Asm->OutStreamer->SwitchSection(
2198         GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection()
2199                  : Asm->getObjFileLowering().getDwarfPubTypesSection());
2200     emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes());
2201   }
2202 }
2203 
2204 void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) {
2205   if (useSectionsAsReferences())
2206     Asm->emitDwarfOffset(CU.getSection()->getBeginSymbol(),
2207                          CU.getDebugSectionOffset());
2208   else
2209     Asm->emitDwarfSymbolReference(CU.getLabelBegin());
2210 }
2211 
2212 void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name,
2213                                      DwarfCompileUnit *TheU,
2214                                      const StringMap<const DIE *> &Globals) {
2215   if (auto *Skeleton = TheU->getSkeleton())
2216     TheU = Skeleton;
2217 
2218   // Emit the header.
2219   Asm->OutStreamer->AddComment("Length of Public " + Name + " Info");
2220   MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin");
2221   MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end");
2222   Asm->emitLabelDifference(EndLabel, BeginLabel, 4);
2223 
2224   Asm->OutStreamer->emitLabel(BeginLabel);
2225 
2226   Asm->OutStreamer->AddComment("DWARF Version");
2227   Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION);
2228 
2229   Asm->OutStreamer->AddComment("Offset of Compilation Unit Info");
2230   emitSectionReference(*TheU);
2231 
2232   Asm->OutStreamer->AddComment("Compilation Unit Length");
2233   Asm->emitInt32(TheU->getLength());
2234 
2235   // Emit the pubnames for this compilation unit.
2236   for (const auto &GI : Globals) {
2237     const char *Name = GI.getKeyData();
2238     const DIE *Entity = GI.second;
2239 
2240     Asm->OutStreamer->AddComment("DIE offset");
2241     Asm->emitInt32(Entity->getOffset());
2242 
2243     if (GnuStyle) {
2244       dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity);
2245       Asm->OutStreamer->AddComment(
2246           Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) +
2247           ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage));
2248       Asm->emitInt8(Desc.toBits());
2249     }
2250 
2251     Asm->OutStreamer->AddComment("External Name");
2252     Asm->OutStreamer->emitBytes(StringRef(Name, GI.getKeyLength() + 1));
2253   }
2254 
2255   Asm->OutStreamer->AddComment("End Mark");
2256   Asm->emitInt32(0);
2257   Asm->OutStreamer->emitLabel(EndLabel);
2258 }
2259 
2260 /// Emit null-terminated strings into a debug str section.
2261 void DwarfDebug::emitDebugStr() {
2262   MCSection *StringOffsetsSection = nullptr;
2263   if (useSegmentedStringOffsetsTable()) {
2264     emitStringOffsetsTableHeader();
2265     StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection();
2266   }
2267   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2268   Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(),
2269                      StringOffsetsSection, /* UseRelativeOffsets = */ true);
2270 }
2271 
2272 void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer,
2273                                    const DebugLocStream::Entry &Entry,
2274                                    const DwarfCompileUnit *CU) {
2275   auto &&Comments = DebugLocs.getComments(Entry);
2276   auto Comment = Comments.begin();
2277   auto End = Comments.end();
2278 
2279   // The expressions are inserted into a byte stream rather early (see
2280   // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that
2281   // need to reference a base_type DIE the offset of that DIE is not yet known.
2282   // To deal with this we instead insert a placeholder early and then extract
2283   // it here and replace it with the real reference.
2284   unsigned PtrSize = Asm->MAI->getCodePointerSize();
2285   DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(),
2286                                     DebugLocs.getBytes(Entry).size()),
2287                           Asm->getDataLayout().isLittleEndian(), PtrSize);
2288   DWARFExpression Expr(Data, PtrSize);
2289 
2290   using Encoding = DWARFExpression::Operation::Encoding;
2291   uint64_t Offset = 0;
2292   for (auto &Op : Expr) {
2293     assert(Op.getCode() != dwarf::DW_OP_const_type &&
2294            "3 operand ops not yet supported");
2295     Streamer.EmitInt8(Op.getCode(), Comment != End ? *(Comment++) : "");
2296     Offset++;
2297     for (unsigned I = 0; I < 2; ++I) {
2298       if (Op.getDescription().Op[I] == Encoding::SizeNA)
2299         continue;
2300       if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) {
2301         uint64_t Offset =
2302             CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset();
2303         assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit");
2304         Streamer.emitULEB128(Offset, "", ULEB128PadSize);
2305         // Make sure comments stay aligned.
2306         for (unsigned J = 0; J < ULEB128PadSize; ++J)
2307           if (Comment != End)
2308             Comment++;
2309       } else {
2310         for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J)
2311           Streamer.EmitInt8(Data.getData()[J], Comment != End ? *(Comment++) : "");
2312       }
2313       Offset = Op.getOperandEndOffset(I);
2314     }
2315     assert(Offset == Op.getEndOffset());
2316   }
2317 }
2318 
2319 void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT,
2320                                    const DbgValueLoc &Value,
2321                                    DwarfExpression &DwarfExpr) {
2322   auto *DIExpr = Value.getExpression();
2323   DIExpressionCursor ExprCursor(DIExpr);
2324   DwarfExpr.addFragmentOffset(DIExpr);
2325   // Regular entry.
2326   if (Value.isInt()) {
2327     if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed ||
2328                BT->getEncoding() == dwarf::DW_ATE_signed_char))
2329       DwarfExpr.addSignedConstant(Value.getInt());
2330     else
2331       DwarfExpr.addUnsignedConstant(Value.getInt());
2332   } else if (Value.isLocation()) {
2333     MachineLocation Location = Value.getLoc();
2334     if (Location.isIndirect())
2335       DwarfExpr.setMemoryLocationKind();
2336     DIExpressionCursor Cursor(DIExpr);
2337 
2338     if (DIExpr->isEntryValue()) {
2339       DwarfExpr.setEntryValueFlag();
2340       DwarfExpr.beginEntryValueExpression(Cursor);
2341     }
2342 
2343     const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo();
2344     if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg()))
2345       return;
2346     return DwarfExpr.addExpression(std::move(Cursor));
2347   } else if (Value.isTargetIndexLocation()) {
2348     TargetIndexLocation Loc = Value.getTargetIndexLocation();
2349     // TODO TargetIndexLocation is a target-independent. Currently only the WebAssembly-specific
2350     // encoding is supported.
2351     DwarfExpr.addWasmLocation(Loc.Index, Loc.Offset);
2352   } else if (Value.isConstantFP()) {
2353     APInt RawBytes = Value.getConstantFP()->getValueAPF().bitcastToAPInt();
2354     DwarfExpr.addUnsignedConstant(RawBytes);
2355   }
2356   DwarfExpr.addExpression(std::move(ExprCursor));
2357 }
2358 
2359 void DebugLocEntry::finalize(const AsmPrinter &AP,
2360                              DebugLocStream::ListBuilder &List,
2361                              const DIBasicType *BT,
2362                              DwarfCompileUnit &TheCU) {
2363   assert(!Values.empty() &&
2364          "location list entries without values are redundant");
2365   assert(Begin != End && "unexpected location list entry with empty range");
2366   DebugLocStream::EntryBuilder Entry(List, Begin, End);
2367   BufferByteStreamer Streamer = Entry.getStreamer();
2368   DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU);
2369   const DbgValueLoc &Value = Values[0];
2370   if (Value.isFragment()) {
2371     // Emit all fragments that belong to the same variable and range.
2372     assert(llvm::all_of(Values, [](DbgValueLoc P) {
2373           return P.isFragment();
2374         }) && "all values are expected to be fragments");
2375     assert(std::is_sorted(Values.begin(), Values.end()) &&
2376            "fragments are expected to be sorted");
2377 
2378     for (auto Fragment : Values)
2379       DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr);
2380 
2381   } else {
2382     assert(Values.size() == 1 && "only fragments may have >1 value");
2383     DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr);
2384   }
2385   DwarfExpr.finalize();
2386   if (DwarfExpr.TagOffset)
2387     List.setTagOffset(*DwarfExpr.TagOffset);
2388 }
2389 
2390 void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry,
2391                                            const DwarfCompileUnit *CU) {
2392   // Emit the size.
2393   Asm->OutStreamer->AddComment("Loc expr size");
2394   if (getDwarfVersion() >= 5)
2395     Asm->emitULEB128(DebugLocs.getBytes(Entry).size());
2396   else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max())
2397     Asm->emitInt16(DebugLocs.getBytes(Entry).size());
2398   else {
2399     // The entry is too big to fit into 16 bit, drop it as there is nothing we
2400     // can do.
2401     Asm->emitInt16(0);
2402     return;
2403   }
2404   // Emit the entry.
2405   APByteStreamer Streamer(*Asm);
2406   emitDebugLocEntry(Streamer, Entry, CU);
2407 }
2408 
2409 // Emit the header of a DWARF 5 range list table list table. Returns the symbol
2410 // that designates the end of the table for the caller to emit when the table is
2411 // complete.
2412 static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm,
2413                                          const DwarfFile &Holder) {
2414   MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer);
2415 
2416   Asm->OutStreamer->AddComment("Offset entry count");
2417   Asm->emitInt32(Holder.getRangeLists().size());
2418   Asm->OutStreamer->emitLabel(Holder.getRnglistsTableBaseSym());
2419 
2420   for (const RangeSpanList &List : Holder.getRangeLists())
2421     Asm->emitLabelDifference(List.Label, Holder.getRnglistsTableBaseSym(), 4);
2422 
2423   return TableEnd;
2424 }
2425 
2426 // Emit the header of a DWARF 5 locations list table. Returns the symbol that
2427 // designates the end of the table for the caller to emit when the table is
2428 // complete.
2429 static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm,
2430                                          const DwarfDebug &DD) {
2431   MCSymbol *TableEnd = mcdwarf::emitListsTableHeaderStart(*Asm->OutStreamer);
2432 
2433   const auto &DebugLocs = DD.getDebugLocs();
2434 
2435   Asm->OutStreamer->AddComment("Offset entry count");
2436   Asm->emitInt32(DebugLocs.getLists().size());
2437   Asm->OutStreamer->emitLabel(DebugLocs.getSym());
2438 
2439   for (const auto &List : DebugLocs.getLists())
2440     Asm->emitLabelDifference(List.Label, DebugLocs.getSym(), 4);
2441 
2442   return TableEnd;
2443 }
2444 
2445 template <typename Ranges, typename PayloadEmitter>
2446 static void emitRangeList(
2447     DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R,
2448     const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair,
2449     unsigned StartxLength, unsigned EndOfList,
2450     StringRef (*StringifyEnum)(unsigned),
2451     bool ShouldUseBaseAddress,
2452     PayloadEmitter EmitPayload) {
2453 
2454   auto Size = Asm->MAI->getCodePointerSize();
2455   bool UseDwarf5 = DD.getDwarfVersion() >= 5;
2456 
2457   // Emit our symbol so we can find the beginning of the range.
2458   Asm->OutStreamer->emitLabel(Sym);
2459 
2460   // Gather all the ranges that apply to the same section so they can share
2461   // a base address entry.
2462   MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges;
2463 
2464   for (const auto &Range : R)
2465     SectionRanges[&Range.Begin->getSection()].push_back(&Range);
2466 
2467   const MCSymbol *CUBase = CU.getBaseAddress();
2468   bool BaseIsSet = false;
2469   for (const auto &P : SectionRanges) {
2470     auto *Base = CUBase;
2471     if (!Base && ShouldUseBaseAddress) {
2472       const MCSymbol *Begin = P.second.front()->Begin;
2473       const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection());
2474       if (!UseDwarf5) {
2475         Base = NewBase;
2476         BaseIsSet = true;
2477         Asm->OutStreamer->emitIntValue(-1, Size);
2478         Asm->OutStreamer->AddComment("  base address");
2479         Asm->OutStreamer->emitSymbolValue(Base, Size);
2480       } else if (NewBase != Begin || P.second.size() > 1) {
2481         // Only use a base address if
2482         //  * the existing pool address doesn't match (NewBase != Begin)
2483         //  * or, there's more than one entry to share the base address
2484         Base = NewBase;
2485         BaseIsSet = true;
2486         Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx));
2487         Asm->emitInt8(BaseAddressx);
2488         Asm->OutStreamer->AddComment("  base address index");
2489         Asm->emitULEB128(DD.getAddressPool().getIndex(Base));
2490       }
2491     } else if (BaseIsSet && !UseDwarf5) {
2492       BaseIsSet = false;
2493       assert(!Base);
2494       Asm->OutStreamer->emitIntValue(-1, Size);
2495       Asm->OutStreamer->emitIntValue(0, Size);
2496     }
2497 
2498     for (const auto *RS : P.second) {
2499       const MCSymbol *Begin = RS->Begin;
2500       const MCSymbol *End = RS->End;
2501       assert(Begin && "Range without a begin symbol?");
2502       assert(End && "Range without an end symbol?");
2503       if (Base) {
2504         if (UseDwarf5) {
2505           // Emit offset_pair when we have a base.
2506           Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair));
2507           Asm->emitInt8(OffsetPair);
2508           Asm->OutStreamer->AddComment("  starting offset");
2509           Asm->emitLabelDifferenceAsULEB128(Begin, Base);
2510           Asm->OutStreamer->AddComment("  ending offset");
2511           Asm->emitLabelDifferenceAsULEB128(End, Base);
2512         } else {
2513           Asm->emitLabelDifference(Begin, Base, Size);
2514           Asm->emitLabelDifference(End, Base, Size);
2515         }
2516       } else if (UseDwarf5) {
2517         Asm->OutStreamer->AddComment(StringifyEnum(StartxLength));
2518         Asm->emitInt8(StartxLength);
2519         Asm->OutStreamer->AddComment("  start index");
2520         Asm->emitULEB128(DD.getAddressPool().getIndex(Begin));
2521         Asm->OutStreamer->AddComment("  length");
2522         Asm->emitLabelDifferenceAsULEB128(End, Begin);
2523       } else {
2524         Asm->OutStreamer->emitSymbolValue(Begin, Size);
2525         Asm->OutStreamer->emitSymbolValue(End, Size);
2526       }
2527       EmitPayload(*RS);
2528     }
2529   }
2530 
2531   if (UseDwarf5) {
2532     Asm->OutStreamer->AddComment(StringifyEnum(EndOfList));
2533     Asm->emitInt8(EndOfList);
2534   } else {
2535     // Terminate the list with two 0 values.
2536     Asm->OutStreamer->emitIntValue(0, Size);
2537     Asm->OutStreamer->emitIntValue(0, Size);
2538   }
2539 }
2540 
2541 // Handles emission of both debug_loclist / debug_loclist.dwo
2542 static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) {
2543   emitRangeList(DD, Asm, List.Label, DD.getDebugLocs().getEntries(List),
2544                 *List.CU, dwarf::DW_LLE_base_addressx,
2545                 dwarf::DW_LLE_offset_pair, dwarf::DW_LLE_startx_length,
2546                 dwarf::DW_LLE_end_of_list, llvm::dwarf::LocListEncodingString,
2547                 /* ShouldUseBaseAddress */ true,
2548                 [&](const DebugLocStream::Entry &E) {
2549                   DD.emitDebugLocEntryLocation(E, List.CU);
2550                 });
2551 }
2552 
2553 void DwarfDebug::emitDebugLocImpl(MCSection *Sec) {
2554   if (DebugLocs.getLists().empty())
2555     return;
2556 
2557   Asm->OutStreamer->SwitchSection(Sec);
2558 
2559   MCSymbol *TableEnd = nullptr;
2560   if (getDwarfVersion() >= 5)
2561     TableEnd = emitLoclistsTableHeader(Asm, *this);
2562 
2563   for (const auto &List : DebugLocs.getLists())
2564     emitLocList(*this, Asm, List);
2565 
2566   if (TableEnd)
2567     Asm->OutStreamer->emitLabel(TableEnd);
2568 }
2569 
2570 // Emit locations into the .debug_loc/.debug_loclists section.
2571 void DwarfDebug::emitDebugLoc() {
2572   emitDebugLocImpl(
2573       getDwarfVersion() >= 5
2574           ? Asm->getObjFileLowering().getDwarfLoclistsSection()
2575           : Asm->getObjFileLowering().getDwarfLocSection());
2576 }
2577 
2578 // Emit locations into the .debug_loc.dwo/.debug_loclists.dwo section.
2579 void DwarfDebug::emitDebugLocDWO() {
2580   if (getDwarfVersion() >= 5) {
2581     emitDebugLocImpl(
2582         Asm->getObjFileLowering().getDwarfLoclistsDWOSection());
2583 
2584     return;
2585   }
2586 
2587   for (const auto &List : DebugLocs.getLists()) {
2588     Asm->OutStreamer->SwitchSection(
2589         Asm->getObjFileLowering().getDwarfLocDWOSection());
2590     Asm->OutStreamer->emitLabel(List.Label);
2591 
2592     for (const auto &Entry : DebugLocs.getEntries(List)) {
2593       // GDB only supports startx_length in pre-standard split-DWARF.
2594       // (in v5 standard loclists, it currently* /only/ supports base_address +
2595       // offset_pair, so the implementations can't really share much since they
2596       // need to use different representations)
2597       // * as of October 2018, at least
2598       //
2599       // In v5 (see emitLocList), this uses SectionLabels to reuse existing
2600       // addresses in the address pool to minimize object size/relocations.
2601       Asm->emitInt8(dwarf::DW_LLE_startx_length);
2602       unsigned idx = AddrPool.getIndex(Entry.Begin);
2603       Asm->emitULEB128(idx);
2604       // Also the pre-standard encoding is slightly different, emitting this as
2605       // an address-length entry here, but its a ULEB128 in DWARFv5 loclists.
2606       Asm->emitLabelDifference(Entry.End, Entry.Begin, 4);
2607       emitDebugLocEntryLocation(Entry, List.CU);
2608     }
2609     Asm->emitInt8(dwarf::DW_LLE_end_of_list);
2610   }
2611 }
2612 
2613 struct ArangeSpan {
2614   const MCSymbol *Start, *End;
2615 };
2616 
2617 // Emit a debug aranges section, containing a CU lookup for any
2618 // address we can tie back to a CU.
2619 void DwarfDebug::emitDebugARanges() {
2620   // Provides a unique id per text section.
2621   MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap;
2622 
2623   // Filter labels by section.
2624   for (const SymbolCU &SCU : ArangeLabels) {
2625     if (SCU.Sym->isInSection()) {
2626       // Make a note of this symbol and it's section.
2627       MCSection *Section = &SCU.Sym->getSection();
2628       if (!Section->getKind().isMetadata())
2629         SectionMap[Section].push_back(SCU);
2630     } else {
2631       // Some symbols (e.g. common/bss on mach-o) can have no section but still
2632       // appear in the output. This sucks as we rely on sections to build
2633       // arange spans. We can do it without, but it's icky.
2634       SectionMap[nullptr].push_back(SCU);
2635     }
2636   }
2637 
2638   DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans;
2639 
2640   for (auto &I : SectionMap) {
2641     MCSection *Section = I.first;
2642     SmallVector<SymbolCU, 8> &List = I.second;
2643     if (List.size() < 1)
2644       continue;
2645 
2646     // If we have no section (e.g. common), just write out
2647     // individual spans for each symbol.
2648     if (!Section) {
2649       for (const SymbolCU &Cur : List) {
2650         ArangeSpan Span;
2651         Span.Start = Cur.Sym;
2652         Span.End = nullptr;
2653         assert(Cur.CU);
2654         Spans[Cur.CU].push_back(Span);
2655       }
2656       continue;
2657     }
2658 
2659     // Sort the symbols by offset within the section.
2660     llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) {
2661       unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0;
2662       unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0;
2663 
2664       // Symbols with no order assigned should be placed at the end.
2665       // (e.g. section end labels)
2666       if (IA == 0)
2667         return false;
2668       if (IB == 0)
2669         return true;
2670       return IA < IB;
2671     });
2672 
2673     // Insert a final terminator.
2674     List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section)));
2675 
2676     // Build spans between each label.
2677     const MCSymbol *StartSym = List[0].Sym;
2678     for (size_t n = 1, e = List.size(); n < e; n++) {
2679       const SymbolCU &Prev = List[n - 1];
2680       const SymbolCU &Cur = List[n];
2681 
2682       // Try and build the longest span we can within the same CU.
2683       if (Cur.CU != Prev.CU) {
2684         ArangeSpan Span;
2685         Span.Start = StartSym;
2686         Span.End = Cur.Sym;
2687         assert(Prev.CU);
2688         Spans[Prev.CU].push_back(Span);
2689         StartSym = Cur.Sym;
2690       }
2691     }
2692   }
2693 
2694   // Start the dwarf aranges section.
2695   Asm->OutStreamer->SwitchSection(
2696       Asm->getObjFileLowering().getDwarfARangesSection());
2697 
2698   unsigned PtrSize = Asm->MAI->getCodePointerSize();
2699 
2700   // Build a list of CUs used.
2701   std::vector<DwarfCompileUnit *> CUs;
2702   for (const auto &it : Spans) {
2703     DwarfCompileUnit *CU = it.first;
2704     CUs.push_back(CU);
2705   }
2706 
2707   // Sort the CU list (again, to ensure consistent output order).
2708   llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) {
2709     return A->getUniqueID() < B->getUniqueID();
2710   });
2711 
2712   // Emit an arange table for each CU we used.
2713   for (DwarfCompileUnit *CU : CUs) {
2714     std::vector<ArangeSpan> &List = Spans[CU];
2715 
2716     // Describe the skeleton CU's offset and length, not the dwo file's.
2717     if (auto *Skel = CU->getSkeleton())
2718       CU = Skel;
2719 
2720     // Emit size of content not including length itself.
2721     unsigned ContentSize =
2722         sizeof(int16_t) + // DWARF ARange version number
2723         sizeof(int32_t) + // Offset of CU in the .debug_info section
2724         sizeof(int8_t) +  // Pointer Size (in bytes)
2725         sizeof(int8_t);   // Segment Size (in bytes)
2726 
2727     unsigned TupleSize = PtrSize * 2;
2728 
2729     // 7.20 in the Dwarf specs requires the table to be aligned to a tuple.
2730     unsigned Padding =
2731         offsetToAlignment(sizeof(int32_t) + ContentSize, Align(TupleSize));
2732 
2733     ContentSize += Padding;
2734     ContentSize += (List.size() + 1) * TupleSize;
2735 
2736     // For each compile unit, write the list of spans it covers.
2737     Asm->OutStreamer->AddComment("Length of ARange Set");
2738     Asm->emitInt32(ContentSize);
2739     Asm->OutStreamer->AddComment("DWARF Arange version number");
2740     Asm->emitInt16(dwarf::DW_ARANGES_VERSION);
2741     Asm->OutStreamer->AddComment("Offset Into Debug Info Section");
2742     emitSectionReference(*CU);
2743     Asm->OutStreamer->AddComment("Address Size (in bytes)");
2744     Asm->emitInt8(PtrSize);
2745     Asm->OutStreamer->AddComment("Segment Size (in bytes)");
2746     Asm->emitInt8(0);
2747 
2748     Asm->OutStreamer->emitFill(Padding, 0xff);
2749 
2750     for (const ArangeSpan &Span : List) {
2751       Asm->emitLabelReference(Span.Start, PtrSize);
2752 
2753       // Calculate the size as being from the span start to it's end.
2754       if (Span.End) {
2755         Asm->emitLabelDifference(Span.End, Span.Start, PtrSize);
2756       } else {
2757         // For symbols without an end marker (e.g. common), we
2758         // write a single arange entry containing just that one symbol.
2759         uint64_t Size = SymSize[Span.Start];
2760         if (Size == 0)
2761           Size = 1;
2762 
2763         Asm->OutStreamer->emitIntValue(Size, PtrSize);
2764       }
2765     }
2766 
2767     Asm->OutStreamer->AddComment("ARange terminator");
2768     Asm->OutStreamer->emitIntValue(0, PtrSize);
2769     Asm->OutStreamer->emitIntValue(0, PtrSize);
2770   }
2771 }
2772 
2773 /// Emit a single range list. We handle both DWARF v5 and earlier.
2774 static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm,
2775                           const RangeSpanList &List) {
2776   emitRangeList(DD, Asm, List.Label, List.Ranges, *List.CU,
2777                 dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair,
2778                 dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list,
2779                 llvm::dwarf::RangeListEncodingString,
2780                 List.CU->getCUNode()->getRangesBaseAddress() ||
2781                     DD.getDwarfVersion() >= 5,
2782                 [](auto) {});
2783 }
2784 
2785 void DwarfDebug::emitDebugRangesImpl(const DwarfFile &Holder, MCSection *Section) {
2786   if (Holder.getRangeLists().empty())
2787     return;
2788 
2789   assert(useRangesSection());
2790   assert(!CUMap.empty());
2791   assert(llvm::any_of(CUMap, [](const decltype(CUMap)::value_type &Pair) {
2792     return !Pair.second->getCUNode()->isDebugDirectivesOnly();
2793   }));
2794 
2795   Asm->OutStreamer->SwitchSection(Section);
2796 
2797   MCSymbol *TableEnd = nullptr;
2798   if (getDwarfVersion() >= 5)
2799     TableEnd = emitRnglistsTableHeader(Asm, Holder);
2800 
2801   for (const RangeSpanList &List : Holder.getRangeLists())
2802     emitRangeList(*this, Asm, List);
2803 
2804   if (TableEnd)
2805     Asm->OutStreamer->emitLabel(TableEnd);
2806 }
2807 
2808 /// Emit address ranges into the .debug_ranges section or into the DWARF v5
2809 /// .debug_rnglists section.
2810 void DwarfDebug::emitDebugRanges() {
2811   const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
2812 
2813   emitDebugRangesImpl(Holder,
2814                       getDwarfVersion() >= 5
2815                           ? Asm->getObjFileLowering().getDwarfRnglistsSection()
2816                           : Asm->getObjFileLowering().getDwarfRangesSection());
2817 }
2818 
2819 void DwarfDebug::emitDebugRangesDWO() {
2820   emitDebugRangesImpl(InfoHolder,
2821                       Asm->getObjFileLowering().getDwarfRnglistsDWOSection());
2822 }
2823 
2824 void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) {
2825   for (auto *MN : Nodes) {
2826     if (auto *M = dyn_cast<DIMacro>(MN))
2827       emitMacro(*M);
2828     else if (auto *F = dyn_cast<DIMacroFile>(MN))
2829       emitMacroFile(*F, U);
2830     else
2831       llvm_unreachable("Unexpected DI type!");
2832   }
2833 }
2834 
2835 void DwarfDebug::emitMacro(DIMacro &M) {
2836   Asm->emitULEB128(M.getMacinfoType());
2837   Asm->emitULEB128(M.getLine());
2838   StringRef Name = M.getName();
2839   StringRef Value = M.getValue();
2840   Asm->OutStreamer->emitBytes(Name);
2841   if (!Value.empty()) {
2842     // There should be one space between macro name and macro value.
2843     Asm->emitInt8(' ');
2844     Asm->OutStreamer->emitBytes(Value);
2845   }
2846   Asm->emitInt8('\0');
2847 }
2848 
2849 void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) {
2850   assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file);
2851   Asm->emitULEB128(dwarf::DW_MACINFO_start_file);
2852   Asm->emitULEB128(F.getLine());
2853   Asm->emitULEB128(U.getOrCreateSourceID(F.getFile()));
2854   handleMacroNodes(F.getElements(), U);
2855   Asm->emitULEB128(dwarf::DW_MACINFO_end_file);
2856 }
2857 
2858 void DwarfDebug::emitDebugMacinfoImpl(MCSection *Section) {
2859   for (const auto &P : CUMap) {
2860     auto &TheCU = *P.second;
2861     auto *SkCU = TheCU.getSkeleton();
2862     DwarfCompileUnit &U = SkCU ? *SkCU : TheCU;
2863     auto *CUNode = cast<DICompileUnit>(P.first);
2864     DIMacroNodeArray Macros = CUNode->getMacros();
2865     if (Macros.empty())
2866       continue;
2867     Asm->OutStreamer->SwitchSection(Section);
2868     Asm->OutStreamer->emitLabel(U.getMacroLabelBegin());
2869     handleMacroNodes(Macros, U);
2870     Asm->OutStreamer->AddComment("End Of Macro List Mark");
2871     Asm->emitInt8(0);
2872   }
2873 }
2874 
2875 /// Emit macros into a debug macinfo section.
2876 void DwarfDebug::emitDebugMacinfo() {
2877   emitDebugMacinfoImpl(Asm->getObjFileLowering().getDwarfMacinfoSection());
2878 }
2879 
2880 void DwarfDebug::emitDebugMacinfoDWO() {
2881   emitDebugMacinfoImpl(Asm->getObjFileLowering().getDwarfMacinfoDWOSection());
2882 }
2883 
2884 // DWARF5 Experimental Separate Dwarf emitters.
2885 
2886 void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die,
2887                                   std::unique_ptr<DwarfCompileUnit> NewU) {
2888 
2889   if (!CompilationDir.empty())
2890     NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir);
2891   addGnuPubAttributes(*NewU, Die);
2892 
2893   SkeletonHolder.addUnit(std::move(NewU));
2894 }
2895 
2896 DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) {
2897 
2898   auto OwnedUnit = std::make_unique<DwarfCompileUnit>(
2899       CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder,
2900       UnitKind::Skeleton);
2901   DwarfCompileUnit &NewCU = *OwnedUnit;
2902   NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection());
2903 
2904   NewCU.initStmtList();
2905 
2906   if (useSegmentedStringOffsetsTable())
2907     NewCU.addStringOffsetsStart();
2908 
2909   initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit));
2910 
2911   return NewCU;
2912 }
2913 
2914 // Emit the .debug_info.dwo section for separated dwarf. This contains the
2915 // compile units that would normally be in debug_info.
2916 void DwarfDebug::emitDebugInfoDWO() {
2917   assert(useSplitDwarf() && "No split dwarf debug info?");
2918   // Don't emit relocations into the dwo file.
2919   InfoHolder.emitUnits(/* UseOffsets */ true);
2920 }
2921 
2922 // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the
2923 // abbreviations for the .debug_info.dwo section.
2924 void DwarfDebug::emitDebugAbbrevDWO() {
2925   assert(useSplitDwarf() && "No split dwarf?");
2926   InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection());
2927 }
2928 
2929 void DwarfDebug::emitDebugLineDWO() {
2930   assert(useSplitDwarf() && "No split dwarf?");
2931   SplitTypeUnitFileTable.Emit(
2932       *Asm->OutStreamer, MCDwarfLineTableParams(),
2933       Asm->getObjFileLowering().getDwarfLineDWOSection());
2934 }
2935 
2936 void DwarfDebug::emitStringOffsetsTableHeaderDWO() {
2937   assert(useSplitDwarf() && "No split dwarf?");
2938   InfoHolder.getStringPool().emitStringOffsetsTableHeader(
2939       *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(),
2940       InfoHolder.getStringOffsetsStartSym());
2941 }
2942 
2943 // Emit the .debug_str.dwo section for separated dwarf. This contains the
2944 // string section and is identical in format to traditional .debug_str
2945 // sections.
2946 void DwarfDebug::emitDebugStrDWO() {
2947   if (useSegmentedStringOffsetsTable())
2948     emitStringOffsetsTableHeaderDWO();
2949   assert(useSplitDwarf() && "No split dwarf?");
2950   MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection();
2951   InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(),
2952                          OffSec, /* UseRelativeOffsets = */ false);
2953 }
2954 
2955 // Emit address pool.
2956 void DwarfDebug::emitDebugAddr() {
2957   AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection());
2958 }
2959 
2960 MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) {
2961   if (!useSplitDwarf())
2962     return nullptr;
2963   const DICompileUnit *DIUnit = CU.getCUNode();
2964   SplitTypeUnitFileTable.maybeSetRootFile(
2965       DIUnit->getDirectory(), DIUnit->getFilename(),
2966       CU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource());
2967   return &SplitTypeUnitFileTable;
2968 }
2969 
2970 uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) {
2971   MD5 Hash;
2972   Hash.update(Identifier);
2973   // ... take the least significant 8 bytes and return those. Our MD5
2974   // implementation always returns its results in little endian, so we actually
2975   // need the "high" word.
2976   MD5::MD5Result Result;
2977   Hash.final(Result);
2978   return Result.high();
2979 }
2980 
2981 void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU,
2982                                       StringRef Identifier, DIE &RefDie,
2983                                       const DICompositeType *CTy) {
2984   // Fast path if we're building some type units and one has already used the
2985   // address pool we know we're going to throw away all this work anyway, so
2986   // don't bother building dependent types.
2987   if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed())
2988     return;
2989 
2990   auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0));
2991   if (!Ins.second) {
2992     CU.addDIETypeSignature(RefDie, Ins.first->second);
2993     return;
2994   }
2995 
2996   bool TopLevelType = TypeUnitsUnderConstruction.empty();
2997   AddrPool.resetUsedFlag();
2998 
2999   auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder,
3000                                                     getDwoLineTable(CU));
3001   DwarfTypeUnit &NewTU = *OwnedUnit;
3002   DIE &UnitDie = NewTU.getUnitDie();
3003   TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy);
3004 
3005   NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2,
3006                 CU.getLanguage());
3007 
3008   uint64_t Signature = makeTypeSignature(Identifier);
3009   NewTU.setTypeSignature(Signature);
3010   Ins.first->second = Signature;
3011 
3012   if (useSplitDwarf()) {
3013     MCSection *Section =
3014         getDwarfVersion() <= 4
3015             ? Asm->getObjFileLowering().getDwarfTypesDWOSection()
3016             : Asm->getObjFileLowering().getDwarfInfoDWOSection();
3017     NewTU.setSection(Section);
3018   } else {
3019     MCSection *Section =
3020         getDwarfVersion() <= 4
3021             ? Asm->getObjFileLowering().getDwarfTypesSection(Signature)
3022             : Asm->getObjFileLowering().getDwarfInfoSection(Signature);
3023     NewTU.setSection(Section);
3024     // Non-split type units reuse the compile unit's line table.
3025     CU.applyStmtList(UnitDie);
3026   }
3027 
3028   // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type
3029   // units.
3030   if (useSegmentedStringOffsetsTable() && !useSplitDwarf())
3031     NewTU.addStringOffsetsStart();
3032 
3033   NewTU.setType(NewTU.createTypeDIE(CTy));
3034 
3035   if (TopLevelType) {
3036     auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction);
3037     TypeUnitsUnderConstruction.clear();
3038 
3039     // Types referencing entries in the address table cannot be placed in type
3040     // units.
3041     if (AddrPool.hasBeenUsed()) {
3042 
3043       // Remove all the types built while building this type.
3044       // This is pessimistic as some of these types might not be dependent on
3045       // the type that used an address.
3046       for (const auto &TU : TypeUnitsToAdd)
3047         TypeSignatures.erase(TU.second);
3048 
3049       // Construct this type in the CU directly.
3050       // This is inefficient because all the dependent types will be rebuilt
3051       // from scratch, including building them in type units, discovering that
3052       // they depend on addresses, throwing them out and rebuilding them.
3053       CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy));
3054       return;
3055     }
3056 
3057     // If the type wasn't dependent on fission addresses, finish adding the type
3058     // and all its dependent types.
3059     for (auto &TU : TypeUnitsToAdd) {
3060       InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get());
3061       InfoHolder.emitUnit(TU.first.get(), useSplitDwarf());
3062     }
3063   }
3064   CU.addDIETypeSignature(RefDie, Signature);
3065 }
3066 
3067 DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD)
3068     : DD(DD),
3069       TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)) {
3070   DD->TypeUnitsUnderConstruction.clear();
3071   assert(TypeUnitsUnderConstruction.empty() || !DD->AddrPool.hasBeenUsed());
3072 }
3073 
3074 DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() {
3075   DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction);
3076   DD->AddrPool.resetUsedFlag();
3077 }
3078 
3079 DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() {
3080   return NonTypeUnitContext(this);
3081 }
3082 
3083 // Add the Name along with its companion DIE to the appropriate accelerator
3084 // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for
3085 // AccelTableKind::Apple, we use the table we got as an argument). If
3086 // accelerator tables are disabled, this function does nothing.
3087 template <typename DataT>
3088 void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU,
3089                                   AccelTable<DataT> &AppleAccel, StringRef Name,
3090                                   const DIE &Die) {
3091   if (getAccelTableKind() == AccelTableKind::None)
3092     return;
3093 
3094   if (getAccelTableKind() != AccelTableKind::Apple &&
3095       CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default)
3096     return;
3097 
3098   DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder;
3099   DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name);
3100 
3101   switch (getAccelTableKind()) {
3102   case AccelTableKind::Apple:
3103     AppleAccel.addName(Ref, Die);
3104     break;
3105   case AccelTableKind::Dwarf:
3106     AccelDebugNames.addName(Ref, Die);
3107     break;
3108   case AccelTableKind::Default:
3109     llvm_unreachable("Default should have already been resolved.");
3110   case AccelTableKind::None:
3111     llvm_unreachable("None handled above");
3112   }
3113 }
3114 
3115 void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name,
3116                               const DIE &Die) {
3117   addAccelNameImpl(CU, AccelNames, Name, Die);
3118 }
3119 
3120 void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name,
3121                               const DIE &Die) {
3122   // ObjC names go only into the Apple accelerator tables.
3123   if (getAccelTableKind() == AccelTableKind::Apple)
3124     addAccelNameImpl(CU, AccelObjC, Name, Die);
3125 }
3126 
3127 void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name,
3128                                    const DIE &Die) {
3129   addAccelNameImpl(CU, AccelNamespace, Name, Die);
3130 }
3131 
3132 void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name,
3133                               const DIE &Die, char Flags) {
3134   addAccelNameImpl(CU, AccelTypes, Name, Die);
3135 }
3136 
3137 uint16_t DwarfDebug::getDwarfVersion() const {
3138   return Asm->OutStreamer->getContext().getDwarfVersion();
3139 }
3140 
3141 const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) {
3142   return SectionLabels.find(S)->second;
3143 }
3144 void DwarfDebug::insertSectionLabel(const MCSymbol *S) {
3145   SectionLabels.insert(std::make_pair(&S->getSection(), S));
3146 }
3147